WO2010140508A1 - タンタル部材の浸炭処理方法及びタンタル部材 - Google Patents

タンタル部材の浸炭処理方法及びタンタル部材 Download PDF

Info

Publication number
WO2010140508A1
WO2010140508A1 PCT/JP2010/058799 JP2010058799W WO2010140508A1 WO 2010140508 A1 WO2010140508 A1 WO 2010140508A1 JP 2010058799 W JP2010058799 W JP 2010058799W WO 2010140508 A1 WO2010140508 A1 WO 2010140508A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalum
carburizing
container
chamber
tantalum container
Prior art date
Application number
PCT/JP2010/058799
Other languages
English (en)
French (fr)
Inventor
純久 阿部
将成 渡辺
修 田村
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009132051A external-priority patent/JP5483154B2/ja
Priority claimed from JP2009134949A external-priority patent/JP5483157B2/ja
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to KR1020117026005A priority Critical patent/KR101740070B1/ko
Priority to CA2763652A priority patent/CA2763652A1/en
Priority to RU2011148907/02A priority patent/RU2011148907A/ru
Priority to CN2010800227848A priority patent/CN102449185B/zh
Priority to EP10783292.5A priority patent/EP2439308B1/en
Priority to US13/322,936 priority patent/US8986466B2/en
Publication of WO2010140508A1 publication Critical patent/WO2010140508A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising

Definitions

  • the present invention relates to a method for subjecting a member such as a tantalum container made of tantalum or a tantalum alloy and a lid to carburizing treatment for infiltrating carbon from the surface of the member toward the inside, and a tantalum member obtained by the method. is there.
  • Silicon carbide is said to be able to realize high temperature, high frequency, withstand voltage and environmental resistance that cannot be achieved with conventional semiconductor materials such as silicon (Si) and barium arsenic (BaAs). It is expected as a semiconductor material for next-generation power devices and high-frequency devices.
  • Patent Document 1 tantalum having a tantalum carbide layer formed on the surface of a single crystal silicon carbide substrate is thermally annealed and a single crystal of silicon carbide is grown on a single crystal silicon carbide substrate. It has been proposed to use the container as a chamber. A single crystal silicon carbide substrate is housed in a tantalum container having a tantalum carbide layer on the surface, and the surface is planarized by thermally annealing the surface or growing a silicon carbide single crystal on the surface, In addition, it has been reported that a single crystal silicon carbide substrate or a silicon carbide single crystal layer with few defects can be formed.
  • Patent Document 2 and Patent Document 3 when carbon is infiltrated into the surface of tantalum or tantalum alloy to form tantalum carbide on the surface, Ta 2 O 5 which is a natural oxide film on the surface is sublimated and removed. After that, it has been proposed to penetrate carbon.
  • a first object of the present invention is a method for carburizing a tantalum member that is small in deformation due to carburizing treatment, has a good flatness of a flat portion, and can be uniformly carburized, and a tantalum member obtained by the method, Another object is to provide a carburizing jig used in the method.
  • the second object of the present invention is to carburize a tantalum container having an opening, and carburizing by the carburizing process of the tantalum container that can prevent the opening from expanding due to the carburizing process. It is to provide a tantalum container.
  • the carburizing method according to the first aspect of the present invention is a method for performing a carburizing process in which carbon is infiltrated from the surface of the member into the tantalum member made of tantalum or a tantalum alloy having a flat portion. , By supporting the flat portion by a plurality of support rods having a tapered tip, the step of placing the tantalum member in the chamber in which the carbon source is present, and heating and reducing the pressure in the chamber, And a carburizing process in which carbon from a carbon source is permeated from the surface of the tantalum member.
  • the planar portion is supported by a plurality of support rods having tip portions formed in a tapered shape, and carburized. Since the tip end portion of the support rod is formed in a tapered shape, the area where the tip end portion of the support rod and the flat portion contact can be reduced. In the portion where the tip of the support bar comes into contact, carbon from the carbon source becomes difficult to carburize or, as will be described later, when the support bar is a carbon source, it may adhere to the flat part. In the first aspect of the present invention, the tip end portion of the support rod is formed in a tapered shape, and the contact area can be reduced, so that the carburizing treatment can be performed uniformly.
  • the flat portion is supported by the plurality of support rods, the deformation of the tantalum member due to the carburizing process can be reduced, and the flatness of the flat portion is kept good. Carburizing treatment can be performed in the state.
  • a plurality of support rods are arranged in a distributed manner so that the entire flat portion is supported almost uniformly by the tip portions of the support rods.
  • a plurality of support rods are arranged in a dispersed manner, and it is preferable that one or more support rods are supported by an area of 1500 mm 2 of the plane portion. .
  • transformation by a carburizing process can be made still smaller and the flatness of a plane part can be made into a further favorable state.
  • the support rod preferably functions as a carbon source.
  • the carbon source can be disposed near the tantalum member, carbon can be sufficiently supplied to the surface of the tantalum member, and a more uniform carburizing process can be performed.
  • the tip of the support rod is formed in a tapered shape whose diameter becomes narrower as it approaches the tip. For this reason, the area of the front-end
  • the support rod is a carbon source
  • the flat portion of the tantalum member and the tip of the support rod are fixed, and after the carburizing process, the flat portion of the tantalum member The tip may not be removable.
  • the carbon concentration is high at the portion where the tip of the support rod contacts, and uniform carburizing may not be possible.
  • the chamber functions as a carbon source. Since the chamber covers the periphery of the tantalum member, the entire surface of the tantalum member can be uniformly carburized by the chamber functioning as a carbon source.
  • the support rod or chamber functions as a carbon source
  • graphite can be used as the carbon source. Since the chamber and the support rod are heat-treated at a high temperature, an isotropic graphite material is preferably used as the graphite. Further, a high-purity graphite material that has been subjected to high-purity treatment using a halogen-containing gas or the like is more preferable.
  • the ash content in the graphite material is preferably 20 ppm or less, more preferably 5 ppm or less.
  • the bulk density is preferably 1.6 or more, and more preferably 1.8 or more. The upper limit of the bulk density is 2.1, for example.
  • petroleum-based or coal-based coke is pulverized into several to several tens of ⁇ m as a filler, and a binder such as pitch, coal tar, coal tar pitch is added thereto. Knead.
  • the obtained kneaded product is pulverized to several ⁇ m to several tens of ⁇ m so as to be larger than the pulverized particle size of the raw material filler to obtain a pulverized product.
  • the pulverized product is molded, fired and graphitized to obtain a graphite material.
  • the base portion of the support bar is supported by the support base, whereby a plurality of support bars are provided on the support base, and the support base is placed on the bottom surface portion in the chamber. It is preferable that a plurality of support rods are arranged in the chamber.
  • the support base may function as a carbon source.
  • the carbon source graphite such as isotropic graphite material is preferably used as described above.
  • the tantalum member according to the first aspect of the present invention is a tantalum container having a flat portion and a side wall portion extending in a substantially vertical direction from the flat portion, and an opening is formed by an end portion of the side wall portion.
  • the tantalum container is carburized by the carburizing method according to the first aspect of the present invention, the tantalum container is disposed in the chamber so that the opening of the tantalum container faces downward, and a plurality of planar portions inside the tantalum container are provided. It is preferable to support with this support rod.
  • the tantalum member according to the first aspect of the present invention is characterized by being carburized by the method according to the first aspect of the present invention.
  • a jig for carburizing treatment of the first aspect of the present invention is a jig used in the carburizing method of the first aspect of the present invention, and includes a plurality of support bars and a support base that supports the plurality of support bars. And the support rod and the support base are made of a graphite material. As described above, it is preferable to use an isotropic graphite material as the graphite material.
  • the carburizing method according to the second aspect of the present invention is a tantalum or tantalum alloy having a bottom surface portion and a side wall portion extending in a substantially vertical direction from the bottom surface portion, and an opening is formed by an end portion of the side wall portion.
  • the tantalum container is subjected to a carburizing treatment for infiltrating carbon from the surface of the container toward the inside, and the opening of the tantalum container is positioned downward in the chamber in which the carbon source exists. It is characterized by comprising a step of arranging a tantalum container and a step of performing carburization treatment by infiltrating carbon from a carbon source from the surface of the tantalum container by heating the chamber under reduced pressure.
  • the tantalum container is placed in the chamber so that the opening of the tantalum container is downward, and carburization is performed.
  • the opening of the tantalum container gradually expands as the carburizing process proceeds, and the tantalum container opens onto the tantalum container.
  • the lid made of tantalum or tantalum alloy cannot be closed. If the tantalum container and the lid are not properly fitted, the sealing inside the tantalum container cannot be maintained. Therefore, when silicon carbide (SiC) single crystal reacts with silicon (Si) gas, silicon gas leaks. This causes a problem that the silicon carbide single crystal cannot be processed or grown in a good state.
  • the second aspect of the present invention when carburizing the tantalum container having an opening, it is possible to suppress the opening from being greatly expanded by the carburizing process. Further, distortion of the opening can be suppressed. For this reason, the fitting state with the lid placed on the tantalum container can be kept good, and the hermeticity in the container can be improved.
  • the tantalum container is disposed in the chamber so that a gap is formed below the end of the side wall of the tantalum container.
  • a gap is formed below the end of the side wall of the tantalum container.
  • carbon from the carbon source can be sufficiently supplied also to the inside of the tantalum container.
  • the carburizing process inside the tantalum container can be performed in the same manner as the outside of the tantalum container, and the carburizing process can be performed uniformly on the entire surface of the tantalum container.
  • the gap below the end of the side wall of the tantalum container is preferably 1 mm or more, more preferably in the range of 2 mm to 20 mm, although it depends on the size and shape of the tantalum container. If the gap is too small, carbon cannot be sufficiently supplied to the inside of the tantalum container, and the carburizing treatment inside the tantalum container may be insufficient. Moreover, even if the gap becomes larger than the above upper limit value, the effect of increasing the gap beyond that cannot be obtained.
  • the method of supporting the tantalum container in the chamber includes a method of supporting the bottom surface inside the tantalum container.
  • the bottom surface portion inside the tantalum container can be supported by a support member provided in the chamber.
  • a carbon source is present in the chamber, but the chamber itself may function as a carbon source.
  • the carbon source for example, graphite can be used. Therefore, it can function as a carbon source by using a chamber having at least a surface formed of graphite. Since the chamber is heat-treated at a high temperature, an isotropic graphite material is preferably used as the graphite. Further, a high-purity graphite material that has been subjected to high-purity treatment using a halogen-containing gas or the like is more preferable.
  • the ash content in the graphite material is preferably 20 ppm or less, more preferably 5 ppm or less.
  • the bulk density is preferably 1.6 or more, and more preferably 1.8 or more.
  • the upper limit of the bulk density is 2.1, for example.
  • a method for producing isotropic graphite material petroleum-based or coal-based coke is pulverized into several to several tens of ⁇ m as a filler, and a binder such as pitch, coal tar, coal tar pitch is added thereto. Knead.
  • the obtained kneaded product is pulverized to several ⁇ m to several tens of ⁇ m so as to be larger than the pulverized particle size of the raw material filler to obtain a pulverized product.
  • the pulverized product is molded, fired and graphitized to obtain a graphite material. Thereafter, a high-purity treatment is performed using a halogen-containing gas or the like, and the amount of ash in the graphite material is set to 20 ppm or less, whereby contamination of impurity elements from the graphite material into the tantalum container can be suppressed.
  • a support member that is provided so as to be located inside the tantalum container and supports the bottom surface portion inside the tantalum container may function as a carbon source.
  • the support member provided inside the tantalum container functions as a carbon source, so that sufficient carbon can be supplied inside the tantalum container, and the surface inside the tantalum container is uniformly carburized in the same manner as the surface outside the tantalum container. can do.
  • Examples of the supporting member that functions as a carbon source include a supporting member formed from the above graphite material.
  • the tantalum container of the present invention is characterized by being carburized by the method of the second aspect of the present invention.
  • the method of the second aspect of the present invention it is possible to suppress the opening of the tantalum container from being expanded by carburizing treatment, and to suppress distortion of the opening.
  • the tantalum container having a good fitting state with the lid and having a high hermeticity can be obtained.
  • the deformation of the tantalum member due to the carburizing process is small, the flatness of the flat portion is good, and the carburizing process can be performed uniformly.
  • the second aspect of the present invention when carburizing a tantalum container having an opening, it is possible to suppress the opening from expanding due to the carburizing process and to suppress distortion of the opening. For this reason, the airtightness when the lid is fitted to the tantalum container can be enhanced.
  • FIG. 1 is a cross-sectional view for illustrating a carburizing method of an embodiment according to the first aspect of the present invention.
  • FIG. 2 is a plan view showing the position of the support bar in the embodiment shown in FIG.
  • FIG. 3 is a perspective view showing a tantalum container used in the embodiment shown in FIG. 4 is a perspective view showing a tantalum lid used in the tantalum container shown in FIG.
  • FIG. 5 is a cross-sectional view of the tantalum container shown in FIG.
  • FIG. 6 is a cross-sectional view of the tantalum lid shown in FIG. 7 is a cross-sectional view showing a state in which the tantalum lid shown in FIG. 6 is attached to the tantalum container shown in FIG.
  • FIG. 8 is a plan view showing the position of the support bar in another embodiment according to the first aspect of the present invention.
  • FIG. 9 is a plan view showing the position of the support bar in still another embodiment according to the first aspect of the present invention.
  • FIG. 10 is a cross-sectional view for explaining a carburizing method in a comparative example.
  • FIG. 11 is a plan view showing the position of the support bar in the comparative example shown in FIG.
  • FIG. 12 is a cross-sectional view showing a method for carburizing a tantalum lid in still another embodiment according to the first aspect of the present invention.
  • FIG. 13 is a cross-sectional view for illustrating the carburizing process in the embodiment according to the first aspect of the present invention.
  • FIG. 10 is a cross-sectional view for explaining a carburizing method in a comparative example.
  • FIG. 11 is a plan view showing the position of the support bar in the comparative example shown in FIG.
  • FIG. 12 is a cross-sectional
  • FIG. 14 is a cross-sectional view for illustrating a carburizing method according to an embodiment of the second aspect of the present invention.
  • FIG. 15 is a plan view showing the position of the support bar in the embodiment shown in FIG.
  • FIG. 16 is a perspective view showing a tantalum container used in the embodiment shown in FIG.
  • FIG. 17 is a perspective view showing a lid used for the tantalum container shown in FIG. 18 is a cross-sectional view of the tantalum container shown in FIG. 19 is a cross-sectional view of the lid shown in FIG. 20 is a cross-sectional view showing a state where the lid shown in FIG. 19 is attached to the tantalum container shown in FIG.
  • FIG. 15 is a plan view showing the position of the support bar in the embodiment shown in FIG.
  • FIG. 16 is a perspective view showing a tantalum container used in the embodiment shown in FIG.
  • FIG. 17 is a perspective view showing a lid used for the tantalum container shown in FIG. 18 is a cross
  • FIG. 21 is a cross-sectional view for explaining a carburizing method in a comparative example.
  • FIG. 22 is a plan view showing the positions of the graphite blocks in the comparative example shown in FIG.
  • FIG. 23 is a diagram showing the position of the opening of the tantalum container before and after the carburizing process in the example according to the second aspect of the present invention.
  • FIG. 24 is a diagram showing the position of the opening of the tantalum container before and after the carburizing process in the comparative example.
  • FIG. 25 is a cross-sectional view for illustrating the carburizing process in the embodiment according to the second aspect of the present invention.
  • FIG. 1 is a cross-sectional view for illustrating a carburizing method according to an embodiment of the first aspect of the present invention.
  • the tantalum container 1 is disposed in a chamber 3 including a chamber container 3a and a chamber lid 3b.
  • FIG. 3 is a perspective view showing the tantalum container 1.
  • FIG. 4 is a perspective view showing a tantalum lid 2 made of tantalum or a tantalum alloy used for sealing the tantalum container 1 shown in FIG.
  • FIG. 5 is a cross-sectional view showing the tantalum container 1.
  • the tantalum container 1 has a flat surface portion 1a and a side wall portion 1b extending from the periphery of the flat surface portion 1a in a direction substantially perpendicular to the flat surface portion 1a.
  • An opening 1d of the tantalum container 1 is formed by the end 1c of the side wall 1b.
  • the “substantially vertical direction” includes a direction of 90 ° ⁇ 20 °.
  • FIG. 6 is a cross-sectional view showing the tantalum lid 2 for sealing the opening 1d of the tantalum container 1 shown in FIG.
  • the tantalum lid 2 has a flat surface portion 2a and a side wall portion 2b extending from the flat surface portion 2a in a substantially vertical direction.
  • FIG. 7 is a cross-sectional view showing a state in which the tantalum lid 1 shown in FIG. 6 is placed on the end portion 1c of the side wall 1b of the tantalum vessel 1 shown in FIG. As shown in FIG. 7, the side wall 1b of the tantalum container 1 is arranged inside the side wall 2b of the tantalum lid 2, so that the tantalum lid 2 is placed on the tantalum container 1, and the tantalum container 1 is Sealed.
  • the inner diameter D inside the side wall 2b of the tantalum lid 2 shown in FIG. It is designed to be slightly larger than the outer diameter d of the tantalum container 1 shown.
  • the inner diameter D of the tantalum lid 2 is designed to be about 0.1 mm to 4 mm larger than the outer diameter d of the tantalum container 1.
  • the tantalum container 1 and the tantalum lid 2 are made of tantalum or a tantalum alloy.
  • the tantalum alloy is an alloy containing tantalum as a main component, and examples thereof include an alloy containing tantalum metal containing tungsten or niobium.
  • the tantalum container 1 and the tantalum lid 2 are manufactured by, for example, cutting, drawing from a thin plate, or sheet metal processing.
  • Cutting is a processing method in which a single piece of tantalum metal is cut into a container shape, and a high-precision shape can be manufactured. On the other hand, more metal is cut, resulting in higher material costs.
  • Drawing is a processing method in which one tantalum metal plate is deformed to form a container at a time. When a plate-shaped metal is placed between a die for manufacturing a container and a punch and the punch is pushed toward the die, the material is deformed in a form of being pushed into the die and becomes a container.
  • Sheet metal processing is a processing method for forming a container shape by cutting, bending, or welding a single metal plate. Although cost can be reduced in terms of material compared to cutting, the manufacturing time is longer than drawing.
  • each of the tantalum container 1 and the tantalum lid 2 allows carbon to permeate into the interior from the surface and diffuse the carbon into the interior.
  • a Ta 2 C layer, a TaC layer, or the like is formed.
  • a tantalum carbide layer having a high carbon content is formed on the surface, carbon diffuses into the container, so that the surface becomes a tantalum carbide layer having a high tantalum content, whereby the carbon flux can be occluded. Therefore, by performing liquid phase growth or vapor phase growth of silicon carbide in a crucible consisting of a carburized tantalum container and a tantalum lid, carbon vapor generated during the growth process can be occluded in the crucible wall.
  • a silicon atmosphere having a low impurity concentration can be formed therein, defects on the surface of the single crystal silicon carbide can be reduced, and the surface can be planarized.
  • defects on the surface of the single crystal silicon carbide substrate in such a crucible defects can be reduced and the surface can be planarized.
  • the tantalum container 1 is disposed in a chamber 3 composed of a chamber container 3a and a chamber lid 3b.
  • the tantalum container 1 is disposed in the chamber 3 so that the end 1c of the side wall 1b is downward.
  • the tantalum container 1 is supported in the chamber 3 by supporting the flat portion 1 a inside the tantalum container 1 with a plurality of support rods 6.
  • the tip end portion 6 a of the support bar 6 is formed in a tapered shape whose diameter becomes narrower as it approaches the tip.
  • the contact area between the tip portion 6a of the support bar 6 and the flat portion 1a of the tantalum container 1 can be reduced.
  • the contact area between the tip 6a of the support bar 6 and the flat portion 1a is 0.28 mm 2 .
  • the contact area of the tip 6a is preferably within a range of 0.03 to 12 mm 2 , more preferably within a range of 0.1 to 8 mm 2 , and even more preferably within a range of 0.2 to 5 mm 2 . It is.
  • the contact area of the tip portion 6a is too small, the tip portion is likely to be chipped and processing becomes difficult. Also, if the contact area of the tip 6a is too large, when the support rod 6 is made of a graphite material, the flat portion 1a and the tip 6a are fixed during the carburizing process, and the tantalum container 1 is supported by the support bar after the carburizing process. It becomes difficult to remove from 6.
  • FIG. 2 is a plan view showing an arrangement state of the support rod 6 with respect to the flat portion 1a. As shown in FIG. 2, in this embodiment, 13 support rods 6 support the planar portion 1 a inside the tantalum container 1.
  • 13 support rods 6 are arranged in a distributed manner so that the tip end portions of the support rods 6 support the flat surface portion 1a almost evenly.
  • the support bar 6 is supported by a support base 5 as shown in FIG.
  • a hole is formed in the support base 5, the lower end of the support bar 6 is inserted into the hole, and the support bar 6 is supported by the support base 5.
  • the chamber 3, that is, the chamber container 3a and the chamber lid 3b, the support rod 6 and the support base 5 are made of graphite. Therefore, in the present embodiment, the chamber 3, the support rod 6, and the support base 5 are carbon sources.
  • the chamber 3, the support rod 6, and the support base 5 can be manufactured by cutting.
  • the dimension shape of the chamber 3 is set so that the distance between the outer surface of the container 1 and the chamber 3 is substantially uniform as a whole. Thereby, the distance from the chamber which is a carbon source can be made substantially the same in the whole, and it can carburize uniformly throughout the whole.
  • a gap G is formed below the end 1c of the side wall 1b of the tantalum container 1.
  • carbon can be supplied also from the outside of the tantalum container 1 to the inside of the tantalum container 1.
  • the gap G is preferably in the range of 2 mm to 20 mm.
  • the support rod 6 and the support base 5 arranged inside the tantalum container 1 also function as a carbon source as described above. Therefore, as shown in FIG. 2, the support rods 6 are preferably arranged so as to be distributed almost evenly inside the tantalum container 1.
  • the tantalum container 1 is placed in the chamber 3, and the carburizing process can be performed by heating the chamber 3 after reducing the pressure in the chamber 3.
  • the inside of the chamber 3 can be depressurized by disposing the chamber 3 in the vacuum vessel, covering it, and exhausting the inside of the vacuum vessel.
  • the pressure in the chamber 3 is reduced to 10 Pa or less, for example.
  • the inside of the chamber 3 is heated to a predetermined temperature.
  • the heating temperature is preferably in the range of 1700 ° C. or higher, more preferably in the range of 1750 ° C. to 2500 ° C., and still more preferably in the range of 2000 ° C. to 2200 ° C.
  • the pressure in the chamber 3 is generally about 10 ⁇ 2 Pa to 10 Pa.
  • the time for maintaining the predetermined temperature is preferably in the range of 0.1 to 8 hours, more preferably in the range of 0.5 to 5 hours, and further preferably in the range of 1 to 3 hours. It is. Since the carburizing speed varies depending on the holding temperature, the holding time is adjusted according to the target carburizing thickness.
  • the temperature raising rate and the cooling rate are not particularly limited, but generally the temperature raising rate is preferably in the range of 100 ° C./hour to 2000 ° C./hour, more preferably 300 ° C./hour to 1500 ° C./hour. More preferably, it is 500 ° C./hour to 1000 ° C./hour.
  • the cooling rate is preferably in the range of 40 ° C./hour to 170 ° C./hour, more preferably 60 ° C./hour to 150 ° C./hour, and still more preferably 80 ° C./hour to 130 hours / hour. Cooling is generally performed by natural cooling.
  • the planar portion 1a of the tantalum container 1 is supported by the plurality of support rods 6 whose tip portions 6a are tapered, and the carburizing process is performed in this state. Since the planar portion 1a of the tantalum container 1 is supported by the plurality of support rods 6, the deformation of the tantalum container 1 due to the carburizing process is small, and the carburizing process can be performed with the flatness of the planar part 1a being good. Moreover, since the front-end
  • the entire surface of the tantalum container 1 can be carburized more uniformly. it can.
  • the tantalum container 1 is disposed in the chamber 3 so that the opening 1d of the tantalum container 1 is downward, and the carburizing process is performed in this state. For this reason, it can suppress that the opening part 1d of the tantalum container 1 spreads. Therefore, as shown in FIG. 7, when the tantalum lid 2 is placed on the tantalum container 1, the lid 2 can be placed in a good state, and the hermeticity in the tantalum container 1 can be kept good. For this reason, when thermal annealing or crystal growth is performed inside the tantalum container 1, the silicon vapor can be kept in a good state in the tantalum container 1, and a good crystal state can be obtained.
  • the tantalum member that can be carburized by the carburizing method according to the first aspect of the present invention is not limited to the tantalum container 1, and for example, the tantalum lid 2 can be carburized.
  • FIG. 12 is a cross-sectional view showing a state where the tantalum lid 2 is carburized.
  • the flat portion 2a of the tantalum lid 2 is supported by 13 support rods 6 having tip portions 6a formed in a tapered shape, and the inside of the chamber 3 is heated in this state.
  • the surface of the tantalum lid 2 can be carburized.
  • the carburizing treatment can be performed with the flatness of the flat portion 2a being good, and the entire surface of the tantalum lid 2 is uniformly carburized. Can be processed.
  • Example 1 The tantalum container 1 was carburized using the chamber 3 shown in FIG. As the tantalum container 1, a container having an outer diameter d of 158 mm, a height h of 60 mm, and a thickness t of 3 mm shown in FIG. 3 was used. Therefore, the inner diameter of the flat portion 1a inside the tantalum container 1 is 152 mm, and the area is 18136 mm 2 .
  • 13 support rods 6 are arranged with respect to the flat portion 1a. Therefore, the flat portion 1a is supported by one support bar 6 per area 1395 mm 2 of the flat portion 1a.
  • a chamber 3 having a cylindrical space with a diameter of 210 mm and a height of 90 mm was used as the chamber 3.
  • An isotropic graphite material having a bulk density of 1.8 was used as a material for the chamber container 3a and the chamber lid 3b.
  • the support rod 6 had a diameter of 6 mm and a length of 75 mm.
  • the length of the tapered portion of the tip portion 6a is 15 mm. Further, the contact area of the tip portion 6a is 0.28 mm 2.
  • the support rod 6 and the support base 5 were formed from the same isotropic graphite material as the chamber container 3a.
  • the gap G below the end 1c of the side wall 1b of the tantalum container 1 was 13 mm.
  • FIG. 13 is a cross-sectional view showing a state when the chamber 3 is disposed in the vacuum vessel 8.
  • a heat insulating material 9 is provided in the vacuum vessel 8, and the chamber 3 is disposed in a space 13 formed in the heat insulating material 9.
  • trade name "DON-1000" manufactured by Osaka Gas Chemicals Co., Ltd., a bulk density of 0.16g / cm 3 was used.
  • This heat insulating material is a porous heat insulating material obtained by impregnating a pitch-based carbon fiber with a resin and molding, curing, carbonizing, and graphitizing.
  • a carbon heater 12 is disposed above a space 13 surrounded by the heat insulating material 9, and the carbon heater 12 is supported by a graphite electrode 11 for flowing current to the carbon heater 12. By passing an electric current through the carbon heater 12, the space 13 covered with the heat insulating material 9 can be heated.
  • the vacuum vessel 8 is formed with an exhaust port 10 for exhausting the inside of the vacuum vessel 8.
  • the exhaust port 10 is connected to a vacuum pump (not shown).
  • the inside of the chamber 3 was heated to 2150 ° C. at a temperature increase rate of 710 ° C./hour by the carbon heater 12. Carburizing treatment was performed by maintaining 2150 ° C. for 2 hours.
  • the pressure in the chamber 3 was about 0.5 to 2.0 Pa.
  • the roundness and flatness of the flat portion 1a of the tantalum container 1 before and after the carburizing treatment were measured as follows.
  • the measurement data at each of eight points set at equal intervals around the flat surface 1a, and for flatness, the measurement data at the above eight peripheral points and one point at the center are the three-dimensional measuring machine.
  • the circular shape was recognized by the average line from the measurement data at each point, and the maximum difference in deviation from the average line at each point was defined as roundness.
  • the maximum difference in deviation from the average line at each point was defined as flatness.
  • the measurement results are shown in Table 1.
  • Example 2 The tantalum container 1 was carburized in the same manner as in Example 1 except that four support rods 6 were dispersed and arranged on the flat portion 1a of the tantalum container 1 as shown in FIG.
  • the roundness and flatness of the flat portion 1a of the tantalum container 1 were measured in the same manner as described above before and after the carburizing treatment, and the measurement results are shown in Table 1.
  • Example 3 The tantalum container 1 was carburized in the same manner as in Example 1 except that 17 support rods 6 were dispersed and arranged on the flat portion 1a of the tantalum container 1 as shown in FIG.
  • the roundness and flatness of the flat portion 1a of the tantalum container 1 were measured in the same manner as described above before and after the carburizing treatment, and the measurement results are shown in Table 1.
  • FIG. 10 a cylindrical rod having a diameter of 12 mm and a length of 75 mm was used as the support rod 7 that supports the flat portion 1 a of the tantalum container 1.
  • FIG. 11 is a plan view showing an arrangement state of the support rod 7 with respect to the flat portion 1a.
  • one columnar support bar 7 was installed at the center of the flat part 1 a, and the flat part 1 a was supported by the support bar 7.
  • the support bar 7 was also made of an isotropic graphite material in the same manner as the support bar 6. Otherwise, carburizing treatment was performed in the same manner as in Example 1.
  • the tip of the support rod was fixed to the flat portion 1a of the tantalum container 1, and it was difficult to remove after the carburizing treatment. Therefore, the roundness and flatness of the flat portion 1a could not be measured.
  • the tantalum container 1 is deformed more greatly than Example 2 supported by four support rods, and the roundness and It was clear that the flatness was inferior to that of Example 2.
  • the flat portion is supported by a plurality of support rods whose tip portions are tapered, and the tantalum container.
  • the deformation of the tantalum container due to the carburizing process is small, and the carburizing process can be performed in a state where the flatness of the flat portion is good.
  • Example 1 supported by 13 support rods and Example supported by 17 support rods than Example 2 supported by 4 support rods. 3 is excellent in roundness and flatness. Therefore, it can be seen that the deformation due to the carburizing process can be further reduced by supporting with one or more support rods per area of 1500 mm 2 of the flat part, and the flatness of the flat part can be further carburized.
  • FIG. 14 is a cross-sectional view for illustrating a carburizing method according to an embodiment of the second aspect of the present invention.
  • the tantalum container 1 is disposed in a chamber 3 including a chamber container 3a and a chamber lid 3b.
  • FIG. 16 is a perspective view showing the tantalum container 1.
  • FIG. 17 is a perspective view showing a lid 2 made of tantalum or a tantalum alloy used to seal the tantalum container 1 shown in FIG.
  • FIG. 18 is a cross-sectional view showing the tantalum container 1.
  • the tantalum container 1 has a bottom surface portion 1a and side wall portions 1b extending from the periphery of the bottom surface portion 1a in a direction substantially perpendicular to the bottom surface portion 1a.
  • An opening 1d of the tantalum container 1 is formed by the end 1c of the side wall 1b.
  • the “substantially vertical direction” includes a direction of 90 ° ⁇ 20 °.
  • FIG. 19 is a cross-sectional view showing the lid 2 for sealing the opening 1d of the tantalum container 1 shown in FIG. As shown in FIG. 19, the lid 2 has an upper surface portion 2a and a side wall portion 2b extending from the upper surface portion 2a in a substantially vertical direction.
  • FIG. 20 is a cross-sectional view showing a state where the lid 2 shown in FIG. 19 is placed on the end 1c of the side wall 1b of the tantalum container 1 shown in FIG. 18 and the tantalum container 1 is sealed.
  • the side wall 1b of the tantalum container 1 is arranged inside the side wall 2b of the lid 2, so that the lid 2 is placed on the tantalum container 1 and the tantalum container 1 is sealed.
  • the inner diameter D inside the side wall 2b of the lid 2 shown in FIG. It is designed to be slightly larger than the outer diameter d of the container 1.
  • the inner diameter D of the lid 2 is designed to be about 0.1 mm to 4 mm larger than the outer diameter d of the tantalum container 1.
  • the tantalum container 1 and the lid 2 are made of tantalum or a tantalum alloy.
  • the tantalum alloy is an alloy containing tantalum as a main component, and examples thereof include an alloy containing tantalum metal containing tungsten or niobium.
  • the tantalum container 1 and the lid 2 are manufactured by, for example, cutting, drawing from a thin plate, or sheet metal processing.
  • Cutting is a processing method in which a single piece of tantalum metal is cut into a container shape, and a high-precision shape can be manufactured. On the other hand, more metal is cut, resulting in higher material costs.
  • Drawing is a processing method in which one tantalum metal plate is deformed to form a container at a time. When a plate-shaped metal is placed between a die for manufacturing a container and a punch and the punch is pushed toward the die, the material is deformed in a form of being pushed into the die and becomes a container. When the metal plate is pushed in, a wrinkle presser is installed so that the outer metal plate does not wrinkle.
  • Sheet metal processing is a processing method for forming a container shape by cutting, bending, or welding a single metal plate. Although cost can be reduced in terms of material compared to cutting, the manufacturing time is longer than drawing.
  • the tantalum container 1 is arranged in the chamber 3 composed of the chamber container 3a and the chamber lid 3b.
  • the tantalum container 1 is disposed in the chamber 3 so that the end 1c of the side wall 1b is downward.
  • the tantalum container 1 is supported in the chamber 3 by supporting the bottom surface 1 a inside the tantalum container 1 with a plurality of support rods 6.
  • FIG. 15 is a plan view showing an arrangement state of the support rods 6. As shown in FIG. 15, in the present embodiment, the bottom surface portion 1 a inside the tantalum container 1 is supported by five support rods 6.
  • the tip of the support bar 6 is formed in a tapered shape with a tapered end.
  • the contact area between the support rod 6 and the bottom surface portion 1a of the tantalum container 1 is reduced, and defects in the carburizing process due to the contact of the support rod are reduced.
  • the support bar 6 is supported by a support base 5 as shown in FIG.
  • a hole is formed in the support base 5, the lower end of the support bar 6 is inserted into the hole, and the support bar 6 is supported by the support base 5.
  • the chamber 3, that is, the chamber container 3a and the chamber lid 3b, the support rod 6 and the support base 5 are made of graphite. Therefore, in the present embodiment, the chamber 3, the support rod 6, and the support base 5 are carbon sources.
  • the chamber 3, the support rod 6, and the support base 5 can be manufactured by cutting.
  • the dimension shape of the chamber 3 is set so that the distance between the outer surface of the container 1 and the chamber 3 is substantially uniform as a whole. Thereby, the distance from the chamber which is a carbon source can be made substantially the same in the whole, and it can carburize uniformly throughout the whole.
  • a gap G is formed below the end 1c of the side wall 1b of the tantalum container 1.
  • carbon can be supplied also from the outside of the tantalum container 1 to the inside of the tantalum container 1.
  • the gap G is preferably in the range of 2 mm to 20 mm.
  • the support rod 6 and the support base 5 arranged inside the tantalum container 1 also function as a carbon source as described above. Therefore, as shown in FIG. 15, the support rods 6 are preferably arranged so as to be distributed almost evenly inside the tantalum container 1.
  • the tantalum container 1 is placed in the chamber 3, and the carburizing process can be performed by heating the chamber 3 after reducing the pressure in the chamber 3.
  • the chamber 3 can be decompressed by disposing the chamber 3 in a vacuum vessel and exhausting the vacuum vessel.
  • the pressure in the chamber 3 is reduced to 10 Pa or less, for example.
  • the inside of the chamber 3 is heated to a predetermined temperature.
  • the heating temperature is preferably in the range of 1700 ° C. or higher, more preferably in the range of 1750 ° C. to 2500 ° C., and still more preferably in the range of 2000 ° C. to 2200 ° C.
  • the pressure in the chamber 3 is generally about 10 ⁇ 2 Pa to 10 Pa.
  • the time for maintaining the predetermined temperature is preferably in the range of 0.1 to 8 hours, more preferably in the range of 0.5 to 5 hours, and further preferably in the range of 1 to 3 hours. It is. Since the carburizing speed varies depending on the holding temperature, the carburizing thickness is adjusted according to the target carburizing thickness.
  • the temperature raising rate and the cooling rate are not particularly limited, but generally the temperature raising rate is preferably in the range of 100 ° C./hour to 2000 ° C./hour, more preferably 300 ° C./hour to 1500 ° C./hour. More preferably, it is 500 ° C./hour to 1000 ° C./hour.
  • the cooling rate is preferably in the range of 40 ° C./hour to 170 ° C./hour, more preferably 60 ° C./hour to 150 ° C./hour, and still more preferably 80 ° C./hour to 130 hours / hour. Cooling is generally performed by natural cooling.
  • the tantalum container 1 is placed in the chamber 3 so that the opening 1d of the tantalum container 1 faces downward, and carburizing treatment is performed in this state, so that the opening 1d expands and is distorted. Can be suppressed.
  • the lid 2 when the lid 2 is placed on the tantalum container 1, the lid 2 can be placed in a good fitting state, and the airtightness in the tantalum container 1 is kept good. Can do.
  • the silicon vapor can be kept in a good state in the tantalum container 1, and a good crystal state can be obtained.
  • Example 4 The tantalum container 1 was carburized using the chamber 3 shown in FIG. As the tantalum container 1, a container having an outer diameter d of about 160 mm, a height h of about 60 mm, and a thickness t of about 3 mm shown in FIG. 16 was used. The tantalum container 1 was produced by processing metal tantalum into a sheet metal.
  • a chamber 3 having a cylindrical shape with a diameter of 210 mm and a height of 90 mm was used as the chamber 3.
  • An isotropic graphite material having a bulk density of 1.8 was used as a material for the chamber container 3a and the chamber lid 3b.
  • the support rod 6 was 6 mm in diameter and 75 mm in length. The length of the tapered portion at the tip is 15 mm.
  • the support rod 6 and the support base 5 were formed from the same isotropic graphite material as the chamber container 3a.
  • the gap G below the end 1c of the side wall 1b of the tantalum container 1 was 13 mm.
  • FIG. 25 is a cross-sectional view showing a state when the chamber 3 is arranged in the vacuum vessel 8.
  • a heat insulating material 9 is provided in the vacuum vessel 8, and the chamber 3 is disposed in a space 13 formed in the heat insulating material 9.
  • trade name "DON-1000" manufactured by Osaka Gas Chemicals Co., Ltd., a bulk density of 0.16g / cm 3 was used.
  • This heat insulating material is a porous heat insulating material obtained by impregnating a pitch-based carbon fiber with a resin and molding, curing, carbonizing, and graphitizing.
  • a carbon heater 12 is disposed above a space 13 surrounded by the heat insulating material 9, and the carbon heater 12 is supported by a graphite electrode 11 for flowing current to the carbon heater 12. By passing an electric current through the carbon heater 12, the space 13 covered with the heat insulating material 9 can be heated.
  • the vacuum vessel 8 is formed with an exhaust port 10 for exhausting the inside of the vacuum vessel 8.
  • the exhaust port 10 is connected to a vacuum pump (not shown).
  • the inside of the chamber 3 was heated to 2150 ° C. at a temperature increase rate of 710 ° C./hour by the carbon heater 12. Carburizing treatment was performed by maintaining 2150 ° C. for 2 hours.
  • the pressure in the chamber 3 was about 0.5 to 2.0 Pa.
  • the outer diameter d was measured as the dimension of the opening 1d of the tantalum container 1 before and after the carburizing process.
  • the dimension of the outer diameter d was measured at eight locations around the opening 1d.
  • FIG. 23 is a diagram showing the dimensions at the eight positions of the outer diameter d before and after the carburizing process.
  • A shows the dimension before the carburizing process
  • B shows the dimension after the carburizing process.
  • the outer diameter d is slightly reduced by carburizing in this example.
  • the roundness of the opening 1d was measured using a three-dimensional measuring machine. It calculated
  • the roundness of the opening 1d was 0.467 before the carburizing process and 0.575 after the carburizing process. Therefore, the difference before and after carburizing treatment was 0.108.
  • FIG. 21 is a cross-sectional view for explaining the carburizing process in this comparative example.
  • the tantalum container 1 is arranged in the chamber 3 so that the opening 1d of the tantalum container 1 is on the upper side.
  • the tantalum container 1 is placed on a graphite block 14 placed on a support base 5.
  • FIG. 22 is a plan view showing an arrangement state of the graphite block 14 with respect to the tantalum container 1.
  • the graphite block 14 is provided at each of four locations below the bottom surface portion 1 a of the tantalum container 1.
  • the graphite block 14 used was formed from the same material as the support bar 6 in Example 4.
  • the support stand 5 used the same thing as the support stand 5 of the said Example 4.
  • the tantalum container 1 was placed in the chamber 3 and carburized under the same conditions as in Example 4 above.
  • A shows the dimension of the outer diameter d before carburizing treatment
  • B shows the dimension of the outer diameter d after carburizing treatment.
  • the roundness of the opening 1d before and after the carburizing treatment was measured.
  • the roundness before the carburizing treatment was 0.593, and the roundness after the carburizing treatment was 0.715. Therefore, the difference in roundness before carburizing and after carburizing was 0.122.
  • the lid 2 can be placed on the tantalum container 1 in a good sealed state.
  • the opening 1d is slightly smaller after the carburizing process than before the carburizing process.
  • the sealing property is not impaired and the tantalum container 1 is not damaged.
  • a lid 2 can be placed.
  • the amount of expansion of the opening 1d is calculated in advance, and the lid 2 is made to fit such dimensions. It can be considered.
  • the amount of enlargement of the opening 1d varies depending on the carburizing condition and other conditions, and the amount of variation is large, even a lid manufactured in consideration of the dimensional change of the opening 1d is not necessarily tantalum. It does not necessarily match the opening 1d of the container 1 and may not provide good sealing performance. Accordingly, both the tantalum container 1 and the lid 2 become defective products, and the working efficiency is greatly reduced.
  • the tantalum container is arranged so that the opening 1d is located downward, and carburizing treatment is performed, whereby a high roundness of the opening can be obtained. Also from this fact, by carburizing the tantalum container according to the second aspect of the present invention, it is possible to maintain a good sealed state in fitting with the lid.
  • Tantalum container 1a Planar part or bottom face part of tantalum container 1b ... Side wall part of tantalum container 1c ... End part of side wall part of tantalum container 1d ... Opening part of tantalum container 2 ... Lid 2a ... Flat part or upper surface part of lid 2b ... Side wall of the lid 3 ... Chamber 3a ... Chamber container 3b ... Chamber lid 5 ... Support base 6 ... Support rod 6a ... Tip of the support rod 7 ... Support rod 8 ... Vacuum vessel made of SUS 9 ... Heat insulation material 10 ... Exhaust Mouth 11 ... Graphite electrode 12 ... Carbon heater 13 ... Space covered with heat insulating material 14 ... Graphite block

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

 浸炭処理による変形が小さく、平面部の平坦度が良好で、かつ均一に浸炭処理することができるタンタル部材の浸炭処理方法を得る。 平面部1aを有するタンタルまたはタンタル合金からなるタンタル部材1に、該部材1の表面から内部に向って炭素を浸透させる浸炭処理を施すための方法であって、先端部6aがテーパー状に形成された複数の支持棒6によって平面部1aを支持することにより、タンタル部材1を、炭素源が存在するチャンバー3内に配置する工程と、チャンバー3内を減圧し加熱することにより、炭素源からの炭素をタンタル部材1の表面から浸透させて浸炭処理を施す工程とを備えることを特徴としている。

Description

タンタル部材の浸炭処理方法及びタンタル部材
 本発明は、タンタルまたはタンタル合金からなるタンタル容器及び蓋などの部材に、該部材の表面から内部に向って炭素を浸透させる浸炭処理を施すための方法及び該方法によって得られるタンタル部材に関するものである。
 炭化ケイ素(SiC)は、ケイ素(Si)やバリウムヒ素(BaAs)等の従来の半導体材料では実現できない高温、高周波、耐電圧・耐環境性を実現することが可能であるとされており、次世代のパワーデバイス、高周波デバイス用半導体材料として期待されている。
 特許文献1においては、単結晶炭化ケイ素基板の表面を熱アニールする際、及び単結晶炭化ケイ素基板の上に炭化ケイ素の単結晶を結晶成長させる際に、表面に炭化タンタル層が形成されたタンタル容器をチャンバーとして用いることが提案されている。表面に炭化タンタル層を有するタンタル容器内に、単結晶炭化ケイ素基板を収納し、その表面を熱アニールしたり、あるいはその表面上に炭化ケイ素単結晶を成長させることにより、表面が平坦化され、かつ欠陥の少ない単結晶炭化ケイ素基板または炭化ケイ素単結晶層を形成することができる旨報告されている。
 特許文献2及び特許文献3においては、タンタルもしくはタンタル合金の表面に炭素を浸透させて、表面にタンタルの炭化物を形成する際、表面の自然酸化膜であるTaを昇華させて除去させた後に、炭素を浸透させることが提案されている。
 しかしながら、タンタル容器及びタンタル蓋についての具体的な浸炭処理方法は検討されていなかった。
特開2008-16691号公報 特開2005-68002号公報 特開2008-81362号公報
 本発明の第1の目的は、浸炭処理による変形が小さく、平面部の平坦度が良好で、かつ均一に浸炭処理することができるタンタル部材の浸炭処理方法、及び該方法により得られるタンタル部材、並びに該方法に用いる浸炭処理用治具を提供することにある。
 本発明の第2の目的は、開口部を有するタンタル容器を浸炭処理する際、浸炭処理によって開口部が拡がるのを抑制することができるタンタル容器の浸炭処理方法及び該方法により浸炭処理がなされたタンタル容器を提供することにある。
 本発明の第1の局面に従う浸炭処理方法は、平面部を有するタンタルまたはタンタル合金からなるタンタル部材に、該部材の表面から内部に向って炭素を浸透させる浸炭処理を施すための方法であって、先端部がテーパー状に形成された複数の支持棒によって平面部を支持することにより、タンタル部材を、炭素源が存在するチャンバー内に配置する工程と、チャンバー内を減圧し加熱することにより、炭素源からの炭素をタンタル部材の表面から浸透させて浸炭処理を施す工程とを備えることを特徴としている。
 本発明の第1の局面においては、先端部がテーパー状に形成された複数の支持棒によって平面部を支持し、浸炭処理している。支持棒の先端部がテーパー状に形成されているので、支持棒の先端部と平面部とが接触する面積を小さくすることができる。支持棒の先端部が接する部分においては、炭素源からの炭素が浸炭しにくくなったり、後述するように、支持棒が炭素源である場合には、平面部と固着してしまう場合があるが、本発明の第1の局面においては支持棒の先端部がテーパー状に形成されており、接触面積を小さくすることができるので、均一に浸炭処理することができる。
 また、本発明の第1の局面においては、複数の支持棒によって平面部を支持しているので、浸炭処理によるタンタル部材の変形を小さくすることができ、平面部の平坦度を良好に保った状態で浸炭処理することができる。
 本発明の第1の局面においては、平面部全体を各支持棒の先端部がほぼ均等に支持するように、複数の支持棒が分散して配置されていることが好ましい。これにより、浸炭処理による変形をさらに小さくすることができ、平面部の平坦度をさらに良好な状態にすることができる。
 本発明の第1の局面においては、複数の支持棒が分散して配置されていることが好ましく、平面部の面積1500mmあたり1本以上の支持棒によって平面部が支持されていることが好ましい。これにより、浸炭処理による変形をさらに小さくすることができ、平面部の平坦度をさらに良好な状態にすることができる。
 本発明の第1の局面においては、支持棒が炭素源として機能することが好ましい。支持棒が炭素源として機能することにより、タンタル部材の近くに炭素源を配置することができ、タンタル部材の表面に炭素を充分供給することができ、より均一な浸炭処理を行うことができる。
 また、本発明の第1の局面において、支持棒の先端部は、先に近づくにつれて径が細くなるテーパー状に形成されている。このため、タンタル部材の平面部と接する支持棒の先端部の面積を小さくすることができる。支持棒が炭素源である場合、タンタル部材の平面部と接する面積が大きくなると、タンタル部材の平面部と支持棒の先端部が固着してしまい、浸炭処理後にタンタル部材の平面部から支持棒の先端部を取り外すことができなくなる場合がある。また、支持棒の先端部が接する部分において炭素が高濃度となり、均一な浸炭処理ができなくなる場合がある。
 また、本発明の第1の局面においては、チャンバーが炭素源として機能することが好ましい。チャンバーは、タンタル部材の周りを覆っているので、チャンバーが炭素源として機能することにより、タンタル部材の表面全体を均一に浸炭処理することができる。
 支持棒やチャンバーを炭素源として機能させる場合、炭素源としては、例えば黒鉛を用いることができる。チャンバーや支持棒は高温で熱処理されるものであるので、黒鉛としては、等方性黒鉛材が好ましく用いられる。また、ハロゲン含有ガスなどを使用して高純度処理された高純度黒鉛材がさらに好ましい。黒鉛材中の灰分含有量は20ppm以下が好ましく、さらに好ましくは5ppm以下である。かさ密度は1.6以上が好ましく、1.8以上がさらに好ましい。かさ密度の上限値としては、例えば、2.1である。等方性黒鉛材の製造方法の一例としては、石油系、石炭系のコークスをフィラーとして数μm~数十μmに粉砕し、これにピッチ、コールタール、コールタールピッチなどの結合材を添加して混練する。得られた混練物を、原料フィラーの粉砕粒径よりも大きくなるように数μm~数十μmに粉砕して粉砕物を得る。また、粒子径が100μmを超えるような粒子は除去しておくことが好ましい。上記粉砕物を成形、焼成、黒鉛化して黒鉛材料を得る。その後、ハロゲン含有ガスなどを使用して高純度化処理を行い、黒鉛材料中の灰分量を20ppm以下にすることで、黒鉛材料からタンタル部材への不純物元素の混入を抑制することができる。
 本発明の第1の局面においては、支持棒の基部が支持台に支持されることによって、複数の支持棒が支持台の上に設けられており、支持台がチャンバー内の底面部上に載置されることにより、複数の支持棒がチャンバー内に配置されていることが好ましい。この場合、支持台が炭素源として機能してもよい。炭素源としては、上記と同様に等方性黒鉛材などの黒鉛が好ましく用いられる。
 本発明の第1の局面におけるタンタル部材は、平面部と、平面部から略垂直方向に伸びる側壁部とを有し、側壁部の端部によって開口部が形成されているタンタル容器であることが好ましい。タンタル容器を本発明の第1の局面の浸炭処理方法により浸炭処理する場合、タンタル容器の開口部が下方になるように、チャンバー内にタンタル容器を配置し、タンタル容器の内側の平面部を複数の支持棒で支持することが好ましい。
 本発明の第1の局面のタンタル部材は、上記本発明の第1の局面の方法により浸炭処理がなされたことを特徴としている。
 本発明の第1の局面の浸炭処理用治具は、上記本発明の第1の局面の浸炭処理方法に用いる治具であって、複数の支持棒と、複数の支持棒を支持する支持台とを有し、支持棒及び支持台が黒鉛材料から形成されていることを特徴としている。黒鉛材料としては、上述のように、等方性黒鉛材を用いることが好ましい。
 本発明の第2の局面に従う浸炭処理方法は、底面部と、底面部から略垂直方向に延びる側壁部とを有し、側壁部の端部によって開口部が形成されているタンタルまたはタンタル合金からなるタンタル容器に、該容器の表面から内部に向って炭素を浸透させる浸炭処理を施すための方法であって、炭素源が存在するチャンバー内に、タンタル容器の開口部が下方になるように、タンタル容器を配置する工程と、チャンバー内を減圧し加熱することにより、炭素源からの炭素をタンタル容器の表面から浸透させて浸炭処理を施す工程とを備えることを特徴としている。
 本発明の第2の局面においては、タンタル容器の開口部が下方になるようにタンタル容器をチャンバー内に配置し、浸炭処理を施している。タンタル容器の開口部が上方になるようにタンタル容器をチャンバー内に配置して、浸炭処理を行う場合には、浸炭処理の進行とともに、タンタル容器の開口部が徐々に拡がり、タンタル容器の上に載せるタンタルまたはタンタル合金からなる蓋を閉めることができないという不具合を生じる。タンタル容器と蓋との嵌合状態が悪いと、タンタル容器内の密閉性を保つことができないため、炭化ケイ素(SiC)単結晶と、ケイ素(Si)ガスを反応させる際に、ケイ素ガスの漏れなどが生じ、炭化ケイ素単結晶を良好な状態で処理または成長させることができないという問題を生じる。
 本発明の第2の局面によれば、開口部を有するタンタル容器に浸炭処理する際、浸炭処理によって開口部が大きく拡がるのを抑制することができる。また、開口部の歪みを抑制することができる。このため、タンタル容器の上に載せる蓋との嵌合状態を良好に保つことができ、容器内の密閉性を高めることができる。
 本発明の第2の局面においては、タンタル容器の側壁部端部の下方に隙間が形成されるように、タンタル容器がチャンバー内に配置されることが好ましい。タンタル容器の側壁部端部の下方に隙間を形成することにより、タンタル容器内側にも、炭素源からの炭素を十分に供給することができる。このため、タンタル容器内側における浸炭処理を、タンタル容器外側と同様に行うことができ、タンタル容器表面全体において、均一に浸炭処理を行うことができる。
 タンタル容器の側壁部端部の下方の隙間は、タンタル容器の大きさや形状にもよるが、好ましくは1mm以上であり、さらに好ましくは2mm~20mmの範囲である。隙間が小さすぎると、タンタル容器内側に十分に炭素を供給することができず、タンタル容器内側の浸炭処理が不十分になる場合がある。また、隙間が上記の上限値より大きくなりすぎても、隙間をそれ以上に大きくすることによる効果が得られない。
 本発明の第2の局面において、タンタル容器をチャンバー内で支持する方法としては、タンタル容器内側の底面部を支持する方法が挙げられる。具体的には、チャンバー内に設けられた支持部材によって、タンタル容器内側の底面部を支持することができる。
 本発明の第2の局面においては、チャンバー内に炭素源が存在しているが、チャンバー自体が炭素源として機能してもよい。炭素源としては、例えば、黒鉛を用いることができる。従って、少なくとも表面が黒鉛から形成されたチャンバーを用いることにより、炭素源として機能させることができる。チャンバーは高温で熱処理されるものであるので、黒鉛としては、等方性黒鉛材が好ましく用いられる。また、ハロゲン含有ガスなどを使用して高純度処理された高純度黒鉛材がさらに好ましい。黒鉛材中の灰分含有量は20ppm以下が好ましく、さらに好ましくは5ppm以下である。かさ密度は1.6以上が好ましく、1.8以上がさらに好ましい。かさ密度の上限値としては、例えば、2.1である。等方性黒鉛材の製造方法の一例としては、石油系、石炭系のコークスをフィラーとして数μm~数十μmに粉砕し、これにピッチ、コールタール、コールタールピッチなどの結合材を添加して混練する。得られた混練物を、原料フィラーの粉砕粒径よりも大きくなるように数μm~数十μmに粉砕して粉砕物を得る。また、粒子径が100μmを超えるような粒子は除去しておくことが好ましい。上記粉砕物を成形、焼成、黒鉛化して黒鉛材料を得る。その後、ハロゲン含有ガスなどを使用して高純度化処理を行い、黒鉛材料中の灰分量を20ppm以下にすることで、黒鉛材料からタンタル容器への不純物元素の混入を抑制することが出来る。
 また、本発明の第2の局面において、タンタル容器内側に位置するように設けられ、かつタンタル容器内側の底面部を支持する支持部材が、炭素源として機能してもよい。タンタル容器内側に設けられる支持部材が、炭素源として機能することにより、タンタル容器内側に炭素を十分供給することができ、タンタル容器内側の表面を、タンタル容器外側の表面と同様に均一に浸炭処理することができる。
 炭素源として機能する支持部材としては、上記黒鉛材料から形成された支持部材が挙げられる。
 本発明のタンタル容器は、上記本発明の第2の局面の方法により、浸炭処理がなされたことを特徴としている。
 上記本発明の第2の局面の方法によれば、浸炭処理によって、タンタル容器の開口部が拡がるのを抑制し、また、開口部の歪みを抑制することができるので、本発明のタンタル容器は、蓋との嵌合状態が良好であり、高い密閉性を有するタンタル容器とすることができる。
 本発明の第1の局面によれば、浸炭処理によるタンタル部材の変形が小さく、平面部の平坦度が良好で、かつ均一に浸炭処理することができる。
 本発明の第2の局面によれば、開口部を有するタンタル容器を浸炭処理する際、浸炭処理によって開口部が拡がるのを抑制し、また、開口部の歪みを抑制することができる。このため、蓋をタンタル容器に嵌め合せた際の密閉性を高めることができる。
図1は、本発明の第1の局面に従う一実施形態の浸炭処理方法を説明するための断面図である。 図2は、図1に示す実施形態における支持棒の位置を示す平面図である。 図3は、図1に示す実施形態において用いるタンタル容器を示す斜視図である。 図4は、図3に示すタンタル容器に用いられるタンタル蓋を示す斜視図である。 図5は、図3に示すタンタル容器の断面図である。 図6は、図4に示すタンタル蓋の断面図である。 図7は、図5に示すタンタル容器に図6に示すタンタル蓋を取り付けた状態を示す断面図である。 図8は、本発明の第1の局面に従う他の実施形態における支持棒の位置を示す平面図である。 図9は、本発明の第1の局面に従うさらに他の実施形態における支持棒の位置を示す平面図である。 図10は、比較例における浸炭処理方法を説明するための断面図である。 図11は、図10に示す比較例における支持棒の位置を示す平面図である。 図12は、本発明の第1の局面に従うさらに他の実施形態におけるタンタル蓋の浸炭処理方法を示す断面図である。 図13は、本発明の第1の局面に従う実施例における浸炭処理を説明するための断面図である。 図14は、本発明の第2の局面に従う一実施形態の浸炭処理方法を説明するための断面図である。 図15は、図14に示す実施形態における支持棒の位置を示す平面図である。 図16は、図14に示す実施形態において用いているタンタル容器を示す斜視図である。 図17は、図16に示すタンタル容器に用いられる蓋を示す斜視図である。 図18は、図16に示すタンタル容器の断面図である。 図19は、図17に示す蓋の断面図である。 図20は、図18に示すタンタル容器に図19に示す蓋を取り付けた状態を示す断面図である。 図21は、比較例における浸炭処理方法を説明するための断面図である。 図22は、図21に示す比較例における黒鉛ブロックの位置を示す平面図である。 図23は、本発明の第2の局面に従う実施例における浸炭処理前と浸炭処理後のタンタル容器の開口部の位置を示す図である。 図24は、比較例における浸炭処理前及び浸炭処理後のタンタル容器の開口部の位置を示す図である。 図25は、本発明の第2の局面に従う実施例における浸炭処理を説明するための断面図である。
 <本発明の第1の局面>
 以下、本発明の第1の局面を具体的な実施形態により説明するが、本発明の第1の局面は以下の実施形態に限定されるものではない。
 図1は、本発明の第1の局面に従う一実施形態の浸炭処理方法を説明するための断面図である。
 タンタル容器1は、チャンバー容器3a及びチャンバー蓋3bからなるチャンバー3内に配置されている。
 図3は、タンタル容器1を示す斜視図である。図4は、図3に示すタンタル容器1を密閉するのに用いるタンタルまたはタンタル合金からなるタンタル蓋2を示す斜視図である。
 図5は、タンタル容器1を示す断面図である。図5に示すように、タンタル容器1は、平面部1aと、平面部1aの周縁から平面部1aに対して略垂直方向に延びる側壁部1bを有している。側壁部1bの端部1cによって、タンタル容器1の開口部1dが形成されている。ここで、「略垂直方向」には、90°±20°の方向が含まれる。
 図6は、図5に示すタンタル容器1の開口部1dを密閉するためのタンタル蓋2を示す断面図である。図6に示すように、タンタル蓋2は、平面部2aと、平面部2aから略垂直方向に延びる側壁部2bを有している。
 図7は、図5に示すタンタル容器1の側壁部1bの端部1cの上に、図6に示すタンタル蓋2を載せ、タンタル容器1を密閉した状態を示す断面図である。図7に示すように、タンタル容器1の側壁部1bが、タンタル蓋2の側壁部2bの内側に配置されることにより、タンタル容器1の上に、タンタル蓋2が載せられ、タンタル容器1が密閉される。
 図7に示すように、タンタル容器1の側壁部1bは、タンタル蓋2の側壁部2bの内側に位置するので、図6に示すタンタル蓋2の側壁部2b内側の内径Dは、図5に示すタンタル容器1の外径dより若干大きくなるように設計される。通常、タンタル蓋2の内径Dは、タンタル容器1の外径dより0.1mm~4mm程度大きくなるように設計される。
 タンタル容器1及びタンタル蓋2は、タンタルまたはタンタル合金から形成される。タンタル合金は、タンタルを主成分として含む合金であり、例えば、タンタル金属にタングステン又はニオブなどを含有した合金などが挙げられる。
 タンタル容器1及びタンタル蓋2は、例えば、切削加工、薄板からの絞り加工、板金加工などから製造される。切削加工は、1個のタンタル金属の塊を削り出して容器状にする加工方法であり、高精度の形状を製作できる一方、切削される金属が多くなり材料コストは高くなる。絞り加工は、1枚のタンタル金属板を変形させて一度に容器状にする加工方法である。容器製造用のダイとパンチの間に板状の金属を載置してパンチをダイに向かって押し込むと、材料はダイに押し込まれる形で変形して容器状となる。金属板が押し込まれていく時、外側にある金属板がシワにならないようにシワ押さえを設置しておく。切削加工に比べて短時間で仕上がり、削り屑の発生が少ないのでコスト等を抑えることができる。板金加工は、1枚の金属板を切る、曲げる、溶接することにより容器形状にする加工方法である。切削加工よりも材料面でコストを抑えることはできるが、絞り加工よりも製造時間は長くなる。
 タンタル容器1及びタンタル蓋2をそれぞれ浸炭処理することにより、その表面から炭素を内部に浸透させ、炭素を内部に拡散することができる。炭素が浸透することにより、TaC層、TaC層などが形成される。表面に炭素含有率の高いタンタルカーバイド層が形成されるが、炭素が容器内部へ拡散することにより、表面はタンタル含有率の高いタンタルカーバイド層となることで、カーボンフラックスを吸蔵させることができる。従って、浸炭処理したタンタル容器及びタンタル蓋からなるルツボ内で、炭化ケイ素の液相成長や気相成長を行うことにより、成長プロセス時に発生した炭素蒸気をルツボ壁内で吸蔵することができ、ルツボ内に不純物濃度の低いシリコン雰囲気を形成することができ、単結晶炭化ケイ素表面の欠陥を低減でき、表面を平坦化することができる。また、このようなルツボ内で単結晶炭化ケイ素基板の表面を熱アニーリングすることにより、欠陥を低減させ、表面を平坦化させることができる。
 図1に戻り、本実施形態の浸炭処理について説明する。
 図1に示すように、チャンバー容器3a及びチャンバー蓋3bからなるチャンバー3内に、上記のタンタル容器1が配置されている。タンタル容器1は、チャンバー3内において、側壁部1bの端部1cが下方になるように配置されている。タンタル容器1は、タンタル容器1内側の平面部1aを、複数の支持棒6で支持することにより、チャンバー3内で支持されている。
 図1に示すように、支持棒6の先端部6aは、先に近づくにつれて径が細くなるテーパー状に形成されている。先端部6aをテーパー状に形成することにより、支持棒6の先端部6aとタンタル容器1の平面部1aとの接触面積を小さくすることができる。本実施形態における支持棒6の先端部6aと平面部1aとの接触面積は0.28mmである。先端部6aの接触面積は、0.03~12mmの範囲内であることが好ましく、さらに好ましくは0.1~8mmの範囲内であり、さらに好ましくは0.2~5mmの範囲内である。先端部6aの接触面積が小さすぎると、先端部が欠けやすくなり、加工が困難となる。また、先端部6aの接触面積が大きすぎると、支持棒6を黒鉛材料から形成した場合、浸炭処理の際に平面部1aと先端部6aとが固着し、浸炭処理後にタンタル容器1を支持棒6から取り外すのが困難になる。
 図2は支持棒6の平面部1aに対する配置状態を示す平面図である。図2に示すように、本実施形態においては、13本の支持棒6で、タンタル容器1の内側の平面部1aを支持している。
 図2に示すように、支持棒6の先端部が平面部1aをほぼ均等に支持するように、13本の支持棒6が分散して配置されている。
 支持棒6は、図1に示すように、支持台5によって支持されている。本実施形態では、支持台5に孔を空けることにより、この孔に支持棒6の下方端を挿入し、支持棒6を支持台5によって支持している。
 本実施形態においては、チャンバー3、すなわちチャンバー容器3a及びチャンバー蓋3b、並びに支持棒6及び支持台5が黒鉛から形成されている。従って、本実施形態においては、チャンバー3、支持棒6及び支持台5が炭素源となっている。チャンバー3、支持棒6、及び支持台5は、切削加工により作製することができる。
 容器1の外側表面と、チャンバー3との間の間隔は、全体においてほぼ均等になるように、チャンバー3の寸法形状が設定されていることが好ましい。これにより、炭素源であるチャンバーからの距離を全体においてほぼ同程度とすることができ、全体にわたって均等に浸炭処理することができる。
 また、タンタル容器1の側壁部1bの端部1cの下方には、隙間Gが形成されていることが好ましい。隙間Gが形成されることにより、タンタル容器1の内側にも、タンタル容器1の外側から炭素を供給することができる。隙間Gは、上述のように、2mm~20mmの範囲であることが好ましい。
 また、タンタル容器1の内側に配置される支持棒6及び支持台5は、上述のように、炭素源としても機能する。従って、支持棒6の配置は、図2に示すように、タンタル容器1の内側においてほぼ均等に分散するように配置することが好ましい。
 上記のようにして、タンタル容器1をチャンバー3内に配置し、チャンバー3内を減圧した後、加熱することにより、浸炭処理を施すことができる。
 例えば、真空容器内にチャンバー3を配置して蓋をし、真空容器内を排気することにより、チャンバー3内を減圧することができる。チャンバー3内の圧力は、例えば、10Pa以下に減圧される。
 次に、チャンバー3内を所定の温度に加熱する。加熱温度としては、1700℃以上の範囲が好ましく、さらに好ましくは、1750℃~2500℃の範囲であり、さらに好ましくは、2000℃~2200℃の範囲である。このような温度に加熱することにより、チャンバー3内は、一般に10-2Pa~10Pa程度の圧力となる。
 上記所定の温度を保持する時間は、0.1~8時間の範囲であることが好ましく、さらに好ましくは、0.5~5時間の範囲であり、さらに好ましくは、1時間~3時間の範囲である。保持温度により浸炭速度が変わるため、目標とする浸炭厚みにより保持時間を調整する。
 昇温速度及び冷却速度は、特に限定されるものではないが、一般に昇温速度は、100℃/時間~2000℃/時間の範囲が好ましく、さらに好ましくは、300℃/時間~1500℃/時間であり、さらに好ましくは、500℃/時間~1000℃/時間である。冷却速度は40℃/時間~170℃/時間の範囲が好ましく、さらに好ましくは、60℃/時間~150℃/時間、さらに好ましくは80℃/時間~130時間/時間である。冷却は、一般には自然冷却で行われる。
 以上のように、本実施形態においては、タンタル容器1の平面部1aを、先端部6aがテーパー状である複数の支持棒6によって支持し、この状態で浸炭処理を行っている。タンタル容器1の平面部1aを複数の支持棒6に支持しているので、浸炭処理によるタンタル容器1の変形が小さく、平面部1aの平坦度が良好な状態で浸炭処理を行うことができる。また、支持棒6の先端部6aがテーパー状に形成されているので、タンタル容器1の表面全体を均一に浸炭処理することができる。
 また、本実施形態においては、チャンバー3、支持棒6及び支持台5が黒鉛材料から形成されており、炭素源となっているので、タンタル容器1の表面全体をより均一に浸炭処理することができる。
 また、本実施形態においては、タンタル容器1の開口部1dが下方になるように、タンタル容器1をチャンバー3内に配置し、この状態で浸炭処理を行っている。このため、タンタル容器1の開口部1dが広がるのを抑制することができる。従って、図7に示すように、タンタル容器1の上にタンタル蓋2を載せる際に、良好な状態で蓋2を載せることができ、タンタル容器1内の密閉性を良好に保つことができる。このため、タンタル容器1内部で熱アニーニングや結晶成長をさせた場合に、タンタル容器1内にシリコン蒸気を良好な状態で保つことができ、良好な結晶状態を得ることができる。
 本発明の第1の局面の浸炭処理方法で浸炭処理することができるタンタル部材は、タンタル容器1に限定されるものではなく、例えばタンタル蓋2を浸炭処理することができる。
 図12は、タンタル蓋2を浸炭処理する状態を示す断面図である。図1に示す実施形態と同様に、タンタル蓋2の平面部2aを、先端部6aがテーパー状に形成された13本の支持棒6により支持し、この状態でチャンバー3内を加熱することにより、タンタル蓋2の表面を浸炭処理することができる。
 タンタル蓋2を浸炭処理する場合においても、浸炭処理によるタンタル蓋2の変形が小さく、平面部2aの平坦度が良好な状態で浸炭処理することができ、タンタル蓋2の表面全体を均一に浸炭処理することができる。
 [実施例]
 以下、本発明の第1の局面を具体的な実施例によりさらに詳細に説明するが、本発明の第1の局面は以下の実施例に限定されるものではない。
 (実施例1)
 図1に示すチャンバー3を用いて、タンタル容器1を浸炭処理した。タンタル容器1としては、図3に示す外径dが158mm、高さhが60mm、厚みtが3mmのものを用いた。従って、タンタル容器1の内側の平面部1aの内径は152mmであり、面積は18136mmである。
 本実施例においては、図2に示すように平面部1aに対し13本の支持棒6を配置している。従って、平面部1aの面積1395mmあたり1本の支持棒6によって平面部1aが支持されている。
 チャンバー3としては、その内部が、直径210mm、高さ90mmの円柱状の空間となるチャンバー3を用いた。チャンバー容器3a及びチャンバー蓋3bの材質としては、かさ密度が1.8の等方性黒鉛材を用いた。
 支持棒6は、直径6mm、長さ75mmのものを用いた。先端部6aのテーパー状部分の長さは、15mmである。また、先端部6aの接触面積は0.28mmである。支持棒6及び支持台5は、チャンバー容器3aと同じ等方性黒鉛材から形成した。
 タンタル容器1の側壁部1bの端部1cの下方の隙間Gは、13mmであった。
 このようにしてタンタル容器1をチャンバー3内に配置し、そのチャンバー3を、φ800mm×800mmのSUS製の真空容器8内に配置した。図13は、チャンバー3を真空容器8に配置したときの状態を示す断面図である。図13に示すように、真空容器8内には、断熱材9が設けられており、断熱材9内に形成された空間13内にチャンバー3が配置されている。断熱材9としては、商品名「DON-1000」(大阪ガスケミカル社製、かさ密度0.16g/cm)を用いた。この断熱材は、ピッチ系炭素繊維に樹脂を含浸させて成形、硬化、炭化、黒鉛化処理したものであり、多孔質の断熱材である。
 断熱材9によって囲まれた空間13の上方には、カーボンヒーター12が配置されており、カーボンヒーター12は、カーボンヒーター12に電流を流すための黒鉛電極11によって支持されている。カーボンヒーター12に電流を流すことにより、断熱材9によって覆われた空間13内を加熱することができる。
 真空容器8には、真空容器8内を排気するための排気口10が形成されている。排気口10は、図示しない真空ポンプに接続されている。
 真空容器8内を排気してチャンバー3内を0.1Pa以下となるように減圧した後、カーボンヒーター12により710℃/時間の昇温速度で2150℃までチャンバー3内を加熱した。2150℃を2時間保持し、浸炭処理を行った。チャンバー3内は、0.5~2.0Pa程度の圧力であった。
 浸炭処理後、自然冷却で室温まで冷却した。冷却時間は約15時間であった。
 浸炭処理前と浸炭処理後における、タンタル容器1の平面部1aの真円度及び平坦度を以下のようにして測定した。
 真円度については、平面部1aの周囲において等間隔に設定した8箇所の各点における測定データを、平坦度については、上記周囲の8箇所と中心における1箇所における測定データを三次元測定機を用いて測定し、最終的に決定した平均要素形状線からの偏差によって求めた。具体的には、真円度については、各点の測定データから平均線にて円面状を認識し、各点での平均線からの偏差の最大差を真円度とした。また、平坦度については、各点の測定データから平均線を認識し、各点での平均線からの偏差の最大差を平坦度とした。測定結果を表1に示す。
 (実施例2)
 タンタル容器1の平面部1aに対し、図8に示すように支持棒6を4本分散して配置する以外には、実施例1と同様にしてタンタル容器1を浸炭処理した。
 浸炭処理前と浸炭処理後において、タンタル容器1の平面部1aの真円度及び平坦度を上記と同様に測定し、測定結果を表1に示した。
 (実施例3)
 タンタル容器1の平面部1aに対し、図9に示すように支持棒6を17本分散して配置する以外には、実施例1と同様にしてタンタル容器1を浸炭処理した。
 浸炭処理前と浸炭処理後において、タンタル容器1の平面部1aの真円度及び平坦度を上記と同様に測定し、測定結果を表1に示した。
 (比較例1)
 図10に示すように、タンタル容器1の平面部1aを支持する支持棒7として、直径12mm、長さ75mmの円柱状のものを用いた。図11は、支持棒7の平面部1aに対する配置状態を示す平面図である。図11に示すように、平面部1aの中心部に1本の円柱状の支持棒7を設置し、支持棒7により平面部1aを支持した。なお、この支持棒7も支持棒6と同様に等方性黒鉛材から形成した。それ以外は、実施例1と同様にして浸炭処理を行った。
 浸炭処理により、支持棒の先端部は、タンタル容器1の平面部1aと固着し、浸炭処理後取り外すことが困難であった。そのため、平面部1aの真円度及び平坦度は測定することができなかったが、タンタル容器1は、4本の支持棒で支持した実施例2よりも大きく変形しており、真円度及び平坦度が実施例2よりも劣っていることは明らかであった。
Figure JPOXMLDOC01-appb-T000001
 上記の実施例1~3及び比較例1の結果から明らかなように、本発明の第1の局面に従い、先端部がテーパー状に形成された複数の支持棒により平面部を支持してタンタル容器を浸炭処理することにより、浸炭処理によるタンタル容器の変形が小さく、平面部の平坦度が良好な状態で浸炭処理をすることができる。
 また、表1に示す結果から明らかなように、4本の支持棒で支持した実施例2よりも、13本の支持棒で支持した実施例1、及び17本の支持棒で支持した実施例3が、真円度及び平坦度において優れていることがわかる。従って、平面部の面積1500mmあたり1本以上の支持棒で支持することにより、浸炭処理による変形をさらに小さくすることができ、平面部の平坦度をさらに良好な状態で浸炭処理できることがわかる。
 <本発明の第2の局面>
 以下、本発明の第2の局面を具体的な実施形態により説明するが、本発明の第2の局面は以下の実施形態に限定されるものではない。
 図14は、本発明の第2の局面に従う一実施形態の浸炭処理方法を説明するための断面図である。
 タンタル容器1は、チャンバー容器3a及びチャンバー蓋3bからなるチャンバー3内に配置されている。
 図16は、タンタル容器1を示す斜視図である。図17は、図16に示すタンタル容器1を密閉するのに用いるタンタルまたはタンタル合金からなる蓋2を示す斜視図である。
 図18は、タンタル容器1を示す断面図である。図18に示すように、タンタル容器1は、底面部1aと、底面部1aの周縁から底面部1aに対して略垂直方向に延びる側壁部1bを有している。側壁部1bの端部1cによって、タンタル容器1の開口部1dが形成されている。ここで、「略垂直方向」には、90°±20°の方向が含まれる。
 図19は、図18に示すタンタル容器1の開口部1dを密閉するための蓋2を示す断面図である。図19に示すように、蓋2は、上面部2aと、上面部2aから略垂直方向に延びる側壁部2bを有している。
 図20は、図18に示すタンタル容器1の側壁部1bの端部1cの上に、図19に示す蓋2を載せ、タンタル容器1を密閉した状態を示す断面図である。図20に示すように、タンタル容器1の側壁部1bが、蓋2の側壁部2bの内側に配置されることにより、タンタル容器1の上に、蓋2が載せられ、タンタル容器1が密閉される。
 図20に示すように、タンタル容器1の側壁部1bは、蓋2の側壁部2bの内側に位置するので、図19に示す蓋2の側壁部2b内側の内径Dは、図18に示すタンタル容器1の外径dより若干大きくなるように設計される。通常、蓋2の内径Dは、タンタル容器1の外径dより0.1mm~4mm程度大きくなるように設計される。
 タンタル容器1及び蓋2は、タンタルまたはタンタル合金から形成される。タンタル合金は、タンタルを主成分として含む合金であり、例えば、タンタル金属にタングステン又はニオブなどを含有した合金などが挙げられる。
 タンタル容器1及び蓋2は、例えば、切削加工、薄板からの絞り加工、板金加工などから製造される。切削加工は、1個のタンタル金属の塊を削り出して容器状にする加工方法であり、高精度の形状を製作できる一方、切削される金属が多くなり材料コストは高くなる。絞り加工は、1枚のタンタル金属板を変形させて一度に容器状にする加工方法である。容器製造用のダイとパンチの間に板状の金属を載置してパンチをダイに向かって押し込むと、材料はダイに押し込まれる形で変形して容器状となる。金属板が押し込まれていく時、外側にある金属板がシワにならないようにシワ押さえを設置しておく。切削加工に比べて短時間で仕上がり、削り屑の発生が少ないのでコスト等を抑えることができる。板金加工は、1枚の金属板を切る、曲げる、溶接することにより容器形状にする加工方法である。切削加工よりも材料面でコストを抑えることはできるが、絞り加工よりも製造時間は長くなる。
 タンタル容器1及び蓋2をそれぞれ浸炭処理することにより、その表面から炭素を内部に浸透させ、炭素を内部に拡散することができる。炭素が浸透することにより、TaC層、TaC層などが形成される。
 表面にカーボン含有率の高いタンタルカーバイド層が形成されるが、炭素が容器内部に拡散することにより、表面はタンタル含有率の高いタンタルカーバイド層となることで、カーボンフラックスを吸蔵させることができる。
 従って、浸炭処理したタンタル容器及び蓋からなるルツボ内で、炭化ケイ素の液相成長や気相成長を行うことにより、成長プロセス時に発生した炭素蒸気をルツボ壁内で吸蔵することができ、ルツボ内に不純物濃度の低いシリコン雰囲気を形成することができ、単結晶炭化ケイ素表面の欠陥を低減でき、表面を平坦化することができる。また、このようなルツボ内で単結晶炭化ケイ素基板の表面を熱アニーリングすることにより、欠陥を低減させ、表面を平坦化させることができる。
 図14に戻り、本実施形態の浸炭処理について説明する。
 図14に示すように、チャンバー容器3a及びチャンバー蓋3bからなるチャンバー3内に、上記のタンタル容器1が配置されている。タンタル容器1は、チャンバー3内において、側壁部1bの端部1cが下方になるように配置されている。タンタル容器1は、タンタル容器1内側の底面部1aを、複数の支持棒6で支持することにより、チャンバー3内で支持されている。
 図15は、支持棒6の配置状態を示す平面図である。図15に示すように、本実施形態においては、5本の支持棒6で、タンタル容器1の内側の底面部1aを支持している。
 図14に示すように、支持棒6の先端は、先が細くなるテーパー状に形成されている。テーパー形状に形成することにより、支持棒6と、タンタル容器1の底面部1aとの接触面積を小さくし、支持棒の接触による浸炭処理の不具合を低減している。
 支持棒6は、図14に示すように、支持台5によって支持されている。本実施形態では、支持台5に孔を空けることにより、この孔に支持棒6の下方端を挿入し、支持棒6を支持台5によって支持している。
 本実施形態においては、チャンバー3、すなわちチャンバー容器3a及びチャンバー蓋3b、並びに支持棒6及び支持台5が黒鉛から形成されている。従って、本実施形態においては、チャンバー3、支持棒6及び支持台5が炭素源となっている。チャンバー3、支持棒6、及び支持台5は、切削加工により作製することができる。
 容器1の外側表面と、チャンバー3との間の間隔は、全体においてほぼ均等になるように、チャンバー3の寸法形状が設定されていることが好ましい。これにより、炭素源であるチャンバーからの距離を全体においてほぼ同程度とすることができ、全体にわたって均等に浸炭処理することができる。
 また、タンタル容器1の側壁部1bの端部1cの下方には、隙間Gが形成されていることが好ましい。隙間Gが形成されることにより、タンタル容器1の内側にも、タンタル容器1の外側から炭素を供給することができる。隙間Gは、上述のように、2mm~20mmの範囲であることが好ましい。
 また、タンタル容器1の内側に配置される支持棒6及び支持台5は、上述のように、炭素源としても機能する。従って、支持棒6の配置は、図15に示すように、タンタル容器1の内側においてほぼ均等に分散するように配置することが好ましい。
 上記のようにして、タンタル容器1をチャンバー3内に配置し、チャンバー3内を減圧した後、加熱することにより、浸炭処理を施すことができる。
 チャンバー3を真空容器内に配置し、真空容器内を排気することにより、チャンバー3内を減圧することができる。チャンバー3内の圧力は、例えば、10Pa以下に減圧される。
 次に、チャンバー3内を所定の温度に加熱する。加熱温度としては、1700℃以上の範囲が好ましく、さらに好ましくは、1750℃~2500℃の範囲であり、さらに好ましくは、2000℃~2200℃の範囲である。このような温度に加熱することにより、チャンバー3内は、一般に10-2Pa~10Pa程度の圧力となる。
 上記所定の温度を保持する時間は、0.1~8時間の範囲であることが好ましく、さらに好ましくは、0.5~5時間の範囲であり、さらに好ましくは、1時間~3時間の範囲である。保持温度により浸炭速度が変わるため、目標とする浸炭厚みにより調整する。
 昇温速度及び冷却速度は、特に限定されるものではないが、一般に昇温速度は、100℃/時間~2000℃/時間の範囲が好ましく、さらに好ましくは、300℃/時間~1500℃/時間であり、さらに好ましくは、500℃/時間~1000℃/時間である。冷却速度は40℃/時間~170℃/時間の範囲が好ましく、さらに好ましくは、60℃/時間~150℃/時間、さらに好ましくは80℃/時間~130時間/時間である。冷却は、一般には自然冷却で行われる。
 図14に示すように、タンタル容器1の開口部1dが下方になるように、タンタル容器1をチャンバー3内に配置し、この状態で浸炭処理を行うことにより、開口部1dが拡がるのと歪みを抑制することができる。このため、図20に示すように、タンタル容器1の上に蓋2を載せた際に、良好な嵌合状態で蓋2を載せることができ、タンタル容器1内の密閉性を良好に保つことができる。このため、タンタル容器1内部で熱アニーニングや結晶成長をさせた場合に、タンタル容器1内にシリコン蒸気を良好な状態で保つことができ、良好な結晶状態を得ることができる。
 [実施例]
 以下、本発明の第2の局面を具体的な実施例によりさらに詳細に説明するが、本発明の第2の局面は以下の実施例に限定されるものではない。
 (実施例4)
 図14に示すチャンバー3を用いて、タンタル容器1を浸炭処理した。タンタル容器1としては、図16に示す外径dが約160mm、高さhが約60mm、厚みtが約3mmのものを用いた。タンタル容器1は、金属タンタルを板金加工することにより作製した。
 チャンバー3としては、その内部が、直径210mm、高さ90mmの円柱状となるチャンバー3を用いた。チャンバー容器3a及びチャンバー蓋3bの材質としては、かさ密度が1.8の等方性黒鉛材を用いた。
 支持棒6は、直径6mm、長さ75mmのものを用いた。先端のテーパー状部分の長さは、15mmである。支持棒6及び支持台5は、チャンバー容器3aと同じ等方性黒鉛材から形成した。
 タンタル容器1の側壁部1bの端部1cの下方の隙間Gは、13mmであった。
 このようにしてタンタル容器1をチャンバー3内に配置し、そのチャンバー3を、φ800mm×800mmのSUS製の真空容器8内に配置した。図25は、チャンバー3を真空容器8に配置したときの状態を示す断面図である。図25に示すように、真空容器8内には、断熱材9が設けられており、断熱材9内に形成された空間13内にチャンバー3が配置されている。断熱材9としては、商品名「DON-1000」(大阪ガスケミカル社製、かさ密度0.16g/cm)を用いた。この断熱材は、ピッチ系炭素繊維に樹脂を含浸させて成形、硬化、炭化、黒鉛化処理したものであり、多孔質の断熱材である。
 断熱材9によって囲まれた空間13の上方には、カーボンヒーター12が配置されており、カーボンヒーター12は、カーボンヒーター12に電流を流すための黒鉛電極11によって支持されている。カーボンヒーター12に電流を流すことにより、断熱材9によって覆われた空間13内を加熱することができる。
 真空容器8には、真空容器8内を排気するための排気口10が形成されている。排気口10は、図示しない真空ポンプに接続されている。
 真空容器8内を排気してチャンバー3内を0.1Pa以下となるように減圧した後、カーボンヒーター12により710℃/時間の昇温速度で2150℃までチャンバー3内を加熱した。2150℃を2時間保持し、浸炭処理を行った。チャンバー3内は、0.5~2.0Pa程度の圧力であった。
 浸炭処理後、自然冷却で室温まで冷却した。冷却時間は約15時間であった。
 浸炭処理前と浸炭処理後において、タンタル容器1の開口部1dの寸法として外径dを測定した。外径dの寸法は、開口部1dの周囲の8箇所で測定した。
 図23は、浸炭処理前と浸炭処理後の外径dの上記8箇所での寸法を示す図である。図23において、Aは浸炭処理前の寸法を示しており、Bは浸炭処理後の寸法を示している。
 図23に示すように、本実施例では、浸炭処理することにより、外径dの寸法が若干小さくなっていることがわかる。また、開口部1dの真円度を、三次元測定機を用いて測定した。開口部1dの図23に示すような8箇所における各点の測定データと、最終的に決定した平均要素形状線からの偏差によって求めた。具体的には、各点の測定データから平均線にて円面状を認識し、各点での平均線からの偏差の最大差を真円度とした。開口部1dの真円度は、浸炭処理前において0.467であり、浸炭処理後において0.575であった。従って、浸炭処理前後における差は、0.108であった。
 (比較例2)
 図21は、本比較例における浸炭処理を説明するための断面図である。
 本比較例においては、チャンバー容器3a及びチャンバー蓋3bとして、上記実施例4と同様のものを用いた。また、タンタル容器1も、上記実施例4と同様のものを用いた。
 本比較例においては、図21に示すように、タンタル容器1の開口部1dが上方となるように、タンタル容器1がチャンバー3内に配置されている。
 タンタル容器1は、支持台5の上に載せられた黒鉛ブロック14の上に載せられている。
 図22は、黒鉛ブロック14のタンタル容器1に対する配置状態を示す平面図である。図22に示すように、タンタル容器1の底面部1aの下方の4箇所のそれぞれに黒鉛ブロック14が設けられている。黒鉛ブロック14としては、縦10mm、横30mm、高さ10mmの直方体形状のものを用いた。黒鉛ブロック14は、実施例4における支持棒6と同様の材質から形成したものを用いた。また、支持台5は、上記実施例4の支持台5と同様のものを用いた。
 上記のように、チャンバー3内に、タンタル容器1を配置し、上記実施例4と同様の条件で浸炭処理を行った。
 上記と同様にして、浸炭処理前と浸炭処理後のタンタル容器1の外径dの寸法を測定し、測定結果を図24に示した。
 図24において、Aは浸炭処理前の外径dの寸法示しており、Bは浸炭処理後の外径dの寸法を示している。
 図24に示すように、本比較例では、浸炭処理することにより、開口部1dが拡がっていることがわかる。
 また、浸炭処理前と浸炭処理後の開口部1dの真円度を測定した。浸炭処理前の真円度は0.593であり、浸炭処理後の真円度は0.715であった。従って、浸炭処理前と浸炭処理後の真円度の差は0.122であった。
 以上のように、比較例2では、タンタル容器1の開口部1dを上方になるように配置して浸炭処理した結果、開口部1dが拡がることがわかる。従って、このように開口部1dが拡がったタンタル容器1の上に蓋2を載せると、タンタル容器1と蓋2との嵌合状態が不良となり、タンタル容器1と蓋2の間に隙間が形成され、良好な密閉状態を保つことができない。
 これに対し、実施例4のように、開口部1dが拡がらない場合、タンタル容器1の上に蓋2を良好な密閉状態で載せることができる。本実施例においては、開口部1dが浸炭処理前に比べ浸炭処理後にやや小さくなっているが、開口部1dが小さくなる変形の場合には、密閉性を損なうことなく、タンタル容器1の上に蓋2を載せることができる。
 上記比較例2のように、浸炭処理により、タンタル容器1の開口部1dが拡がる場合、予め開口部1dの拡大量を計算にいれて、蓋2をそのような寸法に合うように作製しておくことが考えられる。しかしながら、開口部1dの拡大量は、浸炭条件やその他の条件により変動し、その変動量も大きいものであるため、開口部1dの寸法変化を考慮して作製した蓋であっても、必ずしもタンタル容器1の開口部1dに適合するとは限らず、良好な密閉性が得られない場合がある。従って、タンタル容器1と蓋2が共に不良品となるため、作業効率が大幅に低下する。
 また、上記のように、本発明の第2の局面に従い、開口部1dが下方になるようにタンタル容器を配置して、浸炭処理することにより、開口部の真円度の高いものが得られる。このことからも、本発明の第2の局面に従いタンタル容器を浸炭処理することにより、蓋との嵌め合せにおいて、良好な密閉状態を保つことができる。
 1…タンタル容器
 1a…タンタル容器の平面部または底面部
 1b…タンタル容器の側壁部
 1c…タンタル容器の側壁部の端部
 1d…タンタル容器の開口部
 2…蓋
 2a…蓋の平面部または上面部
 2b…蓋の側壁部
 3…チャンバー
 3a…チャンバー容器
 3b…チャンバー蓋
 5…支持台
 6…支持棒
 6a…支持棒の先端部
 7…支持棒
 8…SUS製の真空容器
 9…断熱材
 10…排気口
 11…黒鉛電極
 12…カーボンヒーター
 13…断熱材によって覆われた空間
 14…黒鉛ブロック

Claims (18)

  1.  平面部を有するタンタルまたはタンタル合金からなるタンタル部材に、該部材の表面から内部に向って炭素を浸透させる浸炭処理を施すための方法であって、
     先端部がテーパー状に形成された複数の支持棒によって前記平面部を支持することにより、前記タンタル部材を、炭素源が存在するチャンバー内に配置する工程と、
     前記チャンバー内を減圧し加熱することにより、前記炭素源からの炭素を前記タンタル部材の表面から浸透させて浸炭処理を施す工程とを備えることを特徴とするタンタル部材の浸炭処理方法。
  2.  前記平面部全体を前記各支持棒の前記先端部がほぼ均等に支持するように、前記複数の支持棒が分散して配置されていることを特徴とする請求項1に記載のタンタル部材の浸炭処理方法。
  3.  前記平面部の面積1500mmあたり1本以上の支持棒によって前記平面部が支持されていることを特徴とする請求項1または2に記載のタンタル部材の浸炭処理方法。
  4.  前記支持棒が、前記炭素源として機能することを特徴とする請求項1~3のいずれか1項に記載のタンタル部材の浸炭処理方法。
  5.  前記支持棒の基部が支持台に支持されることによって、前記複数の支持棒が前記支持台の上に設けられており、前記支持台が前記チャンバー内の底面部上に載置されることにより、前記複数の支持棒が前記チャンバー内に配置されていることを特徴とする請求項1~4のいずれか1項に記載のタンタル部材の浸炭処理方法。
  6.  前記支持台が、前記炭素源として機能することを特徴とする請求項5に記載のタンタル部材の浸炭処理方法。
  7.  前記チャンバーが、前記炭素源として機能することを特徴とする請求項1~6のいずれか1項に記載のタンタル部材の浸炭処理方法。
  8.  前記タンタル部材が、前記平面部と、前記平面部から略垂直方向に延びる側壁部とを有し、前記側壁部の端部によって開口部が形成されているタンタル容器であることを特徴とする請求項1~7のいずれか1項に記載のタンタル部材の浸炭処理方法。
  9.  前記タンタル容器の前記開口部が下方になるように、前記チャンバー内に前記タンタル容器を配置し、前記タンタル容器の内側の前記平面部を前記複数の支持棒が支持することを特徴とする請求項8に記載のタンタル部材の浸炭処理方法。
  10.  請求項1~9のいずれか1項に記載の方法により、浸炭処理がなされたことを特徴とするタンタル部材。
  11.  請求項5または6に記載の浸炭処理方法に用いる治具であって、
     前記複数の支持棒と、前記支持台とを有し、前記支持棒及び前記支持台が黒鉛材料から形成されていることを特徴とする浸炭処理用治具。
  12.  底面部と、前記底面部から略垂直方向に延びる側壁部とを有し、前記側壁部の端部によって開口部が形成されているタンタルまたはタンタル合金からなるタンタル容器に、該容器の表面から内部に向って炭素を浸透させる浸炭処理を施すための方法であって、
     炭素源が存在するチャンバー内に、前記タンタル容器の前記開口部が下方になるように、前記タンタル容器を配置する工程と、
     前記チャンバー内を減圧し加熱することにより、前記炭素源からの炭素を前記タンタル容器の表面から浸透させて浸炭処理を施す工程とを備えることを特徴とするタンタル容器の浸炭処理方法。
  13.  前記タンタル容器の前記側壁部端部の下方に隙間が形成されるように、前記タンタル容器が前記チャンバー内に配置されていることを特徴とする請求項12に記載のタンタル容器の浸炭処理方法。
  14.  前記タンタル容器内側の前記底面部を支持することによって、前記タンタル容器が前記チャンバー内で支持されていることを特徴とする請求項12または13に記載のタンタル容器の浸炭処理方法。
  15.  前記チャンバー内に設けられた支持部材によって、前記タンタル容器内側の前記底面部が支持されていることを特徴とする請求項14に記載のタンタル容器の浸炭処理方法。
  16.  前記チャンバーが、前記炭素源として機能することを特徴とする請求項12~15のいずれか1項に記載のタンタル容器の浸炭処理方法。
  17.  前記支持部材が前記炭素源として機能することを特徴とする請求項15または16に記載のタンタル容器の浸炭処理方法。
  18.  請求項12~17のいずれか1項に記載の方法により、浸炭処理がなされたことを特徴とするタンタル容器。
PCT/JP2010/058799 2009-06-01 2010-05-25 タンタル部材の浸炭処理方法及びタンタル部材 WO2010140508A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020117026005A KR101740070B1 (ko) 2009-06-01 2010-05-25 탄탈 부재의 침탄 처리 방법 및 탄탈 부재
CA2763652A CA2763652A1 (en) 2009-06-01 2010-05-25 Method for carburizing tantalum member, and tantalum member
RU2011148907/02A RU2011148907A (ru) 2009-06-01 2010-05-25 Способ науглероживания танталового элемента и танталовый элемент
CN2010800227848A CN102449185B (zh) 2009-06-01 2010-05-25 钽构件的渗碳处理方法和钽构件
EP10783292.5A EP2439308B1 (en) 2009-06-01 2010-05-25 Method for carburizing tantalum member, and tantalum member
US13/322,936 US8986466B2 (en) 2009-06-01 2010-05-25 Method for carburizing tantalum member, and tantalum member

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-132051 2009-06-01
JP2009132051A JP5483154B2 (ja) 2009-06-01 2009-06-01 タンタル容器の浸炭処理方法及びタンタル容器
JP2009-134949 2009-06-04
JP2009134949A JP5483157B2 (ja) 2009-06-04 2009-06-04 タンタル部材の浸炭処理方法及びタンタル部材

Publications (1)

Publication Number Publication Date
WO2010140508A1 true WO2010140508A1 (ja) 2010-12-09

Family

ID=43297644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058799 WO2010140508A1 (ja) 2009-06-01 2010-05-25 タンタル部材の浸炭処理方法及びタンタル部材

Country Status (8)

Country Link
US (1) US8986466B2 (ja)
EP (1) EP2439308B1 (ja)
KR (1) KR101740070B1 (ja)
CN (1) CN102449185B (ja)
CA (1) CA2763652A1 (ja)
RU (1) RU2011148907A (ja)
TW (1) TWI475131B (ja)
WO (1) WO2010140508A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644046A (zh) * 2012-01-06 2012-08-22 中国科学院合肥物质科学研究院 一种抗腐蚀碳化物涂层及其制备方法
EP2647736A4 (en) * 2010-11-30 2017-08-09 Toyo Tanso Co., Ltd. Method for carburizing tantalum container

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6093154B2 (ja) * 2012-11-16 2017-03-08 東洋炭素株式会社 収容容器の製造方法
JP6247566B2 (ja) * 2014-02-28 2017-12-13 東洋炭素株式会社 加熱処理容器、加熱処理容器集合体、及び、半導体素子製造装置
WO2017113382A1 (zh) * 2015-12-31 2017-07-06 深圳凯世光研股份有限公司 一种钍钨电极渗碳处理工艺
CN108823522B (zh) * 2018-07-12 2020-05-12 中国航发哈尔滨轴承有限公司 一种利用钢球化学热处理专用工装对钢球表面改性的方法
CN108842130B (zh) * 2018-07-12 2020-05-12 中国航发哈尔滨轴承有限公司 一种利用球面滚子化学热处理专用工装对球面滚子表面改性的方法
CN108893703A (zh) * 2018-07-12 2018-11-27 中国航发哈尔滨轴承有限公司 一种利用三角分布锥形支柱工装对圆柱滚子表面改性的方法
CN112159952B (zh) * 2020-10-10 2022-07-12 哈尔滨科友半导体产业装备与技术研究院有限公司 一种能同时碳化多个钽片的装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544339U (ja) * 1991-11-15 1993-06-15 中央発條株式会社 曲がりコイルばねの製造に用いる曲げ成形用治具
JP2000286330A (ja) * 1999-03-31 2000-10-13 Hoya Corp 基板保持チャックとその製造方法、露光方法、半導体装置の製造方法及び露光装置
JP2002161314A (ja) * 2000-11-21 2002-06-04 Honda Motor Co Ltd 金属リングの窒化処理治具
JP2005068002A (ja) 2003-08-01 2005-03-17 Kwansei Gakuin タンタルの炭化物、タンタルの炭化物の製造方法、タンタルの炭化物配線、タンタルの炭化物電極
JP2008016691A (ja) 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2008081362A (ja) 2006-09-27 2008-04-10 Kwansei Gakuin タンタルと炭素結合物の製造方法、タンタルと炭素の傾斜組成構造、タンタルチューブとpit炭素芯の製造方法、タンタルチューブとpit炭素芯、タンタル炭化物配線の製造方法、タンタル炭化物配線
JP2009242854A (ja) * 2008-03-31 2009-10-22 Koyo Thermo System Kk 誘導加熱式浸炭処理装置のワーク支持具

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3466494A (en) * 1968-05-01 1969-09-09 Siemens Ag Traveling wave tube with delay line supports having a lossy layer and an insulation layer
US3650850A (en) * 1970-04-07 1972-03-21 Richard Corth Method of making an undistorted coiled-coil tantalum carbide filament
JPH08100265A (ja) * 1994-09-30 1996-04-16 Kawasaki Steel Corp Cvd装置およびcvd皮膜の形成方法
CN2295976Y (zh) * 1997-03-06 1998-10-28 陈绍安 一种井式渗碳炉炉座
US5916377A (en) * 1997-04-21 1999-06-29 The Regents Of The University Of California Packed bed carburization of tantalum and tantalum alloy
JPH11116399A (ja) * 1997-10-16 1999-04-27 Denso Corp 炭化タンタルのコーティング方法及びこの方法を用いて製造した単結晶製造装置
AU2002221138A1 (en) * 2001-12-13 2003-06-23 Koyo Thermo Systems Co., Ltd. Vacuum carbo-nitriding method
US7416614B2 (en) * 2002-06-11 2008-08-26 Koyo Thermo Systems Co., Ltd. Method of gas carburizing
WO2004090960A1 (ja) * 2003-04-07 2004-10-21 Tokyo Electron Limited 載置台構造及びこの載置台構造を有する熱処理装置
WO2005012174A1 (ja) 2003-08-01 2005-02-10 The New Industry Research Organization タンタルの炭化物、タンタルの炭化物の製造方法、タンタルの炭化物配線、タンタルの炭化物電極
CN1303647C (zh) * 2003-09-30 2007-03-07 佳能株式会社 加热方法、加热装置、以及图像显示装置的制造方法
JP4227578B2 (ja) 2003-09-30 2009-02-18 キヤノン株式会社 加熱方法および画像表示装置の製造方法
WO2007026420A1 (ja) * 2005-08-31 2007-03-08 Ihi Corporation 熱処理用治具並びに熱処理装置及び方法
JP4458079B2 (ja) * 2006-09-27 2010-04-28 株式会社Ihi 真空浸炭処理装置
JP5116339B2 (ja) * 2007-03-30 2013-01-09 光洋サーモシステム株式会社 連続浸炭炉

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0544339U (ja) * 1991-11-15 1993-06-15 中央発條株式会社 曲がりコイルばねの製造に用いる曲げ成形用治具
JP2000286330A (ja) * 1999-03-31 2000-10-13 Hoya Corp 基板保持チャックとその製造方法、露光方法、半導体装置の製造方法及び露光装置
JP2002161314A (ja) * 2000-11-21 2002-06-04 Honda Motor Co Ltd 金属リングの窒化処理治具
JP2005068002A (ja) 2003-08-01 2005-03-17 Kwansei Gakuin タンタルの炭化物、タンタルの炭化物の製造方法、タンタルの炭化物配線、タンタルの炭化物電極
JP2008016691A (ja) 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2008081362A (ja) 2006-09-27 2008-04-10 Kwansei Gakuin タンタルと炭素結合物の製造方法、タンタルと炭素の傾斜組成構造、タンタルチューブとpit炭素芯の製造方法、タンタルチューブとpit炭素芯、タンタル炭化物配線の製造方法、タンタル炭化物配線
JP2009242854A (ja) * 2008-03-31 2009-10-22 Koyo Thermo System Kk 誘導加熱式浸炭処理装置のワーク支持具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2647736A4 (en) * 2010-11-30 2017-08-09 Toyo Tanso Co., Ltd. Method for carburizing tantalum container
CN102644046A (zh) * 2012-01-06 2012-08-22 中国科学院合肥物质科学研究院 一种抗腐蚀碳化物涂层及其制备方法

Also Published As

Publication number Publication date
TWI475131B (zh) 2015-03-01
EP2439308B1 (en) 2020-05-06
KR101740070B1 (ko) 2017-05-25
CA2763652A1 (en) 2010-12-09
CN102449185B (zh) 2013-09-18
EP2439308A4 (en) 2017-01-04
KR20120028866A (ko) 2012-03-23
EP2439308A1 (en) 2012-04-11
US20120067462A1 (en) 2012-03-22
US8986466B2 (en) 2015-03-24
CN102449185A (zh) 2012-05-09
RU2011148907A (ru) 2013-07-20
TW201105822A (en) 2011-02-16

Similar Documents

Publication Publication Date Title
WO2010140508A1 (ja) タンタル部材の浸炭処理方法及びタンタル部材
JP5673034B2 (ja) タンタル容器の浸炭処理方法
US8142754B2 (en) Method for synthesis of high quality graphene
JP2009062247A (ja) グラフェンシートの製造方法
JP2011020860A (ja) 炭化珪素単結晶製造用坩堝及び炭化珪素単結晶の製造方法
JP7292573B2 (ja) 炭化珪素多結晶基板およびその製造方法
KR102067313B1 (ko) 수용 용기, 수용 용기의 제조 방법, 반도체의 제조 방법, 및 반도체 제조 장치
JP5483157B2 (ja) タンタル部材の浸炭処理方法及びタンタル部材
JP2019156660A (ja) 炭化珪素単結晶の製造方法
JP5483154B2 (ja) タンタル容器の浸炭処理方法及びタンタル容器
JP4661039B2 (ja) 炭化珪素基板の製造方法
KR102670425B1 (ko) 탄화규소 단결정의 제조방법 및 제조장치
JP2005320208A (ja) 炭素複合部材
JPWO2019082916A1 (ja) 配向セラミック焼結体の製法及びフラットシート
JP2013256401A (ja) 単結晶の製造装置
JP2024127230A (ja) 黒鉛材料の改質方法及び黒鉛材料
JP2008120616A (ja) 炭化珪素単結晶の製造方法
JP2013222793A (ja) 炭化珪素結晶体へのピット形成方法およびそれを用いた炭化珪素結晶積層体の製造方法、並びに炭化珪素結晶および炭化珪素結晶体の表面における転位の位置の確認方法
JP2015074568A (ja) 単結晶の製造方法
JP2017005112A (ja) ウエハボート及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080022784.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783292

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117026005

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2763652

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010783292

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13322936

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011148907

Country of ref document: RU