WO2010140469A1 - 接続方法,接続構造および電子機器 - Google Patents

接続方法,接続構造および電子機器 Download PDF

Info

Publication number
WO2010140469A1
WO2010140469A1 PCT/JP2010/058356 JP2010058356W WO2010140469A1 WO 2010140469 A1 WO2010140469 A1 WO 2010140469A1 JP 2010058356 W JP2010058356 W JP 2010058356W WO 2010140469 A1 WO2010140469 A1 WO 2010140469A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
connection
solder
electrode
connection method
Prior art date
Application number
PCT/JP2010/058356
Other languages
English (en)
French (fr)
Inventor
山本 正道
恭一郎 中次
喬 山口
川上 茂樹
道廣 木村
Original Assignee
住友電気工業株式会社
住友電工プリントサーキット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009132076A external-priority patent/JP4746687B2/ja
Priority claimed from JP2009132754A external-priority patent/JP4751464B2/ja
Priority claimed from JP2009135872A external-priority patent/JP4755273B2/ja
Application filed by 住友電気工業株式会社, 住友電工プリントサーキット株式会社 filed Critical 住友電気工業株式会社
Priority to US13/375,670 priority Critical patent/US20120067619A1/en
Priority to EP10783253.7A priority patent/EP2440024B1/en
Priority to CN2010800242250A priority patent/CN102450112A/zh
Publication of WO2010140469A1 publication Critical patent/WO2010140469A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/36Assembling printed circuits with other printed circuits
    • H05K3/361Assembling flexible printed circuits with other printed circuits
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/14Structural association of two or more printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/40Forming printed elements for providing electric connections to or between printed circuits
    • H05K3/4007Surface contacts, e.g. bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0248Needles or elongated particles; Elongated cluster of chemically bonded particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0364Conductor shape
    • H05K2201/0373Conductors having a fine structure, e.g. providing a plurality of contact points with a structured tool
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/094Array of pads or lands differing from one another, e.g. in size, pitch, thickness; Using different connections on the pads
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10992Using different connection materials, e.g. different solders, for the same connection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/30Details of processes not otherwise provided for in H05K2203/01 - H05K2203/17
    • H05K2203/308Sacrificial means, e.g. for temporarily filling a space for making a via or a cavity or for making rigid-flexible PCBs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor

Definitions

  • the present invention relates to a connection method in which electrical connection is performed using an adhesive, a connection structure formed by the connection method, and an electronic device.
  • a printed wiring board such as a flexible printed wiring board (FPC) or a hard printed wiring board (PWB or PCB) provided with an adhesive connecting electrode such as a copper electrode, and a connecting electrode such as a copper electrode were formed. It is used for bonding with a wiring substrate such as a glass substrate, and bonding between a printed wiring board and an electronic component such as an IC chip.
  • FPC flexible printed wiring board
  • PWB or PCB hard printed wiring board
  • This anisotropic conductive adhesive is an adhesive in which conductive particles are dispersed in an insulating resin composition.
  • the anisotropic conductive adhesive is sandwiched between connected members and heated and pressurized to connect the connected members to each other. Glue. That is, the resin in the adhesive flows due to heating and pressurization, for example, sealing the gap between the adhesive connection electrode formed on the surface of the printed wiring board and the connection electrode formed on the surface of the wiring board. At the same time, a part of the conductive particles is engaged between the connecting electrode and the adhesive connecting electrode, and electrical connection is achieved.
  • each of the adhesive connection electrode of the printed wiring board and the connection electrode of the wiring board is plated with gold for the purpose of preventing oxidation and ensuring conductivity (for example, Patent Documents). 1).
  • An object of the present invention is to provide a connection method for realizing an adhesive connection structure at a low cost while simplifying the manufacturing process.
  • connection method of the invention described in claims 1 to 3 is performed using a base material provided with an adhesive connecting electrode. Then, after covering the adhesive connecting electrode with an organic film for preventing oxidation (b1), the organic film is removed or thinned (c1). Thereafter, a connection step (d1) is performed in which the adhesive connecting electrode and the conductor to be connected are electrically bonded to each other through an adhesive mainly composed of a thermosetting resin.
  • the adhesive includes so-called anisotropic conductive adhesive (ACF) and insulating adhesive (NCF), and any adhesive may be used.
  • ACF anisotropic conductive adhesive
  • NCF insulating adhesive
  • the process for forming the organic film is generally called a preflux process (OSP process: Organic Solderability Preservation).
  • Examples of the base material include a base film for a printed wiring board and a base member for an electrode of an electronic component.
  • Examples of the conductor to be connected include electrodes of other printed wiring boards, electrodes of electronic components, and electrodes of connectors.
  • the invention described in claims 1 to 3 provides the following operational effects.
  • gold plating for preventing oxidation has been applied to the adhesive connecting electrode.
  • the manufacturing process is simplified in the step (b1) of forming the organic film by the OSP process as compared with the step of forming the gold plating layer.
  • the material cost is also reduced. Therefore, according to the present invention, an electrode structure for performing a connection using an adhesive can be manufactured at low cost.
  • the organic film formed by the OSP process has a range of hardness depending on the type of constituent material and the subsequent environment.
  • the hardness may be extremely high.
  • an insulating adhesive it becomes difficult for each part to break through the organic film and come into phase contact between the adhesive connecting electrode and the conductor to be connected in the connecting step.
  • an anisotropic conductive adhesive containing conductive particles it becomes difficult for the conductive particles to break through the organic film and come into contact with the electrode or the like in the connection step.
  • the connecting step there is a possibility that poor conduction occurs between the adhesive connecting electrode and the connected conductor.
  • the process (d1) is performed after the treatment (c1) for removing or thinning the organic film, so that in any case, the electrode and the conductor to be connected are reliably directly or electrically conductive. They are electrically connected to each other through the conductive particles. Therefore, generation
  • the organic film is finally removed or thinned, conduction between the adhesive connecting electrode and the connected conductor can be ensured regardless of the film thickness of the organic film during the OSP process. Even if the organic film is removed, the oxidation of the electrode and the connected conductor can be suppressed if the time until the connection with the adhesive is not so long.
  • the treatment (c1) for removing or thinning the organic film can be performed, for example, by bringing the organic film into contact with a liquid or vapor containing an inorganic acid such as hydrochloric acid or an organic acid such as carboxylic acid or sulfonic acid. .
  • a liquid or vapor containing an inorganic acid such as hydrochloric acid or an organic acid such as carboxylic acid or sulfonic acid.
  • the organic film is immersed in a solution containing these acids, or a liquid or vapor containing these acids is sprayed onto the organic film, or these acids are contained. It has been confirmed that the organic film is removed or thinned by wiping the organic film with a cloth soaked with liquid.
  • the adhesive used is preferably an anisotropic conductive adhesive containing conductive particles.
  • the conductive particles can easily penetrate the organic film and contact the adhesive connecting electrode.
  • an adhesive containing conductive particles made of metal powder having a shape in which a plurality of metal particles are connected in a chain or a needle shape.
  • an adhesive agent connection structure can be formed smoothly.
  • the aspect ratio of the conductive particles is 5 or more, the contact probability between the conductive particles increases.
  • the adhesive connection structure can be smoothly formed without increasing the blending amount of the conductive particles.
  • an anisotropic conductive adhesive when using an anisotropic conductive adhesive, it is preferable to use what has a film shape. This facilitates the handling of the anisotropic conductive adhesive. Moreover, the workability
  • a solder connection electrode is also provided on a base material on which an adhesive connection electrode is provided.
  • the solder reflow process is performed, and then the connection with the adhesive is performed.
  • the organic film may be thermally decomposed during solder reflow. Therefore, since the organic film has a thermal decomposition temperature higher than the solder reflow temperature, the organic film reliably remains even after the solder reflow. Thereafter, by performing a process of removing or thinning the organic film, the solder connection and the adhesive connection can be smoothly performed.
  • the organic film has a thermal decomposition temperature of 300 degreeC or more.
  • the organic film having a high thermal decomposition temperature include the following.
  • the organic film contains an organic compound having a coordination atom capable of coordinating and bonding to the metal constituting the adhesive connection electrode, it forms a complex with the metal constituting the adhesive connection electrode, and is thermally decomposed.
  • the temperature can be increased.
  • an organic compound having a plurality of coordination atoms in one molecule is preferable because a thermal decomposition temperature can be increased by forming a crosslinked complex.
  • 2-phenylimidazoles such as 2-phenyl-4-methyl-5-benzylimidazole, 2,4-diphenylimidazole, 2,4-diphenyl-5-methylimidazole
  • one containing at least one organic compound selected from benzimidazoles such as methylbenzimidazole, 2-alkylbenzimidazole, 2-arylbenzimidazole, and 2-phenylbenzimidazole.
  • the wiring member includes various wirings having electrodes such as wiring boards such as flexible printed wiring boards and rigid printed wiring boards, and cable wirings such as coaxial cable wiring and flat cable wiring.
  • flexible printed wiring boards are built in many electronic devices such as mobile phones, digital cameras, camcorders such as video cameras, portable audio players, portable DVD players, portable laptop computers, etc. A special effect is obtained.
  • connection method of the invention described in claims 4 to 7 is performed using a base material provided with an adhesive connecting electrode and a solder connecting electrode. Then, only the solder connection electrode is covered with an organic film or a noble metal plating layer by OSP treatment (b2), and then solder reflow processing is performed in a non-oxidizing atmosphere, so that the solder connection electrode is connected to the solder connection conductor. (C2). After that, the adhesive connection electrode and the conductor to be connected are electrically connected to each other through an adhesive mainly composed of a thermosetting resin to be electrically connected (d2). As will be described later, the adhesive includes so-called anisotropic conductive adhesive (ACF) and insulating adhesive (NCF), and any adhesive may be used.
  • ACF anisotropic conductive adhesive
  • NCF insulating adhesive
  • the adhesive connection electrode is not formed with the organic film or noble metal plating layer by OSP treatment, but only the solder connection electrode is covered with the organic film or noble metal plating layer by OSP treatment (b2), Bonding by solder (solder reflow process) is performed (c2). And since the connection process (d2) by an adhesive agent is performed after that, an electrode and a to-be-connected conductor mutually conduct
  • solder connection electrode When the solder connection electrode is covered with an organic film formed by OSP treatment, as described above, gold plating is not necessary, and the manufacturing cost is reduced. Even when the solder connection electrode is covered with a noble metal plating layer, no noble metal plating is required on the adhesive connection electrode, and no OSP treatment is performed, so that the manufacturing cost is reduced.
  • a removable protective film is formed on the adhesive connection electrode, and the protective film can be removed before the connection with the adhesive. Also by this, the electrode and the conductor to be connected are electrically connected to each other directly or via the conductive particles. In addition, formation of an oxide film on the adhesive connecting electrode can be suppressed, and poor conduction between the adhesive connecting electrode and the connected conductor can be reliably suppressed.
  • the oxide film on the adhesive connecting electrode may be removed before connecting with the adhesive. Thereby, the conduction
  • Bonding with solder is preferably performed in a non-oxidizing atmosphere with an oxygen concentration of 1% or less. Thereby, even if the surface of the adhesive connecting electrode is exposed, formation of an oxide film on the surface can be suppressed.
  • connection method of the invention described in claims 8 to 12 is performed using a base material provided with an adhesive connecting electrode and a solder connecting electrode. Then, after the adhesive connecting electrode is coated with the antioxidant film (b3), the adhesive connecting electrode and the conductor to be connected are bonded to each other through an adhesive mainly composed of a thermosetting resin. Electrical connection is made (c3). Thereafter, solder reflow processing is performed to join the solder connection electrode to the solder connection conductor (d3). At this time, the connection is performed so that the increase in the connection resistance between the adhesive connecting electrode and the connected conductor before and after the solder reflow process is within a predetermined range.
  • the adhesive includes so-called anisotropic conductive adhesive (ACF) and insulating adhesive (NCF), and any adhesive may be used.
  • ACF anisotropic conductive adhesive
  • NCF insulating adhesive
  • the antioxidant film include a noble metal plating layer such as gold plating and an organic film.
  • the base material include a base film for a printed wiring board and a base member for an electrode of an electronic component.
  • the conductor to be connected and the solder conductor to be connected include electrodes of other printed wiring boards, electrodes of electronic parts, electrodes of connectors, and the like.
  • the to-be-connected conductor and the to-be-soldered connecting conductor may be provided on a common member, or may be provided on different members.
  • connection resistance increases when the solder reflow process is performed after the connection with the adhesive is performed first.
  • the solder reflow treatment causes a relaxation phenomenon of the adhesive and reduces the adhesive clamping force.
  • the adhesive connecting electrode on the substrate and the cover on the member to be connected Occurrence of poor continuity with the connection conductor can be suppressed.
  • connection resistance between the adhesive connecting electrode and the connected conductor before solder reflow is R 1
  • the adhesive strength of the adhesive is F 1
  • F 2 after the solder reflow, between the adhesive connecting electrode and the connected conductor
  • the present inventors have confirmed that it is effective to use a resin material having a glass transition temperature of 100 ° C. or higher after curing as the resin composition of the adhesive.
  • the glass transition temperature is a temperature at which the rigidity and viscosity of the resin composition change abruptly. The higher the temperature, the lower the strength (clamping force) of the adhesive at a high temperature. Therefore, it is considered that the connection satisfying the relational expressions (1) and (2) is facilitated by using a resin material having a glass transition temperature of 100 ° C. or higher.
  • Manufacturing cost can be reduced by forming an organic film as an antioxidant film.
  • gold plating for preventing oxidation has been applied to the adhesive connecting electrode.
  • OSP process Organic Solderability Preservation
  • the process of forming the organic film by the preflux process is simplified in comparison with the step of forming the gold plating layer.
  • expensive gold is not used, the material cost is also reduced. Therefore, connection using an adhesive can be performed at low cost.
  • connection structure of the present invention is formed using the connection method, and the electronic device of the present invention is assembled using the connection method.
  • the following structure can be adopted as a connection structure between the first conductor on the first member and the second conductor on the second member. That is, the surface of at least one of the first conductor and the second conductor is covered with an antioxidant film having a thickness of 0.05 ⁇ m or less except for a conductive portion, or without being covered with an antioxidant film. Expose to adhesive.
  • connection method, connection structure, or electronic device of the present invention the manufacturing cost can be reduced while simplifying the manufacturing process.
  • (A)-(d) is sectional drawing which shows the procedure of the assembly method of the electronic component which has the adhesive agent connection structure and solder connection structure which concern on 1st Embodiment. It is sectional drawing which shows Example 1 which concerns on 2nd Embodiment of the adhesive agent connection structure and solder connection structure which are formed between a flexible printed wiring board and an electronic component, and a motherboard. It is sectional drawing which shows Example 2 which concerns on 2nd Embodiment of an adhesive agent connection structure and a solder connection structure. (A)-(d) is sectional drawing which shows the procedure of the example 1 of the assembly method which concerns on 2nd Embodiment of the electronic component which has an adhesive agent connection structure and a solder connection structure.
  • (A)-(d) is sectional drawing which shows the procedure of the example 2 of the assembly method which concerns on 2nd Embodiment of the electronic component which has an adhesive agent connection structure and a solder connection structure. It is sectional drawing which shows the example 1 which concerns on 3rd Embodiment of the adhesive agent connection structure and solder connection structure which are formed between a flexible printed wiring board and an electronic component, and a motherboard. It is sectional drawing which shows Example 2 which concerns on 3rd Embodiment of an adhesive agent connection structure and a solder connection structure.
  • (A)-(c) is sectional drawing which shows the procedure of the assembly method which concerns on 3rd Embodiment of the electronic component which has an adhesive agent connection structure and a solder connection structure.
  • FIG. 1 is a perspective view schematically showing a structure of a portable terminal 100 which is an electronic apparatus according to an embodiment of the present invention.
  • the portable terminal 100 includes a display unit 103 for displaying various types of information, an input unit 104, and a hinge unit 105.
  • the display unit 103 is provided with a display device 106 using a liquid crystal display panel, a speaker, and the like.
  • the input unit 104 is provided with input keys and a microphone.
  • the hinge unit 105 connects the input unit 104 and the display unit 103 in a rotatable manner.
  • FIG. 2 is a cross-sectional view illustrating a configuration of a connection portion via the hinge portion 105 of the mobile terminal 100 according to the embodiment.
  • the display unit 103 is provided with a display unit casing 131 and a display unit substrate 135 as main members.
  • the display unit substrate 135 includes a circuit for sending a display signal to the display device 106.
  • the display unit casing 131 includes a first casing 131a and a second casing 131b that are connected to each other.
  • a through hole 133 is provided between the first housing 131a and the second housing 131b.
  • the input unit 104 is provided with an input unit casing 141 and an input key board 145 as main members.
  • the input key board 145 includes a circuit for controlling a signal sent from the input key.
  • the input unit housing 141 includes a first housing 141a and a second housing 141b that are connected to each other. A through hole 143 is provided between the first housing 141a and the second housing 141b.
  • the wiring body A that connects the input key substrate 145 and the display unit substrate 135 through the hinge unit 105 is provided.
  • the wiring body A includes an FPC 10 and an adhesive connection structure C provided at both ends of the FPC 10 with an anisotropic conductive adhesive 30 interposed therebetween.
  • the input key board 145 is provided with a solder connection structure D in which electronic components are joined by solder.
  • the display unit substrate 135 is also provided with a solder connection structure D in which electronic components are joined by solder.
  • FIG. 3 is a perspective view showing an end portion of the wiring body A before forming the adhesive connection structure C of the present embodiment.
  • the wiring body A has FPC10 (base material) and the electrode structure B provided in the edge part.
  • the FPC 10 generally has a structure including a base film 11 on which a circuit layer (see a broken line) is formed and a cover lay 13 that covers the base film 11.
  • the end portion of the circuit layer is an adhesive connecting electrode 12 for electrical connection with a connected conductor.
  • the material of the base film 11 of the FPC 10 includes polyimide resin, polyester resin, glass epoxy resin, and the like.
  • the material of the coverlay 13 generally, the same material as the base film is used.
  • epoxy resin, acrylic resin, polyimide resin, polyurethane resin, etc. are used.
  • the circuit layer of the FPC 10 is formed by laminating a metal foil such as a copper foil on the base film 11, and exposing and etching the metal foil by a conventional method.
  • the circuit layer is generally made of copper or a copper alloy.
  • the adhesive connecting electrode 12 is exposed, and generally, a gold plating layer that functions as an antioxidant film of the adhesive connecting electrode 12 is provided.
  • the adhesive connecting electrode 12 is provided with a gold plating layer or other noble metal plating layer (silver plating layer, platinum plating layer, palladium plating layer, etc.). Absent.
  • the adhesive connecting electrode 12 is covered with an organic film 15 as an antioxidant film instead of the noble metal plating layer.
  • the organic film 15 is formed by a water-soluble preflux process (OSP process: Organic Solderability Preservation).
  • OSP process Organic Solderability Preservation
  • a spray method, a shower method, a dipping method, or the like is used, and then it may be washed with water and dried.
  • the temperature of the water-soluble preflux is preferably 25 to 40 ° C.
  • the contact time between the water-soluble preflux and the adhesive connecting electrode 12 is preferably 30 to 60 seconds.
  • the water-soluble preflux is an acidic aqueous solution containing an azole compound.
  • the azole compound include imidazole, 2-undecylimidazole, 2-phenylimidazole, 2,4-diphenylimidazole, triazole, aminotriazole, pyrazole, benzothiazole, 2-mercaptobenzothiazole, benzimidazole, and 2-butyl.
  • Benzimidazole 2-phenylethylbenzimidazole, 2-naphthylbenzimidazole, 5-nitro-2-nonylbenzimidazole, 5-chloro-2-nonylbenzimidazole, 2-aminobenzimidazole, benzotriazole, hydroxybenzotriazole, carboxy Examples thereof include azole compounds such as benzotriazole.
  • the organic film 15 has a decomposition temperature higher than the solder reflow temperature when the solder connection structure D is formed.
  • the reflow temperature of lead-free solder is around 260 ° C. Therefore, as the organic film 15, a resin having a thermal decomposition temperature of 260 ° C. or higher, more preferably 300 ° C. or higher is used.
  • organic compounds that meet the above conditions include 2-phenyl-4-methyl-5-benzylimidazole, 2,4-diphenylimidazole, 2,4-diphenyl-5-methylimidazole and the like among the azole compounds.
  • Examples include 2-phenylimidazoles, and benzimidazoles such as 5-methylbenzimidazole, 2-alkylbenzimidazole, 2-arylbenzimidazole, and 2-phenylbenzimidazole.
  • the organic film 15 does not need to have a thermal decomposition temperature higher than the solder reflow temperature. Therefore, it is not restricted to the said compound.
  • the following effects can be exhibited.
  • a noble metal plating layer such as a gold plating layer is formed as an anti-oxidation film on an electrode for connecting an adhesive that is connected using an anisotropic conductive adhesive (ACF) or an insulating adhesive (NCF).
  • ACF anisotropic conductive adhesive
  • NCF insulating adhesive
  • the adhesive connecting electrode 12 is covered with an organic film 15 which is an OSP film instead of the noble metal plating layer.
  • the organic film 15 is formed by a spray method, a shower method, a dipping method, or the like, and then formed only by washing with water and drying. Therefore, the process of forming the antioxidant film is simplified as compared with the case where a noble metal plating layer such as a gold plating layer is formed.
  • connection strength shear strength
  • a member to be mounted with solder is often mounted on a wiring body such as the FPC 10.
  • the organic film 15 may be thermally decomposed.
  • the organic film 15 formed on the adhesive connecting electrode 12 has a thermal decomposition temperature higher than the solder reflow temperature. Therefore, even when the substrate on which the adhesive connecting electrode 12 is formed is passed through a solder reflow furnace, the organic film 15 remains reliably without being thermally decomposed.
  • the substrate on which the electrode structure B is provided is not limited to a flexible printed wiring board (FPC), but may be other types of wiring boards such as a hard printed wiring board (PWB), cable wiring, electronic components, connectors, and the like. Also good.
  • FPC flexible printed wiring board
  • PWB hard printed wiring board
  • cable wiring electronic components, connectors, and the like. Also good.
  • FIG. 4 is a cross-sectional view illustrating Example 1 according to the first embodiment of the adhesive connection structure C formed between the FPC 10 (flexible printed wiring board) and the mother board 20.
  • the adhesive connection structure C is formed using an insulating adhesive (NCF).
  • the mother board 20 includes a hard printed wiring board 21 and an adhesive connecting electrode 22 provided on the hard printed wiring board 21.
  • the mother board 20 is a PWB (rigid printed wiring board) corresponding to the display unit board 135 and the input key board 145 shown in FIG.
  • the FPC 10 is mounted on the mother board 20 with the adhesive connecting electrode 12 facing the lower side of the base film 11.
  • the adhesive connecting electrode 22 of the mother board 20 is formed by laminating a metal foil such as a copper foil on the hard printed wiring board 21, and exposing and etching the metal foil by a conventional method.
  • the adhesive connecting electrodes 12 and 22 are in strong contact with each other and are electrically connected by the fastening force of the adhesive 30 which is NCF.
  • the adhesive 30 has a thermosetting resin as a main component and is added with a curing agent and various fillers.
  • the thermosetting resin include an epoxy resin, a phenol resin, a polyurethane resin, an unsaturated polyester resin, a urea resin, and a polyimide resin.
  • an epoxy resin as the thermosetting resin, it is possible to improve film formability, heat resistance, and adhesive strength.
  • the adhesive 30 should just have at least 1 sort (s) as a main component among the above-mentioned thermosetting resins.
  • the epoxy resin to be used is not particularly limited.
  • bisphenol A type, F type, S type, AD type, or a copolymer type epoxy resin of bisphenol A type and bisphenol F type, or naphthalene type epoxy is used.
  • Resin, novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin and the like can be used.
  • a phenoxy resin that is a high molecular weight epoxy resin can also be used.
  • each of the adhesive connection electrodes 12 and 22 was covered with an organic film for preventing oxidation, but was removed after a solder reflow process.
  • the organic film 15 may be left on the surface of any one of the electrodes (for example, the adhesive connecting electrode 12) (see the broken line in FIG. 4).
  • the organic film 15 may be thinned to about 0.05 ⁇ m or less, for example. In order to remove or thin these organic films, the organic film is brought into contact with the acidic liquid or its vapor.
  • the organic film is immersed in these solutions, or the acidic liquid or vapor is sprayed onto the organic film.
  • There are methods such as wiping the organic film with a cloth containing a liquid containing these acids. It has been confirmed that the organic film is removed or thinned by these treatments. And if it is before the grace time of about 3 days passes after removing an organic film, the connection by the adhesive agent 30 will hardly produce an oxide film on the surface of each adhesive agent connection electrode 12 and 22. A process can be performed. If the organic film is not completely removed but left a little, the grace time is further increased. Even when stored in a low temperature, low humidity, or non-oxidizing atmosphere, the grace time becomes longer.
  • the adhesive 30 is heated and melted through the FPC 10 while pressing the adhesive 30 in the direction of the mother board 20 at a predetermined pressure (hereinafter referred to as “heat-pressing process”).
  • heat-pressing process a predetermined pressure
  • the thermosetting resin in the adhesive 30 is cured, and the FPC 10 and the adhesive connecting electrodes 12 and 22 of the mother board 20 are brought into strong contact with each other and are made conductive by the tightening force accompanying the shrinkage.
  • a part (conductive portion) of the adhesive connecting electrode 12 is electrically connected to each other without being covered with the organic film 15.
  • the adhesive connecting electrode 12 of the FPC 10 is processed so that the surface becomes rough by etching.
  • etching not only etching but machining such as embossing may be used.
  • machining such as embossing may be used.
  • the organic film 15 may be hardened when at least one of the FPC 10 and the mother board 20 undergoes a solder reflow process or is left for a long time and exposed to ultraviolet rays.
  • the electrical connection between the adhesive connecting electrodes 12 and 22 is hindered by the organic film, and the connection resistance for electrical connection may increase.
  • the organic film tends to harden.
  • the organic film formed by the OSP process has a range of hardness depending on the type of the constituent material, and sometimes it may be necessary to use a considerably hard material.
  • the protrusion of the adhesive connecting electrode 12 is less likely to break through the hardened organic film, resulting in an increase in connection resistance.
  • the connecting step is performed, so that the protrusion of the adhesive connecting electrode 12 and the adhesive connecting electrode are used.
  • the electrode 22 easily comes into contact. If the organic film on one electrode does not go through the solder reflow process, it is easy for the protrusions of the adhesive connecting electrode 12 to break through the organic film, so it is necessary to remove or thin the organic film. Absent. Accordingly, it is possible to suppress the occurrence of poor conduction (such as an increase in connection resistance) between the adhesive connecting electrode 12 and the adhesive connecting electrode 22 (connected conductor).
  • the average film thickness of the organic film is within an appropriate range (for example, 0.05 ⁇ m or more and 0.5 ⁇ m or less) in order to achieve reliable conduction between conductors. It is necessary to manage such as storing or increasing the area ratio of the region having a small film thickness (for example, the area of the region having a thickness of 0.1 ⁇ m or less is set to 30% or more of the entire organic film). On the other hand, in this embodiment, since the organic film is removed or thinned, no problem occurs even if the thickness of the organic film during the OSP process is 0.5 ⁇ m or more, for example.
  • FIG. 5 is a cross-sectional view showing an example 2 of the adhesive connection structure C according to the first embodiment.
  • an adhesive 30 that is an anisotropic conductive adhesive (ACF) is used. That is, the adhesive 30 of this example is one in which conductive particles 36 are included in a resin composition 31 containing a thermosetting resin as a main component.
  • ACF anisotropic conductive adhesive
  • the mother board 20 has a hard printed wiring board 21 and an adhesive connecting electrode 22 provided on the hard printed wiring board 21. Also in this example, the surfaces of the adhesive connecting electrode 12 and the adhesive connecting electrode 22 are both covered with the organic film 15 except for the conductive portion.
  • the adhesive connecting electrodes 12 and 22 are electrically connected to each other through the conductive particles 36.
  • the conductive particles 36 are made of a metal powder having a shape in which a large number of fine metal particles are connected in a straight chain or a needle shape. Also in this example, there may be a place where the adhesive connecting electrodes 12 and 22 are in direct contact with each other as in Example 1 according to the first embodiment.
  • the adhesive connecting electrodes 12 and 22 were covered with the organic film before the adhesive connecting structure C was formed, but are removed or thinned after the solder reflow process.
  • the FPC 10 does not go through the solder reflow process, it is not necessary to remove or thin the organic film 15 indicated by a broken line in the drawing.
  • the specific method of removing or thinning the organic film is as described in Example 1.
  • thermosetting resin in the adhesive 30 is cured by the above-described heat and pressure treatment, and the adhesive connecting electrodes 12 and 22 are connected to each other via the conductive particles 36 by the tightening force accompanying the shrinkage.
  • conductive resin 36 having a shape in which a number of fine metal particles are linearly connected or a needle shape is included in resin composition 31 from the beginning.
  • a resin composition 31 in which conductive particles made of fine metal particles are randomly dispersed may be used. Even in that case, by performing the heating and pressurizing treatment, the adhesive connecting electrodes 12 and 22 have a shape in which a large number of fine metal particles are connected.
  • thermosetting resin examples include an epoxy resin, a phenol resin, a polyurethane resin, an unsaturated polyester resin, a urea resin, and a polyimide resin.
  • the anisotropic conductive adhesive should just have at least 1 sort (s) as a main component among the above-mentioned thermosetting resins.
  • the epoxy resin to be used is not particularly limited.
  • bisphenol A type, F type, S type, AD type, or a copolymer type epoxy resin of bisphenol A type and bisphenol F type, or naphthalene type epoxy is used.
  • Resin, novolac type epoxy resin, biphenyl type epoxy resin, dicyclopentadiene type epoxy resin and the like can be used.
  • a phenoxy resin that is a high molecular weight epoxy resin can also be used.
  • the molecular weight of the epoxy resin can be appropriately selected in consideration of the performance required for the anisotropic conductive adhesive.
  • a high molecular weight epoxy resin is used, the film-forming property is high, the melt viscosity of the resin at the connection temperature can be increased, and there is an effect that the connection can be made without disturbing the orientation of conductive particles described later.
  • a low molecular weight epoxy resin is used, the effect of increasing the crosslink density and improving the heat resistance is obtained.
  • the compounding quantity of a high molecular weight epoxy resin and a low molecular weight epoxy resin can be selected suitably.
  • the “average molecular weight” here refers to a polystyrene-reduced weight average molecular weight obtained from gel permeation chromatography (GPC) developed with THF.
  • an adhesive containing a latent curing agent can be used.
  • This latent curing agent is a curing agent that is excellent in storage stability at a low temperature and hardly undergoes a curing reaction at room temperature, but rapidly undergoes a curing reaction by heat or light.
  • This latent curing agent includes imidazole series, hydrazide series, boron trifluoride-amine complex, amine imide, polyamine series, tertiary amine, alkyl urea series and other amine series, dicyandiamide series, acid anhydride series, and phenol series. These modified products are exemplified, and these can be used alone or as a mixture of two or more.
  • imidazole-based latent hardeners are preferably used from the viewpoint of excellent storage stability at low temperatures and fast curability.
  • the imidazole-based latent curing agent a known imidazole-based latent curing agent can be used. More specifically, an adduct of an imidazole compound with an epoxy resin is exemplified. Examples of the imidazole compound include imidazole, 2-methylimidazole, 2-ethylimidazole, 2-propylimidazole, 2-dodecylimidazole, 2-finylimidazole, 2-finyl-4-methylimidazole, and 4-methylimidazole. .
  • Example 2 the same effect as Example 1 according to the first embodiment can be exhibited by removing or thinning the organic film that has undergone the solder reflow process.
  • the adhesive connecting electrodes 12 and 22 are electrically connected to each other through the conductive particles 36.
  • an anisotropic conductive adhesive for example, an insulating thermosetting resin such as the above-described epoxy resin is a main component, and fine metal particles (for example, spherical metal fine particles or Conductive particles 36 formed of metal powder having a shape in which a large number of metal fine particles made of spherical resin particles plated with metal) are connected in a linear shape or a needle shape, that is, a shape having a large aspect ratio is dispersed.
  • the aspect ratio referred to here is the ratio of the short diameter (cross-sectional length of the conductive particles 36) R and the long diameter (length of the conductive particles 36) L of the conductive particles 36 shown in FIG. Say.
  • the anisotropic conductive adhesive By using such conductive particles 36, as the anisotropic conductive adhesive, the surface direction of the anisotropic conductive adhesive (the direction perpendicular to the thickness direction X and the direction of the arrow Y in FIG. 5). In the thickness direction X, a large number of the adhesive connecting electrodes 22 and the adhesive connecting electrodes 12 are separated from each other at a time while maintaining insulation between adjacent electrodes to prevent short circuit. And low resistance can be obtained.
  • this anisotropic conductive adhesive a magnetic field applied in the direction of the long diameter L of the conductive particles 36 in the thickness direction X of the anisotropic conductive adhesive at the time of forming the film-like anisotropic conductive adhesive. It is preferable to use it in the thickness direction X by passing through the inside. With such an orientation, the above-described insulation between adjacent electrodes is maintained to prevent a short circuit, and a large number of adhesive connecting electrodes 22 and adhesive connecting electrodes 12 are connected at once and each. The effect that the conductive connection can be made independently is further improved.
  • the metal powder used in the present invention preferably contains a ferromagnetic material in part, such as a single metal having ferromagnetism, two or more kinds of alloys having ferromagnetism, a metal having ferromagnetism and others. It is preferably any one of an alloy with the above metal and a composite containing a metal having ferromagnetism. This is because by using a metal having ferromagnetism, the magnetic properties of the metal itself enable the metal particles to be oriented using a magnetic field. For example, nickel, iron, cobalt, and two or more kinds of alloys containing these can be used.
  • the aspect ratio of the conductive particles 36 is preferably 5 or more.
  • the aspect ratio of the conductive particles 36 is directly measured by a method such as observation with a CCD microscope.
  • the aspect ratio is obtained by setting the maximum length of the cross section as the short diameter.
  • the conductive particles 36 do not necessarily have a straight shape, and can be used without any problems even if they are slightly bent or branched. In this case, the aspect ratio is obtained with the maximum length of the conductive particles 36 as the major axis.
  • FIGS. 7A to 7D are cross-sectional views showing the procedure of the connection method according to the first embodiment for realizing the adhesive connection structure C and the solder connection structure D.
  • FIG. 7A a mother board 20 (common base material) having an adhesive connection region Rc and a solder connection region Rd is prepared.
  • an adhesive connection electrode 22 for adhesive connection is provided in the adhesive connection region Rc
  • a solder connection electrode 26 for solder connection is provided in the solder connection region Rd.
  • the organic film 15 that covers the adhesive connecting electrodes 22 and 26 is formed.
  • the thermal decomposition temperature of the organic film 15 is higher than the solder reflow temperature.
  • a protective film covering the organic film 15 may be formed only in the adhesive connection region Rc.
  • the organic film 15 is covered with an adhesive tape or the like.
  • a protective film other than the adhesive tape can also be used.
  • the electronic component 40 having the chip-side electrode 42 on a part of the chip 41 is mounted in the solder connection region Rd.
  • the chip-side electrode 42 is aligned with the position of the solder connection electrode 26, and lead-free solder is interposed between the electrodes 26 and 42.
  • the mother board 20 and the electronic component 40 are put into a solder reflow furnace having a peak temperature of about 260 ° C. to reflow the solder.
  • the electrodes 26 and 42 are joined to each other via the solder layer 50, so that the electrodes 26 and 42 are electrically connected to each other.
  • the solder connection structure D is formed in the solder connection region Rd.
  • the above-described organic film 15 is removed.
  • the organic film 15 is brought into contact with the acidic liquid or its vapor.
  • the mother board 20 and the electronic component 40 are immersed in an acidic liquid at a temperature of 30 ° C. for about 1 minute, or the acidic liquid or its vapor is sprayed onto the organic film 15.
  • the influence on other members can be suppressed.
  • the adhesive connecting electrode 22 and the adhesive connecting electrode 12 of the FPC 10 are used in the process shown in FIG. Are electrically connected by bonding with an adhesive 30.
  • the procedure for forming the adhesive connection structure C is as described in Example 2 (see FIG. 5) of the adhesive connection structure.
  • the organic film 15 covering the adhesive connecting electrode 12 on the FPC 10 is also removed or thinned. However, when the FPC 10 does not go through the solder reflow process, it is not necessary to remove or thin the organic film 15.
  • the adhesive 30 (anisotropic conductive adhesive) containing the conductive particles 36 is mainly composed of a thermosetting resin. Therefore, the anisotropic conductive adhesive is once softened when heated, but is cured by continuing the heating. And when the preset curing time of the anisotropic conductive adhesive has elapsed, the maintenance state of the curing temperature of the anisotropic conductive adhesive and the pressure state are released, and cooling is started.
  • the adhesive connecting electrodes 12 and 22 are connected to each other through the conductive particles 36 in the adhesive 30, and the FPC 10 is mounted on the mother board 20.
  • FIG. 7A to 7D show an example in which the adhesive connection structure C and the solder connection structure D are formed on the mother board 20 which is a PWB.
  • the adhesive connection structure C and the solder connection structure D may be formed on the FPC 10 using the FPC 10 as a common base material.
  • the mother substrate 20 shown in FIG. 7 is replaced with the FPC 10, and the organic film 15 is formed on the adhesive connecting electrode 12.
  • the processing procedure is as described above.
  • the FPC has not only a single-sided circuit type structure but also a double-sided circuit type structure. In the case of a double-sided circuit type structure, it is put in the solder reflow furnace twice.
  • connection method of the present embodiment in addition to the effects of the electrode structure B and the adhesive connection structure C, the following effects can be exhibited.
  • the organic film 15 is formed on both the solder connection electrode 26 and the adhesive connection electrode 22, and then the solder connection is performed. Connection by adhesive will be performed. This is because, when the adhesive is connected first, the adhesive is loosened during the solder reflow process, and the probability of connection failure increases. On the other hand, the organic film may be thermally decomposed during the solder reflow process.
  • the connection method of the present embodiment in the step shown in FIG.
  • the organic film 15 formed on the adhesive connecting electrode 22 has a thermal decomposition temperature higher than the solder reflow temperature. Therefore, even in the step shown in FIG. 7B, the organic film 15 remains reliably without being thermally decomposed. In addition, if a protective film is formed on the organic film 15, the organic film 15 can remain more reliably. Therefore, the solder connection structure D and the adhesive connection structure C can be more reliably formed.
  • the organic film 15 covering the solder connection electrode 26 reacts with the flux contained in the lead-free solder and melts into the solder layer 50 even if the thermal decomposition temperature is higher than the solder reflow temperature. Accordingly, there is no problem in forming the solder connection structure D.
  • gold plating is generally performed for the purpose of avoiding discoloration. In the present embodiment, it is not necessary to apply gold plating to any electrode of the mother board 20. As described above, since the organic film 15 reacts with the flux and dissolves in the solder layer 50, the organic film 15 by OSP treatment can be selected on the solder connection electrode 26 instead of gold plating. Therefore, the effect of reducing the manufacturing cost can be remarkably exhibited.
  • the connection strength (shear strength) between the electrodes 26 and 42 can be improved.
  • the connection for electrically connecting the adhesive connection electrodes 12 and 22 is compared with the case where the adhesive connection structure C is not passed. Resistance may increase. It is considered that this is because the conductive particles 36 are difficult to break through the organic film 15 due to deterioration such as the organic film 15 is hardened by being heated in the solder reflow furnace.
  • the conductive particles can easily break through the organic film 15 cured by the solder reflow process. Therefore, even if the adhesive connection structure C is formed after the organic film 15 passes through the solder reflow furnace, the electrical connection resistance between the electrodes 12 and 22 can be more reliably suppressed. Further, it is not necessary to strictly manage the average film thickness of the organic film 15 during the OSP process or the area ratio of the region having a small film thickness.
  • the following effects can be obtained in the present embodiment.
  • the surfaces of the adhesive connection electrode 22 of the mother board 20 and the adhesive connection electrode 12 of the FPC 10 are subjected to OSP treatment to form an antioxidant film.
  • Each of the organic films 15 is formed.
  • the process of forming the antioxidant film is simplified as compared with the case where the adhesive connecting electrodes 12 and 22 are covered with the gold plating layer.
  • the material cost is reduced as compared with the case of using a noble metal such as gold. As a result, it is possible to reduce the manufacturing cost when connecting the adhesive connecting electrodes 12 and 22 to each other.
  • the conductive particles 36 are removed because the organic film 15 is removed or thinned before connection by the adhesive 30. It becomes easy to break through the organic film 15. Therefore, it is possible to suppress the deterioration of the conductivity between the adhesive connecting electrodes 12 and 22 caused by the conductive particles 36 not breaking through the organic film 15. Further, it is not necessary to strictly manage the average film thickness of the organic film 15 and the area ratio of the region where the film thickness is small during the OSP process.
  • the conductive particles 36 in the adhesive 30 that is the anisotropic conductive adhesive to be used are a metal powder having a shape in which a number of fine metal particles are connected in a straight chain, or a needle shape. It is comprised by.
  • the Y direction which is the surface direction of the adhesive 30
  • adhesion is maintained while maintaining insulation between adjacent adhesive connection electrodes 22 or between the adhesive connection electrodes 12 to prevent a short circuit.
  • the X direction which is the thickness direction of the agent 30, it is possible to obtain a low resistance by electrically connecting the adhesive connecting electrodes 22 and the adhesive connecting electrodes 12 at once and independently. It becomes.
  • the conductive particles 36 have an aspect ratio of 5 or more. According to this configuration, when an anisotropic conductive adhesive is used, the contact probability between the conductive particles 36 is increased. As a result, it becomes easy to electrically connect the adhesive connecting electrodes 12 and 22 to each other without increasing the blending amount of the conductive particles 36.
  • the adhesive 30 anisotropic conductive adhesive
  • one having a film shape is used as the adhesive 30 (anisotropic conductive adhesive) before forming the adhesive connection structure C. According to this configuration, the anisotropic conductive adhesive can be easily handled. Moreover, the workability
  • the conductive particles 36 having the major axis direction oriented in the X direction which is the thickness direction of the adhesive 30 (anisotropic conductive adhesive) having a film shape
  • the conductive particles 36 having the major axis direction oriented in the X direction which is the thickness direction of the adhesive 30 (anisotropic conductive adhesive) having a film shape
  • the Y direction which is the surface direction of the adhesive 30
  • adhesion is maintained while maintaining insulation between adjacent adhesive connection electrodes 22 or between the adhesive connection electrodes 12 to prevent a short circuit.
  • the X direction which is the thickness direction of the agent 30, it is possible to obtain a low resistance by electrically connecting the adhesive connecting electrodes 22 and the adhesive connecting electrodes 12 at once and independently. It becomes.
  • the flexible printed wiring board (FPC 10) is connected to the hard printed wiring board (PWB) which is the mother board 20.
  • PWB hard printed wiring board
  • a hard printed wiring board PWB
  • a flexible printed wiring board FPC
  • the adhesive connection structure C is used for connecting electrodes of the FPC 10 and the mother board 20 that is PWB, but the adhesive connection structure of the present invention is not limited to this.
  • an adhesive connection structure C may be used between a protruding electrode (or bump) of an electronic component such as an IC chip as a conductor and an electrode on a PWB or FPC.
  • PWB may be mounted on the mother board 20.
  • electronic components may be mounted instead of the FPC 10.
  • the water-soluble preflux treatment is performed on the adhesive connecting electrodes 12 and 22 as the OSP treatment, but the OSP treatment may be a heat-resistant preflux treatment, for example.
  • the acidic aqueous solution containing an azole compound as a water-soluble preflux process, another aqueous solution may be sufficient.
  • both the adhesive connection electrodes 12 and 22 are subjected to the OSP process.
  • only one of the adhesive connection electrodes 12 or 22 may be subjected to the OSP process.
  • a noble metal plating layer such as a gold plating layer is formed on the other adhesive connecting electrode 22 or 12, but the effect (1) of the embodiment can also be obtained by this.
  • Example 1 (Create adhesive)
  • the conductive particles linear nickel fine particles having a long diameter L distribution of 1 ⁇ m to 10 ⁇ m and a short diameter R distribution of 0.1 ⁇ m to 0.4 ⁇ m were used.
  • Insulating thermosetting resins include two types of bisphenol A-type solid epoxy resins (trade name Epicoat 1256 and (2) Epicoat 1004 manufactured by Japan Epoxy Resin Co., Ltd.), naphthalene type epoxy.
  • Resin (3) manufactured by Dainippon Ink and Chemicals, trade name: Epicron 4032D
  • a thermoplastic polyvinyl butyral resin [(4) manufactured by Sekisui Chemical Co., Ltd., trade name S REC BM-1]
  • a microcapsule type latent curing agent (5) a microcapsule type imidazole type is used.
  • a curing agent trade name NOVACURE HX3941 manufactured by Asahi Kasei Epoxy Co., Ltd.
  • these (1) to (5) are (1) 35 / (2) 20 / (3) 25 / (4) 10 in weight ratio.
  • a flexible printed wiring board was prepared in which 30 adhesive connection electrodes, which are copper electrodes having a width of 150 ⁇ m, a length of 4 mm, and a height of 18 ⁇ m, were arranged at intervals of 150 ⁇ m.
  • an antioxidant film containing 2-phenyl-4-methyl-5-benzylimidazole was formed on the adhesive connecting electrode.
  • the thermal decomposition temperature was 310 ° C.
  • the average film thickness was 0.10 ⁇ m
  • the area ratio of the region having a thickness of 0.1 ⁇ m or less was 60%.
  • connection resistance value at 30 consecutive points connected via the adhesive connecting electrode, the adhesive, and the adhesive connecting electrode is obtained by the four-terminal method, and the obtained value is divided by 30.
  • the connection resistance per connected place was obtained.
  • this evaluation was repeated 10 times and the average value of connection resistance was calculated
  • connection reliability evaluation The connection body prepared as described above was allowed to stand for 500 hours in an 85 ° C., 85% RH high-temperature and high-humidity tank, and the connection resistance was measured in the same manner as described above. And when the rate of increase in connection resistance was 50% or less, it was judged that the connection reliability was good.
  • Example 2 A joined body of flexible printed wiring boards is formed in the same manner as in Example 1 except that the average film thickness of the antioxidant film is 0.60 ⁇ m and the area ratio of the region where the thickness is 0.1 ⁇ m or less is 2%. Obtained. Thereafter, connection resistance evaluation and connection reliability evaluation were performed under the same conditions as in Example 1.
  • Example 1 A joined body of flexible printed wiring boards was obtained in the same manner as in Example 2 except that the immersion treatment in an aqueous hydrochloric acid solution was not performed after the solder reflow treatment. Then, connection resistance evaluation and connection reliability evaluation were performed on the same conditions as the above-mentioned Example 1.
  • the thermal decomposition temperature was measured using differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the heat generation start temperature when the temperature is raised at a rate of 10 ° C./min is defined as a thermal decomposition temperature.
  • the film thickness measurement The cross section of the adhesive connecting electrode on which the antioxidant film is formed is observed. The film thickness is measured at intervals of 0.2 ⁇ m, and the area ratio of the region having an average film thickness of 0.1 ⁇ m or less is calculated.
  • Table 1 shows the results of connection resistance evaluation and connection reliability evaluation of Examples 1 and 2 and the comparative example according to the first embodiment.
  • the initial connection resistance is 50 m ⁇ or less, and the connection resistance is sufficiently small and good.
  • the rate of increase in resistance is 50% or less, it can be seen that the connection reliability is also good.
  • Comparative Example 1 the initial connection resistance was as high as 50 m ⁇ or more.
  • the connection was opened after standing in a high-temperature and high-humidity tank for 500 hours, and the resistance increase rate was ⁇ (infinite).
  • FIG. 8 is a cross-sectional view illustrating Example 1 according to the second embodiment of the adhesive connection structure C and the solder connection structure D formed between the FPC 210 (flexible printed wiring board) and the electronic component 240 and the mother board 220.
  • the adhesive connection structure C is formed using an insulating adhesive (NCF).
  • the mother board 220 includes a hard printed wiring board 221, an adhesive connecting electrode 222 and a solder connecting electrode 226 provided on the hard printed wiring board 221.
  • the mother board 220 is a PWB (rigid printed wiring board) corresponding to the display unit board 135 and the input key board 145 shown in FIG.
  • the FPC 210 is mounted on the mother board 220 with the adhesive connecting electrode 212 (connected conductor) facing the lower side of the base film 211.
  • the electronic component 240 includes a chip-side electrode 242 (soldered connection conductor) in a part of the chip 241, and the chip-side electrode 242 is arranged facing the lower side of the chip 241.
  • the adhesive connecting electrode 222 and the solder connecting electrode 226 of the mother board 220 are formed by laminating a metal foil such as a copper foil on the hard printed wiring board 221, and exposing and etching the metal foil in a usual manner. Has been.
  • the electrodes 212 and 222 are in strong contact with each other and are electrically connected by the tightening force of the adhesive 230 that is NCF.
  • the electrodes 226 and 242 are electrically connected to each other due to the alloying of the solder layer 250 and the electrodes 226 and 242.
  • the adhesive 230 has a thermosetting resin as a main component and is added with a curing agent and various fillers. Since components and the like are the same as those of the adhesive 30 according to the first embodiment, description thereof is omitted.
  • the solder connection electrodes 226 and 242 are covered with an organic film formed by an OSP process described later.
  • the organic film on the solder connection electrode 226 and the solder connection electrode 242 is dissolved in the solder layer 250.
  • the protective film similar to the organic film 15 shown in FIG. 3 was attached to the adhesive connecting electrode 222 and the adhesive connecting electrode 212, but was removed after the solder reflow process was completed ( (See FIGS. 10B and 10C described later).
  • an organic film 215 by OSP treatment may be formed on the surface of the adhesive connecting electrode 212 (see the broken line in FIG. 8).
  • the thermally decomposed organic film is removed, and then the adhesive 230 is heated and melted while being pressed at a predetermined pressure in the direction of the mother substrate 220 through the FPC 210 (heating applied). Pressure treatment).
  • the thermosetting resin in the adhesive 230 is cured, and the FPC 210 and the electrodes 212 and 222 of the mother board 220 are brought into strong contact with each other and are made conductive by the tightening force accompanying the shrinkage.
  • a part (conductive portion) of the adhesive connecting electrode 212 is electrically connected to each other without being covered with the organic film 215.
  • the adhesive connecting electrode 212 of the FPC 210 is processed so that the surface becomes rough by etching.
  • etching not only etching but machining such as embossing may be used.
  • the electrode 212 is covered with the organic film 215, if there is a protrusion on the surface of at least one of the electrodes, the protrusion breaks through the organic film 215, so that both the electrodes 212 and 222 can be in contact with each other.
  • the surface of the adhesive electrode 212 does not necessarily have to be processed rough, but it is easier to ensure contact if the surface is processed rough.
  • a bump may be disposed between the electrodes 212 and 222.
  • Example 1 the following effects can be exhibited in addition to the effects of the electrode structure.
  • the adhesive connecting electrode 222 is covered with an organic film obtained by OSP processing to be described later, the organic film is hardened by the solder substrate reflow process.
  • the connection resistance for electrically connecting the electrodes 212 and 222 is increased.
  • the organic film tends to harden.
  • the protruding portion of the adhesive connecting electrode 212 is difficult to break through the hardened organic film, resulting in an increase in connection resistance.
  • connection step is performed without forming an organic film on each of the electrodes 212 and 222, so that the protrusion of the adhesive connecting electrode 12 and the adhesive connecting electrode 222 are easy. To touch.
  • FIG. 9 is a cross-sectional view illustrating Example 2 according to the second embodiment of the adhesive connection structure C and the solder connection structure D.
  • an adhesive 230 that is an anisotropic conductive adhesive (ACF) is used. That is, the adhesive 230 of this example is one in which conductive particles 236 are included in a resin composition 231 mainly composed of a thermosetting resin.
  • the mother board 220 has a hard printed wiring board 221, an adhesive connecting electrode 222 and a solder connecting electrode 226 provided on the hard printed wiring board 221. Also in this example, neither the gold plating layer nor the organic film by OSP treatment is formed on the surfaces of the adhesive connecting electrode 212 and the adhesive connecting electrode 222.
  • the electrodes 212 and 222 are electrically connected to each other through the conductive particles 236.
  • the conductive particles 236 are made of a metal powder having a shape in which a number of fine metal particles are connected in a straight chain or a needle shape. Also in this example, there may be a place where the electrodes 212 and 222 are in direct contact with each other as in Example 1 according to the second embodiment.
  • the electrodes 226 and 242 are covered with an organic film similar to the organic film 15 shown in FIG.
  • the organic film on the solder connection electrode 226 and the solder connection electrode 242 is dissolved in the solder layer 250.
  • a removable protective film was provided on the adhesive connecting electrode 222 and the adhesive connecting electrode 212, but it was removed after the solder reflow process.
  • an organic film 215 indicated by a broken line in the drawing may be provided on the adhesive connecting electrode 222 of the FPC 10.
  • the thermosetting resin in the adhesive 230 is cured by the above-described heat and pressure treatment, and the electrodes 212 and 222 are connected to each other via the conductive particles 236 by the tightening force accompanying the shrinkage.
  • the resin composition 231 includes conductive particles 236 having a shape in which a large number of fine metal particles are linearly connected or a needle shape.
  • a resin composition 231 in which conductive particles made of fine metal particles are randomly dispersed may be used. Even in such a case, by performing the heating and pressurizing treatment, the electrodes 212 and 222 have a shape in which a large number of fine metal particles are connected.
  • Example 2 according to the second embodiment As in Example 2 according to the second embodiment, as in Example 2 according to the first embodiment, it is widely used, that is, an insulating material such as an epoxy resin.
  • a resin composition in which conductive particles 36 are dispersed in a resin composition containing a thermosetting resin as a main component can be used. Since the components and the like are the same as in Example 2 according to the first embodiment, the description thereof is omitted.
  • the adhesive connection electrodes 212 and 222 are provided with neither an organic film by OSP treatment nor a noble metal plating layer such as a gold plating layer, and thus the example according to the second embodiment. 1 can be exhibited. However, in this example, the electrodes 212 and 222 are electrically connected to each other through the conductive particles 236.
  • an anisotropic conductive adhesive having the shape shown in FIG. 6 according to the first embodiment can be used.
  • FIGS. 10A to 10D are cross-sectional views showing the procedure in Example 1 according to the second embodiment of the connection method for realizing the adhesive connection structure C and the solder connection structure D.
  • FIG. 10A a mother board 220 (common base material) having an adhesive connection region Rc and a solder connection region Rd is prepared.
  • an adhesive connection electrode 222 for adhesive connection is provided in the adhesive connection region Rc
  • a solder connection electrode 226 for solder connection is provided in the solder connection region Rd.
  • an organic film 225 that covers only the solder connection electrode 226 is formed.
  • a removable protective film 228 covering the adhesive connecting electrode 222 is formed.
  • the adhesive connecting electrode 222 is covered with an adhesive tape or the like.
  • a protective film 228 other than the adhesive tape may be used, but it must withstand the temperature of the solder reflow process and be removable.
  • the organic film 225 is formed by a water-soluble preflux process (OSP process: Organic Solderability Preservation), as in the first embodiment.
  • OSP process Organic Solderability Preservation
  • the electronic component 240 having the chip-side electrode 242 on a part of the chip 241 is mounted in the solder connection region Rd.
  • lead-free solder is interposed between the electrodes 226 and 242 with the chip-side electrode 242 aligned with the position of the solder connection electrode 226.
  • the mother board 220 and the electronic component 240 are put in a solder reflow furnace having a peak temperature of about 260 ° C. to reflow the solder.
  • the electrodes 226 and 242 are joined to each other via the solder layer 250, so that the electrodes 226 and 242 are electrically connected to each other.
  • the solder connection structure D is formed in the solder connection region Rd.
  • the organic film 225 covering the solder connection electrode 226 reacts with the flux contained in the lead-free solder and is dissolved in the solder layer 250.
  • the protective film 228 on the adhesive connecting electrode 222 is removed. As a result, the adhesive connecting electrode 222 is exposed.
  • the adhesive connection electrode 222 and the FPC 210 are connected in the process shown in FIG.
  • the electrode 212 is electrically connected by bonding with an adhesive 230.
  • the adhesive connection structure C is formed in the adhesive connection region Rc.
  • the procedure for forming the adhesive connection structure C is as described in Example 2 (see FIG. 9) according to the second embodiment of the adhesive connection structure.
  • the protective film is also provided on the adhesive connection electrode 212 of the FPC 210, but it is removed immediately before connection with the adhesive 230.
  • the adhesive 230 (anisotropic conductive adhesive) containing the conductive particles 236 is mainly composed of a thermosetting resin. Therefore, the anisotropic conductive adhesive is once softened when heated, but is cured by continuing the heating. And when the preset curing time of the anisotropic conductive adhesive has elapsed, the maintenance state of the curing temperature of the anisotropic conductive adhesive and the pressure state are released, and cooling is started.
  • the electrodes 212 and 222 are connected to each other via the conductive particles 236 in the adhesive 230, and the FPC 210 is mounted on the mother board 220.
  • FIGS. 10A to 10D show an example in which an adhesive connection structure C and a solder connection structure D are formed on a mother board 220 that is a PWB.
  • the adhesive connection structure C and the solder connection structure D may be formed on the FPC 210 using the FPC 210 as a common base material.
  • the mother substrate 220 shown in FIG. 10 is replaced with the FPC 210, and the organic film 215 is formed on the adhesive connecting electrode 212.
  • the processing procedure is as described above.
  • the FPC has not only a single-sided circuit type structure but also a double-sided circuit type structure. In the case of a double-sided circuit type structure, it is put in the solder reflow furnace twice.
  • connection method According to the connection method according to the second embodiment, the following effects can be exhibited.
  • the organic film 225 is formed on both the solder connection electrode 226 and the adhesive connection electrode 222, and then the solder connection is performed. Connection by adhesive will be performed. This is because, when the adhesive is connected first, the adhesive is loosened during the solder reflow process, and the probability of connection failure increases.
  • the adhesive connection structure C is formed after the solder reflow process, the connection resistance for electrical connection between the electrodes 212 and 222 is increased as compared with the case where the adhesive connection structure C is not passed. There is a fear.
  • a removable protective film 228 is formed on the adhesive connecting electrode 222 without forming an organic film.
  • the surface of the adhesive connecting electrode 222 is covered with the protective film 228, and the solder reflow process is performed while suppressing the formation of the oxide film.
  • the protective film 228 is removed. As a result, in the step shown in FIG.
  • the conductive particles 236 in the adhesive 230 easily come into contact with the adhesive connecting electrodes 212 and 222 without going through the organic film, and the adhesive connecting electrode The electrodes 212 and 222 can be reliably conducted. Therefore, even if the adhesive connection structure C is formed after the organic films 215 and 225 have passed through the solder reflow furnace, the electrical connection resistance between the electrodes 212 and 222 can be more reliably suppressed.
  • a noble metal plating layer such as a gold plating layer may be provided as an antioxidant film on the solder connection electrode 226, but by providing an organic film 225 by OSP treatment, The following effects are obtained. Even when a noble metal plating layer such as a gold plating layer is provided as an anti-oxidation film on the solder connection electrode 226, it is not necessary to perform the OSP process to cover the adhesive connection electrode 222, thereby reducing the manufacturing cost. The reduction effect can be obtained.
  • FIGS. 11A to 11D are cross-sectional views showing the procedure in Example 2 according to the second embodiment of the connection method for realizing the adhesive connection structure C and the solder connection structure D.
  • FIG. 11 the same members as those shown in FIG. In FIGS. 11A to 11D, processing is basically performed in the same procedure as in FIGS. 10A to 10D in Example 1 according to the second embodiment. Therefore, the description of the same processing as Example 1 according to the second embodiment is omitted, and only different processing is described.
  • no protective film is provided on the adhesive connecting electrode 222. Therefore, a thin oxide film 222a is formed on the adhesive connecting electrode 222 in the solder reflow process shown in FIG.
  • the atmosphere in the solder reflow furnace is maintained in a non-oxidizing atmosphere having a very low oxygen concentration (for example, 1% or less), the thickness of the oxide film can be made negligibly thin.
  • the oxide film 222a is removed in the step shown in FIG.
  • a method for removing the oxide film 222a there are methods such as cleaning with an acidic solution and cleaning with plasma.
  • the conductive particles 236 in the adhesive 230 can be easily connected to the adhesive without passing through the organic film in the process shown in FIG.
  • the electrodes 212 and 22 can be brought into contact with each other, and the adhesive connecting electrodes 212 and 222 can be reliably conducted.
  • Example 2 according to the second embodiment can provide basically the same effect as the method of Example 1 according to the second embodiment.
  • the following effects can be obtained.
  • the surfaces of the adhesive connection electrode 222 of the mother board 220 and the adhesive connection electrode 212 of the FPC 210 are not subjected to OSP treatment, and noble metals such as gold plating are used. Since no plating layer is formed, the manufacturing cost can be reduced by simplifying the process and reducing the material cost.
  • connection with the adhesive 230 when the connection with the adhesive 230 is performed, there is no organic film formed by the OSP process on the adhesive connection electrodes 212 and 222, so that the conductive particles 236 can easily come into contact with the adhesive connection electrodes 212 and 222. To do. Therefore, it is possible to suppress deterioration in conductivity between the electrodes 212 and 222 caused by the conductive particles 236 not breaking through the organic film.
  • the conductive particles 236 in the adhesive 230 which is an anisotropic conductive adhesive to be used, are a metal powder having a shape in which a number of fine metal particles are connected in a straight chain, or a needle shape. It is comprised by.
  • the Y direction which is the surface direction of the adhesive 230
  • adhesion is maintained while maintaining insulation between adjacent adhesive connection electrodes 222 or between the adhesive connection electrodes 212 to prevent a short circuit.
  • the X direction which is the thickness direction of the agent 230, it is possible to obtain a low resistance by electrically connecting a large number of the adhesive connecting electrodes 222 and the adhesive connecting electrodes 212 at a time and independently of each other. It becomes.
  • the aspect ratio of the conductive particles 236 is 5 or more. According to this configuration, when an anisotropic conductive adhesive is used, the contact probability between the conductive particles 236 is increased. As a result, it becomes easy to electrically connect the electrodes 212 and 222 to each other without increasing the blending amount of the conductive particles 236.
  • the adhesive 230 anisotropic conductive adhesive
  • an adhesive having a film shape is used as the adhesive 230 (anisotropic conductive adhesive) before forming the adhesive connection structure C. According to this configuration, the anisotropic conductive adhesive can be easily handled. Moreover, the workability
  • the conductive particles 236 having the major axis direction oriented in the X direction which is the thickness direction of the adhesive 230 having a film shape (anisotropic conductive adhesive) is used.
  • the Y direction which is the surface direction of the adhesive 230
  • adhesion is maintained while maintaining insulation between adjacent adhesive connection electrodes 222 or between the adhesive connection electrodes 212 to prevent a short circuit.
  • the X direction which is the thickness direction of the agent 230, it is possible to obtain a low resistance by electrically connecting a large number of the adhesive connecting electrodes 222 and the adhesive connecting electrodes 212 at a time and independently of each other. It becomes.
  • the flexible printed wiring board (FPC 210) is connected to the hard printed wiring board (PWB) which is the mother board 220.
  • PWB hard printed wiring board
  • this configuration it is possible to provide a multilayer conductive pattern structure at a lower cost than when the mother board 220 is an FPC.
  • FPC 210 on the mother board 220, as shown in FIG. 2, when connecting the FPC 10 to a connector on another board, as compared with the case where a hard printed wiring board is connected instead of the FPC 210, The degree of freedom of arrangement of other substrates can be improved.
  • a protective film (adhesive tape) is applied to the adhesive connecting electrodes 212 and 222, or the oxide film is simply removed by acid treatment or the like, so that the electrodes 212 and 222 are covered with gold plating or OSP. Since it can be made cheaper than processing, the connection body of the mother board 220 and the FPC 210 can be provided at low cost.
  • a hard printed wiring board PWB
  • FPC flexible printed wiring board
  • the adhesive connection structure C is used to connect the electrodes of the FPC 210 and the mother board 220, which is a PWB, but the adhesive connection structure of the present invention is not limited to this.
  • an adhesive connection structure C may be used between a protruding electrode (or bump) of an electronic component such as an IC chip as a conductor and an electrode on a PWB or FPC.
  • a PWB may be mounted on the mother board 220.
  • an electronic component may be mounted instead of the FPC 210.
  • the water-soluble preflux process is performed on the solder connection electrodes 226 and 242 as the OSP process, but the OSP process may be a heat-resistant preflux process, for example.
  • the acidic aqueous solution containing an azole compound as a water-soluble preflux process
  • another aqueous solution may be sufficient.
  • neither the organic film or the noble metal plating layer by the OSP process is provided on both the adhesive connection electrodes 212 and 222, but the organic film by the OSP process is provided only on one adhesive connection electrode 212. Or a noble metal plating layer may be provided. Also by this, the effect (1) of the embodiment can be obtained.
  • a flexible printed wiring board was prepared in which 30 adhesive connection electrodes, which are copper electrodes having a width of 150 ⁇ m, a length of 4 mm, and a height of 18 ⁇ m, were arranged at intervals of 150 ⁇ m.
  • the adhesive connecting electrode is not covered with an organic film by OSP treatment or a noble metal plating layer.
  • the flexible printed wiring board was subjected to a solder reflow treatment with a peak temperature of 260 ° C. in a reflow bath in which the oxygen concentration was 1% or less by flowing nitrogen. Thereafter, the flexible printed wiring boards are arranged to face each other so as to form a daisy chain capable of measuring connection resistances at 30 consecutive locations, and the prepared adhesive is sandwiched between the flexible printed wiring boards at 190 ° C. While heating, pressure was applied at a pressure of 5 MPa for 15 seconds to bond them, and a joined body of flexible printed wiring boards was obtained.
  • connection resistance value at 30 consecutive points connected via the adhesive connecting electrode, the adhesive, and the adhesive connecting electrode is obtained by the four-terminal method, and the obtained value is divided by 30.
  • the connection resistance per connected place was obtained.
  • this evaluation was repeated 10 times and the average value of connection resistance was calculated
  • Example 2 (Example 2 according to the second embodiment) The second embodiment, except that after the solder reflow process is performed and before the bonded body using the anisotropic conductive adhesive is manufactured, the adhesive connecting electrode is washed with an acetic acid solution to remove the oxide film. In the same manner as in Example 1, a joined body of flexible printed wiring boards was obtained. Thereafter, connection resistance evaluation and connection reliability evaluation were performed under the same conditions as in Example 1.
  • Example 1 A joined body of flexible printed wiring boards was obtained in the same manner as in Example 1 except that an antioxidant film containing 2-phenyl-4-methyl-5-benzylimidazole was formed on the adhesive connecting electrode.
  • the thermal decomposition temperature of the antioxidant film was 310 ° C.
  • the average film thickness was 0.60 ⁇ m
  • the area ratio of the region having a thickness of 0.1 ⁇ m or less was 4%.
  • connection resistance evaluation and connection reliability evaluation were performed on the same conditions as Example 1 which concerns on the above-mentioned 2nd Embodiment.
  • Comparative Example 2 A joined body of flexible printed wiring boards was obtained in the same manner as in Example 1 except that the atmosphere in the reflow bath was changed to an air atmosphere. Thereafter, connection resistance evaluation and connection reliability evaluation were performed under the same conditions as in Example 1.
  • Table 2 shows the results of connection resistance evaluation and connection reliability evaluation of Example 1 according to the second embodiment, Example 2 according to the second embodiment, and Comparative Examples 1 and 2.
  • the initial connection resistance is 50 m ⁇ or less, and the connection resistance is sufficiently small and good.
  • the resistance increase rate is 50% or less, so that it can be seen that the connection reliability is also good.
  • the initial connection resistance was as high as 50 m ⁇ or more, and the resistance increase rate was ⁇ (infinity).
  • the adhesive connecting electrode is covered with the antioxidant film during the solder reflow process, and therefore no oxide film is formed on the adhesive connecting electrode.
  • Example 2 according to the second embodiment is superior to Example 1 according to the second embodiment, although both the initial connection resistance and the resistance increase rate are slight. Therefore, it can be seen that by performing the step of removing the oxide film as in Example 2 according to the second embodiment, the initial connection resistance can be kept lower and the connection reliability can be kept higher.
  • FIG. 12 is a cross-sectional view illustrating Example 1 according to the third embodiment of the adhesive connection structure C and the solder connection structure D formed between the FPC 310 (flexible printed wiring board) and the electronic component 340 and the mother board 320.
  • the adhesive connection structure C is formed using an insulating adhesive (NCF).
  • the mother board 320 includes a hard printed wiring board 321, an adhesive connecting electrode 322 and a solder connecting electrode 326 provided on the hard printed wiring board 321.
  • the mother board 320 is a PWB (rigid printed wiring board) corresponding to the display unit board 135 and the input key board 145 shown in FIG.
  • the FPC 310 is mounted on the mother board 320 with the adhesive connecting electrode 312 (connected conductor) facing the lower side of 311.
  • the electronic component 340 includes a chip-side electrode 342 (soldered connection conductor) in a part of the chip 341, and the chip-side electrode 342 is arranged with the chip 341 below.
  • the adhesive connection electrode 322 and the solder connection electrode 326 of the mother board 320 are formed by laminating a metal foil such as a copper foil on the hard printed wiring board 321, and exposing and etching the metal foil in a usual manner. Has been.
  • the electrodes 312 and 322 are in strong contact with each other and are electrically connected by the tightening force of the adhesive 330 that is NCF.
  • the electrodes 326 and 342 are electrically connected to each other due to the alloying of the solder layer 350 and the electrodes 326 and 342.
  • the adhesive 330 has a thermosetting resin as a main component, and is added with a curing agent and various fillers. Since components and the like are the same as those of the adhesive 30 according to the first embodiment, description thereof is omitted.
  • thermosetting resins those having a glass transition temperature of 100 ° C. or higher are used.
  • thermosetting resin include an epoxy resin, a phenol resin, and a polyimide resin.
  • the electrodes 312, 322, 326 and 342 are covered with organic films 315 and 325, respectively. Then, the electrodes 312 and 322 are connected by an adhesive 330 to form an adhesive connection structure C, and then the electrodes 326 and 342 are connected by a solder layer 350 to form a solder connection structure D.
  • another oxidation film such as a gold plating layer may be formed on each electrode 312, 322, 326, 342 instead of the organic films 315, 325.
  • the adhesive 330 is heated and melted while being pressed at a predetermined pressure in the direction of the mother board 320 via the FPC 310 (heating and pressing process).
  • the thermosetting resin in the adhesive 330 is cured, and the FPC 310 and the electrodes 312 and 322 of the mother board 320 are brought into strong contact with each other and are made conductive by the tightening force accompanying the shrinkage.
  • a part (conductive portion) of the adhesive connecting electrode 312 is electrically connected to each other without being covered with the organic film 315.
  • the mother board 320 and the electronic component 340 are placed in a solder reflow furnace having a peak temperature of about 260 ° C. to reflow the solder.
  • the organic film on the solder connection electrode 326 and the chip-side electrode 342 is dissolved in the solder layer 350.
  • the adhesive connecting electrode 312 of the FPC 310 is processed so that the surface becomes rough by etching.
  • etching not only etching but machining such as embossing may be used.
  • the electrodes 312 and 322 are covered with the organic films 315 and 325, if there is a protrusion on the surface of at least one of the electrodes, the protrusion breaks through the organic films 315 and 325. Can come into contact.
  • a bump may be disposed between the electrodes 312 and 322.
  • the increase in the connection resistance between the adhesive connecting electrodes 312 and 322 before and after the solder reflow process is performed within a predetermined range.
  • the connection resistance between the electrodes 312 and 322 before the solder reflow process is R 1
  • the adhesive strength of the adhesive 330 is F 1
  • the connection resistance between the electrodes 312 and 322 after the solder reflow process is R 2.
  • the adhesive strength of the adhesive 330 was F 2
  • F 2 > 0.8 ⁇ F 1 (2) Is established.
  • the conditions for satisfying the relational expressions (1) and (2) are found by selecting the type of the thermosetting resin, setting the temperature of the solder reflow process, and the like.
  • the following effects can be exhibited.
  • a procedure for forming the solder connection structure D by performing solder reflow processing first is employed. This is because if the adhesive connection structure C is formed first, the connection resistance may increase.
  • the relational expression (1) is established so that the increase in connection resistance between the electrodes 312 and 322 before and after the solder reflow process is within a predetermined range. Connecting. Therefore, even if the adhesive connection structure C is formed before the solder connection structure D is formed, an increase in connection resistance between the adhesive connection electrode 312 and the adhesive connection electrode 322 (connected conductor) is suppressed. can do. Further, the connection is performed so that, for example, the relational expression (2) is established so that the loosening of the tightening force of the adhesive 330 falls within a predetermined range. Therefore, increase in connection resistance (deterioration of connection reliability) during long-term use can be suppressed.
  • connection electrodes 312 and 322 have been conventionally subjected to gold plating for oxidation prevention.
  • the process of forming the organic film by the OSP process simplifies the manufacturing process as compared with the process of forming the gold plating layer.
  • expensive gold is not used, the material cost is also reduced. Therefore, connection using an adhesive can be performed at low cost.
  • FIG. 13 is a cross-sectional view showing Example 2 of the adhesive connection structure C and the solder connection structure D according to the third embodiment.
  • an adhesive 330 that is an anisotropic conductive adhesive (ACF) is used in the adhesive connection structure C. That is, the adhesive 330 of this example is one in which conductive particles 336 are included in a resin composition 331 mainly composed of a thermosetting resin.
  • the mother board 320 has a hard printed wiring board 321, an adhesive connecting electrode 322 and a solder connecting electrode 326 provided on the hard printed wiring board 321. Also in this example, the surfaces of the adhesive connecting electrode 312 and the adhesive connecting electrode 322 are covered with the organic films 315 and 325 except for the conductive portion.
  • the electrodes 312 and 322 are electrically connected to each other through the conductive particles 336.
  • the conductive particles 336 are made of a metal powder having a shape in which a number of fine metal particles are connected in a straight chain or a needle shape. Also in this example, there may be a place where the electrodes 312 and 322 are in direct contact with each other as in Example 1 according to the third embodiment.
  • the electrodes 312, 322, 326, and 342 are covered with the same organic film as the organic film 15 shown in FIG. In the solder reflow process, the organic film on the solder connection electrode 326 and the chip-side electrode 342 is dissolved in the solder layer 350.
  • the thermosetting resin in the adhesive 330 is cured by the heat and pressure treatment described above, and the electrodes 312 and 322 are connected to each other via the conductive particles 336 by the tightening force accompanying the shrinkage.
  • the resin composition 331 includes conductive particles 336 having a shape in which a large number of fine metal particles are linearly connected or a needle shape.
  • Example 2 As the anisotropic conductive adhesive used in Example 2 according to the third embodiment, the same one as in the above-described embodiment can be used.
  • Example 2 the adhesive connection structure C is first formed under the same conditions as Example 1 according to the third embodiment, and then the solder connection structure D is formed.
  • the effect similar to Example 1 which concerns on 3 embodiment can be exhibited.
  • an anisotropic conductive adhesive having the shape shown in FIG. 6 can be used.
  • the metal powder used for this invention can use the thing similar to embodiment mentioned above.
  • FIGS. 14A to 14C are cross-sectional views showing the procedure of the connection method for realizing the adhesive connection structure C and the solder connection structure D.
  • FIG. 14A a mother board 320 (common base material) having an adhesive connection region Rc and a solder connection region Rd is prepared.
  • an adhesive connection electrode 322 for adhesive connection is provided in the adhesive connection region Rc
  • a solder connection electrode 326 for solder connection is provided in the solder connection region Rd.
  • an organic film 325 that covers the adhesive connecting electrodes 322 and 326 is formed.
  • the adhesive connecting electrode 322 and the adhesive connecting electrode 312 of the FPC 310 are electrically connected by bonding with the adhesive 330.
  • the adhesive connection structure C is formed in the adhesive connection region Rc.
  • the procedure for forming the adhesive connection structure C is as described in Example 2 (see FIG. 13) according to the third embodiment of the adhesive connection structure.
  • the electronic component 340 having the chip-side electrode 342 in a part of the chip 341 is mounted in the solder connection region Rd.
  • lead-free solder is interposed between the electrodes 326 and 342 with the chip side electrode 342 aligned with the position of the solder connection electrode 326.
  • the mother board 320 and the electronic component 340 are put into a solder reflow furnace having a peak temperature of about 260 ° C. to reflow the solder.
  • the electrodes 326 and 342 are joined to each other via the solder layer 350, whereby the electrodes 326 and 342 are electrically connected to each other.
  • the solder connection structure D is formed in the solder connection region Rd.
  • the organic film 325 covering the solder connection electrode 326 is dissolved in the solder layer 350 by reacting with the flux contained in the lead-free solder.
  • the adhesive reflow process is performed at a temperature equal to or higher than the thermal decomposition temperature, so that the adhesive in the adhesive connection structure C
  • the organic films 315 and 325 on the connection electrodes 312 and 322 are thermally decomposed.
  • the thermally decomposed organic films 315 and 325 remain as liquid or carbonized powder inside the adhesive 330.
  • a gas may be formed depending on the material of the organic films 315 and 325. In any case, since the adhesive connection structure C is formed, there is almost no risk of increasing the connection resistance.
  • the adhesive 330 (anisotropic conductive adhesive) including the conductive particles 336 is mainly composed of a thermosetting resin. Therefore, the anisotropic conductive adhesive is once softened when heated, but is cured by continuing the heating. And when the preset curing time of the anisotropic conductive adhesive has elapsed, the maintenance state of the curing temperature of the anisotropic conductive adhesive and the pressure state are released, and cooling is started. Thus, the electrodes 312 and 322 are connected to each other via the conductive particles 336 in the adhesive 330, and the FPC 310 is mounted on the mother board 320.
  • FIGS. 14A to 14C show an example in which the adhesive connection structure C and the solder connection structure D are formed on the mother board 320 which is a PWB.
  • the adhesive connection structure C and the solder connection structure D may be formed on the FPC 310 using the FPC 310 as a common base material.
  • the mother substrate 320 shown in FIG. 14 is replaced with the FPC 310, and the organic film 315 is formed on the adhesive connecting electrode 312.
  • the processing procedure is as described above.
  • the FPC has not only a single-sided circuit type structure but also a double-sided circuit type structure. In the case of a double-sided circuit type structure, it is put in the solder reflow furnace twice.
  • connection method According to the connection method according to the third embodiment, the following effects can be exhibited. Normally, when solder connection and adhesive connection are performed on the same substrate, the organic film 325 is formed on the adhesive connection electrode 322, the solder connection is performed first, and then the connection using the adhesive is performed. It will be. This is because, when the adhesive is connected first, the adhesive is loosened during the solder reflow process, and the probability of connection failure increases. On the other hand, when the adhesive connection structure C is formed after the solder reflow process, the connection resistance for electrical connection between the electrodes 312 and 322 is larger than when the solder reflow furnace is not passed. There is a fear.
  • the adhesive connection structure C is first formed in the step shown in FIG.
  • the conductive particles 336 easily penetrate the organic films 315 and 325 and come into contact with the electrodes 312 and 322, so that conduction between the electrodes 312 and 322 is ensured.
  • the relational expressions (1) and (2) are established so that the increase in connection resistance between the electrodes 312 and 322 falls within a predetermined range. So that the connection is done. Therefore, even if the adhesive connection structure C is formed before the solder connection structure D is formed, an increase in connection resistance and a deterioration in reliability between the adhesive connection electrodes 312 and 322 can be suppressed.
  • connection strength (shear strength) between the electrodes 326 and 342 can be improved.
  • the following effects can be obtained.
  • the surfaces of the adhesive connection electrode 322 of the mother board 320 and the adhesive connection electrode 312 of the FPC 310 are subjected to OSP treatment to form an antioxidant film.
  • Organic films 315 and 325 are respectively formed.
  • the process of forming the antioxidant film is simplified compared to the case where the electrodes 312 and 322 are covered with the gold plating layer.
  • the material cost is reduced as compared with the case of using a noble metal such as gold. As a result, the manufacturing cost for connecting the electrodes 312 and 322 to each other can be reduced.
  • connection by bonding and the connection by solder are performed so that the relational expressions (1) and (2) are satisfied, for example, so that the increase in the connection resistance between the electrodes 312 and 322 falls within a predetermined range. ing. Therefore, even if the adhesive connection structure C is formed before the solder connection structure D is formed, an increase in connection resistance between the adhesive connection electrode 312 and the adhesive connection electrode 322 (connected conductor) is suppressed. can do. In addition, since the connection with the adhesive 330 is performed before the solder reflow process, it is not necessary to strictly manage the average film thickness of the organic films 315 and 325 and the area ratio of the area where the film thickness is small during the OSP process.
  • the conductive particles 336 in the adhesive 330 that is an anisotropic conductive adhesive to be used are a metal powder having a shape in which a number of fine metal particles are connected in a straight chain, or a needle shape. It is comprised by.
  • the Y direction which is the surface direction of the adhesive 330
  • adhesion is maintained while maintaining insulation between adjacent adhesive connection electrodes 322 or between the adhesive connection electrodes 312 to prevent a short circuit.
  • the X direction which is the thickness direction of the agent 330, it is possible to obtain a low resistance by electrically connecting a large number of the adhesive connecting electrodes 322 and the adhesive connecting electrodes 312 at a time and independently of each other. It becomes.
  • the conductive particles 336 have an aspect ratio of 5 or more. According to this configuration, when an anisotropic conductive adhesive is used, the contact probability between the conductive particles 336 increases. As a result, it becomes easy to electrically connect the electrodes 312 and 322 to each other without increasing the blending amount of the conductive particles 336.
  • the adhesive 330 anisotropic conductive adhesive
  • one having a film shape is used as the adhesive 330 (anisotropic conductive adhesive) before forming the adhesive connection structure C. According to this configuration, the anisotropic conductive adhesive can be easily handled. Moreover, the workability
  • the conductive particles 336 having the major axis direction oriented in the X direction which is the thickness direction of the adhesive 330 having a film shape (anisotropic conductive adhesive)
  • the Y direction which is the surface direction of the adhesive 330
  • adhesion is maintained while maintaining insulation between adjacent adhesive connection electrodes 322 or between the adhesive connection electrodes 312 to prevent a short circuit.
  • the X direction which is the thickness direction of the agent 330
  • the flexible printed wiring board (FPC 310) is connected to the hard printed wiring board (PWB) which is the mother board 320.
  • PWB hard printed wiring board
  • a multi-layered conductive pattern structure can be provided at a lower cost than when the mother board 320 is an FPC.
  • FPC 310 on the mother board 320, as shown in FIG. 2, when connecting the FPC 10 to the connector of another board, as compared with the case where a hard printed wiring board is connected instead of the FPC 310, The degree of freedom of arrangement of other substrates can be improved.
  • the adhesive connection electrodes 312 and 322 are covered with the organic films 315 and 325, the electrodes 312 and 322 can be made cheaper than the gold plating, so that the connection body of the mother board 320 and the FPC 310 is obtained. Can be provided at low cost.
  • a hard printed wiring board PWB
  • a flexible printed wiring board FPC
  • the adhesive connection structure C is used to connect the electrodes of the FPC 310 and the mother board 320, which is a PWB, but the adhesive connection structure of the present invention is not limited to this.
  • an adhesive connection structure C may be used between a protruding electrode (or bump) of an electronic component such as an IC chip as a conductor and an electrode on a PWB or FPC.
  • a PWB may be mounted on the mother board 320.
  • electronic components may be mounted instead of the FPC 310.
  • the water-soluble preflux treatment is performed on the adhesive connecting electrodes 312 and 322 as the OSP treatment, but the OSP treatment may be a heat-resistant preflux treatment, for example.
  • the acidic aqueous solution containing an azole compound as a water-soluble preflux process, another aqueous solution may be sufficient.
  • both the adhesive connection electrodes 312 and 322 are subjected to the OSP process.
  • only one adhesive connection electrode 312 or 322 may be subjected to the OSP process.
  • a noble metal plating layer such as a gold plating layer is formed on the other adhesive connecting electrode 322 or 312, and the effect (1) of the embodiment can also be obtained by this.
  • all the electrodes 312, 322, 326, and 342 may be provided with a gold plating layer without providing an organic film by OSP treatment.
  • Example 1 (Example 1 according to the third embodiment) (Create adhesive) Since the creation of the adhesive is the same as that in Example 1 according to the first embodiment described above, description thereof is omitted. In addition, the glass transition temperature after hardening of this anisotropic conductive adhesive was 115 degreeC.
  • a flexible printed wiring board was prepared in which 30 adhesive connection electrodes, which are copper electrodes having a width of 150 ⁇ m, a length of 4 mm, and a height of 18 ⁇ m, were arranged at intervals of 150 ⁇ m.
  • an antioxidant film containing 2-phenyl-4-methyl-5-benzylimidazole was formed on the adhesive connecting electrode.
  • the thermal decomposition temperature was 310 ° C.
  • the average film thickness was 0.10 ⁇ m
  • the area ratio of the region having a thickness of 0.1 ⁇ m or less was 60%.
  • connection resistance and adhesive strength In this joined body, the resistance value at 30 consecutive points connected via the adhesive connecting electrode, the adhesive, and the adhesive connecting electrode is obtained by the four-terminal method, and the obtained value is divided by 30. The connection resistance per connected place was determined. The case where the connection resistance was 50 m ⁇ or less was judged as ensuring conductivity.
  • connection strength when the obtained joined body was peeled by 90 ° in the electrode direction at a speed of 50 mm / min was measured. When the adhesive strength was 300 N / m or more, it was judged that good adhesive strength was obtained.
  • connection resistance and adhesive strength after solder reflow treatment Next, in a solder reflow bath, after performing solder reflow treatment with a peak temperature of 260 ° C., connection resistance and adhesive strength were measured in the same manner as described above. (Connection reliability evaluation) The connection body prepared as described above was allowed to stand for 500 hours in an 85 ° C., 85% RH high-temperature and high-humidity tank, and the connection resistance was measured in the same manner as described above. And when the rate of increase in connection resistance was 50% or less, it was judged that the connection reliability was good.
  • Example 2 A joined body of flexible printed wiring boards is formed in the same manner as in Example 1 except that the average film thickness of the antioxidant film is 0.60 ⁇ m and the area ratio of the region where the thickness is 0.1 ⁇ m or less is 2%. Obtained. Thereafter, connection resistance evaluation and connection reliability evaluation were performed under the same conditions as in Example 1.
  • Example 1 according to the third embodiment except that the composition of the adhesive was (1) 35 / (2) 20 / (3) 0 / (4) 20 / (5) 5 by weight ratio Similarly, the joined body of flexible printed wiring boards was obtained. The glass transition temperature after curing of the adhesive was 80 ° C.
  • the thermal decomposition temperature was measured using differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the heat generation start temperature when the temperature is raised at a rate of 10 ° C./min is defined as a thermal decomposition temperature.
  • the cross section of the adhesive connecting electrode on which the antioxidant film is formed is observed.
  • the film thickness is measured at intervals of 0.2 ⁇ m, and the area ratio of the region having an average film thickness of 0.1 ⁇ m or less is calculated.
  • the glass transition temperature of the adhesive was measured using a dynamic viscoelasticity measuring apparatus after the adhesive was completely cured.
  • the temperature at which tan ⁇ takes the maximum value when measured at a frequency of 1 Hz at a temperature increase rate of 10 ° C./min is defined as the glass transition temperature.
  • Table 3 shows the evaluation results of connection resistance, adhesive strength, and connection reliability of Examples 1 and 2 and Comparative Example according to the third embodiment.
  • the initial connection resistance is 50 m ⁇ or less, and the connection resistance is sufficiently small and good.
  • the rate of increase in resistance is 50% or less, it can be seen that the connection reliability is also good.
  • the connection resistance R 1 before the solder reflow process is 42 (m ⁇ )
  • the adhesive strength F 1 of the adhesive is 620 (N / m)
  • the solder reflow process is performed.
  • connection resistance R 1 43 (m ⁇ )
  • adhesive strength F 1 680 (N / m)
  • solder reflow is performed.
  • connection resistance R 1 before solder reflow processing is 49 (m ⁇ )
  • the adhesive strength F 1 320 (N / m)
  • connection resistance is not increased so as to be within a predetermined range. This is because the adhesive strength of the adhesive decreased from 320 (N / m) to 120 (N / m) during the solder reflow process, that is, the tightening force of the adhesive was loosened. This is thought to be due to the deterioration of conductivity. That is, it can be understood that the connection reliability is deteriorated because the composition of the adhesive cannot satisfy the relational expressions (1) and (2). Furthermore, when Examples 1 and 2 according to the third embodiment are compared, both the connection resistance and the rate of increase in resistance are substantially equal.
  • Example 2 even if the average film thickness is 0.5 ⁇ m or more and the area ratio of the region where the film thickness is 0.1 ⁇ m or less is reduced, the relational expressions (1) and (2) are It turns out that connection reliability becomes high by setting it as the mixing
  • the electrode structure, wiring body, and adhesive connection structure of the present invention are members disposed in electronic devices such as a camera such as a digital camera and a video camera, a portable audio player, a portable DVD player, and a portable laptop computer in addition to a mobile phone. It can be used for the electrode structure and the connection structure.
  • the release sheet body of this invention can be used for connection of various wiring boards, such as a hard printed wiring board (PCB) other than FPC, and various electronic components.
  • PCB hard printed wiring board

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Combinations Of Printed Boards (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

【課題】製造工程を簡素化しつつ、安価に接着剤接続構造を実現しうる接続方法及び電子機器を提供する。 【解決手段】本願の接続方法は、接着剤接続用電極が設けられた基材10,21を準備する工程(a1)と、前記基材上の接着剤接続用電極12,22を、酸化防止のための有機膜15で被覆する工程(b1)と、前記有機膜を除去または薄くする工程(c1)と、前記工程(c1)の後、熱硬化性樹脂を主成分とする接着剤30を介して前記接着剤接続用電極を互いに接着させることにより電気的に接続する工程(d1)とを含んで構成される。

Description

接続方法,接続構造および電子機器
 本発明は、接着剤により電気的接続を行うようにした接続方法,その接続方法により形成される接続構造および電子機器に関する。
  近年の電子機器の小型化、高機能化の流れの中で、構成部品(例えば、液晶製品における電子部品)内の接続端子の微小化が進んでいる。このため、エレクトロニクス実装分野においては、そのような端子間の接続を容易に行える種々の異方導電性接着剤として、フィルム状の接着剤が広く使用されている。例えば、銅電極等の接着剤接続用電極が設けられたフレキシブルプリント配線板(FPC)や硬質プリント配線板(PWBまたはPCB)等のプリント配線板と、銅電極等の接続用電極が形成されたガラス基板等の配線基板との接合や、プリント配線板とICチップ等の電子部品との接合に使用されている。
 この異方導電性接着剤は、絶縁性の樹脂組成物中に導電性粒子を分散させた接着剤であり、被接続部材同士の間に挟まれ、加熱、加圧されて、被接続部材同士を接着する。即ち、加熱、加圧により接着剤中の樹脂が流動し、例えば、プリント配線板の表面に形成された接着剤接続用電極と、配線基板の表面に形成された接続用電極の隙間を封止すると同時に、導電性粒子の一部が対峙する接続用電極と接着剤接続用電極の間に噛み込まれて電気的接続が達成される。ここで、一般的に、プリント配線板の接着剤接続用電極および配線基板の接続用電極のそれぞれには、酸化防止及び導電性の確保を目的として、金メッキが施されている(例えば、特許文献1参照)。
特開平10-79568号公報
  しかしながら、この金メッキは、接着剤接続用電極および接続用電極の表面にニッケルメッキ層を形成した上で、金メッキ層を形成するため、製造工程が複雑になってしまう。その結果、フレキシブルプリント配線板および配線基板などを互いに接続する際の製造コストが高くなる問題を含んでいた。
 本発明の目的は、製造工程を簡素化しつつ、安価に接着剤接続構造を実現するための接続方法を提供することにある。
 請求項1から請求項3に記載した発明の接続方法は、接着剤接続用電極が設けられた基材を用いて行われる。そして、接着剤接続用電極を、酸化防止のための有機膜で被覆した後(b1)、有機膜を除去または薄くする(c1)。その後、熱硬化性樹脂を主成分とする接着剤を介して接着剤接続用電極と被接続導体とを互いに接着させることにより電気的に接続する接続工程(d1)を行う。接着剤としては、後述するように,いわゆる異方導電性接着剤(ACF)と、絶縁性接着剤(NCF)とがあるが、いずれの接着剤を用いてもよい。前記有機膜を形成する処理は、一般的には、プリフラックス処理(OSP処理:Organic Solderability Preservation)と呼ばれている。前記基材としては、プリント配線板の基材フィルム,電子部品の電極の下地部材などがある。被接続導体には、他のプリント配線板の電極,電子部品の電極,コネクタの電極などがある。有機膜を除去または薄くする処理としては、酸性液やその蒸気に有機膜を接触させる処理などがある。
 請求項1から請求項3に記載した発明により、以下の作用効果が得られる。接着剤接続用電極には、従来、酸化防止用の金めっきが施されていた。それに対し、OSP処理によって有機膜を形成する工程(b1)は、金めっき層を形成する工程と比較して、製造工程が簡素化される。また、高価な金を使用しないので、材料コストも低減される。よって、本発明により、接着剤を用いた接続を行うための電極構造を安価に製造することが可能となる。一方、OSP処理により形成された有機膜は、構成材料の種類やその後の環境により、硬さの幅がある。たとえば、半田リフローなどの高温処理を経たり、紫外線を浴びるなどにより架橋部分が増加すると、硬さがきわめて高くなることがある。その場合、絶縁性接着剤を用いた場合には、接続工程で、接着剤接続用電極と被接続導体との間で、各一部が有機膜を突き破って相接触することが困難になる。また、導電性粒子を含む異方導電性接着剤を用いた場合には、接続工程で、導電性粒子が有機膜を突き破って電極等に接触することが困難になる。その結果、接続工程で、接着剤接続用電極と被接続導体との間で導通不良が生じるおそれがある。
 それに対し、本発明では、有機膜を除去または薄くする処理(c1)をしてから接続する工程(d1)を行うので、いずれの場合にも、電極と被接続導体とが確実に直接または導電性粒子を介して互いに導通し合う。よって、基材上の接着剤接続用電極と,被接続部材上の被接続導体との間における導通不良の発生を抑制することができる。また、最終的に有機膜は除去または薄くされるので、OSP処理時における有機膜の膜厚の如何に拘わらず、接着剤接続用電極と被接続導体との導通を確保することができる。なお、有機膜を除去しても、接着剤による接続を行うまでの時間がそれほど長くなければ、電極や被接続導体の酸化を抑制することができる。
 前記有機膜を除去または薄くする処理(c1)は、たとえば、塩酸などの無機酸や、カルボン酸,スルホン酸などの有機酸を含む液または蒸気に、有機膜を接触させることにより行うことができる。これらの液または蒸気に、有機膜を接触させる方法としては、これらの酸を含む溶液に有機膜を浸漬したり、これらの酸を含む液や蒸気を有機膜に吹き付けたり、これらの酸を含む液を含ませた布で有機膜を拭いたりすることで、有機膜が除去または薄くされることが確認されている。
 用いられる接着剤は、導電性粒子を含有した異方導電性接着剤であることが好ましい。導電性粒子は、有機膜を突き破って接着剤接続用電極に容易に接触することが可能である。
 接着剤として、複数の金属粒子が鎖状に繋がった形状、または針形状を有する金属粉末からなる導電性粒子を含有したものを用いることが好ましい。これにより、製造過程で、導電性粒子が有機膜を突き破る機能が高くなり、接着剤接続構造を円滑に形成することができる。その場合、導電性粒子のアスペクト比が5以上であることにより、導電性粒子同士の接触確率が高くなる。その結果、導電性粒子の配合量を増やすことなく、接着剤接続構造を円滑に形成することができる。
 また、異方導電性接着剤を用いる場合、フィルム形状を有するものを用いることが好ましい。これにより、異方導電性接着剤の取り扱いが容易になる。また、加熱加圧処理により接着剤接続構造を形成する際の作業性が向上する。その場合、導電性粒子の長径方向を、フィルム形状を有する接着剤の厚み方向に配向させることがより好ましい。これにより、接着剤の面方向においては、隣り合う電極間や導体間の絶縁を維持して短絡を防止することができる。一方、接着剤の厚み方向においては、多数の電極-導体間を一度に、かつ各々を独立して導電接続して、低抵抗を得ることが可能となる。
 また、一般的に、接着剤接続用電極が設けられる基材には、半田接続用電極も設けられている。その場合、通常は、半田接続用電極と接着剤接続用電極の双方の上に有機膜を形成してから、半田リフロー工程を行い、その後、接着剤による接続を行うことになる。先に、接着剤接続を行うと、その後、半田リフローの際に、接着剤の締め付けが緩んで、接続不良をおこす確率が高くなるからである。反面、半田リフローの際に、有機膜が熱分解を生じるおそれもある。
 そこで、有機膜が半田リフロー温度よりも高い熱分解温度を有していることにより、半田リフロー後にも,確実に有機膜が残存する。その後、有機膜を除去または薄くする処理を行うことにより、半田接続と接着剤接続とを円滑に行うことができる。
 なお、半田リフローの温度は、260℃程度であるので、有機膜は、300℃以上の熱分解温度を有していることがより好ましい。熱分解温度が高い有機膜としては、以下のものがある。有機膜が、接着剤接続用電極を構成する金属に配位結合可能な配位原子を有する有機化合物を含んでいることにより、接着剤接続用電極を構成する金属と錯体を形成し、熱分解温度を高めることができる。特に、1分子中に複数の配位原子を有する有機化合物は、架橋錯体を形成して熱分解温度を高くすることができるため好ましい。
 具体的には、有機膜として、2-フェニル-4-メチル-5-ベンジルイミダゾール,2,4-ジフェニルイミダゾール,2,4-ジフェニル-5-メチルイミダゾール等の2-フェニルイミダゾール類や、5-メチルベンゾイミダゾール,2-アルキルベンゾイミダゾール,2-アリールベンゾイミダゾール,2-フェニルベンゾイミダゾール等のベンゾイミダゾール類から選ばれる少なくとも1つの有機化合物を含んでいるものを用いることが好ましい。
 本発明の基材としては、種々の配線部材や基板類がある。配線部材には、フレキシブルプリント配線板,硬質プリント配線板などの配線板や、同軸ケーブル配線、フラットケーブル配線などのケーブル配線など、電極を有する多種の配線が含まれる。特に、フレキシブルプリント配線板は、携帯電話,デジタルカメラ,ビデオカメラ等のカメラ、ポータブルオーディオプレーヤ、ポータブルDVDプレーヤ、ポータブルノートパソコンなど、多くの電子機器に内蔵されており、本発明に用いることで、格別の効果が得られる。
 請求項4から請求項7に記載された発明の接続方法は、接着剤接続用電極および半田接続用電極が設けられた基材を用いて行われる。そして、半田接続用電極のみを、OSP処理による有機膜、または貴金属めっき層で被覆した後(b2)、非酸化性雰囲気中で、半田リフロー処理することにより、半田接続用電極を被半田接続導体に接合する(c2)。その後、熱硬化性樹脂を主成分とする接着剤を介して接着剤接続用電極と被接続導体とを互いに接着させることにより電気的に接続する(d2)。接着剤としては、後述するように,いわゆる異方導電性接着剤(ACF)と、絶縁性接着剤(NCF)とがあるが、いずれの接着剤を用いてもよい。


 請求項4から請求項7に記載された発明により、以下の作用効果が得られる。本発明では、接着剤接続用電極には、OSP処理による有機膜や貴金属めっき層を形成せずに、半田接続用電極のみをOSP処理による有機膜や貴金属めっき層で覆ってから(b2)、半田による接合(半田リフロー処理)を行っている(c2)。そして、その後、接着剤による接続工程(d2)を行うので、電極と被接続導体とが、直接または導電性粒子を介して互いに導通し合う。よって、基材上の接着剤接続用電極と,被接続部材上の被接続導体との間における導通不良の発生を抑制することができる。そして、半田接続用電極をOSP処理による有機膜で覆うと、上述のように、金めっきが不要となることで、製造コストが低減する。また、半田接続用電極を貴金属めっき層で覆った場合でも、接着剤接続用電極上には貴金属めっきが不要となり、かつ、OSP処理は行わないので、製造コストが低減する。
 半田リフロー工程(c2)の前に、接着剤接続電極上に、着脱自在な保護膜を形成しておいて、接着剤による接続を行う前に、保護膜を除去することもできる。これによっても、電極と被接続導体とが、直接または導電性粒子を介して互いに導通し合う。しかも、接着剤接続用電極上への酸化膜の形成を抑制することができ、接着剤接続用電極と被接続導体との間の導通不良を確実に抑制することができる。
 半田による接合を行った後、接着剤による接続を行う前に、接着剤接続用電極上の酸化膜を除去してもよい。これにより、接着剤接続用電極と被接続導体との間の導通不良を確実に抑制することができる。
 半田による接合(半田リフロー処理)は、酸素濃度が1%以下の非酸化性雰囲気で行うことが好ましい。これにより、接着剤接続用電極の表面を露出させていても、その表面における酸化膜の形成を抑制することができる。
 請求項8から請求項12に記載された発明の接続方法は、接着剤接続用電極および半田接続用電極が設けられた基材を用いて行われる。そして、接着剤接続用電極を、酸化防止膜で被覆した後(b3)、熱硬化性樹脂を主成分とする接着剤を介して接着剤接続用電極と被接続導体とを互いに接着させることにより電気的に接続する(c3)。その後、半田リフロー処理することにより、半田接続用電極を被半田接続導体に接合する(d3)。このとき、半田リフロー処理の前後における、接着剤接続用電極-被接続導体間の接続抵抗の増大が所定範囲内に収まるように接続を行う。接着剤としては、後述するように,いわゆる異方導電性接着剤(ACF)と、絶縁性接着剤(NCF)とがあるが、いずれの接着剤を用いてもよい。酸化防止膜としては、金めっき等の貴金属めっき層や、有機膜がある。前記基材としては、プリント配線板の基材フィルム,電子部品の電極の下地部材などがある。被接続導体や被半田接続導体には、他のプリント配線板の電極,電子部品の電極,コネクタの電極などがある。また、被接続導体と被半田接続導体とは、共通の部材に設けられていてもよいし、相異なる部材に設けられていてもよい。
 請求項8から請求項12に記載された発明により、以下の作用効果が得られる。先に接着剤による接続を行なってから、半田リフロー処理を行うと、接続抵抗が増大することがわかっている。その原因は、半田リフロー処理により、接着剤の緩和現象が生じて、接着剤の締め付け力が低下するためである。請求項8から請求項12に記載された発明では、半田リフロー処理の前後における接続抵抗の変化を所定範囲に収めているので、基材上の接着剤接続用電極と、被接続部材上の被接続導体との間における導通不良の発生を抑制することができる。
 特に、半田リフロー前における、接着剤接続用電極-被接続導体間の接続抵抗をR1とし、接着剤の接着強度をF1とし、半田リフロー後における、接着剤接続用電極-被接続導体間の接続抵抗をR2とし、接着剤の接着強度をF2としたとき、
 下記関係式(1),(2)
 R2<1.2×R1                   (1)
 F2>0.8×F1                   (2)
が成立するように、接続を行うことで、接続信頼性がより高くなることがわかった。
 そのためには、接着剤の樹脂組成物として、硬化後におけるガラス転移温度が100℃以上の樹脂材料を用いることが効果的であることが,本発明者達によって確認されている。
 ガラス転移温度は、樹脂組成物の剛性と粘性が急激に変化する温度であり、この温度が高いほど高温での接着剤の強度(締め付け力)が低下する。そこで、ガラス転移温度が100℃以上の樹脂材料を用いることにより、前記関係式(1),(2)が成立する接続を行うことが容易となると考えられる。
 酸化防止膜として有機膜を形成することにより、製造コストを削減することができる。接着剤接続用電極には、従来、酸化防止用の金めっきが施されていた。それに対し、プリフラックス処理(OSP処理:Organic Solderability Preservation)によって有機膜を形成する工程は、金めっき層を形成する工程と比較して、製造工程が簡素化される。また、高価な金を使用しないので、材料コストも低減される。よって、接着剤を用いた接続を安価に行うことが可能となる。
 本発明の接続構造は、前記接続方法を用いて形成されたものであり、本発明の電子機器は、前記接続方法を用いて組み立てられたものである。
 特に、請求項19に記載された発明のように、第1部材上の第1導体と第2部材上の第2導体との間の接続構造として、以下の構造を採ることができる。すなわち、第1導体及び第2導体のうち少なくとも一方の導体の表面を、導通部分を除き、0.05μm以下の厚みを有する酸化防止膜で覆っておくか、あるいは、酸化防止膜で覆わずに接着剤に露出させる。
 本発明の接続構造や電子機器により、製造工程の簡素化と金めっきの使用量の低減とを通じて、製造コストの削減を実現することができる。
 本発明の接続方法,接続構造または電子機器によると、製造工程を簡素化しつつ、製造コストの削減を実現することができる。
本発明の実施の形態に係る電子機器である携帯端末の構造を概略的に示す斜視図である。 実施の形態に係る携帯端末の接続部分の構成例を示す断面である。 実施の形態に係る接着剤接続構造を形成する前の配線体の端部を示す斜視図である。 フレキシブルプリント配線板と母基板との間に形成される接着剤接続構造の第1の実施形態に係る例1を示す断面図である。 接着剤接続構造の第1の実施形態に係る例2を示す断面図である。 導電性粒子の短径と長径の比を説明する図である。 (a)~(d)は、第1の実施形態に係る接着剤接続構造および半田接続構造を有する電子部品の組立方法の手順を示す断面図である。 フレキシブルプリント配線板および電子部品と、母基板との間に形成される接着剤接続構造および半田接続構造の第2の実施形態に係る例1を示す断面図である。 接着剤接続構造および半田接続構造の第2の実施形態に係る例2を示す断面図である。 (a)~(d)は、接着剤接続構造および半田接続構造を有する電子部品の第2の実施形態に係る組立方法の例1の手順を示す断面図である。 (a)~(d)は、接着剤接続構造および半田接続構造を有する電子部品の第2の実施形態に係る組立方法の例2の手順を示す断面図である。 フレキシブルプリント配線板および電子部品と、母基板との間に形成される接着剤接続構造および半田接続構造の第3の実施形態に係る例1を示す断面図である。 接着剤接続構造および半田接続構造の第3の実施形態に係る例2を示す断面図である。 (a)~(c)は、接着剤接続構造および半田接続構造を有する電子部品の第3の実施形態に係る組立方法の手順を示す断面図である。
 -電子機器-
 図1は、本発明の実施の形態に係る電子機器である携帯端末100の構造を概略的に示す斜視図である。
 携帯端末100は、各種情報を表示するための表示部103と、入力部104と、ヒンジ部105とを備えている。表示部103には、液晶表示パネルを用いた表示装置106やスピーカ等が設けられている。入力部104には、入力キーやマイクが設けられている。ヒンジ部105は、入力部104と表示部103とを回動自在に連結している。
 図2は、実施の形態に係る携帯端末100のヒンジ部105を介した接続部分の構成を示す断面である。
 表示部103には、表示部筐体131と、表示部基板135とが主要部材として設けられている。表示部基板135は、表示装置106に表示用信号を送るための回路等を備えている。表示部筐体131は、互いに連結された第1筐体131aと第2筐体131bとを有している。そして、第1筐体131aと第2筐体131bとの間に、貫通穴133が設けられている。
 入力部104には、入力部筐体141と、入力キー基板145とが主要部材として設けられている。入力キー基板145は、入力キーから送られる信号を制御するための回路等を備えている。入力部筐体141は、互いに連結された第1筐体141aと第2筐体141bとを有している。そして、第1筐体141aと第2筐体141bとの間に、貫通穴143が設けられている。
 また、ヒンジ部105を経て、入力キー基板145と表示部基板135とを接続する配線体Aが設けられている。配線体Aは、FPC10と、FPC10の両端に設けられ、異方導電性接着剤30を介した接着剤接続構造Cとを備えている。
 また、入力キー基板145には、電子部品を半田により接合した半田接続構造Dが設けられている。図示されていないが、同様に、表示部基板135にも、電子部品を半田により接合した半田接続構造Dが設けられている。
 -電極構造および配線体-
 図3は、本実施の形態の接着剤接続構造Cを形成する前の配線体Aの端部を示す斜視図である。配線体Aは、FPC10(基材)と、その端部に設けられた電極構造Bとを有している。
 FPC10は、回路層(破線参照)が形成されたベースフィルム11と、ベースフィルム11を被覆するカバーレイ13とを備える構造が一般的である。回路層の端部は、被接続導体との電気的接続を行うための接着剤接続用電極12となっている。
 FPC10のベースフィルム11の材料としては、ポリイミド樹脂,ポリエステル樹脂,ガラスエポキシ樹脂等がある。カバーレイ13の材料としては、一般的には、ベースフィルムと同じ材料が用いられる。その他、エポキシ樹脂,アクリル樹脂,ポリイミド樹脂,ポリウレタン樹脂などが用いられる。
 FPC10の回路層は、ベースフィルム11上に銅箔等の金属箔を積層し、金属箔を、常法により、露光、エッチングすることにより形成される。回路層は、銅または銅合金によって構成されるのが一般的である。回路層の中でも、接着剤接続用電極12は露出しており、一般的には、接着剤接続用電極12の酸化防止膜として機能する金めっき層が設けられる。
 それに対し、本実施の形態の電極構造Bにおいては、接着剤接続用電極12には、金めっき層や他の貴金属めっき層(銀めっき層,白金めっき層,パラジウムめっき層等)は設けられていない。接着剤接続用電極12は、貴金属めっき層に代わる酸化防止膜としての有機膜15により、被覆されている。
 前記有機膜15は、水溶性プリフラックス処理(OSP処理:Organic Solderability Preservation)により形成される。
 OSP処理を施す方法としては、例えば、スプレー法、シャワー法、浸漬法等が用いられ、その後、水洗、乾燥させればよい。その際の水溶性プリフラックスの温度は、25~40℃が好ましく、水溶性プリフラックスと接着剤接続用電極12との接触時間は、30~60秒が好ましい。
 一般的に、水溶性プリフラックスは、アゾール化合物を含有する酸性水溶液である。このアゾール化合物としては、例えば、イミダゾール、2-ウンデシルイミダゾール、2-フェニルイミダゾール、2,4-ジフェニルイミダゾール、トリアゾール、アミノトリアゾール、ピラゾール、ベンゾチアゾール、2-メルカプトベンゾチアゾール、ベンゾイミダゾール、2-ブチルベンゾイミダゾール、2-フェニルエチルベンゾイミダゾール、2-ナフチルベンゾイミダゾール、5-ニトロ-2-ノニルベンゾイミダゾール、5-クロロ-2-ノニルベンゾイミダゾール、2-アミノベンゾイミダゾール、ベンゾトリアゾール、ヒドロキシベンゾトリアゾール、カルボキシベンゾトリアゾールなどのアゾール化合物が挙げられる。
 本実施の形態では、有機膜15は、半田接続構造Dを形成する際の半田リフロー温度よりも高い分解温度を有している。一般的に、鉛フリー半田のリフロー温度は、260℃前後程度である。そこで、有機膜15として、熱分解温度が260℃以上、より好ましくは300℃以上である樹脂が用いられている。
 以上の条件に適合する有機化合物としては、前記アゾール化合物のうちでも、2-フェニル-4-メチル-5-ベンジルイミダゾール,2,4-ジフェニルイミダゾール,2,4-ジフェニル-5-メチルイミダゾール等の2-フェニルイミダゾール類や、5-メチルベンゾイミダゾール,2-アルキルベンゾイミダゾール,2-アリールベンゾイミダゾール,2-フェニルベンゾイミダゾール等のベンゾイミダゾール類などがある。
 ただし、接着剤による接続工程の前に、半田リフロー工程を経ない場合には、有機膜15は、半田リフロー温度よりも高い熱分解温度を有している必要はない。よって、前記化合物に限られるものではない。
 本実施の形態の電極構造Bおよび配線体Aによると、以下の効果を発揮することができる。
 従来は、異方導電性接着剤(ACF)や絶縁性接着剤(NCF)を用いた接続が行われる接着剤接続用電極上には、酸化防止膜として金めっき層などの貴金属めっき層が形成されている。
 それに対し、本実施の形態では、接着剤接続用電極12が貴金属めっき層に代わるOSP膜である有機膜15によって覆われている。有機膜15の形成には、スプレー法、シャワー法、浸漬法等が用いられ、その後、水洗、乾燥させるのみにて形成される。そのため、金めっき層などの貴金属めっき層を形成する場合と比較して、酸化防止膜を形成する工程が簡素化される。また、金などの貴金属を用いる場合と比較して、材料コストも低減される。また、金めっき層を形成した場合と比較して、接着剤接続用電極12と被接続電極との間の接続強度(シェア強度)を向上させることができる。
 一般的に、FPC10などの配線体上には、半田で実装される部材が搭載されることが多い。その場合、有機膜15を形成してから、半田リフロー炉に通されると、有機膜15が熱分解するおそれがある。
 ここで、本実施の形態では、接着剤接続用電極12上に形成された有機膜15が半田リフロー温度よりも高い熱分解温度を有している。そのため、接着剤接続用電極12が形成された基板が半田リフロー炉に通された場合でも、有機膜15が熱分解することなく、確実に残存する。
 なお、電極構造Bが設けられる基材は、フレキシブルプリント配線板(FPC)に限らず、硬質プリント配線板(PWB)などの他の種類の配線板,ケーブル配線,電子部品,コネクタなどであってもよい。
 -接着剤接続構造の第1の実施形態に係る例1-
 図4は、FPC10(フレキシブルプリント配線板)と、母基板20との間に形成される接着剤接続構造Cの第1の実施形態に係る例1を示す断面図である。この接着剤接続構造Cは、絶縁性接着剤(NCF)を用いて形成されるものである。
 母基板20は、硬質プリント配線板21と、硬質プリント配線板21上に設けられた接着剤接続用電極22とを有している。この母基板20は、図2に示す表示部基板135や入力キー基板145に相当するPWB(硬質プリント配線板)である。FPC10は、接着剤接続用電極12をベースフィルム11の下側に向けて、母基板20上に実装されている。
 母基板20の接着剤接続用電極22は、硬質プリント配線板21上に銅箔等の金属箔を積層し、金属箔を、常法により、露光、エッチングすることにより形成されている。
 そして、NCFである接着剤30の締め付け力によって、両接着剤接続用電極12,22が互いに強く接触しあって導通している。
 接着剤30は、熱硬化樹脂を主成分とし、これに硬化剤,各種フィラーを添加したものである。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、尿素樹脂、ポリイミド樹脂等が挙げられる。このうち、特に、熱硬化性樹脂としてエポキシ樹脂を使用することにより、フィルム形成性、耐熱性、および接着力を向上させることが可能となる。また、接着剤30は、上述の熱硬化性樹脂のうち、少なくとも1種を主成分としていればよい。
 なお、使用するエポキシ樹脂は、特に制限はないが、例えば、ビスフェノールA型、F型、S型、AD型、またはビスフェノールA型とビスフェノールF型との共重合型のエポキシ樹脂や、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等を使用することができる。また、高分子量エポキシ樹脂であるフェノキシ樹脂を用いることもできる。
 ここで、接着剤接続構造Cを形成する前に、各接着剤接続用電極12,22は、酸化防止のための有機膜で覆われていたが、半田リフロー工程を経た後に除去されている。
 ただし、いずれか一方の電極(たとえば接着剤接続用電極12)の表面に有機膜15を残しておいてもよい(図4の破線参照)。たとえば、FPC10が半田リフロー処理を経ないなど、有機膜15が硬質化していない場合には、除去する必要がないからである。
 なお、有機膜を除去する代わりに、有機膜を、たとえば0.05μm程度またはそれ以下に薄くしてもよい。
 これらの有機膜を除去または薄くするために、酸性液またはその蒸気に、有機膜を接触させる方法としては、これらの溶液に有機膜を浸漬したり、酸性液または蒸気を有機膜に吹き付けたり、これらの酸を含む液を含ませた布で有機膜を拭いたりする、などの方法がある。これらの処理により、有機膜が除去または薄くされることが確認されている。
 そして、有機膜を除去してから3日程度の猶予時間が経過する前であれば、各接着剤接続用電極12,22の表面に、ほとんど酸化膜を生じさせることなく、接着剤30による接続工程を行うことができる。有機膜を完全に除去せずに,少し残存させた場合には、前記猶予時間はさらに長くなる。低温、或いは低湿、或いは非酸化性雰囲気で保管した場合にも、猶予時間は長くなる。
 接続時には、FPC10を介して、接着剤30を母基板20の方向へ所定の圧力で加圧しつつ、接着剤30を加熱溶融させる(以下、「加熱加圧処理」という。)。これにより、接着剤30中の熱硬化性樹脂を硬化させ、その収縮に伴う締め付け力によって、FPC10と母基板20の各接着剤接続用電極12,22を互いに強く接触させ、導通させている。このとき、接着剤接続用電極12の一部(導通部分)は、有機膜15に覆われることなく互いに導通されている。
 本実施の形態では、FPC10の接着剤接続用電極12は、エッチングにより表面が粗くなるように加工されている。但し、エッチングだけでなく、エンボス加工などの機械加工を用いてもよい。
 各接着剤接続用電極12,22が有機膜15で覆われている場合、少なくとも一方の電極の表面に突起部があれば、突起部が有機膜15を突き破るので、両接着剤接続用電極12,22が確実に接触しうる。なお、両接着剤接続用電極12,22間にバンプが配置されていてもよい。
 本例1によると、電極構造の効果に加えて、以下の効果を発揮することができる。
 たとえば、FPC10および母基板20の少なくとも一方が、半田リフロー工程を経たり、長期間放置されて紫外線を浴びることで、有機膜15が硬質化する場合がある。その場合、各接着剤接続用電極12,22間の導通が有機膜によって妨げられ、電気的に接続する接続抵抗が大きくなるおそれがある。特に、半田リフロー炉において加熱されると、有機膜が硬質化しやすい。
 また、OSP処理により形成された有機膜は、構成材料の種類によっても硬さの幅があり、ときには、相当に硬いものを使用せざるを得ない場合もあり得る。
 その結果、接着剤接続用電極12の突起部が、硬質化した有機膜を突き破りにくくなり、接続抵抗の増大を招くことになる。
 それに対し、本実施の形態では、各接着剤接続用電極12,22上の有機膜を除去または薄くしてから、接続工程を行うので、接着剤接続用電極12の突起部と接着剤接続用電極22とが容易に接触する。なお、一方の電極上の有機膜が半田リフロー工程を経ない場合には、接着剤接続用電極12の突起部が有機膜を突き破ることは容易であるので、有機膜を除去または薄くする必要はない。
 よって、接着剤接続用電極12と,接着剤接続用電極22(被接続導体)との間における導通不良の発生(接続抵抗の増大など)を抑制することができる。
 また、半田リフロー工程を経る有機膜を除去または薄くしない場合、確実な導体間の導通を実現するためには、有機膜の平均膜厚を適正範囲(たとえば0.05μm以上0.5μm以下)に収めたり、膜厚が小さい領域の面積率を大きくする(たとえば0.1μm以下となる領域の面積を有機膜全体の面積の30%以上とする)、等の管理が必要となる。
 それに対し、本実施の形態では、有機膜が除去または薄くされるので、OSP処理時における有機膜の膜厚をたとえば0.5μm以上にしても不具合は生じない。
 -接着剤接続構造の第1の実施形態に係る例2-
 図5は、接着剤接続構造Cの第1の実施形態に係る例2を示す断面図である。この接着剤接続構造Cにおいては、異方導電性接着剤(ACF)である接着剤30を用いている。すなわち、本例の接着剤30は、熱硬化性樹脂を主成分とする樹脂組成物31中に、導電性粒子36を含ませたものである。
 本例においても、母基板20は、硬質プリント配線板21と、硬質プリント配線板21上に設けられた接着剤接続用電極22とを有している。本例においても、接着剤接続用電極12および接着剤接続用電極22の表面は、いずれも、導通部分を除き、有機膜15によって被覆されている。
 そして、各接着剤接続用電極12,22は、導電性粒子36を介して互いに導通している。導電性粒子36は、微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する金属粉末からなる。
 なお、本例においても、第1の実施形態に係る例1のように接着剤接続用電極12,22同士が直接接触している箇所が存在していてもよい。
 本例においても、接着剤接続構造Cを形成する前に、各接着剤接続用電極12,22は、有機膜で覆われていたが、半田リフロー工程を経た後に除去または薄くされている。
 FPC10が半田リフロー工程を経ない場合には、図中破線で示す有機膜15は除去または薄くする必要はない。
 有機膜を除去または薄くする処理の具体的方法については、例1で説明した通りである。
 接続時には、上述の加熱加圧処理により、接着剤30中の熱硬化性樹脂を硬化させ、その収縮に伴う締め付け力によって、導電性粒子36を介して各接着剤接続用電極12,22を互いに接続させている。
 この例では、当初から、樹脂組成物31中に微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する導電性粒子36を含ませている。
  ただし、樹脂組成物31中に、微細な金属粒子からなる導電性粒子がランダムに分散したものを用いてもよい。その場合でも、加熱加圧処理を行うことにより、各接着剤接続用電極12,22間では、微細な金属粒子が多数繋がった形状になるからである。
 第1の実施形態に係る例2に使用される異方導電性接着剤としては、汎用されているもの、すなわち、エポキシ樹脂等の絶縁性の熱硬化性樹脂を主成分とする樹脂組成物中に、導電性粒子36が分散されたものが使用できる。例えば、エポキシ樹脂に、ニッケル、銅、銀、金あるいは黒鉛等の導電性粒子の粉末が分散されたものが挙げられる。ここで、熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂、尿素樹脂、ポリイミド樹脂等が挙げられる。このうち、特に、熱硬化性樹脂としてエポキシ樹脂を使用することにより、異方導電性接着剤のフィルム形成性、耐熱性、および接着力を向上させることが可能となる。また、異方導電性接着剤は、上述の熱硬化性樹脂のうち、少なくとも1種を主成分としていれば良い。
 なお、使用するエポキシ樹脂は、特に制限はないが、例えば、ビスフェノールA型、F型、S型、AD型、またはビスフェノールA型とビスフェノールF型との共重合型のエポキシ樹脂や、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂等を使用することができる。また、高分子量エポキシ樹脂であるフェノキシ樹脂を用いることもできる。
 また、エポキシ樹脂の分子量は、異方導電性接着剤に要求される性能を考慮して、適宜選択することができる。高分子量のエポキシ樹脂を使用すると、フィルム形成性が高く、また、接続温度における樹脂の溶解粘度を高くでき、後述の導電性粒子の配向を乱すことなく接続できる効果がある。一方、低分子量のエポキシ樹脂を使用すると、架橋密度が高まって耐熱性が向上するという効果が得られる。また、加熱時に、上述の硬化剤と速やかに反応し、接着性能を高めるという効果が得られる。従って、分子量が15000以上の高分子量エポキシ樹脂と分子量が2000以下の低分子量エポキシ樹脂とを組み合わせて使用することにより、性能のバランスが取れるため、好ましい。なお、高分子量エポキシ樹脂と低分子量エポキシ樹脂の配合量は、適宜、選択することができる。また、ここでいう「平均分子量」とは、THF展開のゲルパーミッションクロマトグラフィー(GPC)から求められたポリスチレン換算の重量平均分子量のことをいう。
 また、本例および第1の実施形態に係る例1に使用される接着剤30として、潜在性硬化剤を含有する接着剤が使用できる。この潜在性硬化剤は、低温での貯蔵安定性に優れ、室温では殆ど硬化反応を起こさないが、熱や光等により、速やかに硬化反応を行う硬化剤である。この潜在性硬化剤としては、イミダゾール系、ヒドラジド系、三フッ化ホウ素-アミン錯体、アミンイミド、ポリアミン系、第3級アミン、アルキル尿素系等のアミン系、ジシアンジアミド系、酸無水物系、フェノール系、および、これらの変性物が例示され、これらは単独または2種以上の混合物として使用できる。
 また、これらの潜在性硬化剤中でも、低温での貯蔵安定性、および速硬化性に優れているとの観点から、イミダゾール系潜在性硬化剤が好ましく使用される。イミダゾール系潜在性硬化剤としては、公知のイミダゾール系潜在性硬化剤を使用することができる。より具体的には、イミダゾール化合物のエポキシ樹脂との付加物が例示される。イミダゾール化合物としては、イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-プロピルイミダゾール、2-ドデシルイミダゾール、2-フィニルイミダゾール、2-フィニル-4-メチルイミダゾール、4-メチルイミダゾールが例示される。
 また、特に、これらの潜在性硬化剤を、ポリウレタン系、ポリエステル系等の高分子物質や、ニッケル、銅等の金属薄膜およびケイ酸カルシウム等の無機物で被覆してマイクロカプセル化したものは、長期保存性と速硬化性という矛盾した特性の両立を図ることができるため、好ましい。従って、マイクロカプセル型イミダゾール系潜在性硬化剤が、特に好ましい。
 第1の実施形態に係る例2によると、半田リフロー工程を経た有機膜を除去または薄くしたことで、第1の実施形態に係る例1と同様の効果を発揮することができる。ただし、本例では、導電性粒子36を介して、各接着剤接続用電極12,22が互いに導通している。
 また、異方導電性接着剤として、図6に示す形状を有するものを使用する場合は、特に以下の構成を採ることができる。
 具体的には、異方導電性接着剤として、例えば、上述のエポキシ樹脂等の絶縁性の熱硬化性樹脂を主成分とし、当該樹脂中に、微細な金属粒子(例えば、球状の金属微粒子や金属でメッキされた球状の樹脂粒子からなる金属微粒子)が多数直鎖状に繋がった形状、または針形状を有する、所謂アスペクト比が大きい形状を有する金属粉末により形成された導電性粒子36が分散されたものを使用することができる。なお、ここで言うアスペクト比とは、図6に示す、導電性粒子36の短径(導電性粒子36の断面の長さ)Rと長径(導電性粒子36の長さ)Lの比のことをいう。
 このような導電性粒子36を使用することにより、異方導電性接着剤として、異方導電性接着剤の面方向(厚み方向Xに直行する方向であって、図5の矢印Yの方向)においては、隣り合う電極間の絶縁を維持して短絡を防止しつつ、厚み方向Xにおいては、多数の接着剤接続用電極22-接着剤接続用電極12間を、一度にかつ各々を独立して接続し、低抵抗を得ることが可能になる。
 また、この異方導電性接着剤において、導電性粒子36の長径Lの方向を、フィルム状の異方導電性接着剤を形成する時点で、異方導電性接着剤の厚み方向Xにかけた磁場の中を通過させることにより、当該厚み方向Xに配向させて用いるのが好ましい。このような配向にすることにより、上述の、隣り合う電極間の絶縁を維持して短絡を防止しつつ、多数の接着剤接続用電極22-接着剤接続用電極12間を一度に、かつ各々を独立して導電接続することが可能になるという効果が、より一層向上する。
 また、本発明に使用される金属粉末は、その一部に強磁性体が含まれるものが良く、強磁性を有する金属単体、強磁性を有する2種類以上の合金、強磁性を有する金属と他の金属との合金、および強磁性を有する金属を含む複合体のいずれかであることが好ましい。これは、強磁性を有する金属を使用することにより、金属自体が有する磁性により、磁場を用いて金属粒子を配向させることが可能になるからである。例えば、ニッケル、鉄、コバルトおよびこれらを含む2種類以上の合金等を挙げることができる。
 また、導電性粒子36のアスペクト比は5以上であることが好ましい。このような導電性粒子36を使用することにより、接着剤30として異方導電性接着剤を使用する場合に、導電性粒子36と各接着剤接続用電極12,22との接触確率が高くなる。従って、導電性粒子36の配合量を増やすことなく、各接着剤接続用電極12,22を互いに電気的に接続することが可能になる。
 なお、導電性粒子36のアスペクト比は、CCD顕微鏡観察等の方法により直接測定するが、断面が円でない導電性粒子36の場合は、断面の最大長さを短径としてアスペクト比を求める。また、導電性粒子36は、必ずしもまっすぐな形状を有している必要はなく、多少の曲がりや枝分かれがあっても、問題なく使用できる。この場合、導電性粒子36の最大長さを長径としてアスペクト比を求める。
 -第1の実施形態に係る接続方法-
 図7(a)~(d)は、接着剤接続構造Cおよび半田接続構造Dを実現するための第1の実施形態に係る接続方法の手順を示す断面図である。
 まず、図7(a)に示す工程で、接着剤接続領域Rcと、半田接続領域Rdとを有する母基板20(共通の基材)を準備する。母基板20において、接着剤接続領域Rcには接着剤接続用の接着剤接続用電極22が設けられており、半田接続領域Rdには半田接続用の半田接続用電極26が設けられている。
 次に、各接着剤接続用電極22,26を覆う有機膜15を形成する。本実施の形態では、有機膜15の熱分解温度は、半田リフロー温度よりも高い。
 図7(a)には図示されていないが、この時点で、接着剤接続領域Rcのみにおいて、有機膜15を覆う保護膜を形成してもよい。具体的には、粘着剤テープなどによって有機膜15を覆っておく。粘着テープ以外の保護膜を用いることもできる。
 次に、図7(b)に示す工程で、半田接続領域Rdに、チップ41の一部にチップ側電極42を有する電子部品40を搭載する。このとき、チップ側電極42を半田接続用電極26の位置に合わせて、両電極26,42間に鉛フリー半田を介在させる。そして、母基板20と電子部品40とを、ピーク温度が約260℃の半田リフロー炉に入れて,半田をリフローさせる。これにより、各電極26,42を半田層50を介して接合することで、各電極26,42を互いに電気的に接続する。
 これにより、半田接続領域Rdにおいて、半田接続構造Dが形成される。
 次に、図7(c)に示す工程で、上述した有機膜15を除去する処理を行う。除去するためには、酸性液またはその蒸気に有機膜15を接触させる。具体的には、たとえば温度30℃の酸性液中に、母基板20および電子部品40を、1分程度浸漬したり、酸性液またはその蒸気を有機膜15に吹き付ける。後者の方法では、母基板20および電子部品40を酸性液中に浸漬する必要がないので、他の部材に対する影響を抑制することができる。
 次に、図7(c)に示す工程の後、3日程度の時間が経過するまでに、図7(d)に示す工程で、接着剤接続用電極22とFPC10の接着剤接続用電極12とを接着剤30により接着することにより電気的に接続する。接着剤接続構造Cの形成手順については、前記接着剤接続構造の例2(図5参照)において、説明したとおりである。
 また、図7(d)に示す工程の前に、FPC10上の接着剤接続用電極12を覆っていた有機膜15も除去または薄くする処理を行っておく。
 ただし、FPC10が半田リフロー工程を経ない場合には、有機膜15を除去または薄くする処理を行う必要がない。
 有機膜15を除去または薄くする処理も行うことで、OSP処理時における有機膜15の平均膜厚や、膜厚の小さい領域の面積率の管理をほとんど行う必要がなくなる利点もある。
 なお、図7(a)に示す工程の際、有機膜15を覆う保護膜(粘着材など)を形成した場合には、接着剤30で接着する前に、保護膜を除去する。
 これにより、接着剤接続領域Rcにおいて、接着剤接続構造Cが形成される。
 なお、上述のごとく、導電性粒子36を含む接着剤30(異方導電性接着剤)は、熱硬化性樹脂を主成分としている。そのため、異方導電性接着剤は、加熱すると、一旦、軟化するが、当該加熱を継続することにより、硬化することになる。そして、予め設定した異方導電性接着剤の硬化時間が経過すると、異方導電性接着剤の硬化温度の維持状態、および加圧状態を開放し、冷却を開始する。これにより、接着剤30中の導電性粒子36を介して、各接着剤接続用電極12,22を互いに接続し、FPC10を母基板20上に実装する。
 図7(a)~(d)には、PWBである母基板20に、接着剤接続構造Cと、半田接続構造Dとを形成する例を示している。
 ただし、FPC10を共通の基材として、FPC10に接着剤接続構造Cと、半田接続構造Dとを形成してもよい。その場合には、図7に示す母基板20をFPC10と置き換え、接着剤接続用電極12上に有機膜15を形成することになる。処理の手順は、上述の通りである。
 なお、FPCには,片面回路型構造だけでなく両面回路型構造もある。両面回路型構造の場合には、半田リフロー炉に2回入れることになる。
 本実施形態の接続方法によれば、前記電極構造B、接着剤接続構造Cの効果に加えて、以下の効果を発揮することができる。
 通常、半田接続と接着剤接続とを同じ基板上で行う場合、半田接続用電極26と接着剤接続用電極22の双方の上に有機膜15を形成してから、半田接続を行い、その後、接着剤による接続を行うことになる。先に、接着剤接続を行うと、その後、半田リフロー処理の際に、接着剤の締め付けが緩んで、接続不良をおこす確率が高くなるからである。反面、半田リフロー処理の際に、有機膜が熱分解を生じるおそれもある。
 本実施の形態の接続方法では、図7(a)に示す工程で、接着剤接続用電極22上に形成された有機膜15が半田リフロー温度よりも高い熱分解温度を有している。そのため、図7(b)に示す工程でも、有機膜15が熱分解することなく、確実に残存することになる。
 なお、有機膜15の上に保護膜を形成すれば、より確実に、有機膜15を残存させることができる。よって、半田接続構造Dと接着剤接続構造Cとを、より確実に形成することができる。
 なお、半田接続用電極26上を覆っていた有機膜15は、熱分解温度が半田リフロー温度よりも高くても、鉛フリー半田に含まれるフラックスなどと反応して、半田層50に溶け込む。したがって、半田接続構造Dの形成に支障が生じることはない。
 半田接続用電極26の上には、必ずしも金めっきを施す必要はないが、変色を回避する等の目的で、一般的には金めっきが施される。
 本実施の形態では、母基板20のどの電極にも金めっきを施す必要がない。上述のように、有機膜15はフラックスと反応して半田層50に溶け込むので、半田接続用電極26の上にも、金めっきに代えてOSP処理による有機膜15を選択することができる。よって、上述の製造コストの低減効果を顕著に発揮することができる。
 また、半田接続用電極26の上に、酸化防止膜である有機膜15を形成したことにより、各電極26,42間の接続強度(シェア強度)を向上させることができる。
 一方、半田リフロー工程を経た後に、接着剤接続構造Cを形成する場合には、半田リフロー炉を通さない場合と比較して、各接着剤接続用電極12,22間の電気的に接続する接続抵抗が大きくなるおそれがある。これは、半田リフロー炉において加熱されることによって、有機膜15が硬質化する等、変質することで、導電性粒子36が、有機膜15を突き破りにくくなっていることによると考えられる。
 そこで、接着剤による接続工程の前に、有機膜15を除去または薄くする処理を施すことで、半田リフロー処理によって硬化した有機膜15を導電性粒子が突き破ることが容易となる。よって、有機膜15が半田リフロー炉を通った後に、接着剤接続構造Cを形成しても、より確実に各電極12,22間の電気的な接続抵抗を小さく抑えることができる。
 また、OSP処理時における有機膜15の平均膜厚や、膜厚が小さい領域の面積率を厳しく管理する必要がない。
 以上総合すると、本実施の形態では、以下の効果を得ることができる。
 (1)本実施形態の接着剤接続構造Cにおいては、母基板20の接着剤接続用電極22およびFPC10の接着剤接続用電極12のそれぞれの表面にOSP処理を施して、酸化防止膜である有機膜15それぞれ形成する構成としている。この構成によれば、各接着剤接続用電極12,22が金めっき層で被覆される場合と比較して、酸化防止膜を形成する工程が簡素化される。また、金などの貴金属を用いる場合と比較して、材料コストも低減される。その結果、各接着剤接続用電極12,22を互いに接続する際の製造コストを安価にすることが可能となる。
 しかも、半田リフロー処理や紫外線を浴びることなどによって有機膜15が硬質化しても、接着剤30による接続を行う前に有機膜15を除去または薄くする処理をしているので、導電性粒子36が有機膜15を突き破りやすくなる。よって、導電性粒子36が有機膜15を突き破れないことに起因する各接着剤接続用電極12,22間の導電性の悪化を抑制することができる。
 また、有機膜15の平均膜厚や、OSP処理時における膜厚が小さい領域の面積率を厳しく管理する必要がない。
 (2)本実施形態においては、使用する異方導電性接着剤である接着剤30における導電性粒子36は、微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する金属粉末により構成されている。この構成によれば、接着剤30の面方向であるY方向においては、隣り合う接着剤接続用電極22間、または接着剤接続用電極12間の絶縁を維持して短絡を防止しつつ、接着剤30の厚み方向であるX方向においては、多数の接着剤接続用電極22および接着剤接続用電極12間を一度に、かつ各々を独立して導電接続して、低抵抗を得ることが可能となる。
 (3)本実施形態においては、導電性粒子36のアスペクト比が5以上である構成としている。この構成によれば、異方導電性接着剤を使用する場合に、導電性粒子36間の接触確率が高くなる。その結果、導電性粒子36の配合量を増やすことなく、各接着剤接続用電極12,22を互いに電気的に接続することが容易となる。
 (4)本実施形態においては、接着剤接続構造Cを形成する前の接着剤30(異方導電性接着剤)として、フィルム形状を有するものを用いている。この構成によれば、異方導電性接着剤の取り扱いが容易になる。また、加熱加圧処理により接着剤接続構造Cを形成する際の作業性が向上する。
 (5)本実施形態においては、導電性粒子36の長径方向を、フィルム形状を有する接着剤30(異方導電性接着剤)の厚み方向であるX方向に配向させたものを用いている。この構成によれば、接着剤30の面方向であるY方向においては、隣り合う接着剤接続用電極22間、または接着剤接続用電極12間の絶縁を維持して短絡を防止しつつ、接着剤30の厚み方向であるX方向においては、多数の接着剤接続用電極22および接着剤接続用電極12間を一度に、かつ各々を独立して導電接続して、低抵抗を得ることが可能となる。
 (6)本実施形態においては、母基板20である硬質プリント配線板(PWB)にフレキシブルプリント配線板(FPC10)を接続する構成としている。この構成によれば、母基板20がFPCである場合と比較して、多層の導電パターン構造を安価に提供することができる。また、母基板20上にFPC10を接続することにより、FPC10に代えて硬質プリント配線板を接続した場合と比較して、図2に示すごとく、FPC10を他の基板のコネクタに接続する際に、他の基板の配置の自由度を向上させることができる。その上、接着剤接続用電極12,22を有機膜15にて被覆することにより、各接着剤接続用電極12,22を金メッキにて被覆するよりも安価にできるため、母基板20およびFPC10の接続体を安価に提供することができる。
 なお、前記実施形態は以下のように変更しても良い。
 ・前記実施形態においては、母基板20として硬質プリント配線板(PWB)を使用しているが、他の構成であっても良い。たとえば、母基板20としてフレキシブルプリント配線板(FPC)を使用してもよい。
 ・前記実施形態においては、接着剤接続構造Cは、FPC10とPWBである母基板20との電極同士の接続に用いたが、本発明の接着剤接続構造はこれに限定されることはない。例えば、導電体としてICチップ等の電子部品の突起電極(または、バンプ)と、PWBまたはFPC上の電極との接着剤接続構造Cとしてもよい。
 ・前記実施形態におけるFPC10に代えて、PWBを母基板20上に実装してもよい。また、FPC10の代わりに電子部品を実装してもよい。
 ・前記実施形態においては、OSP処理として、水溶性プリフラックス処理を接着剤接続用電極12,22に施したが、OSP処理を、例えば、耐熱性プリフラックス処理としてもよい。また、水溶性プリフラックス処理として、アゾール化合物を含有する酸性水溶液としたが、他の水溶液であってもよい。
 ・前記実施形態においては、各接着剤接続用電極12,22の両方にOSP処理を施したが、例えば、一方の接着剤接続用電極12または22のみにOSP処理を施してもよい。その場合、他方の接着剤接続用電極22または12には、金めっき層などの貴金属めっき層を形成することになるが、これによっても、前記実施形態の効果(1)を得ることはできる。
第1の実施形態に係る実施例
 以下に、第1の実施形態に係る発明を実施例、比較例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。
 (第1の実施形態に係る実施例1)
 (接着剤の作成)
 導電性粒子として、長径Lの分布が1μmから10μm、短径Rの分布が0.1μmから0.4μmである直鎖状ニッケル微粒子を用いた。また、絶縁性の熱硬化性樹脂としては、2種類のビスフェノールA型の固形エポキシ樹脂〔(1)ジャパンエポキシレジン(株)製、商品名エピコート1256、および(2)エピコート1004〕、ナフタレン型エポキシ樹脂〔(3)大日本インキ化学工業(株)製、商品名エピクロン4032D〕を使用した。また、熱可塑性であるポリビニルブチラール樹脂〔(4)積水化学工業(株)製、商品名エスレックBM-1〕を使用し、マイクロカプセル型潜在性硬化剤としては、(5)マイクロカプセル型イミダゾール系硬化剤〔旭化成エポキシ(株)製、商品名ノバキュアHX3941〕を使用し、これら(1)~(5)を重量比で(1)35/(2)20/(3)25/(4)10/(5)30の割合で配合した。
 これらのエポキシ樹脂、熱可塑性樹脂、および潜在性硬化剤を、セロソルブアセテートに溶解して、分散させた後、三本ロールによる混錬を行い、固形分が50重量%である溶液を作製した。この溶液に、固形分の総量(Ni粉末+樹脂)に占める割合で表される金属充填率が、0.05体積%となるように前記Ni粉末を添加した後、遠心攪拌ミキサーを用いて攪拌することによりNi粉末を均一に分散し、接着剤用の複合材料を作製した。次いで、この複合材料を離型処理したPETフィルム上にドクターナイフを用いて塗布した後、磁束密度100mTの磁場中、60℃で30分間、乾燥、固化させて、膜中の直鎖状粒子が磁場方向に配向した厚さ25μmのフィルム状の異方導電性をもつ異方導電性接着剤を作製した。
 (プリント配線板の作成)
 幅150μm、長さ4mm、高さ18μmの銅電極である接着剤接続用電極が150μm間隔で30個配列されたフレキシブルプリント配線板を用意した。OSP処理により、接着剤接続用電極に、2-フェニル-4-メチル-5-ベンジルイミダゾールを含む酸化防止膜を形成した。その熱分解温度は、310℃、平均膜厚は0.10μm、厚さ0.1μm以下となる領域の面積率は60%であった。
 (接続抵抗評価)
 前記フレキシブルプリント配線板に、窒素をフローすることで酸素濃度を1%以下としたリフロー槽内において、ピーク温度を260℃とした半田リフロー処理を施した。
 その後、接着剤接続用電極を塩酸水溶液(30℃、pH=4)に1分間浸漬することで、酸化防止膜を除去した後、フレキシブルプリント配線板同士を、連続する30箇所の接続抵抗が測定可能なデイジーチェーンを形成するように対向させて配置するとともに、これらフレキシブルプリント配線板の間に作製した接着剤を挟み、190℃に加熱しながら、5MPaの圧力で15秒間加圧して接着させ、フレキシブルプリント配線板同士の接合体を得た。
 次いで、この接合体において、接着剤接続用電極、接着剤、および接着剤接続用電極を介して接続された連続する30箇所の抵抗値を四端子法により求め、求めた値を30で除することにより、接続された1箇所あたりの接続抵抗を求めた。そして、この評価を10回繰り返し、接続抵抗の平均値を求めた。そして、接続抵抗が50mΩ以下の場合を、導電性を確保したものとして判断した。
 (接続信頼性評価)
 前記のように作成した接続体を、85℃,85%RH高温高湿槽中に500hr静置した後、前記と同様に、接続抵抗を測定した。そして、接続抵抗の上昇率が50%以下の場合を、接続信頼性が良好と判断した。
  (第1の実施形態に係る実施例2)
 酸化防止膜の平均膜厚を0.60μm、厚さ0.1μm以下となる領域の面積率を2%としたこと以外は、実施例1と同様にして、フレキシブルプリント配線板同士の接合体を得た。その後、実施例1と同一条件で、接続抵抗評価及び接続信頼性評価を行った。
 (比較例1)
 半田リフロー処理後に塩酸水溶液中への浸漬処理を行わなかったこと以外は実施例2と同様にして、フレキシブルプリント配線板同士の接合体を得た。その後、上述の実施例1と同一条件で、接続抵抗評価及び接続信頼性評価を行った。
 (熱分解温度測定)
 熱分解温度は、示差走査熱量測定(Differential Scanning Calorimetry, DSC)を用いて測定した。10℃/minの速度で昇温した際の発熱開始温度を熱分解温度とする。
 (膜厚測定)
 酸化防止膜が形成された接着剤接続用電極の断面を観察する。0.2μm間隔で膜厚を測定し、平均膜厚0.1μm以下の領域の面積率を算出する。
Figure JPOXMLDOC01-appb-T000001
 前記表1は、第1の実施形態に係る実施例1、2および比較例の接続抵抗評価と接続信頼性評価の結果を示している。
 表1に示すように、第1の実施形態に係る実施例1、2のいずれの場合においても、初期接続抵抗が50mΩ以下であり、接続抵抗は十分小さく良好である。また、第1の実施形態に係る実施例1、2では、抵抗上昇率が50%以下であるので、接続信頼性も良好であることがわかる。
 一方、比較例1では、初期接続抵抗が50mΩ以上と高かった。また、高温高湿槽中に500hr静置した後は接続オープンとなり、抵抗上昇率は∞(無限大)となった。この原因は、半田リフロー処理の際に比較例1の酸化防止膜が硬質化したにも拘わらず酸化防止膜を除去または薄くする処理を施さなかったことで、導電性粒子が酸化防止膜を確実に突き破ることができず、そのために導電性粒子と接着剤接続用電極との接触が不安定になったことによると考えられる。
 さらに、第1の実施形態に係る実施例1、2を比較すると、初期接続抵抗,抵抗上昇率共に、ほぼ同等である。よって、実施例2のごとく、平均膜厚を0.5μm以上に、かつ、膜厚が0.1μm以下となる領域の面積率を小さくしても、酸化防止膜を除去または薄くする処理を施すことで、初期接続抵抗を低く、かつ、接続信頼性を高く維持しうることがわかる。
 -接着剤接続構造の第2の実施形態に係る例1-
 図8は、FPC210(フレキシブルプリント配線板)および電子部品240と、母基板220との間に形成される接着剤接続構造Cおよび半田接続構造Dの第2の実施形態に係る例1を示す断面図である。この接着剤接続構造Cは、絶縁性接着剤(NCF)を用いて形成されるものである。
 母基板220は、硬質プリント配線板221と、硬質プリント配線板221上に設けられた接着剤接続用電極222および半田接続用電極226とを有している。この母基板220は、図1に示す表示部基板135や入力キー基板145に相当するPWB(硬質プリント配線板)である。FPC210は、接着剤接続用電極212(被接続導体)をベースフィルム211の下側に向けて、母基板220上に実装されている。電子部品240は、チップ241の一部にチップ側電極242(被半田接続導体)を有しており、チップ側電極242をチップ241の下側に向けて配置されている。
 母基板220の接着剤接続用電極222および半田接続用電極226は、硬質プリント配線板221上に銅箔等の金属箔を積層し、金属箔を、常法により、露光、エッチングすることにより形成されている。
 そして、接着剤接続構造Cにおいては、NCFである接着剤230の締め付け力によって、両電極212,222が互いに強く接触しあって導通している。半田接続構造Dにおいては、半田層250と各電極226,242との合金化により、両電極226,242が互いに導通している。
 接着剤230は、熱硬化樹脂を主成分とし、これに硬化剤,各種フィラーを添加したものである。成分等は、第1の実施形態に係る接着剤30と同様であるため、説明は省略する。
 ここで、接着剤接続構造Cおよび半田接続構造Dを形成する前に、半田接続用電極226,242は、後述するOSP処理による有機膜で覆われている。そして、半田リフロー工程において、半田接続用電極226および被半田接続電極242上の有機膜は半田層250に溶け込む。一方、接着剤接続用電極222および接着剤接続用電極212には、図3に示す有機膜15と同様の保護膜が貼り付けられていたが、半田リフロー工程の終了後、除去されている(後述する図10(b),(c)参照)。
 ただし、接着剤接続用電極212の表面にOSP処理による有機膜215を形成しておいてもよい(図8の破線参照)。FPC210が半田リフロー処理を経ない場合には、有機膜215の熱分解温度は半田リフロー処理の温度よりも高い必要はない。
 接着剤230による接続時には、熱分解した有機膜を除去した後、FPC210を介して、接着剤230を母基板220の方向へ所定の圧力で加圧しつつ、接着剤230を加熱溶融させる(加熱加圧処理)。これにより、接着剤230中の熱硬化性樹脂を硬化させ、その収縮に伴う締め付け力によって、FPC210と母基板220の各電極212,222を互いに強く接触させ、導通させている。このとき、接着剤接続用電極212の一部(導通部分)は、有機膜215に覆われることなく互いに導通されている。
 本実施の形態では、FPC210の接着剤接続用電極212は、エッチングにより表面が粗くなるように加工されている。但し、エッチングだけでなく、エンボス加工などの機械加工を用いてもよい。
 電極212が有機膜215で覆われている場合、少なくとも一方の電極の表面に突起部があれば、突起部が有機膜215を突き破るので、両電極212,222が確実に接触しうる。なお、有機膜215が形成されていない場合には、必ずしも接着剤用電極212の表面が粗く加工されている必要はないが、粗く加工されている方が、接触を確保することが容易である。なお、両電極212,222間にバンプが配置されていてもよい。
 第2の実施形態に係る例1によると、電極構造の効果に加えて、以下の効果を発揮することができる。
 たとえば、接着剤接続用電極222が、後述するOSP処理による有機膜で覆われている場合、母基板220が半田リフロー工程を経ることで、有機膜が硬質化する。その場合、各電極212,222間を電気的に接続する接続抵抗が大きくなるおそれがある。特に、半田リフロー炉において加熱されると、有機膜が硬質化しやすい。
 その結果、接着剤接続用電極212の突起部が、硬質化した有機膜を突き破りにくくなり、接続抵抗の増大を招くことになる。
 それに対し、本実施の形態では、各電極212,222上には、有機膜を形成することなく接続工程を行うので、接着剤接続用電極12の突起部と接着剤接続用電極222とが容易に接触する。
 なお、接着剤接続用電極212上に有機膜215を形成した場合でも、FPC210が半田リフロー工程を経ない場合には、有機膜215が硬質化していないので、接着剤接続用電極212の突起部が有機膜を突き破ることは容易である。FPC210が半田リフロー工程を経る場合には、本実施の形態のごとく、接着剤接続用電極12の上に保護膜を貼り付けておくことが好ましい。
 よって、接着剤接続用電極212と,接着剤接続用電極222(被接続導体)との間における導通不良の発生(接続抵抗の増大など)を抑制することができる。
 -接着剤接続構造の第2の実施形態に係る例2-
 図9は、接着剤接続構造Cおよび半田接続構造Dの第2の実施形態に係る例2を示す断面図である。この接着剤接続構造Cにおいては、異方導電性接着剤(ACF)である接着剤230を用いている。すなわち、本例の接着剤230は、熱硬化性樹脂を主成分とする樹脂組成物231中に、導電性粒子236を含ませたものである。
 本例においても、母基板220は、硬質プリント配線板221と、硬質プリント配線板221上に設けられた接着剤接続用電極222および半田接続用電極226とを有している。本例においても、接着剤接続用電極212および接着剤接続用電極222の表面には、金めっき層もOSP処理による有機膜も形成されていない。
 そして、各電極212,222は、導電性粒子236を介して互いに導通している。導電性粒子236は、微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する金属粉末からなる。
 なお、本例においても、第2の実施形態に係る例1のように電極212,222同士が直接接触している箇所が存在していてもよい。
 本例においても、接着剤接続構造Cおよび半田接続構造Dを形成する前に、各電極226,242は、図3に示す有機膜15と同様の有機膜で覆われている。そして、半田リフロー工程において、半田接続用電極226および被半田接続電極242上の有機膜は半田層250に溶け込む。一方、接着剤接続用電極222および接着剤接続用電極212上には、着脱自在な保護膜が設けられていたが、半田リフロー工程後に、除去されている。
 ただし、FPC10の接着剤接続用電極222の上に、図中破線で示す有機膜215が設けられていてもよい。
 接続時には、上述の加熱加圧処理により、接着剤230中の熱硬化性樹脂を硬化させ、その収縮に伴う締め付け力によって、導電性粒子236を介して各電極212,222を互いに接続させている。
 この例では、当初から、樹脂組成物231中に微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する導電性粒子236を含ませている。
  ただし、樹脂組成物231中に、微細な金属粒子からなる導電性粒子がランダムに分散したものを用いてもよい。その場合でも、加熱加圧処理を行うことにより、各電極212,222間では、微細な金属粒子が多数繋がった形状になるからである。
 第2の実施形態に係る例2に使用される異方導電性接着剤としては、第1の実施形態に係る例2と同様に、汎用されているもの、すなわち、エポキシ樹脂等の絶縁性の熱硬化性樹脂を主成分とする樹脂組成物中に、導電性粒子36が分散されたものが使用できる。成分等は第1の実施形態に係る例2と同様であるので、説明は省略する。
 第2の実施形態に係る例2によると、接着剤接続用電極212,222に、OSP処理による有機膜も金めっき層等の貴金属めっき層も設けないことで、第2の実施形態に係る例1と同様の効果を発揮することができる。ただし、本例では、導電性粒子236を介して、各電極212,222が互いに導通している。
 また、異方導電性接着剤として、第1の実施形態に係る図6に示す形状を有するものを使用できる。
 -第2の実施形態に係る接続方法-
 図10(a)~(d)は、接着剤接続構造Cおよび半田接続構造Dを実現するための接続方法の第2の実施形態に係る例1における手順を示す断面図である。
 まず、図10(a)に示す工程で、接着剤接続領域Rcと、半田接続領域Rdとを有する母基板220(共通の基材)を準備する。母基板220において、接着剤接続領域Rcには接着剤接続用の接着剤接続用電極222が設けられており、半田接続領域Rdには半田接続用の半田接続用電極226が設けられている。
 次に、半田接続用電極226のみを覆う有機膜225を形成する。そして、接着剤接続用電極222の上には、金めっき層も有機膜も形成しない。代わりに、接着剤接続用電極222を覆う,着脱自在な保護膜228を形成しておく。具体的には、粘着剤テープなどによって接着剤接続用電極222を覆っておく。粘着テープ以外の保護膜228を用いてもよいが、半田リフロー処理の温度に耐え、着脱自在であることが必要である。
 前記有機膜225は、第1の実施形態と同様に、水溶性プリフラックス処理(OSP処理:Organic Solderability Preservation)により形成される。
 次に、図10(b)に示す工程で、半田接続領域Rdに、チップ241の一部にチップ側電極242を有する電子部品240を搭載する。このとき、チップ側電極242を半田接続用電極226の位置に合わせて、両電極226,242間に鉛フリー半田を介在させる。そして、母基板220と電子部品240とを、ピーク温度が約260℃の半田リフロー炉に入れて,半田をリフローさせる。これにより、各電極226,242を半田層250を介して接合することで、各電極226,242を互いに電気的に接続する。
 これにより、半田接続領域Rdにおいて、半田接続構造Dが形成される。
 なお、半田接続用電極226上を覆っていた有機膜225は、鉛フリー半田に含まれるフラックスなどと反応して、半田層250に溶け込んでいる。
 次に、図10(c)に示す工程で、接着剤接続用電極222上の保護膜228を除去する。これにより、接着剤接続用電極222は露出された状態となる。
 次に、図10(c)に示す工程の後、3日程度の時間が経過するまでのうちに、図10(d)に示す工程で、接着剤接続用電極222とFPC210の接着剤接続用電極212とを接着剤230により接着することにより電気的に接続する。これにより、接着剤接続領域Rcにおいて、接着剤接続構造Cが形成される。接着剤接続構造Cの形成手順については、前記接着剤接続構造の第2の実施形態に係る例2(図9参照)において、説明したとおりである。
 なお、接着剤接続用電極222が半田リフロー工程で酸化されても、図10(d)に示す工程の前に、酸化膜を除去する工程を実施すれば、図10(c)の工程の後、3日以上の長時間が経過しても不具合はない。
 本実施の形態では、FPC210の接着剤接続用電極212上にも保護膜が設けられていたが、接着剤230による接続を行う直前に除去されている。
 なお、上述のごとく、導電性粒子236を含む接着剤230(異方導電性接着剤)は、熱硬化性樹脂を主成分としている。そのため、異方導電性接着剤は、加熱すると、一旦、軟化するが、当該加熱を継続することにより、硬化することになる。そして、予め設定した異方導電性接着剤の硬化時間が経過すると、異方導電性接着剤の硬化温度の維持状態、および加圧状態を開放し、冷却を開始する。これにより、接着剤230中の導電性粒子236を介して、各電極212,222を互いに接続し、FPC210を母基板220上に実装する。
 図10(a)~(d)には、PWBである母基板220に、接着剤接続構造Cと、半田接続構造Dとを形成する例を示している。
 ただし、FPC210を共通の基材として、FPC210に接着剤接続構造Cと、半田接続構造Dとを形成してもよい。その場合には、図10に示す母基板220をFPC210と置き換え、接着剤接続用電極212上に有機膜215を形成することになる。処理の手順は、上述の通りである。
 なお、FPCには,片面回路型構造だけでなく両面回路型構造もある。両面回路型構造の場合には、半田リフロー炉に2回入れることになる。
 第2の実施形態に係る接続方法によれば、以下の効果を発揮することができる。
 通常、半田接続と接着剤接続とを同じ基板上で行う場合、半田接続用電極226と接着剤接続用電極222の双方の上に有機膜225を形成してから、半田接続を行い、その後、接着剤による接続を行うことになる。先に、接着剤接続を行うと、その後、半田リフロー処理の際に、接着剤の締め付けが緩んで、接続不良をおこす確率が高くなるからである。
 一方、半田リフロー工程を経た後に、接着剤接続構造Cを形成する場合には、半田リフロー炉を通さない場合と比較して、各電極212,222間の電気的に接続する接続抵抗が大きくなるおそれがある。これは、半田リフロー炉において加熱されることによって、有機膜225が硬質化する等、変質することで、導電性粒子236が、有機膜を突き破りにくくなっていることによると考えられる。
 本実施の形態の接続方法では、接着剤接続用電極222上には、有機膜を形成せずに、着脱自在な保護膜228を形成している。そして、図10(b)に示す工程では、接着剤接続用電極222の表面を保護膜228によって覆って、酸化膜の形成を抑制しつつ半田リフロー工程を行い、半田リフロー処理の後、図10(c)に示す工程で、保護膜228を除去している。
 その結果、図10(d)に示す工程の際に、接着剤230中の導電性粒子236が、有機膜を介することなく容易に接着剤接続用電極212,222に接触し、接着剤接続用電極212,222間を確実に導通させることができる。
 よって、有機膜215,225が半田リフロー炉を通った後に、接着剤接続構造Cを形成しても、より確実に各電極212,222間の電気的な接続抵抗を小さく抑えることができる。
 図10(a)に示す工程で、半田接続用電極226の上には、酸化防止膜として金めっき層などの貴金属めっき層を設けてもよいが、OSP処理による有機膜225を設けることで、以下の効果が得られる。
  なお、半田接続用電極226の上に、酸化防止膜として金めっき層などの貴金属めっき層を設けた場合にも、接着剤接続用電極222を覆うOSP処理を行う必要がないことで、製造コストの削減効果が得られる。
 図11(a)~(d)は、接着剤接続構造Cおよび半田接続構造Dを実現するための接続方法の第2の実施形態に係る例2における手順を示す断面図である。図11において、図10に示す部材と同じ部材については、同じ符号を付して説明を省略する。
 図11(a)~(d)では、基本的には第2の実施形態に係る例1における図10(a)~(d)と同じ手順で処理を進める。そこで、第2の実施形態に係る例1と同じ処理については説明を省略し、異なる処理のみを説明する。
 図11(a)に示す工程では、接着剤接続用電極222の上には、保護膜も設けない。従って、図11(b)に示す半田リフロー工程で、接着剤接続用電極222の上に、薄い酸化膜222aが形成されてしまう。
 ただし、半田リフロー炉内の雰囲気をきわめて酸素濃度が低い(たとえば1%以下)非酸化性雰囲気に維持した場合には、酸化膜の厚みは無視しうる程度に薄くすることも可能である。
 そこで、図11(c)に示す工程で、酸化膜222aを除去する。酸化膜222aを除去する方法としては、酸性溶液で洗浄する、プラズマで洗浄する、などの方法がある。
 このように、酸化膜222aを除去する工程を実施すれば、前記例1のように半田リフロー処理後の保存期間を気にする必要はなくなる。
 その結果、第2の実施形態に係る例1と同様に、図11(d)に示す工程の際に、接着剤230中の導電性粒子236が、有機膜を介することなく容易に接着剤接続用電極212,22に接触し、接着剤接続用電極212,222間を確実に導通させることができる。
 本例では、接着剤接続用電極222上に保護膜を形成しないが、形成された酸化膜222aを除去するので、電極212,222間の接続抵抗の増大を確実に抑制することができる。したがって、第2の実施形態に係る例2の方法によっても、前記第2の実施形態に係る例1の方法と基本的には同じ効果が得られる。
 以上総合すると、第2の実施形態では、以下の効果を得ることができる。
 (1)本実施形態の接着剤接続構造Cにおいては、母基板220の接着剤接続用電極222およびFPC210の接着剤接続用電極212のそれぞれの表面にOSP処理を施さず、金めっき等の貴金属めっき層も形成しないので、工程の簡素化、材料コストの低減により、製造コストの削減を図ることができる。
 しかも、接着剤230による接続を行う際に、接着剤接続用電極212,222上にはOSP処理による有機膜が存在しないので、導電性粒子236が接着剤接続用電極212,222に容易に接触する。よって、導電性粒子236が有機膜を突き破れないことに起因する各電極212,222間の導電性の悪化を抑制することができる。
 (2)本実施形態においては、使用する異方導電性接着剤である接着剤230における導電性粒子236は、微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する金属粉末により構成されている。この構成によれば、接着剤230の面方向であるY方向においては、隣り合う接着剤接続用電極222間、または接着剤接続用電極212間の絶縁を維持して短絡を防止しつつ、接着剤230の厚み方向であるX方向においては、多数の接着剤接続用電極222および接着剤接続用電極212間を一度に、かつ各々を独立して導電接続して、低抵抗を得ることが可能となる。
 (3)本実施形態においては、導電性粒子236のアスペクト比が5以上である構成としている。この構成によれば、異方導電性接着剤を使用する場合に、導電性粒子236間の接触確率が高くなる。その結果、導電性粒子236の配合量を増やすことなく、各電極212,222を互いに電気的に接続することが容易となる。
 (4)本実施形態においては、接着剤接続構造Cを形成する前の接着剤230(異方導電性接着剤)として、フィルム形状を有するものを用いている。この構成によれば、異方導電性接着剤の取り扱いが容易になる。また、加熱加圧処理により接着剤接続構造Cを形成する際の作業性が向上する。
 (5)本実施形態においては、導電性粒子236の長径方向を、フィルム形状を有する接着剤230(異方導電性接着剤)の厚み方向であるX方向に配向させたものを用いている。この構成によれば、接着剤230の面方向であるY方向においては、隣り合う接着剤接続用電極222間、または接着剤接続用電極212間の絶縁を維持して短絡を防止しつつ、接着剤230の厚み方向であるX方向においては、多数の接着剤接続用電極222および接着剤接続用電極212間を一度に、かつ各々を独立して導電接続して、低抵抗を得ることが可能となる。
 (6)本実施形態においては、母基板220である硬質プリント配線板(PWB)にフレキシブルプリント配線板(FPC210)を接続する構成としている。この構成によれば、母基板220がFPCである場合と比較して、多層の導電パターン構造を安価に提供することができる。また、母基板220上にFPC210を接続することにより、FPC210に代えて硬質プリント配線板を接続した場合と比較して、図2に示すごとく、FPC10を他の基板のコネクタに接続する際に、他の基板の配置の自由度を向上させることができる。その上、接着剤接続用電極212,222に保護膜(粘着剤テープ)を貼り付けるか、酸化膜を酸処理などで除去するだけなので、各電極212,222を金メッキにて被覆したり、OSP処理を施すよりも安価にできるため、母基板220およびFPC210の接続体を安価に提供することができる。
 なお、前記実施形態は以下のように変更しても良い。
 ・前記実施形態においては、母基板220として硬質プリント配線板(PWB)を使用しているが、他の構成であっても良い。たとえば、母基板220としてフレキシブルプリント配線板(FPC)を使用してもよい。
 ・前記実施形態においては、接着剤接続構造Cは、FPC210とPWBである母基板220との電極同士の接続に用いたが、本発明の接着剤接続構造はこれに限定されることはない。例えば、導電体としてICチップ等の電子部品の突起電極(または、バンプ)と、PWBまたはFPC上の電極との接着剤接続構造Cとしてもよい。
 ・前記実施形態におけるFPC210に代えて、PWBを母基板220上に実装してもよい。また、FPC210の代わりに電子部品を実装してもよい。
 ・前記実施形態においては、OSP処理として、水溶性プリフラックス処理を半田接続用電極226,242に施したが、OSP処理を、例えば、耐熱性プリフラックス処理としてもよい。また、水溶性プリフラックス処理として、アゾール化合物を含有する酸性水溶液としたが、他の水溶液であってもよい。
 ・前記実施形態においては、各接着剤接続用電極212,222の両方に、OSP処理による有機膜や貴金属めっき層を設けなかったが、一方の接着剤接続用電極212のみにOSP処理による有機膜や貴金属めっき層を設けてもよい。これによっても、前記実施形態の効果(1)を得ることはできる。
第2の実施形態に係る実施例
 以下に、本発明を第2の実施形態に係る実施例、比較例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。
(第2の実施形態に係る実施例1)
(接着剤の作成)
 接着剤の作成は、上述した第1の実施形態に係る実施例1と同じであるので、説明は省略する。
 (プリント配線板の作成)
 幅150μm、長さ4mm、高さ18μmの銅電極である接着剤接続用電極が150μm間隔で30個配列されたフレキシブルプリント配線板を用意した。接着剤接続用電極は、OSP処理による有機膜、または貴金属めっき層で被覆していない。
 (接続抵抗評価)
 前記フレキシブルプリント配線板に、窒素をフローすることで酸素濃度を1%以下としたリフロー槽内において、ピーク温度を260℃とした半田リフロー処理を施した。その後、フレキシブルプリント配線板同士を、連続する30箇所の接続抵抗が測定可能なデイジーチェーンを形成するように対向させて配置するとともに、これらフレキシブルプリント配線板の間に作製した接着剤を挟み、190℃に加熱しながら、5MPaの圧力で15秒間加圧して接着させ、フレキシブルプリント配線板同士の接合体を得た。次いで、この接合体において、接着剤接続用電極、接着剤、および接着剤接続用電極を介して接続された連続する30箇所の抵抗値を四端子法により求め、求めた値を30で除することにより、接続された1箇所あたりの接続抵抗を求めた。そして、この評価を10回繰り返し、接続抵抗の平均値を求めた。そして、接続抵抗が50mΩ以下の場合を、導電性を確保したものとして判断した。
 (接続信頼性評価)
 基準は上述した第1の実施形態に係る実施例1と同様であるので、説明は省略する。
  (第2の実施形態に係る実施例2)
 半田リフロー処理を施した後、異方導電性接着剤を用いた接合体を作製する前に、接着剤接続用電極を酢酸溶液で洗浄して酸化膜を除去したこと以外は第2の実施形態に係る実施例1と同様にしてフレキシブルプリント配線板同士の接合体を得た。その後、実施例1と同一条件で、接続抵抗評価及び接続信頼性評価を行った。
 (比較例1)
 接着剤接続用電極に2-フェニル-4-メチル-5-ベンジルイミダゾールを含む酸化防止膜を形成したこと以外は実施例1と同様にして、フレキシブルプリント配線板同士の接合体を得た。酸化防止膜の熱分解温度は、310℃、平均膜厚は0.60μm、厚さ0.1μm以下となる領域の面積率は4%であった。その後、上述の第2の実施形態に係る実施例1と同一条件で、接続抵抗評価及び接続信頼性評価を行った。
 (比較例2)
 リフロー槽内を大気雰囲気としたこと以外は実施例1と同様にしてフレキシブルプリント配線板同士の接合体を得た。その後、実施例1と同一条件で、接続抵抗評価及び接続信頼性評価を行った。
 (熱分解温度測定)
 手順等は、第1の実施形態に係る実施例2と同じであるので、説明は省略する。
 (膜厚測定)
 手順等は、第1の実施形態に係る実施例2と同じであるので、説明は省略する。
Figure JPOXMLDOC01-appb-T000002
 前記表2は、第2の実施形態に係る実施例1、第2の実施形態に係る実施例2および比較例1、2の接続抵抗評価と接続信頼性評価の結果を示している。
 表2に示すように、第2の実施形態に係る実施例1、2のいずれの場合においても、初期接続抵抗が50mΩ以下であり、接続抵抗は十分小さく良好である。また、第2の実施形態に係る実施例1、2では、抵抗上昇率が50%以下であるので、接続信頼性も良好であることがわかる。
 一方、比較例1では、初期接続抵抗が50mΩ以上と高く、抵抗上昇率は∞(無限大)であった。比較例1では、半田リフロー処理の際には、接着剤接続用電極を酸化防止膜で覆っているので、接着剤接続用電極には酸化膜は形成されていない。しかし、半田リフロー処理の際に、酸化防止膜が硬質化していることで、導電性粒子が酸化防止膜を確実に突き破ることができず、そのために導電性粒子と接着剤接続用電極との接触が不安定になったと考えられる。
 また、比較例2では、初期接続抵抗が比較例1よりもさらに高く、抵抗上昇率は∞(無限大)であった。比較例2では、半田リフロー処理の際に接着剤接続用電極を酸化防止膜で覆っておらず、かつ、酸化性雰囲気で半田リフロー処理を行なったことにより、接着剤接続用電極に酸化膜が形成されている。その結果、電極-導電性粒子間の接触抵抗が高くなったと考えられる。
 さらに、第2の実施形態に係る実施例1、2を比較すると、初期接続抵抗,抵抗上昇率共に、ほぼ同等である。したがって、実施例1のごとく接着剤接続用電極に酸化膜が形成されないように非酸化性雰囲気で半田リフロー処理するだけでも、初期接続抵抗を低く、かつ、接続信頼性を高く維持しうることがわかる。
 ただし、第2の実施形態に係る実施例1よりも第2の実施形態に係る実施例2の方が、初期接続抵抗,抵抗上昇率共に、わずかであるが優れている。よって、第2の実施形態に係る実施例2のごとく酸化膜を除去する工程を実施することにより、初期接続抵抗をより低く、かつ、接続信頼性をより高く維持しうることがわかる。
 -接着剤接続構造の第3の実施形態に係る例1-
 図12は、FPC310(フレキシブルプリント配線板)および電子部品340と、母基板320との間に形成される接着剤接続構造Cおよび半田接続構造Dの第3の実施形態に係る例1を示す断面図である。この接着剤接続構造Cは、絶縁性接着剤(NCF)を用いて形成されるものである。
 母基板320は、硬質プリント配線板321と、硬質プリント配線板321上に設けられた接着剤接続用電極322および半田接続用電極326とを有している。この母基板320は、図2に示す表示部基板135や入力キー基板145に相当するPWB(硬質プリント配線板)である。FPC310は、接着剤接続用電極312(被接続導体)を311の下側に向けて、母基板320上に実装されている。電子部品340は、チップ341の一部にチップ側電極342(被半田接続導体)を有しており、チップ側電極342をチップ341の下側に向けて配置されている。
 母基板320の接着剤接続用電極322および半田接続用電極326は、硬質プリント配線板321上に銅箔等の金属箔を積層し、金属箔を、常法により、露光、エッチングすることにより形成されている。
 そして、接着剤接続構造Cにおいては、NCFである接着剤330の締め付け力によって、両電極312,322が互いに強く接触しあって導通している。半田接続構造Dにおいては、半田層350と各電極326,342との合金化により、両電極326,342が互いに導通している。
 接着剤330は、熱硬化樹脂を主成分とし、これに硬化剤,各種フィラーを添加したものである。成分等は、第1の実施形態に係る接着剤30と同様であるため、説明は省略する。
 なお、本実施の形態では、前記各種熱硬化性樹脂の中でも、ガラス転移温度が100℃以上のものを用いている。このような熱硬化性樹脂としては、たとえば、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂がある。
 ここで、接着剤接続構造Cおよび半田接続構造Dを形成する前に、各電極312,322、326,342は、それぞれ有機膜315,325で覆われている。そして、各電極312,322間を接着剤330により接続して接着剤接続構造Cを形成し、その後、各電極326,342間を半田層350により接続して半田接続構造Dを形成する。
 ただし、各電極312,322,326,342上に、有機膜315,325に代えて、金めっき層等の他の酸化防止膜を形成しておいてもよい。
 接着剤330による接続時には、FPC310を介して、接着剤330を母基板320の方向へ所定の圧力で加圧しつつ、接着剤330を加熱溶融させる(加熱加圧処理)。これにより、接着剤330中の熱硬化性樹脂を硬化させ、その収縮に伴う締め付け力によって、FPC310と母基板320の各電極312,322を互いに強く接触させ、導通させている。このとき、接着剤接続用電極312の一部(導通部分)は、有機膜315に覆われることなく互いに導通されている。
 半田層350による接続時には、母基板320と電子部品340とを、ピーク温度が約260℃の半田リフロー炉に入れて,半田をリフローさせる。このとき、半田接続用電極326およびチップ側電極342上の有機膜は半田層350に溶け込む。
 本実施の形態では、FPC310の接着剤接続用電極312は、エッチングにより表面が粗くなるように加工されている。但し、エッチングだけでなく、エンボス加工などの機械加工を用いてもよい。
 各電極312,322が有機膜315,325で覆われている場合、少なくとも一方の電極の表面に突起部があれば、突起部が有機膜315,325を突き破るので、両電極312,322が確実に接触しうる。なお、両電極312,322間にバンプが配置されていてもよい。
 本実施の形態では、半田リフロー処理の前後における、接着剤接続用電極312,322間の接続抵抗の増大が所定範囲内に収まるように行われる。具体的には、半田リフロー処理前の電極312,322間の接続抵抗をR1、接着剤330の接着強度をF1とし、半田リフロー処理の後における電極312,322間の接続抵抗をR2、接着剤330の接着強度をF2としたとき、下記関係式(1),(2)
 R2<1.2×R1                   (1)
 F2>0.8×F1                   (2)
が成立している。
 具体的には、熱硬化性樹脂の種類の選択や、半田リフロー処理の温度の設定などによって、関係式(1),(2)が成立する条件を見出している。
 本例1によると、電極構造の効果に加えて、以下の効果を発揮することができる。
 一般的に、接着剤接続構造Cと半田接続構造Dとが、共通の基材上に存在する場合、先に半田リフロー処理を行なって半田接続構造Dを形成する手順が採用される。先に接着剤接続構造Cを形成すると、接続抵抗が増大するおそれがあるからである。
 それに対し、本実施の形態では、半田リフロー処理の前後における、各電極312,322間の接続抵抗の増大が所定範囲内に収まるように、たとえば、前記関係式(1)が成立するように、接続を行っている。よって、半田接続構造Dの形成前に、接着剤接続構造Cを形成しても、接着剤接続用電極312と接着剤接続用電極322(被接続導体)との間における接続抵抗の増大を抑制することができる。
 また、接着剤330の締め付け力の緩みが所定範囲内に収まるように、たとえば、前記関係式(2)が成立するように、接続を行っている。よって、長期間使用時における接続抵抗の増大(接続の信頼性の悪化)を抑制することができる。
 また、接着剤接続用電極312、322には、従来、酸化防止用の金めっきが施されていた。それに対し、OSP処理によって有機膜を形成する工程は、金めっき層を形成する工程と比較して、製造工程が簡素化される。また、高価な金を使用しないので、材料コストも低減される。よって、接着剤を用いた接続を安価に行うことが可能となる。
 -接着剤接続構造の第3の実施形態に係る例2-
 図13は、接着剤接続構造Cおよび半田接続構造Dの第3の実施形態に係る例2を示す断面図である。図13において、図12と同じ部材は、同じ符号を付して説明を省略する。接着剤接続構造Cにおいては、異方導電性接着剤(ACF)である接着剤330を用いている。すなわち、本例の接着剤330は、熱硬化性樹脂を主成分とする樹脂組成物331中に、導電性粒子336を含ませたものである。
 本例においても、母基板320は、硬質プリント配線板321と、硬質プリント配線板321上に設けられた接着剤接続用電極322および半田接続用電極326とを有している。本例においても、接着剤接続用電極312および接着剤接続用電極322の表面は、いずれも、導通部分を除き、有機膜315,325によって被覆されている。
 そして、各電極312,322は、導電性粒子336を介して互いに導通している。導電性粒子336は、微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する金属粉末からなる。
 なお、本例においても、第3の実施形態に係る例1のように電極312,322同士が直接接触している箇所が存在していてもよい。
 本例においても、接着剤接続構造Cおよび半田接続構造Dを形成する前に、各電極312,322,326,342は、図3に示す有機膜15と同様の有機膜で覆われている。そして、半田リフロー工程において、半田接続用電極326およびチップ側電極342上の有機膜は半田層350に溶け込む。
 接続時には、上述の加熱加圧処理により、接着剤330中の熱硬化性樹脂を硬化させ、その収縮に伴う締め付け力によって、導電性粒子336を介して各電極312,322を互いに接続させている。
 この例では、当初から、樹脂組成物331中に微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する導電性粒子336を含ませている。
 第3の実施形態に係る例2に使用される異方導電性接着剤として、上述した実施形態と同様のものを利用できる。
 第3の実施形態に係る例2によると、第3の実施形態に係る例1と同じ条件で、先に接着剤接続構造Cを形成し、その後、半田接続構造Dを形成したことで、第3の実施形態に係る例1と同様の効果を発揮することができる。
 また、上述した実施形態と同様に、異方導電性接着剤として、図6に示す形状を有するものを使用することができる。また、本発明に使用される金属粉末も、上述した実施形態と同様のものを使用することができる。
 -第3の実施形態に係る接続方法-
 図14(a)~(c)は、接着剤接続構造Cおよび半田接続構造Dを実現するための接続方法の手順を示す断面図である。
 まず、図14(a)に示す工程で、接着剤接続領域Rcと、半田接続領域Rdとを有する母基板320(共通の基材)を準備する。母基板320において、接着剤接続領域Rcには接着剤接続用の接着剤接続用電極322が設けられており、半田接続領域Rdには半田接続用の半田接続用電極326が設けられている。
 次に、各接着剤接続用電極322,326を覆う有機膜325を形成する。
 次に、図14(b)に示す工程で、接着剤接続用電極322とFPC310の接着剤接続用電極312とを接着剤330により接着することにより電気的に接続する。これにより、接着剤接続領域Rcにおいて、接着剤接続構造Cが形成される。接着剤接続構造Cの形成手順については、前記接着剤接続構造の第3の実施形態に係る例2(図13参照)において、説明したとおりである。
 次に、図14(c)に示す工程で、半田接続領域Rdに、チップ341の一部にチップ側電極342を有する電子部品340を搭載する。このとき、チップ側電極342を半田接続用電極326の位置に合わせて、両電極326,342間に鉛フリー半田を介在させる。そして、母基板320と電子部品340とを、ピーク温度が約260℃の半田リフロー炉に入れて,半田をリフローさせる。これにより、各電極326,342を半田層350を介して接合することで、各電極326,342を互いに電気的に接続する。
 これにより、半田接続領域Rdにおいて、半田接続構造Dが形成される。
 なお、半田接続用電極326上を覆っていた有機膜325は、鉛フリー半田に含まれるフラックスなどと反応して、半田層350に溶け込んでいる。
 なお、有機膜315,325の熱分解温度が半田リフロー処理の温度よりも低い場合は、熱分解温度以上の温度で半田リフロー処理が行われたことで、接着剤接続構造C中で、接着剤接続用電極312,322上の有機膜315,325が熱分解する。熱分解した有機膜315,325は、接着剤330の内側で、液体または炭化した粉末となって残る。あるいは、有機膜315,325の材料によっては、気体となることもあり得る。いずれにしても、接着剤接続構造Cが形成された後なので、接続抵抗の増大を招くおそれはほとんどない。
 なお、上述のごとく、導電性粒子336を含む接着剤330(異方導電性接着剤)は、熱硬化性樹脂を主成分としている。そのため、異方導電性接着剤は、加熱すると、一旦、軟化するが、当該加熱を継続することにより、硬化することになる。そして、予め設定した異方導電性接着剤の硬化時間が経過すると、異方導電性接着剤の硬化温度の維持状態、および加圧状態を開放し、冷却を開始する。これにより、接着剤330中の導電性粒子336を介して、各電極312,322を互いに接続し、FPC310を母基板320上に実装する。
 図14(a)~(c)には、PWBである母基板320に、接着剤接続構造Cと、半田接続構造Dとを形成する例を示している。
 ただし、FPC310を共通の基材として、FPC310に接着剤接続構造Cと、半田接続構造Dとを形成してもよい。その場合には、図14に示す母基板320をFPC310と置き換え、接着剤接続用電極312上に有機膜315を形成することになる。処理の手順は、上述の通りである。
 なお、FPCには,片面回路型構造だけでなく両面回路型構造もある。両面回路型構造の場合には、半田リフロー炉に2回入れることになる。
 第3の実施形態に係る接続方法によれば、以下の効果を発揮することができる。
 通常、半田接続と接着剤接続とを同じ基板上で行う場合、接着剤接続用電極322の上に有機膜325を形成してから、先に半田接続を行い、その後、接着剤による接続を行うことになる。先に、接着剤接続を行うと、その後、半田リフロー処理の際に、接着剤の締め付けが緩んで、接続不良をおこす確率が高くなるからである。
 一方、半田リフロー工程を経た後に、接着剤接続構造Cを形成する場合には、半田リフロー炉を通さない場合と比較して、各電極312,322間の電気的に接続する接続抵抗が大きくなるおそれがある。これは、半田リフロー炉において加熱されることによって、有機膜325が硬質化する等、変質することで、導電性粒子336が、有機膜325を突き破りにくくなっていることによると考えられる。
 本実施の形態の接続方法では、図14(b)に示す工程で、先に接着剤接続構造Cを形成している。そのため、図14(b)に示す工程では、導電性粒子336が容易に有機膜315,325を突き破って、各電極312,322に接触し、各電極312,322間の導通が確保される。
 一方、図14(c)に示す工程の前後においては、各電極312,322間の接続抵抗の増大が所定範囲内に収まるように、たとえば、前記関係式(1),(2)が成立するように、接続を行っている。よって、半田接続構造Dの形成前に、接着剤接続構造Cを形成しても、各接着剤接続用電極312,322間における接続抵抗の増大や信頼性の悪化を抑制することができる。
 また、半田接続用電極326の上に、酸化防止膜である有機膜325を形成したことにより、各電極326,342間の接続強度(シェア強度)を向上させることができる。
 以上総合すると、第3の実施形態では、以下の効果を得ることができる。
 (1)本実施形態の接着剤接続構造Cにおいては、母基板320の接着剤接続用電極322およびFPC310の接着剤接続用電極312のそれぞれの表面にOSP処理を施して、酸化防止膜である有機膜315,325をそれぞれ形成する構成としている。この構成によれば、各電極312,322が金めっき層で被覆される場合と比較して、酸化防止膜を形成する工程が簡素化される。また、金などの貴金属を用いる場合と比較して、材料コストも低減される。その結果、各電極312,322を互いに接続する際の製造コストを安価にすることが可能となる。
 しかも、各電極312,322間の接続抵抗の増大が所定範囲内に収まるように、たとえば、前記関係式(1),(2)が成立するように、接着による接続と半田による接続とを行っている。よって、半田接続構造Dの形成前に、接着剤接続構造Cを形成しても、接着剤接続用電極312と接着剤接続用電極322(被接続導体)との間における接続抵抗の増大を抑制することができる。
 また、半田リフロー処理の前に、接着剤330による接続を行うので、有機膜315,325の平均膜厚や、OSP処理時における膜厚が小さい領域の面積率を厳しく管理する必要がない。
 (2)本実施形態においては、使用する異方導電性接着剤である接着剤330における導電性粒子336は、微細な金属粒子が多数直鎖状に繋がった形状、または針形状を有する金属粉末により構成されている。この構成によれば、接着剤330の面方向であるY方向においては、隣り合う接着剤接続用電極322間、または接着剤接続用電極312間の絶縁を維持して短絡を防止しつつ、接着剤330の厚み方向であるX方向においては、多数の接着剤接続用電極322および接着剤接続用電極312間を一度に、かつ各々を独立して導電接続して、低抵抗を得ることが可能となる。
 (3)本実施形態においては、導電性粒子336のアスペクト比が5以上である構成としている。この構成によれば、異方導電性接着剤を使用する場合に、導電性粒子336間の接触確率が高くなる。その結果、導電性粒子336の配合量を増やすことなく、各電極312,322を互いに電気的に接続することが容易となる。
 (4)本実施形態においては、接着剤接続構造Cを形成する前の接着剤330(異方導電性接着剤)として、フィルム形状を有するものを用いている。この構成によれば、異方導電性接着剤の取り扱いが容易になる。また、加熱加圧処理により接着剤接続構造Cを形成する際の作業性が向上する。
 (5)本実施形態においては、導電性粒子336の長径方向を、フィルム形状を有する接着剤330(異方導電性接着剤)の厚み方向であるX方向に配向させたものを用いている。この構成によれば、接着剤330の面方向であるY方向においては、隣り合う接着剤接続用電極322間、または接着剤接続用電極312間の絶縁を維持して短絡を防止しつつ、接着剤330の厚み方向であるX方向においては、多数の接着剤接続用電極322および接着剤接続用電極312間を一度に、かつ各々を独立して導電接続して、低抵抗を得ることが可能となる。
 (6)第3の実施形態においては、母基板320である硬質プリント配線板(PWB)にフレキシブルプリント配線板(FPC310)を接続する構成としている。この構成によれば、母基板320がFPCである場合と比較して、多層の導電パターン構造を安価に提供することができる。また、母基板320上にFPC310を接続することにより、FPC310に代えて硬質プリント配線板を接続した場合と比較して、図2に示すごとく、FPC10を他の基板のコネクタに接続する際に、他の基板の配置の自由度を向上させることができる。その上、接着剤接続用電極312,322を有機膜315,325にて被覆することにより、各電極312,322を金メッキにて被覆するよりも安価にできるため、母基板320およびFPC310の接続体を安価に提供することができる。
 なお、前記実施形態は以下のように変更しても良い。
 ・前記実施形態においては、母基板320として硬質プリント配線板(PWB)を使用しているが、他の構成であっても良い。たとえば、母基板320としてフレキシブルプリント配線板(FPC)を使用してもよい。
 ・前記実施形態においては、接着剤接続構造Cは、FPC310とPWBである母基板320との電極同士の接続に用いたが、本発明の接着剤接続構造はこれに限定されることはない。例えば、導電体としてICチップ等の電子部品の突起電極(または、バンプ)と、PWBまたはFPC上の電極との接着剤接続構造Cとしてもよい。
 ・前記実施形態におけるFPC310に代えて、PWBを母基板320上に実装してもよい。また、FPC310の代わりに電子部品を実装してもよい。
 ・前記実施形態においては、OSP処理として、水溶性プリフラックス処理を接着剤接続用電極312,322に施したが、OSP処理を、例えば、耐熱性プリフラックス処理としてもよい。また、水溶性プリフラックス処理として、アゾール化合物を含有する酸性水溶液としたが、他の水溶液であってもよい。
 ・前記実施形態においては、各接着剤接続用電極312,322の両方にOSP処理を施したが、例えば、一方の接着剤接続用電極312または322のみにOSP処理を施してもよい。その場合、他方の接着剤接続用電極322または312には、金めっき層などの貴金属めっき層を形成することになるが、これによっても、前記実施形態の効果(1)を得ることはできる。
 あるいは、全ての電極312,322,326,342にOSP処理による有機膜は設けず、金めっき層を設けてもよい。
第3の実施形態に係る実施例
 以下に、第3の実施形態に係る発明を実施例、比較例に基づいて説明する。なお、本発明は、これらの実施例に限定されるものではなく、これらの実施例を本発明の趣旨に基づいて変形、変更することが可能であり、それらを本発明の範囲から除外するものではない。
(第3の実施形態に係る実施例1)
(接着剤の作成)
 接着剤の作成は、上述した第1の実施形態に係る実施例1と同じであるので、説明は省略する。なお、この異方導電性接着剤の硬化後のガラス転移温度は115℃であった。
 (プリント配線板の作成)
 幅150μm、長さ4mm、高さ18μmの銅電極である接着剤接続用電極が150μm間隔で30個配列されたフレキシブルプリント配線板を用意した。OSP処理により、接着剤接続用電極に、2-フェニル-4-メチル-5-ベンジルイミダゾールを含む酸化防止膜を形成した。その熱分解温度は、310℃、平均膜厚は0.10μm、厚さ0.1μm以下となる領域の面積率は60%であった。
 (接合体の作製)
 前記フレキシブルプリント配線板同士を、連続する30箇所の接続抵抗が測定可能なデイジーチェーンを形成するように対向させて配置するとともに、これらフレキシブルプリント配線板の間に作成した接着剤を挟み、190℃に加熱しながら、5MPaの圧力で15秒間加圧して接着させ、フレキシブルプリント配線板同士の接合体を得た。
 (接続抵抗、接着強度の測定)
 この接合体において、接着剤接続用電極、接着剤、および接着剤接続用電極を介して接続された連続する30箇所の抵抗値を四端子法により求め、求めた値を30で除することにより、接続された1箇所あたりの接続抵抗を求めた。接続抵抗が50mΩ以下の場合を、導電性を確保したものとして判断した。また、得られた接合体を電極方向に50mm/minの速度で90°剥離した際の接着強度を測定した。接着強度が300N/m以上の場合、良好な接着強度が得られたと判断した。
(半田リフロー処理後の接続抵抗、接着強度の測定)
次に、半田リフロー槽内において、ピーク温度を260℃とした半田リフロー処理を施した後、前記と同様に接続抵抗、接着強度を測定した。
 (接続信頼性評価)
 前記のように作成した接続体を、85℃,85%RH高温高湿槽中に500hr静置した後、前記と同様に、接続抵抗を測定した。そして、接続抵抗の上昇率が50%以下の場合を、接続信頼性が良好と判断した。
  (第3の実施形態に係る実施例2)
 酸化防止膜の平均膜厚を0.60μm、厚さ0.1μm以下となる領域の面積率を2%としたこと以外は、実施例1と同様にして、フレキシブルプリント配線板同士の接合体を得た。その後、実施例1と同一条件で、接続抵抗評価及び接続信頼性評価を行った。
 (比較例1)
 接着剤の配合を重量比で(1)35/(2)20/(3)0/(4)20/(5)5の割合としたこと以外は第3の実施形態に係る実施例1と同様にして、フレキシブルプリント配線板同士の接合体を得た。接着剤の硬化後のガラス転移温度は80℃であった。
 (熱分解温度測定)
 熱分解温度は、示差走査熱量測定(Differential Scanning Calorimetry, DSC)を用いて測定した。10℃/minの速度で昇温した際の発熱開始温度を熱分解温度とする。
 (膜厚測定)
 酸化防止膜が形成された接着剤接続用電極の断面を観察する。0.2μm間隔で膜厚を測定し、平均膜厚0.1μm以下の領域の面積率を算出する。
 (接着剤のガラス転移温度測定)
 接着剤のガラス転移温度は、接着剤を完全に硬化させた後、動的粘弾性測定装置を用いて測定した。10℃/minの昇温速度で1Hzの周波数で測定した際にtanδが最大値をとる温度をガラス転移温度とする。
Figure JPOXMLDOC01-appb-T000003
 前記表3は、第3の実施形態に係る実施例1、2および比較例の接続抵抗,接着強度および接続信頼性の評価結果を示している。
 表3に示すように、第3の実施形態に係る実施例1、2のいずれの場合においても、初期接続抵抗が50mΩ以下であり、接続抵抗は十分小さく良好である。また、第3の実施形態に係る実施例1、2では、抵抗上昇率が50%以下であるので、接続信頼性も良好であることがわかる。
 また、第3の実施形態に係る実施例1では、半田リフロー処理前の接続抵抗R1=42(mΩ)で、接着剤の接着強度F1=620(N/m)であり、半田リフロー処理後の接続抵抗R2=43(mΩ)、接着剤の接着強度F2=600(N/m)であるから、上述の関係式(1),(2)
 R2=43<1.2×R1=1.2×42=50.4           (1)
 F2=600>0.8×F1=0.8×620=496          (2)
を満足している。
 同様に、第3の実施形態に係る実施例2では、半田リフロー処理前の接続抵抗R1=43(mΩ)で、接着剤の接着強度F1=680(N/m)であり、半田リフロー処理後の接続抵抗R2=45(mΩ)、接着剤の接着強度F2=650(N/m)であるから、上述の関係式(1),(2)
 R2=45<1.2×R1=1.2×43=51.6           (1)
 F2=650>0.8×F1=0.8×680=544          (2)
を満足している。
 つまり、第3の実施形態に係る実施例1,2の場合、接続抵抗の増大が所定範囲内に収まるように行われている。
 一方、比較例1では、初期接続抵抗は高めではあるが導電性は何とか確保できている。しかし、半田リフロー処理後には、接続抵抗が50(mΩ)を超えており、抵抗上昇率も∞(無限大)となっている。
 また、比較例1では、半田リフロー処理前の接続抵抗R1=49(mΩ)で、接着剤の接着強度F1=320(N/m)であり、半田リフロー処理後の接続抵抗R2=150(mΩ)、接着剤の接着強度F2=120(N/m)であるから、
 R2=150>1.2×R1=1.2×49=58.8
 F2=120<0.8×F1=0.8×320=256
となって、上述の関係式(1),(2)を満足していない。つまり、比較例1の場合、接続抵抗の増大が所定範囲内に収まるように行われていない。
 この原因は、半田リフロー処理の際に、接着剤の接着強度が320(N/m)から120(N/m)に低下した、つまり接着剤の締め付け力が緩んだことで、導電性粒子による導通性が悪化したことによると考えられる。つまり、前記関係式(1),(2)を満足することができないような接着剤の配合となっていることで、接続信頼性の悪化を招いていることがわかる。
 さらに、第3の実施形態に係る実施例1、2を比較すると、接続抵抗,抵抗上昇率共に、ほぼ同等である。したがって、実施例2のごとく、平均膜厚を0.5μm以上とし、かつ、膜厚が0.1μm以下となる領域の面積率を小さくしても、前記関係式(1),(2)が成り立つような接着剤の配合とすることにより、接続信頼性が高くなることがわかる。
 前記開示された本発明の実施の形態の構造は、あくまで例示であって、本発明の範囲はこれらの記載の範囲に限定されるものではない。本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内でのすべての変更を含むものである。
 本発明の電極構造,配線体および接着剤接続構造は、携帯電話機の他、デジタルカメラ,ビデオカメラ等のカメラ、ポータブルオーディオプレーヤ、ポータブルDVDプレーヤ、ポータブルノートパソコンなどの電子機器内に配置される部材の電極構造や、接続構造に利用することができる。また、本発明の離型シート体は、FPCの他、硬質プリント配線板(PCB)等の各種配線板や、各種電子部品の接続に用いることができる。
 10  FPC
 11  ベースフィルム
 12  接着剤接続用電極(被接続導体)
 13  カバーレイ
 15  有機膜
 20  母基板
 21  硬質プリント配線板
 22  接着剤接続用電極
 26  半田接続用電極
 30  接着剤
 31  樹脂組成物
 36  導電性粒子
 40  電子部品
 41  チップ
 42  チップ側電極(被半田接続導体)
 50  半田層

Claims (20)

  1.  接着剤接続用電極が設けられた基材を準備する工程(a1)と、
     前記基材上の接着剤接続用電極を、酸化防止のための有機膜で被覆する工程(b1)と、
     前記有機膜を除去または薄くする工程(c1)と、
     前記工程(c1)の後、熱硬化性樹脂を主成分とする接着剤を介して前記接着剤接続用電極と被接続導体とを互いに接着させることにより電気的に接続する工程(d1)と、
    を含む接続方法。
  2.  請求項1記載の接続方法において、
     前記工程(c1)では、酸性液またはその蒸気に、前記有機膜を接触させることにより行われる、接続方法。
  3.  請求項1又は2のいずれかに記載の接続方法において、
     前記工程(a1)では、前記基材として、半田接続用導体が設けられた基材を準備し、
     前記工程(b1)の後,前記工程(c1)の前に、非酸化性雰囲気中で半田リフロー処理することにより、前記半田接続用導体を被半田接続導体に接合する工程(e1)をさらに含む接続方法。
  4.  接着剤接続用電極および半田接続用電極が設けられた基材を準備する工程(a2)と、
     前記基材上の半田接続用電極のみを、OSP処理による有機膜、または貴金属めっき膜で被覆する工程(b2)と、
     非酸化性雰囲気中で半田リフロー処理することにより、前記半田接続用電極を被半田接続導体に接合する工程(c2)と、
     前記工程(c2)の後、熱硬化性樹脂を主成分とする接着剤を介して前記接着剤接続用電極と被接続導体とを互いに接着させることにより電気的に接続する工程(d2)と、
    を含む接続方法。
  5.  請求項4に記載の接続方法において、
     前記工程(b2)の後、前記工程(c2)の前に、前記接着剤接続用電極を覆う、着脱自在な保護膜を形成し、
     前記工程(c2)は、前記保護膜が残存する温度で行い、
     前記工程(d2)の前に、前記保護膜を除去する、接続方法。
  6.  請求項4又は5のいずれかに記載の接続方法において、
     前記工程(c2)の後、前記工程(d2)の前に、前記接着剤接続用電極の表面の酸化膜を除去する、接続方法。
  7.  請求項4~6のうちいずれか1つに記載の接続方法において、
     前記工程(c2)は、酸素濃度が1%以下の非酸化性雰囲気で行われる、接続方法。
  8.  接着剤接続用電極および半田接続用電極が設けられた基材を準備する工程(a3)と、
     前記基材上の接着剤接続用電極および半田接続用電極を、酸化防止膜で被覆する工程(b3)と、
     前記工程(b3)の後、熱硬化性樹脂を主成分とする接着剤を介して前記接着剤接続用電極と被接続導体とを互いに接着させることにより電気的に接続する工程(c3)と、
     前記工程(c3)の後、非酸化性雰囲気中で半田リフロー処理することにより、前記半田接続用導体を被半田接続導体に接合する工程(d3)と、
    を含み、
     前記工程(d3)の前後における、前記接着剤接続用電極-被接続導体間の接続抵抗の増大が所定範囲内に収まるように行われる、接続方法。
  9.  請求項8記載の接続方法において、
     前記工程(c3)の後で前記工程(d3)の前における、前記接着剤接続用電極-被接続導体間の接続抵抗をR1とし、前記接着剤の接着強度をF1とし、
     前記工程(d3)の後における、前記接着剤接続用電極-被接続導体間の接続抵抗をR2とし、前記接着剤の接着強度をF2としたとき、
     下記関係式(1),(2)
     R2<1.2×R1                   (1)
     F2>0.8×F1                   (2)
    が成立するように、行われる、接続方法。
  10.  請求項8または9のいずれかに記載の接続方法において、
     前記接着剤の樹脂組成物として、硬化後におけるガラス転移温度が100℃以上の樹脂材料を用いる、接続方法。
  11.  請求項8~10のうちいずれか1つに記載の接続方法において、
     前記工程(c3)では、前記酸化防止膜として有機膜を形成する、接続方法。
  12.  請求項1~11のうちいずれか1つに記載の接続方法において、
     前記接着剤として、導電性粒子を含有した異方導電性接着剤を用いる、接続方法。
  13.  請求項12に記載の接続方法において、
     前記接着剤として、複数の金属粒子が鎖状に繋がった形状、または針形状を有する金属粉末からなる導電性粒子を含有したものを用いる、接続方法。
  14.  請求項13に記載の接続方法において、
     前記導電性粒子のアスペクト比が5以上である、接続方法。
  15.  請求項1~14のうちいずれか1つに記載の接続方法において、
     前記接着剤として、フィルム形状を有するものを用いる、接続方法。
  16.  請求項15に記載の接続方法において、
     前記接着剤として、前記導電性粒子の長径方向を、前記フィルム形状を有する接着剤の厚み方向に配向させたものを用いる、接続方法。
  17.  請求項1~16のうちいずれか1つに記載の接続方法において、
     前記基材として、フレキシブルプリント配線板を準備する、接続方法。
  18.  請求項1~17のうちいずれか1つに記載の接続方法を用いて形成された接続構造。
  19.  熱硬化性樹脂を主成分とする接着剤を介して互いに接着させることにより電気的に接続される第1部材上の第1導体と第2部材上の第2導体との間の接続構造であって、
     前記第1導体の一部と第2導体の一部とは互いに導通しており、
     前記第1導体および第2導体のうち少なくとも一方の導体の表面は、前記一部を除いて、0.05μm以下の厚みを有する酸化防止のための有機膜に覆われている、あるいは、有機膜に覆われることなく前記接着剤に露出している、接続構造。
  20.  請求項1~18のうちいずれか1つに記載の接続方法を用いて組み立てられた電子機器。
PCT/JP2010/058356 2009-06-01 2010-05-18 接続方法,接続構造および電子機器 WO2010140469A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/375,670 US20120067619A1 (en) 2009-06-01 2010-05-18 Connection method, connection structure, and electronic device
EP10783253.7A EP2440024B1 (en) 2009-06-01 2010-05-18 Connection method
CN2010800242250A CN102450112A (zh) 2009-06-01 2010-05-18 连接方法、连接结构和电子装置

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009-132076 2009-06-01
JP2009132076A JP4746687B2 (ja) 2009-06-01 2009-06-01 接続方法,接続構造および電子機器
JP2009-132754 2009-06-02
JP2009132754A JP4751464B2 (ja) 2009-06-02 2009-06-02 接続方法,接続構造および電子機器
JP2009135872A JP4755273B2 (ja) 2009-06-05 2009-06-05 接続方法、接続構造および電子機器
JP2009-135872 2009-06-05

Publications (1)

Publication Number Publication Date
WO2010140469A1 true WO2010140469A1 (ja) 2010-12-09

Family

ID=43297606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058356 WO2010140469A1 (ja) 2009-06-01 2010-05-18 接続方法,接続構造および電子機器

Country Status (6)

Country Link
US (1) US20120067619A1 (ja)
EP (3) EP2440024B1 (ja)
KR (1) KR20120029406A (ja)
CN (1) CN102450112A (ja)
TW (1) TW201108340A (ja)
WO (1) WO2010140469A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015277002B2 (en) * 2014-06-19 2017-07-06 Cardiac Pacemakers, Inc. Baroreceptor mapping system
EP3780916A4 (en) * 2018-04-12 2021-04-14 Fuji Corporation METHOD FOR MANUFACTURING A PRINTED SUBSTRATE AND DEVICE FOR MANUFACTURING A PRINTED SUBSTRATE
CN113711377A (zh) * 2020-02-28 2021-11-26 京东方科技集团股份有限公司 电子元件的电连接方法及其相关装置

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347825A (ja) * 1993-06-07 1994-12-22 Hitachi Ltd 液晶表示装置およびその製造方法
JPH09291372A (ja) * 1996-02-26 1997-11-11 Shikoku Chem Corp 銅及び銅合金の表面処理剤
JPH1079568A (ja) 1996-09-05 1998-03-24 Toshiba Corp プリント配線板の製造方法
JPH10186351A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
JP2919976B2 (ja) * 1995-06-13 1999-07-19 日立化成工業株式会社 半導体装置、半導体搭載用配線基板および半導体装置の製造方法
JP2000012621A (ja) * 1998-06-17 2000-01-14 Hitachi Ltd 半導体装置およびその製造方法
JP2001210933A (ja) * 1999-11-18 2001-08-03 Japan Aviation Electronics Industry Ltd 導体パターンの形成方法及びその形成方法を用いて製造される配線部材、コネクタ、フレキシブルプリント配線板、異方導電性部材
JP2002105662A (ja) * 2000-09-29 2002-04-10 Shikoku Chem Corp 銅及び銅合金の表面処理剤及び表面処理方法
JP2002299809A (ja) * 2001-03-29 2002-10-11 Matsushita Electric Ind Co Ltd 電子部品の実装方法および実装装置
JP2004006580A (ja) * 2002-04-22 2004-01-08 Seiko Instruments Inc 電子部品及びその実装構造及びその実装方法
JP2006024889A (ja) * 2004-07-06 2006-01-26 Samsung Electro Mech Co Ltd Bgaパッケージおよびその製造方法
JP2006032639A (ja) * 2004-07-15 2006-02-02 Shin Etsu Polymer Co Ltd 部品固定治具
JP2006041374A (ja) * 2004-07-29 2006-02-09 Seiko Epson Corp フレキシブルプリント基板の実装方法及び、電気光学装置の製造方法
JP2006190960A (ja) * 2004-12-30 2006-07-20 Samsung Electro Mech Co Ltd ハーフエッチングされたボンディングパッド及び切断されたメッキラインを具備するbgaパッケージ及びその製造方法
JP2007013099A (ja) * 2005-06-29 2007-01-18 Samsung Electronics Co Ltd 無鉛半田ボールを有する半導体パッケージ及びその製造方法
JP2008078384A (ja) * 2006-09-21 2008-04-03 Toppan Printing Co Ltd プリント配線板の製造方法、保護シート及びプリント配線板
JP2008094908A (ja) * 2006-10-10 2008-04-24 Sumitomo Electric Ind Ltd 電極接続用接着剤
JP2009084307A (ja) * 2007-09-27 2009-04-23 Sumitomo Electric Ind Ltd 電極接続用接着剤
JP2009088454A (ja) * 2007-10-03 2009-04-23 Denso Corp プリント回路基板への電子部品の実装方法及びプリント回路基板
JP2009099591A (ja) * 2007-10-12 2009-05-07 Toshiba Corp 固体撮像素子及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4395294A (en) * 1981-08-17 1983-07-26 Bell Telephone Laboratories, Incorporated Copper corrosion inhibitor
US5611140A (en) * 1989-12-18 1997-03-18 Epoxy Technology, Inc. Method of forming electrically conductive polymer interconnects on electrical substrates
JPH0681161A (ja) * 1992-08-31 1994-03-22 Hitachi Ltd 銅及び銅合金の表面処理剤
JP2550915B2 (ja) * 1994-06-21 1996-11-06 日本電気株式会社 印刷配線板の表面保護剤および表面保護膜の形成方法
DE59910455D1 (de) * 1999-07-10 2004-10-14 Endress & Hauser Gmbh & Co Kg Leiterplatte mit mindestens einem elektronischen Bauteil und Verfahren zur Herstellung einer Verbindung zwischen Leiterplatte und Bauteil
US6524644B1 (en) * 1999-08-26 2003-02-25 Enthone Inc. Process for selective deposition of OSP coating on copper, excluding deposition on gold
US6375060B1 (en) * 2000-07-19 2002-04-23 The Boeing Company Fluxless solder attachment of a microelectronic chip to a substrate
US20020027294A1 (en) * 2000-07-21 2002-03-07 Neuhaus Herbert J. Electrical component assembly and method of fabrication
JP2002076589A (ja) * 2000-08-31 2002-03-15 Hitachi Ltd 電子装置及びその製造方法
JP2004509479A (ja) * 2000-09-19 2004-03-25 ナノピアス・テクノロジーズ・インコーポレイテッド 無線周波数識別装置における複数の部品および複数のアンテナを組み立てる方法
CN1383197A (zh) * 2001-04-25 2002-12-04 松下电器产业株式会社 半导体装置的制造方法及半导体装置
US7250330B2 (en) * 2002-10-29 2007-07-31 International Business Machines Corporation Method of making an electronic package
WO2004105120A1 (ja) * 2003-05-20 2004-12-02 Fujitsu Limited Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法
US7303400B2 (en) * 2004-01-27 2007-12-04 United Microelectronics Corp. Package of a semiconductor device with a flexible wiring substrate and method for the same
JP3952410B2 (ja) * 2004-02-10 2007-08-01 タムラ化研株式会社 金属の表面処理剤、プリント回路基板およびプリント回路基板の金属の表面処理方法
US7170187B2 (en) * 2004-08-31 2007-01-30 International Business Machines Corporation Low stress conductive polymer bump
US7446419B1 (en) * 2004-11-10 2008-11-04 Bridge Semiconductor Corporation Semiconductor chip assembly with welded metal pillar of stacked metal balls
JP4883996B2 (ja) * 2005-05-24 2012-02-22 四国化成工業株式会社 水溶性プレフラックス及びその利用
DE102005031181A1 (de) * 2005-07-01 2007-01-04 Endress + Hauser Gmbh + Co. Kg Leiterplatte mit einer Oberfläche mit mehreren Kontaktflächen, Verfahren zur Beschichtung von Kontaktflächen einer Leiterplatte
JP4899481B2 (ja) * 2006-01-10 2012-03-21 サンケン電気株式会社 外部に露出する放熱体を上部に有する樹脂封止型半導体装置の製法
JP4867805B2 (ja) * 2007-06-12 2012-02-01 住友電気工業株式会社 電極接続用接着剤

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347825A (ja) * 1993-06-07 1994-12-22 Hitachi Ltd 液晶表示装置およびその製造方法
JP2919976B2 (ja) * 1995-06-13 1999-07-19 日立化成工業株式会社 半導体装置、半導体搭載用配線基板および半導体装置の製造方法
JPH09291372A (ja) * 1996-02-26 1997-11-11 Shikoku Chem Corp 銅及び銅合金の表面処理剤
JPH1079568A (ja) 1996-09-05 1998-03-24 Toshiba Corp プリント配線板の製造方法
JPH10186351A (ja) * 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
JP2000012621A (ja) * 1998-06-17 2000-01-14 Hitachi Ltd 半導体装置およびその製造方法
JP2001210933A (ja) * 1999-11-18 2001-08-03 Japan Aviation Electronics Industry Ltd 導体パターンの形成方法及びその形成方法を用いて製造される配線部材、コネクタ、フレキシブルプリント配線板、異方導電性部材
JP2002105662A (ja) * 2000-09-29 2002-04-10 Shikoku Chem Corp 銅及び銅合金の表面処理剤及び表面処理方法
JP2002299809A (ja) * 2001-03-29 2002-10-11 Matsushita Electric Ind Co Ltd 電子部品の実装方法および実装装置
JP2004006580A (ja) * 2002-04-22 2004-01-08 Seiko Instruments Inc 電子部品及びその実装構造及びその実装方法
JP2006024889A (ja) * 2004-07-06 2006-01-26 Samsung Electro Mech Co Ltd Bgaパッケージおよびその製造方法
JP2006032639A (ja) * 2004-07-15 2006-02-02 Shin Etsu Polymer Co Ltd 部品固定治具
JP2006041374A (ja) * 2004-07-29 2006-02-09 Seiko Epson Corp フレキシブルプリント基板の実装方法及び、電気光学装置の製造方法
JP2006190960A (ja) * 2004-12-30 2006-07-20 Samsung Electro Mech Co Ltd ハーフエッチングされたボンディングパッド及び切断されたメッキラインを具備するbgaパッケージ及びその製造方法
JP2007013099A (ja) * 2005-06-29 2007-01-18 Samsung Electronics Co Ltd 無鉛半田ボールを有する半導体パッケージ及びその製造方法
JP2008078384A (ja) * 2006-09-21 2008-04-03 Toppan Printing Co Ltd プリント配線板の製造方法、保護シート及びプリント配線板
JP2008094908A (ja) * 2006-10-10 2008-04-24 Sumitomo Electric Ind Ltd 電極接続用接着剤
JP2009084307A (ja) * 2007-09-27 2009-04-23 Sumitomo Electric Ind Ltd 電極接続用接着剤
JP2009088454A (ja) * 2007-10-03 2009-04-23 Denso Corp プリント回路基板への電子部品の実装方法及びプリント回路基板
JP2009099591A (ja) * 2007-10-12 2009-05-07 Toshiba Corp 固体撮像素子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2440024A4

Also Published As

Publication number Publication date
KR20120029406A (ko) 2012-03-26
US20120067619A1 (en) 2012-03-22
EP2440024B1 (en) 2014-03-12
EP2445322B1 (en) 2013-07-10
EP2440024A4 (en) 2012-12-05
CN102450112A (zh) 2012-05-09
TW201108340A (en) 2011-03-01
EP2445322A1 (en) 2012-04-25
EP2440024A1 (en) 2012-04-11
EP2453726A1 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4934166B2 (ja) 電極の接着剤接続構造、電子機器およびその組立方法
WO2010147001A1 (ja) 電極の接続方法、電極の接続構造、これに用いる導電性接着剤及び電子機器
WO2010140469A1 (ja) 接続方法,接続構造および電子機器
JP4877535B2 (ja) プリント配線板における電極の接続構造、これに用いる導電性接着剤及び電子機器
JP5324322B2 (ja) 接続方法、接続構造および電子機器
JP5440478B2 (ja) 異方導電性接着剤、電極の接続構造及び電子機器
JP4751464B2 (ja) 接続方法,接続構造および電子機器
JP4746687B2 (ja) 接続方法,接続構造および電子機器
JP5356111B2 (ja) 接続方法,接続構造および電子機器
JP4755273B2 (ja) 接続方法、接続構造および電子機器
JP5134111B2 (ja) 接続方法、接続構造および電子機器
JP2007191674A (ja) 配線付き接着剤
JP2010141265A (ja) プリント配線板の接続構造および接続方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024225.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783253

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117028483

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13375670

Country of ref document: US

Ref document number: 2010783253

Country of ref document: EP