WO2011001801A1 - 遊星歯車機構 - Google Patents

遊星歯車機構 Download PDF

Info

Publication number
WO2011001801A1
WO2011001801A1 PCT/JP2010/059775 JP2010059775W WO2011001801A1 WO 2011001801 A1 WO2011001801 A1 WO 2011001801A1 JP 2010059775 W JP2010059775 W JP 2010059775W WO 2011001801 A1 WO2011001801 A1 WO 2011001801A1
Authority
WO
WIPO (PCT)
Prior art keywords
pin
shaft
input
planetary gear
gear mechanism
Prior art date
Application number
PCT/JP2010/059775
Other languages
English (en)
French (fr)
Inventor
考司 南雲
太田 浩充
朋寛 本田
善晴 鈴木
加藤 喜紳
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to US13/375,087 priority Critical patent/US8821333B2/en
Priority to CN201080029067.8A priority patent/CN102472368B/zh
Priority to EP10793971.2A priority patent/EP2450595B1/en
Publication of WO2011001801A1 publication Critical patent/WO2011001801A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/325Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with pins guiding at least one orbital gear with circular holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/32Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear
    • F16H2001/326Toothed gearings for conveying rotary motion with gears having orbital motion in which the central axis of the gearing lies inside the periphery of an orbital gear comprising a carrier with linear guiding means guiding at least one orbital gear

Definitions

  • the present invention relates to a planetary gear mechanism.
  • a speed reducer having a planetary gear mechanism is used to decelerate the rotation of a spear motor.
  • the planetary gear mechanism includes a first shaft, an external gear attached in an eccentrically rotatable manner to the first shaft via an eccentric body provided on the first shaft, and an external gear.
  • a planetary gear mechanism including an internal gear that meshes and a second shaft that is connected to the external gear via a means that transmits only the rotation component of the external gear is widely known.
  • a cycloid differential planetary gear mechanism is known as a specific example of this planetary gear mechanism.
  • the speed reducer using the cycloid differential planetary gear mechanism has a large reduction ratio in one step and a high meshing rate and high efficiency compared to a general gear involute planetary speed reduction mechanism, but it is eccentric. Since the output is extracted from the dynamic rotation, the mechanism tends to be complicated and expensive.
  • a general cycloid differential planetary gear mechanism uses a pin gear as an internal gear and causes an epitrochoid external gear to incline eccentrically and obtain an output via the internal pin.
  • an external gear having the same structure is added to the phase opposite to the eccentric phase, or two external gears having the same phase with the eccentric direction shifted by 120 °. Is added (see Patent Document 1).
  • the processing accuracy of the epitrochoid gear that is an external gear that circumscribes the pin is required to be high.
  • the conventional cycloid differential planetary gear mechanism has a problem that high machining accuracy is required for each of the components, and the cost is increased.
  • the conventional cycloid differential planetary gear mechanism has a complicated overall configuration and a configuration in which the inner pin penetrates the outer gear, and thus there is a limit to the reduction of the outer diameter.
  • This invention is made
  • a planetary gear mechanism includes a first member, an internal gear formed on an inner peripheral surface, and a first member centered on an input / output axis.
  • the swing member and the first gear protrudes from one of the members in the input / output axis direction with respect to the counterpart member, and swings through the first pin when the first pin is inserted into the counterpart member.
  • An insertion hole for restricting rotation of the member relative to the first member is formed.
  • the planetary gear mechanism of the present invention according to claim 2 is characterized in that, in claim 1, the external gear is formed by a plurality of second pins protruding from the swing member in the input / output axis direction.
  • a planetary gear mechanism according to a third aspect of the present invention is the planetary gear mechanism according to the third aspect, wherein the swing member includes a pair of side surfaces opposed in the input / output axis direction, and the first pin projects from one side surface of the swing member.
  • the second pin protrudes from the other side surface of the swing member, and the first pin and the second pin are formed on the same circumference.
  • the planetary gear mechanism of the present invention is characterized in that, in claim 3, at least one of the second pin and the first pin are formed coaxially.
  • the planetary gear mechanism of the present invention is characterized in that, in claim 4, at least one of the second pin and the first pin forms a long pin formed integrally.
  • the planetary gear mechanism of the present invention according to claim 6 is characterized in that, in any one of claims 2 to 4, the number of first pins is smaller than the number of second pins.
  • the planetary gear mechanism of the present invention according to claim 7 is the planetary gear mechanism according to claim 7, wherein the remaining part of the second pin is not integral with the first pin but forms a short pin shorter than the long pin.
  • the planetary gear mechanism of the present invention according to claim 8 is characterized in that, in any one of claims 1 to 7, the internal gear is a hypotrochoidal tooth profile.
  • a planetary gear mechanism according to a ninth aspect of the present invention is the planetary gear mechanism according to any one of the first to eighth aspects, wherein the first pin has a pin main body and a collar that is rotatably mounted on the pin main body. It is characterized by that.
  • the planetary gear mechanism according to a tenth aspect of the present invention is the planetary gear mechanism according to any one of the second to seventh aspects, wherein the second pin has a pin main body and a collar that is rotatably mounted on the pin main body. It is characterized by that.
  • the planetary gear mechanism of the present invention is the planetary gear mechanism according to any one of claims 1 to 10, wherein the first support bearing is disposed between the eccentric portion of the third member and the swinging member. It is characterized by being.
  • a planetary gear mechanism according to a twelfth aspect of the present invention is the planetary gear mechanism according to any one of the first to eleventh aspects, wherein a part of the second member is inserted into an axial center portion of the third member, The second support bearing is disposed between the portions of the second member inserted into the third member.
  • a planetary gear mechanism according to a thirteenth aspect of the present invention is the planetary gear mechanism according to the thirteenth aspect, wherein the second support bearing is disposed between the eccentric portion of the third member and the portion inserted into the third member of the second member. It is characterized by.
  • a planetary gear mechanism according to a fourteenth aspect of the present invention is the speed reduction mechanism according to any one of the first to thirteenth aspects, wherein the third member is an input shaft and the second member is an output shaft. .
  • the planetary gear mechanism according to a fifteenth aspect of the present invention is the planetary gear mechanism according to the first aspect, wherein the second member is a housing that rotatably supports the first member and the third member, and the first member is a third member.
  • This is an output shaft that decelerates and outputs the input driving force.
  • the first pin protrudes from the swinging member, and the first member has an insertion hole into which the first pin is inserted.
  • a planetary gear mechanism is characterized in that, in any one of the first to fifteenth aspects, the third member has a counter balancer that cancels the unbalanced rotation of the eccentric portion.
  • a planetary gear mechanism according to a seventeenth aspect of the present invention is characterized in that, in the sixteenth aspect, the counter balancer is a lightweight hole obtained by partially hollowing out the third member.
  • the planetary gear mechanism according to an eighteenth aspect of the present invention is the planetary gear mechanism according to any one of the first to eighth aspects or the fifteenth aspect, wherein a needle bearing is attached to the tip of the first pin, and the insertion hole is inserted through the needle bearing. Thus, the rotation of the swing member is restricted.
  • the planetary gear mechanism of the present invention is the planetary gear mechanism according to any one of claims 1 to 18, wherein the third member is driven by an electric motor, and the case of the electric motor includes the first member or the second member. It is formed integrally, and the output shaft of the electric motor and the third member are formed integrally.
  • a planetary gear mechanism is one of a fixed housing that rotatably supports an input shaft and an output shaft around a common input / output axis, and one of the input shaft and the output shaft.
  • a first shaft having an eccentric portion centered on an eccentric shaft that is eccentric with respect to the input / output axis, the other of the input shaft and the output shaft, and a second shaft provided with an internal gear,
  • An external gear that can mesh with the internal gear and a cylindrical portion that is supported by the eccentric portion on the inner peripheral surface are formed, and the number of teeth of the external gear is smaller than the number of teeth of the internal gear.
  • a swing member that is controlled to input a driving force to the first shaft.
  • the reduced driving force is output to the second shaft, or the driving force is applied to the second shaft.
  • a planetary gear mechanism that outputs a driving force accelerated to a first shaft by moving a position on the circumference where the external gear and the internal gear mesh with each other and swinging the swing member.
  • the first pin protrudes from the swing member in the input / output axis direction with respect to the housing, and the first pin is inserted into the housing to restrict the rotation of the swing member relative to the housing via the first pin.
  • An insertion hole is formed.
  • a planetary gear mechanism is configured to rotatably support an input shaft and an output shaft around a common input / output axis, and has a fixed housing having an internal gear, an input shaft, and an output shaft
  • a first shaft having an eccentric portion centered on an eccentric shaft that is eccentric with respect to the input / output axis, a second shaft that is the other of the input shaft and the output shaft, and an internal tooth
  • An external gear that can mesh with the gear and a cylindrical portion that is supported by the eccentric portion on the inner peripheral surface are formed, and the number of teeth of the external gear is less than the number of teeth of the internal gear, and the housing
  • the first pin protrudes from the swing member in the input / output axis direction with respect to the second shaft, and the second pin has the first pin Is inserted through the first pin to form an insertion hole for restricting the rotation of the swinging member relative to the second shaft.
  • the oscillating member when the third member, which is one of the input / output shafts, rotates, the oscillating member performs the eccentric oscillating motion via the eccentric portion provided in the third member.
  • the external gear formed on the swing member swings eccentrically with the swing member.
  • the external gear is circumscribed and engaged (engaged) with the internal gear provided on the second member, and the meshing portion between the external gear and the internal gear is caused by the eccentric rocking motion of the rocking member.
  • the position on the circle moves. Thereby, relative rotation occurs between the first member and the second member that restrict the rotation of the swing member, and the rotation output is extracted to the first member or the second member.
  • the gear ratio (reduction ratio) is determined by adjusting the number of teeth of the external gear and the internal gear provided on the swing member.
  • the planetary gear mechanism of the present invention shifts (decelerates) the rotation of the third member, which is one of the input and output shafts, and outputs the result by the second member. Further, by fixing the second member, the rotation of the third member can be changed (decelerated) and output by the first member.
  • the rotation of the first member or the second member can be shifted (increased) to the third member and output.
  • the rotation is transmitted and shifted in the order of the first member or the second member, the internal gear, the external gear, the swinging member, and the third member.
  • the planetary gear mechanism of the present invention is required to have high machining accuracy only on the engagement surface (meshing surface with which the gear meshes) where the external gear and the internal gear engaged with the swing member engage. In other words, high processing accuracy is not required for other members. That is, the planetary gear mechanism of the present invention exhibits an effect of reducing cost by reducing machining with high accuracy.
  • the external gear can be formed by a plurality of second pins.
  • an external gear can be manufactured easily.
  • the second pin can manufacture highly accurate parts at low cost, the planetary gear mechanism of the present invention exhibits an effect of reducing cost.
  • the first pin and the second pin are formed on the same circumference, so that the first pin and the second pin can be provided outside the swing member.
  • a diameter can be made into the minimum magnitude
  • At least one second pin and the first pin are formed on the same axis, so that the first pin and the second pin are provided one by one.
  • One through hole may be provided so as to penetrate both side surfaces of the swing member, and a planetary gear mechanism that is easy to manufacture can be obtained.
  • the cost can be reduced as compared with the case where they are formed separately.
  • the diameter of the circumference forming the first pin is provided with the second pin.
  • the diameter can be smaller than the diameter of the circumference, and the member on which the first pin and the second pin are formed can be downsized.
  • the number of first pins that restrict rotation is relatively flexible. Therefore, the number of the first pins is made smaller than the number of the second pins, the first pins are arranged on the circumference of the small diameter, and the second pins are arranged on the circumference of the larger diameter than the first pins. be able to. By doing so, the first pin and the second pin can be rationally arranged, and the member on which the first pin and the second pin are formed can be reduced in size.
  • the long pin and the short pin are alternately provided along the circumferential direction of the swing member centering on a position different from the input / output axis.
  • the member can be stably rotated with respect to the first member, and the external gear can be smoothly meshed with the internal gear.
  • the meshing with the external gear can be increased by making the internal gear a hypotrochoid tooth profile.
  • the first pin is composed of the pin body and the collar. That is, the collar forms the contact surface of the first pin with the mating member (the inner peripheral surface of the insertion hole). Since the collar is arranged so as to be rotatable with respect to the pin main body, when the pin and the mating member are in sliding contact (pressure contact), slippage between both members can be absorbed by rotation of the collar. That is, high-efficiency meshing can be achieved.
  • the second pin is composed of the pin body and the collar. That is, the collar forms the contact surface of the second pin with the mating member (internal gear). Since the collar is arranged so as to be rotatable with respect to the pin main body, when the pin and the mating member are in sliding contact (pressure contact), slippage between both members can be absorbed by rotation of the collar. That is, high-efficiency meshing can be achieved.
  • the eccentric rotation of the eccentric portion is controlled by the swinging rotation of the swinging member. Can be converted to Further, the eccentric portion can receive the radial stress applied to the swing member.
  • the axial positions of the third member and the second member overlap with each other, and the second support bearing is disposed therebetween, whereby the external gear (second gear).
  • the radially inward stress (reaction force at the time of meshing) received by the pin) from the internal gear is the second member via the swing member, the first support bearing, the eccentric portion of the third member, and the second support bearing. Is transmitted to.
  • the second member transmits rotation of the external gear (second pin) and the internal gear without loss.
  • the second support bearing is disposed between the eccentric portion of the third member and the second member, the stress in the radially inward direction received by the eccentric portion is applied. , Can be received by the second member.
  • the speed reduction mechanism can decelerate and output the input from the third member to the second member.
  • the planetary gear mechanism of the present invention can be reduced in cost and reduced in size as described above, it is more preferably used as a speed reducer that reduces the output of the motor in a robot or the like.
  • the second member is a housing that rotatably supports the first member and the third member, and the first member is a drive input to the third member.
  • the insertion hole is formed in the first member that is the output shaft, the insertion hole can be provided by using the thickness of the output shaft formed at the end portion, and the axial dimension of the planetary gear mechanism is reduced. be able to.
  • the third member since the third member has the counter balancer that cancels the unbalanced rotation of the eccentric part, the unbalanced rotation generated by the eccentric part can be canceled, and the planetary gear mechanism. Can suppress vibration.
  • the configuration of the counter balancer is not particularly limited as long as the counter balancer has a shape and a position that can cancel the unbalanced rotation of the eccentric portion.
  • the counter balancer is a lightweight hole in which the third member is partially hollowed, so that the eccentric unbalance load of the third member can be increased without increasing the number of parts. Can be resolved.
  • the insertion hole restricts the rotation of the swinging member via the needle bearing, thereby causing a sliding resistance between the first member and the swinging member. Loss can be reduced, the efficiency of the planetary gear mechanism can be improved, and the output torque can be increased.
  • the case of the electric motor is formed integrally with the first member or the second member, and the output shaft of the electric motor and the third member are formed integrally.
  • the number of parts can be reduced and a low-cost planetary gear mechanism can be obtained.
  • the rocking member when the first shaft as the input shaft rotates, the rocking member performs the eccentric rocking motion via the eccentric portion provided on the first shaft.
  • the external gear formed on the swing member swings eccentrically with the swing member.
  • the external gear is circumscribed and engaged (engaged) with the internal gear provided on the second shaft, and the meshing portion between the external gear and the internal gear is caused by the eccentric rocking motion of the rocking member.
  • the position on the circle moves.
  • relative rotation occurs between the housing that restricts the rotation of the swing member and the second shaft, and a rotational output is extracted from the second shaft.
  • the gear ratio (reduction ratio) is determined by adjusting the number of teeth of the external gear and the internal gear provided on the swing member.
  • the rotation of the second shaft can be shifted (increased) to the first shaft and output. In that case, the rotation is transmitted and shifted in the order of the second shaft, the internal gear, the external gear, the swinging member, and the first shaft.
  • the planetary gear mechanism of the present invention is required to have high machining accuracy only on the engagement surface (meshing surface with which the gear meshes) where the external gear and the internal gear engaged with the swing member engage. In other words, high processing accuracy is not required for other members. That is, the planetary gear mechanism of the present invention exhibits an effect of reducing cost by reducing machining with high accuracy.
  • the swinging member has a motion other than the eccentric swinging motion (particularly, rotational motion in the circumferential direction around the input / output shaft). Demonstrate the effect of being regulated.
  • the rocking member when the first shaft as the input shaft rotates, the rocking member performs the eccentric rocking motion via the eccentric portion provided on the first shaft.
  • the external gear formed on the swing member swings eccentrically with the swing member.
  • the external gear is circumscribed and engaged (engaged) with the internal gear provided in the housing, and the eccentric rocking motion of the rocking member causes the circle of the meshing portion between the external gear and the internal gear.
  • the position on the circumference moves.
  • relative rotation occurs between the housing and the second shaft that restricts the rotation of the swinging member, and a rotational output is extracted from the second shaft.
  • the gear ratio (reduction ratio) is determined by adjusting the number of teeth of the external gear and the internal gear provided on the swing member.
  • the rotation of the second shaft can be shifted (increased) to the first shaft and output. In that case, the rotation is transmitted and shifted in the order of the second shaft, the internal gear, the external gear, the swinging member, and the first shaft.
  • the planetary gear mechanism of the present invention is required to have high machining accuracy only on the engagement surface (meshing surface with which the gear meshes) where the external gear and the internal gear engaged with the swing member engage. In other words, high processing accuracy is not required for other members. That is, the planetary gear mechanism of the present invention exhibits an effect of reducing cost by reducing machining with high accuracy.
  • the second shaft has the effect of being decelerated and rotated together with the swing member by the action of the first pin protruding from the swing member and the insertion hole of the second shaft.
  • the internal gear when provided, it can be formed by penetrating the wall of the housing that surrounds the swing member, and the manufacture thereof is facilitated.
  • the insertion hole is formed in the second shaft, the insertion hole can be provided by utilizing the thickness of the second shaft formed in the end portion, and the axial dimension of the planetary gear mechanism can be reduced. .
  • FIG. 2 is a cross-sectional view taken along a line AA in FIG.
  • FIG. 3 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 2 is a cross-sectional view taken along the line CC of FIG. It is the figure which showed the counter balancer of the reduction gear of Example 1.
  • FIG. 7 is sectional drawing which showed the structure of the speed reducer of Example 2.
  • FIG. 7 is a cross-sectional view taken along the line DD in FIG. 6.
  • FIG. 7 is a cross-sectional view taken along a line EE in FIG. 6.
  • FIG. 7 is a cross-sectional view taken along the line FF in FIG. 6.
  • Example 1 is demonstrated based on FIG. 1 thru
  • FIG. 1 shows a reduction gear 1 that employs the planetary gear mechanism of this embodiment.
  • the speed reduction device 1 in which the driving force of the motor M input to the input shaft 2 is decelerated and output to the output shaft 7 is shown.
  • the AA section in FIG. 1 is shown in FIG. 2
  • the BB section in FIG. 1 is shown in FIG. 3
  • the reduction gear 1 of the present embodiment includes a motor M, a housing H, an input shaft 2, a swing face plate 3, a first pin 4, a second pin 5, an internal gear 6, and an output shaft 7.
  • the scissors motor M (corresponding to the electric motor of the present invention) is a member that outputs rotation.
  • the motor M is not particularly limited.
  • the eaves housing H is a member that is fixed to the motor M and forms a part of the outer peripheral shape of the reduction gear 1. Further, the housing H (corresponding to the first member of the present invention) includes a rotating shaft MJ of the motor M, the input shaft 2 (corresponding to the third member and the first shaft of the present invention), and the swing face plate 3 (corresponding to the present invention).
  • the first pin 4, the second pin 5, the internal gear 6, and the output shaft 7 (the configuration including the internal gear 6 corresponds to the second member and the second shaft of the present invention).
  • the housing H rotatably supports the input shaft 2 and the output shaft 7 in a state in which both axis lines (input / output axis lines and indicated by ⁇ in the figure) are in common.
  • the rod input shaft 2 is a substantially cylindrical member fixed to the rotation shaft MJ of the motor M.
  • the input shaft 2 has a reduced diameter portion 20 that is extrapolated to the rotating shaft MJ of the motor M, and a cylindrical shape that is located on the distal end side of the reduced diameter portion 20 and has an inner diameter and an outer diameter larger than the reduced diameter portion 20.
  • the enlarged-diameter portion 21 is formed so that a diameter may change gradually (step shape).
  • the crimped diameter portion 20 is disposed so as to be rotatable between the housing H and the input shaft support bearing 80.
  • the enlarged-diameter portion 21 includes an eccentric portion 22 having an eccentric shape in which the outer peripheral surface in the radial direction is eccentric with respect to the axis of the input shaft 2. That is, when the input shaft 2 rotates about the input / output axis, the eccentric portion 22 also rotates about the input / output axis and swings the outer peripheral surface thereof.
  • the outer peripheral surface of the eccentric portion 22 is formed in a perfect circle centered on an eccentric shaft (indicated by e ⁇ in the figure) at a different position with respect to the input / output axis.
  • the balance input shaft 2 is provided with a counter balancer 23 at a position closer to the motor M than a portion of the reduced diameter portion 20 supported by the housing H.
  • the counter balancer 23 is arranged so as to cancel the unbalanced rotation caused by the eccentric portion 22.
  • the counter balancer 23 is assembled so as to have a phase opposite to the eccentric shape of the eccentric portion 22.
  • FIG. 5 is a schematic diagram showing the phase difference between the swing face plate 3 and the counter balancer 23 when the motor M direction is viewed from the output shaft 7 side.
  • the heel rocking face plate 3 is an approximately annular member that is extrapolated to the enlarged diameter portion 21 (the eccentric portion 22 thereof) via the first support bearing 81.
  • the oscillating face plate 3 includes a cylindrical portion 30 that is extrapolated to the enlarged diameter portion 21 (the eccentric portion 22 thereof) via the first support bearing 81, and a side of the cylindrical portion 30 that is close to the motor M. And a disk-shaped disk part 31 that spreads perpendicularly in the axial direction at the end of the disk.
  • the cylindrical portion 30 is supported by the eccentric portion 22 via the first support bearing 81.
  • the disk portion 31 of the oscillating face plate 3 is formed with a pair of side surfaces facing in the input / output axis direction, and a plurality of first pins 4 and second pins 5 are provided along the circumferential direction on each side surface. Each is made at equal intervals.
  • the plurality of first pins 4 protrude in a direction close to the motor M from one surface of the disk portion 31 of the oscillating face plate 3 in a state parallel to the axial direction of the input shaft 2.
  • the plurality of second pins 5 protrude in a direction away from the motor M from the other surface of the disk portion 31 of the oscillating face plate 3 in a state parallel to the axial direction of the input shaft 2.
  • the first pin 4 and the second pin 5 are provided on the same circumference centered on the eccentric shaft, and the first pin 4 is arranged coaxially with the second pin 5.
  • the first pin 4 is arranged coaxially with the second pin 5.
  • seven first pins 4 and 14 second pins 5 are provided.
  • the second pin 5 forms a gear corresponding to an external gear.
  • the first pin 4 and a part of the second pin 5 form a long pin 40 that is integrally formed.
  • the long pin 40 is formed so that the first pin 4 and a part of the second pin 5 are integrated with each other in a state of penetrating the disk portion 31 of the swing face plate 3.
  • the remainder of the second pin 5 is not integral with the first pin 4 but forms a short pin 50 shorter than the long pin 40.
  • the second pins 5 forming the long pins 40 are every other pin among the second pins 5 arranged in the circumferential direction. That is, the long pins 40 and the short pins 50 are alternately provided in the circumferential direction around the eccentric shaft of the swing face plate 3.
  • the first pin 4 is inserted into an insertion hole H1 that is opened in the housing H. A part of the outer peripheral surface of the first pin 4 is in contact with the inner peripheral surface of the insertion hole H1.
  • the insertion hole H1 restricts the rocking face plate 3 from rotating with respect to the housing H about the eccentric shaft via the inserted first pin 4.
  • the insertion hole H1 is a concave hole having a circular inner peripheral shape.
  • the oscillating face plate 3 can perform an eccentric oscillating motion so that the eccentric shaft rotates around the input / output axis.
  • the swing face plate 3 swings with respect to the housing H and the output shaft 7, and only a part of the circumference of the external gear meshes with the internal gear 6.
  • the long pin 40 and the short pin 50 formed from the first pin 4 and the second pin 5 are cylindrical pin bodies 41 fixed to the swinging face plate 3 in a protruding state. 51, and cylindrical collars 42 and 52 extrapolated to the pin bodies 41 and 51 in a rotatable state.
  • the internal gear 6 is a member that is in mesh with the second pin 5 and is an annular member having a hypotrochoid tooth profile formed on the inner peripheral surface.
  • the annular internal gear 6 is arranged so that its central axis coincides with the input / output axis.
  • the internal gear 6 is formed with 15 teeth, one more than the number of pins of the second pin 5.
  • the internal gear 6 is fixed to the output shaft 7.
  • the output shaft 7 includes a disk-shaped disk-shaped portion 70 and an insertion portion 71 that is inserted from the disk-shaped portion 70 into the axis of the enlarged-diameter portion 21 of the input shaft 2 that protrudes in the direction close to the motor M. Is done.
  • the output shaft 7 is supported by the housing H through an output shaft support bearing 83 so as to be rotatable about the input / output axis.
  • the insertion portion 71 is inserted into the shaft center of the enlarged diameter portion 21 of the input shaft 2, and the inserted portion 71 is interposed via the inner peripheral surface of the enlarged diameter portion 21 and the second support bearing 82. Has been placed.
  • the motor M is operated.
  • the input shaft 2 rotates through the rotation shaft MJ of the motor M.
  • the eccentric portion 22 constituting the input shaft 2 rotates and swings the outer peripheral surface (eccentric rotation).
  • the counterbalancer 23 is provided on the input shaft 2, the rotation imbalance that occurs when the eccentric portion 22 rotates eccentrically around the eccentric shaft is canceled out.
  • the eccentric rotation of the eccentric portion 22 causes the oscillating face plate 3 to oscillate via the first support bearing 81 (eccentric oscillating motion).
  • the first pin 4 is inserted into the insertion hole H1 of the housing H, and the swing surface plate 3 is restricted from rotating with respect to the housing H about the input / output axis.
  • the swing face plate 3 swings.
  • the second pin 5 provided on the swing face plate 3 also swings.
  • the circumferential position where the external gear and the internal gear 6 mesh with each other moves, and the internal gear 6 with which the second pin 5 meshes with the internal gear 6 has its input / output axis ( It rotates about the input shaft 2 and the central axis of the output shaft 7. That is, the rotational component is extracted from the swing motion of the swing face plate 3.
  • the rotation of the internal gear 6 is transmitted to the output shaft 7, and the output rotation is output from the output shaft 7.
  • the reduction ratio is determined by the number of teeth that the second pin 5 and the internal gear 6 mesh with. With such a mechanism, the reduction gear 1 of the present embodiment reduces the rotation of the input shaft 2 and outputs it from the output shaft 7.
  • the planetary gear mechanism of the reduction gear 1 of this embodiment requires high machining accuracy only on the contact surface (meshing surface) between the second pin 5 and the internal gear 6 fixed to the rocking face plate 3. That is, high machining accuracy is not required for other portions. That is, the effect that processing cost can be reduced is exhibited.
  • the planetary gear mechanism can be reduced in size.
  • both sides of the oscillating face plate 3 are provided in order to provide the first pin 4 and the second pin 5 one by one.
  • One through hole may be provided so as to penetrate the surface, and a planetary gear mechanism that is easy to manufacture can be obtained.
  • the diameter of the circumference forming the first pins 4 is made smaller than the diameter of the circumference where the second pins 5 are provided.
  • the swing face plate 3 on which the first pin 4 and the second pin 5 are formed can be reduced in size.
  • the second pins 5 in order to reduce the surface pressure acting on the external gear that transmits the rotational force, the second pins 5 must be provided in a predetermined number or more.
  • the number of the first pins 4 that restrict the rotation of the oscillating face plate 3 is relatively flexible. Therefore, the number of the first pins 4 is made smaller than the number of the second pins 5, the first pins 4 are arranged on the circumference of the small diameter, and the second pins 5 are arranged on the circumference of the larger diameter than the first pins. It can also be placed on top. By doing so, the first pin 4 and the second pin 5 can be rationally arranged, and the swing face plate 3 can be reduced in size.
  • the long pin 40 and the short pin 50 are set as appropriate. With this, it is possible to reduce the number of parts.
  • the external gear needs an internal pin hole that penetrates the internal pin, and there is a limit to the reduction in the external diameter of the external gear itself.
  • the second pin 5 is fixed to the oscillating face plate 3, so that the oscillating face plate 3 itself does not require a large space such as an inner pin hole.
  • the planetary gear mechanism of the reduction gear 1 of the present embodiment exhibits an effect that the outer diameter can be reduced.
  • the input shaft 2 has the counter balancer 23 that cancels the unbalanced rotation of the eccentric portion 22 on the motor M side, so that the unbalanced rotation generated by the eccentric portion 22. Is countered by this counter balancer 23. That is, in the planetary gear mechanism of the reduction gear 1 of this embodiment, the reduction gear 1 is suppressed from vibrating. Furthermore, in the planetary gear mechanism of the reduction gear 1 according to the present embodiment, since the counter balancer 23 having a simple shape can be used, the effect of reducing the machining cost is exhibited.
  • the sliding contact between the long pin 40 and the short pin 50 that form the first pin 4 and the second pin 5, the insertion hole H ⁇ b> 1 of the housing H, and the internal gear 6. Is formed by collars 42 and 52 extrapolated to the pin bodies 41 and 51.
  • the slip of the tooth surface can be absorbed by the rotation of the collars 42 and 52, thereby achieving high-efficiency meshing. it can.
  • the mesh backlash can be easily adjusted by adjusting the outer diameters of the collars 42 and 52. That is, the effect that processing cost can be reduced is exhibited.
  • the reaction force directed inward in the radial direction received by the second pin 5 from the internal gear 6 is generated by the oscillating face plate 3, the first support bearing 81, and the input shaft. It is applied to the insertion portion 71 of the output shaft 7 via the two enlarged diameter portions 21 and the second support bearing 82. That is, the force with which the second pin 5 and the internal gear 6 mesh is used without loss.
  • the external gear is formed by the second pin 5 provided on the oscillating face plate 3 and the internal gear 6 is formed by a hypotrochoid gear.
  • the external gear is a hypotrochoid.
  • a mold gear may be used, and an internal gear may be formed using a pin.
  • the reduction gear 1 of each embodiment decelerates the rotation of the motor M with a device having a small physique. That is, the planetary gear mechanism of the present invention is particularly preferably used in a small robot or the like.
  • the gear mechanism of the present invention is applied to the reduction gear 1 in which the driving force of the motor M input to the input shaft 2 is decelerated and output to the output shaft 7.
  • the driving force input to the output shaft 7 may be applied to a speed increasing device that is increased in speed and output to the input shaft 2.
  • the case C1 (corresponding to the second member of the present invention) of the motor M1 (corresponding to the electric motor of the present invention) is formed integrally with the housing of the reduction gear 1K.
  • the case C1 also serves as a housing for the reduction gear 1K, and supports an output shaft 700 (corresponding to the first member of the present invention) via an output shaft support bearing 803 so as to be rotatable.
  • the output shaft support bearing 803 is mounted with a pair of retaining rings (circular clips) 804a and 804b on the inner and outer circumferences at the axial end of an annular mounting hole R1 formed between the case C1 and the output shaft 700. It is fixed by. Thereby, a structure can be simplified and the assembly
  • an output shaft 200 protrudes from the motor M1, and the output shaft 200 is integrated with the input shaft so as to also serve as the input shaft of the reduction gear 1K. Is formed.
  • An eccentric portion 202 whose outer peripheral surface is eccentric with respect to the input / output axis (indicated by ⁇ in the figure) is formed at the tip of the output shaft 200.
  • An insertion portion 701 of the output shaft 700 is inserted in the radially inner portion of the eccentric portion 202, and a second support bearing 802 is interposed between the inner peripheral surface of the eccentric portion 202 and the insertion portion 701. ing.
  • a counter balancer 203 is formed at the rear end of the eaves output shaft 200 in order to cancel the unbalanced rotation caused by the eccentric portion 202 of the output shaft 200.
  • the counter balancer 203 is formed by a lightweight hole in which the output shaft 200 is partially hollowed out.
  • the lightweight hole is formed at the same circumferential position as the portion having a large weight because the outer peripheral surface of the eccentric portion 202 protrudes outward with the input / output axis as the center (shown in FIG. 7).
  • a rocking face plate 300 is attached to the outer peripheral surface of the eccentric portion 202 of the eaves output shaft 200 via a first support bearing 801.
  • the oscillating face plate 300 is formed to be able to oscillate together with the eccentric portion 202 by the rotation of the output shaft 200 around the input / output axis.
  • Seven short pins 500 and seven long pins 400 are alternately attached to the outer peripheral surface of the rocking face plate 300. Both the short pin 500 and the long pin 400 extend in the direction of the input / output axis, and the tip of the short pin 500 and the tip of the long pin 400 on the motor M1 side (both correspond to the second pin of the present invention). Are equipped with collars 502 and 402, respectively. The tip of the short pin 500 and the tip of the long pin 400 on the motor M1 side form an external gear similar to that of the first embodiment (shown in FIG. 8).
  • the case C1 of the motor M1 is formed with a support portion C1a extending radially inward.
  • a hypotrochoid internal gear C1b similar to that of the first embodiment is provided. Is provided.
  • the internal gear C1b is formed with 15 teeth, one more than the external gear. A part of the circumference of the internal gear C1b meshes with the tip of the short pin 500 and the tip of the long pin 400 via the collars 502 and 402.
  • a needle bearing 403 is attached to the tip of the long pin 400 opposite to the motor M1 (corresponding to the first pin of the present invention). Further, an insertion hole 702 is formed in the output shaft 700 so that the tip of the long pin 400 opposite to the motor M1 can be inserted.
  • the output shaft 700 allows the swinging surface plate 300 to swing, and restricts the relative rotation of the swinging surface plate 300 when the insertion hole 702 contacts the long pin 400 via the needle bearing 403 (FIG. 9). Shown).
  • the external gear formed by the short pin 500 and the long pin 400 provided on the swing face plate 300 also swings.
  • the internal gear C1b meshed with the external gear is formed in the case C1 and cannot rotate. For this reason, when the external gear swings, the swing face plate 300 itself swings and rotates.
  • the internal gear is formed in the case C1, it can be formed by cutting through the wall (support portion C1a) of the case C1 as a housing when the internal gear is provided. The manufacture becomes easy.
  • the insertion hole 702 is formed in the output shaft 700, the insertion hole 702 can be provided by using the thickness of the output shaft 700 formed at the end portion in the axial direction, and the axial dimension of the reduction gear 1K is reduced. can do.
  • the counter balancer 203 is a lightweight hole obtained by partially punching the output shaft 200, the eccentric unbalance load of the output shaft 200 can be eliminated without increasing the number of parts.
  • the insertion hole 702 of the output shaft 700 regulates the rotation of the swing surface plate 300 via the needle bearing 403, loss due to sliding resistance between the output shaft 700 and the swing surface plate 300 is reduced.
  • the efficiency of the reduction gear 1K can be improved and the output torque can be increased.
  • case C1 of the motor M1 is formed integrally with the housing of the reduction gear 1K, and the output shaft 200 of the motor M1 and the input shaft of the reduction gear 1K are formed integrally.
  • the input shaft support bearing 80 can be eliminated, the number of parts can be reduced, and the low-speed reduction gear 1K can be obtained.
  • the output shaft 700 may be fixed so as not to rotate, and the case C1 may be rotatable about the input / output axis. Further, both the output shaft 700 and the case C1 may be rotated around the input / output axis, and the decelerated rotation may be output at a predetermined ratio.
  • the input shaft 2 may be provided with a lightweight hole as the counter balancer 23.
  • a needle bearing 403 may be attached to the long pin 40 instead of the collar 42.
  • the input shaft 2 may be formed integrally with the rotation shaft MJ of the motor M, and the housing H may be formed integrally with the case of the motor M.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Retarders (AREA)

Abstract

本発明の遊星歯車機構は、ハウジング(H)と、入出力軸線に対して偏心した偏心軸を中心とする偏心部(22)を有し、ハウジング(H)に対して入出力軸線を中心に回転可能に支持された入力軸(2)と、偏心部(22)を介して偏心揺動し、ハウジングHに対する回転が規制される揺動面板(3)と、揺動面板(3)に形成された外歯歯車と内接噛合する内歯歯車(6)が取り付けられ、ハウジング(H)に対して入出力軸線を中心に回転可能に設けられた出力軸(7)とを備えており、入力軸(2)の回転により、外歯歯車と内歯歯車(6)とが噛合する円周上の位置が変化し、入力軸(2)の回転が減速されて出力軸(7)に取り出される。揺動面板(3)から突出した第1ピンが、ハウジング(H)に形成された挿入孔(H1)と係合することにより、揺動面板(3)の回転規制が行われる。

Description

遊星歯車機構
  本発明は、遊星歯車機構に関する。
  モータの回転等を減速するために、遊星歯車機構をもつ減速機が用いられている。この遊星歯車機構としては、第1軸と、第1軸に設けた偏心体を介してこの第1軸に対して偏心回転可能な状態で取付けられた外歯歯車と、外歯歯車が内接噛合する内歯歯車と、外歯歯車に外歯歯車の自転成分のみを伝達する手段を介して連結された第2軸と、を備えた遊星歯車機構が広く知られている。そして、この遊星歯車機構の具体的な例として、サイクロイド差動遊星歯車機構が知られている。
  サイクロイド差動遊星歯車機構を用いた減速機は、一般的な歯車のインボリュート歯形の遊星減速機構に比べて、一段で大きな減速比がとれるうえ、噛み合い率が高く高効率が得られる反面、偏心揺動回転から出力を取り出すため機構が複雑となり、高コストとなる傾向があった。
  一般的なサイクロイド差動遊星歯車機構は、ピン歯車を内歯車としてエピトロコイド外歯歯車を内接偏心揺動させ、内ピンを介して出力を得ている。そして、偏心によるアンバランスを打ち消すために、偏心の位相と逆の位相に同じ構造の外歯歯車を追加したり、偏心方向を120°ずらした状態の位相の同じ構造の2枚の外歯歯車を追加している(特許文献1参照)。
  しかしながら、従来のサイクロイド差動遊星歯車機構は、ピンによる円弧歯形内歯車を得るために、ピンを埋め込むための溝を高精度に加工する必要があった。さらに、ピンは内歯車の全周にわたって設けられる必要があり、この高精度の加工をピンの数だけ行う必要があった。
  また、ピンに外接する外歯歯車のエピトロコイド歯車の加工精度も、高いことが要求されていた。
  さらに、外歯歯車を貫通した内ピンを配する必要があり、この内ピンが貫通する穴の位置や大きさにも、高精度が要求されていた。
  このように、従来のサイクロイド差動遊星歯車機構は、構成する部品のそれぞれに高い加工精度が要求されており、コストが高くなるという問題があった。
  さらに、従来のサイクロイド差動遊星歯車機構は、全体の構成が複雑であり、かつ外歯歯車を内ピンが貫通する構成であるため、外径の小型化に限界があった。
特開2002-266955号公報
  本発明は上記実状に鑑みてなされたものであり、低コストで小型化が達成できる遊星歯車機構を提供することを本発明の課題とする。
  上記課題を解決するために、請求項1に係る本発明の遊星歯車機構は、第1部材と、内周面に内歯歯車が形成されるとともに、入出力軸線を中心に第1部材に対して相対回転可能な第2部材と、環状に形成され、外周面に内歯歯車と噛合可能な外歯歯車を備え、外歯歯車の歯数は内歯歯車の歯数よりも少なく形成されており、第2部材に対して揺動することにより、外歯歯車の円周上の一部のみが内歯歯車と噛合するように形成されるとともに、第1部材に対しては揺動可能かつ相対回転が規制された揺動部材と、入出力軸線に対して偏心した外周面を有する偏心部を備えるとともに、偏心部が揺動部材の内周面を支持し入出力軸線を中心に回転することによって揺動部材を揺動させる、または、揺動部材が揺動することにより入出力軸線を中心に回転させられる第3部材と、を備え、第3部材に駆動力を入力して揺動部材を揺動させ、外歯歯車と内歯歯車とが噛合する円周上の位置を移動させることにより、第1部材および第2部材のうちの少なくとも一方に減速された駆動力を出力させる、または、第1部材および第2部材のうちの少なくとも一方に駆動力を入力して外歯歯車と内歯歯車とが噛合する円周上の位置を移動させ、揺動部材を揺動させることにより、第3部材に増速された駆動力を出力させる遊星歯車機構において、揺動部材および第1部材のうちのいずれかから、相手側部材に対して入出力軸線方向に第1ピンが突出し、相手側部材には、第1ピンが挿入されることで第1ピンを介して、揺動部材を第1部材に対し回転規制する挿入孔が形成されたことを特徴とする。
  請求項2に係る本発明の遊星歯車機構は、請求項1において、外歯歯車は、揺動部材から入出力軸線方向に突出した複数の第2ピンにより形成されたことを特徴とする。
  請求項3に係る本発明の遊星歯車機構は、請求項2において、揺動部材は、入出力軸線方向に対向した一対の側面を備え、第1ピンは揺動部材の一側面から突出するとともに、第2ピンは揺動部材の他の側面から突出しており、第1ピンと第2ピンは、同一円周上に形成されたことを特徴とする。
  請求項4に係る本発明の遊星歯車機構は、請求項3において、少なくとも一本の前記第2ピンと前記第1ピンとは、同軸上に形成されたことを特徴とする。
  請求項5に係る本発明の遊星歯車機構は、請求項4において、少なくとも一本の第2ピンと第1ピンとは、一体に形成された長ピンを形成することを特徴とする。
  請求項6に係る本発明の遊星歯車機構は、請求項2~4の何れか一項において、第1ピンの数は第2ピンの数よりも少ないことを特徴とする。
  請求項7に係る本発明の遊星歯車機構は、請求項5において、第2ピンの残りの一部は、第1ピンと一体ではなく、長ピンよりも短い短ピンを形成し、長ピンと短ピンとは、入出力軸線とは異なる位置を中心とする揺動部材の周方向に交互に設けられていることを特徴とする。
  請求項8に係る本発明の遊星歯車機構は、請求項1~7の何れか一項において、内歯歯車は、ハイポトロコイド歯形であることを特徴とする。
  請求項9に係る本発明の遊星歯車機構は、請求項1~8の何れか一項において、第1ピンは、ピン本体と、ピン本体に回転可能な状態で外装されたカラーと、を有することを特徴とする。
  請求項10に係る本発明の遊星歯車機構は、請求項2~7の何れか一項において、第2ピンは、ピン本体と、ピン本体に回転可能な状態で外装されたカラーと、を有することを特徴とする。
  請求項11に係る本発明の遊星歯車機構は、請求項1~10の何れか一項において、第3部材の偏心部と揺動部材との径方向の間には、第1支持軸受けが配置されていることを特徴とする。
  請求項12に係る本発明の遊星歯車機構は、請求項1~11の何れか一項において、第2部材は、その一部が第3部材の軸心部に内挿され、第3部材と、第2部材の第3部材に内挿された部分の間には、第2支持軸受けが配されていることを特徴とする。
  請求項13に係る本発明の遊星歯車機構は、請求項12において、第2支持軸受けは、第3部材の偏心部と、第2部材の第3部材に内挿された部分の間に配されていることを特徴とする。
  請求項14に係る本発明の遊星歯車機構は、請求項1~13の何れか一項において、第3部材を入力軸とし、第2部材を出力軸とする減速機構であることを特徴とする。
  請求項15に係る本発明の遊星歯車機構は、請求項1において、第2部材は、第1部材および第3部材を回転可能に支持するハウジングであって、第1部材は、第3部材に入力された駆動力を減速して出力する出力軸であり、第1ピンは、揺動部材から突出しており、第1部材には、第1ピンが挿入される挿入孔が形成されたことを特徴とする。
  請求項16に係る本発明の遊星歯車機構は、請求項1~15の何れか一項において、第3部材は、偏心部のアンバランス回転を打ち消すカウンターバランサを有することを特徴とする。
  請求項17に係る本発明の遊星歯車機構は、請求項16において、カウンターバランサは、第3部材を部分的に刳り抜いた軽量孔であることを特徴とする。
  請求項18に係る本発明の遊星歯車機構は、請求項1~8の何れか一項または請求項15において、第1ピンの先端にはニードルベアリングが装着され、挿入孔は、ニードルベアリングを介して揺動部材の回転規制をしていることを特徴とする。
  請求項19に係る本発明の遊星歯車機構は、請求項1~18の何れか一項において、第3部材は、電動モータにより駆動され、電動モータのケースは、第1部材または第2部材と一体的に形成され、電動モータの出力軸と第3部材とが一体的に形成されたことを特徴とする。
  請求項20に係る本発明の遊星歯車機構は、共通の入出力軸線を中心として、入力軸および出力軸を回転可能に支持する固定されたハウジングと、入力軸および出力軸のうちの一方であって、入出力軸線に対して偏心した偏心軸を中心とする偏心部を有する第1軸と、入力軸および出力軸のうちの他方であって、内歯歯車が設けられた第2軸と、内歯歯車と噛合可能な外歯歯車と、内周面において偏心部に支持される筒状部とが形成されるとともに、外歯歯車の歯数は内歯歯車の歯数よりも少なく形成され、第2軸に対して揺動することにより、外歯歯車の円周上の一部のみが内歯歯車と噛合するように形成されるとともに、ハウジングに対しては揺動可能かつ相対回転が規制された揺動部材と、を備え、第1軸に駆動力を入力して揺動部材を揺動させ、外歯歯車と内歯歯車とが噛合する円周上の位置を移動させることにより、第2軸に減速された駆動力を出力させる、または、第2軸に駆動力を入力して外歯歯車と内歯歯車とが噛合する円周上の位置を移動させ、揺動部材を揺動させることにより、第1軸に増速された駆動力を出力させる遊星歯車機構において、揺動部材からハウジングに対して入出力軸線方向に第1ピンが突出し、ハウジングには、第1ピンが挿入されることで第1ピンを介して、揺動部材をハウジングに対し回転規制する挿入孔が形成されたことを特徴とする。
  請求項21に係る本発明の遊星歯車機構は、共通の入出力軸線を中心として、入力軸および出力軸を回転可能に支持するとともに、内歯歯車を有する固定されたハウジングと、入力軸および出力軸のうちの一方であって、入出力軸線に対して偏心した偏心軸を中心とする偏心部を有する第1軸と、入力軸および出力軸のうちの他方である第2軸と、内歯歯車と噛合可能な外歯歯車と、内周面において偏心部に支持される筒状部とが形成されるとともに、外歯歯車の歯数は内歯歯車の歯数よりも少なく形成され、ハウジングに対して揺動することにより、外歯歯車の円周上の一部のみが内歯歯車と噛合するように形成されるとともに、第2軸に対しては揺動可能かつ相対回転が規制された揺動部材と、を備え、第1軸に駆動力を入力して揺動部材を揺動させ、外歯歯車と内歯歯車とが噛合する円周上の位置を移動させることにより、第2軸を揺動部材とともに回転させて、第2軸に減速された駆動力を出力させる、または、第2軸に駆動力を入力して外歯歯車と内歯歯車とが噛合する円周上の位置を移動させ、揺動部材を第2軸とともに回転させるとともに揺動させることにより、第1軸に増速された駆動力を出力させる遊星歯車機構において、揺動部材から第2軸に対して入出力軸線方向に第1ピンが突出し、第2軸には、第1ピンが挿入されることで第1ピンを介して、揺動部材を第2軸に対し回転規制する挿入孔が形成されたことを特徴とする。
  請求項1に係る本発明の遊星歯車機構は、入出力軸の一方である第3部材が回転すると、第3部材にもうけられた偏心部を介して揺動部材が偏心揺動運動する。そして、揺動部材に形成された外歯歯車は、揺動部材と共に偏心揺動する。外歯歯車は、第2部材に設けられた内歯歯車に外接して係合して(噛み合って)おり、揺動部材の偏心揺動運動によって、外歯歯車と内歯歯車との噛み合い部の円周上の位置が移動する。これにより、揺動部材を回転規制する第1部材と第2部材との間に相対回転が発生し、第1部材または第2部材に回転出力が取り出される。揺動部材に設けられた外歯歯車と内歯歯車の歯数を調節することで、変速比(減速比)が決定する。このように、本発明の遊星歯車機構は、入出力軸の一方である第3部材の回転を変速(減速)して第2部材で出力する。また、第2部材を固定することにより、第3部材の回転を変速(減速)して第1部材で出力することもできる。
  また、本発明の遊星歯車機構では、第1部材または第2部材の回転を、第3部材に変速(増速)して出力することもできる。その場合には、第1部材または第2部材、内歯歯車、外歯歯車、揺動部材、第3部材の順に回転が伝達され変速される。
  本発明の遊星歯車機構は、揺動部材にもうけられた外歯歯車と内歯歯車の係合する係合面(歯車の噛み合う噛合面)のみに高い加工精度が要求される。換言すると、それ以外の部材に高い加工精度が要求されなくなっている。すなわち、本発明の遊星歯車機構は、高い精度での加工を減らすことで、コストを低減できる効果を発揮する。
  また、揺動部材および第1部材のうちの一側部材から突出する第1ピンと、他側部材の挿入孔とを係合させるだけで、揺動部材の偏心揺動運動以外の運動(特に、入出力軸を中心とする周方向での回転運動)が規制され、揺動部材および第1部材を小型化できるとともに、製造を容易にすることができる。
  請求項2に係る本発明の遊星歯車機構によると、外歯歯車を複数の第2ピンにより形成できる。これにより、外歯歯車を簡単に製造できる。さらに、第2ピンは、高精度の部品を低コストで製造できるため、本発明の遊星歯車機構は、コストを低減できる効果を発揮する。
  請求項3に係る本発明の遊星歯車機構によると、第1ピンと第2ピンは、同一円周上に形成されたことにより、第1ピンおよび第2ピンを設けるために、揺動部材の外径を最小限の大きさにすることができ、遊星歯車機構を小型化することができる。
  請求項4に係る本発明の遊星歯車機構によると、少なくとも一本の第2ピンと第1ピンとは、同軸上に形成されたことにより、第1ピンおよび第2ピンを一つずつ設けるために、揺動部材の両側面を貫くように1個の貫通孔を設ければよく、製造の容易な遊星歯車機構にすることができる。
  請求項5に係る本発明の遊星歯車機構によると、少なくとも一本の第2ピンと第1ピンとが一体となるため、それぞれを別体として形成する場合よりも、コストを低減できる効果を発揮する。
  請求項6に係る本発明の遊星歯車機構によると、第1ピンの数は第2ピンの数よりも少ないため、第1ピンを形成する円周の径を、第2ピンが設けられている円周の径よりも小径にすることができ、第1ピンおよび第2ピンが形成される部材を小型化することができる。
  すなわち、回転力を伝達する外歯歯車に働く面圧を低減するために、第2ピンは所定数以上だけ設けなければならない。しかしながら、回転規制をする第1ピンの数については、比較的自由度がある。したがって、第1ピンの数を第2ピンの数よりも少なくし、第1ピンを小径の円周上に配置するとともに、第2ピンを第1ピンよりも大径の円周上に配置することができる。こうすることにより、第1ピンおよび第2ピンを合理的に配置することができ、第1ピンおよび第2ピンが形成される部材を小型化することができる。
  請求項7に係る本発明の遊星歯車機構によると、長ピンと短ピンとを、入出力軸線とは異なる位置を中心とする揺動部材の周方向に沿って交互にもうけていることにより、揺動部材を第1部材に対して安定して回転規制できるとともに、外歯歯車を内歯歯車に対して円滑に噛み合わせることができる。
  請求項8に係る本発明の遊星歯車機構によると、内歯歯車をハイポトロコイド歯形とすることで、外歯歯車と、噛み合いを大きくすることができる。
  請求項9に係る本発明の遊星歯車機構によると、第1ピンが、ピン本体とカラーとから構成される。すなわち、第1ピンの相手材(挿入孔の内周面)との当接面をカラーが形成する。そして、カラーは、ピン本体に対して回転可能な状態で配されることから、ピンと相手材とが摺接(圧接)した時に、両部材間の滑りをカラーの回転により吸収することができる。すなわち、高効率での噛み合いを達成できる。
  さらに、カラーの外径を調節することで、相手材との噛み合いのバックラッシュを簡単に調節することができる。
  請求項10に係る本発明の遊星歯車機構によると、第2ピンが、ピン本体とカラーとから構成される。すなわち、第2ピンの相手材(内歯歯車)との当接面をカラーが形成する。そして、カラーは、ピン本体に対して回転可能な状態で配されることから、ピンと相手材とが摺接(圧接)した時に、両部材間の滑りをカラーの回転により吸収することができる。すなわち、高効率での噛み合いを達成できる。
  さらに、カラーの外径を調節することで、相手材との噛み合いのバックラッシュを簡単に調節することができる。
  請求項11に係る本発明の遊星歯車機構によると、偏心部と揺動部材との間には第1支持軸受けが配されていることで、偏心部の偏心回転を揺動部材の揺動回転に変換することができる。また、揺動部材に加わる径方向の応力を偏心部が受けることができる。
  請求項12に係る本発明の遊星歯車機構によると、第3部材と第2部材との軸方向位置が重なり合い、両者の間に第2支持軸受けが配されることで、外歯歯車(第2ピン)が内歯歯車から受ける径方向内方へ向かう応力(噛み合い時の反力)が、揺動部材、第1支持軸受け、第3部材の偏心部及び第2支持軸受けを介して第2部材に伝達される。第2部材は、伝達された応力(反力)を受け止めることで、外歯歯車(第2ピン)と内歯歯車の回転の伝達がロスなく行われる。
  請求項13に係る本発明の遊星歯車機構によると、第3部材の偏心部と第2部材の間に第2支持軸受けが配されることで、偏心部が受ける径方向内方に向かう応力を、第2部材で受け止めることができる。
  請求項14に係る本発明の遊星歯車機構によると、低コストかつ小型化された機構で変速をできることから、第3部材からの入力を第2部材に減速して出力する減速機構であることが好ましい。本発明の遊星歯車機構は、上記のように、低コストかつ小型化が可能であるため、ロボット等においてモータの出力を減速する減速機として用いることがより好ましい。
  請求項15に係る本発明の遊星歯車機構によると、第2部材は、第1部材および第3部材を回転可能に支持するハウジングであって、第1部材は、第3部材に入力された駆動力を減速して出力する出力軸としたことにより、内歯歯車を設ける場合に、揺動部材を取り囲んだハウジングとしての第2部材の壁を貫通切削することにより形成することができ、その製造が容易となる。
  また、出力軸である第1部材に挿入孔が形成されるため、端部に形成された出力軸の厚みを利用して挿入孔を設けることができ、遊星歯車機構の軸方向寸法を低減することができる。
  請求項16に係る本発明の遊星歯車機構によると、第3部材が偏心部のアンバランス回転を打ち消すカウンターバランサを有することで、偏心部により生じたアンバランス回転を打ち消すことができ、遊星歯車機構の振動を抑えることができる。なお、カウンターバランサは、偏心部のアンバランス回転を打ち消すことができる形状、位置であれば、その構成が特に限定されるものではない。
  請求項17に係る本発明の遊星歯車機構によると、カウンターバランサが第3部材を部分的に刳り抜いた軽量孔であることにより、部品点数を増やすことなく、第3部材の偏心アンバランス荷重を解消することができる。
  請求項18に係る本発明の遊星歯車機構によると、挿入孔がニードルベアリングを介して揺動部材の回転規制をしていることにより、第1部材と揺動部材との間の摺動抵抗による損失を低減し、遊星歯車機構の効率を向上させ出力トルクを増大させることができる。
  請求項19に係る本発明の遊星歯車機構によると、電動モータのケースが第1部材または第2部材と一体的に形成され、電動モータの出力軸と第3部材とが一体的に形成されたことにより、部品点数を低減し、低コストの遊星歯車機構にすることができる。
  請求項20に係る本発明の遊星歯車機構によると、入力軸である第1軸が回転すると、第1軸にもうけられた偏心部を介して揺動部材が偏心揺動運動する。そして、揺動部材に形成された外歯歯車は、揺動部材と共に偏心揺動する。外歯歯車は、第2軸に設けられた内歯歯車に外接して係合して(噛み合って)おり、揺動部材の偏心揺動運動によって、外歯歯車と内歯歯車との噛み合い部の円周上の位置が移動する。これにより、揺動部材を回転規制するハウジングと第2軸との間に相対回転が発生し、第2軸に回転出力が取り出される。揺動部材に設けられた外歯歯車と内歯歯車の歯数を調節することで、変速比(減速比)が決定する。このように、本発明の遊星歯車機構は、入力軸である第1軸の回転を変速(減速)して第2軸で出力する。
  また、本発明の遊星歯車機構では、第2軸の回転を、第1軸に変速(増速)して出力することもできる。その場合には、第2軸、内歯歯車、外歯歯車、揺動部材、第1軸の順に回転が伝達され変速される。
  本発明の遊星歯車機構は、揺動部材にもうけられた外歯歯車と内歯歯車の係合する係合面(歯車の噛み合う噛合面)のみに高い加工精度が要求される。換言すると、それ以外の部材に高い加工精度が要求されなくなっている。すなわち、本発明の遊星歯車機構は、高い精度での加工を減らすことで、コストを低減できる効果を発揮する。
  また、揺動部材から突出する第1ピンと、ハウジングの挿入孔との作用により、揺動部材が偏心揺動運動以外の運動(特に、入出力軸を中心とする周方向での回転運動)が規制される効果を発揮する。
  請求項21に係る本発明の遊星歯車機構によると、入力軸である第1軸が回転すると、第1軸にもうけられた偏心部を介して揺動部材が偏心揺動運動する。そして、揺動部材に形成された外歯歯車は、揺動部材と共に偏心揺動する。外歯歯車は、ハウジングに設けられた内歯歯車に外接して係合して(噛み合って)おり、揺動部材の偏心揺動運動によって、外歯歯車と内歯歯車との噛み合い部の円周上の位置が移動する。これにより、揺動部材を回転規制する第2軸とハウジングとの間に相対回転が発生し、第2軸に回転出力が取り出される。揺動部材に設けられた外歯歯車と内歯歯車の歯数を調節することで、変速比(減速比)が決定する。このように、本発明の遊星歯車機構は、入力軸である第1軸の回転を変速(減速)して第2軸で出力する。
  また、本発明の遊星歯車機構では、第2軸の回転を、第1軸に変速(増速)して出力することもできる。その場合には、第2軸、内歯歯車、外歯歯車、揺動部材、第1軸の順に回転が伝達され変速される。
  本発明の遊星歯車機構は、揺動部材にもうけられた外歯歯車と内歯歯車の係合する係合面(歯車の噛み合う噛合面)のみに高い加工精度が要求される。換言すると、それ以外の部材に高い加工精度が要求されなくなっている。すなわち、本発明の遊星歯車機構は、高い精度での加工を減らすことで、コストを低減できる効果を発揮する。
  また、揺動部材から突出する第1ピンと、第2軸の挿入孔との作用により、第2軸が揺動部材とともに減速されて回転される効果を有する。
  また、内歯歯車を設ける場合に、揺動部材を取り囲んだハウジングの壁を貫通切削することにより形成することができ、その製造が容易となる。
  また、第2軸に挿入孔が形成されるため、端部に形成された第2軸の厚みを利用して挿入孔を設けることができ、遊星歯車機構の軸方向寸法を低減することができる。
実施例1の減速装置の構成を示した断面図である。 図1のA-A断面における断面図である。 図1のB-B断面における断面図である。 図1のC-C断面における断面図である。 実施例1の減速装置のカウンターバランサを示した図である。 実施例2の減速装置の構成を示した断面図である。 図6のD-D断面における断面図である。 図6のE-E断面における断面図である。 図6のF-F断面における断面図である。
  <実施例1>
  以下、図1乃至図5に基づき、実施例1について説明する。図1に、本実施例の遊星歯車機構が採用された減速装置1を示す。本実施例では、入力軸2に入力されたモータMの駆動力が、減速されて出力軸7に出力される減速装置1を示した。なお、入力軸の回転と歯車の位相を示すために、図1中のA-A断面を図2に、図1中のB-B断面を図3に、図1中のC-C断面を図4にそれぞれ示した。
  本実施例の減速装置1は、モータM、ハウジングH、入力軸2、揺動面板3、第1ピン4、第2ピン5、内歯歯車6、出力軸7を有する。
  モータM(本発明の電動モータに該当する)は、回転を出力する部材である。本実施例においてモータMは、特に限定されるものではない。
  ハウジングHは、モータMに固定され、減速装置1の外周形状の一部を形成する部材である。また、ハウジングH(本発明の第1部材に該当する)は、モータMの回転軸MJ、入力軸2(本発明の第3部材および第1軸に該当する)、揺動面板3(本発明の揺動部材に該当する)、第1ピン4、第2ピン5、内歯歯車6、出力軸7(内歯歯車6を含んだ構成が、本発明の第2部材および第2軸に該当する)等の部材を、回転可能な状態で支持・収容する部材である。ハウジングHは、入力軸2と出力軸7とを、両軸線(入出力軸線であり図においてφにて示す)が一致して共通となる状態で回転可能に支持する。
  入力軸2は、モータMの回転軸MJに固定された略筒状の部材である。入力軸2は、モータMの回転軸MJに外挿固定された縮径部20と、縮径部20の先端側に位置し縮径部20よりも内径と外径とが拡径した筒状の拡径部21と、を有している。なお、縮径部20と拡径部21の径の変化は、図1に示したように、徐々に(階段状に)径が変化するように形成されている。
  縮径部20は、ハウジングHとの間に入力軸支持軸受け80を介して、回転可能な状態で配されている。
  拡径部21は、径方向の外周面が、入力軸2の軸心に対して偏心した偏心形状をなす偏心部22を備えている。つまり、入力軸2が入出力軸線を中心に回転すると、偏心部22も入出力軸線を中心として回転し、その外周面を揺動させる。偏心部22の外周面は、入出力軸線に対して異なる位置にある偏心軸(図においてeφにて示す)を中心とした真円状に形成されている。
  入力軸2は、縮径部20のハウジングHに支持された部分よりもモータMに近接した位置に、カウンターバランサ23が設けられている。カウンターバランサ23は、偏心部22により生じるアンバランス回転を打ち消すように配されている。具体的には、カウンターバランサ23は、図5に示したように、偏心部22の偏心形状と逆の位相となるように組み付けられている。なお、図5は、出力軸7側からモータM方向を見たときに、揺動面板3とカウンターバランサ23との位相差がわかるように示した概略図である。
  揺動面板3は、第1支持軸受け81を介して拡径部21(の偏心部22)に外挿されたおよそ環状の部材である。本実施例において、揺動面板3は、第1支持軸受け81を介して拡径部21(の偏心部22)に外挿される筒状部30と、筒状部30のモータMに近接する側の端部で軸方向に垂直に広がる円盤状の円盤部31とを有する。筒状部30は、第1支持軸受け81を介して、偏心部22により支持されている。
  揺動面板3の円盤部31には、入出力軸線方向に対向した一対の側面が形成され、それぞれの側面には、周方向に沿って、複数本の第1ピン4及び第2ピン5がそれぞれ等間隔でもうけられている。複数本の第1ピン4は、入力軸2の軸方向と平行な状態で揺動面板3の円盤部31の一方の表面からモータMに近接する方向に突出している。複数本の第2ピン5は、入力軸2の軸方向と平行な状態で揺動面板3の円盤部31の他方の表面からモータMから離反する方向に突出している。第1ピン4および第2ピン5は、偏心軸を中心とした同一円周上に設けられ、第1ピン4は第2ピン5と同軸上に配置されている。本実施例では、図2及び3に示したように、第1ピン4は7本、第2ピン5は14本がもうけられている。この第2ピン5により、外歯歯車に相当する歯車が形成されている。
  本実施例において、第1ピン4と、第2ピン5の一部とは、一体に形成された長ピン40を形成している。長ピン40は、揺動面板3の円盤部31を貫通した状態で、第1ピン4と第2ピン5の一部とが一体をなすように形成されている。第2ピン5の残りは、第1ピン4と一体ではなく、長ピン40よりも短い短ピン50を形成している。長ピン40を形成する第2ピン5は、周方向に並んだ第2ピン5のうち、一つおきのピンである。すなわち、長ピン40と短ピン50は、揺動面板3の偏心軸を中心とする周方向に交互に設けられている。
  第1ピン4は、ハウジングHに開口した挿入孔H1に挿入されている。第1ピン4は、外周面の一部が挿入孔H1の内周面と当接している。挿入孔H1は、挿入された第1ピン4を介して揺動面板3が偏心軸を中心としてハウジングHに対して回転することを規制する。挿入孔H1は、内周形状が円形をなす凹状の孔である。
  揺動面板3の外周面において、複数の第2ピン5により形成される外歯歯車は、内歯歯車6に内接・係合して(噛み合って)いる。内歯歯車6と外歯歯車との係合により偏心軸が入出力軸線の回りを回転するように揺動面板3が偏心揺動運動できる。これにより、揺動面板3はハウジングHおよび出力軸7に対して揺動し、外歯歯車の円周上の一部のみが内歯歯車6と噛合する。
  第1ピン4と第2ピン5とから形成される長ピン40と短ピン50は、図1に示したように、揺動面板3に突出した状態で固定された円柱状のピン本体41,51と、ピン本体41,51に回転可能な状態で外挿された円筒状のカラー42,52と、から構成される。
  内歯歯車6は、第2ピン5と内接噛合する部材であり、内周面にハイポトロコイド歯形が形成された円環状の部材である。円環状の内歯歯車6は、その中心軸が入出力軸線と一致するように配されている。本実施例において、内歯歯車6には、第2ピン5のピンの数より一つ多い15の歯が形成されている。
  内歯歯車6は、出力軸7に固定されている。出力軸7は、円盤状の円盤状部70と、円盤状部70からモータMに近接する方向に突出した入力軸2の拡径部21の軸心に挿入される挿入部71と、から構成される。出力軸7は、出力軸支持軸受け83を介して、ハウジングHにより入出力軸線を中心に回転可能な状態で支持されている。
  出力軸7は、挿入部71が入力軸2の拡径部21の軸心に挿入されているが、この挿入部71は、拡径部21の内周面と第2支持軸受け82を介して配置されている。
  つづいて、本実施例の減速装置1の動作を説明する。
  まず、モータMを作動させる。モータMの回転軸MJを介して入力軸2が回転する。入力軸2が回転すると、入力軸2を構成する偏心部22が回転し、その外周面を揺動させる(偏心回転)。このとき、入力軸2には、カウンターバランサ23が設けられているため、偏心部22が偏心軸を中心に偏心回転したときに生じる回転のアンバランスが打ち消される。
  偏心部22の偏心回転は、第1支持軸受け81を介して揺動面板3を揺動運動(偏心揺動運動)させる。このとき、揺動面板3は、第1ピン4がハウジングHの挿入孔H1に挿入されており、揺動面板3が入出力軸線を中心としてハウジングHに対して回転することが規制されており、揺動面板3が揺動運動する。
  揺動面板3が揺動運動すると、揺動面板3にもうけられた第2ピン5も揺動運動する。第2ピン5が揺動運動すると、外歯歯車と内歯歯車6とが噛合する円周上の位置が移動し、第2ピン5が内接噛合する内歯歯車6がその入出力軸線(入力軸2及び出力軸7の中心軸)を中心に回転する。つまり、揺動面板3の揺動運動から、回転成分が取り出される。内歯歯車6の回転は、出力軸7に伝達され、出力軸7において出力回転が出力される。なお、第2ピン5と内歯歯車6の噛み合う歯の数により、減速比が決定される。このような機構で、本実施例の減速装置1は、入力軸2の回転が減速されて、出力軸7から出力される。
  本実施例の減速装置1の遊星歯車機構は、揺動面板3に固定された第2ピン5と内歯歯車6との当接面(噛合面)のみに高い加工精度が要求される。すなわち、それ以外の部分に高い加工精度が要求されなくなっている。つまり、加工コストを低減できる効果を発揮する。
  また、第1ピン4と第2ピン5は、同一円周上に形成されたことにより、第1ピン4および第2ピン5を設けるために、揺動面板3の外径を最小限の大きさにすることができ、遊星歯車機構を小型化することができる。
  また、少なくとも一本の第2ピン5と第1ピン4とは、同軸上に形成されたことにより、第1ピン4および第2ピン5を一つずつ設けるために、揺動面板3の両側面を貫くように1個の貫通孔を設ければよく、製造の容易な遊星歯車機構にすることができる。
  また、第1ピン4の数は第2ピン5の数よりも少ないため、第1ピン4を形成する円周の径を、第2ピン5が設けられている円周の径よりも小径にすることができ、第1ピン4および第2ピン5が形成される揺動面板3を小型化することができる。
  すなわち、回転力を伝達する外歯歯車に働く面圧を低減するために、第2ピン5は所定数以上だけ設けなければならない。しかしながら、揺動面板3の回転規制をする第1ピン4の数については、比較的自由度がある。したがって、第1ピン4の数を第2ピン5の数よりも少なくし、第1ピン4を小径の円周上に配置するとともに、第2ピン5を第1ピンよりも大径の円周上に配置することもできる。こうすることにより、第1ピン4および第2ピン5を合理的に配置することができ、揺動面板3を小型化することができる。
  また、従来の遊星歯車機構では、内ピンと外ピンの二種類のピンが要求されていたが、本実施例の減速装置1の遊星歯車機構では、長ピン40と短ピン50を適宜設定することで、部品点数を削減できる効果を発揮する。
  さらに、従来の遊星歯車機構では外歯歯車に内ピンを貫通する内ピン穴が必要となっており、外歯歯車自身の外径の縮径に限界があったが、本実施例の減速装置1の遊星歯車機構は揺動面板3に第2ピン5が固定されたことで、揺動面板3自身が内ピン穴のような大きなスペースを要求しなくなっている。この結果、本実施例の減速装置1の遊星歯車機構は、外径を小型化できる効果を発揮する。
  また、本実施例の減速装置1の遊星歯車機構では、入力軸2がモータM側に偏心部22のアンバランス回転を打ち消すカウンターバランサ23を有したことで、偏心部22により生じたアンバランス回転をこのカウンターバランサ23で打ち消している。すなわち、本実施例の減速装置1の遊星歯車機構では、減速装置1が振動することが抑えられている。さらに、本実施例の減速装置1の遊星歯車機構では、簡単な形状のカウンターバランサ23を用いることができることから、加工コストを低減できる効果を発揮する。
  また、本実施例の減速装置1の遊星歯車機構では、第1ピン4及び第2ピン5をなす長ピン40と短ピン50と、ハウジングHの挿入孔H1及び内歯歯車6との摺接を、ピン本体41,51に外挿されたカラー42,52により形成している。第1ピン4と挿入孔H1及び第2ピン5と内歯歯車6とが摺接した時に、歯面の滑りをカラー42,52の回転により吸収することができ、高効率での噛み合いを達成できる。
  さらに、本実施例の減速装置1の遊星歯車機構では、カラー42,52の外径を調節することで、噛み合いのバックラッシュを簡単に調節することができる。つまり、加工コストを低減できる効果を発揮する。
  加えて、本実施例の減速装置1の遊星歯車機構では、第2ピン5が内歯歯車6から受ける径方向内方に向かう反力は、揺動面板3,第1支持軸受け81,入力軸2の拡径部21,第2支持軸受け82を介して出力軸7の挿入部71にかかる。つまり、第2ピン5と内歯歯車6とが噛み合う力がロスなく用いられる。
  <実施例1の変形例>
  上記の実施例1においては、外歯歯車を揺動面板3に設けられた第2ピン5により形成し、内歯歯車6をハイポトロコイド型歯車で形成しているが、外歯歯車をハイポトロコイド型歯車で形成し、内歯歯車をピンにより形成してもよい。
  上記したように、各実施例の減速装置1は、モータMの回転を体格が小さな装置で減速している。すなわち、本発明の遊星歯車機構は、特に、小型のロボット等において用いることが好ましい。
  <実施例1の別の変形例>
  上記の実施例1においては、本発明の歯車機構を、入力軸2に入力されたモータMの駆動力が、減速されて出力軸7に出力される減速装置1に適用した例を示したが、出力軸7に入力された駆動力が、増速されて入力軸2に出力される増速装置に適用してもよい。
  <実施例2>
  次に、図6乃至図9に基づき、実施例2による減速装置1Kについて、上述した減速装置1との相違点のみを説明する。図6に示すように、モータM1(本発明の電動モータに該当する)のケースC1(本発明の第2部材に該当する)は、減速装置1Kのハウジングと一体的に形成されている。ケースC1は、減速装置1Kのハウジングを兼ねており、出力軸支持軸受け803を介して出力軸700(本発明の第1部材に該当する)を回転可能に支持している。
  出力軸支持軸受け803は、ケースC1と出力軸700の間に形成された環状の装着孔R1の軸方向端部において、その内外周に一対の止め輪(サークリップ)804a、804bが装着されることにより固定されている。これにより、構造を簡素化でき、出力軸支持軸受け803の組み付け性を向上させることができる。
  また、モータM1からはアウトプットシャフト200(本発明の第3部材および電動モータの出力軸に該当する)が突出しており、アウトプットシャフト200は減速装置1Kの入力軸を兼ねるべく、入力軸と一体的に形成されている。アウトプットシャフト200の先端部には、入出力軸線(図においてφにて示す)に対して外周面が偏心した偏心部202が形成されている。偏心部202の半径方向内方部には、出力軸700の挿入部701が挿入されており、偏心部202の内周面と挿入部701との間には第2支持軸受け802が介装されている。
  アウトプットシャフト200の後端部には、アウトプットシャフト200の偏心部202により生じたアンバランス回転を打ち消すために、カウンターバランサ203が形成されている。カウンターバランサ203は、アウトプットシャフト200を部分的に刳り抜いた軽量孔により形成されている。軽量孔は、偏心部202において、外周面が入出力軸線を中心として外方へ突出しているため重量が大きい部位と、同じ円周上の位置に形成されている(図7示)。
  アウトプットシャフト200の偏心部202の外周面には、第1支持軸受け801を介して揺動面板300が装着されている。揺動面板300は、入出力軸線を中心としたアウトプットシャフト200の回転により、偏心部202とともに揺動可能に形成されている。
  揺動面板300の外周面には、短ピン500と長ピン400が交互に7個ずつ取り付けられている。短ピン500と長ピン400は、ともに入出力軸線方向に延びており、短ピン500の先端部および長ピン400のモータM1側の先端部(ともに、本発明の第2ピンに該当する)にはカラー502、402がそれぞれ装着されている。短ピン500の先端部および長ピン400のモータM1側の先端部は、実施例1のものと同様の外歯歯車を形成している(図8示)。
  モータM1のケースC1には、半径方向内方へと延びた支持部C1aが形成され、支持部C1aの内周面には、実施例1のものと同様のハイポトロコイド型の内歯歯車C1bが設けられている。内歯歯車C1bは、外歯歯車よりも1歯多い15の歯が形成されている。内歯歯車C1bの円周上の一部は、カラー502、402を介して、短ピン500の先端部および長ピン400の先端部と噛合している。
  一方、長ピン400のモータM1と反対側の先端部(本発明の第1ピンに該当する)には、ニードルベアリング403が装着されている。また、出力軸700には、長ピン400のモータM1と反対側の先端部が挿入されるべく、挿入孔702が形成されている。出力軸700は揺動面板300の揺動を許容するとともに、挿入孔702がニードルベアリング403を介して長ピン400と当接することにより、揺動面板300の相対回転を規制している(図9示)。
  その他の構成については、実施例1による減速装置1と同様であるため、これ以上の説明は省略する。
  次に、減速装置1Kの動作を説明する。モータM1を作動させると、アウトプットシャフト200が回転する。アウトプットシャフト200が回転すると、アウトプットシャフト200を構成する偏心部202が偏心回転する。偏心部202の偏心回転は、第1支持軸受け801を介して揺動面板300を揺動運動(偏心揺動運動)させる。
  揺動面板300が揺動運動すると、揺動面板300にもうけられた短ピン500および長ピン400により形成された外歯歯車も揺動運動する。ここで、実施例1のものとは異なり、外歯歯車と噛み合った内歯歯車C1bは、ケースC1に形成されているため回転不能となっている。このため、外歯歯車が揺動運動すると、揺動面板300自体が揺動するとともに回転する。
  このとき、長ピン400が出力軸700の挿入孔702に挿入されており、揺動面板300が出力軸700に対して回転することが規制されているため、出力軸700が揺動面板300とともに減速回転される。つまり、揺動面板300の揺動運動から、出力軸700において減速回転が出力される。
  実施例2によれば、内歯歯車をケースC1に形成したことにより、内歯歯車を設ける場合に、ハウジングとしてのケースC1の壁(支持部C1a)を貫通切削することにより形成することができ、その製造が容易となる。
  また、出力軸700に挿入孔702が形成されるため、軸方向端部に形成された出力軸700の厚みを利用して挿入孔702を設けることができ、減速装置1Kの軸方向寸法を低減することができる。
  また、カウンターバランサ203がアウトプットシャフト200を部分的に刳り抜いた軽量孔であることにより、部品点数を増やすことなく、アウトプットシャフト200の偏心アンバランス荷重を解消することができる。
  また、出力軸700の挿入孔702が、ニードルベアリング403を介して揺動面板300の回転規制をしていることにより、出力軸700と揺動面板300との間の摺動抵抗による損失を低減し、減速装置1Kの効率を向上させ出力トルクを増大させることができる。
  また、モータM1のケースC1が減速装置1Kのハウジングと一体的に形成され、モータM1のアウトプットシャフト200と減速装置1Kの入力軸とが一体的に形成されたことにより、実施例1に示した入力軸支持軸受け80を廃止することができ、部品点数を低減し、低コストの減速装置1Kにすることができる。
  <実施例2の変形例>
  減速装置1Kにおいて、出力軸700を回転不能に固定するとともに、ケースC1を入出力軸線を中心に回転可能にしてもよい。また、出力軸700およびケースC1をともに入出力軸線を中心に回転可能にし、それぞれに所定の比率で減速回転を出力してもよい。
  実施例1による減速装置1において、入力軸2にカウンターバランサ23としての軽量孔を設けてもよい。
  実施例1による減速装置1において、長ピン40に対し、カラー42の代わりにニードルベアリング403を装着してもよい。
  実施例1による減速装置1において、入力軸2をモータMの回転軸MJと一体に形成し、ハウジングHをモータMのケースと一体に形成してもよい。
 1,1K:減速装置 2:入力軸 20:縮径部 21:拡径部
22,202:偏心部 23,203:カウンターバランサ
3,300:揺動面板 30:筒状部 31:円盤部 4:第1ピン
40,400:長ピン 41:ピン本体 42:カラー 5:第2ピン
50,500:短ピン 51:ピン本体 52:カラー 
6,C1b:内歯歯車 7,700:出力軸 70:円盤状部
71,701:挿入部 80:入力軸支持軸受け 
81,801:第1支持軸受け 82,802:第2支持軸受け
83,803:出力軸支持軸受け 200:アウトプットシャフト
403:ニードルベアリング C1:ケース H1,702:挿入孔
M,M1:モータ φ:入出力軸線 eφ:偏心軸

Claims (21)

  1.   第1部材と、
      内周面に内歯歯車が形成されるとともに、入出力軸線を中心に前記第1部材に対して相対回転可能な第2部材と、
      環状に形成され、外周面に前記内歯歯車と噛合可能な外歯歯車を備え、前記外歯歯車の歯数は前記内歯歯車の歯数よりも少なく形成されており、前記第2部材に対して揺動することにより、前記外歯歯車の円周上の一部のみが前記内歯歯車と噛合するように形成されるとともに、前記第1部材に対しては揺動可能かつ相対回転が規制された揺動部材と、
      前記入出力軸線に対して偏心した外周面を有する偏心部を備えるとともに、前記偏心部が前記揺動部材の内周面を支持し前記入出力軸線を中心に回転することによって前記揺動部材を揺動させる、または、前記揺動部材が揺動することにより前記入出力軸線を中心に回転させられる第3部材と、
      を備え、
      前記第3部材に駆動力を入力して前記揺動部材を揺動させ、前記外歯歯車と前記内歯歯車とが噛合する円周上の位置を移動させることにより、前記第1部材および前記第2部材のうちの少なくとも一方に減速された駆動力を出力させる、
      または、
      前記第1部材および前記第2部材のうちの少なくとも一方に駆動力を入力して前記外歯歯車と前記内歯歯車とが噛合する円周上の位置を移動させ、前記揺動部材を揺動させることにより、前記第3部材に増速された駆動力を出力させる遊星歯車機構において、
      前記揺動部材および前記第1部材のうちの一側部材から、他側部材に対して前記入出力軸線方向に第1ピンが突出し、
      前記他側部材には、前記第1ピンが挿入されることで前記第1ピンを介して、前記揺動部材を前記第1部材に対し回転規制する挿入孔が形成されたことを特徴とする遊星歯車機構。
  2.   請求項1において、
      前記外歯歯車は、前記揺動部材から前記入出力軸線方向に突出した複数の第2ピンにより形成されたことを特徴とする遊星歯車機構。
  3.   請求項2において、
      前記揺動部材は、前記入出力軸線方向に対向した一対の側面を備え、
      前記第1ピンは前記揺動部材の一側面から突出するとともに、前記第2ピンは前記揺動部材の他の側面から突出しており、
      前記第1ピンと前記第2ピンは、同一円周上に形成されたことを特徴とする遊星歯車機構。
  4.   請求項3において、
      少なくとも一本の前記第2ピンと前記第1ピンとは、同軸上に形成されたことを特徴とする遊星歯車機構。
  5.   請求項4において、
      少なくとも一本の前記第2ピンと前記第1ピンとは、一体に形成された長ピンを形成することを特徴とする遊星歯車機構。
  6.   請求項2~4において、
      前記第1ピンの数は前記第2ピンの数よりも少ないことを特徴とする遊星歯車機構。
  7.   請求項5において、
      前記第2ピンの残りの一部は、前記第1ピンと一体ではなく、前記長ピンよりも短い短ピンを形成し、
      前記長ピンと前記短ピンとは、前記入出力軸線とは異なる位置を中心とする前記揺動部材の周方向に交互に設けられていることを特徴とする遊星歯車機構。
  8.   請求項1~7の何れか一項において、
      前記内歯歯車は、ハイポトロコイド歯形であることを特徴とする遊星歯車機構。
  9.   請求項1~8の何れか一項において、
      前記第1ピンは、ピン本体と、前記ピン本体に回転可能な状態で外装されたカラーと、を有することを特徴とする遊星歯車機構。
  10.   請求項2~7の何れか一項において、
      前記第2ピンは、ピン本体と、前記ピン本体に回転可能な状態で外装されたカラーと、を有することを特徴とする遊星歯車機構。
  11.   請求項1~10の何れか一項において、
      前記第3部材の前記偏心部と前記揺動部材との径方向の間には、第1支持軸受けが配置されていることを特徴とする遊星歯車機構。
  12.   請求項1~11の何れか一項において、
      前記第2部材は、その一部が前記第3部材の軸心部に内挿され、
      前記第3部材と、前記第2部材の前記第3部材に内挿された部分の間には、第2支持軸受けが配されていることを特徴とする遊星歯車機構。
  13.   請求項12において、
      前記第2支持軸受けは、前記第3部材の偏心部と、前記第2部材の前記第3部材に内挿された部分の間に配されていることを特徴とする遊星歯車機構。
  14.   請求項1~13の何れか一項において、
      前記第3部材を入力軸とし、前記第2部材を出力軸とする減速機構であることを特徴とする遊星歯車機構。
  15.   請求項1において、
      前記第2部材は、前記第1部材および前記第3部材を回転可能に支持するハウジングであって、
      前記第1部材は、前記第3部材に入力された駆動力を減速して出力する出力軸であり、
      前記第1ピンは、前記揺動部材から突出しており、
      前記第1部材には、前記第1ピンが挿入される前記挿入孔が形成されたことを特徴とする遊星歯車機構。
  16.   請求項1~15の何れか一項において、
      前記第3部材は、前記偏心部のアンバランス回転を打ち消すカウンターバランサを有することを特徴とする遊星歯車機構。
  17.   請求項16において、
      前記カウンターバランサは、前記第3部材を部分的に刳り抜いた軽量孔であることを特徴とする遊星歯車機構。
  18.   請求項1~8の何れか一項または請求項15において、
      前記第1ピンの先端にはニードルベアリングが装着され、
      前記挿入孔は、前記ニードルベアリングを介して前記揺動部材の回転規制をしていることを特徴とする遊星歯車機構。
  19.   請求項1~18の何れか一項において、
      前記第3部材は、電動モータにより駆動され、
      前記電動モータのケースは、前記第1部材または前記第2部材と一体的に形成され、
      前記電動モータの出力軸と前記第3部材とが一体的に形成されたことを特徴とする遊星歯車機構。
  20.   共通の入出力軸線を中心として、入力軸および出力軸を回転可能に支持する固定されたハウジングと、
      前記入力軸および前記出力軸のうちの一方であって、前記入出力軸線に対して偏心した偏心軸を中心とする偏心部を有する第1軸と、
      前記入力軸および前記出力軸のうちの他方であって、内歯歯車が設けられた第2軸と、
      前記内歯歯車と噛合可能な外歯歯車と、内周面において前記偏心部に支持される筒状部とが形成されるとともに、前記外歯歯車の歯数は前記内歯歯車の歯数よりも少なく形成され、前記第2軸に対して揺動することにより、前記外歯歯車の円周上の一部のみが前記内歯歯車と噛合するように形成されるとともに、前記ハウジングに対しては揺動可能かつ相対回転が規制された揺動部材と、
      を備え、
      前記第1軸に駆動力を入力して前記揺動部材を揺動させ、前記外歯歯車と前記内歯歯車とが噛合する円周上の位置を移動させることにより、前記第2軸に減速された駆動力を出力させる、
      または、
      前記第2軸に駆動力を入力して前記外歯歯車と前記内歯歯車とが噛合する円周上の位置を移動させ、前記揺動部材を揺動させることにより、前記第1軸に増速された駆動力を出力させる遊星歯車機構において、
      前記揺動部材から前記ハウジングに対して前記入出力軸線方向に第1ピンが突出し、
      前記ハウジングには、前記第1ピンが挿入されることで前記第1ピンを介して、前記揺動部材を前記ハウジングに対し回転規制する挿入孔が形成されたことを特徴とする遊星歯車機構。
  21.   共通の入出力軸線を中心として、入力軸および出力軸を回転可能に支持するとともに、
    内歯歯車を有する固定されたハウジングと、
      前記入力軸および前記出力軸のうちの一方であって、前記入出力軸線に対して偏心した偏心軸を中心とする偏心部を有する第1軸と、
      前記入力軸および前記出力軸のうちの他方である第2軸と、
      前記内歯歯車と噛合可能な外歯歯車と、内周面において前記偏心部に支持される筒状部とが形成されるとともに、前記外歯歯車の歯数は前記内歯歯車の歯数よりも少なく形成され、前記ハウジングに対して揺動することにより、前記外歯歯車の円周上の一部のみが前記内歯歯車と噛合するように形成されるとともに、前記第2軸に対しては揺動可能かつ相対回転が規制された揺動部材と、
      を備え、
      前記第1軸に駆動力を入力して前記揺動部材を揺動させ、前記外歯歯車と前記内歯歯車とが噛合する円周上の位置を移動させることにより、前記第2軸を前記揺動部材とともに回転させて、前記第2軸に減速された駆動力を出力させる、
      または、
      前記第2軸に駆動力を入力して前記外歯歯車と前記内歯歯車とが噛合する円周上の位置を移動させ、前記揺動部材を前記第2軸とともに回転させるとともに揺動させることにより、前記第1軸に増速された駆動力を出力させる遊星歯車機構において、
      前記揺動部材から前記第2軸に対して前記入出力軸線方向に第1ピンが突出し、
      前記第2軸には、前記第1ピンが挿入されることで前記第1ピンを介して、前記揺動部材を前記第2軸に対し回転規制する挿入孔が形成されたことを特徴とする遊星歯車機構。
PCT/JP2010/059775 2009-06-30 2010-06-09 遊星歯車機構 WO2011001801A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/375,087 US8821333B2 (en) 2009-06-30 2010-06-09 Planetary gear mechanism
CN201080029067.8A CN102472368B (zh) 2009-06-30 2010-06-09 行星齿轮机构
EP10793971.2A EP2450595B1 (en) 2009-06-30 2010-06-09 Planetary gear mechanism

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-154918 2009-06-30
JP2009154918 2009-06-30
JP2010038735A JP5477044B2 (ja) 2009-06-30 2010-02-24 遊星歯車機構
JP2010-038735 2010-02-24

Publications (1)

Publication Number Publication Date
WO2011001801A1 true WO2011001801A1 (ja) 2011-01-06

Family

ID=43410881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059775 WO2011001801A1 (ja) 2009-06-30 2010-06-09 遊星歯車機構

Country Status (5)

Country Link
US (1) US8821333B2 (ja)
EP (1) EP2450595B1 (ja)
JP (1) JP5477044B2 (ja)
CN (1) CN102472368B (ja)
WO (1) WO2011001801A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179067A1 (zh) * 2021-02-26 2022-09-01 美的集团股份有限公司 内啮合行星齿轮装置和机器人用关节装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103021224B (zh) * 2012-12-25 2015-07-01 昆山登云科技职业学院 教学用汽车发动机翻转架
US10870347B2 (en) * 2013-12-12 2020-12-22 Ford Gloabl Technologies, LLC Electromagnetically actuated coupler
JP6752070B2 (ja) * 2016-07-12 2020-09-09 ナブテスコ株式会社 歯車装置
CN107167056B (zh) 2017-05-19 2019-12-13 北京工业大学 一种检测rv减速器摆线轮及滚针轴承材料磨损的试验装置
WO2019054651A1 (ko) * 2017-09-12 2019-03-21 주식회사 민트로봇 백래시 방지 싸이클로이드 감속기
JP7047301B2 (ja) * 2017-09-22 2022-04-05 日本電産株式会社 変速機
JP2020139535A (ja) * 2019-02-27 2020-09-03 日本電産シンポ株式会社 偏心揺動型の変速機
JP7240217B2 (ja) * 2019-03-19 2023-03-15 マブチモーター株式会社 サイクロイド減速機及びその製造方法並びにモータユニット
JP7080339B2 (ja) * 2019-08-02 2022-06-03 株式会社Nittan 減速機
JP7368344B2 (ja) * 2020-07-29 2023-10-24 美的集団股▲フン▼有限公司 内接噛合遊星歯車装置及びアクチュエータ
CN114513089A (zh) * 2022-02-09 2022-05-17 上海博邦汽车技术有限公司 摆线齿轮嵌入式无刷电机
CN118575017A (zh) * 2022-03-30 2024-08-30 日锻株式会社 减速器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61252937A (ja) * 1985-04-30 1986-11-10 Honda Motor Co Ltd 動力伝達装置
JPS6211223B2 (ja) * 1980-10-23 1987-03-11 Emerson Electric Co
JPH053698U (ja) * 1991-06-28 1993-01-19 株式会社椿本チエイン 転動ピン式減速機
JP2002266955A (ja) 2001-03-08 2002-09-18 Sumitomo Heavy Ind Ltd 揺動内接噛合遊星歯車機構、及び角度伝達誤差低減方法
JP2006142931A (ja) * 2004-11-18 2006-06-08 Hitachi Ltd 操舵制御装置
JP2008089144A (ja) * 2006-10-04 2008-04-17 Nabtesco Corp 差動揺動型減速機
JP2009024841A (ja) * 2007-07-23 2009-02-05 Kawasaki Heavy Ind Ltd トロコイド歯車および減速機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB926266A (en) * 1960-02-23 1963-05-15 Fichtel & Sachs Ag Improvements in or relating to eccentric gears
JPS4993765A (ja) * 1973-01-12 1974-09-06
DE3040383A1 (de) * 1979-11-02 1981-05-14 Keith Samuel Santa Monica Calif. Rodaway Untersetzungsgetriebe
JPS61136041A (ja) 1984-12-03 1986-06-23 Ntn Toyo Bearing Co Ltd トロコイド歯形を用いた減速機
JPS6211223A (ja) 1985-07-09 1987-01-20 Hitachi Cable Ltd 液相エピタキシヤル成長装置
JPS63214541A (ja) * 1987-03-02 1988-09-07 Sumitomo Heavy Ind Ltd 遊星歯車増減速機
JPH053698A (ja) 1991-06-25 1993-01-08 Fuji Electric Co Ltd 電圧形pwmインバータの制御方法
EP1916444A4 (en) * 2005-08-18 2010-08-04 Ntn Toyo Bearing Co Ltd POWER TRANSMISSION DEVICE
JP5069975B2 (ja) * 2007-08-24 2012-11-07 Ntn株式会社 インホイールモータ駆動装置
KR100896547B1 (ko) 2007-08-31 2009-05-07 삼성중공업 주식회사 급분리형 커플링

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211223B2 (ja) * 1980-10-23 1987-03-11 Emerson Electric Co
JPS61252937A (ja) * 1985-04-30 1986-11-10 Honda Motor Co Ltd 動力伝達装置
JPH053698U (ja) * 1991-06-28 1993-01-19 株式会社椿本チエイン 転動ピン式減速機
JP2002266955A (ja) 2001-03-08 2002-09-18 Sumitomo Heavy Ind Ltd 揺動内接噛合遊星歯車機構、及び角度伝達誤差低減方法
JP2006142931A (ja) * 2004-11-18 2006-06-08 Hitachi Ltd 操舵制御装置
JP2008089144A (ja) * 2006-10-04 2008-04-17 Nabtesco Corp 差動揺動型減速機
JP2009024841A (ja) * 2007-07-23 2009-02-05 Kawasaki Heavy Ind Ltd トロコイド歯車および減速機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2450595A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022179067A1 (zh) * 2021-02-26 2022-09-01 美的集团股份有限公司 内啮合行星齿轮装置和机器人用关节装置

Also Published As

Publication number Publication date
US20120088623A1 (en) 2012-04-12
EP2450595A1 (en) 2012-05-09
JP5477044B2 (ja) 2014-04-23
US8821333B2 (en) 2014-09-02
CN102472368A (zh) 2012-05-23
EP2450595A4 (en) 2012-06-13
EP2450595B1 (en) 2014-03-12
CN102472368B (zh) 2014-09-03
JP2011027253A (ja) 2011-02-10

Similar Documents

Publication Publication Date Title
JP5477044B2 (ja) 遊星歯車機構
JP5445216B2 (ja) 遊星歯車機構
JP5816584B2 (ja) 動力伝達装置
JP5356462B2 (ja) 偏心揺動型減速機を用いた産業用ロボットの旋回部構造
JP5533194B2 (ja) 変速歯車装置
EP2068038B1 (en) Reduction gear
JP5828321B2 (ja) 変速歯車装置
EP1914444A1 (en) Reduction gear
JP2011027253A5 (ja)
JP2011027254A5 (ja)
JP2008249149A (ja) 内歯揺動型内接噛合遊星歯車装置
JP2001221298A (ja) 偏心揺動型減速機
JP2014005900A (ja) 偏心揺動型歯車装置
CN212509376U (zh) 传动机构
CN213017530U (zh) 内啮合传动机构
JP2000280125A (ja) 内歯揺動型内接噛合遊星歯車装置の内歯揺動体の製造方法
JP2012246946A (ja) 揺動差分減速機
JP7476070B2 (ja) 減速装置、及び、駆動装置
WO2022064726A1 (ja) サイクロイド減速装置及び電気機器
JP4947770B2 (ja) 減速機
CN116292768A (zh) 双联齿传动机构
JP2009210013A (ja) 減速機構
JP2013221570A (ja) 変速歯車装置およびアクチュエータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029067.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10793971

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010793971

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13375087

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE