WO2010150715A1 - 心筋梗塞非ヒト動物モデル及びその作製方法 - Google Patents

心筋梗塞非ヒト動物モデル及びその作製方法 Download PDF

Info

Publication number
WO2010150715A1
WO2010150715A1 PCT/JP2010/060420 JP2010060420W WO2010150715A1 WO 2010150715 A1 WO2010150715 A1 WO 2010150715A1 JP 2010060420 W JP2010060420 W JP 2010060420W WO 2010150715 A1 WO2010150715 A1 WO 2010150715A1
Authority
WO
WIPO (PCT)
Prior art keywords
myocardial infarction
coronary artery
blood vessel
blood flow
branch
Prior art date
Application number
PCT/JP2010/060420
Other languages
English (en)
French (fr)
Inventor
裕三 庄村
渋谷 光夫
泰造 谷口
康夫 原
Original Assignee
日本合成化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本合成化学工業株式会社 filed Critical 日本合成化学工業株式会社
Priority to EP10792033.2A priority Critical patent/EP2446739A4/en
Publication of WO2010150715A1 publication Critical patent/WO2010150715A1/ja
Priority to US13/288,158 priority patent/US20120110683A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/30Animals modified by surgical methods
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0375Animal model for cardiovascular diseases

Definitions

  • the present invention relates to a method for producing a non-human animal model of myocardial infarction that can be used for researches such as local treatment of myocardium and regenerative medicine, and a non-human animal model produced by this method.
  • a non-human animal model falling into the pathological condition of myocardial infarction and myocardial ischemia is useful.
  • Patent Document 1 As an animal model having such a pathological condition, for example, as introduced in Japanese Patent Application Laid-Open No. 2002-291373 (Patent Document 1), there is a rat model (coronary artery ligation model) in which the coronary artery is permanently ligated. .
  • Patent Document 2 As an animal model having such a pathological condition, for example, as introduced in Japanese Patent Application Laid-Open No. 2002-291373 (Patent Document 1), there is a rat model (coronary artery ligation model) in which the coronary artery is permanently ligated. .
  • Patent Document 2 an operation that requires a procedure such as opening the chest by general anesthesia and exposing the heart and blood vessels is performed.
  • Patent Document 3 a ligation operation is performed on the left coronary artery central part of a heart of a healthy animal, and the heart subjected to the coronary artery surgery is ectopically transplanted to the abdomen of another healthy animal, There has been proposed a method in which an animal subjected to ectopic heart transplantation is used as a model animal for myocardial infarction. Since such a method requires two (or two) animals to produce one model, it is not suitable for mass production of models using large animals.
  • Patent Document 4 proposes a method of occluding an artery to be occluded after ligating a downstream blood vessel at an arterial site as a method for producing a model with a low lethality rate.
  • an Ameloid ring (a donut-shaped casein core is provided inside a plastic or metal ring, and the blood vessels are blocked by swelling accompanying absorption of body fluid).
  • the method used has been used in recent years. Compared with the ligation method using a suture thread and a clip, the method using this ameroid ring can reduce the lethality due to heart failure after the operation because the blood flow rate is gradually decreased.
  • Example 1 of the Patent Document 4 since the blood flow blockage using the Ameloid ring is difficult to apply to the ligation of the downstream blood vessel, also in Example 1 of the Patent Document 4, after the ligation of the downstream blood vessel is performed with a suture, the coronary artery Occlusion treatment is performed using an Ameloid ring.
  • Patent Document 4 tries to increase the survival rate of an animal associated with myocardial infarction induction surgery by acquiring resistance to ischemia in the entire myocardium by performing local ligation in advance. Since the two blood flow interruptions performed in 1 are both accompanied by thoracotomy, the burden on the animal accompanying the surgical invasion is large, and the risk of animal death during the production is high.
  • a myocardial infarction model whose blood flow is blocked by ligation cannot be used as a research model for myocardial local regenerative medicine because the catheter cannot be operated through the lumen of the ligated blood vessel.
  • the blood flow blockade by the Ameloid ring uses the swelling caused by water absorption of the casein inside the ring, but since the rate of swelling is difficult to adjust, the time required to block the blood flow varies and the desired myocardial infarction It is not easy to make a model stable in time.
  • Patent Document 4 as a method of blocking blood flow without using ligation, it is proposed to occlude the artery with an autologous blood clot.
  • a coagulant ADP or thrombin
  • thrombosis autologous blood clot
  • the autologous blood clot is delivered to a target artery lumen using a catheter.
  • a model in which cerebral arteriosclerosis is blocked is created by blocking blood flow.
  • the present invention has been made in view of the circumstances as described above.
  • the purpose of the present invention is a less invasive method, during which myocardial infarction-inducing surgery has a very low lethality after surgery, and the myocardium is blocked by blocking blood flow.
  • the purpose of the present invention is to provide a non-human myocardial infarction animal model that can be used for local treatment of myocardial infarction and research of regenerative medicine after necrosis, and a method for producing the same.
  • the method for producing a non-human animal model of myocardial infarction includes a branch vessel occlusion step of blocking blood flow of the branch vessel by administering a temporary embolic agent to the branch vessel of the cardiac coronary artery; and the branch The method includes a step of blocking blood flow of the coronary artery by administering a temporary embolizing agent to a target coronary artery that is to cause myocardial infarction after a predetermined period of time in the vascular occlusion step.
  • the branch vessel is preferably a branch vessel of a coronary artery intended to cause myocardial infarction.
  • the temporary embolic agent In at least one of the branch vascular occlusion step and the blood flow blockage of the coronary artery, it is preferable to administer the temporary embolic agent while expanding the balloon catheter upstream of the blood vessel to which the temporary embolic agent is administered.
  • the temporary embolic agent is preferably a dispersion or solution or paste obtained by dispersing or dissolving spherical PVA fine particles in a medium.
  • the myocardial infarction non-human animal model of the present invention is a model prepared by the above-described method for preparing a myocardial infarction non-human animal model of the present invention, and at least any one blood vessel of the coronary artery falls into an ischemic state and cardiomyocytes are Although it is necrotic, it has a feature of having a myocardial infarction lesion site in which blood flow of the ischemic blood vessel can be resumed.
  • the non-human animal is preferably a pig.
  • the balloon catheter is passed to the inlet of the blood vessel to be blocked, and then the balloon is expanded at the inlet to block the blood flow.
  • the microparticles are administered in an amount that occludes the blood vessel.
  • the method for producing a non-human animal model of myocardial infarction according to the present invention can be performed by a less invasive operation without thoracotomy, the lethality of the animal accompanying the production is low, and there are individual differences such as thrombus. Since a certain embolic agent is not used, a model with stable and reproducibility can be produced.
  • the non-human animal model of myocardial infarction of the present invention has a myocardial infarction lesion site in which blood flow of an ischemic blood vessel can be resumed, in addition to screening for a therapeutic agent for myocardial infarction, regeneration It can be used for extensive research on myocardial infarction, such as medical research.
  • Model no. 1 is a contrast X-ray of the heart during one branch vascular occlusion process, which is taken in the initial stage of administration of a temporary embolic agent.
  • Model no. 1 is a contrast X-ray photograph of the heart during one branch vascular occlusion step, taken immediately before the end of administration.
  • Model no. 1 is a contrast X-ray of a heart in a myocardial infarction induction process, which is taken in the initial stage of administration of a temporary embolic agent.
  • Model no. 1 is a contrast-enhanced MRI examination photograph 1 week after 1 myocardial infarction induction step.
  • Model no. It is the photograph which image
  • Model no. 6 is a contrast-enhanced MRI examination photograph performed one week after the myocardial infarction induction process in FIG.
  • Model no. 6 is a contrast-enhanced MRI examination photograph performed one week after the myocardial infarction induction process in FIG. Model no. It is a contrast
  • the method for producing a non-human animal model of myocardial infarction includes a branch vascular occlusion step (preconditioning) in which blood flow of the branch blood vessel is blocked by administering a temporary embolic agent to the branch blood vessel of the coronary artery of the heart. ); And a step of blocking the blood flow of the coronary artery by administering a temporary embolic agent to the target coronary artery to cause myocardial infarction after a predetermined period of time in the branching vessel occlusion step (myocardial infarction induction step) )including.
  • the target coronary artery is a coronary artery that causes myocardial infarction, and the left anterior descending coronary artery (LAD), the left coronary artery (LCX), the left main coronary artery (LMT), and the right coronary artery (RCA). ).
  • LAD left anterior descending coronary artery
  • LCX left coronary artery
  • LMT left main coronary artery
  • RCA right coronary artery
  • myocardial infarction in which the myocardium becomes ischemic and necrotic because the blood flow flowing through at least one of these blood vessels rapidly decreases or is interrupted.
  • the blood vessel occluded in the branch blood vessel occlusion step is a branch blood vessel of at least one of the coronary arteries.
  • the branch vessel may not be a branch vessel of the coronary artery that is about to undergo myocardial infarction.
  • the temporary embolic agent When a temporary embolic agent is administered to a branch vessel, the temporary embolic agent flows into the branch vessel other than the target due to the reverse flow of the blood flow, etc. Since there is a possibility that the amount of the temporary embolic agent for embolizing the blood vessel will be insufficient, the entrance of the target branch vessel is temporarily occluded by the balloon catheter (first balloon catheter) prior to the administration of the temporary embolic agent. Then, it is desirable to administer a temporary embolic agent into the blood vessel at the distal site downstream of the occlusion by the balloon.
  • Balloon catheters are usually inserted from the femoral artery of the limb toward the heart. Thereby, a highly invasive thoracotomy can be avoided.
  • the first balloon catheter is not particularly limited as long as it is designed so that the balloon at the tip reaches a constant diameter with a constant pressure, and the balloon of the catheter is arranged along the guide wire.
  • An over-the-wire catheter is preferably used.
  • the diameter of the balloon may be selected according to the diameter of the blood vessel to be occluded.
  • the blood flow blockage by the balloon catheter may be longer than the time during which the blood vessel can be occluded by administering the temporary embolic agent, and is usually 15 to 60 minutes.
  • the expansion of the balloon in this step is the greatest purpose for preventing the backflow of the administered embolic material and not the purpose of inducing necrosis of the tissue by blocking the blood flow.
  • the catheter used at this time is preferably used also as the first balloon catheter.
  • the catheter used at this time is preferably used also as the first balloon catheter.
  • a blood anticoagulant such as heparin prior to the administration of the temporary embolic agent. This is to prevent blood from coming into contact with an external substance such as a temporary embolic agent to form a thrombus.
  • the above operation is preferably performed while confirming with angiography, and may be continued until blood flow is confirmed with angiography.
  • the contrast agent may be administered separately from the temporary embolic agent or may be contained in the temporary embolic agent.
  • a target coronary blood flow blocking step is performed after a predetermined period.
  • the predetermined period is usually 1 to 10 days.
  • the period in which the embolic agent remains in the branch vessel and the blood flow in the vicinity of the branch vessel can be blocked and the myocardial tolerance to ischemia can be acquired to some extent is the above-described period.
  • the temporary embolic agent that occludes the branch vessel is decomposed or dissolved in the body fluid and excreted outside the body.
  • the coronary artery blood flow blockage process is performed by a target coronary artery (ie, a branch artery, a left anterior descending artery (LAD), a left coronary artery (LCX), or a left main coronary artery (LMT)). ), Or by injecting a temporary embolic agent into the right coronary artery blood vessel (RCA).
  • a target coronary artery ie, a branch artery, a left anterior descending artery (LAD), a left coronary artery (LCX), or a left main coronary artery (LMT)
  • RCA right coronary artery blood vessel
  • the coronary artery entrance is blocked by a balloon catheter (second balloon catheter) in order to suppress the backflow of the temporary embolizing agent, etc. It is desirable to administer a temporary embolic agent into a blood vessel at a distal site downstream of the head.
  • the blood flow blockage with the second balloon catheter is usually inserted in the vicinity of the root of the target artery in advance, and the guiding catheter is placed there.
  • the second balloon catheter is inserted into the guiding catheter, and the balloon is protruded from the tip and expanded.
  • the temporary embolic agent is also injected by using a catheter, preferably a second balloon catheter, in the same manner as in the branch vessel occlusion step. And it is preferable to carry out while washing the catheter with physiological saline.
  • the second balloon catheter only needs to have a balloon diameter that can block coronary blood flow. Since the temporary embolizing agent cannot be injected and occluded in the portion where the balloon is inflated, a shorter balloon length is preferable. Usually 1-2 cm is used.
  • the temporary embolic agent to be administered is preferably the same as the temporary embolic agent used in the branching vessel occlusion step. Prior to administration of the temporary embolic agent, it is preferable to administer a blood anticoagulant, and it is preferable to administer the temporary embolic agent while washing the catheter by injecting physiological saline.
  • the above operation is preferably performed while confirming by angiography, as in the branch vessel occlusion step, and may be continued until it is confirmed that blood flow is stopped by angiography.
  • the contrast agent can be administered prior to or together with the temporary embolic agent.
  • a pathological model of myocardial infarction is completed. Confirmation of myocardial infarction can be confirmed by contrast-enhanced MRI. If a site where the contrast agent excretion is delayed is observed, it is considered that a myocardial infarction lesion has been formed in the image diagnosis.
  • the survival rate of the model animal is 90% or more until the formation of the myocardial infarction lesion.
  • the temporary embolic agent used in the method of the present invention can block or block a target blood vessel site to reduce or block blood flow, and dissolves in a body fluid after a predetermined period of time, thereby blocking permanent blood flow. It is a dispersion or solution or paste obtained by dispersing or dissolving a substance (temporary embolic substance) that does not remain in the body in a medium while avoiding it.
  • the embolization period as a temporary embolization agent is not particularly limited, but in the case of the occlusion agent used in the method for preparing a myocardial infarction model of the present invention, a substance capable of blocking or reducing blood flow usually for 1 to 14 days until completion of the myocardial infarction pathology If it is.
  • the temporary embolic material examples include a gelatin sponge disclosed in WO98 / 3203 and a water swell ratio of 30% or more disclosed in JP-A-2004-167229, and a phosphoric acid at 37 ° C. It may be a substantially spherical average particle having degradability in acid buffered saline, or having a saponification degree of 90 mol% or more and an average particle size of 70 to 1000 ⁇ m disclosed in JP-A-2007-37989. Pearl-like PVA particles may be used. PVA particles are preferable in that they dissolve in blood for a predetermined period of time so that blood flow in a blood vessel once blocked can be resumed and does not remain in the body.
  • spherical PVA particles that are particularly preferable temporary embolic materials will be described.
  • PVA is a saponified product of a vinyl ester homopolymer or copolymer of vinyl ester such as vinyl acetate, vinyl propionate, vinyl formate, vinyl stearate, vinyl benzoate, etc. (unmodified PVA)
  • a saponified vinyl ester polymer obtained by copolymerizing a monomer copolymerizable with vinyl ester pre-modified PVA
  • a saponified non-modified PVA modified with sulfonic acid, carboxylic acid or the like The concept includes post-modified PVA).
  • Examples of the monomer copolymerizable with the vinyl ester include unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid or salts thereof, or unsaturated carboxylic acids such as mono- or dialkyl esters.
  • unsaturated acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid or salts thereof, or unsaturated carboxylic acids such as mono- or dialkyl esters.
  • Acids such as ethylene and propylene; containing hydroxy groups such as 3-buten-1-ol, 4-penten-1-ol, 5-hexen-1-ol, and 3,4-dihydroxy-1-butene Derivatives such as ⁇ -olefins and acylated products thereof; alicyclic hydrocarbons such as norbornene; nitriles such as acrylonitrile and methacrylonitrile; amides such as diacetone acrylamide, acrylamide and methacrylamide; ethylene sulfonic acid, allyl sulfonic acid , Methallylsulfonic acid, etc.
  • modified PVA examples include saponified polymers containing the copolymerizable monomer units as well as PVA having side chain 1,2-diol units represented by the general formula (1).
  • R 1 to R 6 each independently represents a hydrogen atom or an organic group.
  • R 1 to R 6 are preferably all hydrogen atoms, but may be organic groups as long as the resin properties are not significantly impaired.
  • the organic group is not particularly limited, but is preferably an alkyl group having 1 to 4 carbon atoms such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, or a tert-butyl group. You may have substituents, such as a halogen group, a hydroxyl group, an ester group, a carboxylic acid group, and a sulfonic acid group, as needed.
  • X is a single bond or a linking group, and is preferably a single bond from the viewpoint of solubility and crystallinity.
  • the bonding chain is not particularly limited, but other hydrocarbons such as alkylene, alkenylene, alkynylene, phenylene, naphthylene (these hydrocarbons may be substituted with halogen such as fluorine, chlorine, bromine, etc.) , —O—, — (CH 2 O) m—, — (OCH 2 ) m—, — (CH 2 O) mCH 2 —, —CO—, —COCO—, —CO (CH 2 ) mCO—, — CO (C 6 H 4 ) CO—, —S—, —CS—, —SO—, —SO 2 —, —NR—, —CONR—, —NRCO—, —CSNR—, —NRCS—, —NRNR— , -HPO 4 -,
  • the degree of modification is usually 0.2 to 1 mol%, preferably 0.1 to 1 mol%, more preferably 0.3 to 0.5 mol%.
  • the saponification degree of the vinyl ester component in the PVA as described above is a value measured based on JIS K6726, and is usually 90 mol% or more. In the case of unmodified PVA, it is 90-99.5 mol%, and in the case of modified PVA, it is 99 mol% or more. This is because unmodified PVA uses a degree of saponification to control the solubility, and a relatively wide range of saponification degrees is used, whereas modified PVA dissolves mainly depending on the amount of modification and heat treatment conditions. This is because it is preferable to use a high saponification product having a small influence on solubility.
  • the crystallinity can be controlled with a modified amount rather than the degree of saponification. If saponification is insufficient, the pressure when injecting the occlusive agent through the catheter is very high, such as it tends to swell in the aqueous medium, the viscosity becomes too high, the catheter cannot pass through, and the catheter is clogged. However, the workability may be significantly reduced, which is not preferable.
  • particularly preferred PVA fine particles for use as a temporary embolic material are PVA as described above and spherical particles having the following characteristics.
  • the particle diameter of the PVA fine particles is preferably 50 to 800 ⁇ m, more preferably 100 to 250 ⁇ m, and still more preferably 105 to 212 ⁇ m.
  • the diameter of the coronary artery is usually 500 to 3000 ⁇ m, and the diameter of the branch blood vessel of the coronary artery is 50 to 1000 ⁇ m. Therefore, if the average particle diameter of the PVA particles is too small, the region other than the target blood vessel, capillary blood vessel Etc. also tend to block, which is not preferable. On the other hand, if the average particle size is too large, depending on the type of catheter to be used, there is a tendency that particles pass through the catheter remarkably or cannot pass.
  • the average degree of polymerization of the PVA particles is usually from 80 to 1500, preferably from 90 to 1000, more preferably from 100 to 800, still more preferably from 300 to 600.
  • the average degree of polymerization is too small, it is not easy to produce industrially stably, and dissolution in a body fluid becomes fast, so that it may disappear before the myocardial infarction induction step.
  • the average degree of polymerization becomes too large, the dissolution time of the particles in the blood vessel becomes very long, and the function as a temporary occlusive agent decreases.
  • the PVA particles used in the present invention preferably have a shape close to a true sphere. This is because, by adopting a shape close to a true sphere, the catheter passage is improved, damage to the blood vessel can be reduced, and complete occlusion can be achieved more efficiently during occlusion.
  • the sphericity coefficient is usually 0.96 or more, preferably 0.98 or more, more preferably 0.99 or more.
  • similar to a true sphere has the favorable permeability
  • the crystallinity of the PVA fine particles is preferably 55 to 65%, more preferably 58 to 63%, and still more preferably 60 to 62%.
  • the crystallinity of the PVA particles can be controlled by the heat treatment conditions after the PVA production. If the crystallinity is too low, the PVA fine particles are liable to swell in the catheter and the catheter permeability tends to be poor, and if it is too high, the dissolution rate tends to be too slow.
  • the heat treatment temperature is usually 120 to 150 ° C., preferably 130 to 140 ° C.
  • the PVA fine particles used in the present invention preferably have a water dissolution rate and a blood dissolution rate adjusted within the following ranges.
  • the rate of dissolution in water is usually from 25 to 70%, preferably from 30 to 60%, more preferably from 30 to 55%, as a residual rate in the following side method.
  • the residual rate as an evaluation index of the dissolution rate in water is classified into 70 g of water and 100 to 212 ⁇ m in a 100 ml beaker, 3 g of PVA particles are added, and the mixture is stirred at room temperature for 2 minutes.
  • the PVA particles as described above can be produced, for example, according to the method for producing granular polyvinyl alcohol described in JP-A-56-120707.
  • an alcohol or a polyvinyl ester solution (b) of a solvent comprising alcohol and methyl acetate (a) is substantially incompatible with any of polyvinyl ester, a saponified product of the ester, and component (a).
  • dispersed in a granular form in a medium (c) having a higher viscosity than the component (b) and saponified in the presence of a saponification catalyst is particularly, for producing granular polyvinyl alcohol described in JP-A-56-120707.
  • an alcohol or a polyvinyl ester solution (b) of a solvent comprising alcohol and methyl acetate (a) is substantially incompatible with any of polyvinyl ester, a saponified product of the ester, and component (a).
  • lower aliphatic alcohols such as methanol, ethanol, isopropyl alcohol, and propyl alcohol can be used alone or in admixture of two or more at any ratio.
  • methanol, ethanol, and isopropyl alcohol are preferably used from the viewpoint of obtaining particle size control during saponification reaction and practical saponification degree rate.
  • the ratio of alcohol / methyl acetate is preferably 0.5 or more, more preferably 1.5 or more, in terms of the saponification reaction efficiency of the polyvinyl ester. preferable. It is also possible to use various organic solvents having a polarity lower than that of methyl acetate.
  • the content of the polyvinyl ester in the component (b) is not particularly limited, but is usually 10 to 80% by weight of the whole solvent.
  • Component (b) polyvinyl ester solution
  • the medium (c) is substantially incompatible with any of the polyvinyl ester to be used, its saponified product, and the component (a) (alcohol or alcohol and methyl acetate), and has a higher viscosity than the polyvinyl ester solution (b).
  • examples include aliphatic saturated hydrocarbons such as liquid paraffin and kerosene, aromatic hydrocarbons, and alicyclic hydrocarbons. These can be used alone or in admixture of two or more. Among these, liquid paraffin is preferable because the polyvinyl ester solution can be uniformly dispersed.
  • the viscosity of the medium (c) is not particularly limited as long as it is higher than the viscosity of the polyvinyl ester solution (b).
  • the use ratio of the polyvinyl ester solution (b) and the medium (c) is preferably 2/8 to 6/4, more preferably 4/6 to 5/5 in terms of weight ratio.
  • the use ratio of the polyvinyl ester solution (b) is less than 20% by weight, the production efficiency is lowered, which is not preferable.
  • the use ratio of the polyvinyl ester solution (b) exceeds 60% by weight, the dispersibility is deteriorated, and aggregates of many particles are easily formed, and the average particle diameter of the pearl-like PVA particles tends to increase.
  • the saponification catalyst a normal alkali catalyst used when saponifying a polyvinyl ester to produce PVA can be used.
  • the amount of the saponification catalyst used is appropriately determined depending on the concentration of the polyvinyl ester and the desired degree of saponification, but is usually 0.1 to 30 mmol with respect to the vinyl acetate unit (1 mol) in the polyvinyl ester, preferably A suitable ratio is 2 to 17 mmol.
  • the reaction temperature of the saponification reaction is preferably 20 ° C to 60 ° C. When reaction temperature is 20 degrees C or less, reaction rate becomes small and reaction efficiency falls. When the temperature exceeds 60 ° C., it becomes higher than the boiling point of the solvent, which is not preferable for safety.
  • PVA particles with a high saponification degree of 99.0% or more have a saponification degree of 2 for the purpose of safety to reduce the properties of the obtained PVA particles and the toxicity to the living body due to liquid paraffin incorporated into the PVA particles. It is preferable to produce by a saponification reaction in a stage. In the primary saponification, the saponification reaction is carried out until the saponification degree becomes 75 to 90 mol%, and then the particles are separated from the reaction slurry by a solid-liquid separation device such as a centrifugal separator device or in the laboratory. 2 or No.
  • the mixture is separated by filtration with 63, and washed with a suitable solvent or mixed solvent such as methanol, methyl acetate, ethyl acetate, methyl acetate / methanol mixture as necessary to obtain primary saponified particles.
  • a suitable solvent or mixed solvent such as methanol, methyl acetate, ethyl acetate, methyl acetate / methanol mixture as necessary to obtain primary saponified particles.
  • the obtained primary saponification particles are dispersed in an alcohol solvent such as methanol or ethanol to drive the saponification reaction.
  • the reaction is terminated, and the PVA particles (secondary saponified particles) of the present invention are obtained by the same method as the recovery of particles in the primary saponification.
  • the production method is not particularly limited, but (i) a method for saponifying a copolymer of a vinyl ester monomer and a compound represented by the following general formula (2) , (Ii) a method of saponifying and decarboxylating a copolymer of a vinyl ester monomer and a compound represented by the following general formula (3), (iii) a vinyl ester monomer and represented by the following general formula (4) It is preferably produced by a method of saponifying and deketalizing a copolymer with a compound.
  • R 1 to R 6 are all the same as in the formula (1).
  • R 7 and R 8 are each independently hydrogen or R 9 —CO— (wherein R 9 is an alkyl group).
  • R 10 and R 11 are each independently a hydrogen atom or an organic group.
  • the method (i) is preferable in that it is excellent in copolymerization reactivity and industrial handling, and in particular, R 1 to R 6 are hydrogen atoms, X is a single bond, R 7 and R 8 are R 9 —CO.
  • R 1 to R 6 are hydrogen atoms
  • X is a single bond
  • R 7 and R 8 are R 9 —CO.
  • 3,4-diasiloxy-1-butene in which R 9 is an alkyl group is preferable
  • 3,4-diacetoxy-1-butene in which R 9 is a methyl group is particularly preferable.
  • a saponification method performed with PVA containing no side chain 1,2-diol can be employed.
  • sterilization methods include ⁇ -ray, autoclave sterilization, a method of dipping in a Hibiten solution (chlorhexidine gluconate solution), and a cleaning method using sterilized physiological saline.
  • PVA particles having a desired average particle size can be obtained by physically sieving the pearl-like PVA particles obtained by the above production method using a standard wire mesh as necessary.
  • the PVA particles can be adjusted.
  • the stirring speed during the saponification reaction is increased in the production according to the method for producing granular polyvinyl alcohol described in JP-A-56-120707.
  • the particle size is controlled by setting the viscosity of the medium (c) such as liquid paraffin higher than the viscosity of the polyvinyl ester solution (b) or by controlling the ratio of the medium (c) and the polyvinyl ester solution (b). You can also
  • the temporary embolic agent used in the method of the present invention is a dispersion or solution or paste of a temporary embolic material.
  • it is a dispersion or solution or paste obtained by dispersing or dissolving the above-mentioned spherical PVA fine particles in a medium.
  • any of an aqueous medium such as alcohol, purified water, and physiological saline; and a non-aqueous medium such as iodized poppy oil fatty acid ester can be used.
  • the PVA dispersion obtained after saponification by the above-described method for producing PVA particles may be used as it is. Even when an aqueous medium is used, when the PVA particles are used immediately after being mixed with the aqueous medium, some or all of the PVA fine particles are dispersed in the aqueous medium.
  • a contrast agent may be used as the medium.
  • a contrast agent liquid is usually administered, so that it can also be used as a medium.
  • the contrast agent examples include urinary tract, vascular contrast agent, MRI contrast agent, and gastrointestinal contrast agent, and are usually an ionic contrast agent, an ionic water-soluble contrast agent, and a nonionic water-soluble contrast agent.
  • An agent is used. Specifically, Iopamiron (manufactured by Schering AG), Oipalomin (manufactured by Fuji Pharmaceutical Co., Ltd.), Hexabrix (manufactured by Terumo Co., Ltd.), Omni Park (manufactured by Daiichi Sankyo Pharmaceutical Co., Ltd.), and Vijipark (daiichi Sankyo Pharmaceutical Co., Ltd.), Iomeron (manufactured by Eisai Co., Ltd.), Broscope (manufactured by Mitsubishi Tanabe Pharma Corporation), and the like can be used. These contrast agents are usually aqueous solutions. The mixing of the contrast agent and the PVA particles is preferably performed immediately before use, and the temporary embolic agent thus prepared is in a disper
  • the temporary embolic agent may contain an anticoagulant such as heparin or warfarin, an antiplatelet drug, or the like.
  • the PVA particles begin to dissolve in the blood vessel to become a paste and embolize the blood vessel. That is, an embolic state is achieved. If such a state lasts for about 1 hour or longer, the myocardial cells that are fed by the embolized blood vessels become necrotic. Thereafter, PVA is further dissolved in blood and body fluid and discharged out of the body, the viscosity of the paste decreases, and the vascular occlusion state is eventually resolved.
  • the dissolution rate varies depending on the medium to be used as the embolic agent, but all embolic substances are excreted in about one week. Therefore, after a predetermined period, the blood flow resumes again in the blocked blood vessel, and the catheter can be inserted. In addition, it can confirm with the contrast agent that the thrombus is not formed by the blood flow interruption
  • the myocardial infarction non-human animal model of the present invention is a model produced by the model production method of the present invention.
  • the myocardial infarction model produced by the above method has a so-called myocardial infarction pathological condition in which the myocardium supplied with nutrients by the blocked coronary artery is necrotic.
  • the coronary artery that caused myocardial infarction after a certain period of time, gradually disappeared after the embolic agent used for occlusion dissolved in the blood, and blocked blood flow with mechanical occlusion devices such as an Ameloid ring. Therefore, it is possible to insert the catheter again in the blood vessel in the part where the myocardial infarction has occurred after the disappearance of the embolic agent. Therefore, the myocardial infarction non-human animal model of the present invention can be used as a model for local therapy, drug screening for local treatment, and myocardial regeneration research.
  • the cause of actual myocardial infarction includes occlusion or stenosis due to coronary atherosclerosis, as well as thrombus formation that rapidly occludes the coronary artery.
  • myocardial infarction due to thrombus formation subsequent thrombolysis etc. The blood flow may resume again. Therefore, the non-human animal model of myocardial infarction of the present invention can also be used for pathological research, treatment mode, and therapeutic drug screening of such myocardial infarction.
  • the non-human animals used for the model are mammals, and rats, mice, rabbits, pigs, and the like can be used. Of these, pigs are preferably used. This is because pigs have physiological and anatomical findings and physiology related to digestion and absorption similar to those of humans, and in particular, the heart morphology, coronary artery distribution, and arterial endothelial structure are similar to humans.
  • Average particle diameter of PVA particles was measured by adding 10 parts of PVA particles to 100 parts of isopropyl alcohol, which is a poor solvent for highly saponified PVA, and measuring the average particle diameter as an average code length under stirring. Went.
  • Resentec M100 in-line type particle monitoring system, manufactured by Resentec
  • the average code length ( ⁇ m) was obtained by dividing the range of 0.8 to 1000 ⁇ m into 38 channel code lengths, counting the number of particles in each channel, and calculating the average code length ( ⁇ m) by the following equation.
  • Average code length ⁇ (Yi ⁇ Mi2) / ⁇ Yi Yi: Count number of particles when monitored by Lazentec M100 Mi: Code length of each channel
  • Sphericality (sphericity coefficient)
  • L The length (L) and area of the contour of each particle in the unit visual field are measured from the PVA fine particle image obtained by the scanning electron microscope, and the circumference (M) of the circle having the same area as this area is obtained. From these, the average value of the sphericity coefficient (M / L) was determined. The closer the sphericity coefficient is to 1, the closer the particle is to a true sphere.
  • TTC 2,3,5-Triphenyl-2H-tetrazolium chloride
  • Methanol was added to the obtained methanol solution of the copolymer to adjust the resin content to 40%.
  • the solution was charged into 100 parts of a reactor equipped with a stirrer, and while stirring at a temperature of 30 ° C., a 2% methanol solution in terms of Na content of NaOH was used as a saponification reaction catalyst with respect to the vinyl acetate unit of polyvinyl acetate. 3.2 mmol was added.
  • 100 parts of liquid paraffin was added and the stirring speed was adjusted to 300 revolutions. As a result, the copolymer was spherically dispersed in the liquid paraffin.
  • the reaction was carried out while maintaining the temperature at 30 ° C., the reaction was stopped after 60 minutes, and the pearl-like PVA particles were separated by performing solid-liquid separation with a centrifugal separator.
  • the particles were washed by an extraction method using an ethyl acetate solution at a temperature of 50 ° C., and then dried at a temperature of 80 ° C. for 24 hours using a vacuum dryer.
  • the obtained pearl-like PVA particles are dispersed again in 500 parts of a methanol solution, 20 parts of a saponification catalyst (2% NaOH methanol solution in terms of Na weight) are added, and the temperature is 50 degrees. Then, secondary saponification was performed over 2 hours. Thereafter, the pearl-like PVA particles were separated again by a centrifugal separator, washed by an extraction method using an ethyl acetate solution at a temperature of 50 ° C., and then dried at a temperature of 80 ° C. for 24 hours using a vacuum dryer.
  • a saponification catalyst 2% NaOH methanol solution in terms of Na weight
  • the obtained pearl-like PVA resin had a saponification degree of 99.7 mol% and an average polymerization degree of 500.
  • the content of the 1,2-diol structural unit was 0.49 mol% when calculated by 1 H-NMR (internal standard substance: tetramethylsilane).
  • the cloud point of this PVA resin was 100 degreeC or more.
  • the above particles were heat-treated at 120 ° C. for 30 minutes to obtain pearl-like PVA particles.
  • the crystallinity (DSC method) of the pearl-like PVA particles was about 62%, and the solubility in water (residual rate) was 31.4%.
  • Model No. 1-5 myocardial infarction model of left coronary artery rotation branch
  • Pigs were sedated by intramuscular injection of a mixture of Ketamine (10 mg / kg) and Xylazine (2 mg / kg), followed by insertion of a tracheal tube and anesthetic (Isoflurane 5% concentration) 1-3% concentration Maintained at.
  • the limb was fixed in the supine position, the femoral artery was exposed, and an 8 Fr sheath was inserted.
  • heparin 100 U / Kg a guiding catheter (Brite Tip 6Fr.
  • FIG. 1 shows the initial stage of administration, and the arrows show the convolution branches.
  • FIG. 2 shows immediately before the end of the administration, and the branching blood vessels (arrows in the figure) are thin, and it was confirmed that the blood flow was blocked by the embolic material.
  • a guiding catheter is placed at the entrance of the target coronary artery, that is, the left main coronary artery, and then an over-the-wire balloon catheter (Bostn Scientific The balloon of the company's Gateway PTA Dilatation catheter (9.0 mm x 2.0 to 3.0 mm at 6 ATM) was protruded and expanded to stop the main blood flow.
  • a temporary embolic agent prepared according to the above formulation was manually injected for 0.1 cc from the tip of a balloon catheter, and 0.5 cc of physiological saline was additionally injected.
  • FIG. 5 One week after the myocardial infarction induction step (after 2 weeks of preconditioning), a photograph taken by MRI examination is shown in FIG. 5, and a macroscopic photograph of the extracted heart is shown in FIG.
  • FIG. 5 a delay in excretion of the contrast agent was observed in agreement with the flow-through region (arrow) at the vascular occlusion site.
  • FIG. 6 myocardial necrosis was observed in agreement with the excretion delay site (arrow) of the MRI contrast medium. Therefore, it was confirmed that the model of myocardial infarction of the circumflex branch in the pig could be prepared. Model No. The same was true for 2-5 (not shown).
  • Model No. 6, 7 (myocardial infarction model of the anterior descending coronary artery) Except for changing the target coronary artery to anterior descending branch, model no.
  • a branch vessel blocking step and a myocardial infarction induction step were performed.
  • FIGS. 7 and 8 are images of a long axis and a short axis, respectively, obtained by MRI examination.
  • contrast MRI examination a delayed excretion image of contrast medium is observed in the flow-through area (arrow part) of the anterior descending branch, and the pathology of myocardial infarction. was confirmed.
  • FIG. 9 shows a photograph of the delay in excretion of the contrast agent due to complete occlusion of the anterior descending coronary artery. (Arrow part in FIG. 9). However, about 30 minutes after the blood flow was interrupted, none of the animals died of ventricular arrhythmia and could not create a myocardial infarction lesion.
  • the method for preparing a myocardial infarction model according to the present invention is accompanied by induction of myocardial infarction because blood flow can be blocked only by inserting a catheter and injecting a drug without performing a highly invasive surgical operation involving thoracotomy. ) High survival rate of non-human animals. Therefore, it can be used for efficient production of a model using large animals close to humans such as pigs.
  • the myocardial infarction model produced by the production method of the present invention does not permanently occlude the blood vessel at the site of myocardial infarction after elapse of a predetermined period, but can pass the catheter again after elapse of the predetermined period, It is useful as a model used in the development of local treatments, screening for drugs for local treatments, and research in regenerative medicine.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Surgical Instruments (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

 本発明は、侵襲の少ない方法で、心筋梗塞誘発手術中、手術後の致死率が極めて低く、しかも血流遮断により心筋を壊死させた後、血流が再開され、心筋梗塞の局所治療や再生医療の研究にも利用することができる心筋梗塞非ヒト動物モデル及びその作製方法を提供する。心臓冠動脈の分枝血管に一時塞栓剤を投与することにより、前記分枝血管の血流遮断を行う分枝血管閉塞工程;及び前記分枝血管閉塞工程の所定期間経過後に、心筋梗塞を起こそうとする目的の冠動脈に一時塞栓剤を投与することにより、前記冠動脈の血流遮断を行う工程を含む作製方法である。前記分枝血管は、心筋梗塞を起こそうとする目的の冠動脈の分枝血管であることが好ましい。

Description

心筋梗塞非ヒト動物モデル及びその作製方法
 本発明は、低い致死率で、且つ心筋の局所治療や再生医療などの研究にも利用できる心筋梗塞非ヒト動物モデルの作製方法及びこの方法により作製された非ヒト動物モデルに関する。
 心筋梗塞、心不全といった病態の治療薬のスクリーニング、治療方法の確立などのためには、心筋梗塞、心筋虚血の病態に陥っている非ヒト動物モデルが有用である。
 このような病態を有する動物モデルとしては、例えば、特開2002-291373号公報(特許文献1)に紹介されているように、冠動脈を永久的に結紮したラットのモデル(冠動脈結紮モデル)がある。しかし、このようなモデル作製方法では、例えば特開2005-229927号公報(特許文献2)で指摘されているように、全身麻酔により開胸して心臓、血管を露出させるなど、手技を要する手術が必要であり、このような手術侵襲は、対象動物にとっても負担が大きく、さらに心臓のポンプ機能の低下(心不全)により、次第に肺や腎臓などの心臓以外の主要臓器の血流量が不足し、多臓器不全に移行するなどの理由から、手術中、手術後を併せて30~50%の動物が死んでしまう。つまり、モデル作製の成功率が極めて低い。
 特開2002-209473号公報(特許文献3)では、健常動物の心臓の左冠動脈中枢部に結紮手術を施し、該冠動脈手術を施した心臓を別の健常動物の腹部に異所性移植し、該異所性心臓移植を施した動物を、心筋梗塞病態モデル動物とする方法が提案されている。このような方法は、1つのモデル作製に2頭(または2匹)の動物を要するため、大型動物を用いたモデルの大量作製には不適である。
 WO2006-030737号公報(特許文献4)では、致死率の低いモデルの作製方法として、動脈部位の下流血管を結紮した後、次いで、閉塞すべき動脈を閉塞する方法が提案されている。
 ところで、血管の血流遮断方法として、アメロイドリング(プラスチック製又は金属製のリングの内側にドーナツ型のカゼインコアを設けたもので、カゼインの体液吸収に伴う膨潤により、血管を閉塞する)を用いた方法が、近年、利用されている。このアメロイドリングを用いる方法は、縫合糸、クリップを用いる結紮による方法と比べて、血流量が緩徐に低下するため、手術後の心不全による致死を減少させることができる。
 しかしながら、アメロイドリングを用いる血流遮断は、下流血管の結紮には適用困難であることから、前記特許文献4の実施例1においても、下流血管の結紮を、縫合糸で行った後、冠動脈の閉塞処置をアメロイドリングを用いて行っている。
特開2002-291373号公報 特開2005-229927号公報 特開2002-209473号公報 WO2006-030737号公報
 特許文献4で提案されている方法は、予め局所的結紮を行うことで、心筋全体に虚血に対する耐性を獲得させ、心筋梗塞誘導手術に伴う動物の生存率を高めようとしているが、上記方法において行われる2度の血流遮断は、いずれも開胸を伴うものであるため、やはり手術の侵襲に伴う動物の負担は大きく、作製途中での動物死亡リスクが高い。
 さらに、結紮により血流遮断された心筋梗塞モデルは、結紮した血管の内腔を通し、カテーテル操作ができないため、心筋局所再生医療などの研究用モデルとしては利用できない。
 また、アメロイドリングによる血流遮断は、リング内側のカゼインの吸水による膨潤を利用しているが、膨潤速度の調節が難しいため、血流遮断までに要する時間にばらつきがあり、所望の心筋梗塞モデルを時間的に安定に作製することは容易でない。
 尚、前述の特許文献4には、結紮を用いない血流遮断の方法として、自家血凝固塊により動脈を閉塞させることが提案されている。
 実施例3として、自家血に凝固剤(ADPやトロンビン)を添加して自家血凝固塊(血栓)を作製し、次いで、カテーテルを用いて自家血凝固塊を目的とする動脈内腔に送達することで血流遮断を行うことにより、大脳動脈硬化が閉塞されたモデルを作製している。
 自家血凝固塊により血流遮断を行わせる方法の場合、冠動脈のような太い血管を急速に閉塞させるためには、大量の血栓を投入する必要があり、血栓のみで健常な冠動脈全体を閉塞させることは容易でなく、安定的なモデルの作製が困難である。さらに血栓の一部が生体反応により器質化して血管を永久的に閉塞させるおそれがあり、また、血栓の溶解時間に個体差や部位による差異があるため、部位再現性に優れた心筋梗塞モデルを効率よく作製することが困難である。
 本発明は、以上のような事情に鑑みてなされたものであり、その目的は、侵襲の少ない方法で、心筋梗塞誘発手術中、手術後の致死率が極めて低く、しかも血流遮断により心筋を壊死させた後、血流が再開され、心筋梗塞の局所治療や再生医療の研究にも利用することができる心筋梗塞非ヒト動物モデル及びその作製方法を提供することにある。
 本発明の心筋梗塞非ヒト動物モデルの作製方法は、心臓冠動脈の分枝血管に一時塞栓剤を投与することにより、前記分枝血管の血流遮断を行う分枝血管閉塞工程;及び前記分枝血管閉塞工程の所定期間経過後に、心筋梗塞を起こそうとする目的の冠動脈に一時塞栓剤を投与することにより、前記冠動脈の血流遮断を行う工程を含む。前記分枝血管は、心筋梗塞を起こそうとする目的の冠動脈の分枝血管であることが好ましい。
 分枝血管閉塞工程、及び冠動脈の血流遮断を行う工程の少なくとも一方の工程において、一時塞栓剤を投与する血管の上流でバルーンカテーテルを拡張させながら一時塞栓剤を投与することが好ましい。
 また、前記一時塞栓剤は、球状PVA微粒子を、媒体に分散乃至溶解してなる分散液又は溶液乃至ペーストであることが好ましい。
 本発明の心筋梗塞非ヒト動物モデルは、上記本発明の心筋梗塞非ヒト動物モデルの作製方法により作製されたモデルであり、冠動脈の少なくともいずれか1つの血管が虚血状態に陥って心筋細胞が壊死しているが、前記虚血した血管の血流が再開できるようになっている心筋梗塞病巣部位を有するという特徴を有している。前記非ヒト動物は、ブタであることが好ましい。
 本発明の非ヒト動物の血流遮断方法は、血流遮断しようとする血管の入口部までバルーンカテーテルを通した後、当該入口部でバルーンを拡張させて血流を遮断した状態で、PVA球状微粒子を、前記血管内を閉塞する量だけ投与することを特徴とする。
 本発明の心筋梗塞非ヒト動物モデルの作製方法は、開胸を伴わない、侵襲の少ない手術により行うことができるので、作製に伴う動物の致死率が低く、また、血栓のように個体差がある塞栓剤を用いていないので、安定的に再現性のよいモデルを作製することができる。
 また、本発明の心筋梗塞非ヒト動物モデルは、虚血した血管の血流が再開できるようになっている心筋梗塞病巣部位を有しているので、心筋梗塞の治療薬のスクリーニングの他、再生医療の研究など、心筋梗塞の広範な研究に利用可能である。
実施例で作製したモデルNo.1の分枝血管閉塞工程中における心臓の造影レントゲン写真であり、一時塞栓剤の投与初期に撮像した写真である。 実施例で作製したモデルNo.1の分枝血管閉塞工程中における心臓の造影レントゲン写真であり、投与終了直前に撮像した写真である。 実施例で作製したモデルNo.1の心筋梗塞誘導工程における心臓の造影レントゲン写真であり、一時塞栓剤の投与初期に撮像した写真である。 実施例で作製したモデルNo.1の心筋梗塞誘導工程における心臓の造影レントゲン写真であり、投与終了直前に撮像した写真である。 実施例で作製したモデルNo.1の心筋梗塞誘導工程1週間後に行った造影MRI検査写真である。 実施例で作製したモデルNo.1の心筋梗塞誘導工程1週間後の心臓を肉眼レンズカメラで撮影した写真である。 実施例で作製したモデルNo.6の心筋梗塞誘導工程1週間後に行った造影MRI検査写真で、心臓の長軸画像写真である。 実施例で作製したモデルNo.6の心筋梗塞誘導工程1週間後に行った造影MRI検査写真で、心臓の短軸画像写真である。 実施例で作製したモデルNo.8の冠動脈前下行枝閉塞後の造影レントゲン写真である。
 以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、これらの内容に特定されるものではない。
<心筋梗塞モデルの作製方法>
 本発明の心筋梗塞非ヒト動物モデルの作製方法は、心臓の冠動脈の分枝血管に、一時塞栓剤を投与することにより、前記分枝血管の血流遮断を行う分枝血管閉塞工程(プレコンディショニング);及び前記分枝血管閉塞工程の所定期間経過後に、心筋梗塞を起こそうとする目的の冠動脈に、一時塞栓剤を投与することにより、前記冠動脈の血流遮断を行う工程(心筋梗塞誘導工程)を含む。
 ここで、目的の冠動脈とは、心筋梗塞を引き起こす冠動脈であり、左冠動脈前下行枝血管(LAD)、左冠動脈回旋枝血管(LCX)、左冠動脈主幹部血管(LMT)、右冠動脈血管(RCA)をいう。
 これらの血管の少なくともいずれか1つの血管を流れる血流量が急激に減少又は途絶することにより心筋が虚血状態になり壊死してしまう、いわゆる心筋梗塞となる。
〔分枝血管閉塞工程(プレコンディショニング)〕
 分枝血管閉塞工程で閉塞される血管は、上記冠動脈のうちの少なくともいずれか1つの分枝血管である。分枝血管は、心筋梗塞を起こそうとする冠動脈の分枝血管でなくてもよい。
 分枝血管の血流が遮断されても、その貫流領域が小さければ、重篤な心筋梗塞状態には至らないことが多いので、心筋全体に虚血に対する耐性を与えることができる。分枝血管閉塞工程において閉塞される心臓冠動脈の分枝血管が、心筋梗塞を起こそうとする目的の冠動脈の分枝血管でなくても、心筋全体に虚血に対する耐性を与えることが可能であると推測されるが、心筋梗塞部位以外の心筋に対する影響を極力排除するために、心筋梗塞を起こそうとする目的の冠動脈の分枝血管であることが望ましい。
 分枝血管に対して、一時塞栓剤を投与する際、血流の逆流等によって目的とする以外の分枝血管内に一時塞栓剤が流入し、目的外の血管が塞栓されたり、分枝血管を塞栓するための一時塞栓剤量が不足する可能性があるので、一時塞栓剤の投与に先立ち、目的とする分枝血管の入口部をバルーン付きカテーテル(第1バルーンカテーテル)によって一時的に閉塞させ、その後、バルーンによる閉塞部下流の遠位部位の血管内に一時塞栓剤を投与することが望ましい。
 バルーンカテーテルの挿入は、通常、四肢の大腿動脈から心臓へ向けて行う。これにより、侵襲の高い開胸手術を回避できる。
 第1バルーンカテーテルとしては、一定圧力で先端のバルーンが一定径に達するようにデザインされているものであればよく、その種類は特に限定しないが、ガイドワイヤーに沿わせてカテーテルのバルーンを配置する、オーバーザワイヤー式カテーテルが好ましく用いられる。バルーンの径は、閉塞しようとする血管の径に従って選択すればよい。
 バルーンカテーテルによる血流遮断は、一時塞栓剤を投与して、血管を閉塞することができる時間より長ければよく、通常15~60分である。本工程におけるバルーンの拡張は、投与した塞栓物質の逆流防止が最大の目的であり、血流遮断による組織の壊死誘発が目的でないので、上記時間で足りる。
 一時塞栓剤の投与は、カテーテルを用いて行うことが好ましい。このとき使用するカテーテルは、上記第1バルーンカテーテルと兼用することが好ましい。これによりカテーテルの挿入操作を1つのガイドワイヤで兼用することが可能となり、バルーンの拡張に引き続いてガイドワイヤ用チャンネルから薬剤を放出すればよく、操作の効率を図ることができる。
 一時塞栓剤の投与は、生理食塩水でカテーテルを洗浄しながら行うことが好ましい。具体的には、一時塞栓剤を投与した後、生理食塩水を注入、あるいは一時塞栓剤の必要投与量を複数回分に分け、一時塞栓剤の投与と生理食塩水の注入を交互に行うことにより行う。これにより、カテーテルに残存、付着している塞栓剤を洗い流して、所定量の一時塞栓剤を精度よく投与することができ、また血管内に残存している血液を洗い出すこともできる。
 また、一時塞栓剤の投与に先立って、ヘパリン等の血液抗凝固剤を投与することが好ましい。血液が一時塞栓剤等の外的物質と接触して、血栓が形成されるのを防止するためである。
 以上の操作は、血管造影で確認しながら行うことが好ましく、血管造影にて血流が停止することを確認するまで投与しつづければよい。造影剤は、一時塞栓剤と別個に投与してもよいし、一時塞栓剤に含有しておいてもよい。
〔心筋梗塞誘導工程〕
 分枝血管を閉塞した後、所定期間経過後に、目的とする冠動脈の血流遮断工程を行う。
 ここで、所定期間とは、通常1~10日間である。塞栓剤が分枝血管に残存し、且つ分枝血管付近の血流を遮断できている状態で、虚血に対する心筋の耐性をある程度獲得できる程度の期間が、上記程度の期間である。
 かかる期間中に分枝血管を閉塞した一時塞栓剤が分解又は体液に溶解して、体外へ排泄される。
 冠動脈の血流遮断工程は、目的とする冠動脈(すなわち、分枝血管の基動脈で、左冠動脈前下行枝血管(LAD)、左冠動脈回旋枝血管(LCX)、又は左冠動脈主幹部血管(LMT)、又は右冠動脈血管(RCA)に、一時塞栓剤を投入することにより行う。
 かかる冠動脈の血流遮断工程においても、分枝血管閉塞工程と同様、一時塞栓剤の逆流などを抑制するために、冠動脈の入口をバルーンカテーテル(第2バルーンカテーテル)によって閉塞させ、その後、バルーン閉塞部下流の遠位部位の血管内に一時塞栓剤を投与することが望ましい。
 第2バルーンカテーテルによる血流遮断は、第1バルーンカテーテルとによる血流遮断と同様に、通常、ガイディングカテーテルを先行して目的とする動脈の根元近くまで挿入し、そこでガイディングカテーテルを留置し、ガイディングカテーテル内に第2バルーンカテーテルを挿通させ、先端からバルーンを突出させ、拡張することにより行う。
 また、一時塞栓剤の投与も、分枝血管閉塞工程と同様に、カテーテル、好ましくは第2バルーンカテーテルを兼用して、注入する。そして、生理食塩水によるカテーテルの洗浄を行いながら行うことが好ましい。
 第2バルーンカテーテルとしては、冠動脈の血流を遮断できるバルーン径を有するものであればよい。バルーンが膨らむ部分には、一時塞栓剤を注入、閉塞できないので、バルーン長さは短い方が好ましい。通常1~2cmのものを用いる。
 投与する一時塞栓剤は、分枝血管閉塞工程で用いた一時塞栓剤と同様のものが好ましい。また、一時塞栓剤の投与に先立って、血液抗凝固剤を投与することが好ましく、さらに、一時塞栓剤の投与を生理食塩水注入によりカテーテルを洗浄しながら行うことが好ましい。
 以上の操作は、分枝血管閉塞工程と同様に、血管造影で確認しながら行うことが好ましく、血管造影にて血流が停止することを確認するまで投与しつづければよい。造影剤は、一時塞栓剤の投与に先立って、あるいは一時塞栓剤とともに投与することができる。
 以上のような心筋梗塞誘導工程において、不整脈、血圧降下などはほとんど認められず、非ヒト動物の致死率は極めて低い。
 そして、上記心筋梗塞誘導工程後、所定期間(1週間程度)経過後、心筋梗塞の病態モデルが完成する。心筋梗塞であることの確認は、造影MRI検査で確認できる。造影剤の排泄遅延部位が認められたら、画像診断上、心筋梗塞病巣が形成できたと考えられる。心筋梗塞病巣形成までの間におけるモデル動物の生存率は90%以上である。分枝血管閉塞工程及び所定期間の放置(プレコンディショニング)により、虚血に対する心筋の対応能力が高まったため、より大きな範囲の心筋梗塞誘導による致死率を低減することができたと考えられる。
<一時塞栓剤>
 本発明の方法で用いられる一時塞栓剤は、目的とする血管部位を閉塞して血流量の低下乃至遮断することができ、所定期間経過後に体液に溶解することにより、永久的な血流遮断を回避するとともに、体内に残存しない物質(一時塞栓物質)を媒体に分散乃至は溶解させてなる分散液又は溶液乃至はペーストである。
 一時塞栓剤としての塞栓期間は特に限定しないが、本発明の心筋梗塞モデル作製方法で用いる閉塞剤の場合、心筋梗塞病態完成までの間、通常1~14日間、血流が遮断乃至低下できる物質であればよい。
 一時塞栓物物質としては、例えば、WO98/3203号公報に開示されているゼラチンスポンジや、特開2004-167229号公報に開示されている30%以上の水膨潤率を有し、37℃のリン酸緩衝生理食塩水中において分解性を有する略球状粒子平均粒子であってもよいし、特開2007-37989号公報に開示されているケン化度90モル%以上で、平均粒径70~1000μmのパール状PVA粒子であってもよい。
 PVA粒子は、所定期間で血液に溶解することにより、一旦閉塞した血管の血流を再開させることができ、体内に残存することがないという点において好ましい。
 以下、特に好ましい一時塞栓物質である球状PVA粒子について説明する。
〔球状PVA粒子〕
 本発明において、PVAとは、酢酸ビニル、プロピオン酸ビニル、ギ酸ビニル、ステアリン酸ビニル、安息香酸ビニルなどのビニルエステルの単独重合体や共重合体であるポリビニルエステルポリマーのケン化物(未変性PVA)の他、ビニルエステルと共重合可能なモノマーが共重合されてなるビニルエステル系ポリマーのケン化物(前変性PVA)、あるいは未変性PVAのケン化後に、スルホン酸、カルボン酸等で変性したもの(後変性PVA)も含む概念である。
 上記ビニルエステルと共重合可能なモノマーとしては、たとえば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、無水マレイン酸、イタコン酸等の不飽和酸類あるいはその塩あるいはモノまたはジアルキルエステル等の不飽和カルボン酸;エチレン、プロピレン等の各種α-オレフィン;3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、3,4-ジヒドロキシ-1-ブテン等のヒドロキシ基含有α-オレフィン類およびそのアシル化物などの誘導体;ノルボルネン等の脂環式炭化水素;アクリロニトリル、メタアクリロニトリル等のニトリル類;ジアセトンアクリルアミド、アクリルアミド、メタクリルアミド等のアミド類;エチレンスルホン酸、アリルスルホン酸、メタアリルスルホン酸等のオレフィンスルホン酸あるいはその塩;アルキルビニルエーテル類;ジメチルアリルビニルケトン、N-ビニルピロリドン、(メタ)アクリレート、さらに、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドプロピルトリメチルアンモニウムクロライド、2-アクリロキシエチルトリメチルアンモニウムクロライド、2-メタクリロキシエチルトリメチルアンモニウムクロライド、2-ヒドロキシ-3-メタクリロイルオキシプロピルトリメチルアンモニウムクロライド、アリルトリメチルアンモニウムクロライド、メタアリルトリメチルアンモニウムクロライド、3-ブテントリメチルアンモニウムクロライド、ジメチルジアリルアンモニウムクロリド、ジエチルジアリルアンモニウムクロライド等のカチオン基含有モノマー;アセトアセチル基含有モノマー;アリルスルホン酸、2-アクリルアミド-2-メチルプロペンスルホン酸、グリセリンモノアリルエーテル、酢酸イソプロペニル、1-メトキシビニルアセテート、1,4-ジアセトキシ-2-ブテン等が挙げられる。
 変性PVAとしては、上記共重合可能なモノマー単位を含有するポリマーのケン化物の他、一般式(1)で示される側鎖1,2-ジオール単位を有するPVAも含まれる。
Figure JPOXMLDOC01-appb-C000001
 上記一般式(1)において、R~Rはそれぞれ独立して水素原子又は有機基を表す。R~Rは、すべて水素原子であることが望ましいが、樹脂特性を大幅に損なわない程度の量であれば有機基であってもよい。該有機基としては特に限定されないが、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、tert-ブチル基等の炭素数1~4のアルキル基が好ましく、必要に応じてハロゲン基、水酸基、エステル基、カルボン酸基、スルホン酸基等の置換基を有していてもよい。
 上記一般式(1)中、Xは単結合又は結合基であり、溶解性、結晶化度の点から単結合であることが好ましい。上記結合鎖としては、特に限定しないが、アルキレン、アルケニレン、アルキニレン、フェニレン、ナフチレン等の炭化水素(これらの炭化水素は、フッ素、塩素、臭素等のハロゲン等で置換されていてもよい)の他、-O-、-(CHO)m-、-(OCH)m-、-(CHO)mCH-、-CO-、-COCO-、-CO(CH)mCO-、-CO(C)CO-、-S-、-CS-、-SO-、-SO-、-NR-、-CONR-、-NRCO-、-CSNR-、-NRCS-、-NRNR-、-HPO-、-Si(OR)-、-OSi(OR)-、-OSi(OR)O-、-Ti(OR)-、-OTi(OR)-、-OTi(OR)O-、-Al(OR)-、-OAl(OR)-、-OAl(OR)O-等が挙げられるが(Rは各々独立して任意の置換基であり、水素原子、アルキル基が好ましく、またmは自然数である)が挙げられる。なかでも、製造時の粘度安定性や耐熱性等の点で、炭素数6以下のアルキレン基、特にメチレン基、あるいは-CHOCH-が好ましい。
、変性PVAの場合、変性度は、通常0.2~1モル%、好ましくは0.1~1モル%、より好ましくは0.3~0.5モル%である。
 以上のようなPVAにおけるビニルエステル成分のケン化度は、JIS K6726に基づいて測定した値で、通常90モル%以上である。未変性PVAの場合、90-99.5モル%であり、変性PVAの場合、99モル%以上である。
 これは、未変性PVAの場合、溶解性の制御にケン化度を利用するため、比較的広い範囲のケン化度のものを用いるのに対し、変性PVAでは、主として変性量と熱処理条件によって溶解性を制御することから、ケン化度については溶解性への影響が小さい高ケン化度品を用いることが好ましいことによる。
 なお、変性種によって一概に言えないが、結晶性の制御は、ケン化度よりも変性量で行う方が、微妙な制御が可能であり、再現性も良好である。
 ケン化が不十分な場合、水性媒体に膨潤しやすくなり、粘度が高くなりすぎてカテーテル通過性が悪く、カテーテル内で詰まってしまったりするなど、カテーテルを通して閉塞剤を注入する際の圧力が非常に高くなって、作業性が著しく低下することがあるため、好ましくない。
 本発明で、一時塞栓物質として用いるのに特に好ましいPVA微粒子は、以上のようなPVAで且つ下記特性を有する球状粒子である。
 PVA微粒子の粒径は、50~800μmであることが好ましく、より好ましくは100~250μmであり、さらに好ましくは105~212μmである。
 冠動脈の径は、通常500~3000μmであり、冠動脈の分枝血管の径は、50~1000μmであることから、PVA粒子の平均粒径が小さすぎると、目的とする血管以外の部位、毛細血管なども閉塞する傾向があり、好ましくない。一方、平均粒径が大きすぎると、使用するカテーテルの種類によっては、粒子のカテーテル通過性が著しく低下したり、通過不能となる傾向がある。
 PVA粒子の平均重合度は、通常80~1500であり、好ましくは90~1000であり、より好ましくは100~800であり、さらに好ましくは300~600である。平均重合度が小さすぎると、工業的に安定的に生産するのが容易ではなく、また体液に対する溶解が速くなるため、心筋梗塞誘導工程前に消失してしまう場合がある。一方、平均重合度が大きくなりすぎると、血管内における粒子の溶解時間が非常に長くなり、一時閉塞剤としての機能が低下する。
 本発明で用いられるPVA粒子は、真球に近い形状を有していることが好ましい。真球に近い形状とすることにより、カテーテル通過性が良くなり、血管に対する損傷を小さくできるとともに、閉塞に際してより効率的に、完全な閉塞を達成できるからである。
 具体的には、球形度係数で、通常0.96以上であり、好ましくは0.98以上であり、より好ましくは0.99以上である。このように真球に近いポリビニルアルコール粒子は、カテーテル内の通過性がよいので、投与作業をスムーズに行うことができる。
 PVA微粒子の結晶化度は、55~65%が好ましく、より好ましくは58~63%であり、更に好ましくは、60~62%である。PVA粒子の結晶化度は、PVA製造後の熱処理条件によって制御することができる。結晶化度が低すぎると、カテーテル内で、PVA微粒子が膨潤しやすくなり、カテーテル通過性が悪くなる傾向があり、高すぎると溶解速度が遅くなりすぎる傾向がある。上記結晶化度に調節するためには、熱処理温度を、通常、120~150℃、好ましくは130~140℃で行えばよい。
 本発明で用いられるPVA微粒子は、水に対する溶解速度、血液に対する溶解速度を、下記範囲内に調整することが好ましい。
 水に対する溶解速度は、下記側的方法における残存率で、通常25~70%であり、好ましくは30~60%であり、より好ましくは30~55%である。ここで、水に対する溶解速度の評価指標とする残存率とは、100mlのビーカーに水70g及び100~212μmに分級し、PVA粒子3gを入れ、室温で2分間攪拌した後、ビーカーを37℃の水槽に入れ、攪拌しながらLASENTEC M100F(レーゼンテック社製、取り込み時間24.75秒)を用いて測定されるPVA粒子の粒子数について、測定開始直後の粒子数に対する3時間後の粒子数の比率として求められる。
 以上のようなPVA粒子は、たとえば、特開昭56-120707に記載された粒状ポリビニルアルコールの製造法に準じて製造することができる。具体的には、アルコールまたはアルコールと酢酸メチル(a)からなる溶媒のポリビニルエステル溶液(b)を、ポリビニルエステル、該エステルのケン化物、および成分(a)のいずれとも実質的に相溶せず、かつ成分(b)よりも粘度の高い媒体(c)中に粒状に分散せしめ、ケン化触媒存在下でケン化して得られる。
 (a)成分におけるアルコールとしては、メタノール、エタノール、イソプロピルアルコール、プロピルアルコール等の低級脂肪族アルコールを単独であるいは2種以上を任意の割合で混合して用いることができる。これらのうち、ケン化反応時の粒径制御および実用的なケン化度速度が得られる点から、メタノール、エタノール、イソプロピルアルコールを用いることが好ましい。アルコールと酢酸メチルを併用する場合は、ポリビニルエステルのケン化反応効率の点から、アルコール/酢酸メチルの割合を重量比で0.5以上とすることが好ましく、1.5以上とすることがより好ましい。また、酢酸メチルより更に極性が低い各種有機溶剤を併用することも可能である。
 上記(b)成分におけるポリビニルエステルの含有量は、特に限定されるものではないが、通常、溶媒全体の10~80重量%である。(b)成分(ポリビニルエステル溶液)は、ポリビニルエステルに対して0.05~10重量部の水を含有していてもよく、少量の水の存在によりケン化物の残存酢酸基の分布をランダムにし、またケン化度を制御する役割を果たすことができる。
 媒体(c)は、用いるポリビニルエステル、そのケン化物および(a)成分(アルコールまたはアルコールと酢酸メチル)のいずれとも実質的に相溶せず、かつポリビニルエステル溶液(b)よりも粘度の高いものであって、たとえば、流動パラフィン、灯油の如き脂肪族飽和炭化水素類、芳香族炭化水素類、脂環式炭化水素類があげられる。これらは単独または2種以上を混合して用いることができる。なかでも、ポリビニルエステル溶液を均一に分散できることから、流動パラフィンが好ましい。
 媒体(c)の粘度は、ポリビニルエステル溶液(b)の粘度よりも高ければ特に限定されるものではない。
 ポリビニルエステル溶液(b)と媒体(c)の使用割合は、重量比で2/8~6/4とすることが好ましく、4/6~5/5とすることがより好ましい。ポリビニルエステル溶液(b)の使用割合が20重量%未満の場合は、生産効率が低下するため好ましくない。ポリビニルエステル溶液(b)の使用割合が60重量%をこえる場合には、分散性が悪くなり、多数粒子の集合体が形成されやすくパール状PVA粒子の平均粒径が大きくなる傾向にある。
 ケン化触媒としては、ポリビニルエステルをケン化してPVAを製造する時に用いられる通常のアルカリ触媒を用いることができる。ケン化触媒の使用量は、ポリビニルエステルの濃度、目的とするケン化度により適宜決定されるが、通常、ポリビニルエステル中の酢酸ビニル単位(1モル)に対して0.1~30ミリモル、好ましくは2~17ミリモルの割合が適当である。
 ケン化反応の反応温度は、20℃~60℃とすることが好ましい。反応温度が20℃以下の場合には、反応速度が小さくなり反応効率が低下する。60℃をこえる場合には、溶媒の沸点以上となり安全上好ましくない。
 ケン化度99.0%以上といった高ケン化度のPVA粒子は、得られるPVA粒子の特性やPVA粒子内部に取り込まれる流動パラフィンによる生体への毒性を低減させるという安全性上の目的より、2段階のケン化反応により製造することが好ましい。1次ケン化では、ケン化度75~90モル%となるまでケン化反応を行った後、反応スラリーより粒子を遠心分離器装置等の固液分離装置や実験室的にはアドバンテック濾紙No.2または、No.63による濾過により分離し、必要に応じてメタノール、酢酸メチル、酢酸エチル、酢酸メチル/メタノール混合物などの適当な溶剤あるいは混合溶剤で洗浄を行い、1次ケン化粒子を得る。つづいて、得られた1次ケン化粒子を、メタノール、エタノール等のアルコール系溶媒中に分散させて、ケン化反応の追い込みを行う。所望のケン化度が達成できたところで、反応を終了させ、1次ケン化における粒子の回収と同様の方法により、本発明のPVA粒子(2次ケン化粒子)を得る。その後、必要に応じて生理食塩水やエタノール等のアルコールにて洗浄を行なう。
 なお、側鎖1,2-ジオール含有PVAの場合、製造方法は特に限定しないが、(i)ビニルエステル系モノマーと下記一般式(2)で示される化合物との共重合体をケン化する方法、(ii)ビニルエステル系モノマーと下記一般式(3)で示される化合物との共重合体をケン化及び脱炭酸する方法、(iii)ビニルエステル系モノマーと下記一般式(4)で示される化合物との共重合体を、ケン化及び脱ケタール化する方法などにより、好ましく製造される。
Figure JPOXMLDOC01-appb-C000002

Figure JPOXMLDOC01-appb-C000003

Figure JPOXMLDOC01-appb-C000004

 (2)(3)(4)式中、R~Rは、いずれも(1)式の場合と同様である。R及びRは、それぞれ独立して水素またはR-CO-(式中、Rは、アルキル基である)。R10及びR11は、それぞれ独立して水素原子又は有機基である。
 (i)、(ii)及び(iii)の方法については、例えば、特開2006-95825に説明されている方法を採用できる。
 なかでも、共重合反応性及び工業的な取扱いにおいて優れるという点で(i)の方法が好ましく、特にR~Rが水素原子、Xが単結合、R及びRがR-CO-であり、Rがアルキル基である、3,4-ジアシロキシ-1-ブテンが好ましく、更にその中でも特にRがメチル基である3,4-ジアセトキシ-1-ブテンが好ましく用いられる。
 ケン化方法としては、側鎖1,2-ジオールを含有しないPVAで行ったケン化方法を採用することができる。
 PVA粒子を滅菌する場合、滅菌法としては、γ線、加圧水蒸気滅菌、ヒビテン液(グルコン酸クロルヘキシジン液)に浸漬する方法や、滅菌生理食塩水による洗浄方法が用いられる。
 目的とする平均粒径を有するPVA粒子は、以上のような製造方法で得られたパール状PVA粒子を、必要に応じて標準金網により物理的に篩い分けを行うことにより任意の粒径のパール状PVA粒子の調整を行うことができる。また、平均粒径を所望のレベルまで小さくするためには、特開昭56-120707号公報に記載された粒状ポリビニルアルコールの製造法に準じて製造する際のケン化反応時の撹拌速度を速くしたり、流動パラフィン等の媒体(c)の粘度をポリビニルエステル溶液(b)の粘度より高く設定したり、媒体(c)とポリビニルエステル溶液(b)の比率を制御することにより粒径を制御することもできる。
〔一時塞栓剤の調製〕
 本発明の方法で用いられる一時塞栓剤は、一時塞栓物質の分散液又は溶液ないしペーストである。好ましくは、上述の球状PVA微粒子を、媒体に分散乃至溶解させてなる分散液又は溶液乃至ペーストである。
 上記媒体としては、アルコール、精製水、生理食塩水等の水系媒体;ヨード化ケシ油脂肪酸エステルなどの非水系媒体、いずれも用いることができる。上述のPVA粒子の製造方法により、ケン化後得られたPVA分散液をそのまま用いてもよい。水性媒体を用いる場合であっても、PVA粒子を水性媒体と混和した直後に用いる場合、水性媒体にPVA微粒子の一部または全部が分散した状態となっている。
 さらに、媒体として、造影剤を用いてもよい。血流が停止したかどうかの確認、一時塞栓剤の投与操作を、X線透視下で観察しながら行うにあたり、通常、造影剤(液体)を投与するので、媒体として兼用することもできる。
 造影剤としては、尿路、血管用造影剤、MRI用造影剤、消化管用造影剤などを挙げることができ、通常、血管造影剤である、イオン性水溶性造影剤、非イオン性水溶性造影剤が用いられる。具体的には、イオパミロン(シエーリングAG製)、オイパロミン(富士製薬工業(株)製)、ヘキサブリックス(テルモ(株)製)、オムニパーク(第一三共製薬(株)製)、ビジパーク(第一三共製薬(株)製)、イオメロン(エーザイ(株)製)、ブロスコープ(田辺三菱製薬(株)製)などを用いることができる。これらの造影剤は、通常、水溶液である。造影剤とPVA粒子との混合は、使用直前に行うことが好ましく、このようにして調製される一時塞栓剤は、PVA粒子の分散液状態となっているので、カテーテル通過性がよい。
 さらに、一時塞栓剤には、ヘパリン、ワーファリン等の抗血液凝固物質、抗血小板薬などを含有させてもよい。
 以上のような一時塞栓剤が投与されると、PVA粒子が血管内で溶解し始めてペースト状となり、血管を塞栓する。つまり、塞栓状態が達成される。かかる状態が、およそ1時間以上続くと、塞栓された血管が栄養供給している心筋細胞が壊死する。その後、さらに血液、体液にPVAが溶解して体外へ排出され、ペーストの粘度が減少し、やがて血管閉塞状態が解消される。
 一時塞栓剤としてPVA粒子を用いる場合、塞栓剤にしようする媒体等により溶解速度が異なるが、1週間程度ですべての塞栓物質が排泄される。よって、所定期間経過後には、遮断された血管において、再び血流が再開し、カテーテルを挿入することも可能となる。
 尚、PVA粒子による血流遮断で血栓ができていないことは、造影剤により確認できる。
<心筋梗塞非ヒト動物モデル>
 本発明の心筋梗塞非ヒト動物モデルは、上記本発明のモデル作製方法により作製されるモデルである。
 上記方法により作製された心筋梗塞モデルは、閉塞された冠動脈が栄養供給している心筋が壊死しており、いわゆる心筋梗塞病態となっている。
 しかしながら、心筋梗塞の誘導原因となった冠動脈は、一定期間経過後には、閉塞に用いた塞栓剤が徐々に血液に溶解して消失し、さらにアメロイドリング等の機械的閉塞器具による血流遮断でないことから、心筋梗塞を起こした部分の血管において、塞栓剤消失後は、再びカテーテルを挿入することも可能である。
 よって、このような本発明の心筋梗塞非ヒト動物モデルは、局所療法、局所治療のための薬剤スクリーニング、心筋再生の研究のモデルとして用いることができる。
 また、実際の心筋梗塞の原因としては、冠動脈粥状硬化による動脈の閉塞ないし狭窄の他、冠動脈を急速に閉塞する血栓形成などがあり、血栓形成による心筋梗塞の場合、その後の血栓溶解などにより、再び血流が再開する場合がある。従って、本発明の心筋梗塞非ヒト動物モデルは、このような心筋梗塞の病態研究、治療態様、治療薬剤のスクリーニングとして利用することもできる。
 モデルに使用する非ヒト動物は、哺乳類であり、ラット、マウス、ウサギ、ブタなどを用いることができるが、これらのうち、ブタが好ましく用いられる。ブタは、生理学的・解剖学的所見、消化吸収に関する生理がヒトに類似しており、特に、心臓の形態や冠動脈の分布、動脈内皮構造がヒトに類似しているからである。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はその要旨を越えない限り、実施例の記載に限定されるものではない。
 尚、実施例中「部」とあるのは、断りのない限り重量基準を意味する。
〔測定評価方法〕
(1)ケン化度
 PVA粒子のケン化度は、JIS K-6726に準じて測定した。具体的には、残存酢酸ビニルおよび3,4-ジアセトキシ-1-ブテンに由来するエステルの加水分解に要するアルカリ消費量で分析を行った。
(2)平均粒径
 PVA粒子の平均粒径は、高ケン化PVAにとって貧溶媒であるイソプロピルアルコール100部中にPVA粒子10部を添加し、撹拌下にて平均粒径を平均コード長として測定を行った。測定には、レーゼンテックM100(インライン式粒体モニタリングシステム、レーゼンテック製)を用いた。
 平均コード長(μm)は、具体的には、0.8~1000μmの範囲を38チャンネルのコード長に分割、各チャンネルの粒子数をカウントし、下式によって求めた。
平均コード長=Σ(Yi×Mi2)/ΣYi
Yi:レーゼンテックM100によりモニタリングしたときの粒子のカウント数
Mi:各チャンネルのコード長
(3)水に対する溶解性
 100mlのビーカーに水70gと造影剤(イオメロン300、エーザイ(株)製)4gを入れ、これに100~212μmに分級したPVA微粒子を1g投入し、室温で2分間攪拌する。その後、ビーカーを37℃の水槽に入れ、攪拌しながらLASENTEC M100F(レーゼンテック社製、取り込み時間24.75秒)を用いてPVA粒子の粒子数を測定した。測定開始直後の粒子数に対する3時間後の粒子数の比率を残存率とし、この残存率を溶解性の評価指標として採用した。
(4)平均重合度
 JIS K6726に準じて測定した。
(5)結晶化度(DSC法)
 示差走査熱量計DSC7(パーキンエルマー社製)を用い、温度範囲30~250℃、昇温速度20℃/分で測定したファーストランで得られた融解熱ΔH(J/g)を用い、下記式から結晶化度を求めた。
 なお、式中の156(J/g)は、未変性完全ケン化PVAが100%結晶化している場合の融解エネルギーである。
 結晶化度(%)=(ΔH/156)×100
(6)真球度(球形度係数)
 走査型電子顕微鏡によるPVA微粒子画像から、その単位視野内の個々の粒子について、その輪郭の長さ(L)と面積を測定し、かかる面積と同じ面積である円の円周(M)を求め、それらから球形度係数(M/L)の平均値を求めた。なお、球形度係数が1に近いほど、その粒子は真球に近い。
(7)心筋梗塞の確認
 心筋梗塞の画像診断は心臓造影MRI検査にて行った。
 MRI用ガドリニウム造影剤(第一三共社製オムニスキャン静注32%シリンジ10ml)を3.0cc/secで7cc静注し15分後にMRI装置(米国General Electoric社製Sigma EXCIE XI version11.0)を用いてTI=250~300msecで撮像した。文献報告(Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100: 1992-2002. 1999)から造影剤の排泄遅延部位を心筋梗塞病巣と画像診断した。
 さらに、心筋梗塞の病理診断は塩化2,3,5-トリフェニル-2H-テトラゾリウム(2,3,5-Triphenyl-2H-tetrazoliumu Choride:TTC)染色及びヘマトキシリンエオジン染色を用いて行った。上記心筋梗塞病巣の画像診断の直後に動物を犠牲死させて心臓を摘出し、MRI画像と同じスライス方向で心臓を切り出してTTC液に15分間浸漬して、肉眼的に白色に色調変化した部位を心筋梗塞病巣と診断した。さらに白色に色調変化した部位の連続切片を作成し、ホルマリン固定を行った後マトキシリンエオジン染色を行って心筋細胞の壊死、繊維化及び炎症細胞浸潤のある部分を心筋梗塞病巣と診断した。
〔球状PVA微粒子の製造〕
 還流冷却器、滴下漏斗、攪拌機を備えた反応缶に、酢酸ビニル900g、メタノール1440g、3,4-ジアセトキシ-1-ブテン9gを仕込み、アゾビスイソブチロニトリルを0.3モル%(対仕込み酢酸ビニル)投入し、攪拌しながら窒素気流下で、温度を上昇させ、重合を開始した。
 酢酸ビニルの重合率が98%となった時点で、m-メトキシフェノールを70ppm添加して重合を終了した。続いてメタノール蒸気を吹き込む方法により未反応の酢酸ビニルモノマーを系外に除去し、共重合体のメタノール溶液を得た。
 得られた共重合体のメタノール溶液にメタノールを加えて樹脂分40%に調整した。この溶液100部の攪拌機付き反応缶に仕込み、温度を30℃に保って攪拌しながら、ケン化反応触媒としてNaOHのNa含量換算で2%メタノール溶液を、ポリ酢酸ビニルの酢酸ビニル単位に対して3.2mmolの割合で添加した。
 続いて流動パラフィン100部を加えて、攪拌速度を300回転に調節したところ、共重合体は球形状で流動パラフィン中に分散した。温度を30℃に保って反応させ、60分経過後に反応を停止し、遠心分離装置により固液分離を行うことによりパール状PVA粒子を分離した。この粒子を温度50℃の酢酸エチル溶液を用いて抽出法により洗浄し、次いで真空乾燥機を用いて温度80℃で24時間乾燥した。
 得られたパール状PVA粒子(一次ケン化粒子)100部を、再度メタノール溶液500部に分散し、ケン化触媒(Na重量換算で2%NaOHメタノール溶液)を20部添加して、温度50度で、2時間かけて二次ケン化を行った。その後、再度、遠心分離装置によりパール状PVA粒子を分離し、温度50℃で酢酸エチル溶液を用いて抽出法により洗浄し、次いで真空乾燥機を用いて温度80℃で24時間乾燥した。
 得られたパール状PVA樹脂のケン化度は99.7モル%であり、平均重合度は500であった。また、1,2-ジオール構造単位の含有量はH-NMR(内部標準物質:テトラメチルシラン)で測定して算出したところ、0.49モル%であった。なおかかるPVA樹脂の曇点は100℃以上であった。
 上記の粒子を120℃×30分熱処理し、パール状PVA粒子を得た。かかるパール状PVA粒子の結晶化度(DSC法)は約62%であり、水に対する溶解性(残存率)は31.4%であった。
〔一時塞栓剤の調製〕
 一時塞栓物質として上記球状PVA粒子0.25g、オイパロミン(富士製薬工業株式会社製の造影剤)5cc、ヘパリン1ccを混合して、一時塞栓剤を調製した。
〔心筋梗塞モデルの作製方法〕
(1)モデルNo.1-5(左冠動脈回旋枝の心筋梗塞モデル)
 ブタに、Ketamine(10mg/kg)およびXylazine(2mg/kg)の混合液の筋肉内注射することにより鎮静させた後、気管チューブを挿入して麻酔薬(Isoflurane5%濃度)を1~3%濃度で維持した。仰臥位に四肢を固定し大腿動脈を露出して8Frシースを挿入した。ヘパリン100U/Kg静注の後、ガイディングカテーテル(米国Johnson and Johnson Cordis,社製 Brite Tip 6Fr. 100cm: Hockey Stick)を、左冠動脈回旋枝の分枝血管の入口部に留置した。
 続いてバルーンつきカテーテル(Bostn Scientific社製Gateway PTA Dilatation catheter 9.0mm x 2.0~3.0mm at 6ATM)をガイディングカテーテル内から回旋枝分枝の入口部に留置してバルーンを拡張し、目的の回旋枝分枝の血流を停止させた状態で、バルーンつきカテーテルから、上記処方により調製した一時塞栓剤を、回旋枝分枝血管に0.1cc用手的に注入し、次いで生理食塩水0.5ccを追加注入した。5分間の間隔で塞栓物質溶液0.1ccと生理食塩水0.5ccの注入を繰り返し、血管造影で、血流が停止するまで注入を繰り返した。このときの造影写真を図1及び図2に示す。
 図1は投与初期を示しており、矢印は回旋枝分枝を示している。図2は投与終了直前を示しており、分枝血管(図中、矢印)が薄くなっており、塞栓物質により血流が遮断したことが確認できた。
 分枝血管閉塞工程の終了後、動物を麻酔から覚醒させた。感染予防として術後3日間抗生物質を投与した。分枝血管閉塞工程を行った後、1週間後に、目的とする冠動脈、すなわち左冠動脈動脈回旋枝本幹の入口部にガイディングカテーテルを留置し、次いで先端からオーバーザワイヤ式バルーン付きカテーテル(Bostn Scientific社製Gateway PTA Dilatation catheter 9.0mm x 2.0~3.0mm at 6ATM)のバルーンを突出させるとともに拡張して、本幹の血流を停止させた。かかる状態で、バルーンつきカテーテルの先端から、上記処方により調製した一時塞栓剤を0.1cc用手的に注入し生理食塩水0.5ccを追加注入した。5分間の間隔で塞栓物質溶液0.1ccと生理食塩水0.5ccの注入を繰り返し、血管造影上血流が停止するまで注入を繰り返した。このときの造影写真を図3及び図4に示す。
 図3において、左矢印が回旋枝本幹であり、図4で回旋枝本幹で血流遮断していることが確認できる(図中、右矢印)。
 心筋梗塞誘導工程を行った後、1週間後(プレコンディショニング2週間後)に、MRI検査により撮像した写真を図5、摘出した心臓の肉眼写真を図6に示す。
 図5中、血管閉塞部位の貫流域(矢印)に一致して造影剤の排泄遅延が認められた。また図6において、MRI造影剤の排泄遅延部位(矢印)に一致して心筋の壊死が見られた。従って、ブタにおける回旋枝の心筋梗塞モデルを作製できたことが確認できた。
 モデルNo.2-5についても、同様であった(写真省略)。
(2)モデルNo.6,7(冠動脈前下行枝の心筋梗塞モデル)
 目的とする冠動脈を前下行枝に変更した以外は、モデルNo.1と同様にして、分枝血管遮断工程及び心筋梗塞誘導工程を行った。
 心筋梗塞誘導工程を行った1週間後、MRI検査により撮像した写真を図7及び8に示す。図7、図8は、それぞれMRI検査による長軸、短軸の画像であり、造影MRI検査で前下行枝の貫流域(矢印部分)に造影剤の遅延排泄像が観察され、心筋梗塞の病態を確認できた。
(3)モデルNo.8、9
 冠動脈前下行枝本幹の入口部手前にガイディングカテーテルを留置し、先端からバルーン付きカテーテルのバルーンを突出させるとともに拡張して血流遮断しながら、一時塞栓剤を、冠動脈前下行枝が完全閉塞するまで、投与した。冠動脈前下行枝が完全閉塞による造影剤の排泄遅延の写真を図9に示す。(図9の矢印部分)。しかし、血流遮断させた後、約30分で、いずれの動物も、心室性不整脈により死亡したため心筋梗塞病巣を作成できなかった。
 本発明の心筋梗塞モデル作製方法は、開胸を伴う侵襲の大きい外科的手術を行わず、カテーテルの挿入、薬剤注入だけで血流遮断を達成できるので、心筋梗塞誘発に伴う(モデル作製に伴う)非ヒト動物の生存率が高い。従って、ブタといったヒトに近い大型動物を用いたモデルの効率よい作製に利用できる。
 さらに、本発明の作製方法で作製された心筋梗塞モデルは、所定期間経過後に、心筋梗塞した部位の血管を永久閉塞するのではなく、所定期間経過後には、再びカテーテルを通すことができるので、局所治療の開発や局所治療用薬剤のスクリーニングや再生医療の研究に用いるモデルとして有用である。

Claims (8)

  1. 心臓冠動脈の分枝血管に一時塞栓剤を投与することにより、前記分枝血管の血流遮断を行う分枝血管閉塞工程;及び
     前記分枝血管閉塞工程の所定期間経過後に、心筋梗塞を起こそうとする目的の冠動脈に一時塞栓剤を投与することにより、前記冠動脈の血流遮断を行う工程
    を含む心筋梗塞非ヒト動物モデルの作製方法。
  2. 分枝血管が、心筋梗塞を起こそうとする目的の冠動脈の分枝血管である請求項1に記載の心筋梗塞非ヒト動物モデルの作製方法。
  3. 分枝血管閉塞工程、及び冠動脈の血流遮断を行う工程の少なくとも一方の工程において、
     一時塞栓剤を投与する血管の上流でバルーンカテーテルを拡張させながら一時塞栓剤を投与する請求項1または2に記載の心筋梗塞非ヒト動物モデルの作製方法。
  4. 前記一時塞栓剤は、球状PVA微粒子を、媒体に分散乃至溶解してなる分散液又は溶液乃至ペーストである請求項1~3のいずれかに記載のモデル作製方法。
  5. 請求項1~4のいずれかの方法で作製された心筋梗塞非ヒト動物モデル
  6. 冠動脈の少なくともいずれか1つの血管が虚血状態に陥って心筋細胞が壊死しているが、前記虚血した血管の血流が再開できるようになっている心筋梗塞病巣部位を有する心筋梗塞非ヒト動物モデル。
  7. 前記非ヒト動物は、ブタである請求項5又は6に記載の心筋梗塞非ヒト動物モデル。
  8. 血流遮断しようとする血管の入口部までバルーンカテーテルを通した後、当該入口部でバルーンを拡張させて血流を遮断した状態で、PVA球状微粒子を、前記血管内を閉塞する量だけ投与することを特徴とする、非ヒト動物の血流遮断方法。
PCT/JP2010/060420 2009-06-26 2010-06-21 心筋梗塞非ヒト動物モデル及びその作製方法 WO2010150715A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10792033.2A EP2446739A4 (en) 2009-06-26 2010-06-21 NON-HUMAN ANIMAL MODEL OF MYOCARDIAL INFARCTION AND METHOD FOR CONSTRUCTING THE SAME
US13/288,158 US20120110683A1 (en) 2009-06-26 2011-11-03 Non-human animal model of myocardial infarction and method for creating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009151726A JP5612279B2 (ja) 2009-06-26 2009-06-26 心筋梗塞非ヒト動物モデル及びその作製方法
JP2009-151726 2009-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/288,158 Continuation US20120110683A1 (en) 2009-06-26 2011-11-03 Non-human animal model of myocardial infarction and method for creating the same

Publications (1)

Publication Number Publication Date
WO2010150715A1 true WO2010150715A1 (ja) 2010-12-29

Family

ID=43386484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060420 WO2010150715A1 (ja) 2009-06-26 2010-06-21 心筋梗塞非ヒト動物モデル及びその作製方法

Country Status (4)

Country Link
US (1) US20120110683A1 (ja)
EP (1) EP2446739A4 (ja)
JP (1) JP5612279B2 (ja)
WO (1) WO2010150715A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130052A1 (zh) * 2011-03-25 2012-10-04 Yang Bibo 动物心力衰竭诱导装置
CN108090900A (zh) * 2017-12-28 2018-05-29 西安中科微光影像技术有限公司 一种基于oct图像的分叉血管自动识别方法
CN108182680A (zh) * 2017-12-28 2018-06-19 西安中科微光影像技术有限公司 一种基于ivoct图像的分叉血管的角度自动识别方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101893150B1 (ko) 2012-06-12 2018-08-30 엘지전자 주식회사 전력량측정장치가 내장된 가전기기
CN106573012B (zh) * 2014-06-12 2020-02-28 Tx医生公司 平均分子量低于10000Da的硫酸葡聚糖用于诱导受试者中的血管新生的用途
EP3154694A1 (en) 2014-06-13 2017-04-19 Children's Medical Center Corporation Products and methods to isolate mitochondria
US11903974B2 (en) 2015-11-30 2024-02-20 Flagship Pioneering Innovations V, Inc. Methods and compositions relating to chondrisomes from cultured cells
EP3402490B1 (en) 2016-01-15 2022-06-01 The Children's Medical Center Corporation Therapeutic use of mitochondria and combined mitochondrial agents
WO2018083113A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Instant release capsule based on hot melt extruded polyvinyl alcohol
CA3042769A1 (en) * 2016-11-07 2018-05-11 Merck Patent Gmbh Controlled release tablet based on polyvinyl alcohol and its manufacturing

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120707A (en) 1980-02-29 1981-09-22 Nippon Synthetic Chem Ind Co Ltd:The Preparation of particulate polyvinyl alcohol
WO1998003203A1 (fr) 1996-07-19 1998-01-29 Yamanouchi Pharmaceutical Co., Ltd. Particules poreuses insolubles dans l'eau, constituees de substances biocompatibles et leur procede de production
WO1999018861A1 (en) * 1997-10-14 1999-04-22 Boston Scientific Limited Delivery catheter for occlusive device
WO2001089501A1 (en) * 2000-05-23 2001-11-29 Provasis Therapeutics, Inc. Polymerizable compositions and methods of use
JP2002209473A (ja) 2001-01-19 2002-07-30 Yamaguchi Technology Licensing Organization Ltd 広範囲心筋梗塞病態モデル動物及びその作成方法並びにそのモデル動物を用いて行う薬物のスクリーニング方法
JP2002291373A (ja) 2000-09-27 2002-10-08 Takeda Chem Ind Ltd 心不全モデル動物の作製方法
JP2004167229A (ja) 2002-10-29 2004-06-17 Toray Ind Inc 血管塞栓材料
JP2005229927A (ja) 2004-02-20 2005-09-02 Yamaguchi Technology Licensing Organization Ltd 分離心筋梗塞モデルを応用した心筋再生方法
WO2006030737A1 (ja) 2004-09-13 2006-03-23 Japan Health Sciences Foundation 動脈閉塞性疾病モデル動物の作製
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
WO2007004484A1 (ja) * 2005-07-01 2007-01-11 The Nippon Synthetic Chemical Industry Co., Ltd. 血管一時塞栓剤用pva粒子、その製造方法、および血管一時塞栓剤
JP2007037989A (ja) 2005-07-01 2007-02-15 Nippon Synthetic Chem Ind Co Ltd:The 血管一時塞栓剤用pva粒子、その製造方法、および血管一時塞栓剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5795331A (en) * 1994-01-24 1998-08-18 Micro Therapeutics, Inc. Balloon catheter for occluding aneurysms of branch vessels

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120707A (en) 1980-02-29 1981-09-22 Nippon Synthetic Chem Ind Co Ltd:The Preparation of particulate polyvinyl alcohol
WO1998003203A1 (fr) 1996-07-19 1998-01-29 Yamanouchi Pharmaceutical Co., Ltd. Particules poreuses insolubles dans l'eau, constituees de substances biocompatibles et leur procede de production
WO1999018861A1 (en) * 1997-10-14 1999-04-22 Boston Scientific Limited Delivery catheter for occlusive device
WO2001089501A1 (en) * 2000-05-23 2001-11-29 Provasis Therapeutics, Inc. Polymerizable compositions and methods of use
JP2002291373A (ja) 2000-09-27 2002-10-08 Takeda Chem Ind Ltd 心不全モデル動物の作製方法
JP2002209473A (ja) 2001-01-19 2002-07-30 Yamaguchi Technology Licensing Organization Ltd 広範囲心筋梗塞病態モデル動物及びその作成方法並びにそのモデル動物を用いて行う薬物のスクリーニング方法
JP2004167229A (ja) 2002-10-29 2004-06-17 Toray Ind Inc 血管塞栓材料
JP2005229927A (ja) 2004-02-20 2005-09-02 Yamaguchi Technology Licensing Organization Ltd 分離心筋梗塞モデルを応用した心筋再生方法
WO2006030737A1 (ja) 2004-09-13 2006-03-23 Japan Health Sciences Foundation 動脈閉塞性疾病モデル動物の作製
JP2006095825A (ja) 2004-09-29 2006-04-13 Nippon Synthetic Chem Ind Co Ltd:The 記録用媒体
WO2007004484A1 (ja) * 2005-07-01 2007-01-11 The Nippon Synthetic Chemical Industry Co., Ltd. 血管一時塞栓剤用pva粒子、その製造方法、および血管一時塞栓剤
JP2007037989A (ja) 2005-07-01 2007-02-15 Nippon Synthetic Chem Ind Co Ltd:The 血管一時塞栓剤用pva粒子、その製造方法、および血管一時塞栓剤

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Dai 26 Kai Annual Meeting of the Japanese Society of Electrocardiology Program Shorokushu, 05 June 2009 (05.06.2009)", vol. 91, article TETSURO SASANO ET AL.: "Buta Shinkin Kosoku Model ni Taisuru cadioshere-derived cell o Mochiita Saibo Chiryo, Kei-Kandomyaku-teki Toyo no Shiteki Joken Kento to Saibo Chiryo ni yoru Shinkino Fuseimyaku Gensei no Hyoka", pages: S-3 - 323, XP008150000 *
KIM RJ; FIENO DS; PARRISH TB ET AL., RELATIONSHIP OF MRI DELAYED CONTRAST ENHANCEMENT TO IRREVERSIBLE INJURY, vol. 100, 1999, pages 1992 - 2002
MITSUO SHIBUYA ET AL.: "Amorphous Vinyl Alcohol-kei Jushi", JAPAN PLASTICS, vol. 61, no. L, 1 January 2010 (2010-01-01), pages 56 - 62, XP008150001 *
See also references of EP2446739A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012130052A1 (zh) * 2011-03-25 2012-10-04 Yang Bibo 动物心力衰竭诱导装置
CN108090900A (zh) * 2017-12-28 2018-05-29 西安中科微光影像技术有限公司 一种基于oct图像的分叉血管自动识别方法
CN108182680A (zh) * 2017-12-28 2018-06-19 西安中科微光影像技术有限公司 一种基于ivoct图像的分叉血管的角度自动识别方法
CN108090900B (zh) * 2017-12-28 2021-12-28 中科微光医疗研究中心(西安)有限公司 一种基于ivoct图像的分叉血管自动识别方法

Also Published As

Publication number Publication date
JP5612279B2 (ja) 2014-10-22
EP2446739A4 (en) 2013-11-06
EP2446739A1 (en) 2012-05-02
US20120110683A1 (en) 2012-05-03
JP2011004665A (ja) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5612279B2 (ja) 心筋梗塞非ヒト動物モデル及びその作製方法
US11331340B2 (en) Polymeric treatment compositions
JP3804071B2 (ja) 部分的に加水分解されたポリビニルアセテートを含有する液体塞栓剤
US20060177513A1 (en) Embolization using poly-4-hydroxybutyrate particles
JP2001509133A (ja) 閉塞化血管における使用のための組成物
JP2003500114A (ja) 新規の高粘度塞栓形成組成物
JP2002519364A (ja) 乳酸エチルを含有する血管塞栓形成組成物及びその使用方法
JP2000502321A (ja) 血管塞栓形成用の新規組成物
EP3104901A1 (en) Rapidly degrading embolic particles with therapeutic agent release
JP5121172B2 (ja) 血管一時塞栓材料、その製造方法、および血管一時塞栓剤
JP5641699B2 (ja) パール状ポリビニルアルコール粒子の製造方法および血管一時塞栓剤
JP2000517298A (ja) ジメチルスルホキシドを含有した塞栓組成物でもって管腔サイトに塞栓を形成するための新規な方法
WO2020099190A1 (en) Polymer for liquid embolic agents and method of obtaining same
US8361454B2 (en) PVA particle for temporary embolic material and production process thereof, and temporary embolic material
CN107875436B (zh) 一种负载碳酸氢钠粉末的液体栓塞剂组合物及其应用
US11998563B2 (en) Polymeric treatment compositions
US20050287216A1 (en) Medical imaging agents for injectable compositions
CN115845117B (zh) 一种栓塞剂
Legon’kova et al. In Vivo Studies of a Liquid Embolic Compound
JP2023106417A (ja) 塞栓マイクロスフェア及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10792033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010792033

Country of ref document: EP