WO2010143509A1 - 排ガス浄化用酸化触媒 - Google Patents

排ガス浄化用酸化触媒 Download PDF

Info

Publication number
WO2010143509A1
WO2010143509A1 PCT/JP2010/058551 JP2010058551W WO2010143509A1 WO 2010143509 A1 WO2010143509 A1 WO 2010143509A1 JP 2010058551 W JP2010058551 W JP 2010058551W WO 2010143509 A1 WO2010143509 A1 WO 2010143509A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
oxidation catalyst
gas purification
metal oxide
composite metal
Prior art date
Application number
PCT/JP2010/058551
Other languages
English (en)
French (fr)
Inventor
潔 田名網
祐二 磯谷
啓太 石崎
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2010143509A1 publication Critical patent/WO2010143509A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • B01J23/8933Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8986Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/2073Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to an exhaust gas purifying oxidation catalyst that oxidizes and purifies the contents in the exhaust gas of an internal combustion engine.
  • an oxidation catalyst for purifying exhaust gas made of a perovskite-type composite metal oxide is known.
  • the perovskite complex metal oxide used as the oxidation catalyst for exhaust gas purification is represented by, for example, the general formula AB 1-x C x O 3 , and A is selected from the group consisting of La, Sr, Ce, Ba, and Ca.
  • the perovskite-type composite metal oxide used as the exhaust gas purifying oxidation catalyst is represented, for example, by the general formula Ce x M 1-x ZrO 3 , where M is composed of La, Sm, Nd, Gd, Sc, Y.
  • a composite metal oxide that is at least one metal selected from the group and satisfies 0.001 ⁇ x ⁇ 0.2 is known (see, for example, Patent Document 2).
  • the conventional perovskite complex metal oxide has the disadvantages that the oxidation temperature is higher than the content in the exhaust gas of the internal combustion engine and sufficient catalytic activity cannot be obtained.
  • the oxidation catalyst for exhaust gas purification of the present invention is an oxidation catalyst for exhaust gas purification that purifies by oxidizing the contents in the exhaust gas of an internal combustion engine, and has the general formula Y 1-x Ag x Mn 1- 1 y Fe is represented by y O 3, characterized in that it comprises a 0.01 ⁇ x ⁇ 0.30 and 0.01 ⁇ y ⁇ 0.50 in which composite metal oxide.
  • the composite metal oxide represented by the general formula Y 1-x Ag x Mn 1-y Fe y O 3 is a composite metal oxide represented by the chemical formula YMnO 3 , which is one of Y which is the first metal. The part is replaced with Ag which is the third metal, and part of Mn which is the second metal is replaced with Fe which is the fourth metal.
  • Y 1-x Ag x Mn 1-y Fe y O 3 causes oxygen defects in the crystal lattice and distortion in the crystal lattice.
  • the binding energy of oxygen in the crystal lattice decreases, and the substitution reaction between oxygen on the surface of the crystal lattice and oxygen in the atmosphere is activated, Oxygen on the lattice surface is easily dissociated, and oxygen can be absorbed and released at a lower temperature.
  • Y 1-x Ag x Mn 1-y Fe y O 3 can have a higher catalytic activity than YMnO 3 .
  • the oxidation catalyst for exhaust gas purification of the present invention can obtain an excellent catalytic activity at low temperatures for contents such as particulates, carbon monoxide and hydrocarbons in the exhaust gas of an internal combustion engine.
  • the composite metal oxide preferably includes a hexagonal crystal structure as part of the crystal structure. Since the composite metal oxide includes a hexagonal crystal structure, an excellent oxygen release performance can be obtained. Therefore, the oxidation catalyst for exhaust gas purification according to the present invention includes particulates, carbon monoxide, carbonization in exhaust gas of an internal combustion engine. It is possible to reliably obtain excellent catalytic activity at low temperatures for inclusions such as hydrogen.
  • the exhaust gas purifying oxidation catalyst of the present invention preferably further contains zirconium oxide.
  • zirconium oxide By adding zirconium oxide to the composite metal oxide, hexagonalization of the composite metal oxide can be promoted.
  • the exhaust gas purifying oxidation catalyst of the present invention further containing zirconium oxide further lowers the temperature for oxidizing the contents in the exhaust gas of the internal combustion engine as compared with the exhaust gas purifying oxidation catalyst not containing zirconium oxide. Can do.
  • the oxidation catalyst for exhaust gas purification of the present invention further containing zirconium oxide preferably contains zirconium oxide in a range of 5 to 20% by mass with respect to the composite metal oxide.
  • zirconium oxide contains zirconium oxide in a range of 5 to 20% by mass with respect to the composite metal oxide.
  • the oxidation catalyst for exhaust gas purification according to the first aspect of the present embodiment is represented by the general formula Y 1-x Ag x Mn 1-y Fe y O 3 , and 0.01 ⁇ x ⁇ 0.30 and 0.01 ⁇ It consists of a composite metal oxide satisfying y ⁇ 0.50.
  • the composite metal oxide represented by the general formula Y 1-x Ag x Mn 1-y Fe y O 3 is a composite metal oxide represented by the chemical formula YMnO 3 , which is one of Y which is the first metal.
  • the part is replaced with Ag which is the third metal
  • part of Mn which is the second metal is replaced with Fe which is the fourth metal.
  • a part of Mn which is the second metal is oxidized from +3 valence to oxidation activity. It changes to a high +4 valence.
  • oxygen defects are generated in the crystal lattice and distortion is generated in the crystal lattice.
  • Y 1-x Ag x Mn 1-y Fe y O 3 the binding energy of oxygen in the crystal lattice decreases, and the substitution reaction between oxygen on the surface of the crystal lattice and oxygen in the atmosphere is activated, Oxygen on the lattice surface is easily dissociated, and oxygen can be absorbed and released at a lower temperature.
  • Y 1-x Ag x Mn 1-y Fe y O 3 can have a higher catalytic activity than YMnO 3 .
  • the oxidation catalyst for exhaust gas purification of the present invention can obtain an excellent catalytic activity at low temperatures for contents such as particulates, carbon monoxide and hydrocarbons in the exhaust gas of an internal combustion engine.
  • the composite metal oxide includes a hexagonal crystal structure as part of the crystal structure. Since the composite metal oxide includes a hexagonal crystal structure, an excellent oxygen release performance can be obtained. Therefore, the oxidation catalyst for exhaust gas purification according to the present embodiment includes particulates, carbon monoxide in exhaust gas from an internal combustion engine, Excellent catalytic activity can be reliably obtained at low temperatures for inclusions such as hydrocarbons.
  • the oxidation catalyst for exhaust gas purification of the second aspect of the present embodiment is represented by the general formula Y 1-x Ag x Mn 1-y Fe y O 3 , and 0.01 ⁇ x ⁇ 0.30 and 0.01 ⁇ It consists of a mixture of a composite metal oxide satisfying y ⁇ 0.50 and zirconium oxide.
  • the exhaust gas purifying oxidation catalyst of the present embodiment can promote hexagonal crystallization of the composite metal oxide by adding zirconium oxide to the composite metal oxide.
  • the oxidation catalyst for exhaust gas purification according to the second aspect further has a temperature for oxidizing the contents in the exhaust gas of the internal combustion engine as compared with the oxidation catalyst for exhaust gas purification according to the first aspect that does not contain zirconium oxide. Can be lowered.
  • the exhaust gas purifying oxidation catalyst of the second aspect preferably contains zirconium oxide in a range of 5 to 20% by mass with respect to the composite metal oxide.
  • zirconium oxide in a range of 5 to 20% by mass with respect to the composite metal oxide.
  • X-ray diffraction is performed with an X-ray diffractometer (manufactured by Mac Science Co., Ltd., trade name: MXP18) using CuK ⁇ rays as a radiation source under conditions of a tube voltage of 50 kV and a diffractometer of 4 ° / min. A 90 ° range was measured. The results are shown in FIG. As shown in FIG. 1, it is clear that a crystal peak due to the hexagonal crystal structure is provided ( ⁇ mark in the figure).
  • the exhaust gas purifying oxidation catalyst of this example which is composed of a composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.95 Fe 0.05 O 3 , has a hexagonal crystal. It is clear to include the structure.
  • differential thermal analysis was performed to evaluate the oxidation performance of the oxidation catalyst powder for exhaust gas purification obtained in this example.
  • the differential thermal analysis was performed using carbon black as one index for evaluating oxidation performance.
  • an exhaust gas purifying oxidation catalyst powder obtained in this example was used as an exhaust gas purifying oxidation catalyst, and a mixture obtained by mixing the exhaust gas purifying oxidation catalyst and carbon black at a weight ratio of 20: 1 was mixed for 15 minutes with an agate mortar. Mixed.
  • the product was heated from room temperature to 800 ° C.
  • yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were used in a ratio of 0.95: 0.05: 0.90: 0.
  • An oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 2 the combustion temperature of carbon black was determined in the same manner as in Example 1 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst. The results are shown in FIG.
  • yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were used in a ratio of 0.95: 0.05: 0.85: 0.
  • An oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 2 the combustion temperature of carbon black was determined in the same manner as in Example 1 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst. The results are shown in FIG.
  • yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were 0.95: 0.05: 0.80: 0.
  • An oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 2 the combustion temperature of carbon black was determined in the same manner as in Example 1 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst. The results are shown in FIG.
  • yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were 0.95: 0.05: 0.70: 0.
  • An oxidation catalyst powder for exhaust gas purification was obtained.
  • yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were 0.95: 0.05: 0.50: 0.
  • An oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 1 the combustion temperature of carbon black was determined in exactly the same manner as in Example 1 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst.
  • FIG. 1 yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were 0.95: 0.05: 0.40: 0.
  • An oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 2 the combustion temperature of carbon black was determined in exactly the same manner as in Example 1 except that the oxidation catalyst powder obtained in this comparative example was used as an exhaust gas purification catalyst.
  • FIG. 2 Comparative Example 2
  • yttrium nitrate pentahydrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed in a mole of 1.00: 0.90: 0.10: 6: 40. Except for mixing in a ratio, it was exactly the same as in Example 1 to obtain an exhaust gas purifying oxidation catalyst powder composed of a composite metal oxide represented by the chemical formula YMn 0.9 Fe 0.1 O 3 .
  • the exhaust gas purification catalyst of Comparative Example 2 composed of a composite metal oxide represented by the chemical formula YMn 0.9 Fe 0.1 O 3 and containing no Ag. It is clear that the carbon black can be oxidized (combusted) at a lower temperature than the oxidation catalyst.
  • Example 2 composed of a composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.9 Fe 0.1 O 3 It is clear that the oxidation catalyst for purifying exhaust gas can oxidize (combust) the carbon black at the lowest temperature.
  • Example 2 the combustion temperature of carbon black was determined in exactly the same manner as in Example 2 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst. The results are shown in FIG. For comparison, the results of Example 2 are shown again in FIG.
  • Example 2 except that yttrium nitrate pentahydrate and silver nitrate were mixed at a molar ratio of 0.85: 0.15, it was exactly the same as Example 2, except that the chemical formula Y 0.85 Ag 0.15 Mn An exhaust gas-purifying oxidation catalyst powder composed of a composite metal oxide represented by 0.9 Fe 0.1 O 3 was obtained.
  • Example 2 the combustion temperature of carbon black was determined in the same manner as in Example 2 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst. The results are shown in FIG.
  • the chemical formula Y 0.8 Ag 0.2 Mn was exactly the same as Example 2 except that yttrium nitrate pentahydrate and silver nitrate were mixed at a molar ratio of 0.80: 0.20.
  • An exhaust gas-purifying oxidation catalyst powder composed of a composite metal oxide represented by 0.9 Fe 0.1 O 3 was obtained.
  • Example 2 the combustion temperature of carbon black was determined in the same manner as in Example 2 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst. The results are shown in FIG.
  • Example 2 the combustion temperature of carbon black was determined in the same manner as in Example 2 except that the oxidation catalyst powder obtained in this example was used as an exhaust gas purification catalyst. The results are shown in FIG.
  • Example 2 first, exactly as in Example 1, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed to obtain The resulting mixture was subjected to primary firing. Next, a water-dispersed zirconia sol (including 20% by mass of zirconium oxide powder) obtained by dispersing zirconium oxide powder in water has a zirconium oxide powder content of 10% with respect to the resultant product obtained by the primary firing. %, And mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes, and then held at a temperature of 800 ° C. for 1 hour for secondary firing.
  • a water-dispersed zirconia sol including 20% by mass of zirconium oxide powder
  • Example 2 the combustion temperature of carbon black was determined in exactly the same manner as in Example 1 except that the exhaust gas purification oxidation catalyst powder obtained in this example was used as an exhaust gas purification oxidation catalyst. The results are shown in FIG.
  • Example 2 first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed in exactly the same way as in Example 2. The resulting mixture was subjected to primary firing. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour.
  • Example 3 first, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed in exactly the same way as in Example 3. The resulting mixture was subjected to primary firing. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour.
  • Example 4 first, exactly as in Example 4, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed and obtained. The resulting mixture was subjected to primary firing. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour.
  • Example 5 first, exactly as in Example 5, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed and obtained. The resulting mixture was subjected to primary firing. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour.
  • Example 6 first, exactly as in Example 6, yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed and obtained. The resulting mixture was subjected to primary firing. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour.
  • Example 3 the combustion temperature of carbon black was determined in the same manner as in Example 6 except that the exhaust gas purification oxidation catalyst powder obtained in this example was used as the exhaust gas purification oxidation catalyst.
  • FIG. 3 Comparative Example 3
  • yttrium nitrate pentahydrate, silver nitrate, manganese nitrate hexahydrate, iron nitrate, citric acid, and water were mixed in exactly the same way as in Comparative Example 1. The resulting mixture was subjected to primary firing.
  • the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour. From the above, from the mixture of the composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.4 Fe 0.6 O 3 and 10% by mass of zirconium oxide with respect to the composite metal oxide. As a result, an oxidation catalyst powder for exhaust gas purification was obtained.
  • the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour.
  • an oxidation catalyst powder for exhaust gas purification comprising a mixture of a composite metal oxide represented by the chemical formula YMn 0.9 Fe 0.1 O 3 and 10% by mass of zirconium oxide with respect to the composite metal oxide. Obtained.
  • FIG. 2 shows that the composite metal oxide represented by the chemical formula Y 0.95 Ag 0.05 Mn 1-y Fe y O 3 (0.05 ⁇ y ⁇ 0.50) and the composite metal oxide
  • the composite represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.40 Fe 0.60 O 3 The carbon black is oxidized (combusted) at a lower temperature than the oxidation catalyst for exhaust gas purification of Comparative Example 3 comprising a mixture of a metal oxide and 10% by mass of zirconium oxide with respect to the composite metal oxide. Obviously it can be.
  • the composite metal oxide represented by the chemical formula YMn 0.9 Fe 0.1 O 3 and containing no Ag the composite metal oxide It is apparent that the carbon black can be oxidized (combusted) at a lower temperature than the oxidation catalyst for exhaust gas purification of Comparative Example 4 comprising a mixture with 10% by mass of zirconium oxide.
  • the oxidation catalyst for exhaust gas purification of Examples 11 to 16 consisting of a mixture with 1% of zirconium oxide
  • the oxidation catalyst for exhaust gas purification of Examples 1 to 6 containing the composite metal oxide having the same composition and not containing zirconium oxide It is clear that the carbon black can be oxidized (combusted) at a lower temperature as compared with the catalyst.
  • the composite metal oxide is represented by the chemical formula Y 0.95 Ag 0.05 Mn 0.9 Fe 0.1 O 3 It is clear that the exhaust gas purifying oxidation catalyst of Example 12 can oxidize (combust) the carbon black at the lowest temperature.
  • Example 7 first, primary firing was performed in exactly the same manner as in Example 7. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour. From the above, from the mixture of the composite metal oxide represented by the chemical formula Y 0.9 Ag 0.1 Mn 0.9 Fe 0.1 O 3 and 10% by mass of zirconium oxide based on the composite metal oxide. As a result, an oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 12 the combustion temperature of carbon black was determined in exactly the same manner as in Example 7, except that the exhaust gas purifying oxidation catalyst powder obtained in this example was used as the exhaust gas purifying oxidation catalyst. The results are shown in FIG. For comparison, the results of Example 12 are shown again in FIG.
  • Example 8 primary firing was performed in exactly the same manner as in Example 8.
  • the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes.
  • secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour. From the above, from the mixture of the composite metal oxide represented by the chemical formula Y 0.85 Ag 0.15 Mn 0.9 Fe 0.1 O 3 and 10% by mass of zirconium oxide based on the composite metal oxide. As a result, an oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 9 first, primary firing was performed in exactly the same manner as in Example 9. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour. Thus, from the mixture of the composite metal oxide represented by the chemical formula Y 0.8 Ag 0.2 Mn 0.9 Fe 0.1 O 3 and 10% by mass of zirconium oxide based on the composite metal oxide. As a result, an oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 10 first, primary firing was performed in exactly the same manner as in Example 10. Next, the water-dispersed zirconia sol is mixed with the resultant product obtained by the primary firing so that the content of zirconium oxide powder is 10% by mass, and mixed and ground in a mortar at a temperature of 25 ° C. for 15 minutes. After that, secondary baking was performed by maintaining the temperature at 800 ° C. for 1 hour. From the above, from the mixture of the composite metal oxide represented by the chemical formula Y 0.7 Ag 0.3 Mn 0.9 Fe 0.1 O 3 and 10% by mass of zirconium oxide based on the composite metal oxide. As a result, an oxidation catalyst powder for exhaust gas purification was obtained.
  • Example 10 the combustion temperature of carbon black was determined in exactly the same manner as in Example 10 except that the exhaust gas purifying oxidation catalyst powder obtained in this example was used as the exhaust gas purifying oxidation catalyst. The results are shown in FIG.
  • FIG. 3 shows that the composite metal oxide represented by the chemical formula Y 1-x Ag x Mn 0.9 Fe 0.1 O 3 (0.10 ⁇ x ⁇ 0.30) and the composite metal oxide
  • the composite metal oxide has the chemical formula Y 0.95 Ag 0.05 Mn 0.9 Fe 0.1 O 3.
  • the carbon black can be oxidized (combusted) at a lower temperature as compared with Example 12 represented by Therefore, according to the exhaust gas purification oxidation catalyst of Examples 17 to 20, compared with the exhaust gas purification oxidation catalyst of Example 12, the particulates, carbon monoxide, high boiling point hydrocarbons, etc. in the exhaust gas of the internal combustion engine, etc. It is clear that the contents of can be oxidized (burned) at lower temperatures.
  • the oxidation catalyst for exhaust gas purification of Examples 17 to 20 consisting of a mixture with 1% of zirconium oxide
  • the oxidation catalyst for exhaust gas purification of Examples 7 to 10 containing the composite metal oxide of the same composition and not containing zirconium oxide
  • the carbon black can be oxidized (burned) at a lower temperature as compared with the catalyst.
  • the particulates, carbon monoxide, and high-boiling carbonization in the exhaust gas of the internal combustion engine compared with the exhaust gas purification oxidation catalyst of Examples 7 to 10, the particulates, carbon monoxide, and high-boiling carbonization in the exhaust gas of the internal combustion engine. It is clear that inclusions such as hydrogen can be oxidized (burned) at lower temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

内燃機関の排ガス中の含有物に対して、より低温で優れた触媒活性を得ることができる排ガス浄化用酸化触媒を提供する。 排ガス浄化用酸化触媒は、内燃機関の排ガス中の含有物を酸化して浄化するものであり、一般式Y1-xAgMn1-yFeで表され、0.01≦x≦0.30かつ0.01≦y≦0.50である複合金属酸化物を含んでいる。前記複合金属酸化物は、六方晶構造を含むことが好ましく、前記複合金属酸化物に対して5~20質量%の範囲の酸化ジルコニウムをさらに含むことが好ましい。

Description

排ガス浄化用酸化触媒
 本発明は、内燃機関の排ガス中の含有物を酸化して浄化する排ガス浄化用酸化触媒に関するものである。
 従来、内燃機関の排ガス中のパティキュレート、一酸化炭素、炭化水素等の含有物を酸化して浄化するために、ペロブスカイト型複合金属酸化物からなる排ガス浄化用酸化触媒が知られている。
 前記排ガス浄化用酸化触媒として用いられるペロブスカイト型複合金属酸化物として、例えば、一般式AB1-xで表され、AはLa,Sr,Ce,Ba,Caからなる群から選択される少なくとも1種の金属であり、BはCo,Fe,Ni,Cr,Mn,Mgからなる群から選択される少なくとも1種の金属であり、CはPtまたはPdである複合金属酸化物が知られている(例えば特許文献1参照)。
 また、前記排ガス浄化用酸化触媒として用いられるペロブスカイト型複合金属酸化物として、例えば、一般式Ce1-xZrOで表され、MはLa,Sm,Nd,Gd,Sc,Yからなる群から選択される少なくとも1種の金属であり、0.001≦x≦0.2である複合金属酸化物が知られている(例えば特許文献2参照)。
特開平7-116519号公報 特開2003-334443号公報
 しかしながら、前記従来のペロブスカイト型複合金属酸化物では、内燃機関の排ガス中の前記含有物に対して酸化温度が高い上に、十分な触媒活性が得られないという不都合がある。
 本発明は、かかる不都合を解消して、内燃機関の排ガス中の含有物に対して、より低温で優れた触媒活性を得ることができる排ガス浄化用酸化触媒を提供することを目的とする。
 かかる目的を達成するために、本発明の排ガス浄化用酸化触媒は、内燃機関の排ガス中の含有物を酸化して浄化する排ガス浄化用酸化触媒において、一般式Y1-xAgMn1-yFeで表され、0.01≦x≦0.30かつ0.01≦y≦0.50である複合金属酸化物を含むことを特徴とする。
 前記一般式Y1-xAgMn1-yFeで表される前記複合金属酸化物は、化学式YMnOで表される複合金属酸化物において、第1の金属であるYの一部を第3の金属であるAgで置換するとともに、第2の金属であるMnの一部を第4の金属であるFeで置換したものである。
 この置換により、Y1-xAgMn1-yFeは、結晶格子内に酸素欠陥が生じるとともに、結晶格子に歪みが生じることとなる。これにより、Y1-xAgMn1-yFeは、結晶格子内の酸素の結合エネルギーが低下し、結晶格子表面の酸素と大気中の酸素との置換反応が活発化して結晶格子表面の酸素が解離しやすくなり、より低温で酸素を吸放出することができるようになる。この結果、Y1-xAgMn1-yFeは、YMnOと比較して、高い触媒活性を有することができる。
 したがって、本発明の排ガス浄化用酸化触媒は、内燃機関の排ガス中のパティキュレート、一酸化炭素、炭化水素等の含有物に対して、低温で優れた触媒活性を得ることができる。
 前記複合金属酸化物の一般式Y1-xAgMn1-yFeにおいて、xが0.01未満では、触媒活性を高める効果が不十分であり、xが0.30を超えると、排ガス浄化用酸化触媒の耐熱性が低下し十分な性能を得ることができない。また、yが0.01未満では、触媒活性を高める効果が不十分であり、yが0.50を超えると、排ガス浄化用酸化触媒の酸化能が低下し十分な性能を得ることができない。
 前記複合金属酸化物は、結晶構造の一部に六方晶構造を含んでいることが好ましい。前記複合金属酸化物が六方晶構造を含むことにより、優れた酸素放出性能を得ることができるため、本発明の排ガス浄化用酸化触媒は、内燃機関の排ガス中のパティキュレート、一酸化炭素、炭化水素等の含有物に対して、低温で優れた触媒活性を確実に得ることができる。
 また、本発明の排ガス浄化用酸化触媒は、酸化ジルコニウムをさらに含むことが好ましい。前記複合金属酸化物に酸化ジルコニウムを加えることにより、該複合金属酸化物の六方晶化を促進することができる。この結果、酸化ジルコニウムをさらに含む本発明の排ガス浄化用酸化触媒は、酸化ジルコニウムを含んでいない排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中の含有物を酸化する温度をさらに下げることができる。
 また、酸化ジルコニウムをさらに含む本発明の排ガス浄化用酸化触媒は、前記複合金属酸化物に対して5~20質量%の範囲の酸化ジルコニウムを含むことが好ましい。前記酸化ジルコニウムの含有量が5質量%未満の場合には、内燃機関の排ガス中の含有物を酸化する温度を十分に下げることができないことがあり、該酸化ジルコニウムの含有量が20質量%を超えても、それ以上の効果を得ることができないことがある。
本発明の第1の態様の排ガス浄化用酸化触媒のX線回折データを示すグラフ。 本発明の第1の態様の排ガス浄化用酸化触媒の効果を示すグラフ。 本発明の第2の態様の排ガス浄化用酸化触媒の効果を示すグラフ。
 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。本実施形態の第1の態様の排ガス浄化用酸化触媒は、一般式Y1-xAgMn1-yFeで表され、0.01≦x≦0.30かつ0.01≦y≦0.50である複合金属酸化物からなる。
 前記一般式Y1-xAgMn1-yFeで表される前記複合金属酸化物は、化学式YMnOで表される複合金属酸化物において、第1の金属であるYの一部を第3の金属であるAgで置換するとともに、第2の金属であるMnの一部を第4の金属であるFeで置換したものである。前記置換で+3価のYの一部が+1価のAgに置換することにより、結晶格子における電気的中性を保つために、第2の金属であるMnの一部が+3価から酸化活性の高い+4価に変化する。さらに、結晶格子内に酸素欠陥が生じるとともに、結晶格子に歪みが生じることとなる。
 これにより、Y1-xAgMn1-yFeは、結晶格子内の酸素の結合エネルギーが低下し、結晶格子表面の酸素と大気中の酸素との置換反応が活発化して結晶格子表面の酸素が解離しやすくなり、より低温で酸素を吸放出することができるようになる。この結果、Y1-xAgMn1-yFeは、YMnOと比較して、高い触媒活性を有することができる。
 したがって、本発明の排ガス浄化用酸化触媒は、内燃機関の排ガス中のパティキュレート、一酸化炭素、炭化水素等の含有物に対して、低温で優れた触媒活性を得ることができる。
 前記複合金属酸化物の一般式Y1-xAgMn1-yFeにおいて、xが0.01未満では、触媒活性を高める効果が不十分であり、xが0.30を超えると、排ガス浄化用酸化触媒の耐熱性が低下し十分な性能を得ることができない。また、yが0.01未満では、触媒活性を高める効果が不十分であり、yが0.50を超えると、排ガス浄化用酸化触媒の酸化能が低下し十分な性能を得ることができない。
 前記複合金属酸化物は、結晶構造の一部に六方晶構造を含んでいる。前記複合金属酸化物が六方晶構造を含むことにより、優れた酸素放出性能を得ることができるため、本実施形態の排ガス浄化用酸化触媒は、内燃機関の排ガス中のパティキュレート、一酸化炭素、炭化水素等の含有物に対して、低温で優れた触媒活性を確実に得ることができる。
 本実施形態の第2の態様の排ガス浄化用酸化触媒は、一般式Y1-xAgMn1-yFeで表され、0.01≦x≦0.30かつ0.01≦y≦0.50である複合金属酸化物と、酸化ジルコニウムとの混合物からなる。
 本実施形態の排ガス浄化用酸化触媒は、前記複合金属酸化物に酸化ジルコニウムを加えることにより、該複合金属酸化物の六方晶化を促進することができる。この結果、第2の態様の排ガス浄化用酸化触媒は、酸化ジルコニウムを含んでいない第1の態様の排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中の含有物を酸化する温度をさらに下げることができる。
 また、第2の態様の排ガス浄化用酸化触媒は、前記複合金属酸化物に対して5~20質量%の範囲の酸化ジルコニウムを含むことが好ましい。前記酸化ジルコニウムの含有量が5質量%未満の場合には、内燃機関の排ガス中の含有物を酸化する温度を十分に下げることができないことがあり、該酸化ジルコニウムの含有量が20質量%を超えても、それ以上の効果を得ることができないことがある。
 次に本発明の実施例及び比較例を示す。
 本実施例では、まず、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、0.95:0.05:0.95:0.05:6:40のモル比で混合した混合物を、25℃の温度で15分間乳鉢で混合粉砕した後、350℃の温度に1時間保持して一次焼成を行った。次に、前記一次焼成で得られた結果物を、25℃の温度で15分間乳鉢で粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.95Fe0.05で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末についてX線回折により成分評価を行った。X線回折は、X線回折装置(マックサイエンス社製、商品名:MXP18)でCuKα線を線源として用いて、管電圧50kV、ディフラクトメータ4°/分の条件で行い、2θ=10~90°の範囲を計測した。図1に結果を示す。図1に示すように、六方晶構造に起因する結晶ピークを備えることが明らかである(図中の▽印)。
 したがって、化学式Y0.95Ag0.05Mn0.95Fe0.05で表される複合金属酸化物からなる本実施例の排ガス浄化用酸化触媒は、該複合金属酸化物が六方晶構造を含むことが明らかである。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末の酸化性能を評価するために示差熱分析(DTA)を行った。前記示差熱分析は、酸化性能評価の指標の1つとしてカーボンブラックを用いて行った。まず、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として、該排ガス浄化用酸化触媒とカーボンブラックとを20:1の重量比で混合した混合物を、15分間メノウ乳鉢で混合した。次に、示差熱分析装置(BRUKER社製、商品名:ASC7000S)により、100ml/分の空気流雰囲気下、10℃/分の昇温温度で室温から800℃まで加熱し、温度に対するヒートフロー(Heat Flow)を測定した。そして、測定された発熱ピークからカーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、0.95:0.05:0.90:0.10:6:40のモル比で混合した以外は、実施例1と全く同一にして、化学式Y0.95Ag0.05Mn0.9Fe0.1で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、0.95:0.05:0.85:0.15:6:40のモル比で混合した以外は、実施例1と全く同一にして、化学式Y0.95Ag0.05Mn0.85Fe0.15で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、0.95:0.05:0.80:0.20:6:40のモル比で混合した以外は、実施例1と全く同一にして、化学式Y0.95Ag0.05Mn0.8Fe0.2で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、0.95:0.05:0.70:0.30:6:40のモル比で混合した以外は、実施例1と全く同一にして、化学式Y0.95Ag0.05Mn0.7Fe0.3で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、0.95:0.05:0.50:0.50:6:40のモル比で混合した以外は、実施例1と全く同一にして、化学式Y0.95Ag0.05Mn0.5Fe0.5で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
〔比較例1〕
 本比較例では、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、0.95:0.05:0.40:0.60:6:40のモル比で混合した以外は、実施例1と全く同一にして、化学式Y0.95Ag0.05Mn0.4Fe0.6で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本比較例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
〔比較例2〕
 本比較例では、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを、1.00:0.90:0.10:6:40のモル比で混合した以外は、実施例1と全く同一にして、化学式YMn0.9Fe0.1で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本比較例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 図2から、化学式Y0.95Ag0.05Mn1-yFe(0.05≦y≦0.50)で表される複合金属酸化物からなる実施例1~6の排ガス浄化用酸化触媒によれば、yの値が前記範囲外の0.60であって、化学式Y0.95Ag0.05Mn0.40Fe0.60で表される複合金属酸化物からなる比較例1の排ガス浄化用酸化触媒と比較して、前記カーボンブラックをより低温で酸化(燃焼)することができることが明らかである。また、前記実施例1~6の排ガス浄化用酸化触媒によれば、化学式YMn0.9Fe0.1で表されAgを全く含まない複合金属酸化物からなる比較例2の排ガス浄化用酸化触媒と比較して、前記カーボンブラックをより低温で酸化(燃焼)することができることが明らかである。
 したがって、実施例1~6の排ガス浄化用酸化触媒によれば、比較例1,2の排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中のパティキュレート、一酸化炭素、高沸点の炭化水素等の含有物を、より低温で酸化(燃焼)することができることが明らかである。
 図2から、実施例1~6の排ガス浄化用酸化触媒のうち、化学式Y0.95Ag0.05Mn0.9Fe0.1で表される複合金属酸化物からなる実施例2の排ガス浄化用酸化触媒が、特に、前記カーボンブラックを最も低温で酸化(燃焼)することができることが明らかである。
 そこで、本実施例では、硝酸イットリウム5水和物と硝酸銀とを0.90:0.10のモル比で混合した以外は、実施例2と全く同一にして、化学式Y0.9Ag0.1Mn0.9Fe0.1で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例2と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。尚、比較のために、図3に実施例2の結果を再掲する。
 本実施例では、硝酸イットリウム5水和物と硝酸銀とを0.85:0.15のモル比で混合した以外は、実施例2と全く同一にして、化学式Y0.85Ag0.15Mn0.9Fe0.1で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例2と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。
 本実施例では、硝酸イットリウム5水和物と硝酸銀とを0.80:0.20のモル比で混合した以外は、実施例2と全く同一にして、化学式Y0.8Ag0.2Mn0.9Fe0.1で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例2と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。
 本実施例では、硝酸イットリウム5水和物と硝酸銀とを0.70:0.30のモル比で混合した以外は、実施例2と全く同一にして、化学式Y0.7Ag0.3Mn0.9Fe0.1で表される複合金属酸化物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた酸化触媒粉末を排ガス浄化用触媒として用いた以外は、実施例2と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。
 図3から、化学式Y1-xAgMn0.9Fe0.1(0.10≦x≦0.30)で表される複合金属酸化物からなる実施例7~10の排ガス浄化用酸化触媒によれば、化学式Y0.95Ag0.05Mn0.9Fe0.1で表される複合金属酸化物からなる実施例2と比較して、前記カーボンブラックをさらに低温で酸化(燃焼)することができることが明らかである。したがって、実施例7~10の排ガス浄化用酸化触媒によれば、実施例2の排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中のパティキュレート、一酸化炭素、高沸点の炭化水素等の含有物を、さらに低温で酸化(燃焼)することができることが明らかである。
 本実施例では、まず、実施例1と全く同一にして、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、酸化ジルコニウム粉末を水に分散してなる水分散ジルコニアゾル(酸化ジルコニウム粉末20質量%を含む)を、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.95Fe0.05で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、まず、実施例2と全く同一にして、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.9Fe0.1で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例2と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、まず、実施例3と全く同一にして、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.85Fe0.15で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例3と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、まず、実施例4と全く同一にして、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.8Fe0.2で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例4と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、まず、実施例5と全く同一にして、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.7Fe0.3で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例5と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 本実施例では、まず、実施例6と全く同一にして、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.5Fe0.5で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例6と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
〔比較例3〕
 本比較例では、まず、比較例1と全く同一にして、硝酸イットリウム5水和物と、硝酸銀と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.95Ag0.05Mn0.4Fe0.6で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本比較例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、比較例1と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
〔比較例4〕
 本比較例では、まず、比較例2と全く同一にして、硝酸イットリウム5水和物と、硝酸マンガン6水和物と、硝酸鉄と、クエン酸と、水とを混合し、得られた混合物の一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式YMn0.9Fe0.1で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本比較例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、比較例2と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図2に示す。
 図2から、化学式Y0.95Ag0.05Mn1-yFe(0.05≦y≦0.50)で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる実施例11~16の排ガス浄化用酸化触媒によれば、化学式Y0.95Ag0.05Mn0.40Fe0.60で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる比較例3の排ガス浄化用酸化触媒と比較して、前記カーボンブラックをより低温で酸化(燃焼)することができることが明らかである。また、前記実施例11~16の排ガス浄化用酸化触媒によれば、化学式YMn0.9Fe0.1で表されAgを全く含まない複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる比較例4の排ガス浄化用酸化触媒と比較して、前記カーボンブラックをより低温で酸化(燃焼)することができることが明らかである。
 したがって、実施例11~16の排ガス浄化用酸化触媒によれば、比較例3,4の排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中のパティキュレート、一酸化炭素、高沸点の炭化水素等の含有物を、より低温で酸化(燃焼)することができることが明らかである。
 また、化学式Y0.95Ag0.05Mn1-yFe(0.05≦y≦0.50)で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる実施例11~16の排ガス浄化用酸化触媒によれば、同一組成の該複合金属酸化物を含み、酸化ジルコニウムを含まない実施例1~6の排ガス浄化用酸化触媒とそれぞれ比較して、前記カーボンブラックをより低温で酸化(燃焼)することができることが明らかである。したがって、実施例11~16の排ガス浄化用酸化触媒によれば、実施例1~6の排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中のパティキュレート、一酸化炭素、高沸点の炭化水素等の含有物を、より低温で酸化(燃焼)することができることが明らかである。
 また、図2から、実施例11~16の排ガス浄化用酸化触媒のうち、前記複合金属酸化物が化学式Y0.95Ag0.05Mn0.9Fe0.1で表される実施例12の排ガス浄化用酸化触媒が、特に、前記カーボンブラックを最も低温で酸化(燃焼)することができることが明らかである。
 本実施例では、まず、実施例7と全く同一にして一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.9Ag0.1Mn0.9Fe0.1で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例7と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。尚、比較のために、図3に実施例12の結果を再掲する。
 本実施例では、まず、実施例8と全く同一にして一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.85Ag0.15Mn0.9Fe0.1で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例8と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。
 本実施例では、まず、実施例9と全く同一にして一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.8Ag0.2Mn0.9Fe0.1で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例9と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。
 本実施例では、まず、実施例10と全く同一にして一次焼成を行った。次に、前記水分散ジルコニアゾルを、前記一次焼成で得られた結果物に対して酸化ジルコニウム粉末の含有量が10質量%となるように混合し、25℃の温度で15分間乳鉢で混合粉砕した後、800℃の温度に1時間保持して二次焼成を行った。以上により、化学式Y0.7Ag0.3Mn0.9Fe0.1で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる排ガス浄化用酸化触媒粉末を得た。
 次に、本実施例で得られた排ガス浄化用酸化触媒粉末を排ガス浄化用酸化触媒として用いた以外は、実施例10と全く同一にして、カーボンブラックの燃焼温度を求めた。結果を図3に示す。
 図3から、化学式Y1-xAgMn0.9Fe0.1(0.10≦x≦0.30)で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる実施例17~20の排ガス浄化用酸化触媒によれば、複合金属酸化物が化学式Y0.95Ag0.05Mn0.9Fe0.1で表される実施例12と比較して、前記カーボンブラックをさらに低温で酸化(燃焼)することができることが明らかである。したがって、実施例17~20の排ガス浄化用酸化触媒によれば、実施例12の排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中のパティキュレート、一酸化炭素、高沸点の炭化水素等の含有物を、さらに低温で酸化(燃焼)することができることが明らかである。
 また、化学式Y1-xAgMn0.9Fe0.1(0.10≦x≦0.30)で表される複合金属酸化物と、該複合金属酸化物に対して10質量%の酸化ジルコニウムとの混合物からなる実施例17~20の排ガス浄化用酸化触媒によれば、同一組成の該複合金属酸化物を含み、酸化ジルコニウムを含まない実施例7~10の排ガス浄化用酸化触媒とそれぞれ比較して、前記カーボンブラックをさらに低温で酸化(燃焼)することができることが明らかである。したがって、実施例17~20の排ガス浄化用酸化触媒によれば、実施例7~10の排ガス浄化用酸化触媒と比較して、内燃機関の排ガス中のパティキュレート、一酸化炭素、高沸点の炭化水素等の含有物を、さらに低温で酸化(燃焼)することができることが明らかである。

Claims (4)

  1.  内燃機関の排ガス中の含有物を酸化して浄化する排ガス浄化用酸化触媒において、
     一般式Y1-xAgMn1-yFeで表され、0.01≦x≦0.30かつ0.01≦y≦0.50である複合金属酸化物を含むことを特徴とする排ガス浄化用酸化触媒。
  2.  前記複合金属酸化物は、六方晶構造を含むことを特徴とする請求項1記載の排ガス浄化用酸化触媒。
  3.  酸化ジルコニウムをさらに含むことを特徴とする請求項2記載の排ガス浄化用酸化触媒。
  4.  前記排ガス浄化用酸化触媒は、前記複合金属酸化物に対して5~20質量%の範囲の酸化ジルコニウムを含むことを特徴とする請求項3記載の排ガス浄化用酸化触媒。
PCT/JP2010/058551 2009-06-10 2010-05-20 排ガス浄化用酸化触媒 WO2010143509A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-139545 2009-06-10
JP2009139545A JP2010284584A (ja) 2009-06-10 2009-06-10 排ガス浄化用酸化触媒

Publications (1)

Publication Number Publication Date
WO2010143509A1 true WO2010143509A1 (ja) 2010-12-16

Family

ID=43308768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058551 WO2010143509A1 (ja) 2009-06-10 2010-05-20 排ガス浄化用酸化触媒

Country Status (2)

Country Link
JP (1) JP2010284584A (ja)
WO (1) WO2010143509A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012134727A (ja) 2010-12-21 2012-07-12 Sony Corp 撮像装置及び撮像装置の使用可能時間算出方法
WO2015159403A1 (ja) 2014-04-17 2015-10-22 三井金属鉱業株式会社 排気ガス浄化用触媒組成物及び排気ガス浄化触媒
JP6785218B2 (ja) * 2015-03-13 2020-11-18 国立大学法人京都大学 排ガス浄化用金属複合酸化物触媒及びその製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041868A (ja) * 2002-07-09 2004-02-12 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP2006326375A (ja) * 2005-05-23 2006-12-07 Utsunomiya Univ 排ガス浄化用触媒、排ガス浄化装置及び排ガス浄化方法
JP2007084390A (ja) * 2005-09-26 2007-04-05 Toyota Motor Corp ペロブスカイト型複合酸化物粒子とその製造方法
JP2008100184A (ja) * 2006-10-20 2008-05-01 Honda Motor Co Ltd 排ガス浄化用酸化触媒
JP2009112962A (ja) * 2007-11-07 2009-05-28 Honda Motor Co Ltd 排ガス浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004041868A (ja) * 2002-07-09 2004-02-12 Daihatsu Motor Co Ltd 排ガス浄化用触媒
JP2006326375A (ja) * 2005-05-23 2006-12-07 Utsunomiya Univ 排ガス浄化用触媒、排ガス浄化装置及び排ガス浄化方法
JP2007084390A (ja) * 2005-09-26 2007-04-05 Toyota Motor Corp ペロブスカイト型複合酸化物粒子とその製造方法
JP2008100184A (ja) * 2006-10-20 2008-05-01 Honda Motor Co Ltd 排ガス浄化用酸化触媒
JP2009112962A (ja) * 2007-11-07 2009-05-28 Honda Motor Co Ltd 排ガス浄化装置

Also Published As

Publication number Publication date
JP2010284584A (ja) 2010-12-24

Similar Documents

Publication Publication Date Title
JP4689574B2 (ja) 排ガス浄化用酸化触媒
JP4611927B2 (ja) 排ガス浄化用酸化触媒
JP4699232B2 (ja) 排ガス浄化酸化触媒
JP3594432B2 (ja) 触媒及びその製造方法及びその使用
JP4974674B2 (ja) 複合酸化物
US8101539B2 (en) Purifying catalyst
JP2007307446A (ja) 排ガス浄化酸化触媒
CN103687812A (zh) 层状复合氧化物、氧化催化剂及柴油颗粒过滤器
KR101593683B1 (ko) 복합 산화물
WO2009130869A1 (ja) 酸化触媒及び排ガス浄化用酸化触媒装置
WO2010143509A1 (ja) 排ガス浄化用酸化触媒
CN109689205A (zh) 钒酸盐作为氧化催化剂的用途
RU2623227C2 (ru) Катализатор окисления аммиака для производства азотной кислоты на основе легированного металлом ортокобальтата иттрия
JP5330018B2 (ja) 酸化触媒
JP6109550B2 (ja) 排ガス浄化触媒
JP5610319B2 (ja) 層状複合酸化物、酸化触媒及びディーゼルパティキュレートフィルター
JP7136070B2 (ja) 排ガス浄化システム
EP3560576B1 (en) Use of a nitrogen oxide storage material and exhaust gas purification method
RU2637939C2 (ru) Катализатор окисления аммиака для производства азотной кислоты на основе ортокобальтатов иттрия-гадолиния
JPH0812334A (ja) 耐熱性ペロブスカイト型複合酸化物
JP2022110902A (ja) 排ガス浄化システム
JP2005218976A (ja) 排ガス浄化触媒及びその製造方法
JP2007216200A (ja) 排ガス浄化触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10786040

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10786040

Country of ref document: EP

Kind code of ref document: A1