WO2010146733A1 - 表示パネルの欠陥検査方法および欠陥検査装置 - Google Patents

表示パネルの欠陥検査方法および欠陥検査装置 Download PDF

Info

Publication number
WO2010146733A1
WO2010146733A1 PCT/JP2010/000558 JP2010000558W WO2010146733A1 WO 2010146733 A1 WO2010146733 A1 WO 2010146733A1 JP 2010000558 W JP2010000558 W JP 2010000558W WO 2010146733 A1 WO2010146733 A1 WO 2010146733A1
Authority
WO
WIPO (PCT)
Prior art keywords
display panel
luminance data
imaging
bright spot
picture elements
Prior art date
Application number
PCT/JP2010/000558
Other languages
English (en)
French (fr)
Inventor
松本直基
吉元直樹
上田泰広
植木章太
中西秀信
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011519473A priority Critical patent/JPWO2010146733A1/ja
Priority to CN2010800253359A priority patent/CN102460106A/zh
Publication of WO2010146733A1 publication Critical patent/WO2010146733A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1306Details
    • G02F1/1309Repairing; Testing

Definitions

  • the present invention relates to a defect inspection method and a defect inspection apparatus for inspecting the presence or absence of a bright spot defect in a liquid crystal display panel.
  • the inspection process for the presence or absence of display defects on the display panel such as a bright spot (abnormal lighting due to leakage between picture elements) defect and a black spot (non-lighting) defect is generally performed by an inspector. .
  • the visual inspection process by the inspector is performed using a limit sample that is a sample of the lowest quality that can be handled as a non-defective product.
  • the pass / fail is determined by an inspector comparing the liquid crystal display panel and the limit sample.
  • a color filter including a plurality of types of colored layers that is, a red layer R, a green layer G, and a blue layer B
  • a red layer R, a green layer G, and a blue layer B provided in the liquid crystal display panel is turned on to detect defects in the liquid crystal display panel
  • a method for inspecting a liquid crystal display panel for display defects by photographing with a CCD camera has been proposed.
  • a CCD camera in which firstly each colored layer constituting the color filter of the liquid crystal display panel is turned on, and then the display screen of the liquid crystal display panel is disposed so as to face the surface of the liquid crystal display panel.
  • the output signal of the image captured by the CCD camera is developed into a two-dimensional image, and the two-dimensional image is compared with a predetermined threshold value, and the coordinates of the bright spot defect of the liquid crystal panel are determined from the position of the image portion exceeding the threshold value.
  • An inspection apparatus for a liquid crystal display panel in which the position is determined has been proposed (see, for example, Patent Document 1).
  • a plurality of colored layers constituting the color filter are turned on every other row (for example, when the color filter is constituted by an arrangement of a red layer, a green layer, and a blue layer, the red layer, the blue layer, and the green layer) It is possible to inspect the liquid crystal display panel by turning on the light in the order of red, green, and blue depending on the visual sensitivity of the human eye. For example, for blue pixels, red and green The contrast of the image is lower than that of the other pixels. Therefore, when the liquid crystal display panel is inspected with the colored layers constituting the color filter turned on every other row, for example, when detecting a blue defect with low sensitivity, the blue defect has high ambient sensitivity. There is a problem that the accuracy of defect detection of the liquid crystal display panel is lowered as a result.
  • the present invention has been made in view of the above-described problems, and can simplify the process for inspecting a bright spot defect of a display panel such as a liquid crystal display panel, and can be used for inspecting a display panel. It is an object of the present invention to provide a display panel defect inspection method and a defect inspection apparatus capable of shortening the time required and improving the accuracy of detection of a bright spot defect of a display panel.
  • a defect inspection method for a display panel provides a brightness in a pixel of a display panel including a color filter having a display region in which a plurality of pixels composed of a plurality of types of colored layers are two-dimensionally arranged.
  • a display panel defect inspection method for inspecting the presence or absence of point defects wherein a lighting step of lighting a plurality of types of colored layers every other column in a column direction in which a plurality of colored layers are arranged, and a plurality of imaging pixels An imaging step of imaging the pixel a plurality of times while moving the imaging unit by a predetermined distance by the imaging unit having, a luminance data calculation step of calculating the luminance data at the imaging pixel in each of the plurality of imagings, A luminance data composition step for synthesizing the luminance data to obtain the synthesized luminance data, and position data of each of the plurality of picture elements constituting the pixels imaged by the imaging means Based on the obtained position data acquisition step, the synthesized luminance data, and the position data of each of the plurality of picture elements, the brightness data corresponding to each of the plurality of picture elements constituting the pixel imaged by the imaging unit is acquired. And a luminance point defect detecting step for detecting the presence or absence of a luminescent spot defect in
  • each of the conventional colored layers is turned on. Compared to the case, the process for performing the luminescent spot inspection of the display panel can be simplified, and the luminescent spot inspection of the display panel can be performed in a short time.
  • the image pickup unit is configured to pick up the pixels a plurality of times while moving the image pickup unit by a predetermined distance, it is a plurality of times as compared with the case where the image is picked up once for each colored layer. High-resolution images can be obtained. Accordingly, even when a plurality of types of colored layers constituting the color filter are turned on every other row, for example, when detecting a blue defect having low sensitivity, the blue defect is detected by the surrounding green having high sensitivity. In other words, it is possible to improve the accuracy of detection of the bright spot defect of the display panel.
  • the lighting process includes a first lighting process for lighting a predetermined colored layer, a first lighting process for turning off the colored layer that was turned on in the first lighting process. It is good also as a structure including the 2nd lighting process which lights a non-lighting colored layer every other row in a process.
  • the brightness data corresponding to each of the plurality of picture elements is compared with a predetermined determination threshold value, and based on the comparison result.
  • a predetermined determination threshold value may be configured to detect the presence or absence of a bright spot defect in the picture element.
  • the display panel defect inspection method of the present invention based on the luminance data corresponding to each of the plurality of picture elements, the total value of the contrast ratios of the plurality of picture elements is calculated, and the total value of the contrast ratios And a determination threshold value may be compared.
  • the number of times of imaging by the imaging means may be set to two.
  • a distance that is half the resolution of the imaging means may be set as a preset distance.
  • the plurality of types of colored layers may be a red layer, a green layer, and a blue layer.
  • a bright spot defect is detected in a display panel having a color filter having a display area in which a plurality of pixels composed of three kinds of colored layers of a red layer, a green layer, and a blue layer are two-dimensionally arranged. It becomes possible to do.
  • the imaging means may be a CCD camera.
  • the display panel defect inspection method of the present invention simplifies the process of performing the bright spot inspection of the display panel, and can perform the bright spot inspection of the display panel in a short time. It has an excellent characteristic that detection accuracy can be improved. Therefore, in the display panel defect inspection method of the present invention, a liquid crystal display panel can be suitably used as the display panel.
  • the display panel defect inspection apparatus is a display that detects the presence or absence of a bright spot defect in a pixel of a display panel including a color filter having a display region in which a plurality of pixels of a plurality of types of colored layers are two-dimensionally arranged.
  • a defect inspection apparatus for a panel which includes a lighting unit that turns on the plurality of types of colored layers every other column in a column direction in which the plurality of colored layers are arranged, a plurality of imaging pixels, and is set in advance.
  • An imaging means for imaging a pixel a plurality of times while moving by a distance, an arithmetic processing means for calculating luminance data at the imaging pixel in each of the plurality of imaging operations, and the synthesized luminance data Combining processing means for acquiring image data, picture element position specifying means for acquiring position data of each of a plurality of picture elements constituting pixels imaged by the imaging means, synthesized luminance data, and Luminance data acquisition means for acquiring luminance data corresponding to each of a plurality of picture elements constituting a pixel imaged by the imaging means based on position data of each of the number of picture elements, and each of the plurality of picture elements
  • a bright spot defect detecting means for detecting the presence or absence of a bright spot defect in each of the plurality of picture elements based on the corresponding luminance data is provided.
  • the bright spot inspection of the display panel is performed as compared with the case where each of the conventional colored layers is turned on.
  • the bright spot inspection of the display panel can be performed in a short time.
  • the image pickup unit is configured to pick up the pixels a plurality of times while moving the image pickup unit by a predetermined distance, it is a plurality of times as compared with the case where the image is picked up once for each colored layer. High-resolution images can be obtained. Therefore, even when all of the plurality of types of colored layers constituting the color filter are turned on at the same time, for example, when detecting a blue defect with low sensitivity, the blue defect is Since it is not buried in red, it is possible to improve the accuracy of detecting a bright spot defect of the display panel.
  • the present invention it is possible to simplify the process for performing the bright spot inspection of the display panel, and to perform the bright spot inspection of the display panel in a short time. In addition, it is possible to improve the accuracy of detection of bright spot defects on the display panel.
  • automated inspection refers to an inspection performed using an inspection apparatus, not by an inspector's visual inspection.
  • FIG. 1 is a conceptual diagram showing the configuration of a defect inspection apparatus for inspecting the presence or absence of bright spot defects in a liquid crystal display panel according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for explaining the configuration of the liquid crystal display panel inspected by the liquid crystal display panel defect inspection method according to the embodiment of the present invention.
  • FIG. 3 is a plan view showing the overall configuration of the color filter in the liquid crystal display panel according to the embodiment of the present invention.
  • the defect inspection apparatus 1 is an apparatus for inspecting the presence or absence of a bright spot defect in each liquid crystal pixel of the liquid crystal display panel 2, and each liquid crystal pixel of the liquid crystal display panel 2 is an imaging means having a plurality of imaging pixels. An image is picked up by a CCD camera 3, and the presence or absence of a bright spot defect in the liquid crystal display panel 2 is inspected based on the image pickup data.
  • the defect inspection apparatus 1 includes an image data processing unit 5 for processing image data of liquid crystal pixels picked up by the CCD camera 3.
  • the image data processing unit 5 stores the A / D conversion unit 6 that converts the data of the imaging pixel of the CCD camera 3 that has captured the pixel from an analog signal into a digital signal, and the data of the imaging pixel that has been converted into a digital signal.
  • a data memory unit 7 and an arithmetic processing unit 8 that calculates luminance data (light-receiving luminance data) at the imaging pixels by the CCD camera 3 are provided.
  • the image data processing unit 5 synthesizes the calculated luminance data and obtains the synthesized luminance data, and a plurality of picture elements constituting pixels imaged by the CCD camera 3.
  • a plurality of picture elements constituting pixels imaged by the CCD camera 3 based on the synthesized luminance data and the position data of each of the plurality of picture elements.
  • a luminance data acquisition unit 11 that acquires luminance data corresponding to each element, and a bright spot that detects the presence or absence of a bright spot defect in each of the plurality of picture elements, based on the luminance data corresponding to each of the plurality of picture elements.
  • a CCD camera driving unit 4 for driving the CCD camera 3 is connected to the CCD camera 3.
  • the CCD camera drive unit 4 movably provides the CCD camera 3, and the liquid crystal display panel 2 and the CCD camera 3 are configured to be relatively movable, whereby the pixels captured by the CCD camera 3 are sequentially captured. It becomes possible to switch.
  • the liquid crystal display panel 2 to be inspected by the display panel defect inspection method according to the present embodiment is arranged to face the TFT substrate 24 and the TFT substrate 24 as the first substrate, as shown in FIG. And a CF substrate 25 as a second substrate.
  • the liquid crystal display panel 2 also adheres the liquid crystal layer 26, which is a display medium layer provided between the TFT substrate 24 and the CF substrate 25, to the TFT substrate 24 and the CF substrate 25, and encapsulates the liquid crystal layer 26.
  • a sealing material 27 provided in a frame shape.
  • the sealing material 27 is formed so as to go around the liquid crystal layer 26, and the TFT substrate 24 and the CF substrate 25 are bonded to each other via the sealing material 27.
  • the TFT substrate 24 includes a glass substrate (not shown), TFT elements such as a gate electrode, a source electrode, and a drain electrode (not shown) formed on the glass substrate, a transparent insulating layer, a pixel electrode, an alignment film, and the like. Yes.
  • the CF substrate 25 includes, for example, a black matrix (not shown) provided on a glass substrate in a lattice shape and a frame shape as a light-shielding portion, and a color filter 15 provided between the lattices of the black matrix (see FIG. 3). And.
  • the CF substrate 25 covers a common electrode (not shown) provided so as to cover the black matrix and the color filter 15, a photo spacer (not shown) provided in a column shape on the common electrode, and the common electrode. And an alignment film (not shown).
  • a display area D for displaying an image is defined in an area where the TFT substrate 24 and the CF substrate 25 overlap.
  • the display area D is configured by arranging a plurality of pixels, which are the minimum unit of an image, in a matrix.
  • the color filter 15 includes a plurality of types of colored layers (that is, a red layer, a green layer, and a blue layer) 16 provided for each pixel, and 3 picture elements ⁇ 3.
  • Three-color picture elements (dots) 17 of a red (R) picture element, a green (G) picture element, and a blue (B) picture element constituting a plurality of types of colored layers 16 are arranged in a three-color arrangement of picture elements.
  • the provided area E has a display area D in which a plurality of areas E are arranged two-dimensionally.
  • the color filter 15 includes a plurality of types of colored layers 16 in a red direction, a green layer, and a blue layer in the column direction (that is, the Z direction shown in FIG. 3). It is the arrangement which is arranged in order.
  • the liquid crystal layer 26 is made of, for example, a nematic liquid crystal material having electro-optical characteristics.
  • FIG. 4 is a diagram for explaining a lighting process in the defect inspection method for the liquid crystal display panel according to the present embodiment
  • FIG. 5 is a flowchart for explaining the defect inspection method for the liquid crystal display panel according to the present embodiment. It is.
  • the defect inspection method for a liquid crystal display panel according to the present embodiment is a liquid crystal display panel 2 including a color filter 15 having a display region D in which a plurality of regions E each including a plurality of types of colored layers 16 are two-dimensionally arranged. In this method, the presence or absence of a bright spot defect in the region E is inspected.
  • “bright spot defect” refers to an abnormal lighting defect caused by a leak between the picture elements 17.
  • the liquid crystal display panel driving unit 14 connected to the liquid crystal display panel 2 drives the liquid crystal display panel 2 placed on the stage 13, and the plurality of types of colored layers 16 constituting the color filter 15 are arranged in one row. It is lit every other time (step S1).
  • the A / D conversion unit 6 converts the data of the imaging pixel of the CCD camera 3 that images the region E from an analog signal into a digital signal, and the data of the imaging pixel converted into the digital signal is stored in the data memory unit 7. (Step S3).
  • the data of the imaging pixel stored in the data memory unit 7 is output to the arithmetic processing unit 8, and the CCD camera 3 that images the bright spot defect by the arithmetic processing unit 8 based on the data of the imaging pixel.
  • Luminance data at the imaging pixel is calculated (step S4).
  • FIG. 6 shows an imaging pixel of the CCD camera 3 that images the bright spot defect 18 when the bright spot defect 18 exists.
  • FIG. 8 shows an example of the luminance data of the imaging pixel calculated based on the imaging pixel data shown in FIG.
  • a region of the imaged camera pixel 19 (that is, an imaging pixel) is shown.
  • the calculation processing unit 8 calculates the luminance data of the camera pixel 19 within the imaging pixel area 20 shown in FIG. 7 as the imaging pixel of the CCD camera 3 that images the bright spot defect 18. Further, a1 to a16 described in each camera pixel 19 (that is, the imaging pixel) constituting the imaging pixel region 20 shown in FIG. 8 are the luminance (light reception luminance) in each camera pixel 19, and the luminance Numerical values are shown as numerical values in parentheses.
  • the luminance (a6 to a7, a10 to a11) of the camera pixel 19 in which the bright spot defect 18 is imaged in the entire pixel among the camera pixels 19 constituting the imaging pixel region 20 is 100. Therefore, the value is significantly higher than the luminance (a1 to a5, a8 to a9, a12 to a16) of the camera pixel 19 in which the bright spot defect 18 is captured in a part of the pixel.
  • the luminance (a2 to a3, a5, a8 to a9, a12, a14 to a15) of the camera pixel 19 in which the bright spot defect 18 is imaged in approximately half of the pixel is 50, and part of the four corners of the pixel
  • the value is higher than the luminance (a1, a4, a13, a16) of the camera pixel 19 in which the bright spot defect 18 is imaged.
  • the arithmetic processing unit 8 determines whether or not the number of times of imaging of the region E in the liquid crystal display panel 2 by the CCD camera 3 has reached a predetermined number (in this embodiment, two times) (that is, by the arithmetic processing unit 8). It is determined whether or not the luminance data has been calculated twice (step S5). When the number of times of imaging has not reached 2, the CCD camera 4 moves the CCD camera 3 (step S6), and the above-described steps S2 to S4 are repeated. Thereafter, the movement of the CCD camera (step S6) and the processes of steps S2 to S4 described above are repeated until the number of times of imaging reaches 2.
  • the CCD driving device 4 moves the CCD camera 3 by a distance that is half the resolution of the CCD camera 3. For example, when the resolution of the CCD camera 3 is 100 ⁇ m, the CCD camera 3 is moved by a distance of 50 ⁇ m.
  • FIG. 9 shows a state where the CCD camera 3 is moved by a half of the resolution in the direction of arrow A in the figure from the state shown in FIG.
  • the bright spot defect 18 moves from the state shown in FIG. 7 by a distance half the resolution in the direction of the arrow d in the figure.
  • the luminance data of the image pickup pixel by the CCD camera 3 that picks up the bright spot defect 18 calculated by the arithmetic processing unit 8 is obtained from the camera pixel 19 in which the bright spot defect 18 is picked up in the entire pixel.
  • the luminance (b6 to b8, b10 to b12) is 100, and the luminance (b1, b5, b9, b13) of the camera pixel 19 that was not imaged of the bright spot defect 18 and the bright spot defect at about half of the pixels. 18 is significantly higher than the luminance (b2 to b4, b14 to b16) of the camera pixel 19 in which the image 18 is captured.
  • the CCD camera 3 having a plurality of imaging pixels moves the CCD camera 3 by a preset distance
  • the region E is imaged a plurality of times
  • the arithmetic processing unit 8 The luminance data at the imaging pixel in each of a plurality of times of imaging is calculated.
  • the moving distance of the CCD camera 3 is set to a half of the resolution of the CCD camera 3. Therefore, when the area E is imaged by the CCD camera 3, the picture element 17 having the bright spot defect 18 is located in a low-sensitivity area between the plurality of imaging pixels (that is, the camera pixel 19) of the CCD camera 3. Even in this state, by moving the CCD camera 3 by a distance that is half the resolution of the CCD camera 3, the bright spot defect 18 is provided in a highly sensitive region other than between the plurality of imaging pixels of the CCD camera 3. The picture element 17 can be positioned. Accordingly, it is possible to reliably obtain a high resolution image.
  • the arithmetic processing unit 8 determines that the number of times of imaging of the region E in the liquid crystal display panel 2 by the CCD camera 3 has reached a predetermined number (step S5). Then, the luminance data of the imaging pixels (that is, the luminance data shown in FIGS. 8 and 10) by the CCD camera 3 that images the bright spot defect 18 calculated by the arithmetic processing unit 8 is output to the synthesis processing unit 9. Then, the synthesis processing unit 9 performs luminance data synthesis processing (step S7). That is, the synthesis processing unit 9 synthesizes the luminance data, and acquires the synthesized luminance data.
  • this combining processing is performed so that the luminance data in each of the camera pixels 19 constituting the imaging pixel region 20 is arranged in the vicinity in the luminance data shown in FIGS. 8 and 10. Then, the luminance data shown in FIGS. 8 and 10 are synthesized.
  • the position of the picture element 17 constituting the region E in the liquid crystal display panel 2 imaged by the CCD camera 3 is obtained by calculation.
  • the position of the region E can be calculated by the following equations (1) and (2).
  • the X coordinate of the start point of the camera pixel 19 constituting the imaging pixel region 20 surrounding the bright spot defect 18 is 6,
  • the Y coordinate is 6
  • the coordinates of the picture element 17 constituting the region E in the liquid crystal display panel 2 imaged by the CCD camera 3 are expressed by the above equations (1) and (2).
  • the liquid crystal imaged by the CCD camera 3 by calculating in the same manner for each camera pixel 19 constituting the imaging pixel area 20 surrounding the bright spot defect 18 using the above formulas (1) and (2).
  • the position and color information of each picture element 17 constituting the region E in the display panel 2 can be specified.
  • the position data of each of the plurality of picture elements 19 constituting the region E imaged by the CCD camera 3 is acquired by the picture element position specifying unit 10.
  • the picture element position specifying unit 10 acquires the resolution information of the CCD camera 3 and the size information of the area E of the liquid crystal display panel 2 from the memory 23 connected to the picture element position specifying unit 10. Information on the X and Y coordinates of the CCD camera 3 is input to the picture element position specifying unit 10 from the above-described CCD camera driving device 4 connected to the picture element position specifying unit 10.
  • Luminance data acquisition process Next, the position data of the picture element 17 constituting the region E in the liquid crystal display panel 2 picked up by the CCD camera 3 specified by the picture element position specifying unit 10 and the synthesized data created by the synthesis processing unit 9 are combined. Luminance data 21 is input to the luminance data acquisition unit 11. Based on the position data of the picture elements 17 constituting the region E in the liquid crystal display panel 2 captured by the CCD camera 3 and the synthesized brightness data 21 by the brightness data acquisition unit 11, the CCD camera 3. The luminance data corresponding to each picture element 17 constituting the region E in the liquid crystal display panel 2 imaged by the above is acquired (step S9).
  • ⁇ Bright spot defect detection process> luminance data corresponding to each of the plurality of picture elements 17 constituting the region E specified by the luminance data acquisition unit 11 is input to the bright spot defect detection unit 12. Then, the bright spot defect detection unit 12 detects the presence / absence of a bright spot defect in each of the plurality of picture elements 17 based on the luminance data corresponding to each of the plurality of picture elements 17 constituting the input region E. .
  • the bright spot defect detection unit 12 compares the luminance data corresponding to each of the plurality of picture elements 17 with a preset determination threshold, and based on the comparison result, Detect the presence or absence of bright spot defects. That is, the bright spot defect detection unit 12 has a picture element 17 having a brightness higher than a predetermined determination threshold in the brightness data corresponding to each of the plurality of picture elements 17 constituting the input region E. Whether or not (step S10). Then, if there is a picture element 17 having a luminance larger than the determination threshold, it is determined that the bright spot defect 18 exists in the picture element 17 (step S11). On the other hand, when there is no picture element 17 having a luminance higher than the determination threshold, it is determined that the bright spot defect 18 does not exist in the picture element 17 (step S12).
  • the information on the preset determination threshold value is input to the bright spot defect detection unit 12 from the memory 23 connected to the bright spot defect detection unit 12.
  • the bright spot defect detection unit 12 calculates the luminance difference value of the picture elements 17 constituting the two adjacent colored layers 16 of the same color based on the luminance data, and the calculated difference value and a preset determination. Compare with the threshold. Then, the bright spot defect detection unit 12 determines whether or not the calculated difference value is greater than a preset determination threshold value. If the difference value is greater than the determination threshold value, the specific pixel 17 is brightened. Extracted as pixel candidates having point defects 18.
  • the picture element 17 having each luminance a7 to b7 in the predetermined camera pixel 19g is a blue picture element, it is adjacent to the blue layer containing the blue picture element.
  • a difference value from the luminance of the blue picture element constituting the other blue layer is calculated. More specifically, for example, when the luminance of a blue picture element constituting another adjacent blue layer is 5, the luminance values a7 to b7 are 100, and the difference value is 95.
  • the predetermined threshold is 20
  • the bright spot defect detection unit 12 extracts blue picture elements having luminances a7 to b7 as candidate picture elements having bright spot defects.
  • the bright spot defect detection unit 12 calculates the contrast ratio of each picture element 17 extracted as a candidate for a picture element having a bright spot defect.
  • the “contrast ratio” means a value obtained by dividing the luminance of each picture element 17 extracted as a candidate for a picture element having a bright spot defect by the background luminance.
  • Luminance / background luminance contrast ratio of each pixel extracted as a candidate for a pixel having a bright spot defect (3)
  • the “background luminance” referred to here is an average value of luminances of picture elements of the same color in the vicinity of the surrounding picture element 8.
  • the bright spot defect 18 existing in the blue picture element is imaged by the CCD camera 3 and the luminance data of each imaging pixel constituting the imaging pixel area 20 surrounding the bright spot defect 18 is synthesized. think of.
  • the plurality of picture elements 17 having the brightnesses a1 to b1, a2 to b2,... A16 to b16 in the synthesized brightness data 21 shown in FIG. When a blue picture element is extracted as a candidate for the picture element to have, the contrast ratio of the blue picture element having the luminances a1 to b1, a2 to b2,... A16 to b16 is calculated.
  • the contrast ratio of the picture elements 17 (blue picture elements) having the respective luminances a7 to b7
  • the contrast ratios of the blue picture elements having the other luminances a1 to b1, a2 to b2,... A16 to b16 are calculated in the same manner.
  • the bright spot defect detection unit 12 calculates a total value of the calculated contrast ratios (hereinafter referred to as “sum of defect contrasts”).
  • the bright spot defect detection unit 12 compares the sum of the corrected defect contrasts with the above-described preset determination threshold value, thereby having a pixel 17 having a sum of defect contrasts equal to or greater than the preset determination threshold value. It is determined whether or not exists. When there is a picture element 17 having a sum of defect contrasts equal to or greater than the determination threshold, it is determined that a bright spot defect 18 exists in the picture element 17. On the other hand, when there is no picture element 17 having a sum of defect contrasts equal to or greater than the determination threshold, it is determined that no bright spot defect 18 exists in the picture element 17.
  • the sum of the corrected defect contrasts is 120 and the determination threshold is 100, there is a picture element 17 having a sum of defect contrasts equal to or greater than the determination threshold, and the bright spot defect 18 is present in the picture element 17. It is determined that it exists.
  • the total value of the contrast ratios of each of the plurality of picture elements 17 is calculated based on the luminance data corresponding to each of the plurality of picture elements 17, and the total value of the contrast ratio is determined. It is set as the structure which compares with a threshold value.
  • the blue bright spot defect can be detected without being buried in the surrounding green or red with high sensitivity.
  • the bright spot defect 18 exists in the red picture element or the green picture element and the bright spot defect 18 is imaged by the CCD camera 3, similarly to the case where the bright spot defect 18 exists in the blue picture element.
  • the bright spot defect 18 can be inspected.
  • the detection limit gradation of each of the red, blue, and green picture elements having a bright spot defect was measured using the display panel inspection method of the present embodiment.
  • the colored layers 16 of the plurality of colors constituting the color filter 15 are turned on in the maximum gradation display (in the case of 255 gradation display: 256 gradation display from 0 to 255 gradations) every other column to make it appear as a defect. This was done while setting the gradation of the picture elements to 256 gradations of 0-255. The results are shown in Table 1.
  • the detection limit gradation of a red picture element having a bright spot the detection limit gradation of a green picture element having a bright spot, and the detection limit gradation of a blue picture element having a bright spot are shown.
  • the tone was measured.
  • the gradation of the picture element that appeared to be a defect was set to 256 gradations of 0 to 255.
  • Tables 1 and 2 also show the gradations of the detection limit by the conventional visual inspection.
  • the bright spot defect in the dark background luminance can be detected in any of the red bright spot, the green bright spot, and the blue bright spot as compared with the comparative example.
  • the comparative example it was not possible to detect a bright spot defect of a red picture element that had to be raised to 44 gradations, but in the example, up to 36 gradations. If it raises, it turns out that it can detect as a bright spot defect of a red picture element.
  • the comparative example it was not possible to detect a bright spot defect of a green picture element unless the gradation of the picture element that appeared to be a defective picture element was increased to 32 gradations.
  • the difference (margin) from the judgment limit level in the visual inspection is larger than that in the comparative example, and it can be seen that the detection accuracy is improved. That is, if the difference (margin) from the judgment limit level in the visual inspection is small, a non-defective product without a bright spot defect is judged as a defective product, and a defective product with a bright spot defect is judged as a good product.
  • the difference (margin) from the judgment limit level in the visual inspection is large, there is an inconvenience that a good product without a bright spot defect is judged as a defective product, or there is a bright spot defect. It is possible to prevent the inconvenience that a defective product is determined as a non-defective product.
  • the inspection can be performed in one lighting state (turned on every other row), and a comparative example in which a plurality of displays are provided for each color. In comparison with the above, simplification can be achieved.
  • a plurality of types of colored layers 16 constituting the color filter 15 are turned on every other column in the column direction Z in which the plurality of colored layers 16 are arranged. Therefore, the process for performing the bright spot inspection of the liquid crystal display panel 2 can be simplified and the bright spot inspection of the liquid crystal display panel 2 can be performed in a short time as compared with the conventional case where each colored layer is turned on. It becomes possible to do in.
  • the CCD camera 3 is configured to pick up an image of the region E a plurality of times while moving the CCD camera 3 by a preset distance. Accordingly, it is possible to obtain a multiple resolution image as compared with a case where each colored layer is turned on and is captured only once. Therefore, even when a plurality of types of colored layers 16 constituting the color filter 15 are turned on every other row, for example, when detecting a blue defect with low sensitivity, the blue defect has high ambient sensitivity. Since it is not buried in green or red, the accuracy of the detection of bright spot defects of the liquid crystal display panel 2 can be improved.
  • the luminance data corresponding to each of the plurality of picture elements 17 is compared with a preset determination threshold value, and the bright spot defect 18 in the picture element 17 is determined based on the comparison result. It is configured to detect the presence or absence. Accordingly, it is possible to quickly perform the bright spot inspection of the liquid crystal display panel 2 by a simple method.
  • the total value of the contrast ratio of each of the plurality of picture elements 17 is calculated, and the total value of the contrast ratio and the determination threshold value It is set as the structure which compares with. Therefore, it becomes possible to detect the picture element 17 having the bright spot defect 18 more accurately. As a result, the accuracy of detecting the bright spot defect of the liquid crystal display panel 2 can be further improved.
  • the number of times of imaging by the CCD camera 3 is set to two. Therefore, a high-resolution image can be obtained without increasing the number of times of image pickup by the CCD camera 3 and the image pickup by the CCD camera 3 can be performed in a short time.
  • the moving distance of the CCD camera 3 is set to a distance that is half the resolution of the CCD camera 3. Therefore, when the area E is imaged by the CCD camera 3, even if the picture element 17 having the bright spot defect 18 is located in a low-sensitivity area between the plurality of imaging pixels of the CCD camera 3, it is ensured. A high resolution image can be obtained.
  • the plurality of types of colored layers 16 are composed of a red layer, a green layer, and a blue layer. Therefore, in the liquid crystal display panel 2 including the color filter 15 having a display region in which a plurality of regions E composed of the three colored layers of the red layer, the green layer, and the blue layer are two-dimensionally arranged, the bright spot defect 18 is eliminated. It becomes possible to detect.
  • the CCD camera 3 is used as the imaging means. Therefore, the bright spot defect 18 of the liquid crystal display panel 2 can be detected by a versatile imaging means.
  • the non-lighting colored layer 16 is turned on every other row in the order of the green layer, the red layer, and the blue layer. Also in this case, the colored layers 16 that are not adjacent to each other in the column direction Z are turned on.
  • the above-described steps S2 to S12 are performed, and the presence / absence of a bright spot defect is inspected as in the case of the above-described embodiment.
  • the non-lighting colored layer 16 in the first lighting process may be configured to include a second lighting process in which every other column is lit in the column direction Z.
  • the picture element leaking with the blue picture element having the bright spot defect shown in FIG. 4 is a green picture adjacent to the blue picture element. Since it is possible to specify that it is an element, it is possible to specify the part 30 where the leak between picture elements is generated.
  • the picture elements 17 constituting each colored layer 16 are turned on every other row
  • the picture elements 17 constituting each colored layer 16 may be turned on line by line.
  • the configuration may be such that the columns to be lit for each row are changed to light in a so-called staggered pattern. Even in such a configuration, the same effects as those of the above-described embodiment can be obtained.
  • the number of camera pixels 19 constituting the imaging pixel region 20 is as follows.
  • a liquid crystal display panel has been described as an example of a display panel.
  • the present invention can be applied to other display panels such as an electroluminescence display panel, a plasma display panel, and a field emission display panel. Can be applied.
  • liquid crystal display panel inspection method for inspecting the presence or absence of defects inside the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Liquid Crystal (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 液晶表示パネル(2)の画素を構成する複数種の着色層を1列おきに点灯させ、複数の撮像画素を有するCCDカメラ(3)により、CCDカメラ(3)を予め設定された距離ずつ移動させながら、画素を複数回撮像する。複数回の撮像の各々における撮像画素での輝度データを演算し、輝度データを合成して、合成化された輝度データを取得する。合成化された輝度データに基づいて、CCDカメラ(3)により撮像された画素を構成する複数の絵素の各々に対応する輝度データを取得し、複数の絵素の各々に対応する輝度データに基づいて、複数の絵素の各々における輝点欠陥の有無を検出する。

Description

表示パネルの欠陥検査方法および欠陥検査装置
 本発明は、液晶表示パネルの輝点欠陥の有無を検査するための欠陥検査方法および欠陥検査装置に関する。
 近年、より高品位な画像表示が可能な液晶表示パネルが強く要望されている。しかしながら、現在の液晶表示パネルの製造技術では、表示欠陥の発生を防止することは困難である。このため、表示欠陥の低減された高品位の液晶表示パネルを提供するために、製造工程において、表示欠陥検査(画質検査)工程が行われている。
 また、輝点(絵素間のリークに起因する異常点灯)欠陥、黒点(不点灯)欠陥といった表示パネルの表示欠陥の有無の検査工程は、検査員の目視により行われるのが一般的である。
 検査員による目視検査工程は、良品として扱うことができる最低品位のサンプルである限界サンプルを用いて行われる。
 より具体的には、例えば、輝点欠陥の検査においては、液晶表示パネルと限界サンプルとを検査員が見比べることにより、合否(輝点欠陥の有無)の判定が行われる。
 しかし、目視検査工程では、各検査員の間で合否判定結果がバラつくという問題や、同一検査員による検査であっても日時、検査環境によって合否判定結果がバラつくという問題、更には、マンパワーを必要とするため、液晶表示パネルの製造コストが上昇するという問題がある。
 そこで、このような問題に鑑み、液晶表示パネルの表示欠陥の自動検査方法が種々提案されている。例えば、液晶表示パネルに設けられた複数種の着色層(即ち、赤色層R、緑色層G、および青色層B)を含むカラーフィルタを点灯させて、液晶表示パネルの欠陥を撮像装置(例えば、CCDカメラ)により撮影することにより、液晶表示パネルの表示欠陥の有無を検査する方法が提案されている。
 より具体的には、まず、液晶表示パネルのカラーフィルタを構成する各着色層毎に点灯させた後、液晶表示パネルの表示画面を、液晶表示パネルの表面に対向するように配置させたCCDカメラで撮影する。次いで、CCDカメラにて撮影した画像の出力信号を2次元画像に展開するとともに、2次元画像と所定の閾値とを比較して、閾値を越える画像部分の位置から液晶パネルの輝点欠陥の座標位置を割り出すようにした液晶表示パネルの検査装置が提案されている(例えば、特許文献1参照)。
特開平7-36005号公報
 しかし、上記特許文献1に記載の液晶表示パネルの検査方法では、上述のごとく、カラーフィルタを構成する各着色層毎に点灯させる必要があるため、液晶表示パネルの検査を行う際の工程が複雑になるとともに、液晶表示パネルの検査に長時間を要するという問題があった。
 また、カラーフィルタを構成する複数の着色層を1列おきに点灯(例えば、赤色層、緑色層、および青色層の並びでカラーフィルタが構成されている場合は、赤色層、青色層、緑色層の順で点灯)させて液晶表示パネルの検査を行うことも考えられるが、人の目の視感度により赤・緑・青の各色では見える状態が異なり、例えば、青色の画素では、赤色や緑色の画素と比較して画像のコントラストが低くなる。従って、カラーフィルタを構成する着色層を1列おきに点灯させて液晶表示パネルの検査を行うと、例えば、感度の低い青色の欠陥を検出する際に、青色の欠陥が、周囲の感度の高い緑色や赤色に埋もれてしまい、結果として、液晶表示パネルの欠陥検出の精度が低下するという問題があった。
 そこで、本発明は、上述の問題に鑑みてなされたものであり、液晶表示パネル等の表示パネルの輝点欠陥の検査を行う際の工程を簡素化することができるとともに、表示パネルの検査に要する時間を短縮化することができ、表示パネルの輝点欠陥検出の精度を向上することができる表示パネルの欠陥検査方法および欠陥検査装置を提供することを目的とする。
 上記目的を達成するために、本発明の表示パネルの欠陥検査方法は、複数種の着色層からなる画素が2次元的に複数配列された表示領域を有するカラーフィルタを備える表示パネルの画素における輝点欠陥の有無を検査する表示パネルの欠陥検査方法であって、複数の着色層が配列された列方向において、複数種の着色層を1列おきに点灯させる点灯工程と、複数の撮像画素を有する撮像手段により、撮像手段を予め設定された距離ずつ移動させながら、画素を複数回撮像する撮像工程と、複数回の撮像の各々における撮像画素での輝度データを演算する輝度データ演算工程と、輝度データを合成して、合成化された輝度データを取得する輝度データ合成工程と、撮像手段により撮像された画素を構成する複数の絵素の各々の位置データを取得する位置データ取得工程と、合成化された輝度データと複数の絵素の各々の位置データに基づいて、撮像手段により撮像された画素を構成する複数の絵素の各々に対応する輝度データを取得する輝度データ取得工程と、複数の絵素の各々に対応する輝度データに基づいて、複数の絵素の各々における輝点欠陥の有無を検出する輝点欠陥検出工程とを少なくとも含むことを特徴とする。
 同構成によれば、カラーフィルタを構成する複数種の着色層を複数の着色層が配列された列方向において、1列おきに点灯させる構成としているため、上記従来の各着色層毎に点灯させる場合に比し、表示パネルの輝点検査を行う際の工程を簡素化することができるとともに、表示パネルの輝点検査を短時間で行うことが可能になる。
 また、撮像手段を予め設定された距離ずつ移動させながら、撮像手段により、画素を複数回撮像する構成としているため、各着色層毎に点灯させて1回のみ撮像する場合に比し、複数倍の高解像度画像を得ることができる。従って、カラーフィルタを構成する複数種の着色層を1列おきに点灯させる場合であっても、例えば、感度の低い青色の欠陥を検出する際に、青色の欠陥が、周囲の感度の高い緑色や赤色に埋もれることがなくなるため、表示パネルの輝点欠陥検出の精度を向上させることができる。
 また、人間の目視検査における判定限界レベルとの差(マージン)を多くすることが可能になるため、輝点欠陥のない良品が不良品として判断されるという不都合や、輝点欠陥のある不良品が良品として判断されるという不都合を防止することが可能になる。
 また、本発明の表示パネルの欠陥検査方法においては、点灯工程は、所定の着色層を点灯させる第1点灯工程と、第1点灯工程おいて点灯させた着色層を消灯するとともに、第1点灯工程において非点灯の着色層を1列おきに点灯する第2点灯工程とを含む構成としても良い。
 同構成によれば、絵素間のリークが生じている部位の特定を行うことが可能になる。
 また、本発明の表示パネルの欠陥検査方法においては、輝点欠陥検出工程において、複数の絵素の各々に対応する輝度データと、予め設定された判定閾値とを比較し、比較の結果に基づいて、絵素における輝点欠陥の有無を検出する構成としても良い。
 同構成によれば、複数の絵素の各々に対応する輝度データと、予め設定された判定閾値とを比較する構成としているため、簡単な方法で、迅速に、表示パネルの輝点検査を行うことが可能になる。
 また、本発明の表示パネルの欠陥検査方法においては、複数の絵素の各々に対応する輝度データに基づいて、複数の絵素の各々のコントラスト比の合計値を算出し、コントラスト比の合計値と判定閾値とを比較する構成としても良い。
 同構成によれば、複数の絵素の各々のコントラストの合計値と判定閾値とを比較する構成としているため、より一層正確に、輝点欠陥を有する絵素を検出することが可能になる。その結果、表示パネルの輝点欠陥検出の精度をより一層向上させることができる。
 また、本発明の表示パネルの欠陥検査方法においては、撮像手段による撮像回数を2回に設定しても良い。
 同構成によれば、撮像手段による撮像回数を徒に増加させることなく、高解像度画像を得ることができるとともに、撮像手段による撮像を短時間で行うことができる。
 また、本発明の表示パネルの欠陥検査方法においては、撮像手段の分解能の半分の距離を予め設定された距離として設定しても良い。
 同構成によれば、撮像工程において、撮像手段が有する複数の撮像画素間の感度の低い領域に輝点欠陥を有する絵素が位置する場合であっても、確実に高解像度画像を得ることが可能になる。
 また、本発明の表示パネルの欠陥検査方法においては、複数種の着色層が赤色層、緑色層、及び青色層であっても良い。
 同構成によれば、赤色層、緑色層、及び青色層の3種の着色層からなる画素が2次元的に複数配列された表示領域を有するカラーフィルタを備える表示パネルにおいて、輝点欠陥を検出することが可能になる。
 また、本発明の表示パネルの欠陥検査方法においては、撮像手段がCCDカメラであっても良い。
 同構成によれば、汎用性のある撮像手段により、表示パネルの輝点欠陥を検出することが可能になる。
 また、本発明の表示パネルの欠陥検査方法は、表示パネルの輝点検査を行う際の工程を簡素化して、表示パネルの輝点検査を短時間で行うことできるとともに、表示パネルの輝点欠陥検出の精度を向上させることができるという優れた特性を備えている。従って、本発明の表示パネルの欠陥検査方法においては、表示パネルとして液晶表示パネルを好適に使用することができる。
 本発明の表示パネルの欠陥検査装置は、複数種の着色層からなる画素が2次元的に複数配列された表示領域を有するカラーフィルタを備える表示パネルの画素における輝点欠陥の有無を検出する表示パネルの欠陥検査装置であって、複数の着色層が配列された列方向において、該複数種の着色層を1列おきに点灯させる点灯手段と、複数の撮像画素を有するとともに、予め設定された距離ずつ移動しながら、画素を複数回撮像する撮像手段と、複数回の撮像の各々における撮像画素での輝度データを演算する演算処理手段と、輝度データを合成して、合成化された輝度データを取得する合成化処理手段と、撮像手段により撮像された画素を構成する複数の絵素の各々の位置データを取得する絵素位置特定手段と、合成化された輝度データと複数の絵素の各々の位置データに基づいて、撮像手段により撮像された画素を構成する複数の絵素の各々に対応する輝度データを取得する輝度データ取得手段と、複数の絵素の各々に対応する輝度データに基づいて、複数の絵素の各々における輝点欠陥の有無を検出する輝点欠陥検出手段と備えることを特徴とする。
 同構成によれば、カラーフィルタを構成する複数種の着色層の全てを同時に点灯させる構成としているため、上記従来の各着色層毎に点灯させる場合に比し、表示パネルの輝点検査を行う際の工程を簡素化することができるとともに、表示パネルの輝点検査を短時間で行うことが可能になる。
 また、撮像手段を予め設定された距離ずつ移動させながら、撮像手段により、画素を複数回撮像する構成としているため、各着色層毎に点灯させて1回のみ撮像する場合に比し、複数倍の高解像度画像を得ることができる。従って、カラーフィルタを構成する複数種の着色層の全てを同時に点灯させる場合であっても、例えば、感度の低い青色の欠陥を検出する際に、青色の欠陥が、周囲の感度の高い緑色や赤色に埋もれることがなくなるため、表示パネルの輝点欠陥検出の精度を向上させることができる。
 また、人間の目視検査における判定限界レベルとの差(マージン)を多くすることが可能になるため、輝点欠陥のない良品が不良品として判断されるという不都合や、輝点欠陥のある不良品が良品として判断されるという不都合を防止することが可能になる。
 本発明によれば、表示パネルの輝点検査を行う際の工程を簡素化することができるとともに、表示パネルの輝点検査を短時間で行うことできる。また、表示パネルの輝点欠陥検出の精度を向上させることができる。
本発明の実施形態に係る液晶表示パネルの輝点欠陥の有無を検査するための欠陥検査装置の構成を示す概念図である。 本発明の実施形態に係る液晶表示パネルの輝点欠陥検査方法により検査される液晶表示パネルの構成を説明するための断面図である。 本発明の実施形態に係る液晶表示パネルにおけるカラーフィルタの全体構成を示す平面図である。 本実施形態に係る液晶表示パネルの欠陥検査方法における点灯工程を説明するための図である。 本実施形態に係る液晶表示パネルの輝点欠陥検査方法を説明するためのフローチャートである。 画素を構成する絵素に存在する輝点欠陥を説明するための図である。 輝点欠陥を撮像したCCDカメラの撮像画素を示す図である。 図7に示す撮像画素のデータに基づいて演算された撮像画素の輝度データを示す図である。 輝点欠陥を撮像したCCDカメラの撮像画素を示す図である。 図9に示す撮像画素のデータに基づいて演算された撮像画素の輝度データを示す図である。 輝度データの合成化処理を説明するための図である。 合成化された輝度データを説明するための図である。 CCDカメラにより撮像された画素を構成する絵素の位置を特定する方法を説明するための図である。 本実施形態に係る液晶表示パネルの欠陥検査方法における点灯工程の変形例を説明するための図である。 本実施形態に係る液晶表示パネルの欠陥検査方法における点灯工程の変形例を説明するための図である。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。尚、本発明は、以下の実施形態に限定されるものではない。また、本明細書において、「自動検査」とは、検査員の目視検査によらず、検査装置を用いて行う検査のことである。
 図1は、本発明の実施形態に係る液晶表示パネルの輝点欠陥の有無を検査するための欠陥検査装置の構成を示す概念図である。また、図2は、本発明の実施形態に係る液晶表示パネルの欠陥検査方法により検査される液晶表示パネルの構成を説明するための断面図である。また、図3は、本発明の実施形態に係る液晶表示パネルにおけるカラーフィルタの全体構成を示す平面図である。
 この欠陥検査装置1は、液晶表示パネル2の個々の液晶画素における輝点欠陥の有無を検査するための装置であり、液晶表示パネル2の個々の液晶画素を複数の撮像画素を有する撮像手段であるCCDカメラ3により撮像し、この撮像データに基づいて液晶表示パネル2における輝点欠陥の有無を検査するものである。
 また、図1に示すように、欠陥検査装置1は、CCDカメラ3により撮像された液晶画素の画像データを処理するための画像データ処理部5を備えている。この画像データ処理部5は、画素を撮像したCCDカメラ3の撮像画素のデータをアナログ信号からデジタル信号に変換するA/D変換部6と、デジタル信号に変換された撮像画素のデータを記憶するデータメモリ部7と、CCDカメラ3による撮像画素での輝度データ(受光輝度データ)を演算する演算処理部8とを備えている。また、画像データ処理部5は、演算された輝度データを合成して、合成化された輝度データを取得する合成化処理部9と、CCDカメラ3により撮像された画素を構成する複数の絵素の各々の位置データを取得する絵素位置特定部10と、合成化された輝度データと複数の絵素の各々の位置データに基づいて、CCDカメラ3により撮像された画素を構成する複数の絵素の各々に対応する輝度データを取得する輝度データ取得部11と、複数の絵素の各々に対応する輝度データに基づいて、複数の絵素の各々における輝点欠陥の有無を検出する輝点欠陥検出部12とを備えている。
 また、図1に示すように、CCDカメラ3には、当該CCDカメラ3を駆動するためのCCDカメラ駆動部4が接続されている。そして、このCCDカメラ駆動部4により、CCDカメラ3が移動自在に設けられるとともに、液晶表示パネル2とCCDカメラ3とが相対移動可能に構成され、これにより、CCDカメラ3が撮像する画素を順次切り替えることが可能になる。
 また、本実施形態に係る表示パネルの欠陥検査方法による検査される液晶表示パネル2は、図2に示すように、第1基板であるTFT基板24と、TFT基板24に対向して配置された第2基板であるCF基板25とを備えている。また、液晶表示パネル2は、TFT基板24及びCF基板25の間に設けられた表示媒体層である液晶層26と、TFT基板24及びCF基板25を互いに接着するとともに液晶層26を封入するために枠状に設けられたシール材27とを備えている。
 このシール材27は、液晶層26を周回するように形成されており、TFT基板24とCF基板25は、このシール材27を介して相互に貼り合わされている。
 TFT基板24は、不図示のガラス基板と、ガラス基板上に形成されたそれぞれ不図示のゲート電極、ソース電極及びドレイン電極等のTFT素子、透明絶縁層、画素電極及び配向膜等で構成されている。
 CF基板25は、例えば、ガラス基板上に格子状及び遮光部として枠状に設けられたブラックマトリクス(不図示)と、ブラックマトリクスの各格子間にそれぞれ設けられたカラーフィルタ15(図3参照)とを備えている。また、CF基板25は、ブラックマトリクス及びカラーフィルタ15を覆うように設けられた共通電極(不図示)と、共通電極上に柱状に設けられたフォトスペーサ(不図示)と、共通電極を覆うように設けられた配向膜(不図示)とを備えている。
 また、図3に示すように、液晶表示パネル2では、TFT基板24及びCF基板25が重なる領域に画像表示を行う表示領域Dが規定されている。ここで、表示領域Dは、画像の最小単位である画素がマトリクス状に複数配列されることにより構成されている。また、図3に示すように、カラーフィルタ15は、各画素に対して設けられた複数種の着色層(即ち、赤色層、緑色層、および青色層)16を含むとともに、3絵素×3絵素の3色配列にて、複数種の着色層16を構成する赤(R)絵素、緑(G)絵素、及び青(B)絵素の3色の絵素(ドット)17を備えた領域Eが2次元的に複数配列された表示領域Dを有する。なお、図3に示すように、本実施形態においては、カラーフィルタ15は、列方向(即ち、図3に示すZ方向)において、複数種の着色層16が赤色層、緑色層、および青色層の並びで配列される構成となっている。
 液晶層26は、例えば、電気光学特性を有するネマチックの液晶材料などにより構成されている。
 次に、本実施形態に係る液晶表示パネルの欠陥検査方法について説明する。図4は、本実施形態に係る液晶表示パネルの欠陥検査方法における点灯工程を説明するための図であり、図5は、本実施形態に係る液晶表示パネルの欠陥検査方法を説明するためのフローチャートである。本実施形態に係る液晶表示パネルの欠陥検査方法は、上述の複数種の着色層16からなる領域Eが2次元的に複数配列された表示領域Dを有するカラーフィルタ15を備える液晶表示パネル2の領域Eにおける輝点欠陥の有無を検査する方法である。なお、ここで言う「輝点欠陥」とは、絵素17間のリークに起因する異常点灯欠陥のことを言う。
 <点灯工程>
 まず、液晶表示パネル2に接続された液晶表示パネル駆動部14により、ステージ13上に載置された液晶表示パネル2を駆動させて、カラーフィルタ15を構成する複数種の着色層16を1列おきに点灯させる(ステップS1)。
 より具体的には、例えば、図4に示すように、カラーフィルタ15を構成する複数の着色層16が配列された列方向Zにおいて、赤色層、青色層、緑色層の順で1列おきに点灯させる。即ち、上記列方向Zにおいて、互いに隣接しない着色層16を点灯させる構成となっている。
 <撮像工程・輝度データ演算工程>
 次いで、液晶表示パネル2とCCDカメラ3との相対位置を、CCDカメラ駆動装置4により調整した後、CCDカメラ3により、液晶表示パネル2における領域Eを撮像する(ステップS2)。
 次いで、A/D変換部6により、領域Eを撮像したCCDカメラ3の撮像画素のデータがアナログ信号からデジタル信号に変換され、デジタル信号に変換された撮像画素のデータがデータメモリ部7に記憶される(ステップS3)。
 次いで、データメモリ部7に記憶された撮像画素のデータが、演算処理部8に出力されるとともに、当該演算処理部8により、撮像画素のデータに基づいて、輝点欠陥を撮像したCCDカメラ3による撮像画素での輝度データが演算される(ステップS4)。
 例えば、図6に示すように、特定の領域Eにおいて、点灯させた緑色層を構成する緑絵素と、当該緑絵素に隣接する青絵素との間でリークが発生し、当該青絵素に輝点欠陥18が存在する場合に、当該輝点欠陥18を撮像したCCDカメラ3の撮像画素を図7に示す。また、図7に示す撮像画素のデータに基づいて演算された撮像画素の輝度データの一例を図8に示す。
 図7に示す正方形(6×6=36個)は、個々のカメラ画素19を示しており、輝点欠陥18を取り囲む撮像画素領域20(4×4=16個)は、輝点欠陥18を撮像したカメラ画素19(即ち、撮像画素)の領域を示している。
 演算処理部8は、図7に示す撮像画素領域20の範囲内にあるカメラ画素19を輝点欠陥18を撮像したCCDカメラ3の撮像画素として、その輝度データを演算する。また、図8に示す撮像画素領域20を構成する各カメラ画素19(即ち、撮像画素)に記載されているa1~a16は、各カメラ画素19での輝度(受光輝度)であり、その輝度の数値は、括弧内の数値として図示されている。
 図8に示すように、撮像画素領域20を構成する各カメラ画素19のうち、画素全体で輝点欠陥18が撮像されたカメラ画素19の輝度(a6~a7、a10~a11)は100となっており、画素の一部で輝点欠陥18が撮像されたカメラ画素19の輝度(a1~a5、a8~a9、a12~a16)に比し、著しく高い値となっている。また、画素の略半分で輝点欠陥18が撮像されたカメラ画素19の輝度(a2~a3、a5、a8~a9、a12、a14~a15)は50となっており、画素の四隅の一部で輝点欠陥18が撮像されたカメラ画素19の輝度(a1、a4、a13、a16)に比し、高い値となっている。
 次いで、演算処理部8により、CCDカメラ3による液晶表示パネル2における領域Eの撮像回数が所定の回数(本実施形態においては、2回)に達したか否か(即ち、演算処理部8による輝度データの演算が2回行われたか否か)が判断される(ステップS5)。そして、撮像回数が2回に達していない場合は、CCD駆動装置4により、CCDカメラ3の移動が行われ(ステップS6)、上述のステップS2~S4の処理が繰り返し行われる。以後、撮像回数が2回に達するまで、CCDカメラの移動(ステップS6)と、上述のステップS2~S4の処理が繰り返し行われる。
 例えば、CCDカメラ3による液晶表示パネル2における領域Eの撮像回数が2回に達していない場合、CCD駆動装置4により、CCDカメラ3の分解能の半分の距離だけCCDカメラ3の移動が行われる。例えば、CCDカメラ3の分解能が100μmの場合、50μmの距離だけCCDカメラ3の移動が行われる。
 図7に示した状態から、図中の矢印Aの方向にCCDカメラ3を分解能の半分の距離だけ移動させた状態を図9に示す。この場合、図9に示すように、撮像画素領域20において、輝点欠陥18が、図7に示す状態から、図中の矢印dの方向に分解能の半分の距離移動することになる。
 そうすると、演算処理部8により演算される輝点欠陥18を撮像したCCDカメラ3による撮像画素の輝度データは、図10に示すように、画素全体で輝点欠陥18が撮像されたカメラ画素19の輝度(b6~b8、b10~b12)は100となっており、輝点欠陥18か撮像されなかったカメラ画素19の輝度(b1、b5、b9、b13)、及び画素の略半分で輝点欠陥18が撮像されたカメラ画素19の輝度(b2~b4、b14~b16)に比し、著しく高い値となっている。
 このように、本実施形態においては、複数の撮像画素を有するCCDカメラ3により、当該CCDカメラ3を予め設定された距離ずつ移動させながら、領域Eを複数回撮像するとともに、演算処理部8により、複数回の撮像の各々における撮像画素での輝度データを演算する構成となっている。
 また、CCDカメラ3の移動距離を、CCDカメラ3の分解能の半分の距離に設定している。従って、CCDカメラ3により領域Eを撮像する際に、CCDカメラ3が有する複数の撮像画素(即ち、カメラ画素19)間の感度の低い領域に輝点欠陥18を有する絵素17が位置する場合であっても、この状態から、CCDカメラ3をCCDカメラ3の分解能の半分の距離移動させることにより、CCDカメラ3が有する複数の撮像画素間以外の感度の高い領域に輝点欠陥18を有する絵素17を位置させることが可能になる。従って、確実に高解像度画像を得ることが可能になる。
 <輝度データ合成工程>
 そして、このように撮像回数が2回に達すると、演算処理部8により、CCDカメラ3による液晶表示パネル2における領域Eの撮像回数が所定の回数に達したと判断される(ステップS5)。そして、演算処理部8により演算された輝点欠陥18を撮像したCCDカメラ3による撮像画素の輝度データ(即ち、図8、及び図10に示した輝度データ)が、合成化処理部9に出力され、当該合成化処理部9により、輝度データの合成化処理が行われる(ステップS7)。即ち、合成化処理部9により、輝度データが合成されて、合成化された輝度データが取得される。
 この合成化処理は、例えば、図11に示すように、図8、及び図10に示した輝度データにおいて、撮像画素領域20を構成するカメラ画素19の各々における輝度データが近傍に配置されるように、図8、及び図10に示した輝度データを合成する。
 より具体的には、図8、及び図10に示した輝度データにおいて、撮像画素領域20を構成するカメラ画素19のうち、図中左上に位置するカメラ画素19aにおける各輝度データ(即ち、図8、及び図10に示したa1、b1)を、図11に示すように、近傍に配置する。以下、他のカメラ画素19においても同様に処理を行うことにより、図12に示す合成化された輝度データ21が取得される。
 <位置データ取得工程>
 次いで、絵素位置特定部10により、CCDカメラ3により撮像された液晶表示パネル2における領域Eを構成する絵素17の位置が特定される(ステップS8)。
 より具体的には、CCDカメラ3の分解能と絵素17のサイズとを用いて、CCDカメラ3により撮像された液晶表示パネル2における領域Eを構成する絵素17の位置を計算により求める。
 ここで、図3、図6に示すように、各領域Eにおける絵素17の並びは既知であるため(例えば、本実施形態においては、各領域Eにおいて、左から、赤(R)絵素、緑(G)絵素、青(B)絵素の並び)、絵素17の位置が判明すれば、当該絵素17の色情報も判明することになる。
 例えば、CCDカメラ3の分解能が100μm×100μmであり、領域Eのサイズが200μm×300μmの場合、以下に示す式(1)、(2)により、領域Eの位置を算出することができる。
 (数1)
 CCDカメラのX座標/(200μm/100μm)=絵素のX座標   (1)
 (数2)
 CCDカメラのY座標/(300μm/100μm)=絵素のY座標   (2)
 例えば、図13に示すように、輝点欠陥18を取り囲む撮像画素領域20を構成するカメラ画素19の始点(即ち、図中の撮像画素領域20の左下のカメラ画素19)のX座標が6、Y座標が6の場合、CCDカメラ3により撮像された液晶表示パネル2における領域Eを構成する絵素17の座標は、上述の式(1)、(2)より、
 絵素のX座標=6/(200μm/100μm)=3
 絵素のY座標=6/(300μm/100μm)=2
 となるため、当該絵素が青(B)絵素であることが判る。
 以下、輝点欠陥18を取り囲む撮像画素領域20を構成する各カメラ画素19について、上記式(1)、(2)を使用して、同様に計算することにより、CCDカメラ3により撮像された液晶表示パネル2における領域Eを構成する絵素17の各々の位置、及び色情報を特定することができる。
 このように、本実施形態においては、絵素位置特定部10により、CCDカメラ3により撮像された領域Eを構成する複数の絵素19の各々の位置データを取得する構成となっている。
 なお、絵素位置特定部10は、CCDカメラ3の分解能の情報、液晶表示パネル2の領域Eのサイズの情報を、絵素位置特定部10に接続されたメモリ23より取得する。また、CCDカメラ3のX座標、及びY座標の情報は、絵素位置特定部10に接続された上述のCCDカメラ駆動装置4から絵素位置特定部10に入力される。
 <輝度データ取得工程>
 次いで、絵素位置特定部10により特定されたCCDカメラ3により撮像された液晶表示パネル2における領域Eを構成する絵素17の位置データと、合成化処理部9により作成された合成化された輝度データ21が、輝度データ取得部11に入力される。そして、輝度データ取得部11により、CCDカメラ3により撮像された液晶表示パネル2における領域Eを構成する絵素17の各々の位置データと、合成化された輝度データ21に基づいて、CCDカメラ3により撮像された液晶表示パネル2における領域Eを構成する各絵素17に対応する輝度データが取得される(ステップS9)。
 <輝点欠陥検出工程>
 次いで、輝度データ取得部11により特定された領域Eを構成する複数の絵素17の各々に対応する輝度データが輝点欠陥検出部12に入力される。そして、輝点欠陥検出部12は、入力された領域Eを構成する複数の絵素17の各々に対応する輝度データに基づいて、複数の絵素17の各々における輝点欠陥の有無を検出する。
 より具体的には、輝点欠陥検出部12は、複数の絵素17の各々に対応する輝度データと、予め設定された判定閾値とを比較し、比較の結果に基づいて、絵素17における輝点欠陥の有無を検出する。即ち、輝点欠陥検出部12は、入力された領域Eを構成する複数の絵素17の各々に対応する輝度データにおいて、予め設定された判定閾値よりも大きい輝度を有する絵素17が存在するか否かを判定する(ステップS10)。そして、当該判定閾値よりも大きい輝度を有する絵素17が存在する場合は、当該絵素17に輝点欠陥18が存在するものと判定する(ステップS11)。一方、当該判定閾値よりも大きい輝度を有する絵素17が存在しない場合は、当該絵素17に輝点欠陥18が存在しないものと判定する(ステップS12)。
 なお、予め設定された判定閾値の情報は、輝点欠陥検出部12に接続されたメモリ23にから輝点欠陥検出部12に入力される。
 以下、輝点欠陥検出工程を詳細に説明する。輝点欠陥検出部12は、まず、輝度データに基づいて、隣接する二つの同色の着色層16を構成する絵素17の輝度の差分値を演算し、演算した差分値と予め設定された判定閾値とを比較する。そして、輝点欠陥検出部12は、演算した差分値が、予め設定された判定閾値よりも大きいか否かを判定し、差分値が判定閾値よりも大きい場合は、特定の絵素17を輝点欠陥18を有する絵素の候補として抽出する。
 例えば、図12に示す合成化された輝度データ21において、所定のカメラ画素19gにおける各輝度a7~b7を有する絵素17が青絵素の場合、当該青絵素を含有する青色層に隣接する他の青色層を構成する青絵素の輝度との差分値を演算する。より具体的には、例えば、隣接する他の青色層を構成する青絵素の輝度が5の場合、輝度a7~b7は各々100であるため、差分値は95となる。そして、例えば、所定の閾値が20の場合、輝点欠陥検出部12は、輝度a7~b7を有する青絵素を、輝点欠陥を有する絵素の候補として抽出する。
 以下、図12に示す各輝度a1~b1、a2~b2、…a16~b16を有する各絵素17に対して同様の処理を行い、輝点欠陥を有する絵素の候補を抽出する。
 次いで、輝点欠陥検出部12は、輝点欠陥を有する絵素の候補として抽出された各絵素17のコントラスト比を算出する。ここで、「コントラスト比」とは、輝点欠陥を有する絵素の候補として抽出された各絵素17が有する輝度を背景輝度で割った値を言う。
 (数3)
 輝点欠陥を有する絵素の候補として抽出された各絵素が有する輝度/背景輝度=コントラスト比   (3)
 また、ここで言う「背景輝度」とは、着目する絵素の周囲8近傍の同色の絵素が有する輝度の平均値のことを言う。
 例えば、本実施形態のごとく、青絵素に存在する輝点欠陥18がCCDカメラ3により撮像され、輝点欠陥18を取り囲む撮像画素領域20を構成する各撮像画素の輝度データが合成された場合を考える。この場合、図12に示す合成化された輝度データ21における各輝度a1~b1、a2~b2、…a16~b16を有する複数の絵素17の各々は青絵素であるため、輝点欠陥を有する絵素の候補として青絵素が抽出された場合、上述の各輝度a1~b1、a2~b2、…a16~b16を有する青絵素のコントラスト比を算出する。例えば、上述の各輝度a7~b7を有する絵素17(青絵素)のコントラスト比を算出する場合、輝度a7~b7の各々を、青色の背景輝度(例えば、5)で割ることによりコントラスト比(100/5=20)を算出する。そして、他の各輝度a1~b1、a2~b2、…a16~b16を有する青絵素のコントラスト比も同様に算出する。
 次いで、輝点欠陥検出部12は、算出した各コントラスト比の合計値(以下、「欠陥コントラストの和」という。)を算出する。
 次いで、輝点欠陥検出部12は、算出した欠陥コントラストの和に対して、絵素17の色情報に対応した補正を行う。即ち、赤色、緑色、青色の感度に対応した補正係数を算出した欠陥コントラストの和に乗じることにより補正を行う。より具体的には、感度の低い青絵素の欠陥コントラストの和を算出した場合は、当該欠陥コントラストの和の値を、例えば3倍にする。また、赤絵素なら2倍、緑絵素ならそのまま(1倍)にする。例えば、算出した青絵素の欠陥コントラストの和が40である場合は、青色の感度に対応した補正係数(即ち、3)を算出した欠陥コントラストの和(即ち、40)に乗じる(即ち、3×40=120)ことにより補正を行う。
 そして、輝点欠陥検出部12は、補正された欠陥コントラストの和と上述の予め設定された判定閾値とを比較することにより、予め設定された判定閾値以上の欠陥コントラストの和を有する絵素17が存在するか否かを判定する。そして、当該判定閾値以上の欠陥コントラストの和を有する絵素17が存在する場合は、当該絵素17に輝点欠陥18が存在するものと判定する。一方、当該判定閾値以上の欠陥コントラストの和を有する絵素17が存在しない場合は、当該絵素17に輝点欠陥18が存在しないものと判定する。
 例えば、補正された欠陥コントラストの和が120であって、判定閾値が100の場合は、判定閾値以上の欠陥コントラストの和を有する絵素17が存在し、当該絵素17に輝点欠陥18が存在するものと判定する。
 このように、本実施形態においては、複数の絵素17の各々に対応する輝度データに基づいて、複数の絵素17の各々のコントラスト比の合計値を算出し、コントラスト比の合計値と判定閾値とを比較する構成としている。
 そして、本実施形態においては、感度の低い青画素に輝点欠陥が存在する場合であっても、青色の輝点欠陥が、周囲の感度の高い緑色や赤色に埋もれることなく検出することができる。
 なお、赤絵素または緑絵素に輝点欠陥18が存在し、当該輝点欠陥18がCCDカメラ3により撮像された場合も、上述の青絵素に輝点欠陥18が存在する場合と同様に、輝点欠陥18を検査することができる。
 また、実施例として、本実施形態の表示パネルの検査方法を用いて、輝点欠陥を有する赤絵素、青絵素、緑絵素の各絵素の検出限界の階調を測定した。なお、カラーフィルタ15を構成する複数色の着色層16を1列おきに最大階調表示(255階調表示:0~255階調の256階調表示の場合)にて点灯させ、欠陥に見せかけた絵素の階調を0~255の256階調に設定しながら行った。以上の結果を表1に示す。また、比較例として、輝点が存在する赤色絵素の検出限界の階調、輝点が存在する緑色絵素の検出限界の階調、及び輝点が存在する青色絵素の検出限界の階調を測定した。なお、この場合も、欠陥に見せかけた絵素の階調を0~255の256階調に設定しながら行った。以上の結果を表2に示す。なお、表1、表2においては、従来の目視検査による検出限界の階調も示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1、表2に示すように、実施例においては、比較例に比し、赤色の輝点、緑色の輝点及び青色の輝点のいずれにおいても、暗い背景輝度における輝点欠陥を検出できることが判る。即ち、比較例においては、欠陥絵素に見せかけた絵素の階調を44階調にまで上げなければの赤絵素の輝点欠陥として検出できなかったが、実施例においては、36階調まで上げれば赤絵素の輝点欠陥として検出することが可能であることが判る。また、同様に、比較例においては、欠陥絵素に見せかけた絵素の階調を32階調にまで上げなければ緑絵素の輝点欠陥として検出できなかったが、実施例においては、20階調まで上げれば緑絵素の輝点欠陥として検出することが可能であることが判る。また、同様に、比較例においては、欠陥絵素に見せかけた絵素の階調を36階調にまで上げなければ青絵素の輝点欠陥として検出できなかったが、実施例においては、32階調まで上げれば青絵素の輝点欠陥として検出することが可能であることが判る。即ち、本発明の検査方法を使用することにより、輝点の検出限界が飛躍的に向上したことが判る。
 また、実施例においては、比較例に比し、目視検査における判定限界レベルとの差(マージン)が多くなっており、検出精度が向上していることが判る。即ち、目視検査における判定限界レベルとの差(マージン)が少ないと、輝点欠陥のない良品が不良品として判断されるという不都合や、輝点欠陥のある不良品が良品として判断されるという不都合が生じるが、実施例においては、目視検査における判定限界レベルとの差(マージン)が多くなっているため、輝点欠陥のない良品が不良品として判断されるという不都合や、輝点欠陥のある不良品が良品として判断されるという不都合を防止することが可能になる。
 さらに、本実施例のような絵素間リークによる輝点不具合の検査においては、一つの点灯状態(1列おきに点灯)で検査を行うことができ、色毎で複数の表示を行う比較例と比較し、簡略化を図ることが可能となる。
 以上に説明した本実施形態によれば、以下の効果を得ることができる。
 (1)本実施形態においては、カラーフィルタ15を構成する複数種の着色層16を
複数の着色層16が配列された列方向Zにおいて、1列おきに点灯させる構成としている。従って、上記従来の各着色層毎に点灯させる場合に比し、液晶表示パネル2の輝点検査を行う際の工程を簡素化することができるとともに、液晶表示パネル2の輝点検査を短時間で行うことが可能になる。
 (2)また、CCDカメラ3を予め設定された距離ずつ移動させながら、CCDカメラ3により、領域Eを複数回撮像する構成としている。従って、各着色層毎に点灯させて1回のみ撮像する場合に比し、複数倍の高解像度画像を得ることができる。従って、カラーフィルタ15を構成する複数種の着色層16を一列おきに点灯させる場合であっても、例えば、感度の低い青色の欠陥を検出する際に、青色の欠陥が、周囲の感度の高い緑色や赤色に埋もれることがなくなるため、液晶表示パネル2の輝点欠陥検出の精度を向上させることができる。
 (3)また、人間の目視検査における判定限界レベルとの差(マージン)を多くすることが可能になるため、輝点欠陥のない良品が不良品として判断されるという不都合や、輝点欠陥のある不良品が良品として判断されるという不都合を防止することが可能になる。
 (4)本実施形態においては、複数の絵素17の各々に対応する輝度データと、予め設定された判定閾値とを比較し、比較の結果に基づいて、絵素17における輝点欠陥18の有無を検出する構成としている。従って、簡単な方法で、迅速に、液晶表示パネル2の輝点検査を行うことが可能になる。
 (5)本実施形態においては、複数の絵素17の各々に対応する輝度データに基づいて、複数の絵素17の各々のコントラスト比の合計値を算出し、コントラスト比の合計値と判定閾値とを比較する構成としている。従って、より一層正確に、輝点欠陥18を有する絵素17を検出することが可能になる。その結果、液晶表示パネル2の輝点欠陥検出の精度をより一層向上させることができる。
 (6)本実施形態においては、CCDカメラ3による撮像回数を2回とする構成としている。従って、CCDカメラ3による撮像回数を徒に増加させることなく、高解像度画像を得ることができるとともに、CCDカメラ3による撮像を短時間で行うことができる。
 (7)本実施形態においては、CCDカメラ3の移動距離を、CCDカメラ3の分解能の半分の距離に設定している。従って、CCDカメラ3により領域Eを撮像する際に、CCDカメラ3が有する複数の撮像画素間の感度の低い領域に輝点欠陥18を有する絵素17が位置する場合であっても、確実に高解像度画像を得ることが可能になる。
 (8)本実施形態においては、複数種の着色層16を赤色層、緑色層、及び青色層により構成している。従って、赤色層、緑色層、及び青色層の3種の着色層からなる領域Eが2次元的に複数配列された表示領域を有するカラーフィルタ15を備える液晶表示パネル2において、輝点欠陥18を検出することが可能になる。
 (9)本実施形態においては、撮像手段としてCCDカメラ3を使用する構成としている。従って、汎用性のある撮像手段により、液晶表示パネル2の輝点欠陥18を検出することが可能になる。
 なお、上記実施形態は以下のように変更しても良い。
 絵素間のリークが生じている部位の特定を行うために、例えば、上述のステップS1~S12の処理が終了した後、図4に示した点灯状態から、点灯させた着色層16の列と点灯させていない着色層16の列の点灯・非点灯状態を逆転させる構成としても良い。より具体的には、図14に示すように、液晶表示パネル駆動部14により、カラーフィルタ15を構成する複数の着色層16が配列された列方向Zにおいて、図4において点灯させた着色層16を消灯するとともに、図4において非点灯の着色層16を緑色層、赤色層、青色層の順で1列おきに点灯させる。この場合も、上記列方向Zにおいて、互いに隣接しない着色層16を点灯させる。次いで、上述のステップS2~S12の処理を行い、上述の実施形態の場合と同様に輝点欠陥の有無を検査する。
 即ち、本発明の点灯工程を、図4において説明した、所定の着色層16を点灯させる第1点灯工程と、図14において説明した、第1点灯工程おいて点灯させた着色層16を消灯するとともに、第1点灯工程において非点灯の着色層16を列方向Zにおいて1列おきに点灯する第2点灯工程とを含む構成としても良い。
 このような構成により、図4、図14に示すように、図4に示す輝点欠陥を有する青絵素との間でリークが生じている絵素が、当該青絵素に隣接する緑絵素であることを特定することが可能になるため、絵素間のリークが生じている部位30の特定を行うことが可能になる。
 また、例えば、図15に示すように、カラーフィルタ15を構成する複数の着色層16が配列された列方向Zにおいて、各着色層16を構成する絵素17を1列おきに点灯させるとともに、各着色層16を構成する絵素17が配列された行方向Gにおいて、各着色層16を構成する絵素17を1行ごとに点灯させる構成としても良い。即ち、各行毎に点灯させる列を変更させて、いわゆる千鳥模様に点灯させる構成としても良い。このような構成においても、上述の実施形態と同様の効果を得ることができる。
 上記実施形態においては、輝点欠陥18を取り囲む撮像画素領域20を、4×4=16個のカメラ画素19(撮像画素)により構成したが、撮像画素領域20を構成するカメラ画素19の数は特に限定されず、例えば、輝点欠陥18を取り囲む撮像画素領域20を、3×3=9個のカメラ画素19(撮像画素)により構成ても良い。
 また、上記実施形態においては、表示パネルとして、液晶表示パネルを例に挙げて説明したが、本発明は、エレクトロルミネセンス表示パネル、プラズマ表示パネル、フィールドエミッション表示パネル等の他の表示パネルにも適用することができる。
 本発明の活用例としては、液晶表示パネルの内部における欠陥の有無を検査する液晶表示パネルの検査方法が挙げられる。
 1  欠陥検査装置
 2  液晶表示パネル
 3  CCDカメラ(撮像手段)
 4  CCDカメラ駆動部
 5  画像データ処理部
 6  A/D変換部
 7  データメモリ部
 8  演算処理部(演算処理手段)
 9  合成化処理部(合成化処理手段)
 10  絵素位置特定部(絵素位置特定手段)
 11  輝度データ取得部(輝度データ取得手段)
 12  輝点欠陥検出部(輝点欠陥検出手段)
 13  ステージ
 14  液晶表示パネル駆動部(点灯手段)
 15  カラーフィルタ
 16  着色層
 17  絵素
 18  輝点欠陥
 19  カメラ画素(撮像画素)
 20  撮像画素領域
 21  合成化された輝度データ
 23  メモリ
 E  領域
 Z  複数の着色層が配列された列方向

Claims (10)

  1.  複数種の着色層からなる画素が2次元的に複数配列された表示領域を有するカラーフィルタを備える表示パネルの前記画素における輝点欠陥の有無を検査する表示パネルの欠陥検査方法であって、
     前記複数の着色層が配列された列方向において、該複数種の着色層を1列おきに点灯させる点灯工程と、
     複数の撮像画素を有する撮像手段により、該撮像手段を予め設定された距離ずつ移動させながら、前記画素を複数回撮像する撮像工程と、
     前記複数回の撮像の各々における前記撮像画素での輝度データを演算する輝度データ演算工程と、
     前記輝度データを合成して、合成化された輝度データを取得する輝度データ合成工程と、
     前記撮像手段により撮像された前記画素を構成する複数の絵素の各々の位置データを取得する位置データ取得工程と、
     前記合成化された輝度データと前記複数の絵素の各々の位置データに基づいて、前記撮像手段により撮像された前記画素を構成する複数の絵素の各々に対応する輝度データを取得する輝度データ取得工程と、
     複数の絵素の各々に対応する輝度データに基づいて、前記複数の絵素の各々における輝点欠陥の有無を検出する輝点欠陥検出工程と
     を少なくとも含むことを特徴とする表示パネルの欠陥検査方法。
  2.  前記点灯工程は、所定の前記着色層を点灯させる第1点灯工程と、該第1点灯工程おいて点灯させた前記着色層を消灯するとともに、前記第1点灯工程において非点灯の前記着色層を1列おきに点灯する第2点灯工程とを含むことを特徴とする請求項1に記載の表示パネルの欠陥検査方法。
  3.  前記輝点欠陥検出工程において、前記複数の絵素の各々に対応する輝度データと、予め設定された判定閾値とを比較し、前記比較の結果に基づいて、前記絵素における輝点欠陥の有無を検出することを特徴とする請求項1または請求項2に記載の表示パネルの欠陥検査方法。
  4.  前記複数の絵素の各々に対応する輝度データに基づいて、前記複数の絵素の各々のコントラスト比の合計値を算出し、前記コントラスト比の合計値と前記判定閾値とを比較することを特徴とする請求項3に記載の表示パネルの欠陥検査方法。
  5.  前記撮像手段による撮像回数が2回であることを特徴とする請求項1~請求項4のいずれか1項に記載の表示パネルの欠陥検査方法。
  6.  前記予め設定された距離が、該撮像手段の分解能の半分の距離であることを特徴とする請求項1~請求項5のいずれか1項に記載の表示パネルの欠陥検査方法。
  7.  前記複数種の着色層が赤色層、緑色層、及び青色層であることを特徴とする請求項1~請求項6のいずれか1項に記載の表示パネルの欠陥検査方法。
  8.  前記撮像手段がCCDカメラであることを特徴とする請求項1~請求項7のいずれか1項に記載の表示パネルの欠陥検査方法。
  9.  前記表示パネルが液晶表示パネルであることを特徴とする請求項1~請求項8のいずれか1項に記載の表示パネルの欠陥検査方法。
  10.  複数種の着色層からなる画素が2次元的に複数配列された表示領域を有するカラーフィルタを備える表示パネルの前記画素における輝点欠陥の有無を検出する表示パネルの欠陥検査装置であって、
     前記複数の着色層が配列された列方向において、該複数種の着色層を1列おきに点灯させる点灯手段と、
     複数の撮像画素を有するとともに、予め設定された距離ずつ移動しながら、前記画素を複数回撮像する撮像手段と、
     前記複数回の撮像の各々における前記撮像画素での輝度データを演算する演算処理手段と、
     前記輝度データを合成して、合成化された輝度データを取得する合成化処理手段と、
     前記撮像手段により撮像された前記画素を構成する複数の絵素の各々の位置データを取得する絵素位置特定手段と、
     前記合成化された輝度データと前記複数の絵素の各々の位置データに基づいて、前記撮像手段により撮像された前記画素を構成する複数の絵素の各々に対応する輝度データを取得する輝度データ取得手段と、
     複数の絵素の各々に対応する輝度データに基づいて、前記複数の絵素の各々における輝点欠陥の有無を検出する輝点欠陥検出手段と
     を備えることを特徴とする表示パネルの欠陥検査装置。
PCT/JP2010/000558 2009-06-18 2010-01-29 表示パネルの欠陥検査方法および欠陥検査装置 WO2010146733A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011519473A JPWO2010146733A1 (ja) 2009-06-18 2010-01-29 表示パネルの欠陥検査方法および欠陥検査装置
CN2010800253359A CN102460106A (zh) 2009-06-18 2010-01-29 显示面板的缺陷检查方法和缺陷检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-145686 2009-06-18
JP2009145686 2009-06-18

Publications (1)

Publication Number Publication Date
WO2010146733A1 true WO2010146733A1 (ja) 2010-12-23

Family

ID=43356070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000558 WO2010146733A1 (ja) 2009-06-18 2010-01-29 表示パネルの欠陥検査方法および欠陥検査装置

Country Status (3)

Country Link
JP (1) JPWO2010146733A1 (ja)
CN (1) CN102460106A (ja)
WO (1) WO2010146733A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118306A1 (ja) * 2012-02-10 2013-08-15 シャープ株式会社 欠陥検出装置、欠陥検出方法、欠陥検出用プログラムを記録したコンピュータ読取り可能な記録媒体
CN103500336A (zh) * 2013-09-24 2014-01-08 华南理工大学 滤光片缺陷特征参数选择的熵方法
WO2015030066A1 (ja) * 2013-08-30 2015-03-05 住友化学株式会社 光学部材貼合体の製造方法
CN110136619A (zh) * 2019-06-28 2019-08-16 京东方科技集团股份有限公司 显示面板的不良检测方法、装置、质量管理方法
CN114383815A (zh) * 2021-12-13 2022-04-22 长春希达电子技术有限公司 一种显示屏像素失控点快速检测方法
CN115791837A (zh) * 2023-01-29 2023-03-14 深圳蓝普视讯科技有限公司 一种Micro-LED缺陷光线检测探头及缺陷检测方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013175703A1 (ja) * 2012-05-25 2016-01-12 シャープ株式会社 表示装置の検査方法、および表示装置の検査装置
JP6000356B2 (ja) * 2012-07-27 2016-09-28 シャープ株式会社 液晶表示パネルの検査方法、および液晶表示パネルの検査装置
CN103106859B (zh) * 2013-02-28 2015-11-25 北京星河康帝思科技开发股份有限公司 显示屏的检测方法和装置
CN103218961A (zh) * 2013-03-22 2013-07-24 苏州领视测控科技有限公司 一种lcd缺陷在线检测方法及系统
CN103645573A (zh) * 2013-11-22 2014-03-19 大连日佳电子有限公司 一种基于机器视觉的lcd检测的方法和系统
CN105628195A (zh) * 2014-10-31 2016-06-01 富泰华工业(深圳)有限公司 光源亮度检测系统及方法
JP6569330B2 (ja) * 2015-06-29 2019-09-04 三星ダイヤモンド工業株式会社 ブレーク装置
KR101668039B1 (ko) * 2015-08-17 2016-10-20 주식회사 홍익기술 디스플레이 패널 점등 검사방법
CN106646948B (zh) * 2016-12-23 2019-09-13 武汉精立电子技术有限公司 显示模组的移动图像检测装置的检测控制方法
CN106908225B (zh) * 2017-04-19 2019-12-13 惠科股份有限公司 一种检测装置、方法及系统
JP2019074323A (ja) * 2017-10-12 2019-05-16 株式会社日本マイクロニクス ディスプレイパネル検査装置およびディスプレイパネル検査方法
CN107966836A (zh) * 2017-11-29 2018-04-27 南昌工程学院 一种tft-lcd缺陷光学自动检测系统
CN109001208A (zh) * 2018-05-28 2018-12-14 南京中电熊猫平板显示科技有限公司 一种显示面板的缺陷定位装置及缺陷定位方法
CN111124344B (zh) * 2018-11-01 2024-03-12 合肥欣奕华智能机器股份有限公司 一种屏幕颗粒亮度提取方法及装置
CN112763493A (zh) * 2019-11-05 2021-05-07 华硕电脑股份有限公司 外观取像装置及包含其的外观检测装置
CN110987966A (zh) * 2019-12-27 2020-04-10 上海天马微电子有限公司 曲面基板的检测方法及检测系统
CN111175027B (zh) * 2020-02-21 2021-03-05 卡莱特(深圳)云科技有限公司 一种显示屏显示异常的识别方法及识别装置
CN112130355B (zh) * 2020-09-21 2023-03-24 深圳同兴达科技股份有限公司 一种获取有缺陷的液晶显示模组的方法
CN112529872B (zh) * 2020-12-11 2024-09-10 昆山丘钛光电科技有限公司 一种摄像头模组的检测方法及装置
KR20240118867A (ko) * 2021-12-16 2024-08-05 제이드 버드 디스플레이(상하이) 리미티드 미리 설정된 부분 패턴 그룹, 목표 마이크로 led 어레이 패턴을 분해하는 방법 및 픽셀 결함을 검출하는 방법
KR20240122745A (ko) * 2023-01-31 2024-08-13 제이드 버드 디스플레이(상하이) 리미티드 근안 디스플레이에서 디펙트들을 검출하는 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611679A (ja) * 1992-06-24 1994-01-21 Minato Electron Kk 表示素子検査読取方式
JPH09304226A (ja) * 1996-05-16 1997-11-28 Casio Comput Co Ltd 液晶表示素子またはそのカラーフィルタの欠陥検査方法
JPH11201867A (ja) * 1998-01-12 1999-07-30 Advantest Corp アドレス・キャリブレーション方法
JP2000338000A (ja) * 1999-03-23 2000-12-08 Hitachi Ltd 電子ディスプレイ装置の画素欠陥検査方法、および、電子ディスプレイ装置の製造方法
JP2007264243A (ja) * 2006-03-28 2007-10-11 Seiko Epson Corp 電気光学装置の検査方法及び電子機器
JP2008098968A (ja) * 2006-10-12 2008-04-24 Yokogawa Electric Corp 欠陥検査装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3672586B2 (ja) * 1994-03-24 2005-07-20 株式会社半導体エネルギー研究所 補正システムおよびその動作方法
JP2003061115A (ja) * 2001-08-20 2003-02-28 Hitachi Kokusai Electric Inc 電子ディスプレイ画質検査装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611679A (ja) * 1992-06-24 1994-01-21 Minato Electron Kk 表示素子検査読取方式
JPH09304226A (ja) * 1996-05-16 1997-11-28 Casio Comput Co Ltd 液晶表示素子またはそのカラーフィルタの欠陥検査方法
JPH11201867A (ja) * 1998-01-12 1999-07-30 Advantest Corp アドレス・キャリブレーション方法
JP2000338000A (ja) * 1999-03-23 2000-12-08 Hitachi Ltd 電子ディスプレイ装置の画素欠陥検査方法、および、電子ディスプレイ装置の製造方法
JP2007264243A (ja) * 2006-03-28 2007-10-11 Seiko Epson Corp 電気光学装置の検査方法及び電子機器
JP2008098968A (ja) * 2006-10-12 2008-04-24 Yokogawa Electric Corp 欠陥検査装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013118306A1 (ja) * 2012-02-10 2013-08-15 シャープ株式会社 欠陥検出装置、欠陥検出方法、欠陥検出用プログラムを記録したコンピュータ読取り可能な記録媒体
WO2015030066A1 (ja) * 2013-08-30 2015-03-05 住友化学株式会社 光学部材貼合体の製造方法
CN103500336A (zh) * 2013-09-24 2014-01-08 华南理工大学 滤光片缺陷特征参数选择的熵方法
CN110136619A (zh) * 2019-06-28 2019-08-16 京东方科技集团股份有限公司 显示面板的不良检测方法、装置、质量管理方法
CN114383815A (zh) * 2021-12-13 2022-04-22 长春希达电子技术有限公司 一种显示屏像素失控点快速检测方法
CN114383815B (zh) * 2021-12-13 2023-11-14 长春希达电子技术有限公司 一种显示屏像素失控点快速检测方法
CN115791837A (zh) * 2023-01-29 2023-03-14 深圳蓝普视讯科技有限公司 一种Micro-LED缺陷光线检测探头及缺陷检测方法

Also Published As

Publication number Publication date
CN102460106A (zh) 2012-05-16
JPWO2010146733A1 (ja) 2012-11-29

Similar Documents

Publication Publication Date Title
WO2010146733A1 (ja) 表示パネルの欠陥検査方法および欠陥検査装置
WO2010146732A1 (ja) 表示パネルの欠陥検査方法および欠陥検査装置
CN109765245B (zh) 大尺寸显示屏缺陷检测定位方法
JP2011196685A (ja) 欠陥検出装置、欠陥修復装置、表示パネル、表示装置、欠陥検出方法、プログラム
JP4534825B2 (ja) 欠陥検査方法および欠陥検査装置
WO2014132506A1 (ja) 表示パネルの欠陥検出方法及び表示パネルの欠陥検出装置
KR20160026681A (ko) 계조 검사 장치 및 계조 검사 방법
WO2013175703A1 (ja) 表示装置の検査方法、および表示装置の検査装置
CN112885289A (zh) 一种显示屏的校准方法及设备
JP2009229197A (ja) 線状欠陥検出方法および線状欠陥検出装置
WO2013118306A1 (ja) 欠陥検出装置、欠陥検出方法、欠陥検出用プログラムを記録したコンピュータ読取り可能な記録媒体
JP4143660B2 (ja) 画像解析方法、画像解析装置、検査装置、画像解析プログラムおよびコンピュータ読み取り可能な記録媒体
CN111179795B (zh) 显示面板的检测方法及其装置
RU2008141365A (ru) Способ и устройство для измерения качества поверхности подложки
WO2010146745A1 (ja) 表示パネルの検査方法、及び表示装置の製造方法
JP2011038938A (ja) 表示装置の検査方法及び検査装置
KR101218637B1 (ko) 윤곽선 검출을 위한 대각선 스캔방법
JP2008032653A (ja) テストパターン発生方法、テストパターンのデータ構造、テストパターン発生装置、表示パネル検査システム、制御プログラム、及び該プログラムを記録したコンピュータ読み取り可能な記録媒体
JPH11257937A (ja) 欠陥検査方法
JP2011027907A (ja) 輝度ムラ修正用補正データの作成方法及びその作成装置
JPH08327497A (ja) カラー液晶表示パネルの検査方法
JP2005148670A (ja) 液晶パネルの検査画像作成方法及び装置並びに外観検査方法及び装置
JP2001083474A (ja) 液晶表示パネルの検査方法
KR100643248B1 (ko) 표시패널의 검사방법과 표시패널의 검사장치
TWI220689B (en) An inspection system and method for the inspection of a display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025335.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10789118

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011519473

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10789118

Country of ref document: EP

Kind code of ref document: A1