WO2011000969A1 - Korrosionsschutzbehandlung für oberflächen aus zink und zinklegierungen - Google Patents

Korrosionsschutzbehandlung für oberflächen aus zink und zinklegierungen Download PDF

Info

Publication number
WO2011000969A1
WO2011000969A1 PCT/EP2010/059586 EP2010059586W WO2011000969A1 WO 2011000969 A1 WO2011000969 A1 WO 2011000969A1 EP 2010059586 W EP2010059586 W EP 2010059586W WO 2011000969 A1 WO2011000969 A1 WO 2011000969A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
treatment solution
acids
chromium
group
Prior art date
Application number
PCT/EP2010/059586
Other languages
English (en)
French (fr)
Inventor
Udo Hofmann
Hermann Donsbach
Jörg UNGER
Volker Krenzel
Original Assignee
Atotech Deutschland Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41263965&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2011000969(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Atotech Deutschland Gmbh filed Critical Atotech Deutschland Gmbh
Priority to BR112012000037A priority Critical patent/BR112012000037A2/pt
Priority to ES10728680T priority patent/ES2401173T3/es
Priority to CA2765961A priority patent/CA2765961A1/en
Priority to US13/377,681 priority patent/US8951363B2/en
Priority to CN201080029167.0A priority patent/CN102471890B/zh
Priority to JP2012518952A priority patent/JP5627680B2/ja
Priority to EP10728680A priority patent/EP2449149B1/de
Publication of WO2011000969A1 publication Critical patent/WO2011000969A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • C23C22/17Orthophosphates containing zinc cations containing also organic acids
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/10Use of solutions containing trivalent chromium but free of hexavalent chromium

Definitions

  • the invention relates to the corrosion protection of metallic materials, in particular of those which are provided with a surface of zinc or zinc alloys.
  • the coating of the metallic workpiece to be protected with a coating of another metal is a widely used and established method in the art.
  • the coating metal can behave in the corrosive medium either electrochemically nobler or less noble than the material base metal. If the coating metal behaves less noble, it acts in the corrosive medium compared to the base metal as a sacrificial anode (cathodic corrosion protection).
  • this protective function associated with the formation of corrosion products of the coating metal is thus desired, the corrosion products of the coating often lead to undesirable decorative and often also to functional impairments of the workpiece.
  • cathodically protective base coating metals such as, for example, Zinc or aluminum and their alloys often used so-called conversion coatings.
  • conversion coatings These are reaction products of the non-noble coating metal which are insoluble in aqueous media over a wide pH range with the treatment solution. Examples of these so-called conversion layers are so-called phosphating and chromating.
  • chromium (VI) ions see EP 0 553 164 A1.
  • chromium (VI) is reduced to chromium (III), which in the surface film which is more alkaline by the evolution of hydrogen, inter alia as chromium (III) hydroxide or sparingly soluble ⁇ -oxo or ⁇ -hydroxoxide.
  • bridged chromium (III) -Konnplex is deposited.
  • sparingly soluble zinc chromate (VI) is formed. Overall, a tightly closed, very well before the corrosion attack by electrolyte ⁇ protective conversion coating on the zinc surface.
  • chromium (VI) compounds are acutely toxic and highly carcinogenic, requiring replacement of the methods associated with these compounds.
  • a disadvantage of this additional process step is the occurrence of drainage drops in the coating of workpieces made on the frame and / or the bonding of coated bulk material; In addition, problems such as dimensional accuracy of threads and the like, which are associated with the layer thickness of these seals arise.
  • Document EP 0 479 289 A1 describes a chromating process in which the substrates are immersed in a treatment solution which contains, in addition to chromium (VI) and chromium (III) ions, hydrofluoric acid and phosphoric acid, a silane coupling agent.
  • the patent EP 0 922 785 B1 describes a treatment solution and a process for the production of protective layers on metals, in which the surface to be protected with a treatment solution, the chromium (III) ions, an oxidizing agent and an oxyacid or an oxyacid salt of phosphorus or a corresponding anhydride contains.
  • This treating solution may further contain a monomeric silane coupling agent.
  • the document EP 1 051 539 B1 describes a treatment solution for increasing the corrosion protection of substrates, which in addition to chromium (VI) and chromium (III) ions also contains phosphoric acid, hydrofluoric acid, colloidal silicon dioxide and a monomeric epoxy-functionalized silane.
  • WO 2008/14166 A1 describes a treatment solution for the production of anticorrosive coatings.
  • This treatment solution contains, in addition to zinc ions, phosphoric acid or acidic phosphates, organic or inorganic anions which one of the elements boron, silicon, titanium or zirconium, trivalent chromium ions and an inorganic or organic peroxide as an oxidizing agent.
  • the document WO 97/15700 A1 describes a treatment solution for the production of corrosion protection layers.
  • the treatment solution contains hydrolyzed silanes and phosphoric acid and is free of chromium ions and chromium containing compounds.
  • the invention has for its object to provide methods for increasing the corrosion protection of metallic, especially zinc-containing and zinc-containing, provided with a conversion layer, surfaces.
  • the aim is to preserve or improve the decorative and functional properties of the surfaces.
  • the above-mentioned problems in the use of chromium (VI) -containing compounds and hydrofluoric acid or post-treatments for sealing should be avoided.
  • the process usually carried out in two separate stages, is to apply a passivation step containing chromium (III) ions followed by a one-step process in which the functionality of a chromium (III) ion-containing passivation layer and a seal are combined.
  • a further aspect of the invention is that it is possible to dispense with the rinsing steps which are normally required in the two-stage processes known from the prior art between the application of the passivation containing chromium (III) ions and the sealing. This significantly reduces the amount of heavy metal contaminated wastewater. Furthermore, the handling of silanes and other metal alkoxides should be made controllable by separately prepared under suitable reaction conditions organosols of sufficient stability and film-forming properties and then only with the remaining components of the treatment solution (chromium (III) ion, phosphate source and other optional components) be mixed.
  • the invention provides a process for producing a corrosion-protective coating layer, wherein a surface to be treated is contacted with an aqueous treatment solution containing chromium (III) ions and at least one phosphate compound, the ratio of the molar concentration (ie the concentration in mol / l) of chromium (III) ions to the molar concentration of the at least one phosphate compound (based on orthophosphate) ([chromium (III) ions]: [phosphate compound]) is preferably between 1: 1.5 and 1: 3. Furthermore, this treatment solution contains a separately prepared by hydrolysis and condensation organosol, which by reaction
  • One or more alkoxides of the formula (2) contains Me (OR 2 J n (2) wherein Me is Ti, Zr, Hf, Al, Si and n are the oxidation state of Me and R 2 is selected from substituted or unsubstituted hydrocarbon groups containing from 1 to 8 carbon atoms, the aqueous treatment solution being free from inorganic and organic compounds Is peroxides.
  • Phosphate compounds are derived from phosphorus in the oxidation state + V derived oxo compounds and their esters with organic radicals having up to 12 carbon atoms and the salts of mono- and diesters.
  • Suitable phosphate compounds are in particular alkyl phosphates with alkyl groups having up to 12 carbon atoms.
  • Suitable phosphate compounds are ortho-phosphoric acid (H 3 PO 4 ) and its salts, polyphosphoric acid and its salts, meta-phosphoric acid and its salts, phosphoric acid methyl ester (mono-, di- and thester), phosphoric acid ethyl ester (mono-, di- and thester ), Phosphoric acid n-propyl esters (mono-, di- and triesters), isopropyl phosphates (mono-, di- and triesters), phosphoric acid n-butyl esters (mono-, di- and triesters), phosphoric acid 2-butyl ester (Mono -, di- and triesters), phosphoric acid / t-butyl ester (mono-, di- and triesters), the salts of said mono- and diesters and c // - phosphorus pentoxide and mixtures of these compounds.
  • the term "salts" includes not only the salts of completely depro
  • the treatment solution preferably contains between 0.2 g / l and 20 g / l chromium (III) ions, more preferably between 0.5 g / l and 15 g / l chromium (III) ions and more preferably between 1 g / l and 10 g / l chromium (III) ions.
  • the ratio of the molar concentration of chromium (III) ions to the molar concentration of the at least one phosphate compound (based on orthophosphate) is between 1: 1.5 and 1: 3, preferably between 1: 1.7 and 1: 2.5.
  • Chromium (III) ions may be added to the treatment solution either in the form of inorganic chromium (III) salts such as basic chromium (III) sulfate, chromium (III) hydroxide, chromium (III) dihydrogen phosphate, chromium (III) chloride , Chromium (III) nitrate, potassium chromium (III) sulfate or Chromium (III) salts of organic acids such as chromium (III) methanesulfonate, chromium (III) citrate are added or produced by reduction of suitable chromium (VI) compounds in the presence of suitable reducing agents.
  • inorganic chromium (III) salts such as basic chromium (III) sulfate, chromium (III) hydroxide, chromium (III) dihydrogen phosphate, chromium (III) chloride , Chromium (III) nitrate, potassium chromium
  • Suitable chromium (VI) compounds include chromium (VI) oxide, chromates such as potassium or sodium chromate, dichromates such as potassium or sodium dichromate.
  • Suitable reducing agents for the in situ generation of chromium (III) ions are, for example, sulfites such as sodium sulfite, sulfur dioxide, phosphites such as Nathumhypophosphit, phosphorous acid, hydrogen peroxide, methanol, hydroxycarboxylic acids and hydroxydicarboxylic acids such as gluconic acid, citric acid and malic acid.
  • the treatment solution preferably has a pH between pH 2 and pH 7, more preferably between pH 2.5 and pH 6, and most preferably between pH 2.5 and pH 3.
  • the above-mentioned organosol can be obtained by per se known hydrolysis and condensation of the at least one alkoxysilane of the formula (1).
  • Particularly preferred among the above alkoxysilanes of the formula (1) is at least one in which at least one R has a group which can undergo a polyaddition (including polymerization) or polycondensation reaction.
  • This grouping capable of polyaddition or polycondensation reaction is preferably an epoxy group or carbon-carbon multiple bonds, with a (meth) acrylate group being a particularly preferred example of the latter groupings.
  • Particularly preferred alkoxysilanes according to formula (1) are those in which x is 2 or 3 and in particular 3 and a radical R is co-glycidyloxy-C 2 6 -alkyl or ⁇ - (meth) acryloxy-C 2 - 6 -alkyl stands.
  • alkoxysilanes are 3-glycidoxypropyltri (m) ethoxysilane, 3,4-epoxybutyltri (m) ethoxysilane and 2- (3,4-epoxycyclohexyl) ethyltri (m) ethoxysilane, 3- (meth) acryloxypropylth (m) ethoxysilane and 2- (Meth) acryloxyethyltri (m) ethoxysilane, 3-glycidoxypropyldimethyl (m) ethoxysilane, 3-glycidoxypropylmethyldi (m) ethoxysilane, 3- (meth) acryloxypropylmethyldi (m) ethoxysilane and 2- (meth) acryloxyethylmethyl-di (m) ethoxysilane.
  • alkoxysilanes of the formula (1) which can preferably be used in combination with alkoxysilanes having the above groupings capable of polyaddition or polycondensation reaction are, for example, hexadecyltri (m) ethoxysilane, cyclohexyltri (m) ethoxysilane, cyclopentyltri (m) ethoxysilane, ethylth (m) ethoxysilane, phenylethyltri (m) ethoxysilane, phenylth (m) ethoxysilane, n-propyltri (m) ethoxysilane, cyclohexyl (m) ethyldimethoxysilane, dimethyldi (m) ethoxysilane, diisopropyldi (m) ethoxysilane and phenylmethyldi (m) ethoxysilane.
  • At least one alkoxide according to formula (2) is then combined with the hydrolyzate of the at least one alkoxysilane of formula (1).
  • the alkoxides according to formula (2) are very reactive, so that in the absence of a complexing agent, the components according to formulas (1) and (2) would hydrolyze and condense very rapidly on contact with water. According to the invention, however, it is not necessary to use the reactive alkoxides directly in complexed form. Rather, it is possible to add the complexing agent or compounds shortly after the start of the reaction of the components according to formulas (1) and (2).
  • alkoxides of the formula (2) are aluminum sec-butoxide, titanium isopropoxide, titanium propoxide, titanium butoxide, zirconium isopropoxide, zirconium propoxide,
  • complexing agents are ethanolamines and alkyl phosphates, such as tri-, diethanolamine and butyl phosphate.
  • examples of such complexed alkoxides according to formula (2) are titanium acetylacetonates, titanium bisacetoacetates, thethanolamine titanates, triethanolamine zirconates and zirconium diethyl citrates.
  • the complexing agent in particular a chelate compound, causes some complexation of the metal cation, so that the hydrolysis and condensation rate of the components according to formulas (1) and (2) is reduced.
  • the organosol comprising an water-compatible or water-miscible solvent having a boiling point of at least 150 0 C.
  • an water-compatible or water-miscible solvent having a boiling point of at least 150 0 C.
  • diethylene glycol, triethylene glycol, butyl diglycol, propylene glycols, butylene glycols, and polyethylene glycols can be used for this purpose.
  • the object of the high-boiling solvents is that improved resistance of the organosols can be achieved in exchange for the liberated during hydrolysis low molecular weight alcohol.
  • the organosol is characterized in that the weight ratio of the component according to formula (1) to the component according to formula (2) in the range 1 to 1 to 1 to 100, particularly preferably in the range 1 to 1 to 1 to 25 lies. Since the components according to formula (2) also serve as crosslinking agents for the alkoxysilanes according to formula (1), they should be present in the organosols at least in equimolar amounts relative to the component of formula (1).
  • the organosol is the treatment solution according to the invention based on an active ingredient content of 25% in the organosol in an amount of 1 g / l to 50 g / l, preferably 3 g / l to 20 g / l and most preferably 5 g / l to 15 g / l added.
  • the treatment solution may additionally (optionally) contain one or more further complexing agents.
  • Suitable further complexing agents are, in particular, organic chelate ligands.
  • suitable further complexing agents are polycarboxylic acids, hydroxycarboxylic acids, hydroxypolycarboxylic acids,
  • Aminocarboxylic acids or hydroxyphosphonic acids are citric acid, tartaric acid, malic acid, lactic acid, gluconic acid, Glucuronic acid, ascorbic acid, isocitric acid, gallic acid, glycolic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, salicylic acid, nicotinic acid, alanine, glycine, asparagine, aspartic acid, cysteine, glutamic acid, glutamine, lysine.
  • Suitable hydroxyphosphonic acids are, for example, Dequest 2010 TM (from Solutia, Inc.); suitable as aminophosphonic acids, for example Dequest 2000 TM (from Solutia, Inc.).
  • the treatment solution will contain at least one metal or metalloid, e.g. Sc, Y, Ti, Zr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Si.
  • metal or metalloid e.g. Sc, Y, Ti, Zr, Mo, W, Mn, Fe, Co, Ni, Zn, B, Al, Si.
  • These elements may be added in the form of their salts or in the form of complex anions or the corresponding acids of these anions such as hexafluoroboric acid, hexafluorosilicic acid, hexafluorotitanic acid or hexafluorozirconic acid, tetrafluoroboric acid or hexafluorophosphoric acid or their salts.
  • zinc which may be added in the form of zinc (II) salts, for example zinc sulfate, zinc chloride, zinc phosphate, zinc oxide or zinc hydroxide.
  • the treatment solution is added between 0.5 g / l and 25 g / l, more preferably between 1 g / l and 15 g / l Zn 2+ .
  • the list of zinc compounds are only examples of compounds suitable according to the invention, but does not limit the amount of suitable zinc compounds to the substances mentioned.
  • the treatment solution may additionally (optionally) contain one or more water-soluble or water-dispersible polymers selected from the group consisting of polyethylene glycols, polyvinylpyrrolidones, polyvinyl alcohols to improve the film formation on the surface to be treated and to increase the hydrophobicity of the surface.
  • polyethylene glycols polyvinylpyrrolidones
  • polyvinyl alcohols polyvinyl alcohols
  • the concentration of the at least one polymer is preferably in the range between 50 mg / l and 20 g / l.
  • the treatment solution may additionally (optionally) contain one or more wetting agents.
  • a more uniform layer structure and a better drainage behavior is achieved, especially on complex parts or on heavier wettable surfaces.
  • fluoroaliphatic polymeric esters such as Fluorad FC-4432 TM (from 3M).
  • the treatment solution may additionally (optionally) contain one or more lubricants.
  • Suitable lubricants are, for example, polyether-modified siloxanes,
  • Polyether wax emulsions ethoxylated alcohols, PTFE, PVDF, ethylene copolymers, paraffin emulsions, polypropylene wax emulsions, M0S 2 and dispersions thereof, WS 2 and emulsions thereof, polyethylene glycols, polypropylene, Fischer-Tropsch hard waxes, micronized and synthetic hard waxes, graphite, metal soaps and polyurea.
  • Particularly preferred lubricants are PTFE, micronized hard waxes and polyether wax emulsions.
  • the optional lubricants are added in an amount of 0.1 g / l to 300 g / l, preferably 1 g / l to 30 g / l of the treatment solution according to the invention.
  • the surfaces treated according to the invention are metallic, preferably zinc-containing, and zinc-containing surfaces which are optionally provided with a conversion layer containing chromium (III).
  • a layer is deposited on the treated surface, the chromium (III) ions, phosphate (s), a silicon / metal-organic network and optionally further metal ions, such as. Zinc ions, and optionally one or more polymeric components.
  • the contacting of the treatment solution with the surface to be treated can be carried out in the inventive method according to known methods, in particular by immersion.
  • the temperature of the treatment solution is preferably between 10 0 C and 90 0 C, more preferably between 20 0 C and 80 0 C, more preferably between 25 0 C and 50 0 C.
  • the duration of the contacting is preferably between 0.5 s and 180 s, more preferably between 5 s and 60 s, most preferably between 10 s and 30 s.
  • the treatment solution can be prepared prior to carrying out the method according to the invention by dilution of a correspondingly higher concentrated concentrate solution.
  • the objects treated according to the invention are no longer rinsed after contacting, but are dried directly.
  • the process according to the invention leads to increased corrosion protection in the case of articles which have a zinc-containing surface.
  • the method of the invention may also be used.
  • the process according to the invention after application of a so-called conversion layer is applied to fully metallic zinc and zinc alloy surfaces.
  • Conversion layers can be deposited from treatment solutions containing, for example, chromium (III) ions and an oxidizing agent.
  • the method of the present invention is applied to full metal zinc and zinc alloy surfaces after oxidative activation.
  • This oxidative activation is, for example, immersing the galvanized substrate in an aqueous solution containing an oxidizing agent.
  • Suitable oxidizing agents for this purpose are nitrates and nitric acid, peroxides such as hydrogen peroxide, persulfates and perborates.
  • zinc flake coatings the process according to the invention is applied directly after application and curing of the zinc flake coating.
  • Sample parts made of steel were first coated in a weakly acidic electroplating process (Unizinc ACZ 570 from Atotech GmbH) with an 8-10 ⁇ m thick zinc coating and rinsed with demineralized water.
  • a weakly acidic electroplating process Unizinc ACZ 570 from Atotech GmbH
  • sample parts were provided with a chromium (III) ion and nitrate-containing conversion layer (EcoTri® HC2 from Atotech Deutschland GmbH) and dried.
  • a chromium (III) ion and nitrate-containing conversion layer (EcoTri® HC2 from Atotech Deutschland GmbH)
  • treatment solution A a treatment solution with a pH of 3.9 was applied, which contained the following constituents:
  • the corrosion resistance formation of red corrosion according to EN ISO 9227 was tested with a neutral salt spray test. The formation of red corrosion was observed after 864 h.
  • Sample parts made of steel were coated in a weakly acidic galvanic process (Unizinc ACZ 570 from Atotech GmbH) with an 8-10 ⁇ m thick zinc coating and rinsed with demineralized water.
  • a weakly acidic galvanic process Unizinc ACZ 570 from Atotech GmbH
  • sample parts were provided with a chromium (III) ion and nitrate-containing conversion layer (EcoTri®HC2 from Atotech Deutschland GmbH) and dried.
  • a chromium (III) ion and nitrate-containing conversion layer (EcoTri®HC2 from Atotech Deutschland GmbH)
  • an organosol having an active substance content of 25% (in% by weight) prepared from tetraethoxysilane as alkoxysilane according to formula (1) and 3-glycidyloxypropylthethoxysilane as metal alkoxide according to formula (2).
  • the corrosion resistance formation of red corrosion according to EN ISO 9227 was tested with a neutral salt spray test. The formation of red corrosion was observed after 1500 hours.
  • Sample parts made of steel were coated with a zinc flake-containing treatment solution (Zintek® 800 WD 1 from Atotech Deutschland GmbH) with a 10 ⁇ m thick zinc flake-containing overlay.
  • a zinc flake-containing treatment solution Zintek® 800 WD 1 from Atotech GmbH
  • Example 1 Example 1 according to the invention was applied and the sample parts coated in this way were dried.
  • the corrosion resistance formation of red corrosion according to EN ISO 9227
  • the formation of red corrosion was observed after 3500 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Erzeugung einer korrosionsschützenden Überzugsschicht, wobei eine zu behandelnde Oberfläche mit einer wässrigen Behandlungslösung in Kontakt gebracht wird, die Chrom(lll)-Ionen und mindestens eine Phosphatverbindung und ein Organosol enthält. Durch das Verfahren wird der Korrosionsschutz metallischer, insbesondere zinkhaltiger, und zinkhaltiger, mit Konversionsschichten versehener Oberflächen verbessert. Dabei werden die dekorativen und funktionellen Eigenschaften der Oberflächen erhalten oder verbessert. Außerdem werden die bekannten Probleme beim Einsatz von Chrom(VI)-haltigen Verbindungen oder von mehrstufigen Verfahren umgangen, bei denen nacheinander eine Chrom-Ionen haltige Passivierungsschicht und eine Versieglung appliziert werden.

Description

Korrosionsschutzbehandlung für Oberflächen aus Zink und Zinklegierungen
Gebiet der Erfindung
Die Erfindung betrifft den Korrosionsschutz von metallischen Werkstoffen, insbesondere von solchen, die mit einer Oberfläche aus Zink oder Zinklegierungen versehen sind.
Hintergrund der Erfindung
Zum Schutz metallischer Werkstoffoberflächen vor korrosiven Umwelteinflüssen stehen im Stand der Technik unterschiedliche Methoden zur Verfügung. Die Beschichtung des zu schützenden metallischen Werkstücks mit einem Überzug aus einem anderen Metall ist dabei eine in der Technik weit verbreitete und etablierte Methode. Das Beschichtungsmetall kann sich im korrodierenden Medium dabei entweder elektrochemisch edler oder unedler als das Werkstoffgrundmetall verhalten. Verhält sich das Beschichtungsmetall unedeler, so fungiert es im korrodierenden Medium gegenüber dem Basismetall als Opferanode (kathodischer Korrosionsschutz). Diese mit der Bildung von Korrosionsprodukten des Überzugmetalls verbundene Schutzfunktion ist damit zwar erwünscht, die Korrosionsprodukte des Überzugs führen aber oft zu unerwünschten dekorativen und nicht selten auch zu funktionellen Beeinträchtigungen des Werkstücks. Um die Korrosion des Überzugmetalls zu reduzieren bzw. möglichst lange zu verhindern, werden speziell auf kathodisch schützenden unedlen Überzugsmetallen wie z.B. Zink oder Aluminium sowie deren Legierungen oft so genannte Konversionsschichten eingesetzt. Hierbei handelt es sich um in wässrigen Medien in einem weiten pH-Bereich unlösliche Reaktionsprodukte des unedlen Beschichtungsmetalls mit der Behandlungslösung. Beispiele für diese so genannten Konversionsschichten sind so genannte Phosphatierungen und Chromatierungen.
Im Falle von Chromatierungen wird die zu behandelnde Oberfläche in eine saure, Chrom(VI)-lonen enthaltende Lösung getaucht (siehe EP 0 553 164 A1 ). Handelt es sich beispielsweise um eine Zink-Oberfläche, so löst sich ein Teil des Zinks auf. Unter den hierbei herrschenden reduzierenden Bedingungen wird Chrom(VI) zu Chrom(lll) reduziert, das in dem durch die Wasserstoffentwicklung alkalischeren Oberflächenfilm u.a. als Chrom(lll)-hydroxid bzw. als schwerlöslicher μ-Oxo- oder μ-Hydroxo- verbrückter Chrom(lll)-Konnplex abgeschieden wird. Parallel wird schwerlösliches Zinkchromat(VI) gebildet. Insgesamt entsteht ein dicht geschlossener, sehr gut vor dem Korrosionsangriff durch Elektrolyt^ schützender Konversions-Überzug auf der Zinkoberfläche.
Chrom(VI)-Verbindungen sind jedoch akut toxisch und stark karzinogen, so dass ein Ersatz der mit diesen Verbindungen einhergehenden Verfahren notwendig ist.
Als Ersatz für Chromatierungsverfahren mit sechswertigen Chromverbindungen haben sich mittlerweile eine Vielzahl von Verfahren etabliert, die unterschiedliche Komplexe dreiwertiger Chromverbindungen verwenden (siehe DE 196 38 176 A1 ). Da der damit erzielte Korrosionsschutz in der Regel dem der mit sechswertigem Chrom arbeitenden Verfahren unterlegen ist, wird oftmals zusätzlich eine Versiegelung auf der Oberfläche des Werkstücks aufgebracht. Solche Versiegelungen können auf Basis z. B. anorganischer Silikate, organofunktioneller Silane, organischer Polymere und hybriden Systemen, die sowohl organische als auch anorganische Bestandteile als Filmbildner aufweisen, ausgeführt werden. Nachteilig an diesem zusätzlichen Verfahrensschritt ist das Auftreten von Ablauftropfen bei Beschichtung von am Gestell gefertigten Werkstücken und / oder das Verkleben von beschichtetem Schüttgut; außerdem ergeben sich Probleme wie Maßhaltigkeit von Gewinden und dergleichen, die mit der Schichtdicke dieser Versiegelungen einhergehen.
Ansätze, die Korrosionsschutzeigenschaften von Beschichtungen aus Chrom-haltigen Passivierungen und sich anschließenden Versieglungen in einer einzigen Schicht zu kombinieren sind im Stand der Technik beschrieben:
Die Schrift EP 0 479 289 A1 beschreibt ein Chromatierungsverfahren, bei dem die Substrate in eine Behandlungslösung getaucht werden, die neben Chrom(VI)- und Chrom(lll)-Ionen, Flusssäure und Phosphorsäure ein Silan-Kopplungsmittel enthalten.
Das Patent EP 0 922 785 B1 beschreibt eine Behandlungslösung und ein Verfahren zur Herstellung von Schutzschichten auf Metallen, bei dem die zu schützende Oberfläche mit einer Behandlungslösung, die Chrom(lll)-Ionen, ein Oxidationsmittel und eine Oxysäure oder ein Oxysäuresalz des Phosphors oder ein entsprechendes Anhydrid enthält. Diese Behandlungslösung kann ferner ein monomeres Silan-Kopplungsmittel enthalten.
In der Schrift EP 1 051 539 B1 wird eine Behandlungslösung zur Erhöhung des Korrosionsschutzes von Substraten beschrieben, die neben Chrom(VI)- und Chrom(lll)- lonen weiterhin Phosphorsäure, Flusssäure, kolloidales Siliciumdioxid und ein monomeres Epoxy-funktionalisiertes Silan enthält.
Die Schrift WO 2008/14166 A1 beschreibt eine Behandlungslösung zur Erzeugung von Korrosionsschutzschichten. Diese Behandlungslösung enthält neben Zink Ionen, Phosphorsäure oder sauren Phosphaten, organische oder anorganische Anionen die eines der Elemente Bor, Silizium, Titan oder Zirconium, trivalente Chrom Ionen und ein anorganisches oder organisches Peroxid als Oxidationsmittel.
Die Schrift WO 97/15700 A1 beschreibt eine Behandlungslösung zur Erzeugung von Korrosionsschutzschichten. Die Behandlungslösung enthält hydrolysierte Silane und Phosphorsäure und ist frei von Chrom Ionen und Chrom enthaltenden Verbindungen.
Die im Stand der Technik beschriebenen Behandlungslösungen weisen die folgenden Nachteile auf: entweder enthalten sie toxische Substanzen, wie Chrom(VI)-lonen und Flusssäure oder monomere Silane. Eine gut kontrollierbare Hydrolyse und Kondensation von monomeren Silanen ist in derartigen Matrizes nicht durchführbar und führt daher zu schwankenden Eigenschaften der resultierenden Beschichtungen.
Beschreibung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, Verfahren zur Steigerung des Korrosionsschutzes metallischer, insbesondere zinkhaltiger und zinkhaltiger, mit einer Konversionsschicht versehenen, Oberflächen bereitzustellen. Dabei sollen die dekorativen und funktionellen Eigenschaften der Oberflächen erhalten oder verbessert werden. Außerdem sollen die oben genannten Probleme beim Einsatz von Chrom(VI)- haltigen Verbindungen und Flusssäure oder von Nachbehandlungen zur Versiegelung vermieden werden. Weiterhin soll der üblicherweise in zwei separaten Stufen durchgeführte Prozess der Aufbringung eines Chrom(lll)-lonen-haltigen Passivierungsschritts gefolgt von einer Versieglung durch einen einstufigen Prozess ersetzt werden, in dem die Funktionalität einer Chrom(lll)-lonen-haltigen Passivierungsschicht und einer Versieglung vereint sind. Ein weiterer Aspekt der Erfindung besteht darin, dass auf die üblicherweise bei den aus dem Stand der Technik bekannten zweistufigen Verfahren notwendigen Spülschritte zwischen Aufbringung der Chrom(lll)-Ionen enthaltenden Passivierung und der Versiegelung verzichtet werden kann. Dadurch wird die Menge von mit Schwermetall belasteten Abwässern deutlich reduziert. Weiterhin soll die Handhabung von Silanen und anderen Metallalkoxiden kontrollierbar gemacht werden, indem separat unter dafür geeigneten Reaktionsbedingungen Organosole ausreichender Stabilität und Filmbildender Eigenschaften hergestellt und dann erst mit den restlichen Komponenten der Behandlungslösung (Chrom(lll)-Ionen, Phosphatquelle und weitere, optionale Komponenten) vermischt werden.
Zur Lösung dieser Aufgabe stellt die Erfindung ein Verfahren zur Erzeugung einer korrosionsschützenden Überzugsschicht bereit, wobei eine zu behandelnde Oberfläche mit einer wässrigen Behandlungslösung in Kontakt gebracht wird, die Chrom(lll)-Ionen und mindestens eine Phosphatverbindung enthält, wobei das Verhältnis der Stoffmengenkonzentration (d.h. der Konzentration in mol/l) von Chrom(lll)-Ionen zur Stoffmengenkonzentration der mindestens einen Phosphatverbindung (bezogen auf Orthophosphat) ([Chrom(lll)-Ionen] : [Phosphatverbindung]) bevorzugt zwischen 1 : 1.5 und 1 : 3 liegt. Weiterhin enthält diese Behandlungslösung ein separat durch Hydrolyse und Kondensation hergestelltes Organosol, welches durch Reaktion
• eines oder mehrerer Alkoxysilane der Formel (1 ) R4-xSi(OR1)x (1 ) wobei die Reste R gleich oder verschieden voneinander, jeweils eine substituierte oder unsubstituierte Kohlenwasserstoffgruppe mit 1 bis 22 Kohlenwasserstoffatomen darstellen und x gleich 1 , 2 oder 3 ist und R1 für eine substituierte oder unsubstituierte Kohlenwasserstoffgruppe mit 1 bis 8 Kohlenwasserstoffatomen steht, und
• eines oder mehrerer Alkoxide der Formel (2) enthält Me(OR2Jn (2) wobei Me für Ti, Zr, Hf, AI, Si und n für die Oxidationsstufe von Me stehen und R2 ausgewählt wird aus substituierten oder unsubstituierten Kohlenwasserstoffgruppen, die 1 bis 8 Kohlenstoffatome enthalten, erhalten wird, wobei die wässrige Behandlungslösung frei von anorganischen und organischen Peroxiden ist.
Phosphatverbindungen sind von Phosphor in der Oxidationsstufe +V abgeleitete Oxoverbindungen sowie deren Ester mit organischen Resten mit bis zu 12 Kohlenstoffatomen sowie die Salze der Mono- und Diester. Geeignete Phosphatverbindungen sind insbesondere Phosphorsäurealkylester mit Alkylgruppen mit bis zu 12 Kohlenstoffatomen.
Beispiele für geeignete Phosphatverbindungen sind ortho-Phosphorsäure (H3PO4) und ihre Salze, Polyphosphorsäure und ihre Salze, meta-Phosphorsäure und ihre Salze, Phosphorsäuremethylester (Mono-, Di- und Thester), Phosphorsäureethylester (Mono-, Di- und Thester), Phosphorsäure-n-propylester (Mono-, Di- und Triester), Phosphorsäureisopropylester (Mono-, Di- und Triester), Phosphorsäure-n-butylester (Mono-, Di- und Triester), Phosphorsäure-2-butylester (Mono-, Di- und Triester), Phosphorsäure-te/t-butylester (Mono-, Di- und Triester), die Salze der genannten Mono- und Diester sowie c//-Phosphorpentoxid und Gemische dieser Verbindungen. Der Begriff „Salze" umfasst nicht nur die Salze der vollständig deprotonierten Säuren, sondern Salze in allen möglichen Proton ierungsstufen, z.B. Hydrogenphosphate und Dihydrogenphosphate.
Die Behandlungslösung enthält bevorzugt zwischen 0.2 g/l und 20 g/l Chrom(lll)-Ionen, mehr bevorzugt zwischen 0.5 g/l und 15 g/l Chrom(lll)-Ionen und besonders bevorzugt zwischen 1 g/l und 10 g/l Chrom(lll)-Ionen.
Das Verhältnis der Stoffmengen konzentration von Chrom(lll)-Ionen zur Stoffmengen konzentration der mindestens einen Phosphatverbindung (bezogen auf Orthophosphat) liegt zwischen 1 : 1.5 und 1 : 3, bevorzugt zwischen 1 : 1.7 und 1 : 2.5.
Chrom(lll)-Ionen können der Behandlungslösung entweder in Form von anorganischen Chrom(lll)-Salzen wie z.B. basisches Chrom(lll)-sulfat, Chrom(lll)-hydroxid, Chrom(lll)- dihydrogenphosphat, Chrom(lll)-chlorid, Chrom(lll)-nitrat, Kaliumchrom(lll)-sulfat oder Chrom(lll)-Salzen organischer Säuren wie z.B. Chrom(lll)-methansulfonat, Chrom(lll)- citrat zugegeben werden oder durch Reduktion geeigneter Chrom(VI)-Verbindungen in Gegenwart geeigneter Reduktionsmittel erzeugt werden. Geeignete Chrom(VI)- Verbindungen sind z.B. Chrom(VI)-oxid, Chromate wie Kalium- oder Natriumchromat, Dichromate wie z.B. Kalium- oder Natriumdichromat. Geeignete Reduktionsmittel zur in situ Erzeugung von Chrom(lll)-Ionen sind z.B. Sulfite wie z.B. Natriumsulfit, Schwefeldioxid, Phosphite wie z.B. Nathumhypophosphit, phosphorige Säure, Wasserstoffperoxid, Methanol, Hydroxycarbonsäuren und Hydroxydicarbonsäuren wie z.B. Gluconsäure, Zitronensäure und Äpfelsäure.
Die Behandlungslösung besitzt bevorzugt einen pH-Wert zwischen pH 2 und pH 7, besonders bevorzugt zwischen pH 2.5 und pH 6 und ganz besonders bevorzugt zwischen pH 2.5 und pH 3.
Das obengenannte Organosol kann durch an sich bekannte Hydrolyse und Kondensation des mindestens einen Alkoxysilans gemäß Formel (1 ) erhalten werden. Beispielsweise ist es möglich, ein Alkoxysilan gemäß Formel (1 ) mit einer wässrigen sauren Lösung zu versetzen, so dass ein klares Hydrolysat erhalten wird. Beispiele für Reste R1 in der Formel (1 ) sind lineare und verzweigte Alkyl-, Alkenyl-, Aryl-, Alkylaryl-, Arylalkyl-, Arylalkenyl-, Alkenylaryl-Reste (vorzugsweise mit jeweils 1 bis 22 und insbesondere 1 bis 16 Kohlenstoffatomen und cyclische Formen einschließend), die durch Sauerstoff-, Stickstoffatome oder die Gruppe NR2 (R2 = Wasserstoff oder Ci-H- Alkyl) unterbrochen sein können und einen oder mehrere Substituenten aus der Gruppe der Halogene, Amino-, Amid-, Carboxy-, Hydroxy-, Alkoxy-, Alkoxycarbonyl-, Acryloxy-, Methacryloxy- oder Epoxy- Gruppen tragen können. Besonders bevorzugt befindet sich unter den obigen Alkoxysilanen der Formel (1 ) mindestens eines, in welchem mindestens ein Rest R über eine Gruppierung verfügt, die eine Polyadditions- (einschließlich Polymerisations-) oder Polykondensationsreaktion eingehen kann. Bei dieser zur Polyadditions- oder Polykondensationsreaktion befähigten Gruppierung handelt es sich vorzugsweise um eine Epoxygruppe oder Kohlenstoff-Kohlenstoff- Mehrfachbindungen, wobei eine (Meth)acrylatgruppe ein besonders bevorzugtes Beispiel für die letztgenannten Gruppierungen ist. Besonders bevorzugte Alkoxysilane gemäß Formel (1 ) sind solche, in denen x gleich 2 oder 3 und insbesondere 3 ist und ein Rest R für co-Glycidyloxy-C2 6-Alkyl oder ω-(Meth)acryloxy-C2-6-Alkyl steht. Beispiele für derartige Alkoxysilane sind 3-Glycidoxypropyltri(m)ethoxysilan, 3,4- Epoxybutyltri(m)ethoxysilan und 2-(3,4-Epoxycyclohexyl)ethyltri(m)ethoxysilan, 3- (Meth)acryloxypropylth(m)ethoxysilan und 2-(Meth)acryloxyethyltri(m)ethoxysilan, 3- Glycidoxypropyldimethyl(m)ethoxysilan, 3-Glycidoxypropylmethyldi(m)ethoxysilan, 3- (Meth)acryloxypropylmethyldi(m)ethoxysilan und 2-(Meth)acryloxyethylmethyl- di(m)ethoxysilan.
Weitere Alkoxysilane gemäß Formel (1 ), die bevorzugt in Kombination mit Alkoxysilanen mit den obigen zur Polyadditions- bzw. Polykondensationsreaktion befähigten Gruppierungen eingesetzt werden können, sind beispielsweise Hexadecyltri(m)ethoxysilan, Cyclohexyltri(m)ethoxysilan, Cyclopentyltri(m)ethoxysilan, Ethylth(m)ethoxysilan, Phenylethyltri(m)ethoxysilan, Phenylth(m)ethoxysilan, n- Propyltri(m)ethoxysilan, Cyclohexyl(m)ethyldimethoxysilan, Dimethyldi(m)ethoxysilan, Diisopropyldi(m)ethoxysilan und Phenylmethyldi(m)ethoxysilan.
Im Verlauf der Reaktion wird dann wenigstens ein Alkoxid gemäß Formel (2) mit dem Hydrolysat des mindestens einem Alkoxysilans der Formel (1 ) zusammengegeben. Die Alkoxide gemäß Formel (2) sind sehr reaktiv, so dass in Abwesenheit eines Komplexbildners die Komponenten gemäß Formeln (1 ) und (2) bei Kontakt mit Wasser sehr schnell hydrolysieren und kondensieren würden. Erfindungsgemäß ist es jedoch nicht erforderlich, die reaktionsfähigen Alkoxide direkt in komplexierter Form einzusetzen. Vielmehr ist es möglich, den oder die Komplexbildner kurz nach dem Start der Reaktion der Komponenten gemäß Formeln (1 ) und (2) hinzuzugeben.
Beispiele für Alkoxide gemäß Formel (2) sind Aluminium-sek.-butylat, Titanisopropoxid, Titanpropoxid, Titanbutoxid, Zirkoniumisopropoxid, Zirkoniumpropoxid,
Zirkoniumbutoxid, Zirkoniumethoxid, Tetraethoxysilan, Tetramethoxysilan, Tetrapropyloxysilan und Tetrabutyloxysilan. Bei den reaktionsfähigeren Alkoxiden gemäß Formel (2) mit Me = AI, Ti, Si, Zr und Hf, kann es sich jedoch empfehlen, diese direkt in komplexierter Form einzusetzen, wobei Beispiele für geeignete Komplexbildner gesättigte wie auch ungesättigte Carbonsäuren und 1 ,3-Dicarbonyl-Verbindungen, wie Essigsäure, Milchsäure, Methacrylsäure, Acetylaceton und Acetessigsäurethylester sind. Ebenfalls geeignet als Komplexbildner sind Ethanolamine sowie Alkylphosphate, wie Tri-, Diethanolamin und Butylphosphat. Beispiele für derartig komplexierte Alkoxide gemäß Formel (2) sind Titanacetylacetonate, Titanbisethylacetoacetate, Thethanolamintitanate, Triethanolaminzirconate und Zirconiumdiethylcitrate. Der Komplexbildner, insbesondere eine Chelat-Verbindung, bewirkt eine gewisse Komplexierung des Metallkations, so dass die Hydrolyse- und Kondensationsgeschwindigkeit der Komponenten gemäß Formeln (1 ) und (2) reduziert wird.
Als weiteren, optionalen Bestandteil umfasst das Organosol ein wasserverträgliches oder mit Wasser mischbares Lösemittel mit einem Siedepunkt von wenigstens 150 0C. Beispielsweise können Diethylenglykol, Triethylenglykol, Butyldiglykol, Propylenglykole, Butylenglykole, und Polyethylenglykole hierfür verwendet werden. Die Aufgabe der hochsiedenden Lösungsmittel besteht darin, dass im Austausch gegen den bei der Hydrolyse frei werdenden niedermolekularen Alkohol eine verbesserte Beständigkeit der Organosole erreicht werden kann.
In einer bevorzugten Ausführungsform der vorliegenden Erfindung ist das Organosol dadurch gekennzeichnet, dass das Gewichtsverhältnis der Komponente gemäß Formel (1 ) zu der Komponente gemäß Formel (2) im Bereich 1 zu 1 bis 1 zu 100, besonders bevorzugt im Bereich 1 zu 1 bis 1 zu 25 liegt. Da die Komponente gemäß Formel (2) auch als Vernetzungsmittel für die Alkoxysilane gemäß Formel (1 ) dienen, sollten diese wenigstens in äquimolaren Mengen bezogen auf die Komponente gemäß Formel (1 ) in den Organosolen anwesend sein.
Das Organosol wird der erfindungsgemäßen Behandlungslösung bezogen auf einen Wirkstoffgehalt von 25 % im Organosol in einer Menge von 1 g/l bis 50 g/l, bevorzugt 3 g/l bis 20 g/l und am meisten bevorzugt 5 g/l bis 15 g/l zugegeben.
Die Behandlungslösung kann zusätzlich (optional) einen oder mehrere weitere Komplexbildner enthalten. Geeignete weitere Komplexbildner sind insbesondere organische Chelatliganden. Beispiele für geeignete weitere Komplexbildner sind Polycarbonsäuren, Hydroxycarbonsäuren, Hydroxypolycarbonsäuren,
Aminocarbonsäuren oder Hydroxyphosphonsäuren. Beispiele für geeignete Carbonsäuren sind Citronensäure, Weinsäure, Äpfelsäure, Milchsäure, Gluconsäure, Glucuronsäure, Ascorbinsäure, Isozitronensäure, Gallussäure, Glycolsäure, 3- Hydroxypropionsäure, 4-Hydroxybuttersäure, Salicylsäure, Nicotinsäure, Alanin, Glycin, Asparagin, Asparaginsäure, Cystein, Glutaminsäure, Glutamin, Lysin. Als Hydroxyphosphonsäuren eignet sich z.B. Dequest 2010™ (von Solutia, Inc.); als Aminophosphonsäuren eignet sich z.B. Dequest 2000™ (von Solutia, Inc.).
Optional wird der Behandlungslösung zur Steigerung des Korrosionsschutzes mindestens ein Metall oder Metalloid wie z.B. Sc, Y, Ti, Zr, Mo, W, Mn, Fe, Co, Ni, Zn, B, AI, Si zugesetzt. Diese Elemente können in Form ihrer Salze oder in Form komplexer Anionen oder der entsprechenden Säuren dieser Anionen wie Hexafluoroborsäure, Hexafluorokieselsäure, Hexafluorotitansäure oder Hexafluorozirkonsäure, Tetrafluoroborsäure oder Hexafluorophosphorsäure oder deren Salzen zugegeben werden.
Besonders bevorzugt wird Zink zugesetzt, das in Form von Zink(ll)-salzen wie z.B. Zinksulfat, Zinkchlorid, Zinkphosphat, Zinkoxid oder Zinkhydroxid zugegeben werden kann. Bevorzugt werden der Behandlungslösung zwischen 0.5 g/l und 25 g/l, besonders bevorzugt zwischen 1 g/l und 15 g/l Zn2+ zugesetzt. Die Auflistung der Zinkverbindungen gibt lediglich Beispiele für erfindungsgemäß geeignete Verbindungen an, schränkt die Menge geeigneter Zinkverbindungen aber nicht auf die genannten Substanzen ein.
Die Behandlungslösung kann zur Verbesserung der Filmbildung auf der zu behandelnden Oberfläche und zur Steigerung der Hydrophobie der Oberfläche zusätzlich (optional) ein oder mehrere in Wasser lösliche oder in Wasser dispergierbare Polymere enthalten, die ausgewählt sind aus der Gruppe bestehend aus Polyethylenglykolen, Polyvinylpyrrolidonen, Polyvinylalkoholen, Polyitaconsäuren, Polyacrylaten und Copolymeren der jeweils zugrunde liegenden Monomere.
Die Konzentration des mindestens einen Polymers liegt bevorzugt im Bereich zwischen 50 mg/l und 20 g/l.
Durch die Zugabe der genannten Polymere zu der Behandlungslösung werden die Schichteigenschaften der abgeschiedenen Korrosionsschutzschicht signifikant verbessert. Die Behandlungslösung kann zusätzlich (optional) ein oder mehrere Netzmittel enthalten. Dadurch wird insbesondere auf komplexen Teilen oder auf schwerer benetzbaren Oberflächen ein gleichmäßigerer Schichtaufbau und ein besseres Ablaufverhalten erzielt. Besonders vorteilhaft ist insbesondere die Verwendung fluoroaliphatischer polymerer Ester wie z.B. Fluorad FC-4432™ (von 3M).
Die Behandlungslösung kann zusätzlich (optional) ein oder mehrere Schmiermittel enthalten. Dadurch können gezielt gewünschte Reibungswerte der mit dem erfindungsgemäßen Verfahren hergestellten Oberflächen eingestellt werden. Geeignete Schmiermittel sind beispielsweise Polyether-modifizierte Siloxane,
Polyetherwachsemulsionen, ethoxylierte Alkohole, PTFE, PVDF, Ethylencopolymere, Paraffinemulsionen, Polypropylenwachsemulsionen, M0S2 und Dispersionen hiervon, WS2 und Emulsionen hiervon, Polyethylenglycole, Polypropylen, Fischer-Tropsch Hartwachse, micronisierte und synthetische Hartwachse, Graphit, Metallseifen und Polyharnstoff. Besonders bevorzugte Schmiermittel sind PTFE, micronisierte Hartwachse und Polyetherwachsemulsionen.
Die optionalen Schmiermittel werden in einer Menge von 0.1 g/l bis 300 g/l, bevorzugt 1 g/l bis 30 g/l der erfindungsgemäßen Behandlungslösung zugegeben.
Die erfindungsgemäß behandelten Oberflächen sind metallische, bevorzugt zinkhaltige, und zinkhaltige Oberflächen, die optional mit einer Chrom(lll)-haltigen Konversionsschicht versehenen sind.
Durch das erfindungsgemäße Verfahren wird auf der behandelten Oberfläche eine Schicht abgeschieden, die Chrom(lll)-Ionen, Phosphat(e), ein Silicium-/Metall- organisches Netzwerk sowie optional weitere Metall-Ionen, wie z.B. Zink-Ionen, und optional eine oder mehrere polymere Komponenten enthält.
Das Inkontaktbringen der Behandlungslösung mit der zu behandelnden Oberfläche kann bei dem erfindungsgemäßen Verfahren nach an sich bekannten Verfahren, insbesondere durch Eintauchen erfolgen.
Die Temperatur der Behandlungslösung liegt bevorzugt zwischen 10 0C und 90 0C, mehr bevorzugt zwischen 20 0C und 80 0C, besonders bevorzugt zwischen 25 0C und 50 0C. Die Dauer des Inkontaktbringens liegt bevorzugt zwischen 0.5 s und 180 s, mehr bevorzugt zwischen 5 s und 60 s, am meisten bevorzugt zwischen 10 s und 30 s.
Die Behandlungslösung kann vor Durchführung des erfindungsgemäßen Verfahrens durch Verdünnen einer entsprechend höher konzentrierten Konzentratlösung hergestellt werden.
Die erfindungsgemäß behandelten Gegenstände werden nach dem Inkontaktbringen nicht mehr gespült, sondern direkt getrocknet.
Das erfindungsgemäße Verfahren führt bei Gegenständen, die eine zinkhaltige Oberfläche aufweisen zu einem erhöhten Korrosionsschutz. Im Falle von vollmetallischen Zink- und Zinklegierungs-Oberflächen, die durch Verfahren wie galvanische Abscheidung, Feuerverzinken, mechanische Abscheidung und Sherardizing erhalten werden, kann das erfindungsgemäße Verfahren ebenfalls angewendet werden. In einer weiteren Ausführungsform der Erfindung wird das erfindungsgemäße Verfahren nach Applikation einer sogenannten Konversionsschicht (siehe WO 02/07902 A2) auf vollmetallischen Zink- und Zinklegierungs-Oberflächen angewandt. Konversionschichten können aus Behandlungslösungen abgeschieden werden, die beispielsweise Chrom(lll)-Ionen und ein Oxidationsmittel enthalten.
In einer weiteren Ausführungsform wird das erfindungsgemäße Verfahren auf vollmetallischen Zink- und Zinklegierungs-Oberflächen nach einer oxidativen Aktivierung angewandt. Diese oxidative Aktivierung besteht zum Beispiel darin, das verzinkte Substrat in eine wässrige Lösung zu tauchen, die ein Oxidationsmittel enthält. Hierfür geeignete Oxidationsmittel sind Nitrate und Salpetersäure, Peroxide wie Wasserstoffperoxid, Persulfate und Perborate. Im Falle sogenannter Zinklamellenbeschichtungen wird das erfindungsgemäße Verfahren direkt nach Applikation und Aushärtung der Zinklamellenbeschichtung angewandt.
Beispiele
Nachfolgend wird die Erfindung anhand von Beispielen näher erläutert. Vergleichsbeispiel 1
Probeteile aus Stahl wurden zunächst in einem schwach sauren galvanischen Verfahren (Unizinc ACZ 570 von Atotech Deutschland GmbH) mit einer 8-10 μm dicken Zink-Auflage beschichtet und mit demineralisiertem Wasser gespült.
Anschließend wurden die Probenteile mit einer Chrom(lll)-Ionen- und Nitrat-haltigen Konversionsschicht (EcoTri® HC2 von Atotech Deutschland GmbH) versehen und getrocknet.
Anschließend wurde eine Behandlungslösung (= Behandlungslösung A) mit einem pH-Wert von 3,9 appliziert, die folgende Bestandteile enthielt:
4.5 g/l Cr3+ aus Chrom(lll)-hydroxid
18 g/l PO4 3" aus ortho-Phosphorsäure
5.5 g/l Zn2+ aus Zinkoxid
11 g/l Citronensäure
Danach wurden die so beschichteten Probeteile getrocknet
Die Korrosionsbeständigkeit (Bildung von Rotkorrosion nach EN ISO 9227) wurde mit einem neutralen Salzsprühtest überprüft. Die Bildung von Rotkorrosion wurde nach 864 h beobachtet.
Beispiel 1
Probeteile aus Stahl wurden in einem schwach sauren galvanischen Verfahren (Unizinc ACZ 570 von Atotech Deutschland GmbH) mit einer 8-10 μm dicken Zink-Auflage beschichtet und mit demineralisiertem Wasser gespült.
Danach wurden die Probeteile mit einer Chrom(lll)-Ionen- und Nitrat-haltigen Konversionsschicht (EcoTri®HC2 von Atotech Deutschland GmbH) versehen und getrocknet.
Anschließend wurde einer erfindungsgemäßen Behandlungslösung mit einem pH-Wert von 2.8 appliziert, die folgende Bestandteile enthielt:
4.5 g/l Cr3+ aus Chrom(lll)-hydroxid
18 g/l PO4 3" aus ortho-Phosphorsäure
5.5 g/l Zn2+ aus Zinkoxid
11 g/l Citronensäure
50 g/l eines Organosols mit einem Wirkstoffgehalt von 25 % (in Gew.-%), das aus Tetraethoxysilan als Alkoxysilan gemäß Formel (1 ) und 3- Glycidyloxypropylthethoxysilan als Metallalkoxid gemäß Formel (2) hergestellt wurde.
Danach wurden die so beschichteten Probeteile getrocknet.
Die Korrosionsbeständigkeit (Bildung von Rotkorrosion nach EN ISO 9227) wurde mit einem neutralen Salzsprühtest überprüft. Die Bildung von Rotkorrosion wurde nach 1500 h beobachtet.
Beispiel 2
Probeteile aus Stahl wurden mit Hilfe einer Zinklamellen-enthaltenden Behandlungslösung (Zintek® 800 WD 1 von Atotech Deutschland GmbH) mit einer 10 μm dicken Zinklamellen-enthaltenden Auflage beschichtet.
Anschließend wurde die erfindungsgemäße Behandlungslösung aus Beispiel 1 appliziert und die so beschichteten Probeteile getrocknet. Die Korrosionsbeständigkeit (Bildung von Rotkorrosion nach EN ISO 9227) wurde mit einem neutralen Salzsprühtest. Die Bildung von Rotkorrosion wurde nach 3500 h beobachtet.

Claims

Patentansprüche
1. Verfahren zur Erzeugung einer korrosionsschützenden Überzugsschicht, wobei eine zu behandelnde Oberfläche mit einer wässrigen Behandlungslösung in Kontakt gebracht wird, die
• Chrom(lll)-Ionen,
• mindestens eine Phosphatverbindung und
• ein durch Hydrolyse und Kondensation hergestelltes Organosol enthält, welches durch Reaktion eines oder mehrerer Alkoxysilane der Formel (1 )
R4-xSi(OR1)x (1 )
wobei die Reste R gleich oder verschieden voneinander, jeweils eine substituierte oder unsubstituierte Kohlenwasserstoffgruppe mit 1 bis 22 Kohlenwasserstoffatomen darstellen und x gleich 1 , 2 oder 3 ist und R1 für eine substituierte oder unsubstituierte Kohlenwasserstoffgruppe mit 1 bis 8 Kohlenwasserstoffatomen darstellen, und einem oder mehrerer Alkoxide der Formel (2)
Me(OR2Jn (2) wobei Me für Ti, Zr, Hf, AI, Si und n für die Oxidationsstufe von Me stehen und R2 ausgewählt wird aus substituierten oder unsubstituierten Kohlenwasserstoffgruppen, die 1 bis 8 Kohlenstoffatome enthalten,
wobei die wässrige Behandlungslösung frei von anorganischen und organischen Peroxiden ist.
2. Verfahren nach Anspruch 1 , wobei das Verhältnis der Stoffmengen konzentration von Chrom(lll)-Ionen zur Stoffmengen konzentration der mindestens einen Phosphatverbindung in der wässrigen Behandlungslösung (bezogen auf Orthophosphat) zwischen 1 : 1.5 und 1 : 3 liegt.
3. Verfahren nach einem der Ansprüche 1 und 2, wobei die mindestens eine Phosphatverbindung in der wässrigen Behandlungslösung ausgewählt ist aus der Gruppe bestehend aus ortho-Phosphorsäure, Polyphosphorsäuren, meta- Phosphorsäure, den Salzen dieser Säuren, den Estern dieser Säuren mit organischen Resten mit bis zu 12 Kohlenstoffatomen sowie Gemischen dieser Verbindungen.
4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die Konzentration der Chrom(lll)-Ionen in der wässrigen Behandlungslösung im Bereich zwischen 0.2 g/l und 20 g/l liegt.
5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das mindestens eine Alkoxysilan gemäß Formel (1 ) ausgewählt ist aus der Gruppe bestehend aus Thalkoxysilanen und Dialkoxysilanen und R1 für gleiche oder verschiedene über ein C-Atom an das Siliziumatom gebundene, gegebenenfalls verzweigte Kohlenwasserstoffgruppen steht, die durch Sauerstoff, Stickstoff oder die Gruppe NR2, mit R2 gleich Wasserstoff oder Ci bis Cβ-Alkyl unterbrochen sind und einen oder mehrere Substituenten, ausgewählt aus der Gruppe der Halogene und der gegebenenfalls Amino-, Amido-, Carboxy-, Acryloxy-, Methacryloxy- und Epoxy- Alkylgruppen tragen können.
6. Verfahren nach einem der Ansprüche 1 bis 5, wobei das mindestens eine Alkoxysilan gemäß Formel (1 ) ausgewählt ist aus der Gruppe bestehend aus 3- Glycidoxypropyltrimethoxysilan, 3-Glycidoxypropyltriethoxysilan, 3,4-Epoxybutyl- trimethoxysilan, 3,4-Epoxybutyltriethoxysilan, 2-(3,4-Epoxycyclohexyl)ethyl- trimethoxysilan und 2-(3,4-Epoxycyclohexyl)ethyltriethoxysilan.
7. Verfahren nach einem der Ansprüche 1 bis 6, wobei Me in mindestens einer Verbindung gemäß Formel (2) Silizium ist.
8. Verfahren nach einem der Ansprüche 1 bis 7, wobei das Organosol ein mit Wasser mischbares Lösungsmittel mit einem Siedepunkt von wenigstens 150 0C enthält.
9 Verfahren nach einem der Ansprüche 1 bis 8, wobei das Organosol zusätzlich einen oder mehrere Komplexbildner enthält, ausgewählt aus der Gruppe bestehend aus gesättigte und ungesättigte Carbonsäuren, 1 ,3-Dicarbonyl- Verbindungen, Ethanolamine, Alkylphosphate, Polycarbonsäuren,
Hydroxycarbonsäuren, Hydroxypolycarbonsäuren, Aminocarbonsäuren oder Hydroxyphosphonsäuren und Aminophosphonsäuren.
10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die wässrige Behandlungslösung mindestens einen weiteren Komplexbildner enthält, der ausgewählt ist aus der Gruppe bestehend aus Essigsäure, Methacrylsäure, Acetylaceton, Acetessigsäureethylester, Triethanolamin, Diethanolamin, Butylphosphat, Citronensäure, Weinsäure, Äpfelsäure, Milchsäure, Gluconsäure, Glucuronsäure, Ascorbinsäure, Isozitronensäure, Gallussäure, Glycolsäure, 3- Hydroxypropionsäure, 4-Hydroxybuttersäure, Salicylsäure, Nicotinsäure, Alanin, Glycin, Asparagin, Asparaginsäure, Cystein, Glutaminsäure, Glutamin und Lysin.
11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Behandlungslösung zusätzlich ein oder mehrere in Wasser lösliche oder in Wasser dispergierbare Polymere enthält, ausgewählt aus der Gruppe bestehend aus Polyethylenglykolen, Polypropylenglykolen, Polyvinylpyrrolidonen, Polyvinylalkoholen, Polyitaconsäuren, Polyacrylaten und Copolymeren der jeweils zugrunde liegenden Monomere.
12. Verfahren nach einem der Ansprüche 1 bis 11 , wobei die wässrige Behandlungslösung zusätzlich mindestens ein Schmiermittel enthält.
13. Verfahren einem der Ansprüche 1 bis 12, wobei die wässrige Behandlungslösung zusätzlich ein oder mehrere Metalle oder Metalloide, ausgewählt aus der Gruppe bestehend aus Sc, Y, Ti, Zr, Mo, W, Mn, Fe, Co, Ni, Zn, B, AI, Si und P enthält.
14. Verfahren nach Anspruch 13, wobei das Metall oder Metalloid in Form eines seiner Salze oder in Form eines komplexen Anions oder der entsprechenden Säuren dieser Anionen wie Hexafluoroborsäure, Hexafluorokieselsäure, Hexafluorotitansäure oder Hexafluorozirkonsäure, Tetrafluoroborsäure oder Hexafluorophosphorsäure oder deren Salzen zu der Behandlungslösung zugegeben worden ist.
15. Verfahren nach einem der Ansprüche 1 bis 14, wobei der pH-Wert der wässrigen Behandlungslösung zwischen pH 1.5 und pH 9 liegt.
PCT/EP2010/059586 2009-07-03 2010-07-05 Korrosionsschutzbehandlung für oberflächen aus zink und zinklegierungen WO2011000969A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
BR112012000037A BR112012000037A2 (pt) 2009-07-03 2010-07-05 tratamento de proteção contra corrosão para superfícies feitas de zinco e ligas de zinco.
ES10728680T ES2401173T3 (es) 2009-07-03 2010-07-05 Tratamiento de protección frente a la corrosión para superficies de zinc y de aleaciones de zinc
CA2765961A CA2765961A1 (en) 2009-07-03 2010-07-05 Corrosion protection treatment for surfaces made of zinc and zinc alloys
US13/377,681 US8951363B2 (en) 2009-07-03 2010-07-05 Anti-corrosive treatment for surfaces made of zinc and zinc alloys
CN201080029167.0A CN102471890B (zh) 2009-07-03 2010-07-05 对锌和锌合金构成的表面的防腐蚀处理
JP2012518952A JP5627680B2 (ja) 2009-07-03 2010-07-05 亜鉛及び亜鉛合金の表面用の防食処理
EP10728680A EP2449149B1 (de) 2009-07-03 2010-07-05 Korrosionsschutzbehandlung für oberflächen aus zink und zinklegierungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09164575A EP2281923A1 (de) 2009-07-03 2009-07-03 Korrosionsschutzbehandlung für Oberflächen aus Zink und Zinklegierungen
EP09164575.4 2009-07-03

Publications (1)

Publication Number Publication Date
WO2011000969A1 true WO2011000969A1 (de) 2011-01-06

Family

ID=41263965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/059586 WO2011000969A1 (de) 2009-07-03 2010-07-05 Korrosionsschutzbehandlung für oberflächen aus zink und zinklegierungen

Country Status (9)

Country Link
US (1) US8951363B2 (de)
EP (2) EP2281923A1 (de)
JP (1) JP5627680B2 (de)
KR (1) KR101565203B1 (de)
CN (1) CN102471890B (de)
BR (1) BR112012000037A2 (de)
CA (1) CA2765961A1 (de)
ES (1) ES2401173T3 (de)
WO (1) WO2011000969A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147447A1 (en) * 2010-05-26 2011-12-01 Atotech Deutschland Gmbh Process for forming corrosion protection layers on metal surfaces
CN103906859A (zh) * 2011-11-03 2014-07-02 巴斯夫欧洲公司 用于钝化金属表面的包含具有酸基的聚合物且包含Ti或Zr化合物的制剂
DE202013009813U1 (de) 2013-09-13 2014-12-16 Ewh Industrieanlagen Gmbh & Co. Kg Verwendung einer Behandlungslösung zur Erzeugung einer korrosionsschützenden Überzugsschicht auf einer Metalldispersionstrockenschicht oder auf einer Oberfläche eines µm-skalierten Metallteilchens
DE202013010956U1 (de) 2013-09-13 2014-12-17 Ewh Industrieanlagen Gmbh & Co. Kg Behandlungslösung für ein Verfahren zum Erzeugen einer korrosionsschützenden Überzugsschicht und Konzentrat einer solchen Behandlungslösung
JP6024053B2 (ja) * 2011-04-01 2016-11-09 ディップソール株式会社 3価クロム化成皮膜用仕上げ剤及び黒色3価クロム化成皮膜の仕上げ方法
EP3964609A1 (de) 2020-08-28 2022-03-09 Coventya SAS Elektroplattiertes produkt und verfahren zur herstellung solcher produkte mit einer hochtemperaturbehandlung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104073075B (zh) * 2013-09-05 2016-07-06 攀钢集团攀枝花钢铁研究院有限公司 一种三价铬涂料及其制备方法和热镀金属材料
EP2907894B1 (de) 2014-02-13 2019-04-10 Ewald Dörken Ag Verfahren zum Herstellen eines mit einer Chrom-VI-freien und kobaltfreien Passivierung versehenen Substrats
CN104846359B (zh) * 2014-02-17 2017-12-29 广州中国科学院工业技术研究院 用于金属表面预处理的复合处理剂及其制备方法和应用
KR101792240B1 (ko) * 2015-09-18 2017-10-31 주식회사 포스코 편면도금 강판의 표면처리용 조성물, 이를 이용하여 표면처리된 강판, 및 이를 이용한 표면처리 방법
CN105937031B (zh) * 2016-06-29 2018-10-30 周少霞 一种热镀锌板用钝化液的制备方法
JP6870983B2 (ja) * 2016-12-27 2021-05-12 日本ペイント・サーフケミカルズ株式会社 亜鉛系メッキ鋼板用表面処理剤
PT3360989T (pt) * 2017-02-13 2019-04-02 Atotech Deutschland Gmbh Método para passivar eletroliticamente uma camada de crómio exterior ou de liga de crómio exterior para aumentar a sua resistência à corrosão
JP6375043B1 (ja) * 2017-10-31 2018-08-15 日本パーカライジング株式会社 前処理剤、前処理方法、化成皮膜を有する金属材料およびその製造方法、並びに塗装金属材料およびその製造方法
CN108034935A (zh) * 2017-12-12 2018-05-15 广州旭淼新材料科技有限公司 一种无铬转化成膜液及其制备方法
CN108193202B (zh) * 2017-12-29 2020-07-31 南京科润工业介质股份有限公司 一种环保型金属表面处理剂及其应用
EP3569734A1 (de) * 2018-05-18 2019-11-20 Henkel AG & Co. KGaA Passivierungszusammensetzung auf basis von dreiwertigem chrom
CN109338348B (zh) * 2018-10-24 2019-09-20 河南恒润昌环保科技有限公司 一种无磷水性金属硅烷处理剂及其制备方法
WO2021252567A1 (en) * 2020-06-10 2021-12-16 Novelis Inc. Pretreatment compositions bonded to metal substrates and methods of making the same
US11746294B2 (en) * 2021-05-28 2023-09-05 Chemtreat, Inc. Corrosion control using organic filmers and passivators in systems for processing nitrogen-containing solutions
CN115613022A (zh) * 2022-09-28 2023-01-17 湖南金裕环保科技有限公司 铝及铝合金无铬本色钝化剂及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479289A1 (de) 1990-10-05 1992-04-08 Nihon Parkerizing Co., Ltd. Verfahren zur Chromatierung von einer Stahlplatte mit einer Beschichtung auf Zink-Basis
EP0553164A1 (de) 1990-10-08 1993-08-04 Henkel Corp Verfahren zur chromatierung von mit zink beschichtetem stahl.
WO1997015700A1 (en) 1995-10-26 1997-05-01 Lord Corporation Aqueous protective and adhesion promoting composition
DE19638176A1 (de) 1996-09-18 1998-04-16 Surtec Produkte Und Systeme Fu Chrom(VI)freie Chromatschicht sowie Verfahren zu ihrer Herstellung
EP0839931A2 (de) * 1996-10-30 1998-05-06 Nihon Hyomen Kagaku Kabushiki Kaisha Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
DE19814605A1 (de) * 1998-04-01 1999-10-07 Kunz Gmbh Mittel zur Versiegelung von metallischen, insbesondere aus Zink oder Zinklegierungen bestehenden Untergründen
WO2002007902A2 (fr) 2000-07-25 2002-01-31 Coventya Couche noir anticorrosive sur un alliage de zinc et son procede de preparation
EP1051539B1 (de) 1998-12-01 2003-06-25 POHANG IRON & STEEL CO., LTD. Oberflächenbehandeltes stahlblech für brennstofftanks und verfahren zu dessen herstellung
WO2008041976A2 (en) * 2006-09-29 2008-04-10 Momentive Performance Materials Inc. Storage stable composition of partial and/or complete condensate of hydrolyzable organofunctional silane
EP1992718A1 (de) * 2006-03-08 2008-11-19 Nippon Paint Co., Ltd. Metalloberflächenbehandlungsmittel
WO2008141666A1 (en) 2007-05-24 2008-11-27 Ocas Nv Corrosion protective and electrical conductivity composition free of inorganic solid particles and process for the surface treatment of metallic sheet

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935684A (ja) * 1982-08-20 1984-02-27 Nippon Steel Corp 金属表面処理組成物
JPS6160766A (ja) * 1984-08-31 1986-03-28 Kansai Paint Co Ltd 潤滑性塗膜形成用水系組成物
JPS6283478A (ja) * 1985-10-09 1987-04-16 Sumitomo Metal Ind Ltd 塗装密着性に優れたクロメ−ト処理鋼材
JPH0730457B2 (ja) * 1988-02-18 1995-04-05 新日本製鐵株式会社 クロメート処理メッキ鋼板とその製造方法
JPH03146676A (ja) * 1989-10-31 1991-06-21 Kobe Steel Ltd 耐吸湿汚れ性にすぐれるクロメート処理鋼板の製造方法
JPH10176281A (ja) * 1996-12-17 1998-06-30 Kawasaki Steel Corp 耐水二次密着性と電着塗装性に優れる有機複合被覆鋼板
JP2000014755A (ja) * 1998-06-29 2000-01-18 Sumitomo Metal Ind Ltd 光触媒機能を備えた金属板
JP2000192251A (ja) * 1998-12-24 2000-07-11 Nisshin Steel Co Ltd クロメ−ト処理液および処理方法
JP2000199074A (ja) * 1998-12-28 2000-07-18 Nippon Parkerizing Co Ltd 希土類・鉄系焼結永久磁石の沈着型表面処理液および表面処理方法、ならびに該表面処理方法により得られた表面を有する希土類・鉄系焼結永久磁石
US6197415B1 (en) * 1999-01-22 2001-03-06 Frisby Technologies, Inc. Gel-coated materials with increased flame retardancy
US7264874B2 (en) * 2004-12-22 2007-09-04 Aps Laboratory Preparation of metal chalcogenide nanoparticles and nanocomposites therefrom
US7410631B2 (en) * 2005-03-02 2008-08-12 Aps Laboratory Metal phosphate sols, metal nanoparticles, metal-chalcogenide nanoparticles, and nanocomposites made therefrom
US10041176B2 (en) 2005-04-07 2018-08-07 Momentive Performance Materials Inc. No-rinse pretreatment methods and compositions
US7253226B1 (en) 2005-08-11 2007-08-07 Aps Laboratory Tractable silica sols and nanocomposites therefrom
JP4524352B2 (ja) * 2006-04-17 2010-08-18 名古屋市 防食剤及び防食剤の製造方法
JP5055822B2 (ja) * 2006-04-27 2012-10-24 住友金属工業株式会社 塗膜密着性に優れた塗装鋼板
JP4955379B2 (ja) * 2006-12-20 2012-06-20 株式会社キャディック コーティング溶液、該溶液を用いた無機−有機ハイブリッド皮膜の形成方法、およびこの形成方法により得られる皮膜
JP2008111188A (ja) * 2007-09-25 2008-05-15 Hitachi Chem Co Ltd プリント配線板用の銅箔
DE102010030114B4 (de) * 2009-08-11 2021-11-04 Evonik Operations Gmbh Wässriges Silansystem für den Blankkorrosionsschutz, Verfahren zu dessen Herstellung, dessen Verwendung sowie mit diesem behandelte Gegenstände und Korrosionsschutzschicht

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0479289A1 (de) 1990-10-05 1992-04-08 Nihon Parkerizing Co., Ltd. Verfahren zur Chromatierung von einer Stahlplatte mit einer Beschichtung auf Zink-Basis
EP0553164A1 (de) 1990-10-08 1993-08-04 Henkel Corp Verfahren zur chromatierung von mit zink beschichtetem stahl.
WO1997015700A1 (en) 1995-10-26 1997-05-01 Lord Corporation Aqueous protective and adhesion promoting composition
DE19638176A1 (de) 1996-09-18 1998-04-16 Surtec Produkte Und Systeme Fu Chrom(VI)freie Chromatschicht sowie Verfahren zu ihrer Herstellung
EP0839931A2 (de) * 1996-10-30 1998-05-06 Nihon Hyomen Kagaku Kabushiki Kaisha Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
EP0922785B1 (de) 1996-10-30 2007-01-03 Nihon Hyomen Kagaku Kabushiki Kaisha Lösung und Verfahren zur Herstellung von Schutzschichten auf Metallen
DE19814605A1 (de) * 1998-04-01 1999-10-07 Kunz Gmbh Mittel zur Versiegelung von metallischen, insbesondere aus Zink oder Zinklegierungen bestehenden Untergründen
EP1051539B1 (de) 1998-12-01 2003-06-25 POHANG IRON & STEEL CO., LTD. Oberflächenbehandeltes stahlblech für brennstofftanks und verfahren zu dessen herstellung
WO2002007902A2 (fr) 2000-07-25 2002-01-31 Coventya Couche noir anticorrosive sur un alliage de zinc et son procede de preparation
EP1992718A1 (de) * 2006-03-08 2008-11-19 Nippon Paint Co., Ltd. Metalloberflächenbehandlungsmittel
WO2008041976A2 (en) * 2006-09-29 2008-04-10 Momentive Performance Materials Inc. Storage stable composition of partial and/or complete condensate of hydrolyzable organofunctional silane
WO2008141666A1 (en) 2007-05-24 2008-11-27 Ocas Nv Corrosion protective and electrical conductivity composition free of inorganic solid particles and process for the surface treatment of metallic sheet

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011147447A1 (en) * 2010-05-26 2011-12-01 Atotech Deutschland Gmbh Process for forming corrosion protection layers on metal surfaces
US9738790B2 (en) 2010-05-26 2017-08-22 Atotech Deutschland Gmbh Process for forming corrosion protection layers on metal surfaces
JP6024053B2 (ja) * 2011-04-01 2016-11-09 ディップソール株式会社 3価クロム化成皮膜用仕上げ剤及び黒色3価クロム化成皮膜の仕上げ方法
CN103906859A (zh) * 2011-11-03 2014-07-02 巴斯夫欧洲公司 用于钝化金属表面的包含具有酸基的聚合物且包含Ti或Zr化合物的制剂
DE202013009813U1 (de) 2013-09-13 2014-12-16 Ewh Industrieanlagen Gmbh & Co. Kg Verwendung einer Behandlungslösung zur Erzeugung einer korrosionsschützenden Überzugsschicht auf einer Metalldispersionstrockenschicht oder auf einer Oberfläche eines µm-skalierten Metallteilchens
DE202013010956U1 (de) 2013-09-13 2014-12-17 Ewh Industrieanlagen Gmbh & Co. Kg Behandlungslösung für ein Verfahren zum Erzeugen einer korrosionsschützenden Überzugsschicht und Konzentrat einer solchen Behandlungslösung
DE102013015113A1 (de) 2013-09-13 2015-03-19 Ewh Industrieanlagen Gmbh & Co. Kg Behandlungslösung für ein Verfahren zum Erzeugen einer korrosionsschützenden Überzugsschicht, Konzentrat einer solchen Behandlungslösung und Verfahren zum Erzeugen einer korrosionsschützenden Überzugsschicht
DE102013015114A1 (de) 2013-09-13 2015-03-19 Ewh Industrieanlagen Gmbh & Co. Kg Verfahren zur Erzeugung einer korrosionsschützenden Überzugsschicht auf einer Metalldispersionstrockenschicht oder auf einer Oberfläche eines μm-skalierten Metallteilchen und Verwendung einer Behandlungslösung zur Durchführung eines solchen Verfahrens
WO2015036124A1 (de) * 2013-09-13 2015-03-19 Hillebrand Chemicals Gmbh Chrom (lll)-enthaltenden behandlungslösung für ein verfahren zum erzeugen einer korrosionsschützenden überzugsschicht, konzentrat einer solchen behandlungslösung und verfahren zum erzeugen einer korrosionsschützenden überzugsschicht
EP3964609A1 (de) 2020-08-28 2022-03-09 Coventya SAS Elektroplattiertes produkt und verfahren zur herstellung solcher produkte mit einer hochtemperaturbehandlung

Also Published As

Publication number Publication date
JP5627680B2 (ja) 2014-11-19
JP2012531527A (ja) 2012-12-10
CN102471890B (zh) 2014-06-18
US8951363B2 (en) 2015-02-10
CN102471890A (zh) 2012-05-23
KR20120102566A (ko) 2012-09-18
EP2281923A1 (de) 2011-02-09
EP2449149A1 (de) 2012-05-09
KR101565203B1 (ko) 2015-11-02
EP2449149B1 (de) 2012-12-19
US20120091398A1 (en) 2012-04-19
ES2401173T3 (es) 2013-04-17
CA2765961A1 (en) 2011-01-06
BR112012000037A2 (pt) 2016-03-15

Similar Documents

Publication Publication Date Title
EP2449149B1 (de) Korrosionsschutzbehandlung für oberflächen aus zink und zinklegierungen
EP2014793B1 (de) Korrosionsschutzbehandlung für Konversionsschichten
EP2309028B1 (de) Verfahren zur Beschichtung von metallischen Oberflächen mit einer wässerigen Silan /Silanol /Siloxan /Polysiloxan enthaltenden Zusammensetzung und diese Zusammensetzung
EP1187883A1 (de) Chromfreies korrosionsschutzmittel und korrosionsschutzverfahren
EP2660197B1 (de) Verfahren zur herstellung von zirkonphosphat in nanoplättchenform
CA2612904A1 (en) Chrome-free composition of low temperature curing for treating a metal surface and a metal sheet using the same
US20090297843A1 (en) Non-chrome thin organic-inorganic hybrid coating on zinciferous metals
EP3044348B1 (de) Chrom (iii)-enthaltenden behandlungslösung für ein verfahren zum erzeugen einer korrosionsschützenden überzugsschicht, konzentrat einer solchen behandlungslösung und verfahren zum erzeugen einer korrosionsschützenden überzugsschicht
EP3428314B1 (de) Zusammensetzung und verfahren zur passivierung verzinkter bauteile
US9309602B2 (en) Electrolytic iron metallizing of zinc surfaces
EP3044347A1 (de) Verfahren zur erzeugung einer korrosionsschützenden überzugsschicht auf einer metalldispersionstrockenschicht oder auf einer oberfläche eines um-skalierten metallteilchen und verwendung einer behandlungslösung zur durchführung eines solchen verfahrens
KR20210133981A (ko) 수성 후처리 조성물 및 부식 보호를 위한 방법
JP2006316342A (ja) 金属部材、防錆処理剤、及び防錆処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080029167.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10728680

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13377681

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010728680

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2765961

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127000169

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012518952

Country of ref document: JP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012000037

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012000037

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120102