WO2004105120A1 - Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法 - Google Patents

Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2004105120A1
WO2004105120A1 PCT/JP2003/006298 JP0306298W WO2004105120A1 WO 2004105120 A1 WO2004105120 A1 WO 2004105120A1 JP 0306298 W JP0306298 W JP 0306298W WO 2004105120 A1 WO2004105120 A1 WO 2004105120A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
lsi
terminals
wiring board
lsi element
Prior art date
Application number
PCT/JP2003/006298
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Maruyama
Toru Nishino
Kazuhiro Tashiro
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2004572098A priority Critical patent/JP3970283B2/ja
Priority to PCT/JP2003/006298 priority patent/WO2004105120A1/ja
Priority to CNB038252732A priority patent/CN100394571C/zh
Publication of WO2004105120A1 publication Critical patent/WO2004105120A1/ja
Priority to US11/113,063 priority patent/US7145250B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • H01L22/32Additional lead-in metallisation on a device or substrate, e.g. additional pads or pad portions, lines in the scribe line, sacrificed conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68354Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used to support diced chips prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8538Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/85399Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0106Neodymium [Nd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15173Fan-out arrangement of the internal vias in a single layer of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress

Definitions

  • the present invention relates to a method for testing an LSI package, an LSI element, and a method for manufacturing a semiconductor device. More specifically, the present invention relates to an electrical test of an LSI element having fine terminals such as an LSI chip, an LSI wafer, and a CSP, and a method of manufacturing a semiconductor device on which the LSI element is mounted.
  • an LSI chip is mounted on a wiring board to form an LSI package, a final test is performed in an LSI package state, the LSI package is shipped to a user, and the user has mounted the package on various devices.
  • KGD known Good Die
  • bay chip mounting In which LSI chips are directly mounted on various types of devices.
  • MCM Multi Chip Module
  • MCP Multi Chip Package
  • SIP System In Package
  • LSI chips or LSI wafers The pitch of the terminals (for example, 100 / zm or less) is fine, and is smaller than the pitch of the terminals of the wiring board (from 0.5 mm to about 27 mm L.). The size of the terminals on LSI chips or LSI wafers also becomes smaller in accordance with the pitch. For this reason, the test socket probe card must be capable of securely contacting the terminals of the LSI chip or LSI wafer, and the demand for the test socket probe card will become severe.
  • KGD Since KGD is required in many applications that require miniaturization and high-density mounting, it is required to reduce the thickness of LSI chips and LSI wafers. When the thickness of LSI chips and LSI wafers is reduced, damage such as cracks due to impacts during the production of contactors is more likely to occur.
  • KGD Another issue for KGD is the implementation of burn-in tests.
  • the burn-in test acceleration test for removing initial failures
  • demands on test socket-probe cards increase, it becomes more difficult to supply them at low cost.
  • examples of a probe card used in a function test of a wafer are disclosed in JP-A-11-1164389, JP-A-2000-039452, and JP-A-2001-056347.
  • these probe cards are expensive to manufacture and it is difficult to prepare a large number of probe cards for Pain-in testing. Even more so, such probe cards cannot be shipped with LSI devices.
  • LSI devices such as LSI wafers and LSI chips have become thinner
  • a considerable force must be applied between the LSI element terminal and the socket. Therefore, it is thought that it will be more and more difficult to obtain a stable contact state without causing damage such as cracks on wafers and chips.
  • the terminals of the LSI device may be damaged by the probe.
  • the LSI devices tested in this way are liable to be easily damaged by transportation, and the impact of the impact from shipping to the transportation process is expected to increase in the future. .
  • the key functions (evaluation factors) required for testing to achieve KGD are (a) contactability (stable electrical contact), and (b) freedom of contact position (terminal arrangement and (C) The position of the contact part can be set regardless of the pitch. (C) Protection of the LSI element (no damage to the LSI element, no deterioration of the mounting property due to contact scratches, etc.), (d) Cost, ( e) Manufacturability (easy to set and reset in socket), (f) Wide area support (capable of handling chips, wafers, and large wafers).
  • the pressure contact method is a method in which the terminals of the LSI element and the terminals of the socket are not melt-bonded but are pressed to make electrical contact. When the pressure is released, the terminals of the LSI element and the socket can be separated.
  • contact resistance In other words, in the pressurized contact method, the generation of electrical resistance called contact resistance cannot be avoided.
  • concentration resistance Since the actual contact area (contact area) is small, the resistance is generated because the current is concentrated on only a small part in contact. When the applied pressure is reduced, the actual contact area between the terminals is reduced, so that the concentrated resistance increases, the resistance value increases, and the contact becomes unstable. Therefore, a large pressing force is required.
  • the oxide film formed on the terminal and the surface of the terminal, and the contaminant film due to the organic material film, etc. are high-resistance layers, and have a resistance value much higher than the original electrical resistance of the terminal material (several ⁇ to several ⁇ ). (Several 10 ⁇ to several ⁇ ). Theoretically, the film resistance is determined by (thickness x resistivity). However, since the resistance value generally affects the test and the resistance value is also unstable, this film is broken in a normal test. Alternatively, the impact is avoided by piercing and touching. High pressure is required to avoid (break, pierce) the effects of this film (eg over 10 g Zpin).
  • the socket used in the pressure contact method must be strong enough to generate a large load and to prevent the LSI element and the socket itself from being deformed even under a large load. Become massive. And, inevitably, the cost of the socket is high. This becomes a serious problem as the number of pins in LSI devices increases. For example, when applying a pressing force of 15 g Z pin, the pressing force is 0.9 kg / Chip for a chip with 60 pins, but the pressing force is 15 kg / Chip for a chip with 1000 pins. Become. If the number of pins is 50,000 on an 8-inch wafer, the applied pressure will be 750kgZ Chip. Rigidity to withstand such a large pressing force is required for the socket and its housing.
  • the temporary attachment method is a method in which the LSI element is temporarily mounted on a wiring board, a test is performed using external terminals on the wiring board, and then the LSI element and the wiring board are separated.
  • the LSI terminals are melt-bonded to the external terminals of the wiring board (to form an alloy by heat), so that the LSI terminals and the external terminals of the wiring board are stable even without applying a large pressing force.
  • Contact is easy to obtain. Therefore, unlike the pressure contact method, the socket housing for holding a large pressing force does not need to be large and does not need to have large rigidity.
  • the terminals of the LSI element are melt-bonded to the external terminals of the wiring board, it is difficult to separate the terminals of the LSI element from the external terminals of the wiring board after the test. Even if it could be peeled off, the terminals of the LSI element would be damaged, which would be a problem when the LSI element was later mounted on the target wiring board. In the case of wire pond bonding, the remaining wire becomes an obstacle. In the case of pump bonding, the mountability is impaired due to deformation of the bump, volume change, and deterioration due to solder heat.
  • the terminals of the LSI element When the terminals of the LSI element are separated from the external terminals of the wiring board, a part of the material of the external terminal of the wiring board is transferred (attached) to the terminals of the LSI element, so that the mountability is easily damaged. Conversely, there is a concern that some of the terminals of the LSI element may be attached to the external terminals of the wiring board.
  • the terminals of the LSI element are melt-bonded to the external terminals of the wiring board and the terminals are alloyed, thermal stress will be applied to the LSI element and the terminals of the LSI element.
  • the coefficient of linear expansion of the LSI chip is not the same as the coefficient of linear expansion of the wiring board, the temperature difference will appear as a dimensional difference at temperatures different from the mounting temperature (during storage at room temperature, during testing, etc.), and the LSI element Also, the wiring board is warped. As a result, not only the contact state becomes unstable, but also the internal cracks of thinner LSI chips and LSI wafers are concerned.
  • the connection terminals receive heat stress. Basically, oxidation, carbonization, and other changes in the composition (thermal deterioration) occur, and the mountability is likely to be inferior to the terminals of LSI devices that have not been provisionally mounted. '
  • the pressure contact method makes it easy to separate the terminals, but requires a large pressing force.
  • the tacking method can achieve electrical contact, but the terminals are separated. difficult. Therefore, in order to realize the widespread use of KGD, it is necessary that stable electrical contact can be obtained without applying great force and that the terminals can be separated. In addition, it is necessary to prevent the LSI element terminals from being significantly deformed after the terminals are separated from each other, or to impair the subsequent mountability. In addition, it is necessary that there is no need to apply high heat to the connection and separation between terminals. Disclosure of the invention
  • An object of the present invention is to provide an LSI package, a method of testing an LSI element, and a method of manufacturing a semiconductor device, which can test an LSI element and supply the LSI element to a user. .
  • An LSI package includes at least one LSI element having a plurality of terminals, and a wiring board having a plurality of terminals, wherein each of the plurality of terminals of the LSI element is a first conductive layer.
  • the first conductive layer, the second conductive layer, and the third conductive layer each include a conductive layer, and a bonding force between metals of the second conductive layer and the third conductive layer is equal to that of the first conductive layer and the second conductive layer.
  • the wiring board is formed of a material that is stronger than the metal-to-metal coupling force of the conductive layer, and the wiring board further has a plurality of external connection terminals connected to the plurality of terminals of the wiring board by wiring.
  • a method for testing an LSI element according to the present invention includes the steps of: attaching a plurality of terminals each including a first conductive layer and a second conductive layer formed on the first conductive layer to the LSI element.
  • a method of manufacturing a semiconductor device includes a step of forming a plurality of terminals each including a first conductive layer and a second conductive layer formed on the first conductive layer in an LSI element. Forming a plurality of terminals each including a third conductive layer, and forming a plurality of external connection terminals connected to the plurality of terminals by wiring on a wiring board; Bonding multiple terminals of the LSI element to multiple terminals of the wiring board so that the conductive layer of the LSI element is bonded to the conductive layer, and testing the LSI element using multiple external connection terminals of the wiring board Transferring the LSI element and the wiring board to a position different from the test position, separating the plurality of terminals of the LSI element from the plurality of terminals of the wiring board, and further removing the plurality of terminals of the LSI element.
  • the conductive layer and the third conductive layer are made of a material such that the metal-to-metal bond between the second and third conductive layers is stronger than the metal-to-metal bond between the first and second conductive layers. It is characterized by being formed.
  • each terminal of the LSI element is composed of two or more conductive layers.
  • On top of the first conductive layer unlike the material of the first conductive layer The material of the first conductive layer and the second conductive layer having poor wettability are overlapped and joined.
  • For the third conductive layer on the uppermost layer of each terminal of the wiring board a material that is equivalent to or has good wettability with the material of the second conductive layer on the uppermost terminal of the LSI element is used. Therefore, the metal-to-metal bond between the second conductive layer and the third conductive layer is stronger than the metal-to-metal bond between the first conductive layer and the second conductive layer.
  • the terminals of the LSI element and the terminals of the wiring board are pressure-bonded together without contamination (there is no oxide film or organic film). Homogeneous materials that are not contaminated can cause the molecules to stick together due to migration and bonding without forming a molten alloy by applying heat, thereby forming an integrated and stable electrical contact. After joining, there is almost no concentrated resistance without a large pressurization.
  • the terminal of the LSI element separates between the first conductive layer and the second conductive layer. Since the second conductive layer is adhered to the terminals of the wiring board firmly and firmly, the second conductive layer adheres to the terminals of the wiring board, and the terminals of the LSI element have the first conductive layer. Will remain.
  • the terminals are joined by adhesive bonding, so that stable electric contact can be obtained and low resistance is achieved.
  • the terminal is separated between the first conductive layer and the second conductive layer when subjected to a peeling force, so that the terminal can be easily separated.
  • a new layer exposed by peeling is exposed, so that the mountability when subsequently mounting the LSI element on a further wiring board does not deteriorate.
  • the material of the terminals has not deteriorated due to heat.
  • the entire LSI element is not affected by thermal strain, and the LSI element can be mounted on a further wiring board without any problem.
  • FIG. 1 is a sectional view showing an LSI package according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the LSI package of FIG.
  • FIG. 3 is a cross-sectional view showing the LSI package of FIG. 1 before an LSI element is mounted on a wiring board.
  • FIG. 4 is a flowchart illustrating a method for manufacturing a semiconductor device according to the present invention.
  • FIG. 5 is a diagram showing an example of a semiconductor device in which an LSI element is mounted on a further wiring board.
  • FIG. 6 is a diagram showing another example of the semiconductor device of FIG.
  • FIG. 7 is a diagram showing a flushing process for cleaning a terminal.
  • FIGS. 8A to 8C are diagrams showing examples of bonding between the terminals of the LSI element and the terminals of the wiring board.
  • FIG. 9 is a diagram showing a step of separating the LSI element from the wiring board.
  • FIG. 10 is a diagram showing an example of an LSI device in which the second conductive layer has a higher hardness than the first conductive layer.
  • FIG. 11 is a view showing a step of peeling the LSI element of FIG. 10 from the wiring board.
  • FIG. 12 is a diagram showing an example of an LSI element in which the second conductive layer of the LSI element is smaller than the third conductive layer of the wiring board.
  • FIG. 13 is a cross-sectional view showing an example of the structure of the terminal of the wiring board.
  • FIG. 14 is a diagram showing another example of the structure of the terminal of the wiring board.
  • 15A to 15D are diagrams showing examples in which an LSI package is reinforced with a reinforcing member.
  • FIG. 16 is a diagram showing another example of the LSI package.
  • FIG. 17 is a diagram showing another example of the LSI package.
  • FIG. 18 is a perspective view showing the LSI package of FIG.
  • FIG. 19 is a perspective view showing another example of the LSI package.
  • FIG. 20 is a plan view showing another example of the LSI package.
  • FIG. 21 is a side view showing the LSI package of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a sectional view showing an LSI package according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing the LSI package of FIG.
  • FIG. 3 is a cross-sectional view showing the LSI package of FIG. 1 before the LSI element is mounted on a wiring board.
  • the LSI package 10 includes an LSI element 12 and a wiring board 14 on which the LSI element 12 is mounted.
  • the LSI element 12 is a silicon chip.
  • the LSI element 12 can be another semiconductor chip, a semiconductor wafer, or a semiconductor component having fine terminals such as CSP.
  • the wiring board 14 is made of a polyimide substrate.
  • the wiring substrate 14 can be another substrate such as a glass epoxy substrate.
  • the LSI element 12 has a plurality of terminals 16. Each terminal 16 is formed so as to overlap the first conductive layer 18 on the surface of the LSI element 12 and the first conductive layer 18, and has a property of poor wettability with the first conductive layer 18. And a second conductive layer 20.
  • the wiring board 14 has a wiring 22 and a plurality of terminals 24 formed on the wiring 22.
  • Each terminal 24 has a third conductive layer 26 as its surface layer.
  • the third conductive layer 26 of the plurality of terminals 24 of the wiring board 14 is joined to the second conductive layer 20 of the terminal 16 of the LSI element 12 and is the same as or similar to the material of the second conductive layer 20. Has good wettability.
  • the first conductive layer 18, the second conductive layer 20, and the third conductive layer 26 have the second metal layer 20 and the third conductive layer 26 having a metal-to-metal bond strength of the second conductive layer 20 and the third conductive layer 26.
  • the first conductive layer 18 and the second conductive layer 20 are formed of a material having a stronger bonding force between metals.
  • the terminal 16 of the LSI element 12 includes a base layer (passivation layer), and the first conductive layer 18 is provided on the base layer.
  • the metal-to-metal bond between the first conductive layer 18 and the second conductive layer 20 is smaller than the metal-to-metal bond between the underlayer and the first conductive layer 18.
  • the first conductive layer 18 of the terminal 16 of the LSI element 12 is formed of aluminum
  • the second conductive layer 20 is formed of tungsten (W).
  • the aluminum and tungsten can be formed on the LSI element 12 by sputtering or the like.
  • the third conductive layer 26 on the uppermost layer of the terminal 24 of the wiring board 14 is made of tungsten of the same material as the second conductive layer 20 on the uppermost layer of the terminal 16 of the LSI element 12.
  • a flexible printed board made of PI which is a material of an insulating substrate, can be used.
  • first conductive layer 18 of the terminal 16 of the LSI element 12 is formed of solder
  • second conductive layer 20 is formed of PT (or Rd, W).
  • third conductive layer 26 of the terminal 24 of the wiring board 14 is formed of PT (or Rd, W).
  • An external connection terminal 28 is formed at a portion of the wiring 22 located at a peripheral portion of the wiring board 14.
  • the pitch of the external connection terminals 28 of the wiring board 14 is larger than the pitch of the terminals 16 of the LSI element 12.
  • the LSI element 12 can be tested using the external connection terminals 28 of the wiring board 14.
  • the LSI package 10 is inserted into the test socket, and the external connection terminal 28 of the wiring board 14 is connected to the contact of the test socket.
  • almost a conventional test socket can be used.
  • the LSI element 12 when testing the LSI element 12 with the base chip as it is, if the terminal 16 of the downsized LSI element 12 or the highly functional LSI element 12 is used, the LSI element 12 Since the pitch of terminal 16 is very small, prepare a test socket with a very small pitch contact. And costly.
  • FIG. 4 is a flowchart illustrating a method for manufacturing a semiconductor device according to the present invention.
  • step 30 the LSI package 10 is manufactured.
  • the LSI package 10 is the same as that described with reference to FIGS.
  • step 31 the LSI element 12 is tested using the external connection terminals 28 of the wiring board 14. In the test of the LSI element 12, a test socket is used as described above.
  • step 32 the LSI package 10 is transported.
  • the manufacturer of the LSI element 12 manufactures the LSI package 10, tests the LSI element 12, and if the test result is good, transports (ships) the LSI package 10 to the user.
  • the user separates the LSI element 12 from the wiring board 14 (the terminal 16 of the LSI element 12 is separated from the terminal 24 of the wiring board 14).
  • the LSI element 12 is mounted on a further wiring board desired by the user.
  • LSI devices 12 Users want LSI devices 12 in bare chips, bare wafers, or CSPs. This is a shipping form of electronic components called KGD (known Good Die).
  • KGD known Good Die
  • the LSI element 12 is directly mounted on a wiring substrate of an electronic device as a bare chip.
  • the LSI element 12 is also used in an MCM (Multi Chip Module), an MCP (Multi Chip Package), or a SIP (System In Package).
  • MCM Multi Chip Module
  • MCP Multi Chip Package
  • SIP System In Package
  • FIG. 5 is a diagram showing an example of a semiconductor device in which the LSI element 12 is mounted on a further wiring board after the LSI element 12 and the wiring board 14 are separated.
  • (A) shows a state in which the LSI element 12 and the wiring board 14 are separated in step 33 of FIG.
  • the first conductive layer 18 appears on the surface of the terminal 16 of the LSI element 12.
  • (B) shows a state in which the separated LSI element 12 is mounted on a further wiring board 40. In this case, the plurality of terminals 16 of the LSI element 12 are connected to the plurality of terminals 42 of the further wiring board 40 by wires 44, that is, wire-bonded.
  • (C) shows a step of cleaning (attaching) the terminal 24 of the separated wiring board 14. Although the terminal 24 includes the third conductive layer 26, the second conductive layer 20 is adhered to the third conductive layer 26, so that the second conductive layer 20 is dropped from the third conductive layer 26. Clean it.
  • (D) shows the cleaned wiring board 14, and the cleaned wiring board 14 is reused.
  • the first conductive layer 18 of aluminum is not damaged and does not receive high heat, so that the wire bondability is not impaired.
  • contact flaws remain on the terminals of the LSI wafer, but in this method, flaws do not remain on the surface of the terminals, so that the mountability is stable.
  • needle marks become a problem, and the number of contacts is limited.However, with this method, there is no such problem, and bondability is not impaired even if retesting is repeated. Absent.
  • FIG. 6 is a diagram showing another example of the semiconductor device of FIG.
  • the plurality of terminals 16 of the LSI element 12 are connected to the plurality of terminals 42 of a further wiring board 40 by bumps 46.
  • the bump 46 is provided on the terminal 16 of the LSI element 12 after separating the LSI element 12 and the wiring board 14.
  • Au is used for the first conductive layer 18 of the terminal 16 of the LSI element 12
  • W is used for the second conductive layer 20 (not shown in FIG. 6).
  • the first conductive layer 18, the second conductive layer 20, and the third conductive layer 26 form a metal-to-metal bond between the second conductive layer 20 and the third conductive layer 26.
  • the first conductive layer 18 and the second conductive layer 20 are formed of a material whose strength is stronger than a bonding force between metals of the first conductive layer 18 and the second conductive layer 20.
  • the third conductive layer 26 located at least on the surface of the terminal 24 of the wiring board 14 is made of the same material as the second conductive layer 20 of the terminal 16 of the LSI element 12 or a material having good wettability therewith. It is formed.
  • the second conductive layer 20 of the terminal 16 of the LSI element 12 and the third conductive layer 26 of the terminal 24 of the wiring board 14 are bonded to each other by a cohesive action due to pressure. Before the bonding process of the terminals 16 and 24, the surface of the second conductive layer 20 of the terminal 16 of the LSI element 12 and the surface of the third conductive layer 26 of the terminal 24 of the wiring board 14 are cleaned. It is desirable.
  • FIG. 7 is a diagram showing a flushing process for cleaning a terminal.
  • the flushing is performed by inserting the LSI element 12 and the wiring board into the champer 48 and supplying, for example, fluorine gas in a plasma atmosphere.
  • the asshing process is not limited to this example.
  • the terminals 16 of the LSI element 12 and the wiring board 14 are removed. Terminal 24 is pressed and joined. In this case, if the terminal 16 of the LSI element 12 and the terminal 24 of the wiring board 14 are pressed with a relatively small pressure without heating (or by heating to a temperature lower than the melting point), the second conductive layer The surface of 20 and third conductive layer 26 are joined by an intermetallic bond.
  • the pressure bonding between the terminal 16 of the LSI element 12 and the terminal 24 of the wiring board 14 It is desirable to arrange the assumping champer 48 and the pressure bonding apparatus in the same processing chamber and to set the processing chamber to a vacuum or an inert gas (nitrogen or the like) atmosphere.
  • FIG. 8A to 8C are diagrams showing an example of connection of the terminal 16 of the LSI element 12 and the terminal 24 of the wiring board 14.
  • FIG. 8A a film 50 such as an oxide film or an organic film is easily formed on the surfaces of the terminals 16 and 24. If there is a coating 50 such as an oxide film or an organic film on the surfaces of the terminals 16 and 24, even if the terminal 16 (the second conductive layer 20) and the terminal 24 (the third conductive layer 26) are brought into contact with each other. The film resistance between them increases.
  • a large pressing force is required to obtain a stable contact state required for LSI testing.
  • the surfaces of the terminals 16 and 24 are cleaned, and these surfaces are It is preferable that the terminal 16 and the terminal 24 be joined in a state of no contamination as shown in FIG. 8C.
  • the second conductive layer 20 on the surface of the terminal 16 of the LSI element 12 and the third conductive layer 26 on the surface of the terminal 24 of the wiring board 14 are formed of the same material, then both are contaminated. If the flatness is high, simply pressurizing or pressurizing at a temperature below the melting point of the metal will provide sufficient intermetallic bonding. This intermetallic bond is like a metal-metal bond due to the melting of the metal (making the alloy by raising the temperature above the melting point). Since there is no impurity layer, the bond is almost as if it were a continuous state of the same material. State. Even if the metals are pressed against each other in a state where the coating film 50 such as an oxide film or an organic compound film layer is formed, stable intermetallic bonding does not occur only by pressing.
  • the tungsten remains pure and uncontaminated.
  • the LSI package 10 thus configured does not receive thermal stress and has no impurity layer at the connection interface. Since the electrical resistance is low and the wiring board 14 and the LSI element 12 do not warp due to the difference in the coefficient of linear expansion, an extremely physically stable coupling state can be realized.
  • FIG. 9 is a diagram showing a step of separating the LSI element from the wiring board. After the test, when a force is applied in a direction to separate the LSI element 12 and the wiring board 14, the second conductive layer 20 of the terminal 16 of the LSI element 12 becomes the third conductive layer 26 of the terminal 24 of the wiring board 14. To the terminal 16 of the LSI element 12, and substantially only the first conductive layer 18 remains.
  • the metal-to-metal bond between the second conductive layer 20 and the third conductive layer 26 is stronger than the metal-to-metal bond between the first conductive layer 18 and the second conductive layer 20, that is, the second metal Of the first conductive layer 18 and the second conductive layer 20 are relatively weak due to adhesion between the first conductive layer 18 and the second conductive layer 20.
  • the layer 20 is moved to the wiring board 14 side, and the first conductive layer 18 remains on the LSI element 12 side. In this manner, the LSI element 12 can be easily separated from the wiring board 14. .
  • the temporary attachment method it is not easy to peel off the terminal on the LSI element side from the terminal on the wiring board side. It becomes partly torn in irregular shapes, which makes it difficult to use as a terminal.
  • FIG. 10 is a diagram showing an example of the LSI element 12 in which the second conductive layer 20 has a higher hardness or a higher tensile strength than the first conductive layer 18.
  • FIG. 11 is a diagram showing a step of peeling the LSI element of FIG. 10 from the wiring board.
  • the first conductive layer 18 and the second conductive layer 20 of the terminal 16 of the LSI element 12 are formed by sputtering, and are uniformly adhered to each other on the surface. No electrical resistance occurs.
  • the fact that the material of the second conductive layer 20 is harder than the material of the first conductive layer 18 means that the first conductive layer 18 is easily peeled from the second conductive layer 20, and that the first conductive layer The layer 18 is more reliably left on the LSI element 12 side.
  • the combination of aluminum and tungsten satisfies this condition. It is also useful to keep the aluminum layer a few meters thicker than is normally used for wire bonding, if you fear that some of the aluminum will adhere to tungsten and be reduced. .
  • FIG. 12 is a diagram showing an example of an LSI element in which the second conductive layer 20 of the terminal 16 of the LSI element 12 is smaller than the third conductive layer 26 of the terminal 24 of the wiring board 14. If the size of the second conductive layer 20 is smaller than the size of the first conductive layer 18, the second conductive layer 20 will be easily separated from the first conductive layer 18 in a later step, and the remaining peeling will occur. It has the effect of making a difference difficult.
  • FIG. 13 is a cross-sectional view showing an example of the structure of the terminal of the wiring board.
  • the materials of the terminals 16 of the wiring board 14 may not all be uniform. That is, at least, only the uppermost third conductive layer 26, which is the portion in contact with the second conductive layer 20 of the terminal 16 of the LSI element 12, is the second conductive layer 20 of the terminal 16 of the LSI element 12. Any material may be used as long as the material is the same as or a material having good wettability.
  • the wiring 22 has a three-layer structure of Cu-Ni-Au, and a third conductive layer 26 is formed on the wiring 22 only at a portion to be connected to the terminal 16 of the LSI element 12. Has formed.
  • FIG. 14 is a diagram showing another example of the structure of the terminal of the wiring board.
  • the wiring 22 has a two-layer structure, and a third conductive layer 26 is formed on the wiring 22 in a relatively wide area by applying a plating of W.
  • FIGS. 15A to 15D are diagrams showing examples in which the LSI package is reinforced with a reinforcing member.
  • the LSI package 10 including the LSI element 12 and the wiring board 14 is further connected by a reinforcing member 52.
  • the bonding of the reinforcing member 52 is assisted with an adhesive such as a UV-curable adhesive or a tape with a UV-curable adhesive that has a condition that can be easily peeled off later.
  • the reinforcing member 52 is used to reinforce the bonding strength between the LSI element 12 and the wiring board 14.
  • the first conductive layer 18 and the second conductive layer 20 are used. Should not be easily peeled off by impact.
  • FIG. 15B before separating the LSI element 12 from the wiring board 14, UV irradiation is performed to eliminate the adhesive force of the tape constituting the reinforcing member 52.
  • FIG. 15C the reinforcing member 52 is peeled off from the LSI element 12 and the wiring board 14. Therefore, the LSI element 12 can be separated from the wiring board 14 without imposing a load on the LSI element 12.
  • FIG. 15D the LSI element 12 is mounted on a further wiring board 40.
  • FIG. 16 is a diagram showing another example of the LSI package.
  • the LSI package 10 includes an LSI element 12 and a wiring board 14.
  • the LSI element 12 has a plurality of terminals 16 each including a first conductive layer 18 and a second conductive layer 20, and the wiring board 14 has a plurality of terminals. It has a plurality of terminals 24 made of three conductive layers 26 and external connection terminals 28. These conductive The layers are not shown in FIG. 16, but are as described above.
  • electronic components 54 and 56 for supporting the operation of the LSI element 12 and the operation test are mounted on the wiring board 14.
  • the electronic component 54 is a capacitor
  • the electronic component 56 is a resistor.
  • the electronic components 54 and 56 may be other members. Furthermore, it may include an LSI with a test support function.
  • the wiring board 14 can be used repeatedly, the cost of these components per LSI element can be reduced.
  • foreign substances aluminum, oxide film, organic film
  • FIG. 17 is a diagram showing another example of the LSI package.
  • FIG. 18 is a perspective view showing the LSI package of FIG.
  • the LSI package 10 includes a plurality of LSI elements 12 and a wiring board 14.
  • Each LSI element 12 has a plurality of terminals each comprising a first conductive layer 18 and a second conductive layer 20, and the wiring board 14 has a plurality of terminals 24 each comprising a third conductive layer 26.
  • an external connection terminal 28 are not shown in FIGS. 17 and 18, but are the same as described above.
  • FIG. 19 is a diagram showing another example of the LSI package.
  • the LSI package 10 includes a plurality of LSI elements 12 and a wiring board 14.
  • Each LSI element 12 has a plurality of terminals 16 each including a first conductive layer 18 and a second conductive layer 20, and the wiring board 14 includes a plurality of terminals each including a third conductive layer 26. 24 and an external connection terminal 28.
  • These conductive layers are not shown in FIG. 19, but are the same as described above. It is integrated with a plurality of LSI elements 12 in the form of a wafer. It is not necessary to mount the plurality of LSI elements 12 on the wiring board 14 in the form of a complete wafer.
  • the LSI element 12 can be mounted on the wiring board 14 in the form of a wafer 1/2 or 1/4. . '
  • FIG. 20 is a diagram showing another example of the LSI package.
  • FIG. 21 is a side view showing the LSI package of FIG.
  • the LSI package 10 includes a plurality of LSI elements 12 and a wiring board 14.
  • the plurality of LSI elements 12 are two or more (different) LSIs.
  • an MPU chip and a memory chip flash memory, DRAM, etc.
  • flash memory flash memory, DRAM, etc.
  • Each LSI element 12 has a plurality of terminals each including a first conductive layer 18 and a second conductive layer 20, and the wiring board 14 includes a plurality of terminals 24 each including a third conductive layer 26. And an external connection terminal 28.
  • These conductive layers are not shown in FIGS. 17 and 18, but are the same as described above.
  • the supply of KGD can be performed easily and inexpensively. That is, stable electrical contact (low resistance) can be obtained without applying force in the test, and the LSI element can be separated after the test, which is easy. The state of the LSI element terminals does not change after separation, and the mountability is not impaired.
  • the pounding property is improved because the scratches generated by the conventional preliminary test are eliminated. Since connection and disconnection can be performed without applying high heat, there is no damage to LSI elements or LSI element terminals.

Abstract

LSI パッケージは、LSI 素子と、配線基板とを含む。LSI素子の複数の端子は第1の導電層と、第1の導電層の上に重ねて形成された第2の導電層とを含み、配線基板の複数の端子は第2の導電層に接合された第3の導電層と、外部接続端子とを含む。第1、第2及び第3の導電層は、第2の導電層と第3の導電層の金属間結合力が第1の導電層と第2の導電層の金属間結合力よりも強いような材料で形成される。LSI素子の試験は配線基板の外部接続端子を使用して行われる。第2の導電層と第3の導電層とは加圧による凝集作用により金属間結合され、試験において確実に電気的に接触する。試験後、LSI素子の端子を配線基板の端子から剥離し、その際第2の導電層は第3の導電層に転移し、LSI素子には第1の導電層が残る。LSI 素子をさらなる配線基板に搭載する。

Description

LSI パッケージ及び LSI 素子の試験方法及び半導体装置の製造方法
技術分野
本発明は LSI パッケージ及び LSI 素子の試験方法及び半導体装置 の製造方法に関する。 よ り詳細には、 本発明は LSI チップ、 LSI ゥ ェハ、 CSP などの微細な端子を有する LSI 素子の電気的試験及び LS I 素子が搭載された半導体装置の製造に関する。
背景技術
従来から、 LSI チップを配線基板に搭載して LSI パッケージを形 成し、 LSI パッケージの状態で最終試験を行い、 LSI パッケージを ユーザーへ出荷し、 ユーザーは パッケージを諸種の機器に搭载 していた。 近年、 LSI チップ又は LSI ウェハをそのままの状態でュ 一ザ一へ出荷する KGD (known Good Die ) と呼ばれる出荷形態が増 加している。
例えば、 各種装置のダウンサイジングの要求と ともに、 LSI チッ プを直接に諸種の機器に実装するべァチップ実装と呼ばれる使用形 態がある。 また、 ダウンサイジング及び高機能化の要求とともに、 1つのパッケージの中に複数の LSI チップを組み込む MCM (Multi C hip Module) や、 MCP (Multi Chip Package ) や、 SIP (System In Package) と呼ばれる使用形態がある。 このような使用形態におい ては、 KGD が必要になっている。
このため、 従来は LSI チップを種々のパッケージ形態に加工した 後で実施していた試験項目を LSI チップあるいは LSI ウェハの状態 で実施する必要がある。 しかし、 LSI チップあるいは LSI ウェハの 端子のピッチ (例えば 100 /z m 以下) は微細であり、 配線基板の端 子のピッチ (0. 5mm〜: L. 27mm 程度) と比べて小さい。 LS I チップあ るいは LS I ウェハの端子のサイズもピッチに相応して微細になる。 そのため、 試験用のソケッ トゃプローブカ一ドは LSI チップあるい は LS I ウェハの端子に確実に接触できるようなものでなければなら ず、 試験用のソケッ トゃプローブカードに対する要求が厳しくなる また、 KGD が必要とされるのは、 小型化、 高密度実装化が必要な 用途が多いため、 LS I チップや LS I ウェハの厚さを薄くするこ とが 求められている。 LS I チップや LS I ウェハの厚さが薄くなると、 コ ンタク トカゃ製造の際の衝撃によるクラック等の損傷が発生しやす くなる。
また、 KGD の課題と して、 バーンイン試験の実施がある。 バーン イ ン試験 (初期不良除去のための加速度試験) は、 処理時間が例え ば 7〜8時間と長いため、 多数の LS I 素子のバーンイン試験を行う ためには、 多数のソケッ トやプローブカー ドが必要である。 よって 、 パーンィ ン試験用のソケッ トゃプローブカー ドを低コス トで供給 することが従来からの課題になっている。 しかし、 試験用のソケッ トゃプローブカー ドに対する要求が厳しくなると、 それらを低コス トで供給することが難しくなる。 ' 例えば、 ウェハの機能試験で用いられるプローブカードの例は、 特開平 11一 064389号公報、 特開 2000— 039452号公報、 特開 2001— 05 6347号公報に開示されている。 しかし、 これらのプローブカードは 製造コス トが高いものであり、 パーンィン試験用に多数のプローブ カードを準備するこ とは難しい。 ましてや、 そのようなプローブ力 ードを LS I 素子と ともに出荷することはできない。
上記したように、 LS I ウェハ、 LS I チップ等の LS I 素子は薄型化 が進んでおり、 損傷しやすいが、 試験において安定した電気的接触 を得るためには、 かなりの加圧力を LSI 素子の端子とソケッ トとの 間にかけねばならない。 そのため、 ウェハやチップにクラック等の ダメージを生じることなく、 安定したコンタク ト状態を得ることは 今後ますます困難になると考えられている。 また、 LSI 素子の端子 がプローブによって傷つけられることもある。
また、 こ う して試験した LSI 素子、 特に薄い LSI チップは、 輸送 によつて容易に損傷してしまう危険があり、 出荷から輸送工程での 衝撃への課題も今後ますます深刻化すると思われる。
特に、 KGD を実現するために試験に求められる主要機能 (評価要 因) は、 ( a ) コンタク ト性 (安定した電気的接触) 、 (b ) 接触 部の位置の自由度 (端子の配置やピッチによらず、 接触部の位置を 設定できること) 、 ( c ) LSI 素子の保護性 (LSI 素子へのダメー ジなし、 コンタク トキズなどによる実装性の劣化なし) 、 ( d ) コ ス ト、 ( e ) 製造性 (ソケッ トへのセッ ト、 リセッ トが容易である こと) 、 ( f ) ワイ ドエリ ア対応 (チップ、 ウェハ、 大型ウェハへ の対応が可能なこと) 、 などがある。
試験については主と して加圧接触方法 (Temporally Contact) と 、 仮り付け方法とがある。 加圧接触方法は、 LSI 素子の端子とソケ ッ トの端子を溶融接合せず、 加圧して電気的接触を行う方法である 。 加圧力を解除すれば、 LSI 素子の端子とソケッ トの端子を分離す ることができる。
しかし、 加圧接触方法においては、 接触界面で安定した電気的接 触を得るために、 一接点毎に高いコンタク ト加圧力が必要である ( 例えば 10g /pin 以上) 。 その理由は、 接触界面の実際の接触面積 を増やし、 集中抵抗を防ぐためである。 さ らに、 端子の表面には汚 染膜ゃ酸化膜があるので、 これらの汚染膜や酸化膜を破ってコンタ ク トする必要がある。
つまり、 加圧接触方法においては、 接触抵抗と呼ばれる電気抵抗 の発生を避けることができない。 接触抵抗は下記の 2つが大きな要 因を占める。 第 1 に、 集中抵抗があること。 実際の接触面積 (接点 面積) が小さいため、 接触しているわずかな部分だけに電流が集中 するために発生する抵抗である。 加圧力を落とすと、 端子同士の実 際の接触面積が減るため、 集中抵抗が増大し、 抵抗値が高くなり、 接触が不安定になる。 よって、 大きな加圧力が必要である。
第 2に、 皮膜抵抗があること。 端子及び端子の表面にできる酸化 膜、 有機物膜による汚染膜などは高抵抗の層であり、 本来の端子の 材質の電気抵抗 (数 ΙΟπι Ω〜数 Ω程度) よ りはるかに大きい抵抗値 になる (数 10 Ω〜数 Μ Ω ) 。 理論的には皮膜抵抗は (厚さ X抵抗率 ) で決まるが、 一般に試験に影響のある抵抗値であることや、 抵抗 値も不安定であることから、 通常の試験ではこの皮膜を破る、 ある いは突き刺して接触することで影響を回避している。 この皮膜の影 響を回避する (破る、 突き刺す) ためには高い加圧力が必要である (例えば lO g Zpin 以上) 。
加圧接触方法で使用されるソケッ トは、 大きな荷重を発生するた め及び大きな荷重を受けても LS I 素子及びソケッ ト 自身が変形しな いようにするために、 ソケッ ト全体が強固で大がかりになる。 そし て、 必然的に、 ソケッ トのコス トは高くなる。 これは LS I 素子が多 ピン化するほど、 深刻な問題になる。 例えば、 15 g Z p in の加圧力 を加える場合、 ピン数が 60のチップなら、 加圧力は 0. 9kg/ Chip で あるが、 ピン数が 1000のチップなら、 加圧力は 15kg/ Chipになる。 8イ ンチのウェハで、 ピン数が 50000 なら、 加圧力は 750kgZ Chip になる。 このよ うな大きな加圧力に耐える剛性がソケッ ト及びその 筐体に要求される。 仮付け方法は、 LS I 素子を配線基板に仮実装し、 配線基板にある 外部端子を用いて試験を実施し、 その後、 LS I 素子と配線基板を分 離する方法である。 この場合、 LS I の端子を配線基板の外部端子に 溶融接合 (熱で合金を作る) させるので、 大きな加圧力を加えなく ても、 LS I の端子と配線基板の外部端子とは安定した電気的な接触 が得られやすい。 従って、 加圧接触方法のように、 大きな加圧力を 保持するためのソケッ トの筐体の大型化、 大きな剛性は不要になり 、 ほぼ配線基板のみで構成できる。
しかし、 LS I 素子の端子を配線基板の外部端子に溶融接合してし まう と、 試験後に LS I 素子の端子を配線基板の外部端子から剥離さ せることが困難である。 仮に剥がせたと しても、 LSI 素子の端子が 損傷し、 後で LS I 素子を目的とする配線基板に実装するときに問題 になる。 ワイヤポンド接合であれば、 ワイヤ残りが邪魔になる。 パ ンプ接合であれば、 バンプの変形、 体積変化、 はんだの熱による劣 化で実装性が損なわれる。 LS I 素子の端子を配線基板の外部端子か らはく離する際に、 配線基板の外部端子の材料の一部が LSI 素子の 端子に転移 (付着) することで、 実装性を損ないやすい。 逆に、 LS I 素子の端子の一部が配線基板の外部端子についていってしまう懸 念もある。
LS I 素子の端子を配線基板の外部端子に溶融接合させ、 端子同士 を合金化させると、 LS I 素子及び LS I 素子の端子に熱ス ト レスを加 えてしまう。 LS I チップの線膨張係数が、 配線基板の線膨張係数と 同じでないと、 実装時の温度と異なる温度では (常温保管時、 試験 時等) 温度差が寸法差となってあらわれ、 LS I 素子及び配線基板に 反りが発生する。 すると、 コンタク ト状態が不安定になるばかりで なく、 薄型化する LS I チップや LS I ウェハは内部クラックなどが懸 念される。 また、 先に述べたように、 接続端子部は熱ス ト レスを受 けているため、 基本的には、 酸化、 炭化、 その他組成の変化 (熱劣 化) を起こしてしまい、 仮実装を施していない LS I 素子の端子と比 ベて実装性が劣りやすい。 '
要するに、 加圧接触方法では、 端子同士を分離させるのは容易で あるが、 大きな加圧力が必要である、 一方仮り付け方法では、 電気 的な接触を達成できるが、 端子同士を分離させるのが難しい。 従つ て、 KGD の普及を実現するためには、 大きな力をかけていなくても 安定した電気的な接触が得られ、 かつ、 端子同士を分離できること が必要である。 また、 端子同士を分離した後に LS I 素子の端子が大 きく変形したり、 その後の実装性を損じたり しないよ うにすること が必要である。 さ らに、 端子同士の接続及び分離に高い熱をかける 必要がないことが求められる。 発明の開示
本発明の目的は、 LS I 素子を試験し、 LS I 素子をユーザーに供給 することができるよ うにした LS I パッケージ及び LS I 素子の試験方 法及び半導体装置の製造方法を提供することである。
本発明による LS I パッケージは、 複数の端子を有する少なく とも 1つの LS I 素子と、 複数の端子を有する配線基板とを備え、 LS I 素 子の複数の端子の各々は第 1の導電層と、 第 1の導電層の上に重ね て形成された第 2の導電層とを含み、 配線基板の複数の端子の各々 は LS I 素子の端子の第 2の導電層に接合された第 3の導電層を含み 、 第 1 の導電層、 第 2の導電層及び第 3の導電層は、 第 2の導電層 と第 3の導雩層の金属間結合力が第 1 の導電層と第 2の導電層の金 属間結合力よ り も強いような材料で形成され、 配線基板はさらに配 線基板の複数の端子と配線によ り接続されている複数の外部接続端 子を有することを特徴とする。 本発明による LS I 素子の試験方法は、 各々が第 1の導電層と、 第 1 の導電層の上に重ねて形成された第 2の導電層とを含む複数の端 子を LS I 素子に形成する工程と、 各々が第 3の導電層を含む複数の 端子と、 複数の端子と配線によ り接続されている複数の外部接続端 子とを配線基板に形成する工程と、 第 2の導電層と第 3の導電層と が結合されるように LS I 素子の複数の端子を配線基板の複数の端子 に接合する工程と、 配線基板の複数の外部接続端子を使用して LS I 素子の試験を行う工程とを備え、 第 1の導電層、 第 2の導電層及び 第 3の導電層は、 第 2の導電層と第 3の導電層の金属間結合力が第 1の導電層と第 2の導電層の金属間結合力よ り も強いような材料で 形成されていることを特徴とする。
本発明による半導体装置の製造方法は、 各々が第 1の導電層と、 第 1の導電層の上に重ねて形成された第 2の導電層とを含む複数の 端子を LSI 素子に形成する工程と、 各々が第 3の導電層を含む複数 の端子と、 複数の端子と配線によ り接続されている複数の外部接続 端子を配線基板に形成する工程と、 第 2の導電層と第 3の導電層と が結合されるよ うに LS I 素子の複数の端子を配線基板の複数の端子 に接合する工程と、 配線基板の複数の外部接続端子を使用して LS I 素子の試験を行う工程と、 LSI 素子及び配線基板を試験位置とは別 の位置へ搬送する工程と、 LS I 素子の複数の端子を配線基板の複数 の端子から剥離する工程と、 LS I 素子の複数の端子をさらなる配線 基板の複数の端子に接合する工程とを備え、 第 1 の導電層、 第 2の 導電層及び第 3の導電層は、 第 2の導電層と第 3の導電層の金属間 結合力が第 1の導電層と第 2の導電層の金属間結合力より も強いよ うな材料で形成されていることを特徴とする。
上記の各構成において、 LS I 素子の各端子を 2つ以上の導電層か ら構成する。 第 1の導電層の上に、 第 1の導電層の材料とは異なり 、 第 1の導電層の材料と濡れ性の悪い第 2の導電層を重ねて接合し ておく。 配線基板の各端子の最上層の第 3の導電層は LS I 素子の端 子の最上層の第 2の導電層の材料と同等かこれと濡れ性のよい材料 を採用する。 よって、 第 2の導電層と第 3の導電層の金属間結合力 が第 1 の導電層と第 2の導電層の金属間結合力より も強い。
LSI 素子の端子及び配線基板の端子は汚染されていない状態 (酸 化膜や有機物皮膜等の皮膜がない状態) で互いに加圧接合される。 汚染されていない同質の材料は、 熱をかけての溶融合金にせずとも 、 互いの分子間の移動、 結合による凝着現象を起こさせ、 一体化、 安定した電気的な接触を形成する。 接合後は大きな加圧をしなくて も集中抵抗はほとんどない。
試験後、 LSI 素子の端子と配線基板の端子を剥離する方向に力を 加えると、 LSI 素子の端子が、 第 1の導電層と第 2の導電層との間 で剥離する。 第 2の導電層は配線基板の端子に凝着で頑強に接合さ れているため、 第 2の導電層は配線基板の端子に付着し、 LS I 素子 の端子には第 1の導電層が残る。
従って、 大きな加圧力をかけていなくても、 端子間は凝着結合に よ り接合されるため、 安定した電気的な接触が得られ、 低抵抗が達 成される。 そして、 端子の分離の際は、 剥離力を受けると、 第 1の 導電層と第 2の導電層との間で剥離するため、 分離を容易に行うこ とができる。 分離後には、 剥離で露出した新たな層が露出するため 、 その後で LS I 素子をさ らなる配線基板に実装する際の実装性は悪 化しない。 ワイヤボンドの残り も、 コンタク ト傷もない。 また、 熱 を印加していないため、 端子の材質が熱で劣化していない。 LS I 素 子全体に熱歪の影響がなく、 LSI 素子をさ らなる配線基板に問題な く実装することができる。 図面の簡単な説明
図 1は本発明の実施例の LSI パッケージを示す断面図である。 図 2は図 1の LSI パッケージを示す平面図である。
図 3は LSI 素子が配線基板へ搭載される前の図 1 の LSI パッケ一 ジを示す断面図である。
図 4は本発明の半導体装置の製造方法を説明するフローチャー ト である。
図 5は LSI 素子をさらなる配線基板に搭載してなる半導体装置の 例を示す図である。
図.6は図 5の半導体装置の他の例を示す図である。
図 7は端子の清浄化のためのァッシング処理を示す図である。 図 8 Aから 8 Cは LSI 素子の端子と配線基板の端子の接合の例を 示す図である。
図 9は LSI 素子の配線基板から分離する工程を示す図である。 図 10は第 2の導電層が第 1の導電層より も硬度が大きい LSI 素子 の例を示す図である。
図 11は図 10の LSI 素子を配線基板か.ら剥離する工程を示す図であ る。
図 12は LSI 素子の第 2の導電層が配線基板の第 3の導電層より も 小さい LSI 素子の例を示す図である。
図 13は配線基板の端子の構造の例を示す断面図である。
図 14は配線基板の端子の構造の他の例を示す図である。
図 15Aから 15Dは LSI パッケージを補強部材で補強した例を示す 図である。
図 16は LSI パッケージの他の例を示す図である。
図 17は LSI パッケージの他の例を示す図である。
図 18は図 17の LSI パッケージを示す斜視図である。 図 19は LS I パッケージの他の例を示す斜視図である。
図 20は LS I パッケージの他の例を示す平面図である。
図 21は図 20の LS I パッケージを彔す側面図である。 発明を実施するための最良の形態
図 1 は本発明の実施例の LS I パッケージを示す断面図である。 図 2は図 1 の LS I パッケージを示す平面図である。 図 3は LS I 素子が 配線基板へ搭載される前の図 1の LS I パッケージを示す断面図であ る。
図 1から図 3において、 LS I パッケージ 10は、 LS I 素子 12と、 LS I 素子 12が搭載された配線基板 14とからなる。 実施例においては、 LS I 素子 12はシリ コンチップである。 しかし、 LS I 素子 12はその他 の半導体チップ、 又は半導体ウェハ、 又は CSP などの微細な端子を 有する半導体部品とすることができる。 配線基板 14はポリイ ミ ド基 板からなる。 配線基板 14はガラスェポキシ基板等のその他の基板と することができる。
LS I 素子 12は複数の端子 16を有する。 各端子 16は LS I 素子 12の表 面にある第 1の導電層 18と、 第 1の導電層 18の上に重ねて形成され 、 第 1の導電層 18とは濡れ性の悪い性質をもつ第 2の導電層 20とを 含む。
配線基板 14は配線 22と、 配線 22の上に形成された複数の端子 24を 有する。 各端子 24はその表面層と して第 3の導電層 26を有する。 配 線基板 14の複数の端子 24の第 3の導電層 26は、 LS I 素子 12の端子 16 の第 2の導電層 20に接合され且つ第 2の導電層 20の材料と同じかあ るいは濡れ性のよい性質をもつ。
本発明においては、 第 1の導電層 18、 第 2の導電層 20及び第 3の 導電層 26は、 第 2の導電層 20と第 3の導電層 26の金属間結合力が第 1 の導電層 18と第 2の導電層 20の金属間結合力よ り も強いような材 料で形成される。 なお、 LS I 素子 12の端子 16は下地層 (パッシベー シヨ ン層) を含み、 第 1の導電層 18はその下地層に設けられている 。 第 1 の導電層 18と第 2の導電層 20の金属間結合力は下地層と第 1 の導電層 18の金属間結合力よ り も小さい。
例えば、 LSI 素子 12の端子 16の第 1の導電層 18はアルミニウムで 形成され、 第 2の導電層 20はタングステン (W ) で形成される。 了 ルミ -ゥムとタングステンは、 スパッタリ ング等によ り LS I 素子 12 に形成されることができる。 配線基板 14の端子 24の最上層の第 3の 導電層 26は LS I 素子 12の端子 16の最上層の第 2の導電層 20と同一材 科のタングステンからなっている。 配線基板 14と しては、 絶縁基板 材料である P Iのフレキシブルプリ ント板を便用できる。
また、 LS I 素子 12の端子 16の第 1 の導電層 18ははんだで形成され 、 第 2の導電層 20は PT (又は Rd、 W ) で形成される。 配線基板 14の 端子 24の第 3の導電層 26は PT (又は Rd、 W ) で形成される。
配線基板 14の周辺部に位置する配線 22の部分には外部接続端子 28 が形成される。 配線基板 14の外部接続端子 28のピッチは LS I 素子 12 の端子 16のピッチよ り大きい。
この LS I パッケージ 10によれば、 配線基板 14の外部接続端子 28を 使用して、 LS I 素子 12の試験を行う ことができる。 この場合、 例え ば、 LS I パッケージ 10を試験用ソケッ トに挿入し、 配線基板 14の外 部接続端子 28を試験用ソケッ トのコンタク トに接続させる。 この場 合、 ほぼ従来の試験用ソケッ トを利用することができる。 一方、 ベ ァチップのままで LS I 素子 12の試験をしよう とすると、 ダウンサイ ジング化された LS I 素子 12や高機能化された LS I 素子 12の端子 16の 場合には、 LS I 素子 12の端子 16のピッチが非常に小さいので、 非常 にピツチの小さいコンタク トをもつた試験用ソケッ トを準備しなけ ればならず、 かなりのコス トがかかる。
図 4は本発明の半導体装置の製造方法を説明するフローチャー ト である。 ステップ 30において、 LSI パッケージ 10を製造する。 LSI パッケージ 10は図 1から図 3を参照して説明したものと同様である 。 ステップ 31において、 配線基板 14の外部接続端子 28を使用して、 LSI 素子 12の試験を行う。 LSI 素子 12の試験においては、 上記した ように、 試験用ソケッ トを利用する。
次に、 ステップ 32において、 LSI パッケージ 10を搬送する。 この 場合、 LSI 素子 12の製造者が LSI パッケージ 10を製造し、 LSI 素子 12の試験を行い、 試験の結果が良好であれば、 LSI パッケージ 10を ユーザーへ搬送する (出荷する) 。 ステップ 33において、 ユーザー は、 LSI 素子 12と配線墓板 14とを分離する (LSI 素子 12の端子 16を 配線基板 14の端子 24から剥離させる) 。 それから、 ステップ 34にお いて、 LSI 素子 12をユーザーの希望するさらなる配線基板に搭載す る。
ユーザーはベアチップ、 ベアウェハ、 又は CSP の状態の LSI 素子 12を求めている。 これは、 KGD (known Good Die ) と呼ばれる電子 部品の出荷形態である。 この場合、 例えば、 LSI 素子 12は、 ベアチ ップと して直接に電子機器の配線基板に搭載使用される。 あるいは 、 LSI 素子 12は、 MCM (Multi Chip Module) や、 MCP (Multi Chip Package ) や、 SIP (System In Package) でも使用される。
配線基板 14は LSI 素子 12の試験のために設けられたものであるか ら、 LSI 素子 12の製造者が LSI 素子 12の試験をした後で、 LSI 素子 12の製造者が配線基板 14を LSI 素子 12から分離され、 LSI 素子 12の みを出荷してよい。 しかし、 LSI 素子 12を単独で搬送するよ り も、 LSI 素子 12と配線基板 14とを組み合わせた LSI パッケージ 10と して 搬送する方が LSI 素子 12の保護のために有用である。 図 5は L.S I 素子 12と配線基板 14の分離後に LS I 素子 12をさらなる 配線基板に搭載してなる半導体装置の例を示す図である。 図 5にお いて、 (A ) は図 4のステップ 33において LS I 素子 12と配線基板 14 とを分離した状態を示す。 LS I 素子 12の端子 16の表面に第 1 の導電 層 18があらわれる。 (B ) は分離された LSI 素子 12をさ らなる配線 基板 40に搭載した状態を示す。 この場合、 LS I 素子 12の複数の端子 16はさらなる配線基板 40の複数の端子 42にワイャ 44で接続される、 すなわち、 ワイヤボンディ ングされる。 (C ) は分離された配線基 板 14の端子 24を清浄にする (アツシングする) ステップを示す。 端 子 24は第 3の導電層 26を含むが、 第 3の導電層 26には第 2の導電層 20が付着しているので、 第 3の導電層 26から第 2の導電層 20を落と すよ うに清浄する。 (D ) は清浄にされた配線基板 14を示し、 清浄 にされた配線基板 14は再使用される。
試験段階でアルミニウムの第 1 の導電層 18には傷ができていず、 高い熱も加わっていないので、 ワイヤボンド性は損なわれることが ない。 通常ウェハ状態で行われる予備試験では LS I ウェハの端子に コンタク ト傷が残るが、 本方法では端子の表面に傷が残らないため 、 実装性が安定している。 そのような LS I ウェハの端子では針跡が 問題になり、 コンタク ト回数が制限されるが、 本方法では、 そのよ うな問題はなく、 再試験を繰り返してもボンディ ング性を損なう こ とはない。
図 6は図 5の半導体装置の他の例を示す図である。 この例では、 LS I 素子 12の複数の端子 16はさ らなる配線基板 40の複数の端子 42に バンプ 46で接続される。 バンプ 46は LS I 素子 12と配線基板 14の分離 後に LS I 素子 12の端子 16に設けられる。 この場合には、 LS I 素子 12 の端子 16の第 1 の導電層 18には Auを採用し、 第 2の導電層 20 (図 6 にはない) には Wを採用する。 バンプ 46ははんだバンプとする。 は んだの組成はいろいろあるが、 例えば高融点はんだ (Pb : Sn == 95 : 5 ) などがある。
本発明においては、 上記したよ うに、 第 1 の導電層 18、 第 2の導 電層 20及び第 3の導電層 26は、 第 2の導電層 20と第 3の導電層 26の 金属間結合力が第 1 の導電層 18と第 2の導電層 20の金属間結合力よ り も強いような材料で形成される。 特に、 配線基板 14の端子 24の少 なく とも表面に位置する第 3の導電層 26は LS I 素子 12の端子 16の第 2の導電層 20と同じ材料、 あるいはこれと濡れ性のよい材料で形成 される。 LS I 素子 12の端子 16の第 2の導電層 20と配線基板 14の端子 24の第 3の導電層 26とは、 加圧による凝集作用によ り金属間結合し ているのが好ましい。 そして、 端子 16と端子 24の接合工程の前に、 LS I 素子 12の端子 16の第 2の導電層 20の表面と配線基板 14の端子 24 の第 3の導電層 26の表面を清浄にするのが望ましい。
図 7は端子の清浄化のためのァッシング処理を示す図である。 ァ ッシングはチャンパ 48内に LS I 素子 12と配線基板: を挿入し、 ブラ ズマ雰囲気で例えばフッ素ガスを供給することによ り実施される。 なお、 アツシング処理はこの例に限定されるものではない。 また、 LS I 素子 12及び配線基板 14の全体をァッシング処理する必要はなく 、 少なく とも第 2の導電層 20の表面と第 3の導電層 26の表面をァッ シング処理すればよい。
このようにして第 2の導電層 20の表面と第 3の導電層 26の表面を 清浄にして酸化層やその他の不純物層を除去した直後に、 LS I 素子 12の端子 16と配線基板 14の端子 24を加圧して接合させる。 こ うすれ ば、 LS I 素子 12の端子 16と配線基板 14の端子 24を加熱なしに (又は 融点より も低い温度に加熱して) 比較的に小さい圧力で加圧すれば 、 第 2の導電層 20の表面と第 3の導電層 26とが金属間結合により接 合される。 LS I 素子 12の端子 16と配線基板 14の端子 24の加圧接合は 、 アツシングチャンパ 48と加圧接合装置とを同じ処理室内に配置し 、 処理室を真空又は不活性ガス (窒素等) 雰囲気にするのが望まし レ、。
図 8 Aから 8 Cは LS I 素子 12の端子 16と配線基板 14の端子 24の接 合の例を示す図である。 図 8 Aに示されるように、 端子 16、 24の表 面には酸化膜や有機物膜等の皮膜 50ができやすい。 端子 16、 24の表 面に酸化膜や有機物膜等の皮膜 50があると、 端子 16 (の第 2の導電 層 20) と端子 24 (の第 3の導電層 26) とを接触させても、 両者間の 皮膜抵抗が大きくなる。 端子 16と端子 24とを電気的に接続するため には、 そこで、 加圧接点の場合には、 LS I 試験に必要な安定したコ ンタク ト状態を得るために、 大きな加圧力が必要であり、 また、 ピ ン数に比例したコンタク トカを印加し続ける必要がある。 本発明で は、 図 8 Bに示すように、 端子 16、 24の表面 (特に第 2の導電層 20 の表面及び第 3の導電層 26の表面) を清浄にした状態で、 これらの 表面が汚染されていない状態で、 図 8 Cに示すように、 端子 16と端 子 24を接合するのが好ましい。
LS I 素子 12の端子 16の表面にある第 2の導電層 20と配線基板 14の 端子 24の表面にある第 3の導電層 26が同じ材料で形成されていれば 、 そして、 両者が汚染されておらず、 平面度が出ていれば、 加圧す るだけ、 あるいはその金属の融点以下の温度をかけて加圧すれば、 十分に金属間結合が得られる。 この金属間結合は、 あたかも金属の 溶融 (融点以上に温度を上げて溶かして合金を作る) による金属間 結合のよ うな状態になり、 不純物層がないため、 あたかも同一材料 の連続状態に近い結合状態になる。 酸化膜や有機物化合膜層等の皮 膜 50ができている状態で金属同士を押しつけても、 加圧だけでは安 定した金属間結合は起こらない。
しかるに、 仮付け方法の場合、 金属の融点まで加熱し、 温度を上 昇させることで表面の分子を活性化させ、 異物層も含めて溶融によ る金属間結合を起こさせている。 この方法では、 熱歪みが LS I 素子 12と配線基板 14の間、 及びそれらの端子 16、 24の間に残る。
第 2の導電層 20及び第 3の導電層 26がタングステンで形成されて いる場合、 タングステン同士が純粋な汚染されていない状態のまま
(真空中、 あるいは窒素など不活性ガス内め環境) で互いに加圧、 密着されると、 両者は同一材料であるため、 容易に接合される。 最 上層の分子エネルギーが活発な状態であるため、 分子間結合が容易 に起こるためである。 分子間結合を促進する意味で、 温度を多少上 げて、 分子エネルギーを高めることが有効であるが、 この場合、 融 点まで温度を上げ、 溶融させる必要はない。
このよ うにして構成された LS I パッケージ 10は熱ス トレスを受け ることなく、 接続界面に不純物層をもつこともない。 電気的抵抗も 低く、 また、 線膨張係数の差に基づく配線基板 14や LS I 素子 12の反 り も発生しないため、 物理的にも極めて安定した結合状態を実現で さる。
図 9は LS I 素子を配線基板から分離する工程を示す図である。 試 験後、 LS I 素子 12と配線基板 14を分離する方向に力を加えると、 LS I 素子 12の端子 16の第 2の導電層 20は配線基板 14の端子 24の第 3の 導電層 26へ付着し、 LS I 素子 12の端子 16には実質的に第 1 の導電層 18のみが残る。 つま り、 第 2の導電層 20と第 3の導電層 26の金属間 結合力が第 1 の導電層 18と第 2の導電層 20の金属間結合力よ り も強 い、 すなわち、 第 2の導電層 20は第 3の導電層 26に凝着で頑強に接 合され、 第 1 の導電層 18と第 2の導電層 20の金属間結合力は比較的 に弱いため、 第 2の導電層 20は配線基板 14側にもっていかれ、 LS I 素子 12側には第 1 の導電層 18が残る。 このよ うにして、 LS I 素子 12 を配線基板 14から容易に分離することができる。 . 一方、 仮付け方法の場合、 LS I 素子側の端子を配線基板側の端子 から剥離させることは容易ではなく、 無理に剥離させると、 LS I 素 子側の端子と配線基板側の端子とが不規則的な形に部分的に引きち ぎられるよ うになり、 その後で端子と して使用することが難しくな る。
図 10は第 2の導電層 20が第 1 の導電層 18より も硬度が大きい、 又 は引っ張り強度が大きい LS I 素子 12の例を示す図である。 図 11は図 10の LS I 素子を配線基板から剥離する工程を示す図である。 LS I 素 子 12の端子 16の第 1の導電層 18及び第 2の導電層 20はスパッタ リ ン グで形成されており、 面で均一に密着しており、 これらの間に集中 抵抗等の電気抵抗は発生しない。
第 2の導電層 20の材料が第 1 の導電層 18の材料より も硬いという ことは、 第 1 の導電層 18が第 2の導電層 20から剥離されやすいこと を意味し、 第 1 の導電層 18がよ り確実に LS I 素子 12側に残るよ うに なる。 アルミニウムとタングステンの組み合わせはこの条件を満足 する。 また、 アルミニウムの一部がタングステンに付着して減るこ とを危惧するなら、 アルミニウム層は通常のワイヤボンディ ングに 使用する厚さより数 m厚く しておく ことも有用である。 .
図 12は LSI 素子 12の端子 16の第 2の導電層 20が配線基板 14の端子 24の第 3の導電層 26よ り も小さい LS I 素子の例を示す図である。 第 2の導電層 20の大きさを第 1 の導電層 18の大きさよ り も小さくすれ ば、 後の工程で第 2の導電層 20が第 1 の導電層 18から剥離しやすく なり、 剥離残差ができにくい効果を有する。
図 13は配線基板の端子の構造の例を示す断面図である。 配線基板 14の端子 16の部分の材質は全て均一でなくてもよい。 すなわち、 最 低限、 LS I 素子 12の端子 16の第 2の導電層 20と接触する部分である 最上層第 3の導電層 26だけが LS I 素子 12の端子 16の第 2の導電層 20 の材料と同じか、 濡れ性のよい材料であればよい。 図 13においては 、 配線 22が Cu- Ni- Auの 3層構造であり、 その上に LS I 素子 12の端子 16と結合する部分だけ、 Wのメ ツキを施して第 3 の導電層 26を形成 している。
図 14は配線基板の端子の構造の他の例を示す図である。 この例で は、 配線 22が 2層構造であり、 その上に比較的に広い領域に、 Wの メ ツキを施して第 3の導電層 26を形成している。
図 15 Aから 15 Dは LS I パッケージを補強部材で補強した例を示す 図である。 図 15 Aにおいては、 LS I 素子 12と配線基板 14とからなる LS I パッケージ 10はさらに補強部材 52で接続されている。 補強部材 52は UV硬化型接着剤、 あるいは UV硬化型接着剤付きテープ等の、 後 で容易に剥離することができる条件をもつ接着剤で接合を補助して ある。 補強部材 52は LS I 素子 12と配線基板 14の間の接合強度を補強 するためのものであり、 試験中に、 あるいは試験後の出荷で、 第 1 の導電層 18と第 2の導電層 20が衝撃等で容易に剥離しないよ うにす る。
図 15 Bにおいて、 配線基板 14から LS I 素子 12を分離する前に、 UV を照射し、 補強部材 52を構成するテープの粘着力をなくす。 図 15 C において、 補強部材 52を LS I 素子 12と配線基板 14からを剥がす。 よ つて、 LS I 素子 12に負担がかからずに LS I 素子 12を配線基板 14から 分離することができるようになる。 図 15 Dにおいて、 LS I 素子 12を さらなる配線基板 40に搭載する。
図 16は LS I パッケージの他の例を示す図である。 LSI パッケージ 10は LS I .素子 12と配線基板 14とを備える。 図 1及び図 2に示した例 と同様に、 LSI 素子 12は各々が第 1の導電層 18と第 2の導電層 20と からなる複数の端子 16を有し、 配線基板 14は各々が第 3の導電層 26 からなる複数の端子 24と外部接続端子 28とを有する。 これらの導電 層は図 16には示されていないけれども、 これまで説明したのと同様 のものである。 図 16においては、 配線基板 14に、 LS I 素子 12の動作 や動作試験を補助するための電子部品 54、 56が搭载されている。 例 えば、 電子部品 54はキャパシタであり、 電子部品 56は抵抗である。 電子部品 54、 56はその他の部材であってもよい。 さらに、 試験サボ ート機能を有する LS I を含んでもよい。
配線基板 14は繰り返し使用できるので、 これらの部品は LS I 素子 1個当たりのコス ト負担は少なくてすむ。 再使用前にアツシングを 施すこ とで、 表面の異物 (アルミ、 酸化膜、 有機膜) を除去するこ とができる。
図 17は LS I パッケージの他の例を示す図である。 図 18は図 17の LS I パッケージを示す斜視図である。 LS I パッケージ 10は複数の LS I 素子 12と配線基板 14とを備える。 各 LS I 素子 12は各々が第 1 の導電 層 18と第 2の導電層 20とからなる複数の端子を有し、 配線基板 14は 各々が第 3の導電層 26からなる複数の端子 24と外部接続端子 28とを 有する。 これらの導電層は図 17及び図 18には示されていないけれど も、 これまで説明したのと同様のものである。
図 19は LS I パッケージの他の例を示す図である。 LS I パッケージ 10は複数の LS I 素子 12と配線基板 14とを備える。 各 LS I 素子 12は各 々が第 1の導電層 18と第 2の導電層 20とからなる複数の端子 16を有 し、 配線基板 14は各々が第 3の導電層 26からなる複数の端子 24と外 部接続端子 28とを有する。 これらの導電層は図 19には示されていな いけれども、 これまで説明したのと同様のものである。 複数の LS I 素子 12とウェハの形態で一体化されている。 なお、 複数の LS I 素子 12と完全なウェハの形態で配線基板 14に搭載される必要はなく、 例 えばウェハ 1 / 2、 又は 1 / 4の形態で配線基板 14に搭載されるこ ともできる。 ' 図 20は LS I パッケージの他の例を示す図である。 図 21は図 20の LS I パッケージを示す側面図である。 LS I パッケージ 10は複数の LS I 素子 12と配線基板 14とを備える。 複数の LS I 素子 12は 2種以上の ( 互いに異なる) LS I である。 例えば MPU となるチップとメモリチッ プ (フラッシュメモリ 、 DRAM等) を一つの配線基板 14上に混載し、 互いが必要な配線で接続されることで、 これらの LS I を最終的に使 用してのシステム LS I (システムパッケージ) の状態で試験を実施 することができる。 各 LS I 素子 12は各々が第 1の導電層 18と第 2の 導電層 20とからなる複数の端子を有し、 配線基板 14は各々が第 3の 導電層 26からなる複数の端子 24と外部接続端子 28とを有する。 これ らの導電層は図 17及び図 18には示されていないけれども、 これまで 説明したのと同様のものである。
以上説明したように、 本発明によれば、 KGD の供給を容易にかつ 安価に行う ことができる。 すなわち、 試験において力をかけていな くても安定した電気的接触 (低抵抗) が得られ、 かつ試験後に LS I 素子の分離が可能であり、 容易である。 分離後に LS I 素子の端子の 状態が変形せず、 実装性を損なわない。 アルミニウムのパッ ドにヮ ィャボンドして使用する LS I に対しては、 むしろ従来のプレリ ミナ リ イテス ト (Prel iminary Te s t) で発生するキズもなくなるため、 ポンド性は向上する。 接続、 分離は高い熱をかけずに行えるので、 LS I 素子や LS I 素子の端子へのダメージもない。

Claims

1 . 複数の端子を有する少なく とも 1つの LS I 素子と、 複数の端子を有する配線基板とを備え、
該 LS I 素子の複数の端子の各々は第 1の導電層と、 該第 1の導電 層の上に重ねて形成され言た第 2の導電層とを含み、
該配線基板の複数の端子の各々は該 LS I 素子の端子の第 2の導電 層に接合された第 3の導電層を含み、
該第 1 の導電層、 該第 2の導電層及び該第 3の導電層は、 該第 2 の導電層と該第 3の導電層の金属間結合力が該第 1の導電層と該第 囲
2の導電層の金属間結合力よ り も強いような材料で形成され、 該配線基板はさ らに該配線基板の複数の端子と配線により接続さ れている複数の外部接続端子を有することを特徴とする LS I パッケ 一ジ。
2 . 該 LS I 素子の端子の第 2の導電層と該配線基板の端子の第 3 の導電層とは、 加圧による凝集作用によ り金属間結合していること を特徴とする請求項 1 に記載の LS I パッケージ。
3 . 加圧による凝集作用によ り金属閬結合している結合界面は加 圧前に清浄化された界面を結合させていることで不純物層 (酸化膜 層、 有機物層) を含まない金属間結合となっていることを特徴とす る請求項 2に記載の LS I パッケージ。
4 . 該配線基板の外部接続端子のピッチは該 LS I 素子の端子のピ ツチよ り大きいことを特徴とする請求項 1 に記載の LS I パッケージ
5 . 該 LS I 素子の端子の第 2の導電層の材料は、 第 1の導電層の 材料より も硬度が大きいことを特徴とする請求項 1 に記載の LS I パ ッケージ。
6. 該 LSI 素子の端子の第 2の導電層の材料は、 第 1の導電層の 材料よ り も引っ張り強度が大きいことを特徴とする請求項 1 に記載 の LSI パッケージ。
7 . 該 LSI 素子の端子の第 2の導電層は、 該配線基板の第 3の導 電層よ り も小さいことを特徴とする請求項 1 に記載の LSI パッケ一 ジ。
8 . LSI 素子と配線基板とはさ らに補強部材で接続されているこ とを特徴とする請求項 1に記載の LSI パッケージ。
9. 該補強部材は剥離可能な接着剤を含むことを特徴とする請求 項 6に記載の LS I パッケージ。
10. 該 LSI 素子の動作や動作試験を補助するための電子部品がさ らに該配線基板に搭載されていることを特徴とする請求項 1に記载 の LSI ノヽ0ッケージ。
11. 該少なく とも 1つの LSI 素子は 1つの LSI 素子からなること を特徴とする請求項 1 に記載の LSI パッケージ。
12. 該少なく とも 1つの LSI 素子は複数の LSI 素子からなること を特徴とする請求項 1に記載の LSI パッケージ。
13. 該複数の LSI 素子は一体化されていることを特徴とする請求 項 12に記載の LSI パッケージ。
14. 該複数の LSI 素子は異なる種類の LSI 素子であることを特徴 とする請求項 12に記載の LSI パッケージ。
15. 各々が第 1の導電層と、 該第 1 の導電層の上に重ねて形成さ れた第 2の導電層とを含む複数の端子を LSI 素子に形成する工程と 各々が第 3の導電層を含む複数の端子と、 該複数の端子と配線に よ り接続されている複数の外部接続端子とを配線基板に形成するェ 程と、 該第 2の導電層と該第 3の導電層とが結合されるように該 LS I 素 子の複数の端子を該配線基板の複数の端子に接合する工程と、
該配線基板の複数の外部接続端子を使用して該 LS I 素子の試験を 行う工程とを備え、
該第 1 の導電層、 該第 2の導電層及び該第 3の導電層は、 該第 2 の導電層と該第 3の導電層の金属間結合力が該第 1の導電層と該第 2の導電層の金属間結合力よ り も強いよ うな材料で形成されている ことを特徴とする LS I 素子の試験方法。
16. 前記試験工程の後で、 該 LS I 素子の複数の端子を該配線基板 の複数の端子から剥離する工程をさ らに含むことを特徴とする請求 項 14に記載の LS I 素子の試験方法。
17. 前記接合工程の前に、 該 LS I 素子の端子の第 2の導電層の表 面と該配線基板の端子の第 3の導電層の表面を清浄にする工程をさ らに含むことを特徴とする請求項 14に記載の LS I 素子の試験方法。
18. 表面を清浄にする作業はアツシングであることを特徴とする 請求項 17に記載の LS I 素子の試験方法。
19. 各々が第 1 の導電層と、 該第 1の導電層の上に重ねて形成さ れた第 2の導電層とを含む複数の端子を LS I 素子に形成する工程と 各々が第 3の導電層を含む複数の端子と、 該複数の端子と配線に よ り接続されている複数の外部接続端子を配線基板に形成する工程 と、
該第 2の導電層と該第 3 の導電層とが結合されるよ うに該 LS I 素 子の複数の端子を該配線基板の複数の端子に接合する工程と、
該配線基板の複数の外部接続端子を使用して該 LS I 素子の試験を 行う工程と、
該 LS I 素子及び該配線基板を試験位置とは別の位置へ搬送するェ 程と、
該 LS I 素子の複数の端子を該配線基板の複数の端子から剥離する 工程と、
該 LS I 素子の複数の端子をさらなる配線基板の複数の端子に接合 する工程とを備え、
該第 1 の導電層、 該第 2の導電層及び該第 3の導竃層は、 該第 2 の導電層と該第 3の導電層の金属間結合力が該第 1 の導電層と該第 2の導電層の金属間結合力より も強いよ うな材料で形成されている ことを特徴とする半導体装置の製造方法。
20. 該 LS I 素子の複数の端子を該配線基板の複数の端子に接合す る工程の前に、 少なく とも該 LS I 素子の端子の第 2の導電層の表面 と該配線基板の端子の第 3の導電層の表面を清浄にする工程をさ ら に含むことを特徴とする請求項 19に記載の半導体装置の試験方法。
21. 前記清浄にする工程はアツシング工程からなることを特徴と する請求項 20に記載の半導体装置の製造方法。
22. 前記剥離工程において、 該 LS I 素子の端子の第 2の導電層は 該配線基板の端子の第 3の導電層へ付着し、 該 LS I 素子の端子には 実質的に第 1の導電層のみが残ることを特徴とする請求項 19に記載 の半導体装置の製造方法。
23. 該 LS I 素子の複数の端子を該配線基板の複数の端子に接合す る工程において、 該 LS I 素子の端子の第 2の導電層と該 E線基板の 端子の第 3の導電層とは、 加圧による凝集作用によ り金属間結合す ることを特徴とする請求項 19に記載の半導体装置の製造方法。
24. 少なく とも前記搬送工程において、 該 LS I 素子と該配線基板 とはさらに補強部材で接続されていることを特徴とする請求項 19に 記載の半導体装置の製造方法。
25. 該補強部材は剥離可能な接着剤を含むことを特徴とする請求 項 24に記載の半導体装置の製造方法。
26. 該 LS I 素子の複数の端子をさ らなる配線基板の複数の端子に 接合する工程において、 該 LS I 素子の複数の端子はさらなる配線基 板の複数の端子にワイャボンディ ングされることを特徴とする請求 項 19に記載の半導体装置の製造方法。
27. 該 LS I 素子の複数の端子をさ らなる配線基板の複数の端子に 接合する工程において、 該 LS I 素子の複数の端子はさらなる配線基 板の複数の端子にバンプで接合されることを特徴とする請求項 19に 記載の半導体装置の製造方法。
PCT/JP2003/006298 2003-05-20 2003-05-20 Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法 WO2004105120A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004572098A JP3970283B2 (ja) 2003-05-20 2003-05-20 Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法
PCT/JP2003/006298 WO2004105120A1 (ja) 2003-05-20 2003-05-20 Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法
CNB038252732A CN100394571C (zh) 2003-05-20 2003-05-20 Lsi插件及lsi元件的试验方法和半导体器件的制造方法
US11/113,063 US7145250B2 (en) 2003-05-20 2005-04-25 LSI package, LSI element testing method, and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/006298 WO2004105120A1 (ja) 2003-05-20 2003-05-20 Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/113,063 Continuation US7145250B2 (en) 2003-05-20 2005-04-25 LSI package, LSI element testing method, and semiconductor device manufacturing method

Publications (1)

Publication Number Publication Date
WO2004105120A1 true WO2004105120A1 (ja) 2004-12-02

Family

ID=33463134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006298 WO2004105120A1 (ja) 2003-05-20 2003-05-20 Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法

Country Status (4)

Country Link
US (1) US7145250B2 (ja)
JP (1) JP3970283B2 (ja)
CN (1) CN100394571C (ja)
WO (1) WO2004105120A1 (ja)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10318078B4 (de) * 2003-04-17 2007-03-08 Infineon Technologies Ag Verfahren zum Schutz einer Umverdrahtung auf Wafern/Chips
US20070158796A1 (en) * 2005-12-09 2007-07-12 International Rectifier Corporation Semiconductor package
WO2007132452A2 (en) 2006-05-12 2007-11-22 Anobit Technologies Reducing programming error in memory devices
WO2007132456A2 (en) 2006-05-12 2007-11-22 Anobit Technologies Ltd. Memory device with adaptive capacity
CN103258572B (zh) 2006-05-12 2016-12-07 苹果公司 存储设备中的失真估计和消除
WO2007132457A2 (en) 2006-05-12 2007-11-22 Anobit Technologies Ltd. Combined distortion estimation and error correction coding for memory devices
US8060806B2 (en) 2006-08-27 2011-11-15 Anobit Technologies Ltd. Estimation of non-linear distortion in memory devices
WO2008053472A2 (en) 2006-10-30 2008-05-08 Anobit Technologies Ltd. Reading memory cells using multiple thresholds
CN101601094B (zh) 2006-10-30 2013-03-27 苹果公司 使用多个门限读取存储单元的方法
US7924648B2 (en) 2006-11-28 2011-04-12 Anobit Technologies Ltd. Memory power and performance management
US8151163B2 (en) 2006-12-03 2012-04-03 Anobit Technologies Ltd. Automatic defect management in memory devices
US7900102B2 (en) 2006-12-17 2011-03-01 Anobit Technologies Ltd. High-speed programming of memory devices
US8151166B2 (en) 2007-01-24 2012-04-03 Anobit Technologies Ltd. Reduction of back pattern dependency effects in memory devices
US7751240B2 (en) 2007-01-24 2010-07-06 Anobit Technologies Ltd. Memory device with negative thresholds
JP2008218643A (ja) * 2007-03-02 2008-09-18 Fujitsu Ltd 半導体装置及びその製造方法
CN101715595A (zh) 2007-03-12 2010-05-26 爱诺彼得技术有限责任公司 存储器单元读取阈的自适应估计
US8001320B2 (en) 2007-04-22 2011-08-16 Anobit Technologies Ltd. Command interface for memory devices
WO2008139441A2 (en) 2007-05-12 2008-11-20 Anobit Technologies Ltd. Memory device with internal signal processing unit
US8234545B2 (en) 2007-05-12 2012-07-31 Apple Inc. Data storage with incremental redundancy
US7925936B1 (en) 2007-07-13 2011-04-12 Anobit Technologies Ltd. Memory device with non-uniform programming levels
US8259497B2 (en) 2007-08-06 2012-09-04 Apple Inc. Programming schemes for multi-level analog memory cells
US8174905B2 (en) 2007-09-19 2012-05-08 Anobit Technologies Ltd. Programming orders for reducing distortion in arrays of multi-level analog memory cells
US7773413B2 (en) 2007-10-08 2010-08-10 Anobit Technologies Ltd. Reliable data storage in analog memory cells in the presence of temperature variations
US8000141B1 (en) 2007-10-19 2011-08-16 Anobit Technologies Ltd. Compensation for voltage drifts in analog memory cells
WO2009050703A2 (en) 2007-10-19 2009-04-23 Anobit Technologies Data storage in analog memory cell arrays having erase failures
US8068360B2 (en) 2007-10-19 2011-11-29 Anobit Technologies Ltd. Reading analog memory cells using built-in multi-threshold commands
WO2009063450A2 (en) * 2007-11-13 2009-05-22 Anobit Technologies Optimized selection of memory units in multi-unit memory devices
US8225181B2 (en) 2007-11-30 2012-07-17 Apple Inc. Efficient re-read operations from memory devices
US8209588B2 (en) 2007-12-12 2012-06-26 Anobit Technologies Ltd. Efficient interference cancellation in analog memory cell arrays
US8456905B2 (en) 2007-12-16 2013-06-04 Apple Inc. Efficient data storage in multi-plane memory devices
US8085586B2 (en) 2007-12-27 2011-12-27 Anobit Technologies Ltd. Wear level estimation in analog memory cells
US8156398B2 (en) 2008-02-05 2012-04-10 Anobit Technologies Ltd. Parameter estimation based on error correction code parity check equations
US7924587B2 (en) 2008-02-21 2011-04-12 Anobit Technologies Ltd. Programming of analog memory cells using a single programming pulse per state transition
US7864573B2 (en) 2008-02-24 2011-01-04 Anobit Technologies Ltd. Programming analog memory cells for reduced variance after retention
US8230300B2 (en) 2008-03-07 2012-07-24 Apple Inc. Efficient readout from analog memory cells using data compression
US8400858B2 (en) 2008-03-18 2013-03-19 Apple Inc. Memory device with reduced sense time readout
US8059457B2 (en) 2008-03-18 2011-11-15 Anobit Technologies Ltd. Memory device with multiple-accuracy read commands
US7995388B1 (en) 2008-08-05 2011-08-09 Anobit Technologies Ltd. Data storage using modified voltages
US7924613B1 (en) 2008-08-05 2011-04-12 Anobit Technologies Ltd. Data storage in analog memory cells with protection against programming interruption
US8169825B1 (en) 2008-09-02 2012-05-01 Anobit Technologies Ltd. Reliable data storage in analog memory cells subjected to long retention periods
US8949684B1 (en) 2008-09-02 2015-02-03 Apple Inc. Segmented data storage
US8000135B1 (en) 2008-09-14 2011-08-16 Anobit Technologies Ltd. Estimation of memory cell read thresholds by sampling inside programming level distribution intervals
US8482978B1 (en) 2008-09-14 2013-07-09 Apple Inc. Estimation of memory cell read thresholds by sampling inside programming level distribution intervals
US8239734B1 (en) 2008-10-15 2012-08-07 Apple Inc. Efficient data storage in storage device arrays
US8261159B1 (en) 2008-10-30 2012-09-04 Apple, Inc. Data scrambling schemes for memory devices
US8208304B2 (en) 2008-11-16 2012-06-26 Anobit Technologies Ltd. Storage at M bits/cell density in N bits/cell analog memory cell devices, M>N
US8248831B2 (en) 2008-12-31 2012-08-21 Apple Inc. Rejuvenation of analog memory cells
US8397131B1 (en) 2008-12-31 2013-03-12 Apple Inc. Efficient readout schemes for analog memory cell devices
US8924661B1 (en) 2009-01-18 2014-12-30 Apple Inc. Memory system including a controller and processors associated with memory devices
US8228701B2 (en) 2009-03-01 2012-07-24 Apple Inc. Selective activation of programming schemes in analog memory cell arrays
US8259506B1 (en) 2009-03-25 2012-09-04 Apple Inc. Database of memory read thresholds
US8832354B2 (en) 2009-03-25 2014-09-09 Apple Inc. Use of host system resources by memory controller
US8238157B1 (en) 2009-04-12 2012-08-07 Apple Inc. Selective re-programming of analog memory cells
EP2440024B1 (en) * 2009-06-01 2014-03-12 Sumitomo Electric Industries, Ltd. Connection method
US8479080B1 (en) 2009-07-12 2013-07-02 Apple Inc. Adaptive over-provisioning in memory systems
US8495465B1 (en) 2009-10-15 2013-07-23 Apple Inc. Error correction coding over multiple memory pages
US8677054B1 (en) 2009-12-16 2014-03-18 Apple Inc. Memory management schemes for non-volatile memory devices
US8694814B1 (en) 2010-01-10 2014-04-08 Apple Inc. Reuse of host hibernation storage space by memory controller
US8572311B1 (en) 2010-01-11 2013-10-29 Apple Inc. Redundant data storage in multi-die memory systems
US8694853B1 (en) 2010-05-04 2014-04-08 Apple Inc. Read commands for reading interfering memory cells
US8572423B1 (en) 2010-06-22 2013-10-29 Apple Inc. Reducing peak current in memory systems
US8595591B1 (en) 2010-07-11 2013-11-26 Apple Inc. Interference-aware assignment of programming levels in analog memory cells
US9104580B1 (en) 2010-07-27 2015-08-11 Apple Inc. Cache memory for hybrid disk drives
US8767459B1 (en) 2010-07-31 2014-07-01 Apple Inc. Data storage in analog memory cells across word lines using a non-integer number of bits per cell
US8856475B1 (en) 2010-08-01 2014-10-07 Apple Inc. Efficient selection of memory blocks for compaction
US8694854B1 (en) 2010-08-17 2014-04-08 Apple Inc. Read threshold setting based on soft readout statistics
US9021181B1 (en) 2010-09-27 2015-04-28 Apple Inc. Memory management for unifying memory cell conditions by using maximum time intervals
DE102013104407B4 (de) * 2013-04-30 2020-06-18 Tdk Corporation Auf Waferlevel herstellbares Bauelement und Verfahren zur Herstellung
JP6750439B2 (ja) * 2016-09-30 2020-09-02 セイコーエプソン株式会社 電子デバイス、電子デバイス装置、電子機器および移動体
TWI760230B (zh) * 2020-06-09 2022-04-01 台灣愛司帝科技股份有限公司 晶片檢測方法、晶片檢測結構以及晶片承載結構
US11556416B2 (en) 2021-05-05 2023-01-17 Apple Inc. Controlling memory readout reliability and throughput by adjusting distance between read thresholds
US11847342B2 (en) 2021-07-28 2023-12-19 Apple Inc. Efficient transfer of hard data and confidence levels in reading a nonvolatile memory

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190599A (ja) * 1992-01-08 1993-07-30 Matsushita Electric Ind Co Ltd 半導体装置の組立方法
JPH098442A (ja) * 1995-06-23 1997-01-10 Toshiba Corp 配線板、実装用配線板および実装回路装置
JPH10335375A (ja) * 1997-06-02 1998-12-18 Toshiba Corp テープキャリアパッケージ
JP2001237277A (ja) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd テープド配線基板及びその組み立て方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4930001A (en) * 1989-03-23 1990-05-29 Hughes Aircraft Company Alloy bonded indium bumps and methods of processing same
US5367195A (en) * 1993-01-08 1994-11-22 International Business Machines Corporation Structure and method for a superbarrier to prevent diffusion between a noble and a non-noble metal
US5431328A (en) * 1994-05-06 1995-07-11 Industrial Technology Research Institute Composite bump flip chip bonding
JP3409957B2 (ja) * 1996-03-06 2003-05-26 松下電器産業株式会社 半導体ユニット及びその形成方法
US6635514B1 (en) * 1996-12-12 2003-10-21 Tessera, Inc. Compliant package with conductive elastomeric posts
JPH1164389A (ja) 1997-08-26 1999-03-05 Tokyo Electron Ltd バンプ型コンタクタ及びバンプ型コンタクタ用接触子の製造方法
JP4160665B2 (ja) 1998-07-22 2008-10-01 Hoya株式会社 コンタクトボード及びその構成部品
US6483195B1 (en) * 1999-03-16 2002-11-19 Sumitomo Bakelite Company Limited Transfer bump street, semiconductor flip chip and method of producing same
JP2001056347A (ja) 1999-08-20 2001-02-27 Hoya Corp コンタクト部品及びその製造方法
DE10031204A1 (de) * 2000-06-27 2002-01-17 Infineon Technologies Ag Systemträger für Halbleiterchips und elektronische Bauteile sowie Herstellungsverfahren für einen Systemträger und für elektronische Bauteile
JP2004165637A (ja) * 2002-10-21 2004-06-10 Matsushita Electric Ind Co Ltd 半導体装置
DE10343257B4 (de) * 2003-09-17 2009-06-10 Qimonda Ag Verfahren zur Herstellung von Zwischenverbindungen bei Chip-Sandwich-Anordnungen
US20050110161A1 (en) * 2003-10-07 2005-05-26 Hiroyuki Naito Method for mounting semiconductor chip and semiconductor chip-mounted board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05190599A (ja) * 1992-01-08 1993-07-30 Matsushita Electric Ind Co Ltd 半導体装置の組立方法
JPH098442A (ja) * 1995-06-23 1997-01-10 Toshiba Corp 配線板、実装用配線板および実装回路装置
JPH10335375A (ja) * 1997-06-02 1998-12-18 Toshiba Corp テープキャリアパッケージ
JP2001237277A (ja) * 2000-02-24 2001-08-31 Matsushita Electric Ind Co Ltd テープド配線基板及びその組み立て方法

Also Published As

Publication number Publication date
CN100394571C (zh) 2008-06-11
CN1701427A (zh) 2005-11-23
JPWO2004105120A1 (ja) 2006-07-20
JP3970283B2 (ja) 2007-09-05
US20050189649A1 (en) 2005-09-01
US7145250B2 (en) 2006-12-05

Similar Documents

Publication Publication Date Title
JP3970283B2 (ja) Lsiパッケージ及びlsi素子の試験方法及び半導体装置の製造方法
Suga Feasibility of surface activated bonding for ultra-fine pitch interconnection-A new concept of bump-less direct bonding for system level packaging
US5234149A (en) Debondable metallic bonding method
US6362532B1 (en) Semiconductor device having ball-bonded pads
US6288559B1 (en) Semiconductor testing using electrically conductive adhesives
JP3891838B2 (ja) 半導体装置およびその製造方法
US6822336B2 (en) Semiconductor device
TWI280652B (en) High-reliable semiconductor device using hermetic sealing of electrodes
US5440239A (en) Transferable solder bumps for interconnect and assembly of MCM substrates
JP5656144B2 (ja) 金属部材の接合方法
WO2005093442A1 (ja) 半導体集積回路装置の製造方法
US7217656B2 (en) Structure and method for bond pads of copper-metallized integrated circuits
JP2003508898A (ja) マイクロビームアセンブリおよび集積回路と基板との内部連結方法
CN100405591C (zh) 半导体器件及其制造方法
US7316572B2 (en) Compliant electrical contacts
US10651099B2 (en) Non-destructive testing of integrated circuit chips
JP2894594B2 (ja) ソルダーバンプを有するノウングッドダイの製造方法
US20070114672A1 (en) Semiconductor device and method of manufacturing the same
JP4938346B2 (ja) 半導体装置およびその製造方法
US20020106903A1 (en) Manufacturing method of semiconductor device
JP2006049485A (ja) 半導体装置の製造方法
JP3454223B2 (ja) 半導体装置の製造方法
JP2005116566A (ja) 半導体素子固定用接着剤、半導体素子への接着材の供給方法、半導体装置及び半導体装置の製造方法
JP2005203413A (ja) 電子部品、電子部品保持方法および実装済基板
JP3819306B2 (ja) 半導体素子と支持基板との接合体並びに該半導体装置の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

WWE Wipo information: entry into national phase

Ref document number: 2004572098

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11113063

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038252732

Country of ref document: CN