WO2011001871A1 - イオン交換装置、その製作方法及び設備並びにイオン交換樹脂層の形成方法及び装置 - Google Patents

イオン交換装置、その製作方法及び設備並びにイオン交換樹脂層の形成方法及び装置 Download PDF

Info

Publication number
WO2011001871A1
WO2011001871A1 PCT/JP2010/060649 JP2010060649W WO2011001871A1 WO 2011001871 A1 WO2011001871 A1 WO 2011001871A1 JP 2010060649 W JP2010060649 W JP 2010060649W WO 2011001871 A1 WO2011001871 A1 WO 2011001871A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion exchange
exchange resin
pump
container
water
Prior art date
Application number
PCT/JP2010/060649
Other languages
English (en)
French (fr)
Inventor
佐藤 伸
正光 池田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009155660A external-priority patent/JP5391874B2/ja
Priority claimed from JP2009266401A external-priority patent/JP5407801B2/ja
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201080029277.7A priority Critical patent/CN102471098B/zh
Priority to KR1020167015822A priority patent/KR101794500B1/ko
Priority to KR1020117027548A priority patent/KR101682874B1/ko
Publication of WO2011001871A1 publication Critical patent/WO2011001871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J47/00Ion-exchange processes in general; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/02Loose filtering material, e.g. loose fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J49/00Regeneration or reactivation of ion-exchangers; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water

Definitions

  • the present invention relates to a method and equipment for manufacturing an ion exchange apparatus by filling an ion exchange resin into a container, and in particular, an ion exchange apparatus suitably used for manufacturing an ion exchange apparatus used in an ultrapure water production process or the like. It relates to a manufacturing method and equipment.
  • the present invention relates to an ion exchange apparatus manufactured by this method and equipment.
  • the present invention also relates to a method and an apparatus for forming an ion exchange resin layer by filling an ion exchange resin in a container.
  • the present invention relates to an ion exchange apparatus having an ion exchange resin layer formed by this method and apparatus.
  • a cation exchange resin, an anion exchange resin, a mixed resin thereof, or a mixed resin of these and other resins is filled in a container to form an ion exchange resin layer, and a liquid to be treated is used.
  • the ion exchange process is performed by passing the liquid. After the ion exchange resin layer is saturated, the flow of the liquid to be treated is stopped, then the regenerant is passed through to regenerate the ion exchange resin layer, and further, the washing water is passed through the water to be washed.
  • Many ion exchange devices, particularly stationary ion exchange devices, that resume liquid exchange and resume ion exchange treatment have been used.
  • the ion exchange resin is regenerated and reused.
  • a reusable ion exchanger In the latter case, the ion exchange resin is regenerated for each recovered unit, and the ion exchange resin is collected from the unit and regenerated. Some of them are attached to an exchange device to perform ion exchange processing.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-705466 discloses an ion exchange unit that is formed by filling a main body container with an ion exchange resin and connecting a protruding pipe from the container to a raw water pipe, a treated water pipe or the like.
  • FIG. 2 shows an ion exchange unit U described in the same item.
  • the ion exchange unit U is filled with a conditioned ion exchange resin 2 in a container 1 having an opening 1a.
  • a lid 6 is attached to the opening 1a.
  • the lid 6 is provided with an ion exchange resin inlet 3, and a raw water inlet pipe 5 and a treated water outlet pipe 4 are provided in a penetrating manner.
  • the raw water introduction pipe 5 is inserted to the bottom in the container 1, and a strainer 5a is provided at the lower end thereof.
  • the strainer 4a attached to the lower end of the treated water outlet pipe 4 is located in the upper part of the container 1.
  • the ion exchange resin 2 is filled into the container 1 through the resin inlet 3.
  • the inlet 3 is then sealed.
  • the resin introduction port 3 is used for draining water, venting air, etc. at the time of connection, but is normally closed at the time of ion exchange treatment.
  • This ion exchange unit is sealed in a state of being disconnected at the positions of the couplings 4b and 5b, and is transported to the site and installed.
  • the couplings 4b and 5b are connected to the expansion joints 7 and 8 to introduce raw water and take out treated water (ultra pure water) (paragraphs 0021 to 0022).
  • an ion exchange resin there are a case where a cation exchange resin or an anion exchange resin is filled alone, and a case where both are mixed and filled in a volume ratio of about 1: 3 to 3: 1 (paragraph 0018). ).
  • the ion exchange unit U attached to the ion exchange system introduces raw water from the raw water flow path (not shown) of the ion exchange apparatus into the container 1 through the raw water introduction path 4 and the first strainer 4a, and the ion exchange resin layer 2
  • the ion exchange is performed by passing the water, and the treated water is collected by the second strainer 5a and taken out from the treated water outlet 5 through a treated water channel (not shown) of the ion exchanger.
  • the ion exchange unit U is removed with the couplings 4b and 5b and replaced with a new unit, and the ion exchange process is continued.
  • the used ion exchange unit U is transported and collected in the removed state, and if necessary, the ion exchange resin is taken out and regenerated, and the regenerated ion exchange resin is filled in the container 1 again to form an ion exchange device. It is again subjected to ion exchange treatment.
  • the ion exchange resin is dispersed in water and introduced in the form of a slurry, and the accompanying water is separated and drained by the strainers 4a and 5a. . In this method, it was difficult to fill the main body container 1 with a certain amount of ion exchange resin.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-28501
  • an ion exchange resin is accommodated in an ion exchange resin transfer container and transported to the site.
  • the ion exchange device is filled on site and used for ion exchange.
  • An example is shown in which the ion exchange resin is taken out from the exchange device, accommodated in the ion exchange resin transfer container and transported to the installation location of the regenerator, and after regeneration, the ion exchange resin is again accommodated in the ion exchange resin transport container and transported to the site.
  • a pipe connected to a filter member (corresponding to a strainer) in the container is provided.
  • the ion exchange resin is dispersed in water and introduced in a slurry state, and the entrained water is separated by the filter member.
  • the ion exchange resin filling amount is made constant.
  • the ion exchange resin is filled in the liquid phase and used, and the characteristics are displayed and processed based on the volume of the ion exchange resin layer. It is required to have a certain capacity in a state existing in the phase. In this case, the ion exchange resin is dispersed in water and introduced into a container in the form of a slurry and filled. However, since the concentration of the ion exchange resin in the slurry cannot be made constant, A certain amount of resin cannot be filled.
  • the prefilled resin is weighed, and the method of filling it is to measure a certain amount of the recycled resin in advance, disperse it in water and introduce it into a slurry form.
  • the measurement of the weight is affected by the amount of water present, so accurate measurement is actually difficult.
  • the method of visually measuring the resin filling amount it is necessary to repeatedly stop the liquid flow and visually measure, and when the container becomes large and the resin filling amount increases, accurate measurement becomes difficult. There are problems such as.
  • the fullness of the ion exchange resin in the container may be detected by increasing the pressure of the supply slurry, and the supply of slurry may be stopped.
  • the supply of slurry is stopped by accurately detecting the increase in pressure. In order to achieve this, a complicated device, a control mechanism, and the like are required, and it is difficult to form a packed bed having a uniform packing density by separating the ion exchange resin in the slurry from the entrained water. There is.
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-221160 describes a pneumatically driven diaphragm pump as a fluid pressure driven pump.
  • This pneumatically driven diaphragm pump is a double diaphragm pump, with two diaphragms provided in each of the pump chambers, joined to the tip of the shaft that slides through the intermediate wall, and is integrated so that it can reciprocate. Yes. However, it is not shown that the ion-exchange resin filling amount is constant.
  • Patent Document 6 Japanese Patent Laid-Open No. 2007-305019
  • the air pressure for driving the pump reaches a predetermined pressure
  • the air pressure acting on the pump is released and the driving of the pump is stopped.
  • the control mechanism is shown.
  • this control mechanism is used to stop the pump drive by detecting an increase in air pressure when the air pressure for driving rises due to damage to the diaphragm, etc. There is no indication that the amount is constant.
  • Patent Documents 2 and 3 describe a method for purifying an ion exchange resin and a drug therefor.
  • ultrapure water is used for cleaning semiconductor products and other uses, but the demand for the quality of this ultrapure water is becoming increasingly severe.
  • the metal concentration is 1 ppt or less, and in some cases, 0. Ultra high water quality of 1 ppt or less may be required.
  • the ion exchange device is filled with highly purified ion exchange resin in order to prevent leakage of metals and the like from the ion exchange device.
  • the first object of the present invention is to provide an ion exchange apparatus manufacturing method and equipment in which contamination of the ion exchange resin by dust in the air is prevented, and an ion exchange apparatus manufactured by this method and equipment.
  • the present invention can form an ion exchange resin layer by filling a container with a certain amount of ion exchange resin accurately and in a short time with a simple mechanism and simple operation.
  • Another object of the present invention is to propose an ion exchange resin layer forming method and apparatus capable of preventing clogging of piping and the like, and an ion exchange apparatus having an ion exchange resin layer formed by this method and apparatus.
  • a method and facility for manufacturing an ion exchange apparatus in which a purified ion exchange resin is filled in a container to produce the ion exchange apparatus, and a filling step of filling the container with the ion exchange resin is performed in a clean room. It is characterized by being performed by.
  • the manufacturing method and equipment of the ion exchange device of the second aspect are the first aspect, wherein the ion exchange resin is purified without being brought into contact with the atmosphere, and transferred to the filling step via the pipe without being brought into contact with the atmosphere. It is characterized by that.
  • the manufacturing method and equipment of the ion exchange device of the third aspect are the same as those of the first or second aspect, wherein a plurality of purification equipments for performing the purification treatment are provided in parallel, and the same kind of ion exchange resin is used in one purification equipment. Only different types of ion exchange resins are processed, and different types of ion exchange resins are processed in different purification facilities.
  • the manufacturing method and equipment of the ion exchange device of the fourth aspect are the third aspect, wherein after purifying a plurality of types of ion exchange resins in different purification equipments, they are weighed in separate measuring tanks, and then mixed in a mixing tank. It mixes and fills the said container, It is characterized by the above-mentioned.
  • the manufacturing method and equipment of the ion exchange device according to the fifth aspect are characterized in that, in any one of the first to fourth aspects, the cleanliness of the clean room is class 10,000 or less.
  • the manufacturing method and equipment of the ion exchange device according to the sixth aspect are the ultra-pure water in the clean room in the ion exchange device filled with the ion exchange resin in any one of the first to fifth aspects. Analyzing the effluent water from the ion exchange device, the ion exchange device is inspected.
  • the manufacturing method and equipment of the ion exchange apparatus according to the seventh aspect are characterized in that, in the sixth aspect, the effluent water is analyzed in a clean room with a cleanliness of class 1000 or less.
  • the cleanliness of the clean room of the present invention is expressed by the number of suspended particulates of 0.3 ⁇ m or more in a volume space of 1 cubic foot (1 cubic foot).
  • Class 10,000 is in 1 cubic foot. 10,000, class 1,000 indicates that there are 1,000 particles in one cubic foot.
  • the manufacturing method and equipment of the ion exchange apparatus since the filling process for filling the container with the ion exchange resin is performed in the clean room, dust in the air is mixed into the ion exchange apparatus in this filling process. Is prevented. Therefore, by using an ion exchange device manufactured by this method and equipment, it is possible to produce ultrapure water with good water quality.
  • the present invention is particularly suitable as a manufacturing method and equipment for an ion exchange polisher (non-regenerative ion exchange apparatus) of a subsystem (secondary pure water system) among ultrapure water production apparatuses.
  • the present invention is particularly suitable as a production method and equipment for an ultrapure water production apparatus for producing high purity ultrapure water, for example, an ion exchange apparatus for an ultrapure water production apparatus used for wafer production, semiconductor production, etc. .
  • an ultrapure water production apparatus having an ion exchange device manufactured by the method and equipment of the present invention it becomes easy to produce ultrapure water having a metal concentration of 1 ppt or less, further 0.1 ppt or less.
  • the ion exchange resin since the ion exchange resin does not come into contact with the atmosphere in the purification step and the subsequent transfer step, it is possible to prevent dust in the air from being mixed into the ion exchange resin in these steps.
  • different types of ion exchange resins are refined by different purification equipment, so that different kinds of ion exchange resins are prevented from being mixed into the ion exchange resin.
  • the measuring tank is also separated according to the type of ion exchange resin, even a mixed bed type ion exchange apparatus can be mixed and filled with ion exchange resins as prescribed.
  • the cleanliness of the clean room is preferably class 10,000 or less.
  • the water is passed through the ion exchange device filled with the ion exchange resin, and the quality of the ion exchange device can be ensured because it is shipped after the quality of the effluent water is inspected.
  • the inspection accuracy is high.
  • An ion exchange resin layer forming method and apparatus includes introducing a mixed slurry of an ion exchange resin and water into a container, separating the water with a strainer, and discharging the water from the container. And an ion exchange resin layer forming method and apparatus, Supply mixed slurry of ion exchange resin and water to container by fluid pressure driven pump, When the fluid pressure for driving the pump reaches a predetermined pressure, the fluid pressure acting on the pump is released and the driving of the pump is stopped.
  • the method and apparatus for forming an ion exchange resin layer according to the ninth aspect is the eighth aspect, wherein when the fluid pressure for driving the pump reaches a predetermined pressure, the fluid pressure acting on the pump is released and the driving of the pump is stopped. After that, the driving of the pump is restarted, and when the fluid pressure for driving the pump reaches the predetermined pressure again, the fluid pressure acting on the pump is released and the driving of the pump is stopped.
  • the method and apparatus for forming an ion exchange resin layer according to a tenth aspect is the raw water introduction path where the container is connected to the first strainer, the treated water outlet path where the container is connected to the second strainer, and the resin introduction in the eighth or ninth aspect.
  • a mixed slurry is introduced into the container through the resin introduction path, and the water is separated by the first and / or second strainer and discharged from the raw water introduction path and / or the treated water extraction path.
  • an ion exchange resin layer is formed in the container.
  • An ion exchange resin layer forming method and apparatus is the method according to the eighth to tenth aspects, wherein the fluid pressure driven pump is a pneumatically driven pump, and the pump driving air pressure reaches a predetermined pressure when the pump driving air pressure reaches a predetermined pressure.
  • a control mechanism for releasing the air pressure acting on the pump and stopping the driving of the pump is provided.
  • a pneumatically driven diaphragm pump is suitable as the fluid pressure driven pump.
  • the ion exchange resin is preferably a mixed resin of a cation exchange resin and an anion exchange resin.
  • the anion exchange resin and the cation exchange resin are separately purified and weighed, and then mixed and filled into a container.
  • the anion exchange resin is received and stored in a dedicated receiving tank 111 from a flexible container bag or the like.
  • the anion exchange resin in the receiving tank 111 is sent to a purification tower (conditioning tower) 114 via a pump 112 and a pipe 113.
  • the ion exchange resin is purified with ultrapure water and conditioning chemicals.
  • Various conditioning chemicals such as those described in Patent Documents 1 to 3 can be used.
  • the refined wastewater is sent to a recovery system (not shown), processed, recovered as ultrapure water, and reused.
  • the same process is performed also in the refinement
  • the purified anion exchange resin is sent to the measuring tank 119 via the pipe 115, the storage tank 116, the pump 117, and the pipe 118.
  • the cation exchange resin is received in a dedicated receiving tank 121, sent from there to a purification tower 124 via a pump 122 and a pipe 123, purified, and then purified through a pipe 125, a storage tank 126, a pump 127 and a pipe 128. To the weighing tank 129.
  • These measuring tanks 119, 129 and the subsequent mixing tanks 130 are installed in a clean room 141 having a cleanness of 10,000 or less.
  • the anion exchange resin and the cation exchange resin weighed in a predetermined amount in the measuring tanks 119 and 129 are introduced into the mixing tank 130 through the dedicated pipes 119a and 129a, respectively, and mixed.
  • the mixed ion exchange resin is sent to the container 133 via the pump 131 and the pipe 132 and filled.
  • As the container 133 a container having the same configuration as that shown in FIG. 2 is used.
  • the ion exchange resin is filled into the container 133 from the resin inlet of the container 133 to form an ion exchange apparatus.
  • the resin inlet is sealed. Thereafter, the ion exchange device is sent to an inspection process in the clean room 141.
  • ultrapure water is introduced from the raw water inlet provided in the container 133 through the pipe 135, and the treated water taken out from the treated water outlet is analyzed in the analysis chamber 142 through the pipe 136. It is sent to the device 137 and the water quality is analyzed.
  • the inspection wastewater is discharged to the recovery system via the pipe 138. If the inspection result is acceptable, the raw water inlet and the treated water outlet of the container 133 are sealed and sent out of the clean room 1141 through the clean room inlet / outlet 143.
  • the rejected ion exchange device is also taken out from the entrance / exit 143 to the outside of the clean room 141.
  • the analysis chamber 142 is a clean room with a cleanness of 1000 or less.
  • the filling process of filling the ion exchange resin into the container 133 is performed in a clean room 141 having a cleanness of 10,000 or less. It is prevented from entering the apparatus. Therefore, ultrapure water with good water quality can be produced by using the ion exchange device thus produced.
  • the anion exchange resin and the cation exchange resin are purified so that they do not come into contact with the atmosphere in the purification towers 114 and 124, and then the pipes 115, 118, 125, 128, and the measurement tanks 119, 129 and the mixing tank 130 are weighed and mixed so as not to come into contact with the atmosphere. Therefore, in these transfer, measurement and mixing processes, dust in the air may be mixed into the ion exchange resin. Is prevented.
  • the anion exchange resin and the cation exchange resin are respectively transferred using dedicated receiving tanks 111 and 121, purification towers 114 and 124, storage tanks 116 and 126, measuring tanks 119 and 129, pipes and pumps. In this process, different ion exchange resins are prevented from being mixed into the ion exchange resin.
  • the anion exchange resin and cation exchange resin which are purely a single kind and not mixed with different types of ion exchange resins, are weighed and mixed and filled into the container 133, the anion exchange resin and cation exchange are regulated as specified.
  • a mixed bed type ion exchange apparatus in which resin is mixed and filled can be manufactured.
  • ultrapure water is passed through an ion exchange device filled with an ion exchange resin, and the quality of the effluent water is inspected before shipment. Therefore, a high-quality ion exchange device can be reliably shipped. it can. Moreover, since this water quality test is performed in the clean room 142 having a cleanness of class 1000 or less, the test accuracy is high.
  • the anion exchange resin and the cation exchange resin are processed and transferred in the dedicated receiving tank 111 to weighing tank 119 and the receiving tank 121 to weighing tank 129, respectively.
  • install a dedicated receiving tank to weighing tank line for each part number and treat the anion exchange resin in the line dedicated to each part number.
  • cation exchange resins having different product numbers a dedicated line is provided for each product number, and processing is performed using the dedicated line for each product number. In this way, it is possible to prevent anion exchange resins having different product numbers from being mixed into the anion exchange resin, and cation exchange resins having different product numbers from being mixed into the cation exchange resin.
  • the anion exchange resin and the cation exchange resin are weighed in the measuring tanks 119 and 129, mixed in the mixing tank 136, and filled in the container 133, but only the anion exchange resin from the measuring tank 119 or
  • An anion exchange device or a cation exchange device may be manufactured by filling the container 133 with only the cation exchange resin from the measuring tank 129.
  • Example 1 an ion exchange apparatus was produced in the same manner as in Example 1 except that an ion exchange apparatus production facility having a configuration in which the clean room 141 was not installed was used, and a water flow test was performed. Table 1 shows the water quality of the ion exchanger effluent collected at 24 hours.
  • the ion exchange resin layer is an ion exchange resin layer formed on an ion exchange device such as a pure water production device, an ultrapure water production device, a wastewater treatment device, or an ion adsorption device, and is a fixed type Examples thereof include an ion exchange device, a unit exchange type ion exchange device, and an ion exchange resin layer provided in a resin exchange type ion exchange device using an ion exchange resin transfer container. Also, an ion exchange resin filling unit used in the above unit exchange type ion exchange device, an ion exchange resin transfer container used in a resin exchange type ion exchange device, an ion exchange resin layer formed in a container such as a resin storage tank, etc. Is also a target. In these, the ion exchange resin layer formed in the ion exchange resin filling unit used for a unit exchange type ion exchange apparatus is suitable for object.
  • the ion exchange resin constituting the ion exchange resin layer examples include cation exchange resins, anion exchange resins, chelate resins, other selectively adsorptive resins, mixed resins thereof, or mixed resins of these with inert resins and other resins. And granular resin. These resins may be new resins or reused resins. In any case, it is desirable to introduce and fill the recycled resin into the container to form an ion exchange resin layer.
  • the container for filling the ion exchange resin is not particularly limited, and can be filled as it is into a container that is required to form an ion exchange resin layer.
  • Such containers are used in fixed, resin exchange, ion exchange towers of other ion exchange devices, ion exchange resin filling units used in unit exchange type ion exchange devices, and resin exchange type ion exchange devices.
  • Examples include an ion exchange resin transfer container, a resin storage tank, and other containers.
  • a constant volume container is suitable so that a constant volume of resin is filled at a constant packing density and a constant volume of ion exchange resin layer is formed when the resin is full.
  • Examples of such a container include an ion exchange resin filling unit used in a unit exchange type ion exchange apparatus.
  • a resin introduction path for introducing a mixed slurry of ion exchange resin and water into the container, a strainer for separating entrained water in the container, and a separated water discharge for discharging the separated water from the container
  • a container having a filling means such as a passage is preferable, and a container having a constant internal volume in a state where these filling means are provided is preferable.
  • a container not provided with these filling means may be used, but in this case, the resin can be filled by attaching these filling means.
  • a container is provided with a raw water introduction path that connects a container to the first strainer, a treated water extraction path that connects to a second strainer, and a resin introduction path for ion exchange processing. If one is present, one or both of these can be used as the filling means.
  • the strainer preferably has an opening of 0.1 to 0.3 mm so that an ion exchange resin having a particle size of 0.4 to 0.5 mm does not flow out.
  • a mixed slurry of ion exchange resin and water is introduced into a container and filled with the ion exchange resin, and water is separated from the strainer and discharged from the container, whereby the ion exchange resin layer is formed in the container.
  • the mixed slurry of the ion exchange resin and water is supplied to the container by the fluid pressure driven pump and the inside of the container is filled with the ion exchange resin by discharging the separated water, the discharge pressure of the pump becomes high, Accordingly, the fluid pressure for driving the pump also increases. For this reason, when the fluid pressure for driving the pump reaches a predetermined pressure, the fluid pressure acting on the pump is released to stop the driving of the pump and form an ion exchange resin layer having a certain capacity in the container. Can do.
  • the capacity of the ion exchange resin is generally set to 10 to 20 minutes until the ion exchange resin is poured into pure water (ultra pure water) and the resin layer is not changed. It is the volume measured in the settling state.
  • the capacity of the ion exchange resin is measured in a state where the mixed resin is put into pure water (ultra pure water) and left to settle. Capacity.
  • the ion exchange resin Since the ion exchange resin is filled in a state where the mixed slurry is pressurized, the filling density of the ion exchange resin layer formed in the container is increased, and therefore the capacity of the resin constituting the ion exchange resin layer is It may be larger than the volume of the resin corresponding to the volume. In this invention, it fills so that the capacity
  • the mixed slurry of ion exchange resin and water is a slurry in which the above ion exchange resin and water are mixed.
  • a preferable mixing ratio of the ion exchange resin and water is a volume ratio of the ion exchange resin and water in a state where a water phase is formed in the surroundings (state in which the water is allowed to settle and does not separate water) (70:30) to ( 90:10).
  • the mixed slurry of the ion exchange resin and water is pressurized with a fluid pressure driven pump and introduced into the container to be filled.
  • the supply pressure for supplying the mixed slurry to the container that is, the discharge of the pump
  • the pressure is preferably such that the resin filling operation is easy and the resin is uniformly filled without being crushed, and is generally within a range of 0.2 to 0.7 MPa. it can.
  • the mixed slurry is supplied to the container with such a pump discharge pressure, and when the fluid pressure for driving the pump reaches a predetermined pressure, the fluid pressure acting on the pump is released and the driving of the pump is stopped.
  • a certain volume of ion exchange resin layer can be formed inside, but the packing density may be uneven, and an ion exchange resin layer with a completely uniform packing density must be formed in the first filling operation. May be difficult. Therefore, after stopping the pump by a single filling operation, the pump is restarted and the slurry is supplied, and the fluid pressure acting on the pump is released when the fluid pressure for driving the pump reaches the predetermined pressure again. By stopping the driving of the pump, an ion exchange resin layer having a uniform filling density can be formed.
  • the pump after stopping the pump drive in the first filling operation, it is preferable to leave the pump for a certain time, for example, 1 to 20 minutes, preferably 5 to 10 minutes, and then restart the drive of the pump.
  • the pump can be stopped and driven only once.
  • a pump having a control mechanism for releasing the fluid pressure acting on the pump when the fluid pressure for driving the pump reaches a predetermined pressure can be used.
  • the fluid pressure for driving the pump increases as the pushing pressure of the slurry increases.
  • the pressure acting on the pump is automatically released, so that the pump can be stopped with a sufficient amount of ion exchange resin.
  • a control mechanism that detects the pump discharge pressure and controls the pump to stop, or a mechanism that automatically stops the pump when the pump discharge pressure becomes high, is difficult in a resin-water mixture system.
  • complicated mechanisms and operations are required.
  • the fluid pressure for the pump drive increases sensitively in response to the increase in the pump discharge pressure due to the resin being full. If the pressure is controlled, the pump can be stopped in response to a full resin.
  • the fluid for driving the pump does not contain a solid material such as resin, so that the configuration of the device, the operation operation, and the like can be simplified.
  • the configuration and operation of the equipment can be further simplified, and the intake and discharge into the system can be facilitated, and precise control can be performed in accordance with the rules.
  • Pneumatically driven pumps are preferred as fluid pressure driven pumps, and the application of air pressure as fluid pressure is easy to generate, handle, discard, etc., and because of compression during operation, there is little damage due to impact of resin, etc. There are advantages.
  • the pneumatic drive pump may be a reciprocating piston type or the like, but is preferably a pneumatic drive diaphragm pump.
  • the impact on the resin can be reduced, so that damage to the resin can be further reduced, control is easy, and filling is performed with an accurate filling density to form an ion exchange resin layer with a constant capacity. be able to.
  • a container having a raw water introduction path connected to the first strainer, a treated water extraction path connected to the second strainer, and a resin introduction path as a container for example, an ion exchange resin filling unit used in a unit exchange type ion exchange apparatus Is used, the mixed slurry of ion exchange resin and water is introduced into the container through the resin introduction path, the water is separated by the first and / or second strainer, and discharged from the raw water introduction path and / or the treated water extraction path.
  • an ion exchange resin layer can be formed in the container.
  • the container in which the ion exchange resin layer is formed in this manner can be attached to the ion exchange apparatus as it is, and the ion exchange treatment can be performed by passing the liquid to be treated. After saturation, the container is recovered and the resin is recovered. Can be regenerated and refilled and used repeatedly.
  • the ion exchange resin layer to be formed is formed of an impurity introduced by a target ion exchange device such as a pure water production device, an ultrapure water production device, a wastewater treatment device, or an ion adsorption device.
  • a target ion exchange device such as a pure water production device, an ultrapure water production device, a wastewater treatment device, or an ion adsorption device.
  • an ion exchange resin layer is formed using pure water or ultrapure water corresponding to the required purity as the water used for transportation, and the filling operation is performed in a dust-free environment such as a clean room. Preferably it is done.
  • the mixed slurry of ion exchange resin and water is introduced into the container, and the water is separated from the strainer and discharged from the container.
  • a mixed slurry of ion exchange resin and water is supplied to a container by a fluid pressure driven pump, and the fluid pressure acting on the pump is reached when the fluid pressure for driving the pump reaches a predetermined pressure. Since the pump is stopped and the ion exchange resin layer is formed, the ion exchange resin is filled in a container accurately and in a short time with a simple mechanism and simple operation. An exchange resin layer and an ion exchange device having this ion exchange resin layer can be formed, and it is possible to prevent high density filling and crushing of the ion exchange resin or clogging of piping.
  • a container 1 constitutes an ion exchange unit U used in a unit exchange type ion exchange apparatus, and has the same configuration as that in FIG. That is, in the ion exchange unit U, the regenerated ion exchange resin layer 2 is formed inside the detachable container 1.
  • An opening 1 a is formed in the upper part of the container 1, and a lid 6 in which the resin introduction path 3, the raw water introduction path 4 and the treated water extraction path 5 are integrated is attached.
  • a first strainer 4 a and a second strainer 5 a are provided at the lower ends of the raw water introduction path 4 and the treated water extraction path 5, respectively, at the leading ends that extend into the container 1.
  • Couplings 4b and 5b are attached to the upper portions of the raw water introduction path 4 and the treated water extraction path 5, respectively, and can be connected to expansion joints 7 and 8 of the resin filling device.
  • the expansion joints 7 and 8 are connected to the external flow paths 11 and 12 by joints 9 and 10.
  • the ion exchange resin layer 2 is not filled in the entire container 1 and a water layer is formed on the upper part of the container 1, but in FIG. 3, the ion exchange resin layer 2 is formed in the entire container 1. It is designed to be filled to a full state.
  • the ion exchange resin layer 2 is filled with a mixed resin of a cation exchange resin and an anion exchange resin.
  • the rest of the configuration of the ion exchange unit U and the basic operation of filling the resin into the container 1 are substantially the same as those described with reference to FIG.
  • the ion exchange unit U manufactured by forming the ion exchange resin layer 2 is sealed in the state of being separated at the positions of the couplings 4b and 5b and transported to the site in the same manner as described in FIG.
  • the couplings 4b and 5b are connected to the raw water flow path and the treated water flow path (both not shown) of the ion exchange device corresponding to the external flow paths 11 and 12, and are used for ion exchange.
  • the resin introduction path 3 is used for air venting.
  • a cation exchange resin regeneration tank 21 In order to fill the container 1 with the mixed resin, a cation exchange resin regeneration tank 21, an anion exchange resin regeneration tank 22, and a mixing tank 23 are provided. After being performed, the regenerated resin is introduced and filled into the container 1 of the ion exchange unit U by the pump 30.
  • the mixed resin constituting the ion exchange resin layer 2 is lined from the container 1 of the collected ion exchange unit U.
  • L1 is introduced into the cation exchange resin regeneration tank 21, pure water is sent from the line L2, the resin is backwashed and separated, and the separated anion exchange resin is introduced into the anion exchange resin regeneration tank 22 from the line L5.
  • the regenerant (acid) is passed from the line L3 to the cation exchange resin regeneration tank 21, the regeneration drainage is discharged from the line L4 to regenerate the cation exchange resin, and the regenerated cation exchange resin is mixed from the line L6. 23.
  • pure water is sent from the line L7 to the anion exchange resin regeneration tank 22 to backwash the resin, and then a regenerant (alkaline) is passed from the line L8, and the regeneration drainage is discharged from the line L9 to remove the anion exchange resin.
  • a regenerant alkaline
  • the regenerated and regenerated anion exchange resin is transferred from the line L11 to the mixing tank 23.
  • the mixing tank 23 air and pure water are supplied from the line L12, and pure water is supplied from the line L13 to mix the resin to form a mixed slurry with water.
  • This mixed slurry is sucked by the pump 30 from the line L14, pressurized and introduced from the line L15 into the container 1 through the resin introduction path 3 of the ion exchange unit U, and the entrained water is fed by the first strainer 4a and the second strainer 5a. It separates, discharges
  • the pump 30 is a pneumatically driven diaphragm pump.
  • this pneumatically driven diaphragm pump for example, a double diaphragm pump disclosed in Patent Document 5 (Japanese Patent Laid-Open No. 2002-221160) is employed.
  • This pump 30 is provided with diaphragms 33a and 33b in two pump chambers 32a and 32b formed adjacent to the housing 31, respectively, and is joined and integrated with the tip of a shaft 35 that slides through the intermediate wall 34. It is possible to reciprocate.
  • the driving air chambers 36a and 36b are formed on the opposite sides of the pump chambers 32a and 32b to the diaphragms 33a and 33b, and the driving air passages 37a and 37b communicate with each other.
  • Check valves 38a and 38b are provided below the pump chambers 32a and 32b, and communicate with the line L14 via the slurry suction passage 41, respectively.
  • Check valves 39a and 39b are provided above the pump chambers 32a and 32b, respectively, and communicate with the line L15 via the slurry supply passage 42.
  • the driving air passages 37 a and 37 b are connected to the switching valve 43 without intersecting with the slurry supply passage 42.
  • An air supply path 44 and an air discharge path 45 communicate with the switching valve 43.
  • the pump 30 is provided with a control device 50 for releasing the air pressure acting on the pump and stopping the pump driving when the air pressure for driving the pump reaches a predetermined pressure.
  • a control device 50 for example, the one disclosed in Patent Document 6 (Japanese Patent Laid-Open No. 2007-305019) is employed.
  • the control device 50 includes a control valve 51, a three-way valve 52, and a control valve 53.
  • a first fluid chamber 56 and a second fluid chamber 57 are partitioned by a valve body 54 that is adjusted by a regulator 55.
  • the first fluid chamber 56 is provided with a driving air inlet 58 and a driving air outlet 59.
  • the compressed air is received from the air compressor 60 through the line L16 having the valve 61 into the driving air inlet 58 and from the driving air outlet 59 through the line L17. It communicates so that it may supply to the air supply path 44 of the switching valve 43.
  • the first fluid chamber 56 is provided with a control air outlet 62 and communicates with the three-way valve 52 through the line L18 and further communicates with the control valve 53 through the line L19.
  • the second fluid chamber 57 is provided with a control air inlet 63 and communicates with the control valve 53 through a line L21.
  • the adjuster 55 is configured to adjust the flow rate of the driving air flowing through the first fluid chamber 56 by adjusting the position of the valve body 54.
  • the regulator valve 53 is provided with a regulator 64 so that the operating pressure of the regulator valve 53 can be adjusted.
  • the three-way valve 52 is provided with a switch 65 so that the control air can be discharged by switching the flow path of the three-way valve 52 and the control valve 51 can be reset.
  • the flow rate of the compressed air from the air compressor 60 is adjusted by the valve 61, introduced into the driving air inlet 58 of the control valve 51 through the line L16, and the switching valve of the pump 30 from the driving air outlet 59 through the line L17. 43 is supplied to the air supply passage 44.
  • the driving air passages 37a and 37b are alternately switched, and the driving air is alternately introduced into the driving air chambers 36a and 36b.
  • the driving air is supplied from the other driving air passages 37b and 37a to the air discharge passage 45. Is operated to discharge.
  • the diaphragms 33a and 33b move in the same direction via the shaft 35, suck the mixed slurry from the line L14, pressurize it, and introduce it into the container 1 through the resin introduction path 3 of the ion exchange unit U from the line L15.
  • the pump 30 introduces driving air from the switching valve 43 to the driving air chamber 36b through the driving air passage 37b, and drives the driving air in the driving air chamber 36a from the driving air passage 37a to the outside through the air discharge passage 45.
  • the state of discharging is shown.
  • the driving air in the driving air chamber 36a is discharged and the diaphragm 33a moves toward the intermediate wall 34, whereby the mixed slurry in the mixing tank 23 enters the slurry suction passage 41 of the pump 30 from the line L14, and the check valve 38a.
  • the pump chamber 32a Through the pump chamber 32a.
  • the diaphragm 33b moves toward the pump chamber 32b, so that the mixed slurry in the pump chamber 32b is pressurized, enters the slurry supply path 42 from the check valve 39b, and introduces the resin of the ion exchange unit U from the line L15. It is introduced into the container 1 through the path 3. At this time, since the check valve 39a is closed, the mixed slurry in the slurry supply path 42 does not enter the pump chamber 32a.
  • the switching valve 43 is switched to introduce driving air from the driving air passage 37a to the driving air chamber 36a, and to drive the driving air in the driving air chamber 36b from the switching valve 43 to the air discharge passage 45 through the driving air passage 37b.
  • the diaphragms 33a and 33b move rightward in FIG. 1, and the mixed slurry that has entered the slurry suction passage 41 of the pump 30 from the mixing tank 23 is sucked into the pump chamber 32b through the check valve 38b.
  • the mixed slurry in the pump chamber 32a is pressurized, enters the slurry supply path 42 from the check valve 39a, and is introduced into the container 1 of the ion exchange unit U from the line L15. In this manner, by alternately switching the driving air and the flow path of the mixed slurry by the switching valve 43, the mixed slurry can be continuously introduced into the container 1.
  • the ion exchange resin in the mixed slurry introduced into the container 1 from the line L15 is filled in the container 1, and the entrained water is separated by the first strainer 4a and the second strainer 5a, and the expansion joints 7, 8 and joint 9 are separated. 10 are discharged from the external flow paths 11 and 12 to form the ion exchange resin filled layer 2.
  • the entrained water is separated and discharged, so the mixed slurry is introduced one after another.
  • the supply of the mixed slurry is repeated by switching the switching valve 43.
  • the control valve 51 a part of the driving air in the first fluid chamber 56 is supplied as control air from the control air outlet 62 to the three-way valve 52 through the line L18, and further supplied to the control valve 53 through the line L19.
  • the adjustment valve 53 is opened.
  • control air enters the second fluid chamber 57 from the control valve 53 through the line L21 and the control air inlet 63, moves the valve body 54 to the right in FIG. close.
  • the supply of driving air to the pump 30 is stopped, the driving air pressure acting on the pump 30 is released, and the pump 30 stops driving.
  • the supply of the mixed slurry to the container 1 by the pump 30 is stopped. Since the container 1 is full at this stage, an ion exchange resin filled layer 2 having a certain capacity is formed in the container 1.
  • the driving air pressure of the pump 30 reaches a predetermined pressure
  • the driving air pressure acting on the pump 30 is released and the driving of the pump 30 is stopped, whereby the ion exchange resin layer 2 having a certain capacity is formed in the container 1.
  • the filling density may be uneven. Therefore, after the pump 30 is stopped by a single filling operation, the pump 30 is left standing for a certain time, for example, 1 to 10 minutes, and then the pump 30 is driven. The mixture slurry is supplied, and when the driving air pressure reaches the predetermined pressure again, the air pressure acting on the pump 30 is released and the driving of the pump 30 is stopped to fill the ion exchange resin with a uniform filling density. Layer 2 can be formed.
  • the flow path of the three-way valve 52 is switched by the switch 65 provided in the three-way valve 52, and the control air in the second fluid chamber 57 is discharged, thereby The valve body 54 is restored and the control valve 51 is reset.
  • the filling strain of the ion exchange resin packed layer 2 in the container 1 is released, a uniform ion exchange resin packed layer 2 is formed, and the water layer is separated and the resin flows into the container 1.
  • the driving of the pump 30 is resumed together with the resetting of the control valve 51, and the supply of the mixed slurry into the container 1 is resumed.
  • the control valve 53 When the driving air pressure reaches the predetermined pressure again, the control valve 53 is opened, the air pressure acting on the pump 30 is released, and the driving of the pump 30 is stopped. Thereby, the ion exchange resin filling layer 2 having a more uniform filling density can be formed.
  • the container 1 After forming the ion exchange resin filled layer 2 in this way, or when strictness is not required for the filling amount of the ion exchange resin filled layer 2, repeated filling operations are omitted, the container 1 is replaced, and the next An ion exchange resin filled layer 2 is formed for the container 1.
  • the couplings 4b and 5b are separated from the expansion joints 7 and 8 and replaced with a new container 1.
  • the switch 65 switches the flow path of the three-way valve 52 and resets the control valve 51, whereby driving air is supplied to the first fluid chamber 56 of the control valve 51, and the pump 30
  • the supply of the mixed slurry to the new container 1 is resumed, and the ion exchange resin is filled in the same manner as described above, and the ion exchange resin filled layer 2 is formed.
  • the operating pressure of the control valve 53 that is, the driving air pressure when the control valve 53 is opened can be set to a pressure in the range of 0.2 to 0.7 MPa. However, the pressure can be adjusted so as to be uniformly filled without crushing the resin. In this case, there is no need to measure or adjust the discharge pressure of the pump 30. By simply adjusting the operating pressure of the control valve 53, the control valve 51 is closed to release the air pressure acting on the pump 30, and the pump 30 Can be stopped.
  • Example 2 to 6 In the apparatus shown in FIG. 3, a cation exchange resin CRM (trade name, manufactured by Kurita Kogyo Co., Ltd.) and an anion exchange resin KR (trade name, manufactured by Kurita Kogyo Co., Ltd.) are placed in a container 1 (volume 70 L) in volume ratio Mixing the mixed resin mixed at 1: 1.6 at a volume ratio of 80:20 with the mixed resin and water in a state where an aqueous phase is formed in the surroundings (a state where the water phase is settled and the water is not separated).
  • a cation exchange resin CRM trade name, manufactured by Kurita Kogyo Co., Ltd.
  • anion exchange resin KR trade name, manufactured by Kurita Kogyo Co., Ltd.
  • the slurry was filled with the set pressure of the pump 30 at 0.294 MPa, and the ion exchange resin packed layer 2 was formed. After the pump 30 stopped at 0.294 MPa, it was allowed to stand for 10 minutes, and the pump 30 was again driven at a set pressure of 0.294 MPa for filling. Table 1 shows the results of sequentially replacing and filling five containers 1.
  • a cation exchange resin, an anion exchange resin, a mixed resin thereof, or a mixture of these is used in a container used in an ion exchange device such as a pure water production device, an ultrapure water production device, a waste water treatment device, or an ion adsorption device. It can be used in a method for forming a ion exchange resin layer by filling a container with a mixed resin of a resin and another resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)

Abstract

 空気中の埃によるイオン交換樹脂の汚染が防止されるイオン交換装置の製作方法を提供する。アニオン交換樹脂、カチオン交換樹脂をそれぞれ専用の受入槽11,21、精製塔14,24、貯槽16,26、計量槽19,29で精製及び計量し、混合槽30で混合した後、容器33に充填する。計量槽19,29、混合槽30、充填用容器33はクリーン度10,000以下のクリーンルーム41内に配置される。製作されたイオン交換装置について通水試験を行い、流出水の分析をクリーン度1000以下の高クリーン度クリーンルーム42内で行う。

Description

イオン交換装置、その製作方法及び設備並びにイオン交換樹脂層の形成方法及び装置
 本発明は、容器にイオン交換樹脂を充填してイオン交換装置を製作する方法及び設備に係り、特に超純水製造工程等に用いられるイオン交換装置の製作に好適に採用されるイオン交換装置の製作方法及び設備に関する。本発明は、この方法及び設備により製作されたイオン交換装置に関する。また、本発明は、容器内にイオン交換樹脂を充填してイオン交換樹脂層を形成する方法及び装置に関するものである。本発明は、この方法及び装置により形成されたイオン交換樹脂層を有するイオン交換装置に関する。
 従来、イオン交換装置としては、カチオン交換樹脂、アニオン交換樹脂、これらの混合樹脂、あるいはこれらと他の樹脂との混合樹脂を容器内に充填してイオン交換樹脂層を形成し、被処理液を通液してイオン交換処理を行うように構成されている。そしてイオン交換樹脂層が飽和した後は被処理液の通液を停止した後、再生剤を通液してイオン交換樹脂層を再生し、さらに洗浄水を通水して洗浄した後、被処理液の通液を再開してイオン交換処理を再開するイオン交換装置、特に固定式のイオン交換装置が多く用いられていた。
 しかしこのようなイオン交換処理と再生を交互に繰返すイオン交換装置では、イオン交換樹脂層の再生を行っている時には、イオン交換処理を行えないという不利がある。このためこの種のイオン交換装置に代えて、可搬式の本体容器内にイオン交換樹脂を充填した着脱式のイオン交換樹脂充填ユニットを採用し、これを現場に搬送しイオン交換装置に取付けてイオン交換処理を行い、イオン交換樹脂層が飽和した後はイオン交換装置からイオン交換樹脂充填ユニットを取外し、新しいユニットに交換してイオン交換処理を続行し、一方取外したイオン交換樹脂充填ユニットは回収し、使用済みのイオン交換樹脂を必要により再生使用するユニット交換式のイオン交換装置がある。
 このようなユニット交換式のイオン交換装置では、イオン交換装置から取外したイオン交換樹脂充填ユニットをそのまま再生することなく廃棄する非再生型イオン交換装置のほか、イオン交換樹脂を再生して再使用する再生使用型イオン交換装置がある。後者の場合、回収したユニットごとにイオン交換樹脂を再生する方式と、ユニットからイオン交換樹脂を集めて再生し、再生済みのイオン交換樹脂をユニットに充填して現場に搬送して待機後、イオン交換装置に取付けてイオン交換処理を行うようにされたものなどがある。
 本体容器にイオン交換樹脂を充填して形成され、容器から突出管を原水管、処理水管等に接続して用いられるイオン交換ユニットが特許文献1(特開平9-70546号)に記載されている。第2図は、同号に記載のイオン交換ユニットUである。このイオン交換ユニットUは、開口部1aを有した容器1内にコンディショニングされたイオン交換樹脂2が充填されている。開口部1aには蓋6が装着されている。蓋6にはイオン交換樹脂の導入口3が設けられると共に、原水導入管5と処理水取出管4とが貫通状に設けられている。原水導入管5は、容器1内の底部まで差し込まれており、その下端にストレーナ5aが設けられている。
 処理水取出管4の下端に取り付けられたストレーナ4aは容器1内の上部に位置している。
 イオン交換樹脂2は樹脂導入口3を介して容器1内に充填される。導入口3は、その後、密閉される。樹脂導入口3は接続時において、水抜き、空気抜き等に使用されるが、イオン交換処理時には通常閉じられる。
 このイオン交換ユニットは、カップリング4b,5bの位置で切り離された状態で密封され、現場に搬送され、据え付けられる。そして、このカップリング4b,5bで伸縮継手7,8と接続され、原水の導入及び処理水(超純水)の取り出しが行われる(0021~0022段落)。
 イオン交換樹脂としては、カチオン交換樹脂又はアニオン交換樹脂が単独で充填される場合と、両者を容量比で1:3ないし3:1程度の割合で混合して充填する場合とがある(0018段落)。
 イオン交換システムに取付けられたイオン交換ユニットUは、原水をイオン交換装置の原水流路(図示せず)から原水導入路4、第1のストレーナ4aを通して容器1に導入し、イオン交換樹脂層2を通過させることによりイオン交換を行い、処理水は第2のストレーナ5aで集水して処理水取出路5からイオン交換装置の処理水流路(図示せず)を通して取出される。イオン交換樹脂2が飽和した後は、イオン交換ユニットUをカップリング4b、5bで取外して新しいユニットに交換し、イオン交換処理を続行する。
 使用済みのイオン交換ユニットUは、取外した状態で搬送して回収し、必要によりイオン交換樹脂を取り出して再生し、再生後のイオン交換樹脂を再び容器1に充填してイオン交換装置とされ、再度イオン交換処理に供される。
 上記のイオン交換ユニットUの本体容器1にイオン交換樹脂を充填するためには、イオン交換樹脂を水に分散させてスラリー状で導入し、同伴する水をストレーナ4a、5aで分離して排水する。この方法では、本体容器1にイオン交換樹脂の一定量を充填するのは困難であった。
 特許文献4(特開2002-28501号)には、イオン交換樹脂移動容器にイオン交換樹脂を収容して現場に搬送し、現場でイオン交換装置に充填してイオン交換に供し、飽和後はイオン交換装置からイオン交換樹脂を取出してイオン交換樹脂移動容器に収容して再生装置の設置場所に搬送し、再生後イオン交換樹脂を再度イオン交換樹脂移動容器に収容して現場に搬送する例が示されている。このようなイオン交換樹脂移動容器として、容器内のフィルター部材(ストレーナに相当する)に接続する配管を備え、イオン交換樹脂は水に分散させてスラリー状で導入し、同伴水をフィルター部材で分離して排出することによりイオン交換樹脂を充填しているが、イオン交換樹脂充填量を一定量にすることは示されていない。
 イオン交換樹脂は乾燥状態で一定樹脂量を計量することは容易である。しかしイオン交換では、イオン交換樹脂は液相に充填して使用されるため、またイオン交換樹脂層の容積を基準にして特性が表示され、処理が行われるため、容器に充填する樹脂量は液相に存在する状態で一定容量であることが要求される。この場合、イオン交換樹脂は水に分散させてスラリー状で容器に導入し充填されるが、スラリー中のイオン交換樹脂の濃度を一定にすることができないため、このようなスラリーを計量しても一定量の樹脂を充填することはできない。
 一定量の樹脂を充填する方法として、予め充填する樹脂を計り取り、それを充填する方法は、再生後の樹脂を予め一定量計り取り、これを水に分散させスラリー状にして導入するためには、複雑な工程の組みあわせが必要になって手間がかかり、実際上困難である。また容器ごと樹脂の重量を測定する方法では、存在する水の量によって重量の計測が影響されるため、正確な計量は実際上困難である。さらに目視により樹脂の充填量を計測する方法では、通液の停止と目視による計測を繰り返す必要があり、また容器が大形になって樹脂の充填量が多くなると、正確な計量が困難になるなどの問題点がある。
 一般的には一定容積の容器に、満杯になるまで内容物を充填すると、充填物の容量は一定になる。特許文献1、4では、容器内に充填するイオン交換樹脂層は満杯ではなく、容器の上部にイオン交換樹脂層が形成されないスペースが残留している。このように余裕がある容器に、一定容量のイオン交換樹脂を充填するのは困難であるが、容器および中に配置するストレーナや配管等の構造、配置等を定形化すると、容量は一定容積になるから、このような一定容積の容器に、満杯になるまでイオン交換樹脂を充填すると、イオン交換樹脂層の容量は一定になると考えられる。
 一般的な容器にイオン交換樹脂をスラリー状で導入すると、無駄な水も導入されることになる。スラリー中のイオン交換樹脂の濃度は一定にすることが困難であるため、充填されたイオン交換樹脂の容量を一定にすることは困難である。これに対して特許文献1、2のように、容器内のストレーナに接続する配管を備え、イオン交換樹脂は水に分散させてスラリー状で導入し、同伴水をストレーナで分離して排出することによりイオン交換樹脂を充填する方法でも満杯になると、充填されたイオン交換樹脂の容量は一定になると考えられる。
 しかしイオン交換樹脂スラリーをポンプで送る場合、満杯後もポンプでスラリーを送ると、樹脂の充填密度が高くなりすぎて通水できなくなったり、樹脂が破砕されたり、ストレーナや配管が詰まりやすいなどの問題点がある。この場合、容器内のイオン交換樹脂の満杯を、供給スラリーの圧力の上昇で検出し、スラリーの供給を停止することも考えられるが、正確に圧力の上昇を検出してスラリーの供給を停止するためには、複雑な装置、制御機構などが必要であり、しかもスラリー中のイオン交換樹脂を同伴水から分離して、均一な充填密度の充填層を形成するのは困難であるなどの問題点がある。
 特許文献5(特開2002-221160号)には、流体圧駆動式ポンプとして空気圧駆動式ダイヤフラムポンプが記載されている。この空気圧駆動式ダイヤフラムポンプは、ダブルダイヤフラム式ポンプで、2個のポンプ室にそれぞれダイヤフラムが設けられ、中間壁を貫通してスライドするシャフトの先端に接合して一体化し、往復動可能とされている。しかしイオン交換樹脂充填量を一定量にすることは示されていない。
 特許文献6(特開2007-305019号)には、空気圧駆動式ポンプ等において、ポンプ駆動用の空気圧が所定圧に達した時点で、ポンプへ作用する空気圧を解除してポンプの駆動を停止する制御機構が示されている。しかしこの制御機構は、ダイヤフラム等の損傷により空打ちが生じ、駆動用の空気圧が上昇する場合に、その空気圧の上昇を検出してポンプの駆動を停止するためのものであり、イオン交換樹脂充填量を一定量にすることは示されていない。
 下記特許文献2,3にはイオン交換樹脂を精製処理するための方法及びそのための薬剤が記載されている。
特開平9-70546 特開平5-15789 特開平9-201539 特開2002-28501号 特開2002-221160号 特開2007-305019号
 半導体産業では、半導体製品の洗浄その他の用途に超純水が用いられているが、この超純水の水質に対する要望は益々厳しくなっており、例えば、金属濃度が1ppt以下、場合によっては0.1ppt以下の超高水質が必要となることがある。
 このような場合、イオン交換装置からの金属等のリークを防止するために、イオン交換装置には高度に精製されたイオン交換樹脂が充填される。
 しかしながら、従来は、高度に精製されたイオン交換樹脂を大気中で容器に充填するようにしているため、空気中の埃が混入し、イオン交換樹脂が微かながら汚染されることがあった。
 本発明は、空気中の埃によるイオン交換樹脂の汚染が防止されるイオン交換装置の製作方法及び設備並びにこの方法及び設備で製作されたイオン交換装置を提供することを第1の目的とする。
 本発明は、簡単な機構と簡単な操作により、短時間で正確に一定量のイオン交換樹脂を容器に充填してイオン交換樹脂層を形成することができ、イオン交換樹脂の高密度充填や破砕、あるいは配管の詰まりなどを防止できるイオン交換樹脂層の形成方法及び装置並びにこの方法及び装置で形成されたイオン交換樹脂層を有するイオン交換装置を提案することを第2の目的とする。
 第1態様のイオン交換装置の製作方法及び設備は、精製処理されたイオン交換樹脂を容器に充填してイオン交換装置を製作する方法において、イオン交換樹脂を該容器に充填する充填工程をクリーンルーム内で行うことを特徴とする。
 第2態様のイオン交換装置の製作方法及び設備は、第1態様において、イオン交換樹脂を大気と接触させることなく精製処理し、配管を経由して大気と接触させることなく前記充填工程へ移送することを特徴とする。
 第3態様のイオン交換装置の製作方法及び設備は、第1又は2態様において、精製処理を行うための精製設備が複数個並列に設けられており、1つの精製設備では同一種類のイオン交換樹脂のみを処理するようにし、種類の異なるイオン交換樹脂については異なる精製設備にて処理することを特徴とする。
 第4態様のイオン交換装置の製作方法及び設備は、第3態様において、複数種類のイオン交換樹脂をそれぞれ異なる精製設備にて精製した後、別々の計量槽で計量し、その後、混合槽にて混合し、前記容器に充填することを特徴とする。
 第5態様のイオン交換装置の製作方法及び設備は、第1ないし4のいずれか1態様において、前記クリーンルームのクリーン度がクラス10,000以下であることを特徴とする。
 第6態様のイオン交換装置の製作方法及び設備は、第1ないし5のいずれか1態様において、イオン交換樹脂を充填したイオン交換装置に対し、前記クリーンルーム内にて超純水を通水し、イオン交換装置からの流出水を分析してイオン交換装置を検査することを特徴とする。
 第7態様のイオン交換装置の製作方法及び設備は、第6態様において、前記流出水の分析をクラス1000以下のクリーン度の高クリーン度クリーンルーム内で行うことを特徴とする。なお、本発明のクリーンルームのクリーン度は、1立方フィート(1キュービックフィート)の容積空間中に0.3μm以上の浮遊微粒子がいくつあるかで表しており、クラス10,000は1立方フィート中に10,000個、クラス1,000は1立方フィート中に1,000個の微粒子があることを示している。
 第1~7態様のイオン交換装置の製作方法及び設備では、イオン交換樹脂を容器に充填する充填工程をクリーンルーム内で行うため、この充填工程で空気中の埃がイオン交換装置内に混入することが防止される。そのため、この方法及び設備によって製作されたイオン交換装置を用いることにより、水質の良好な超純水を製造することができる。本発明は、超純水製造装置の中でも特にサブシステム(二次純水システム)のイオン交換ポリッシャー(非再生型イオン交換装置)の製作方法及び設備として好適である。本発明は、特に高純度の超純水を製造するための超純水製造装置、例えばウエハー製造、半導体製造等に用いられる超純水製造装置のイオン交換装置の製作方法及び設備として好適である。本発明方法及び設備により製作されたイオン交換装置を有する超純水製造装置によると、金属濃度が1ppt以下さらには0.1ppt以下となる超純水を製造することが容易となる。
 第2態様の方法及び設備によると、精製工程及びその後の移送工程においてイオン交換樹脂が大気と接触しないので、これらの工程でイオン交換樹脂に空気中の埃が混入することが防止される。
 第3態様の方法及び設備によると、種類の異なるイオン交換樹脂は互いに別の精製設備で精製処理されるので、イオン交換樹脂に異種のイオン交換樹脂が混入することが防止される。
 第4態様の方法及び設備によると、計量槽もイオン交換樹脂の種類に応じて別とするため、混床型イオン交換装置であっても規定通りのイオン交換樹脂を混合充填することができる。
 第5態様の通り、クリーンルームのクリーン度はクラス10,000以下が好ましい。
 第6態様の方法及び設備によると、イオン交換樹脂を充填したイオン交換装置に通水し、流出水の水質を検査してから出荷するので、イオン交換装置の品質を担保することができる。第7態様では、この水質検査をクラス1000以下のクリーン度の高クリーン度のクリーンルーム内で行うため、検査精度が高い。
 第8態様のイオン交換樹脂層の形成方法及び装置は、イオン交換樹脂と水の混合スラリーを容器に導入して、水をストレーナで分離して容器から排出することにより、容器内にイオン交換樹脂を充填してイオン交換樹脂層を形成する方法及び装置であって、
 イオン交換樹脂と水の混合スラリーを流体圧駆動式ポンプにより容器に供給し、
 前記ポンプ駆動用の流体圧が所定圧に達した時点で、ポンプへ作用する流体圧を解除してポンプの駆動を停止することを特徴とする。
 第9態様のイオン交換樹脂層の形成方法及び装置は、第8態様において、ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止した後、ポンプの駆動を再開し、再度ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止することを特徴とする。
 第10態様のイオン交換樹脂層の形成方法及び装置は、第8又は9態様において、容器が第1のストレーナに接続する原水導入路、第2のストレーナに接続する処理水取出路、および樹脂導入路を備え、樹脂導入路を通してイオン交換樹脂と水の混合スラリーを容器に導入し、水を第1および/または第2のストレーナで分離して、原水導入路および/または処理水取出路から排出することにより、容器内にイオン交換樹脂層を形成することを特徴とする。
 第11態様のイオン交換樹脂層の形成方法及び装置は、第8~10態様において、流体圧駆動式ポンプが空気圧駆動式ポンプであり、ポンプ駆動用の空気圧が所定圧に達した時点で、ポンプへ作用する空気圧を解除してポンプの駆動を停止する制御機構を備えることを特徴とする。
 第8~11態様において、流体圧駆動式ポンプとしては、空気圧駆動式ダイヤフラムポンプが好適である。
 第8~11態様において、イオン交換樹脂は、カチオン交換樹脂とアニオン交換樹脂の混合樹脂が好適である。
本発明の一態様に係るイオン交換装置の製作方法及び装置を説明するフロー図である。 イオン交換装置の断面図である。 実施形態のイオン交換樹脂層の形成方法及び装置のフロー図である。
 以下、第1図を参照して第1~7態様の実施の形態について説明する。この実施の形態では、アニオン交換樹脂とカチオン交換樹脂とを別々に精製及び計量した後、混合して容器に充填するようにしている。
 アニオン交換樹脂は、専用の受入槽111にフレキシブルコンテナバッグなどから受け入れられて貯留される。この受入槽111内のアニオン交換樹脂は、ポンプ112及び配管113を介して精製塔(コンディショニングタワー)114に送られる。この精製塔では、超純水とコンディショニング用薬品とによってイオン交換樹脂の精製が行われる。コンディショニング用薬品としては、前記特許文献1~3に記載のものなど、各種のものを用いることができる。精製処理排水は、回収系(図示略)へ送られ、処理されて超純水として回収され、再利用される。なお、後述のカチオン交換樹脂の精製塔も同様の処理が行われ、処理排水も同様に回収される。
 精製処理されたアニオン交換樹脂は、配管115、貯槽116、ポンプ117、配管118を介して計量槽119へ送られる。
 カチオン交換樹脂は、専用の受入槽121に受け入れられ、そこからポンプ122、配管123を介して精製塔124へ送られ、精製処理された後、配管125、貯槽126、ポンプ127、配管128を介して計量槽129へ送られる。
 これらの計量槽119,129と、それ以降の混合槽130等はクリーン度10,000以下のクリーンルーム141内に設置されている。計量槽119,129内で所定量計量されたアニオン交換樹脂とカチオン交換樹脂は、それぞれ専用の配管119a,129aを介して混合槽130へ導入され、混合される。混合されたイオン交換樹脂は、ポンプ131、配管132を介して容器133へ送られて充填される。容器133としては、前記第2図と同様の構成を有したものが用いられ、イオン交換樹脂は、容器133の樹脂導入口から容器133内に充填されてイオン交換装置とされる。
 充填完了後、樹脂導入口は密閉される。その後、イオン交換装置はクリーンルーム141内の検査工程に送られる。この検査工程では、容器133に設けられた原水導入口から配管135を介して超純水が導入され、処理水取出口から取り出された処理水は、配管136を介して分析室142内の分析機器137に送られ、水質が分析される。検査排水は配管138を介して回収系へ排出される。検査結果が合格であれば、容器133の原水導入口及び処理水取出口を密閉し、クリーンルーム出入口143を介してクリーンルーム1141外へ送り出される。不合格のイオン交換装置も、出入口143からクリーンルーム141外へ取り出される。上記の分析室142は、クリーン度が1000以下の高クリーン度クリーンルームとなっている。
 かかる第1図のイオン交換装置の製作方法では、イオン交換樹脂を容器133に充填する充填工程をクリーン度10,000以下のクリーンルーム141内で行うため、この充填工程で空気中の埃がイオン交換装置内に混入することが防止される。そのため、このようにして製作されたイオン交換装置を用いることにより、水質の良好な超純水を製造することができる。
 この実施の形態では、精製塔114,124内で大気と接触しないようにアニオン交換樹脂、カチオン交換樹脂が精製処理され、その後、イオン交換樹脂は大気と接触しないように配管115,118,125,128で移送され、計量槽119,129及び混合槽130で大気と接触しないように計量及び混合されるので、これらの移送、計量及び混合工程でイオン交換樹脂に空気中の埃が混入することが防止される。
 また、この実施の形態では、アニオン交換樹脂及びカチオン交換樹脂をそれぞれ専用の受入槽111,121、精製塔114,124、貯槽116,126、計量槽119,129及び各配管並びにポンプを用いて移送、精製及び計量を行うようにしており、これらの工程でイオン交換樹脂に異種のイオン交換樹脂が混入することが防止される。また、異種イオン交換樹脂が混入していない、純粋に単一種類のみからなるアニオン交換樹脂とカチオン交換樹脂とを計量及び混合して容器133に充填するので、規定通りにアニオン交換樹脂及びカチオン交換樹脂が混合充填された混床型イオン交換装置を製作することができる。
 この実施の形態では、イオン交換樹脂を充填したイオン交換装置に超純水を通水し、流出水の水質を検査してから出荷するので、確実に高品質のイオン交換装置を出荷することができる。また、この水質検査をクラス1000以下のクリーン度の高クリーン度のクリーンルーム142内で行うため、検査精度が高い。
 上記実施の形態では、アニオン交換樹脂とカチオン交換樹脂をそれぞれ専用の受入槽111~計量槽119、及び受入槽121~計量槽129で処理、移送しているが、アニオン交換樹脂であっても品番が異なるものを使用するときには、各品番毎に専用の受入槽~計量槽のラインを設置し、各品番専用のラインでアニオン交換樹脂を処理する。カチオン交換樹脂についても、品番の異なるものを使用するときには、各品番毎に専用のラインを設置し、品番毎に専用のラインで処理する。このようにすれば、アニオン交換樹脂に品番の異なるアニオン交換樹脂が混入したり、カチオン交換樹脂に品番の異なるカチオン交換樹脂が混入することが防止される。
 上記実施の形態では、アニオン交換樹脂とカチオン交換樹脂とを計量槽119,129で計量して混合槽136で混合し、容器133に充填しているが、計量槽119からのアニオン交換樹脂のみ又は計量槽129からのカチオン交換樹脂のみを容器133に充填してアニオン交換装置又はカチオン交換装置を製作してもよい。
 本発明では、容器にバーコードを付け、進捗や来歴を管理するのが好ましい。
 以下、第1~7態様の実施例及び比較例について説明する。
[実施例1]
 第1図に示すイオン交換装置製作設備を用い、第2図に示す構成の容器(72L)にアニオン交換樹脂とカチオン交換樹脂とを1:1で混合してイオン交換装置を製作した。このイオン交換装置に表1に示す金属イオン濃度の超純水をSV=60/hで24時間通水した。24時間目に採取したイオン交換装置流出水の水質を表1に示す。
[比較例1]
 第1図において、クリーンルーム141を設置しない構成のイオン交換装置製作設備を用いたこと以外は実施例1と同様にしてイオン交換装置を製作し、通水試験した。24時間目に採取したイオン交換装置流出水の水質を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明方法及び設備により製作されたイオン交換装置を用いることにより、高水質の超純水が製造されることが認められた。
 次に、第8~11態様について説明する。
 第8~11態様においてイオン交換樹脂層は、純水製造装置、超純水製造装置、廃水処理装置、イオン吸着装置などのイオン交換装置に形成されるイオン交換樹脂層であって、固定式のイオン交換装置、ユニット交換式のイオン交換装置、イオン交換樹脂移動容器を用いる樹脂交換式のイオン交換装置などに設けられるイオン交換樹脂層などがある。また上記ユニット交換式のイオン交換装置に用いられるイオン交換樹脂充填ユニットや、樹脂交換式のイオン交換装置に用いられるイオン交換樹脂移動容器、あるいは樹脂貯槽などの容器に形成されるイオン交換樹脂層なども対象となる。これらの中では、ユニット交換式のイオン交換装置に用いられるイオン交換樹脂充填ユニットに形成されるイオン交換樹脂層が対象として好適である。
 イオン交換樹脂層を構成するイオン交換樹脂としては、カチオン交換樹脂、アニオン交換樹脂、キレート樹脂、その他の選択吸着性樹脂、これらの混合樹脂、あるいはこれらと不活性樹脂、その他の樹脂との混合樹脂など、粒状の樹脂が挙げられる。これらの樹脂は新品樹脂でも、再使用樹脂でもよいが、いずれの場合も、再生済みの樹脂を容器内に導入、充填してイオン交換樹脂層を形成するのが望ましい。
 イオン交換樹脂を充填する容器は特に限定されず、イオン交換樹脂層の形成が要求される容器にそのまま充填することができる。このような容器としては、固定式、樹脂交換式、その他のイオン交換装置のイオン交換塔、ユニット交換式のイオン交換装置に用いられるイオン交換樹脂充填ユニット、樹脂交換式のイオン交換装置に用いられるイオン交換樹脂移動容器、樹脂貯槽、その他の容器などを挙げることができる。特に一定容量の樹脂が一定の充填密度で充填され、満杯となったときに一定容量のイオン交換樹脂層が形成されるように、一定容積の容器が適している。このような容器としてユニット交換式のイオン交換装置に用いられるイオン交換樹脂充填ユニットが挙げられる。
 イオン交換樹脂を充填する容器としては、イオン交換樹脂と水の混合スラリーを容器に導入するための樹脂導入路、容器内で同伴水を分離するストレーナ、および分離水を容器から排出する分離水排出路などの充填手段を備える容器が好ましく、これらの充填手段を備えた状態で内容積が一定の容器が好ましい。またこれらの充填手段を備えない容器でもよいが、この場合はこれらの充填手段を取付けることにより樹脂の充填が可能である。イオン交換塔やイオン交換樹脂充填ユニットのように、イオン交換処理用として容器が第1のストレーナに接続する原水導入路、第2のストレーナに接続する処理水取出路、および樹脂導入路を備えている場合は、これらの一方または両方を前記充填手段として用いることができる。ストレーナとしては、粒径0.4~0.5mmのイオン交換樹脂が流出しないように、0.1~0.3mmの開口を有するものが好ましい。
 第8~11態様では、イオン交換樹脂と水の混合スラリーを容器に導入してイオン交換樹脂を充填し、水をストレーナで分離して容器から排出することにより、容器内にイオン交換樹脂層を形成する。この場合、イオン交換樹脂と水の混合スラリーを流体圧駆動式ポンプにより容器に供給し、分離水を排出することにより容器内がイオン交換樹脂で満杯に達すると、ポンプの吐出圧が高くなり、それに伴ってポンプ駆動用の流体圧も高くなる。このためポンプ駆動用の流体圧が所定圧に達した時点で、ポンプへ作用する流体圧を解除することにより、ポンプの駆動を停止し、容器内に一定容量のイオン交換樹脂層を形成することができる。
 第8~11態様において、イオン交換樹脂の容量は、純水(超純水)中にイオン交換樹脂を投入し、樹脂層に変化がなくなるまで、一般的には10~20分間静置して沈降させた状態で測定される容量である。イオン交換樹脂としてカチオン交換樹脂とアニオン交換樹脂等の混合樹脂を用いる場合のイオン交換樹脂の容量は、純水(超純水)中に混合樹脂を投入し静置して沈降させた状態で測定される容量である。イオン交換樹脂は混合スラリーを加圧した状態で充填されるため、容器内に形成されるイオン交換樹脂層の充填密度は高くなり、このためイオン交換樹脂層を構成する樹脂の容量は、容器の容積に相当する樹脂の容量よりも多くなることがある。本発明では加圧状態で充填したイオン交換樹脂の容量が一定となるように充填する。
 イオン交換樹脂と水の混合スラリーは上記イオン交換樹脂と水を混合したスラリーであり、樹脂の混合割合が高くなるとスラリーの流動性が低くなって樹脂が詰まりやすくなり、また樹脂の混合割合が低くなると分離する水量が多くなって操作性を害する。イオン交換樹脂と水の好ましい混合割合は、周囲に水相が形成された状態(静置沈降して水を分離しない状態)のイオン交換樹脂と水の容量比で、(70:30)~(90:10)とするのが好ましい。
 第8~11態様ではイオン交換樹脂と水の混合スラリーを流体圧駆動式ポンプで加圧して容器に導入して充填するが、このときの混合スラリーを容器に供給する供給圧、すなわちポンプの吐出圧は、樹脂の充填操作が容易であり、かつ樹脂を破砕しないで均一に充填される圧力とするのが好ましく、一般的には0.2~0.7MPaの範囲内の圧力とすることができる。このような充填圧力として、イオン交換装置においてイオン交換樹脂層にかかる通液圧と同等の圧力とすると、ユニット交換式のイオン交換装置に用いられるイオン交換樹脂充填ユニットの場合、イオン交換装置にユニットを取付けた後、通液に先立ってイオン交換樹脂層の調整を行うことなく、そのまま通液を開始できるので好ましい。
 このようなポンプの吐出圧で混合スラリーを容器に供給し、ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止することにより、容器内に一定容量のイオン交換樹脂層を形成することができるが、充填密度が不均一になっている場合があり、最初の充填操作で完全に均一な充填密度のイオン交換樹脂層を形成することが困難な場合がある。従って1回の充填操作でポンプの駆動を停止した後、ポンプの駆動を再開してスラリーを供給し、再度ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止することにより、均一な充填密度のイオン交換樹脂層を形成することができる。この場合、最初の充填操作でポンプの駆動を停止した後、一定時間、例えば1~20分間、好ましくは5~10分間放置後ポンプの駆動を再開するのが好ましい。このようなポンプの停止と駆動の繰り返しは1回でよいが、多くするほど均一性は高くなり、所定量の樹脂を均一に充填することができる。
 流体圧駆動式ポンプは、ポンプ駆動用の流体圧が所定圧に達した時点で、ポンプへ作用する流体圧を解除する制御機構を備えたものが使用できる。これにより容器内に所定量のイオン交換樹脂が充填されて満杯となった時点で、スラリーの押込圧の上昇に伴いポンプ駆動用の流体圧が上昇するので、ポンプ駆動用の流体圧が所定圧に達した時点で、自動的にポンプへ作用する流体圧が解除され、これにより過不足のないイオン交換樹脂の充填量でポンプの駆動を停止することができる。
 ポンプの吐出圧を検出してポンプを停止するように制御する制御機構、あるいはポンプの吐出圧が高くなった時点で自動的にポンプを停止する機構などは、樹脂と水の混合系では困難で、複雑な機構と操作が必要となるが、このような系では樹脂の満杯によるポンプの吐出圧の上昇に対応して、ポンプ駆動用の流体圧が敏感に上昇するので、ポンプ駆動用の流体圧を制御すれば、樹脂の満杯に対応してポンプを停止させることができる。この場合、ポンプ駆動用の流体は樹脂のような固形物を含まないので、機器の構成、運転操作などは単純化できる。特にポンプ駆動用の流体に空気を用いると、機器の構成、運転操作などはさらに単純化でき、系内への取入、排出なども容易であり、準則に正確な制御が可能である。
 流体圧駆動式ポンプとしては、空気圧駆動式ポンプが好ましく、流体圧として空気圧の適用は、その発生、取扱、廃棄等は容易であり、また作用時に圧縮されるため樹脂の衝撃による破損が少ないなどの利点がある。またポンプ駆動用の空気圧が所定圧に達した時点で、ポンプへ作用する空気圧を解除してポンプの駆動を停止する制御機構を備えたものが好ましく、これにより制御が容易で、樹脂を損傷させることなく、正確な充填密度で充填して、一定容量のイオン交換樹脂層を形成することができる。空気圧駆動式ポンプとしては往復動ピストン式等であってもよいが、空気圧駆動式ダイヤフラムポンプが好ましい。空気圧駆動式ダイヤフラムの採用により、樹脂に対する衝撃を少なくすることができるため樹脂の損傷をさらに少なくでき、制御も容易で、正確な充填密度で充填して、一定容量のイオン交換樹脂層を形成することができる。
 容器として、第1のストレーナに接続する原水導入路、第2のストレーナに接続する処理水取出路、および樹脂導入路を備える容器、例えばユニット交換式のイオン交換装置に用いられるイオン交換樹脂充填ユニットを用いる場合、樹脂導入路を通してイオン交換樹脂と水の混合スラリーを容器に導入し、水を第1および/または第2のストレーナで分離して、原水導入路および/または処理水取出路から排出することにより、容器内にイオン交換樹脂層を形成することができる。このようにしてイオン交換樹脂層を形成した容器は、そのままイオン交換装置に取付けて、被処理液を通液することにより、イオン交換処理を行うことができ、飽和後は容器を回収して樹脂を再生して再充填し、繰り返し使用することができる。
 第8~11態様において形成の対象となるイオン交換樹脂層が、純水製造装置、超純水製造装置、廃水処理装置、イオン吸着装置など、目的とするイオン交換装置によって、導入される不純物の量に制限がある場合は、搬送に使用する水として、要求純度に対応した純水や超純水などを用いてイオン交換樹脂層を形成し、またクリーンルームなどダスト等の少ない環境で充填操作を行うのが好ましい。
 第8~11態様によれば、イオン交換樹脂と水の混合スラリーを容器に導入して、水をストレーナで分離して容器から排出することにより、容器内にイオン交換樹脂を充填してイオン交換樹脂層を形成する方法において、イオン交換樹脂と水の混合スラリーを流体圧駆動式ポンプにより容器に供給し、前記ポンプ駆動用の流体圧が所定圧に達した時点で、ポンプへ作用する流体圧を解除してポンプの駆動を停止してイオン交換樹脂層を形成するようにしたので、簡単な機構と簡単な操作により、短時間で正確に一定量のイオン交換樹脂を容器に充填してイオン交換樹脂層及びこのイオン交換樹脂層を有するイオン交換装置を形成することができ、イオン交換樹脂の高密度充填や破砕、あるいは配管の詰まりなどを防止することが可能である。
 以下、第8~11態様の実施形態を第3図により説明する。第3図において、容器1はユニット交換式のイオン交換装置に用いられるイオン交換ユニットUを構成するものであり、第2図のものと同じ構成になっている。すなわちイオン交換ユニットUは、着脱式の容器1の内部に再生済のイオン交換樹脂層2が形成されている。容器1の上部に開口部1aが形成され、樹脂導入路3、原水導入路4および処理水取出路5が一体化した蓋6が取付けられている。原水導入路4および処理水取出路5の下部には、それぞれ容器1内に伸びる先端部に第1のストレーナ4aおよび第2のストレーナ5aが設けられている。また原水導入路4および処理水取出路5の上部にはそれぞれカップリング4b、5bが取付けられており、樹脂充填装置の伸縮継手7、8に接続可能となっている。伸縮継手7、8はジョイント9、10により外部流路11、12に接続されている。
 第2図ではイオン交換樹脂層2は容器1の全体に充填されておらず、容器1の上部には水層が形成されているが、第3図ではイオン交換樹脂層2は容器1の全体に満杯の状態に充填するようにされている。またイオン交換樹脂層2はカチオン交換樹脂とアニオン交換樹脂の混合樹脂を充填するようにされている。その他のイオン交換ユニットUの構成および容器1への樹脂充填の基本的な操作などは第2図で説明したものと実質的に同じである。
 イオン交換樹脂層2を形成して製造したイオン交換ユニットUは、第2図で説明したのと同様に、カップリング4b、5bの位置で切離した状態で密封し現場に搬送し、イオン交換装置に取付けて、カップリング4b、5bを外部流路11、12に相当するイオン交換装置の原水流路および処理水流路(いずれも図示省略)に接続してイオン交換に供される。このとき樹脂導入路3は空気抜きなどのために利用される。
 第3図では、容器1に混合樹脂を充填するために、カチオン交換樹脂再生槽21、アニオン交換樹脂再生槽22、混合槽23が設けられ、これらでイオン交換樹脂の分離、再生、混合等を行った後、再生済の樹脂をポンプ30により、イオン交換ユニットUの容器1に導入して充填するようにされている。
 回収したイオン交換ユニットUの使用済のイオン交換樹脂を分離、再生、混合して充填する場合について説明すると、回収したイオン交換ユニットUの容器1からイオン交換樹脂層2を構成する混合樹脂をラインL1からカチオン交換樹脂再生槽21に導入し、ラインL2から純水を送って樹脂を逆洗分離し、分離したアニオン交換樹脂をラインL5からアニオン交換樹脂再生槽22に導入する。そしてラインL3からカチオン交換樹脂再生槽21に再生剤(酸)を通液し、ラインL4から再生排液を排出してカチオン交換樹脂を再生し、再生済のカチオン交換樹脂をラインL6から混合槽23に移送する。またラインL7からアニオン交換樹脂再生槽22に純水を送って樹脂を逆洗した後、ラインL8から再生剤(アルカリ)を通液し、ラインL9から再生排液を排出してアニオン交換樹脂を再生し、再生済のアニオン交換樹脂をラインL11から混合槽23に移送する。
 混合槽23ではラインL12から空気および純水を供給するとともに、ラインL13から純水を供給して樹脂を混合して水との混合スラリーを形成する。この混合スラリーはラインL14からポンプ30により吸入し、加圧してラインL15からイオン交換ユニットUの樹脂導入路3を通して容器1に導入し、同伴水は第1のストレーナ4aおよび第2のストレーナ5aで分離し、伸縮継手7、8、ジョイント9、10を通して外部流路11、12から排出して充填し、イオン交換樹脂充填層2を形成する。
 ポンプ30は空気圧駆動式ダイヤフラムポンプが用いられている。この空気圧駆動式ダイヤフラムポンプとしては、例えば特許文献5(特開2002-221160号)等に示されたダブルダイヤフラム式ポンプが採用されている。このポンプ30はハウジング31に隣接して形成された2個のポンプ室32a、32bにそれぞれダイヤフラム33a、33bが設けられ、中間壁34を貫通してスライドするシャフト35の先端に接合して一体化し、往復動可能とされている。
 ポンプ室32a、32bのダイヤフラム33a、33bの反対側には、駆動空気室36a、36bが形成され、それぞれ駆動空気路37a、37bが連絡している。ポンプ室32a、32bの下部には、逆止弁38a、38bが設けられ、それぞれスラリー吸入路41を介してラインL14に連絡している。またポンプ室32a、32bの上部には、逆止弁39a、39bが設けられ、それぞれスラリー供給路42を介してラインL15に連絡している。駆動空気路37a、37bはスラリー供給路42と交差しないで切替弁43に連結している。切替弁43には空気供給路44と空気排出路45が連絡している。
 ポンプ30には、ポンプ駆動用の空気圧が所定圧に達した時点で、ポンプへ作用する空気圧を解除してポンプの駆動を停止する制御装置50が設けられている。この制御装置50としては、例えば特許文献6(特開2007-305019号)に示されたものが採用されている。この制御装置50は制御弁51と、三方弁52と、調節弁53とから構成される。制御弁51は調節器55により調節される弁体54により第1流体室56と第2流体室57が区画されている。第1流体室56には駆動空気入口58および駆動空気出口59が設けられ、空気圧縮機60から弁61を有するラインL16を通して圧縮空気を駆動空気入口58に受入れ、駆動空気出口59からラインL17を通して切替弁43の空気供給路44に供給するように連絡している。
 また第1流体室56には制御空気出口62が設けられ、ラインL18を通して三方弁52に連絡し、さらにラインL19を通して調節弁53に連絡している。第2流体室57には制御空気入口63が設けられ、ラインL21を通して調節弁53に連絡している。調節器55は弁体54の位置を調整することにより、第1流体室56を通して流れる駆動空気の流量を調節するように構成されている。調節弁53には調節器64が設けられていて、調節弁53の動作圧を調節できるように構成されている。三方弁52には切替器65が設けられていて、三方弁52の流路を切替えて制御空気を排出し、制御弁51をリセットできるように構成されている。
 上記の構成において、空気圧縮機60から圧縮空気を、弁61で流量調節し、ラインL16を通して制御弁51の駆動空気入口58に導入し、駆動空気出口59からラインL17を通して、ポンプ30の切替弁43の空気供給路44に供給する。切替弁43では、駆動空気路37a、37bを交互に切替えて、駆動空気を駆動空気室36a、36bに交互に導入し、このとき他方の駆動空気路37b、37aから駆動空気を空気排出路45に排出するように操作される。これによりダイヤフラム33a、33bがシャフト35を介して同方向に移動し、ラインL14から混合スラリーを吸入し、加圧してラインL15からイオン交換ユニットUの樹脂導入路3を通して容器1に導入する。
 第3図ではポンプ30は、駆動空気を切替弁43から駆動空気路37bを通して駆動空気室36bに導入するとともに、駆動空気室36aの駆動空気を駆動空気路37aから空気排出路45を通して系外に排出する状態が図示されている。このとき駆動空気室36aの駆動空気が排出されてダイヤフラム33aが中間壁34側に移動することにより、混合槽23の混合スラリーがラインL14からポンプ30のスラリー吸入路41に入り、逆止弁38aを通してポンプ室32aに吸入される。これと同時にダイヤフラム33bがポンプ室32b側に移動することにより、ポンプ室32b内の混合スラリーが加圧され、逆止弁39bからスラリー供給路42に入り、ラインL15からイオン交換ユニットUの樹脂導入路3を通して容器1に導入される。このとき逆止弁39aは閉じるため、スラリー供給路42の混合スラリーはポンプ室32aに入らない。
 続いて切替弁43が切替わり、駆動空気を駆動空気路37aから駆動空気室36aに導入するとともに、駆動空気室36bの駆動空気を駆動空気路37bを通して切替弁43から空気排出路45を通して系外に排出する。これによりダイヤフラム33a、33bが図1の右向きに移動し、混合槽23からポンプ30のスラリー吸入路41に入った混合スラリーが、逆止弁38bを通してポンプ室32bに吸入される。これと同時にポンプ室32a内の混合スラリーが加圧され、逆止弁39aからスラリー供給路42に入り、ラインL15からイオン交換ユニットUの容器1に導入される。このように切替弁43により交互に駆動空気および混合スラリーの流路を切替えることにより、混合スラリーの容器1への導入を継続して行うことができる。
 ラインL15から容器1に導入された混合スラリー中のイオン交換樹脂は容器1内に充填され、同伴水は第1のストレーナ4aおよび第2のストレーナ5aで分離され、伸縮継手7、8、ジョイント9、10を通して外部流路11、12から排出され、イオン交換樹脂充填層2が形成される。イオン交換樹脂の充填初期において、容器1内のイオン交換樹脂充填層2は少なく、水層が多く存在する状態では、同伴水が分離されて排出されるため、混合スラリーは次々と導入されるので、切替弁43の切替により混合スラリーの供給が繰返される。
 イオン交換樹脂の充填が進行し、容器1内の全体にイオン交換樹脂充填層2が形成されて満杯になると、容器1内へ混合スラリーが入らなくなる。これによりポンプ30の吐出圧が高くなり、これに伴ってダイヤフラム33a、33bにかかる負荷が大きくなるため、駆動空気圧が高くなる。制御弁51では第1流体室56内の駆動空気の一部が制御空気として、制御空気出口62からラインL18を通して三方弁52に供給され、さらにラインL19を通して調節弁53に供給されているが、駆動空気圧が所定圧に達した時点で、調節弁53が開放する。
 調節弁53の開放により、制御空気が調節弁53からラインL21、制御空気入口63を通して第2流体室57に入って、弁体54を図1の右方向に移動させ、第1流体室56を閉じる。これによりポンプ30への駆動空気の供給が停止し、ポンプ30へ作用する駆動空気圧を解除してポンプ30は駆動を停止する。これによりポンプ30による容器1への混合スラリーの供給は停止する。この段階で容器1は満杯となっているので、容器1内には一定容量のイオン交換樹脂充填層2が形成される。
 このようにポンプ30の駆動空気圧が所定圧に達した時点でポンプ30へ作用する駆動空気圧を解除してポンプ30の駆動を停止することにより、容器1内に一定容量のイオン交換樹脂層2を形成することができるが、充填密度が不均一になっている場合があるので、1回の充填操作でポンプ30の駆動を停止した後、一定時間、例えば1~10分間放置後ポンプ30の駆動を再開して混合スラリーを供給し、再度駆動空気圧が所定圧に達した時点でポンプ30へ作用する空気圧を解除してポンプ30の駆動を停止することにより、均一な充填密度のイオン交換樹脂充填層2を形成することができる。
 ポンプ30の駆動を再開するには、三方弁52に設けられている切替器65により三方弁52の流路を切替え、第2流体室57内の制御空気を排出することにより、制御弁51の弁体54が復帰して制御弁51がリセットされる。ポンプ30の停止と放置により容器1内のイオン交換樹脂充填層2の充填ひずみが解除され、均一なイオン交換樹脂充填層2が形成されるとともに、水層が分離して容器1内に樹脂流入スペースが形成されていると、制御弁51のリセットとともにポンプ30の駆動が再開され、容器1内への混合スラリーの供給が再開される。再度駆動空気圧が所定圧に達した時点で調節弁53を開放し、ポンプ30へ作用する空気圧が解除されてポンプ30の駆動が停止する。これによりさらに均一な充填密度のイオン交換樹脂充填層2を形成することができる。
 このようにしてイオン交換樹脂充填層2を形成後、またはイオン交換樹脂充填層2の充填量に厳密性が要求されない場合には、繰り返し充填操作を省略して、容器1を交換し、次の容器1についてイオン交換樹脂充填層2を形成する。容器1の交換は、カップリング4b、5bにおいて伸縮継手7、8から分離し、新しい容器1と交換する。新しい容器1と交換した後、切替器65により三方弁52の流路を切替えて制御弁51をリセットすることにより、制御弁51の第1流体室56へ駆動空気が供給されて、ポンプ30による新しい容器1への混合スラリーの供給が再開され、前記と同様にしてイオン交換樹脂が充填され、イオン交換樹脂充填層2の形成が行われる。
 調節弁53の動作圧、すなわち調節弁53を開放させるときの駆動空気圧は0.2~0.7MPaの範囲内の圧力とすることができるが、この圧力は調節器64によって、樹脂の充填操作が容易であり、かつ樹脂を破砕しないで均一に充填される圧力となるように調節することができる。この場合、ポンプ30の吐出圧を測定したり、調整する必要はなく、単に調節弁53の動作圧を調節するだけで、制御弁51を閉じてポンプ30へ作用する空気圧を解除し、ポンプ30の駆動を停止することができる。
 以下、第8~11態様の実施例及び比較例について説明する。
〔実施例2~6〕
 第3図に示す装置において、容器1(容積70L)に、カチオン交換樹脂CRM(栗田工業株式会社製、商標)と、アニオン交換樹脂KR(栗田工業株式会社製、商標)とを、容量比で1:1.6に混合した混合樹脂を、周囲に水相が形成された状態(静置沈降して水を分離しない状態)の混合樹脂と水の容量比で、80:20で混合した混合スラリーを、ポンプ30の設定圧を0.294MPaで充填し、イオン交換樹脂充填層2を形成した。ポンプ30が0.294MPaで停止後、10分間放置し、再度ポンプ30を設定圧0.294MPaで再駆動し、充填を行った。5個の容器1を順次交換して充填した結果を表1に示す。
 表2の結果より、容器1内のイオン交換樹脂層2の過不足量の平均値は+1.1Lで、基準量(70L)に対する容量比は1.57%であり、いずれも過剰側で、不足が生じた例がないので、合格と判定された。
〔比較例2~4〕
 実施例2~6と同じ容器および混合スラリーを用いて、第3図に記載の容器1の樹脂導入路3にロートを設置し、ビーカを用いて混合スラリーを、容器1が満杯になるまで流し込み、容器1にイオン交換樹脂層2を形成させた。3個の容器1を順次交換して充填した結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果より、各例とも容器1内のイオン交換樹脂層2の容量は、5~10Lの範囲で不足しており、またばらつきも大きかった。
 第8~11態様は、純水製造装置、超純水製造装置、廃水処理装置、イオン吸着装置などのイオン交換装置で用いる容器に、カチオン交換樹脂、アニオン交換樹脂、これらの混合樹脂、あるいはこれらと他の樹脂との混合樹脂を容器内に充填してイオン交換樹脂層を形成するための方法に利用可能である。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 なお、本出願は、2009年6月30日付で出願された日本特許出願(特願2009-155660)及び2009年11月24日付で出願された日本特許出願(特願2009-266401)に基づいており、その全体が引用により援用される。

Claims (30)

  1.  精製処理されたイオン交換樹脂を容器に充填してイオン交換装置を製作する方法において、
     イオン交換樹脂を該容器に充填する充填工程をクリーンルーム内で行うことを特徴とするイオン交換装置の製作方法。
  2.  請求項1において、イオン交換樹脂を大気と接触させることなく精製処理し、配管を経由して大気と接触させることなく充填工程へ移送することを特徴とするイオン交換装置の製作方法。
  3.  請求項1又は2において、精製処理を行うための精製設備が複数個並列に設けられており、1つの精製設備では同一種類のイオン交換樹脂のみを処理するようにし、種類の異なるイオン交換樹脂については異なる精製設備にて処理することを特徴とするイオン交換装置の製作方法。
  4.  請求項3において、複数種類のイオン交換樹脂をそれぞれ異なる精製設備にて精製した後、別々の計量槽で計量し、その後、混合槽にて混合し、前記容器に充填することを特徴とするイオン交換装置の製作方法。
  5.  請求項1ないし4のいずれか1項において、前記クリーンルームのクリーン度がクラス10,000以下であることを特徴とするイオン交換装置の製作方法。
  6.  請求項1ないし5のいずれか1項において、イオン交換樹脂を充填したイオン交換装置に対し、前記クリーンルーム内にて超純水を通水し、イオン交換装置からの流出水を分析してイオン交換装置を検査することを特徴とするイオン交換装置の製作方法。
  7.  請求項6において、前記流出水の分析をクラス1000以下のクリーン度の高クリーン度クリーンルーム内で行うことを特徴とするイオン交換装置の製作方法。
  8.  精製処理されたイオン交換樹脂を容器に充填してイオン交換装置を製作する設備において、
     イオン交換樹脂を該容器に充填する充填工程を行うクリーンルームを備えたことを特徴とするイオン交換装置の製作設備。
  9.  請求項8において、イオン交換樹脂を大気と接触させることなく精製処理する精製手段と、該精製手段で精製されたイオン交換樹脂を、配管を経由して大気と接触させることなく充填工程へ移送する移送手段とを備えたことを特徴とするイオン交換装置の製作設備。
  10.  請求項8又は9において、精製処理を行うための精製設備が複数個並列に設けられており、1つの精製設備では同一種類のイオン交換樹脂のみを処理するようにし、種類の異なるイオン交換樹脂については異なる精製設備にて処理することを特徴とするイオン交換装置の製作設備。
  11.  請求項10において、複数種類のイオン交換樹脂をそれぞれ異なる精製設備にて精製した後、別々の計量槽で計量し、その後、混合槽にて混合し、前記容器に充填することを特徴とするイオン交換装置の製作設備。
  12.  請求項8ないし11のいずれか1項において、前記クリーンルームのクリーン度がクラス10,000以下であることを特徴とするイオン交換装置の製作設備。
  13.  請求項8ないし12のいずれか1項において、イオン交換樹脂を充填したイオン交換装置に対し、前記クリーンルーム内にて超純水を通水し、イオン交換装置からの流出水を分析してイオン交換装置を検査する検査手段を備えたことを特徴とするイオン交換装置の製作設備。
  14.  請求項13において、前記流出水の分析を行うクラス1000以下のクリーン度の高クリーン度クリーンルームを備えたことを特徴とするイオン交換装置の製作設備。
  15.  請求項1ないし7のいずれか1項の方法によって製造されたイオン交換装置。
  16.  請求項8ないし14のいずれか1項の設備によって製造されたイオン交換装置。
  17.  イオン交換樹脂と水の混合スラリーを容器に導入して、水をストレーナで分離して容器から排出することにより、容器内にイオン交換樹脂を充填してイオン交換樹脂層を形成する方法であって、
     イオン交換樹脂と水の混合スラリーを流体圧駆動式ポンプにより容器に供給し、
     前記ポンプ駆動用の流体圧が所定圧に達した時点で、ポンプへ作用する流体圧を解除してポンプの駆動を停止することを特徴とするイオン交換樹脂層の形成方法。
  18.  請求項17において、ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止した後、ポンプの駆動を再開し、再度ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止することを特徴とするイオン交換樹脂層の形成方法。
  19.  請求項17又は18において、容器が第1のストレーナに接続する原水導入路、第2のストレーナに接続する処理水取出路、および樹脂導入路を備え、樹脂導入路を通してイオン交換樹脂と水の混合スラリーを容器に導入し、水を第1および/または第2のストレーナで分離して、原水導入路および/または処理水取出路から排出することにより、容器内にイオン交換樹脂層を形成することを特徴とするイオン交換樹脂層の形成方法。
  20.  請求項17ないし19のいずれか1項において、流体圧駆動式ポンプが空気圧駆動式ポンプであり、ポンプ駆動用の空気圧が所定圧に達した時点で、ポンプへ作用する空気圧を解除してポンプの駆動を停止する制御機構を備えることを特徴とするイオン交換樹脂層の形成方法。
  21.  請求項17ないし20のいずれか1項において、流体圧駆動式ポンプが空気圧駆動式ダイヤフラムポンプであることを特徴とするイオン交換樹脂層の形成方法。
  22.  請求項17ないし21のいずれか1項において、イオン交換樹脂がカチオン交換樹脂とアニオン交換樹脂の混合樹脂であることを特徴とするイオン交換樹脂層の形成方法。
  23.  イオン交換樹脂と水の混合スラリーを容器に導入して、水をストレーナで分離して容器から排出することにより、容器内にイオン交換樹脂を充填してイオン交換樹脂層を形成する装置であって、
     イオン交換樹脂と水の混合スラリーを容器に供給するための流体圧駆動式ポンプと、
     前記ポンプ駆動用の流体圧が所定圧に達した時点で、ポンプへ作用する流体圧を解除してポンプの駆動を停止するポンプ制御手段とを備えたことを特徴とするイオン交換樹脂層の形成装置。
  24.  請求項23において、前記ポンプ制御手段は、ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止した後、ポンプの駆動を再開し、再度ポンプ駆動用の流体圧が所定圧に達した時点でポンプへ作用する流体圧を解除してポンプの駆動を停止することを特徴とするイオン交換樹脂層の形成装置。
  25.  請求項23又は24において、容器が第1のストレーナに接続する原水導入路、第2のストレーナに接続する処理水取出路、および樹脂導入路を備え、樹脂導入路を通してイオン交換樹脂と水の混合スラリーを容器に導入し、水を第1および/または第2のストレーナで分離して、原水導入路および/または処理水取出路から排出することにより、容器内にイオン交換樹脂層を形成することを特徴とするイオン交換樹脂層の形成装置。
  26.  請求項23ないし25のいずれか1項において、流体圧駆動式ポンプが空気圧駆動式ポンプであり、前記ポンプ制御手段は、ポンプ駆動用の空気圧が所定圧に達した時点で、ポンプへ作用する空気圧を解除してポンプの駆動を停止することを特徴とするイオン交換樹脂層の形成装置。
  27.  請求項23ないし26のいずれか1項において、流体圧駆動式ポンプが空気圧駆動式ダイヤフラムポンプであることを特徴とするイオン交換樹脂層の形成装置。
  28.  請求項23ないし27のいずれか1項において、イオン交換樹脂がカチオン交換樹脂とアニオン交換樹脂の混合樹脂であることを特徴とするイオン交換樹脂層の形成装置。
  29.  請求項17ないし22のいずれか1項の方法により形成されたイオン交換樹脂層を有するイオン交換装置。
  30.  請求項23ないし28のいずれか1項の装置により形成されたイオン交換樹脂層を有するイオン交換装置。
PCT/JP2010/060649 2009-06-30 2010-06-23 イオン交換装置、その製作方法及び設備並びにイオン交換樹脂層の形成方法及び装置 WO2011001871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201080029277.7A CN102471098B (zh) 2009-06-30 2010-06-23 离子交换装置及其制作方法和设备,以及离子交换树脂层的形成方法及其装置
KR1020167015822A KR101794500B1 (ko) 2009-06-30 2010-06-23 이온 교환 장치, 그 제작 방법 및 설비 그리고 이온 교환 수지층의 형성 방법 및 장치
KR1020117027548A KR101682874B1 (ko) 2009-06-30 2010-06-23 이온 교환 장치, 그 제작 방법 및 설비 그리고 이온 교환 수지층의 형성 방법 및 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009155660A JP5391874B2 (ja) 2009-06-30 2009-06-30 イオン交換装置の製作方法
JP2009-155660 2009-06-30
JP2009-266401 2009-11-24
JP2009266401A JP5407801B2 (ja) 2009-11-24 2009-11-24 イオン交換樹脂層の形成方法

Publications (1)

Publication Number Publication Date
WO2011001871A1 true WO2011001871A1 (ja) 2011-01-06

Family

ID=43410946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060649 WO2011001871A1 (ja) 2009-06-30 2010-06-23 イオン交換装置、その製作方法及び設備並びにイオン交換樹脂層の形成方法及び装置

Country Status (4)

Country Link
KR (2) KR101794500B1 (ja)
CN (2) CN102471098B (ja)
TW (2) TWI551336B (ja)
WO (1) WO2011001871A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088070A (ja) * 2009-10-22 2011-05-06 Kurita Water Ind Ltd イオン交換樹脂精製装置用の超純水製造方法及び製造装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111068361B (zh) * 2018-10-22 2022-02-11 中国石油化工股份有限公司 一种己内酰胺离子交换装置及其再生方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920505A (ja) * 1995-07-03 1997-01-21 Sumitomo Chem Co Ltd 過酸化水素水の精製方法
JP2000203811A (ja) * 1999-01-06 2000-07-25 Sumitomo Chem Co Ltd 充填塔及び該充填塔を用いる過酸化水素水の精製方法
JP2005288410A (ja) * 2004-04-05 2005-10-20 Japan Organo Co Ltd 電子部品部材類製造装置用水処理システム
JP2006502803A (ja) * 2002-10-16 2006-01-26 バイオジェクト・インコーポレイテッド 薬剤カートリッジアセンブリおよび製造方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3221001B2 (ja) * 1991-07-12 2001-10-22 三菱化学株式会社 水処理用塩基性陰イオン交換樹脂の精製方法
JPH0970546A (ja) * 1995-09-04 1997-03-18 Kurita Water Ind Ltd イオン交換樹脂のコンディショニング方法およびイオン交換装置
JP3994210B2 (ja) * 1996-01-30 2007-10-17 三菱化学株式会社 イオン交換樹脂の精製法
JP2001286770A (ja) * 2000-04-04 2001-10-16 Idemitsu Petrochem Co Ltd ビスフェノール類製造用酸性陽イオン交換樹脂固定床の調製方法
JP3961199B2 (ja) * 2000-07-14 2007-08-22 日本電工株式会社 イオン交換樹脂移動容器及びイオン交換樹脂移動装置
JP2002221160A (ja) * 2001-01-26 2002-08-09 Yamada Corporation ポンプ装置
CN2540405Y (zh) * 2002-04-29 2003-03-19 昝保真 生产超纯水的离子交换装置
JP2004299738A (ja) * 2003-03-31 2004-10-28 Daiwa Can Co Ltd 無菌成形・充填システムの環境監視装置
JP4587694B2 (ja) * 2004-04-07 2010-11-24 旭化成ケミカルズ株式会社 アミノ酸とイミノジカルボン酸を分離回収する方法
JP2007083132A (ja) * 2005-09-21 2007-04-05 Dow Global Technologies Inc 陰イオン交換樹脂からの有機物溶出低減方法
KR100741417B1 (ko) * 2005-11-30 2007-07-23 한국원자력연구원 이온교환수지 충전기
CN2860612Y (zh) * 2005-12-31 2007-01-24 深圳市水苑水工业技术设备有限公司 离子交换树脂无损输送和装卸、再生装置
JP4195896B2 (ja) 2006-05-15 2008-12-17 株式会社ヤマダコーポレーション ポンプ装置用流体の圧力制御装置
WO2008129984A1 (ja) * 2007-04-19 2008-10-30 Kurita Water Industries Ltd. アニオン交換樹脂の製造方法、アニオン交換樹脂、カチオン交換樹脂の製造方法、カチオン交換樹脂、混床樹脂および電子部品・材料洗浄用超純水の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0920505A (ja) * 1995-07-03 1997-01-21 Sumitomo Chem Co Ltd 過酸化水素水の精製方法
JP2000203811A (ja) * 1999-01-06 2000-07-25 Sumitomo Chem Co Ltd 充填塔及び該充填塔を用いる過酸化水素水の精製方法
JP2006502803A (ja) * 2002-10-16 2006-01-26 バイオジェクト・インコーポレイテッド 薬剤カートリッジアセンブリおよび製造方法
JP2005288410A (ja) * 2004-04-05 2005-10-20 Japan Organo Co Ltd 電子部品部材類製造装置用水処理システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011088070A (ja) * 2009-10-22 2011-05-06 Kurita Water Ind Ltd イオン交換樹脂精製装置用の超純水製造方法及び製造装置

Also Published As

Publication number Publication date
CN102471098B (zh) 2014-01-29
CN102471098A (zh) 2012-05-23
CN103342404B (zh) 2015-01-28
KR20160073428A (ko) 2016-06-24
KR101794500B1 (ko) 2017-11-07
TWI551336B (zh) 2016-10-01
KR101682874B1 (ko) 2016-12-06
TW201127491A (en) 2011-08-16
KR20120039524A (ko) 2012-04-25
TW201501770A (zh) 2015-01-16
TWI494166B (zh) 2015-08-01
CN103342404A (zh) 2013-10-09

Similar Documents

Publication Publication Date Title
US5832948A (en) Liquid transfer system
KR101031440B1 (ko) 초순수 액체에서 입자 생성을 최소화하는 장치 및 방법
JP2012521896A (ja) Cmpスラリの使用時点リサイクルシステム
KR101536768B1 (ko) 필터 어셈블리를 상태조절하기 위한 시스템 및 방법
CN107921329A (zh) 具有压缩空气充气的油/水分离器
WO2011001871A1 (ja) イオン交換装置、その製作方法及び設備並びにイオン交換樹脂層の形成方法及び装置
KR100377304B1 (ko) 화학-기계적연마공정에서사용되는장치및방법
US6254267B1 (en) Method and apparatus for mixing dry powder into liquids
JP5407801B2 (ja) イオン交換樹脂層の形成方法
IL229298A (en) Systems and methods for operating a filter assembly
JP2011011120A (ja) イオン交換装置の製作方法
TWI635906B (zh) Method and device for mixing ion exchange resin
CN106990674B (zh) 一种光刻胶供应装置
KR101627483B1 (ko) 여과재 순환코팅 시스템이 구비되는 가압형 수처리장치
JP4829640B2 (ja) 水循環式コンプレッサにおける循環水の泡立ち防止方法及び水循環式コンプレッサ
US20240294404A1 (en) Water supply system
TW201946686A (zh) 過濾裝置以及過濾方法
CN113274810B (zh) 一种过滤煤直接液化用冲洗油的方法
JP4968573B2 (ja) 限外濾過装置の運転方法
JP2012239950A (ja) 水浄化システム
SU1488180A1 (ru) Установка дл приготовлени и регенераций смазочно-охлаждающей жидкости
KR20070001511A (ko) 금 회수 장치
KR20210021802A (ko) 세척수 재활용 시스템 및 방법
JPH0730875B2 (ja) 加圧型移動用タンクの充填方法
JPS63130134A (ja) 濾材取出し装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029277.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10794040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117027548

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10794040

Country of ref document: EP

Kind code of ref document: A1