WO2010147151A1 - 産業車両のエンジン回転数制御装置 - Google Patents
産業車両のエンジン回転数制御装置 Download PDFInfo
- Publication number
- WO2010147151A1 WO2010147151A1 PCT/JP2010/060216 JP2010060216W WO2010147151A1 WO 2010147151 A1 WO2010147151 A1 WO 2010147151A1 JP 2010060216 W JP2010060216 W JP 2010060216W WO 2010147151 A1 WO2010147151 A1 WO 2010147151A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- industrial vehicle
- engine speed
- engine
- braking force
- clutch
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D29/00—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
- F02D29/02—Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/02—Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2025—Particular purposes of control systems not otherwise provided for
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2079—Control of mechanical transmission
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/2058—Electric or electro-mechanical or mechanical control devices of vehicle sub-units
- E02F9/2083—Control of vehicle braking systems
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02F—DREDGING; SOIL-SHIFTING
- E02F9/00—Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
- E02F9/20—Drives; Control devices
- E02F9/22—Hydraulic or pneumatic drives
- E02F9/2246—Control of prime movers, e.g. depending on the hydraulic load of work tools
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/021—Introducing corrections for particular conditions exterior to the engine
- F02D41/0215—Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission
- F02D41/022—Introducing corrections for particular conditions exterior to the engine in relation with elements of the transmission in relation with the clutch status
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2510/00—Input parameters relating to a particular sub-units
- B60W2510/18—Braking system
- B60W2510/182—Brake pressure, e.g. of fluid or between pad and disc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/06—Combustion engines, Gas turbines
- B60W2710/0644—Engine speed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60Y—INDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
- B60Y2200/00—Type of vehicle
- B60Y2200/40—Special vehicles
- B60Y2200/41—Construction vehicles, e.g. graders, excavators
- B60Y2200/415—Wheel loaders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/50—Input parameters for engine control said parameters being related to the vehicle or its components
- F02D2200/501—Vehicle speed
Definitions
- the present invention relates to an engine speed control device for industrial vehicles such as wheel loaders.
- the clutch cut-off device described above can be controlled only in either the engaged state or the released state of the forward / reverse clutch, the industrial vehicle moves smoothly before and after the clutch releasing operation. There is a risk that it will disappear. For this reason, the operator may perform a work of loading earth and sand on the dump truck by setting so as not to perform the clutch cutoff. However, if the work such as loading earth and sand on the dump truck without performing the clutch cutoff is performed, it is necessary to decelerate and stop the wheel loader 100 against the increased driving force due to the increase in the engine speed. The fuel consumption and the burden on the brake part will increase.
- an engine speed control device for an industrial vehicle includes an approach detector for detecting an approach to an approach target of the industrial vehicle, and an approach target of the industrial vehicle by the approach detector. And an engine speed controller that suppresses the upper limit of the engine speed when an approach to an object is detected.
- the approach detector includes a forward clutch provided in the transmission of the engine of the industrial vehicle, and When it is determined that the braking force of the industrial vehicle is greater than or equal to a predetermined braking force, it is preferable to detect that the industrial vehicle has approached the approach target.
- the approach detector includes a forward clutch provided in the transmission of the engine of the industrial vehicle, and When it is determined that the traveling speed of the industrial vehicle is equal to or lower than the predetermined speed and the braking force of the industrial vehicle is equal to or higher than the predetermined braking force, it is preferable to detect that the industrial vehicle has approached the approach target.
- the approach detector includes a forward clutch provided in the transmission of the engine of the industrial vehicle, and When it is determined that the height of the work implement device provided on the industrial vehicle is greater than or equal to a predetermined height and the braking force of the industrial vehicle is greater than or equal to the predetermined braking force, the industrial vehicle approaches the approach target. It is preferable to detect that According to the fifth aspect of the present invention, in the engine speed control device for an industrial vehicle according to any one of the first to fourth aspects, the approach detector acquires information related to the magnitude of the braking force of the industrial vehicle.
- the engine speed suppression means includes a braking force information acquisition unit configured to perform an engine rotation speed suppression unit based on the information acquired by the braking force information acquisition unit so that the upper limit of the engine rotation speed decreases as the braking force increases. It is preferable to suppress the upper limit of the rotational speed.
- the engine speed suppression means has a predetermined braking force based on the information acquired by the braking force information acquisition unit. When it is determined that the braking force is less than the predetermined braking force, the upper limit of the engine speed is not suppressed.
- the engine speed control device for an industrial vehicle further includes a clutch for connecting / releasing a power source and a driving wheel.
- the engine speed controller selects whether the clutch cut-off valve is not driven. In this state, it is preferable to suppress the upper limit of the engine speed.
- the approach detector detects the industrial vehicle.
- the clutch is preferably released by the clutch cutoff valve.
- the fuel consumption and the load on the brake can be suppressed.
- FIG. 1 is a diagram illustrating a schematic configuration of a wheel loader 100.
- FIG. FIG. 2 is a diagram illustrating a schematic configuration of a transmission 3. It is a figure which shows the relationship between torque converter speed ratio e and speed stage. It is a figure shown about V shape loading. It is a figure explaining the state of the wheel loader 100 at the time of loading in dump trucks, such as earth and sand. It is a figure which shows the relationship between the brake fluid pressure Plb and the engine maximum rotation speed limit Rlim. It is a figure which shows the target engine speed with respect to the depression amount of the accelerator pedal.
- FIG. 1 is a side view of a wheel loader that is an example of an industrial vehicle to which the engine speed control device according to the present embodiment is applied.
- the wheel loader 100 includes an arm 111, a front body 110 having a bucket 112 as a work implement device, a tire 113, and the like, and a rear body 120 having an operator cab 121, an engine compartment 122, a tire 123, and the like.
- the arm 111 rotates up and down (up and down) by driving the arm cylinder 114, and the bucket 112 rotates up and down (dump or cloud) by driving the bucket cylinder 115.
- the front vehicle body 110 and the rear vehicle body 120 are rotatably connected to each other by a center pin 101, and the front vehicle body 110 is refracted left and right with respect to the rear vehicle body 120 by expansion and contraction of a steering cylinder (not shown).
- FIG. 2 is a diagram showing a schematic configuration of the wheel loader 100.
- the output shaft of the engine 1 is connected to an input shaft (21 in FIG. 3) of the torque converter 2 (hereinafter referred to as torque converter), and the output shaft (22 in FIG. 3) of the torque converter 2 is connected to the transmission 3.
- the torque converter 2 is a fluid clutch including a known impeller, turbine, and stator, and the rotation of the engine 1 is transmitted to the transmission 3 via the torque converter 2.
- the transmission 3 has a hydraulic clutch that changes the speed stage from the first speed to the fourth speed, and the rotation of the output shaft of the torque converter 2 is changed by the transmission 3.
- the rotation after the shift is transmitted to the tires 113 and 123 via the propeller shaft 4 and the axle 5, and the wheel loader travels.
- the axle 5 is provided with a brake portion 5a for decelerating and stopping the wheel loader 100.
- brake fluid operating oil
- the brake valve 32 is a pressure reducing valve that reduces the pressure oil supplied from the hydraulic oil pressure source 30 to a pressure corresponding to the compression force of the spring 32a.
- the brake pedal 31 provided in the cab 121 is depressed by the operator, the spring 32a is compressed according to the depression force of the brake pedal 31. Therefore, the brake valve 32 reduces the pressure oil supplied from the hydraulic oil pressure source 30 to a pressure corresponding to the depression force of the brake pedal 31.
- the brake valve 32 reduces the pressure of the hydraulic oil so that the higher the compression force of the spring 32a (that is, the depression force of the brake pedal 31) is, the higher the hydraulic oil is supplied to the brake unit 5a.
- Reference numeral 34 denotes a hydraulic oil tank.
- a working hydraulic pump (not shown) is driven by the engine 1, and oil discharged from the hydraulic pump is guided to a working actuator (for example, the arm cylinder 114) via a directional control valve (not shown).
- the direction control valve is driven by operating an operation lever (not shown), and can drive an actuator according to the operation amount of the operation lever.
- the torque converter 2 has a function of increasing the output torque with respect to the input torque, that is, a function of setting the torque ratio to 1 or more.
- Nt / Ni the ratio of the rotational speed Ni of the input shaft 21 of the torque converter 2 to the rotational speed Nt of the output shaft 22
- the torque converter speed ratio e decreases.
- the vehicle can travel with a larger travel driving force (traction force).
- FIG. 3 is a diagram showing a schematic configuration of the transmission 3.
- the transmission 3 includes a plurality of clutch shafts SH1 to SH3, an output shaft SH4, a plurality of gears G1 to G13, a forward hydraulic clutch (forward clutch) 18, a reverse hydraulic clutch (reverse clutch) 19, and first to fourth gears.
- the hydraulic clutches 18, 19, C1 to C4 are engaged or released by pressure oil (clutch pressure) supplied via the transmission control device 20. That is, the clutches 18, 19, and C1 to C4 are engaged when the clutch pressure supplied to the hydraulic clutches 18, 19, and C1 to C4 increases, and are released when the clutch pressure decreases.
- the output shaft 22 of the torque converter 2 is connected to the clutch shaft SH1, and both ends of the output shaft SH4 are connected to the axle 5 on the front and rear sides of the vehicle via the propeller shaft 4 shown in FIG.
- the forward clutch 18 and the first speed clutch C1 are in an engaged state, and the other clutches 19, C2 to C4 are in a released state.
- the gear G1 and the clutch shaft SH1 rotate together, and the gear G6 and the clutch shaft SH2 rotate together.
- the output torque of the engine 1 is as shown by a thick line in FIG. 3.
- the clutch C1 for the first speed is released by the clutch pressure supplied via the transmission control device 20, and the clutch C2 for the second speed is engaged.
- the output torque of the engine 1 is applied to the input shaft 21, the output shaft 22, the clutch shaft SH1, the forward clutch 18, the gears G1, G3, G7, the second speed clutch C2, the clutch shaft SH2, and the gears G8, G12 of the torque converter 2. And transmitted to the output shaft SH4 through the second speed.
- Shifts other than 1st to 2nd that is, 2nd to 3rd, 3rd to 4th, 4th to 3rd, 3rd to 2nd, 2nd to 1st, shift the clutches C1 to C4 in the same way It is done by controlling.
- torque converter speed ratio reference control that shifts when the torque converter speed ratio e reaches a predetermined value
- vehicle speed reference control that shifts when the vehicle speed reaches a predetermined value.
- the speed stage of the transmission 3 is controlled by torque converter speed ratio reference control.
- FIG. 4 is a diagram showing the relationship between the torque converter speed ratio e and the speed stage.
- the torque converter speed ratio e increases, and the torque converter speed ratio e becomes equal to or greater than the predetermined value eu, the speed stage is shifted up by one stage.
- the torque converter speed ratio e becomes e1 (ed ⁇ e1 ⁇ eu).
- the torque converter speed ratio e becomes e2 (ed ⁇ e2 ⁇ eu).
- the predetermined values eu and ed are set in the controller 10 in advance.
- the controller 10 shown in FIG. 2 includes an arithmetic processing unit having a CPU, ROM, RAM, and other peripheral circuits.
- the controller 10 includes a pedal operation amount detector 12 a that detects the operation amount of the accelerator pedal 12, a rotation number detector 14 that detects the rotation number Ni of the input shaft 21 of the torque converter 2, and the rotation of the output shaft 22 of the torque converter 2.
- a rotational speed detector 15 that detects the number Nt and a vehicle speed detector 16 that detects the rotational speed of the output shaft of the transmission 3, that is, the vehicle speed v, are connected.
- the controller 10 includes a forward / reverse selector switch 7 for instructing forward / reverse travel of the vehicle, a shift switch 8 for instructing a maximum speed step between 1st to 4th speeds, and whether or not to perform clutch cutoff (described later)
- a clutch cut-off selection switch 9 to be selected is connected to a speed change means switching device 35 for switching whether the speed change in the transmission 3 is performed automatically or manually.
- the controller 10 is connected to a pedal operation amount detector 31a that detects the operation amount of the brake pedal 31 and a pressure sensor 33 that detects the pressure of hydraulic oil supplied to the brake unit 5a.
- the controller 10 controls the rotation speed (the number of rotations) of the engine 1 according to the operation amount of the accelerator pedal 12.
- the controller 10 determines that the hydraulic oil pressure (brake hydraulic pressure Plb) detected by the pressure sensor 33 is a predetermined value (brake hydraulic pressure). When the cut-off threshold value Ps) is exceeded, a control signal (cut-off signal) for releasing (cut-off) the forward / reverse clutches 18 and 19 is output to the transmission control device 20.
- the clutch cut-off valve 17 (FIG. 2) provided in the transmission control device 20 decreases the clutch pressure of the clutches 18 and 19. As a result, the clutches 18 and 19 are disengaged, and transmission of travel driving force (hereinafter simply referred to as driving force) is interrupted.
- clutch cutoff When the clutches 18 and 19 are released and the connection between the engine driving the input shaft 21 of the torque converter 2 and the propeller shaft 4 connected to the output shaft SH4 of the transmission 3 is cut off, this is referred to as clutch cutoff.
- the controller 10 does not exceed the brake hydraulic pressure cutoff threshold Ps even if the brake hydraulic pressure Plb detected by the pressure sensor 33 exceeds the brake hydraulic pressure cutoff threshold Ps. Does not output a cut-off signal. Therefore, when the clutch cutoff selection switch 9 is selected so as not to perform the clutch cutoff, the above-described clutch cutoff is not performed.
- FIG. 5 is a diagram showing V-shape loading, which is one of the methods for loading earth and sand into a dump truck.
- V shape loading first, the wheel loader 100 is moved forward as shown by an arrow a to scoop soil and the like, and then the wheel loader 100 is once moved backward as shown by an arrow b. Then, the wheel loader 100 is advanced toward the dump truck as indicated by an arrow c, and the scooped earth and sand is loaded on the dump truck, and the wheel loader 100 is moved back to the original position as indicated by an arrow d. .
- the operator sets the maximum speed stage to two stages by the shift switch 8.
- the speed change unit 35 is set so that the speed change in the transmission 3 is manually performed and the speed stage is fixed to the second speed.
- FIG. 6 is a diagram for explaining the state of the wheel loader 100 when loading earth or sand or the like onto a dump truck indicated by an arrow c in FIG.
- an initial stage when approaching (approaching) a dump truck as an approaching object and a stage of accelerating the wheel loader 100 is referred to as an initial stage of approach.
- the middle stage when approaching the dump truck from the start of deceleration of the wheel loader 100 to the stop of the wheel loader 100, is referred to as a middle approach stage.
- the stage from when the wheel loader 100 is stopped until the earth and sand in the bucket 112 is completely released to the dump truck is referred to as an approach late stage.
- the accelerator pedal 12 In the initial stage of the approach, the accelerator pedal 12 is fully depressed to accelerate the wheel loader 100 and raise the bucket 112. In the middle of the approach, the accelerator pedal 12 is depressed to the maximum to raise the bucket 112, but the brake pedal 31 is also gradually depressed to decelerate the wheel loader 100. In the second half of the approach, the brake pedal 31 is depressed to the maximum to keep the wheel loader 100 stopped.
- the clutch cutoff selection switch 9 is selected so as to perform the clutch cutoff, the clutch cutoff is performed as described above by the depression of the brake pedal 31 by the operator in the middle of the approach.
- the input power to the torque converter 2 (the input torque to the torque converter 2 ⁇ the rotation speed of the input shaft 21) becomes a power loss. Therefore, the power loss in the torque converter 2 is reduced and the fuel consumption can be reduced.
- the driving force of the wheel loader 100 may be suddenly reduced to induce pitching of the wheel loader 100.
- the pitch of the bucket 112 tends to be larger because the position of the bucket 112 is high.
- the clutch cut-off selection switch 9 is selected so as not to perform the clutch cut-off, and the above-described clutch There may be no cut-off.
- the clutch cut-off selection switch 9 is selected so as not to perform the clutch cut-off, and the vehicle is approaching a dump truck or the like for loading earth and sand. Is detected as described later, the upper limit of the rotational speed of the engine 1, that is, the rotational speed of the input shaft 21 of the torque converter 2 is suppressed, that is, the maximum rotational speed of the engine 1 is limited (reduced). I have to.
- the controller 10 determines whether the braking force in the brake unit 5a (for example, according to the brake fluid pressure Plb detected by the pressure sensor 33) is as shown in FIG.
- the maximum rotational speed of the engine 1 is limited as shown in FIG. That is, when it is determined that the clutch cutoff selection switch 9 is selected so as not to perform the clutch cutoff and the brake fluid pressure Plb exceeds the predetermined pressure value P1, the controller 10 loads the earth and sand. It is determined that the vehicle is approaching the dump truck or the like, and until the predetermined pressure value P2 that is higher than the pressure value P1, the maximum engine speed limit speed increases as the brake fluid pressure Plb detected by the pressure sensor 33 increases. Rrim is gradually decreased.
- the controller 10 determines the engine maximum rotation speed limit Rlim. Set to L (%). Even if the clutch cutoff selection switch 9 is selected so as not to perform the clutch cutoff, the controller 10 determines that the brake hydraulic pressure Plb is equal to or lower than the predetermined pressure value P1, and the controller 10
- the limit value (maximum engine speed limit Rlim) is not limited.
- the pressure value P2 is, for example, a brake fluid pressure that generates a braking force that can maintain the vehicle speed of the wheel loader 100 at a speed when a person walks even when the accelerator pedal 12 is fully depressed.
- the pressure value P2 is, for example, a brake fluid pressure that generates a braking force that can maintain the vehicle speed of the wheel loader 100 at, for example, 3 km / h or less when the accelerator pedal 12 is fully depressed.
- the pressure value P1 is, for example, about 50% of the pressure value P2.
- L is set to about 70 to 85% of the rotation speed when the engine maximum rotation speed limit Rlim is not limited (100%).
- FIG. 8 is a diagram showing the target engine speed with respect to the depression amount of the accelerator pedal 12.
- the engine maximum speed limit Rlim is not limited (“no limit” in the figure)
- the low engine idle speed (Lo (min)) in which the target engine speed is the minimum speed according to the depression amount of the accelerator pedal 12.
- Hi (max) high idle
- the target engine speed increases from Lo (min) as the amount of depression of the accelerator pedal 12 increases. Is a value obtained by multiplying Hi (max) by 100% of L (L / 100).
- FIG. 9 is a diagram illustrating a torque curve of the engine 1 that can be used as a driving force of the wheel loader 100 when the bucket 112 is raised, and a curve of an input torque to the torque converter 2.
- the intersection of the torque curve of the engine 1 and the input torque curve of the torque converter 2 is the input torque that is actually input to the torque converter 2 for traveling of the wheel loader 100.
- the torque input to the torque converter 2 increases in proportion to the square of the rotational speed Ni (that is, the rotational speed of the engine 1) of the input shaft 21 of the torque converter 2. Accordingly, when the engine maximum rotation speed limit Rlim is limited, the input torque to the torque converter 2 is reduced as compared with the case where the engine maximum speed limit Rlim is not limited. That is, in FIG. 9, the intersection of the torque curve of the engine 1 and the input torque curve of the torque converter 2 moves to the lower left.
- the input power to the torque converter 2 (that is, the output of the engine 1) is represented by the product of the input torque to the torque converter 2 and the rotational speed Ni of the input shaft 21 (that is, the rotational speed of the engine 1).
- the power loss in the torque converter 2 is expressed by the following equation (1).
- (Power loss) (Input power to torque converter 2) ⁇ (1- ⁇ ) (1)
- ⁇ is the power transmission efficiency in the torque converter 2.
- the maximum engine speed limit Rlim when the maximum engine speed limit Rlim is limited, the input power to the torque converter 2 is reduced and the power loss in the torque converter 2 is reduced as compared with the case where the engine maximum speed limit Rlim is not limited. Further, when the engine maximum rotation speed limit Rlim is limited, the driving force when approaching the dump truck is suppressed as compared with the case where the engine maximum speed limit Rlim is not limited, so that the load on the brake unit 5a can be reduced. The temperature rise of the part 5a can be suppressed, and consumption of each part of the brake part 5a can be suppressed.
- FIG. 10 is a flowchart showing the operation of the rotational speed control process of the engine 1 in the wheel loader 100 of the present embodiment.
- an ignition switch (not shown) of the wheel loader 100 is turned on, a program for performing the processing shown in FIG. 10 is started and repeatedly executed by the controller 10.
- step S1 information on the brake fluid pressure Plb detected by the pressure sensor 33 is acquired, and the process proceeds to step S3.
- step S3 it is determined whether or not the clutch cutoff selection switch 9 is selected so as to perform clutch cutoff.
- step S3 If a negative determination is made in step S3, the process proceeds to step S5, and it is determined whether or not the brake fluid pressure Plb acquired in step S1 exceeds a predetermined pressure value P1. If an affirmative determination is made in step S5, the process proceeds to step S7, and it is determined whether or not the brake fluid pressure Plb acquired in step S1 exceeds a predetermined pressure value P2. If an affirmative determination is made in step S7, the process proceeds to step S9, the engine maximum rotation speed limit Rlim is set to a value obtained by multiplying Hi (max) by L per hundred, and the process proceeds to step S11. In step S11, information on the operation amount of the accelerator pedal 12 detected by the pedal operation amount detector 12a is acquired, and the process proceeds to step S13.
- step S13 based on the operation amount of the accelerator pedal 12 acquired in step S11, a target engine rotation speed when the engine maximum rotation speed limit Rlim is not limited is calculated.
- the ROM of the controller 10 stores information on the relationship between the depression amount of the accelerator pedal 12 and the target engine speed when the engine maximum speed limit speed Rlim is not limited, as shown in FIG. .
- step S13 based on the information stored in the ROM and the operation amount of the accelerator pedal 12 acquired in step S11, a target engine rotation speed when the engine maximum rotation speed limit Rlim is not limited is calculated.
- step S13 the process proceeds to step S15, and it is determined whether or not the target engine speed calculated in step S13 is equal to or higher than the engine maximum rotation speed limit Rlim. If an affirmative determination is made in step S15, the process proceeds to step S17, where the target engine speed is set to the engine maximum rotation speed limit Rlim, a control signal is output to the engine 1, and the process returns. If a negative determination is made in step S15, the process proceeds to step S19, and a control signal is output to the engine 1 so as to rotate at the target engine speed calculated in step S13, and the process returns.
- step S7 If a negative determination is made in step S7, the process proceeds to step S21, where the engine maximum rotation speed limit Rlim is set to a value corresponding to the brake fluid pressure Plb acquired in step S1, that is, as shown in FIG.
- the speed limit Rlim is set between 100 (%) (that is, Hi (max)) and L (%) according to the brake fluid pressure Plb, and the process proceeds to step S11.
- step S5 If a negative determination is made in step S5, the process proceeds to step S23, the engine maximum rotation speed limit Rlim is set to Hi (max), and the process proceeds to step S11.
- step S3 determines whether or not the brake fluid pressure Plb acquired in step S1 exceeds the brake fluid pressure cutoff threshold Ps described above. If an affirmative determination is made in step S25, the process proceeds to step S27, the above-described cut-off signal is output to the transmission control device 20, and the process proceeds to step S23. If a negative determination is made in step S25, the process proceeds to step S23.
- the following operational effects can be achieved.
- the clutch load is not cut off to prevent pitching associated with the clutch cutoff, and the wheel loader 100 can be smoothly moved.
- the power loss in the torque converter 2 and the burden on the brake part 5a caused by performing the clutch cutoff can be reduced.
- the maximum engine speed limit Rlim is gradually decreased as the brake fluid pressure Plb detected by the pressure sensor 33 increases. As a result, it is possible to prevent a sudden decrease in the ascending speed of the bucket 112 and a drastic decrease in the traveling driving force of the wheel loader 100 when loading earth and sand on the dump truck. Uncomfortable feeling and pitching of the wheel loader 100 can be suppressed.
- the engine maximum rotation speed limit Rlim is suppressed only when the brake fluid pressure Plb detected by the pressure sensor 33 exceeds a predetermined pressure value P1. As a result, the engine maximum rotation speed limit Rlim is not suppressed by a slight speed adjustment by a brake operation or the like, so that the influence on the ascending speed of the bucket 112 and the traveling driving force of the wheel loader 100 is kept to a minimum. And does not reduce work efficiency.
- FIG. 11 is a flowchart showing a first modification of the operation of the rotational speed control process of the engine 1 in the wheel loader 100 of the present embodiment.
- the flowchart shown in FIG. 11 is different from the flowchart shown in FIG. 10 in that step S31 is added between step S3 and step S5.
- step S31 it is determined in step S31 whether or not the traveling speed of the wheel loader 100 is equal to or lower than a predetermined speed Vl.
- the predetermined speed Vl is, for example, 5 km / h. If an affirmative determination is made in step S31, the process proceeds to step S5 to determine whether or not the brake fluid pressure Plb acquired in step S1 exceeds a predetermined pressure value P1. If a negative determination is made in step S31, the process proceeds to step S23.
- step S5 and after step S23 are the same as those in the flowchart shown in FIG.
- FIG. 12 is a flowchart showing a second modification of the operation of the rotational speed control process of the engine 1 in the wheel loader 100 of the present embodiment.
- the flowchart shown in FIG. 12 is different from the flowchart shown in FIG. 10 in that step S32 is added between step S3 and step S5. That is, when the clutch cutoff selection switch 9 is selected so that the clutch is not cut off in step S3, it is determined in step S32 whether or not the height H of the bucket 112 is equal to or higher than the predetermined height H1.
- the predetermined height H1 is set, for example, as the height of the bucket 112 at the maximum reach when the arm 111 is substantially horizontal.
- the state where the arm 111 is substantially horizontal is a state where the swing center of the proximal end of the arm 111 and the swing center of the bucket 112 at the distal end are substantially horizontal.
- step S32 If an affirmative determination is made in step S32, the process proceeds to step S5, and it is determined whether or not the brake fluid pressure Plb acquired in step S1 exceeds a predetermined pressure value P1. If a negative determination is made in step S32, the process proceeds to step S23.
- the processes after step S5 and after step S23 are the same as those in the flowchart shown in FIG.
- the present invention is not limited to this. If it is information (parameter) related to the magnitude of the braking force, for example, instead of the brake fluid pressure Plb, the operation amount (pedal stroke or pedal angle) of the brake pedal 31 detected by the pedal operation amount detector 31a. It may be configured to determine whether or not the approaching object is approached based on the basis.
- the engine maximum rotation speed limit Rlim is set between 100 (%) (that is, Hi (max)) and L (%).
- the present invention is not limited to this. For example, as shown in FIG. 13, if the brake fluid pressure Plb is equal to or less than a predetermined pressure value P2, the engine maximum rotation speed limit Rlim is set to 100 (%), and the brake fluid pressure Plb is set to the predetermined pressure value P2. If it exceeds, the engine maximum rotation speed limit Rlim may be set to L (%).
- the engine hydraulic maximum speed limit Rlim is not set to L (%) immediately after the brake hydraulic pressure Plb exceeds the predetermined pressure value P2, but the brake hydraulic pressure Plb is set to the predetermined pressure value P2.
- the number of speed stages that can be selected in the transmission 3 is four, but the present invention is not limited to this, and may be three or five or more.
- the wheel loader 100 is described as an example of the work vehicle.
- the present invention is not limited to this, and may be another work vehicle such as a forklift.
- the present invention is not limited to the embodiment described above, and an approach detector that detects an approach to an approach object of an industrial vehicle, and an engine that detects an approach to the approach object of an industrial vehicle by the approach detector.
- an engine speed controller for industrial vehicles having various structures which includes an engine speed controller for suppressing the upper limit of the engine speed.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Mining & Mineral Resources (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Transportation (AREA)
- Operation Control Of Excavators (AREA)
- Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
本発明の第2の態様によると、第1の態様による産業車両のエンジン回転数制御装置において、アプローチ検出器は、産業車両のエンジンのトランスミッションに設けられた前進クラッチが接続状態であり、かつ、産業車両の制動力が所定の制動力以上であると判断した場合に、産業車両がアプローチ対象物へアプローチしたと検出するのが好ましい。
本発明の第3の態様によると、第1の態様による産業車両のエンジン回転数制御装置において、アプローチ検出器は、産業車両のエンジンのトランスミッションに設けられた前進クラッチが接続状態であり、かつ、産業車両の走行速度が所定速度以下であり、かつ、産業車両の制動力が所定の制動力以上であると判断した場合に、産業車両がアプローチ対象物へアプローチしたと検出するのが好ましい。
本発明の第4の態様によると、第1の態様による産業車両のエンジン回転数制御装置において、アプローチ検出器は、産業車両のエンジンのトランスミッションに設けられた前進クラッチが接続状態であり、かつ、産業車両に設けられた作業機装置の高さが所定の高さ以上であり、かつ、産業車両の制動力が所定の制動力以上であると判断した場合に、産業車両がアプローチ対象物へアプローチしたと検出するのが好ましい。
本発明の第5の態様によると、第1~第4のいずれかの態様による産業車両のエンジン回転数制御装置において、アプローチ検出器は、産業車両の制動力の大きさに関連する情報を取得する制動力情報取得器を含み、エンジン回転数抑制手段は、制動力情報取得器で取得した前記情報に基づいて、制動力が大きくなるほど前記エンジンの回転数の上限が低くなるように前記エンジンの回転数の上限を抑制するのが好ましい。
本発明の第6の態様によると、第5の態様による産業車両のエンジン回転数制御装置において、エンジン回転数抑制手段は、制動力情報取得器で取得した前記情報に基づいて、制動力が所定の制動力以下であると判断したときには、エンジンの回転数の上限を抑制せず、制動力が所定の制動力を超えると判断したときには、制動力が大きくなるほどエンジンの回転数の上限が低くなるようにエンジンの回転数の上限を抑制するのが好ましい。
本発明の第7の態様によると、第1~6の態様による産業車両のエンジン回転数制御装置において、産業車両のエンジン回転数制御装置は、さらに、動力源と動輪とを連結/開放するクラッチと、クラッチを解放するクラッチカットオフ弁と、クラッチカットオフ弁の駆動/非駆動を選択する選択器を有し、エンジン回転数制御器は、選択器がクラッチカットオフ弁の非駆動を選択している状態では、エンジンの回転数の上限の抑制を行うのが好ましい。
本発明の第8の態様によると、第7の態様による産業車両のエンジン回転数制御装置において、選択器が前記クラッチカットオフ弁の駆動を選択している状態では、アプローチ検出器で産業車両のアプローチ対象物へのアプローチを検出すると、クラッチカットオフ弁によりクラッチを解放するのが好ましい。
なお、コントローラ10は、クラッチカットオフをしないようにクラッチカットオフ選択スイッチ9が選択されている場合には、圧力センサ33で検出したブレーキ液圧Plbがブレーキ液圧カットオフ閾値Psを超えてもカットオフ信号を出力しない。したがって、クラッチカットオフをしないようにクラッチカットオフ選択スイッチ9が選択されている場合には、上述したクラッチカットオフは行われない。
(動力損失)=(トルコン2への入力動力)×(1-η) (1)
ηは、トルコン2における動力の伝達効率である。
図10は、本実施の形態のホイールローダ100におけるエンジン1の回転速度制御処理の動作を示したフローチャートである。ホイールローダ100の不図示のイグニッションスイッチがオンされると、図10に示す処理を行うプログラムが起動され、コントローラ10で繰り返し実行される。ステップS1において、圧力センサ33で検出されたブレーキ液圧Plbの情報を取得して、ステップS3へ進む。ステップS3において、クラッチカットオフをするようにクラッチカットオフ選択スイッチ9が選択されているか否かを判断する。
(1) 接近対象物への接近を検出すると、エンジン1の回転数の上限を抑制するように構成した。これにより、土砂等を積み込むためにダンプトラック等へ接近する際に、クラッチカットオフを行わないことでクラッチカットオフに伴うピッチングを防止して、ホイールローダ100の動きを滑らかにすることができるとともに、クラッチカットオフを行ないことで生じるトルコン2における動力損失やブレーキ部5aへの負担を軽減できる。
上述の説明では、接近対象物へ接近しているか否かを、クラッチカットオフ選択スイッチ9の選択状態と、ブレーキ液圧Plbで判断するように構成しているが、本発明はこれに限定されない。
図11は、本実施の形態のホイールローダ100におけるエンジン1の回転速度制御処理の動作の変形例1を示すフローチャートである。
図11に図示されたフローチャートが図10に図示されたフローチャートと相違する点は、ステップS3とステップS5との間にステップS31が追加されている点である。
図11に示されたフローチャートでは、接近対象物へ接近しているか否かを、クラッチカットオフ選択スイッチ9の選択状態と、ホイールローダ100の走行速度と、ブレーキ液圧Plbに基づいて判断するようにしているので、下り勾配でホイールローダ100の走行速度が大きくなった場合等において、エンジンの回転数を抑制することがなく、適用範囲を拡大することができる。
図12は、本実施の形態のホイールローダ100におけるエンジン1の回転速度制御処理の動作の変形例2を示すフローチャートである。
図12に図示されたフローチャートが図10に図示されたフローチャートと相違する点は、ステップS3とステップS5との間にステップS32が追加されている点である。
すなわち、ステップS3でクラッチカットオフされないようにクラッチカットオフ選択スイッチ9が選択されると、ステップS32において、バケット112の高さHが所定高さH1以上であるか否かが判断される。所定の高さH1は、たとえば、アーム111が略水平となる最大リーチ時におけるバケット112の高さとして設定される。アーム111が略水平になる状態とは、アーム111の基端の揺動中心と先端のバケット112の揺動中心とが略水平になる状態のことである。
ステップS5以降およびステップS23以降の処理は、図10に図示されたフローチャートと同一である。
また、上述した実施の形態および各変形例は、それぞれ組み合わせてもよい。
日本出願特許出願2009年第144093号
Claims (8)
- 産業車両のアプローチ対象物へのアプローチを検出するアプローチ検出器(approach detector)と、
前記アプローチ検出器で前記産業車両のアプローチ対象物へのアプローチを検出するとエンジンの回転数の上限を抑制するエンジン回転数制御器とを備える産業車両のエンジン回転数制御装置。 - 請求項1に記載の産業車両のエンジン回転数制御装置において、
前記アプローチ検出器は、前記産業車両のエンジンのトランスミッションに設けられた前進クラッチが接続状態であり、かつ、前記産業車両の制動力が所定の制動力以上であると判断した場合に、前記産業車両がアプローチ対象物へアプローチしたと検出する産業車両のエンジン回転数制御装置。 - 請求項1に記載の産業車両のエンジン回転数制御装置において、
前記アプローチ検出器は、前記産業車両のエンジンのトランスミッションに設けられた前進クラッチが接続状態であり、かつ、前記産業車両の走行速度が所定速度以下であり、かつ、前記産業車両の制動力が所定の制動力以上であると判断した場合に、前記産業車両がアプローチ対象物へアプローチしたと検出する産業車両のエンジン回転数制御装置。 - 請求項1に記載の産業車両のエンジン回転数制御装置において、
前記アプローチ検出器は、前記産業車両のエンジンのトランスミッションに設けられた前進クラッチが接続状態であり、かつ、前記産業車両に設けられた作業機装置の高さが所定の高さ以上であり、かつ、前記産業車両の制動力が所定の制動力以上であると判断した場合に、前記産業車両がアプローチ対象物へアプローチしたと検出する産業車両のエンジン回転数制御装置。 - 請求項1~4のいずれか1項に記載の産業車両のエンジン回転数制御装置において、
前記アプローチ検出器は、前記産業車両の制動力の大きさに関連する情報を取得する制動力情報取得器を含み、
前記エンジン回転数制御器は、前記制動力情報取得器で取得した前記情報が所定の範囲内にある場合、前記制動力が大きくなるほど前記エンジンの回転数の上限が低くなるように前記エンジンの回転数の上限を抑制する産業車両のエンジン回転数制御装置。 - 請求項5に記載の産業車両のエンジン回転数制御装置において、
前記エンジン回転数制御器は、前記制動力情報取得器で取得した前記情報に基づいて、前記制動力が所定の制動力以下であると判断したときには、前記エンジンの回転数の上限を抑制せず、前記制動力が所定の制動力を超えると判断したときには、前記制動力が大きくなるほど前記エンジンの回転数の上限が低くなるように前記エンジンの回転数の上限を抑制する産業車両のエンジン回転数制御装置。 - 請求項1~6のいずれか1項に記載の産業車両のエンジン回転数制御装置において、
前記産業車両のエンジン回転数制御装置は、さらに、動力源と動輪とを連結/開放するクラッチと、前記クラッチを解放するクラッチカットオフ弁と、前記クラッチカットオフ弁の駆動/非駆動を選択することが可能な選択器を有し、前記エンジン回転数制御器は、前記選択器が前記クラッチカットオフ弁の非駆動を選択している状態では、エンジンの回転数の上限の抑制を行うことを特徴とする産業車両のエンジン回転数制御装置。 - 請求項7に記載の産業車両のエンジン回転数制御装置において、前記選択器が前記クラッチカットオフ弁の駆動を選択している状態では、前記アプローチ検出器で前記産業車両のアプローチ対象物へのアプローチを検出すると、前記クラッチカットオフ弁により前記クラッチを解放することを特徴とする産業車両のエンジン回転数制御装置。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020117030129A KR101740745B1 (ko) | 2009-06-17 | 2010-06-16 | 산업 차량의 엔진 회전수 제어 장치 |
EP10789525.2A EP2444634B1 (en) | 2009-06-17 | 2010-06-16 | Apparatus for controlling number of revolutions of engine for industrial vehicle |
CN201080026324.2A CN102459853B (zh) | 2009-06-17 | 2010-06-16 | 工业车辆的发动机转速控制装置 |
US13/378,969 US9091221B2 (en) | 2009-06-17 | 2010-06-16 | Engine speed control device for industrial vehicle |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-144093 | 2009-06-17 | ||
JP2009144093A JP5156693B2 (ja) | 2009-06-17 | 2009-06-17 | 産業車両のエンジン回転数制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010147151A1 true WO2010147151A1 (ja) | 2010-12-23 |
Family
ID=43356467
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/060216 WO2010147151A1 (ja) | 2009-06-17 | 2010-06-16 | 産業車両のエンジン回転数制御装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9091221B2 (ja) |
EP (1) | EP2444634B1 (ja) |
JP (1) | JP5156693B2 (ja) |
KR (1) | KR101740745B1 (ja) |
CN (1) | CN102459853B (ja) |
WO (1) | WO2010147151A1 (ja) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9043102B2 (en) * | 2010-10-26 | 2015-05-26 | Fca Us Llc | Brake assist function |
SE536444C2 (sv) * | 2012-03-19 | 2013-11-05 | Scania Cv Ab | Anordning och förfarande för styrning av kraftuttagsdrift vid ett motorfordon |
CN103161930B (zh) * | 2013-02-22 | 2015-10-14 | 三一重工股份有限公司 | 一种离合控制装置、方法和工程机械 |
US8843288B1 (en) * | 2013-03-14 | 2014-09-23 | Chrysler Group Llc | Vehicle speed control system and method |
CN103587521B (zh) * | 2013-11-25 | 2017-02-15 | 山推工程机械股份有限公司 | 一种推土机制动控制系统及控制方法 |
JP6139424B2 (ja) * | 2014-01-30 | 2017-05-31 | 株式会社Kcm | 作業車両の原動機制御装置 |
CN105612330A (zh) * | 2014-09-18 | 2016-05-25 | 株式会社小松制作所 | 作业车辆及作业车辆的控制方法 |
GB2531765B (en) * | 2014-10-29 | 2017-09-13 | Bamford Excavators Ltd | An undercarriage for a working machine |
JP6343268B2 (ja) * | 2015-09-25 | 2018-06-13 | 株式会社Kcm | 建設機械 |
KR102597075B1 (ko) * | 2016-03-23 | 2023-11-01 | 에이치디현대인프라코어 주식회사 | 건설기계의 트랜스미션 컷오프 제어 장치 및 방법 |
JP6390667B2 (ja) * | 2016-06-07 | 2018-09-19 | トヨタ自動車株式会社 | ハイブリッド自動車 |
JP6995467B2 (ja) | 2016-08-26 | 2022-01-14 | 株式会社小松製作所 | ホイールローダ、およびホイールローダの制御方法 |
JP6823500B2 (ja) * | 2017-03-03 | 2021-02-03 | 株式会社小松製作所 | 作業車両および制御方法 |
US11112005B2 (en) * | 2018-03-28 | 2021-09-07 | Cnh Industrial America Llc | Transmission system for a work vehicle |
JP7236917B2 (ja) * | 2019-04-04 | 2023-03-10 | 株式会社小松製作所 | 作業車両、作業車両の制御装置および制御方法 |
JP7215328B2 (ja) * | 2019-05-27 | 2023-01-31 | トヨタ自動車株式会社 | ハイブリッド車両 |
CN113677577B (zh) * | 2019-09-24 | 2023-07-25 | 日立建机株式会社 | 自卸车 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5556732U (ja) * | 1978-10-16 | 1980-04-17 | ||
JPH02101851U (ja) * | 1989-01-24 | 1990-08-14 | ||
JPH0473331A (ja) * | 1990-07-13 | 1992-03-09 | Hitachi Constr Mach Co Ltd | 油圧駆動車両の原動機回転数制御装置 |
JP2001263384A (ja) | 2000-03-17 | 2001-09-26 | Komatsu Ltd | トランスミッションのクラッチカットオフ方法及びその装置 |
JP2005299732A (ja) * | 2004-04-07 | 2005-10-27 | Hitachi Constr Mach Co Ltd | 作業車両のクラッチ制御装置 |
WO2009054499A1 (ja) * | 2007-10-24 | 2009-04-30 | Tcm Corporation | 作業車両の原動機制御装置 |
JP2009144093A (ja) | 2007-12-17 | 2009-07-02 | Shin Etsu Chem Co Ltd | 光導波板用エチレン・α−オレフィン・非共役ポリエンランダム共重合体ゴム組成物、該組成物を硬化させてなる硬化物及びそれを用いた光導波板 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5556732A (en) | 1978-10-20 | 1980-04-25 | Toshiba Corp | Complementary mos-type dynamic logic circuit system |
JPS62163872A (ja) * | 1986-01-13 | 1987-07-20 | Iseki & Co Ltd | 移動農機等の操作装置 |
US4898078A (en) * | 1987-09-11 | 1990-02-06 | Deere & Company | Hydraulic system for a work vehicle |
JP2818474B2 (ja) * | 1990-07-04 | 1998-10-30 | 日立建機株式会社 | 油圧駆動回路 |
JP3395258B2 (ja) * | 1993-07-07 | 2003-04-07 | 井関農機株式会社 | コンバイン |
JPH11141669A (ja) * | 1997-10-31 | 1999-05-25 | Satoru Katono | 自動車で前方へ走行中に急ブレーキを行ったときに自動的 にギアがr(リバース)に入りタイアが後転して自動車を 止め、後方へ走行中に急ブレーキを行ったときには自動的 にギアが1(ロー)に入りタイアが前転して自動車を止め る制動装置 |
US6363632B1 (en) * | 1998-10-09 | 2002-04-02 | Carnegie Mellon University | System for autonomous excavation and truck loading |
US6249733B1 (en) * | 1999-06-02 | 2001-06-19 | Caterpillar Inc. | Automatic engine retarder and transmission control in off highway earth moving equipment |
JP2001027319A (ja) * | 1999-07-14 | 2001-01-30 | Hitachi Constr Mach Co Ltd | 油圧閉回路駆動型ホイール式車両 |
US6619406B1 (en) * | 1999-07-14 | 2003-09-16 | Cyra Technologies, Inc. | Advanced applications for 3-D autoscanning LIDAR system |
US7016532B2 (en) * | 2000-11-06 | 2006-03-21 | Evryx Technologies | Image capture and identification system and process |
SE526913C2 (sv) * | 2003-01-02 | 2005-11-15 | Arnex Navigation Systems Ab | Förfarande i form av intelligenta funktioner för fordon och automatiska lastmaskiner gällande kartläggning av terräng och materialvolymer, hinderdetektering och styrning av fordon och arbetsredskap |
JP4179078B2 (ja) * | 2003-07-22 | 2008-11-12 | トヨタ自動車株式会社 | 車両の発進制御装置 |
US7509197B2 (en) * | 2005-01-31 | 2009-03-24 | Caterpillar Inc. | Retarding system implementing transmission control |
WO2007010991A1 (ja) * | 2005-07-22 | 2007-01-25 | Tcm Corporation | 作業車両の変速制御装置 |
SE533161C2 (sv) | 2005-10-14 | 2010-07-13 | Komatsu Mfg Co Ltd | Anordning och metod för att styra motor och hydraulpump hos ett arbetsfordon |
US7974756B2 (en) * | 2005-12-26 | 2011-07-05 | Komatsu Ltd. | Construction vehicle |
JP4297127B2 (ja) * | 2006-04-05 | 2009-07-15 | トヨタ自動車株式会社 | 車両およびその制御方法 |
JP5134238B2 (ja) * | 2006-12-15 | 2013-01-30 | 株式会社小松製作所 | 作業車両のエンジン負荷制御装置 |
JP5046690B2 (ja) * | 2007-03-12 | 2012-10-10 | 日立建機株式会社 | 作業車両の制御装置 |
EP2146885B1 (en) * | 2007-05-10 | 2014-07-23 | Volvo Construction Equipment AB | A method for controlling a work machine during operation in a repeated work cycle |
JP2009035110A (ja) * | 2007-08-01 | 2009-02-19 | Aisin Aw Co Ltd | 自動変速機を備えた車両の運転支援方法、運転支援制御プログラム及び自動変速機を備えた車両の運転支援装置 |
JP5069518B2 (ja) * | 2007-08-10 | 2012-11-07 | 日立建機株式会社 | 作業機械の走行システム |
CA2720840A1 (en) * | 2008-04-14 | 2009-10-22 | Deere & Company | Traction control method and apparatus for a vehicle with independent drives |
JP5062371B2 (ja) * | 2009-12-17 | 2012-10-31 | トヨタ自動車株式会社 | 車両の制御装置 |
JP5863561B2 (ja) * | 2012-05-15 | 2016-02-16 | 日立住友重機械建機クレーン株式会社 | 油圧ウインチの制御装置 |
-
2009
- 2009-06-17 JP JP2009144093A patent/JP5156693B2/ja active Active
-
2010
- 2010-06-16 WO PCT/JP2010/060216 patent/WO2010147151A1/ja active Application Filing
- 2010-06-16 US US13/378,969 patent/US9091221B2/en active Active
- 2010-06-16 KR KR1020117030129A patent/KR101740745B1/ko active IP Right Grant
- 2010-06-16 EP EP10789525.2A patent/EP2444634B1/en active Active
- 2010-06-16 CN CN201080026324.2A patent/CN102459853B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5556732U (ja) * | 1978-10-16 | 1980-04-17 | ||
JPH02101851U (ja) * | 1989-01-24 | 1990-08-14 | ||
JPH0473331A (ja) * | 1990-07-13 | 1992-03-09 | Hitachi Constr Mach Co Ltd | 油圧駆動車両の原動機回転数制御装置 |
JP2001263384A (ja) | 2000-03-17 | 2001-09-26 | Komatsu Ltd | トランスミッションのクラッチカットオフ方法及びその装置 |
JP2005299732A (ja) * | 2004-04-07 | 2005-10-27 | Hitachi Constr Mach Co Ltd | 作業車両のクラッチ制御装置 |
WO2009054499A1 (ja) * | 2007-10-24 | 2009-04-30 | Tcm Corporation | 作業車両の原動機制御装置 |
JP2009144093A (ja) | 2007-12-17 | 2009-07-02 | Shin Etsu Chem Co Ltd | 光導波板用エチレン・α−オレフィン・非共役ポリエンランダム共重合体ゴム組成物、該組成物を硬化させてなる硬化物及びそれを用いた光導波板 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2444634A4 |
Also Published As
Publication number | Publication date |
---|---|
KR20120038938A (ko) | 2012-04-24 |
JP2011001845A (ja) | 2011-01-06 |
CN102459853A (zh) | 2012-05-16 |
US9091221B2 (en) | 2015-07-28 |
EP2444634A4 (en) | 2014-05-28 |
CN102459853B (zh) | 2015-02-25 |
KR101740745B1 (ko) | 2017-05-26 |
US20120094803A1 (en) | 2012-04-19 |
EP2444634B1 (en) | 2017-03-15 |
EP2444634A1 (en) | 2012-04-25 |
JP5156693B2 (ja) | 2013-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5156693B2 (ja) | 産業車両のエンジン回転数制御装置 | |
JP5503954B2 (ja) | 作業車両のクラッチ制御装置 | |
US8775034B2 (en) | Shift control system for industrial vehicle | |
JP5778554B2 (ja) | 作業車両のクラッチ制御装置 | |
US8655557B2 (en) | Motor control device for working vehicle | |
US9523315B2 (en) | Engine control device for work vehicle | |
WO2017159389A1 (ja) | 作業車両 | |
WO2015064577A1 (ja) | 作業車両 | |
JP5270464B2 (ja) | 産業車両の変速制御装置 | |
KR20170110327A (ko) | 건설기계의 트랜스미션 컷오프 제어 장치 및 방법 | |
JP2014145447A (ja) | 作業車両のクラッチ制御装置 | |
JP2011122706A (ja) | 作業車両のクラッチ制御装置 | |
WO2010147150A1 (ja) | 産業車両のクラッチ制御装置 | |
JP6200792B2 (ja) | 作業車両のエンジン制御装置 | |
JP2017166663A (ja) | フォークリフト |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080026324.2 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10789525 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2010789525 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010789525 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117030129 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13378969 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |