WO2010140331A1 - 半導体封止用樹脂組成物及び半導体装置 - Google Patents

半導体封止用樹脂組成物及び半導体装置 Download PDF

Info

Publication number
WO2010140331A1
WO2010140331A1 PCT/JP2010/003603 JP2010003603W WO2010140331A1 WO 2010140331 A1 WO2010140331 A1 WO 2010140331A1 JP 2010003603 W JP2010003603 W JP 2010003603W WO 2010140331 A1 WO2010140331 A1 WO 2010140331A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
resin
resin composition
general formula
phenol
Prior art date
Application number
PCT/JP2010/003603
Other languages
English (en)
French (fr)
Inventor
和田雅浩
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to KR1020117031243A priority Critical patent/KR101687847B1/ko
Priority to US13/322,037 priority patent/US8883883B2/en
Priority to SG2011088945A priority patent/SG176625A1/en
Priority to CN201080024180.7A priority patent/CN102449020B/zh
Priority to JP2011518246A priority patent/JP5708486B2/ja
Publication of WO2010140331A1 publication Critical patent/WO2010140331A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/68Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used
    • C08G59/688Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the catalysts used containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4801Structure
    • H01L2224/48011Length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1301Thyristor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor sealing resin composition and a semiconductor device.
  • solder resistance has become one of the important technical issues for semiconductor sealing resin compositions.
  • defects such as poor conveyance during the process, equipment stoppage easily (decrease in handling properties), and deterioration in curability may impair any of the properties of solder resistance, flame resistance, and moldability.
  • resin compositions As described above, with the thinning and thinning of semiconductor devices, it has become an important issue for resin compositions to balance fluidity, handling properties, solder resistance, flame resistance, and moldability.
  • the present invention provides a resin composition for semiconductor encapsulation having a good balance of fluidity, handling properties, solder resistance, flame resistance and continuous moldability, and reliability obtained by encapsulating a semiconductor element with a cured product thereof. It provides an excellent semiconductor device economically.
  • the resin composition for encapsulating a semiconductor of the present invention is a phenol resin (A) composed of one or two or more components, and the following general formula (1):
  • R1 is independently a hydrocarbon group having 1 to 6 carbon atoms, and a is an integer of 0 to 3.
  • R2, R3, R4 and R5 are independent of each other.
  • the following general formula (2): (In the general formula (2), R1 is independently a hydrocarbon group having 1 to 6 carbon atoms, and a is an integer of 0 to 3.
  • R6 is independently an integer of 1 carbon atom.
  • b is an integer of 1 to 4.
  • R7, R8, R9 and R10 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • the resin composition for encapsulating a semiconductor of the present invention comprises one or more polymers as the component (A1), and the polymer corresponding to the component (A1) is measured by field desorption mass spectrometry.
  • the total relative strength may be 10% or more and 80% or less with respect to the total relative strength of the phenol resin (A).
  • the phenol resin (A) includes a structural unit represented by the general formula (1), and is a structural unit represented by the general formula (2). It may further contain a component (A2) made of a polymer not containing.
  • the phenol resin (A) includes a structural unit represented by the general formula (2), and includes a structural unit represented by the general formula (1). It may further contain a component (A3) comprising a polymer that does not contain.
  • the resin composition for semiconductor encapsulation of the present invention is represented by the total number of structural units represented by the general formula (1) in the entire phenol resin (A) and the general formula (2).
  • the ratio to the total number of structural units may be 30/70 to 95/5.
  • R6 in the structural unit represented by the general formula (2) may be a methyl group, and b may be 1 to 3.
  • the phenol resin (A) may have an ICI viscosity at 150 ° C. of 1.5 dPa ⁇ s or less.
  • the phenol resin (A) may have a softening point of 63 ° C. or higher and 85 ° C. or lower.
  • the resin composition for semiconductor encapsulation of the present invention has an area ratio of a dinuclear component in the phenol resin (A) based on a standard polystyrene conversion gel permeation chromatograph (GPC) method of 20% or less. There can be.
  • the phenol resin (A) can be contained in an amount of 20% by mass or more and 100% by mass or less in the total curing agent.
  • the epoxy resin (B) is a biphenyl type epoxy resin, a bisphenol type epoxy resin, a stilbene type epoxy resin, an anthracene diol type epoxy resin, a phenol novolac type epoxy resin, or a cresol.
  • Novolac type epoxy resin triphenolmethane type epoxy resin, alkyl-modified triphenolmethane type epoxy resin, phenol aralkyl type epoxy resin having phenylene skeleton, phenol aralkyl type epoxy resin having biphenylene skeleton, naphthol aralkyl type epoxy resin having phenylene skeleton , Dihydroxynaphthalene type epoxy resin, epoxy resin obtained by glycidyl etherification of dihydroxynaphthalene dimer, methoxynaphthalene skeleton Novolac type epoxy resin, triglycidyl isocyanurate, monoallyl diglycidyl isocyanurate, it can be made at least one epoxy resin selected from the group consisting of dicyclopentadiene-modified phenol type epoxy resins.
  • the content of the inorganic filler (C) can be 80% by mass or more and 93% by mass or less.
  • the resin composition for semiconductor encapsulation of the present invention can contain a curing accelerator (D).
  • the curing accelerator (D) is an addition of a tetra-substituted phosphonium compound, a phosphobetaine compound, a phosphine compound and a quinone compound, or an addition of a phosphonium compound and a silane compound. It may contain at least one curing accelerator selected from the group consisting of products.
  • the resin composition for semiconductor encapsulation of the present invention may contain a compound (E) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring.
  • the resin composition for semiconductor encapsulation of the present invention may contain a coupling agent (F).
  • the resin composition for encapsulating a semiconductor of the present invention may contain a silane coupling agent in which the coupling agent (F) has a secondary amino group.
  • the resin composition for semiconductor encapsulation of the present invention may contain an inorganic flame retardant (G).
  • G inorganic flame retardant
  • the inorganic flame retardant (G) may contain a metal hydroxide or a composite metal hydroxide.
  • the semiconductor device of the present invention is obtained by sealing a semiconductor element with a cured product of the above-described resin composition for encapsulating a semiconductor. It should be noted that any combination of the above-described constituent elements and a conversion of the expression of the present invention between a method, an apparatus, and the like are also effective as an aspect of the present invention.
  • a resin composition for encapsulating a semiconductor having a good balance of handling properties, solder resistance, flame resistance and continuous moldability while improving fluidity more than before, and a semiconductor element using the cured product thereof A highly reliable semiconductor device that is sealed can be obtained economically.
  • the resin composition for semiconductor encapsulation of the present invention is a phenol resin composed of one or more components, and a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2) A phenol resin (A) containing a component (A1) made of a polymer containing, an epoxy resin (B), and an inorganic filler (C) are included.
  • a phenol resin (A) containing a component (A1) made of a polymer containing, an epoxy resin (B), and an inorganic filler (C) are included.
  • the resin composition for semiconductor sealing which is excellent in balance of handling property, solder resistance, flame resistance, and continuous moldability can be obtained while improving fluidity more than before.
  • the semiconductor device of the present invention is obtained by sealing a semiconductor element with a cured product of the above-described resin composition for encapsulating a semiconductor. Thereby, a highly reliable semiconductor device can be obtained economically.
  • the present invention will be described in detail.
  • the resin composition for encapsulating a semiconductor of the present invention is a phenol resin composed of one or more components as a curing agent for an epoxy resin, and a structural unit represented by the following general formula (1) and the following general formula ( A phenol resin (A) containing a component (A1) made of a polymer containing the structural unit represented by 2) is used.
  • R1 is independently a hydrocarbon group having 1 to 6 carbon atoms
  • a is an integer of 0 to 3.
  • R2, R3, R4 and R5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R1 is independently a hydrocarbon group having 1 to 6 carbon atoms, and a is an integer of 0 to 3.
  • R6 is independently a hydrocarbon group having 1 to 6 carbon atoms, and b is an integer of 1 to 4.
  • R7, R8, R9 and R10 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R6 in the structural unit represented by the general formula (2) is a methyl group, and b is 1 to 3.
  • the component (A1) in the phenol resin (A) has a skeleton structure similar to that of the phenol aralkyl type phenol resin having a phenylene skeleton, thereby exhibiting good curability and solder resistance. Further, in the general formula (2) Since the substituent R6 of the structural unit represented is hydrophobic, good moisture resistance can be exhibited. Furthermore, the component (A1) in the phenol resin (A) has a feature that it is less likely to be fixed and exhibits good handling properties as compared with a phenol aralkyl resin having a phenylene skeleton having the same molecular weight.
  • the details of the reason why the sticking is difficult to occur are unknown, but by including the substituent R6 partially, the intermolecular force (van der Waals force) is locally strong, thereby restricting the movement of the molecule. It is assumed that the softening point is relatively increased.
  • the resin composition using the phenol resin (A) can exhibit excellent fluidity and curability without impairing handling properties, and the cured product has excellent flame resistance, low water absorption, and solder resistance. It has the characteristic that crack property improves.
  • the phenol resin (A) includes a component (A1) composed of a polymer including the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2). Although the structural unit represented by formula (2) is included, the component (A2) composed of a polymer not containing the structural unit represented by the general formula (2) or the structural unit represented by the general formula (2) is included. The component (A3) which consists of a polymer which does not contain the structural unit represented by (1) can further be included.
  • the ratio of the total number of structural units represented by the general formula (1) and the total number of structural units represented by the general formula (2) in the entire phenol resin (A) is 30 / It is preferably 70 to 95/5, more preferably 40/60 to 90/10, and particularly preferably 50/50 to 85/15.
  • in this specification includes all the upper and lower ends thereof.
  • the ratio of the total number of structural units represented by general formula (1) to the total number of structural units represented by general formula (2) in the entire phenol resin (A) is the field desorption mass. It can be determined by analytical (FD-MS) measurement. For each peak detected by FD-MS analysis measured in a detected mass (m / z) range of 50 to 2000, the molecular weight and the number of repetitions can be obtained from the detected mass (m / z).
  • the component (A1) is composed of one or more polymers, and the polymer corresponding to the component (A1) is measured by field desorption mass spectrometry.
  • the total relative strength is preferably 10% or more and 80% or less, more preferably 10% or more and 60% or less, still more preferably 10% or more with respect to the total relative strength of the phenol resin (A). 40% or less.
  • the ICI viscosity at 150 ° C. of the phenol resin (A) is preferably 0.1 dPa ⁇ s or more and 1.5 dPa ⁇ s or less, more preferably 0.3 dPa ⁇ s or more and 0.7 dPa ⁇ s or less. is there.
  • the softening point of a phenol resin (A) becomes like this.
  • it is 63 to 85 degreeC, More preferably, it is 64 to 80 degreeC.
  • Such a polymerization method of the phenol resin (A) is not particularly limited.
  • the phenol resin, the compound represented by the following general formula (3), and the following general formula (4) are represented.
  • a method obtained by co-condensation polymerization of a compound hereinafter also referred to as “first production method”
  • an alkyl-substituted aromatic compound represented by the following general formula (5) and aldehydes are reacted, Examples thereof include a method obtained by adding a compound represented by the general formula (3) and a phenol compound and performing copolymerization (hereinafter, also referred to as “second production method”), and the like.
  • the 2nd manufacturing method is preferable at the point that a raw material can be obtained cheaply.
  • R2, R3, R4 and R5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • X is a halogen atom, a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
  • R11 and R12 are each independently a hydrocarbon group having 1 to 5 carbon atoms or a hydrogen atom.
  • R6 is independently a hydrocarbon group having 1 to 6 carbon atoms
  • b is an integer of 1 to 4.
  • R7, R8, R9 and R10 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • X is a halogen atom, a hydroxyl group or an alkoxy group having 1 to 6 carbon atoms.
  • R13 and R14 are each independently a hydrocarbon group having 1 to 5 carbon atoms or a hydrogen atom.
  • R6 is independently a hydrocarbon group having 1 to 6 carbon atoms, and b is an integer of 1 to 4.
  • Examples of the phenol compound used in the production of the phenol resin (A) include phenol, o-cresol, p-cresol, m-cresol, phenylphenol, ethylphenol, n-propylphenol, iso-propylphenol, and t-butylphenol.
  • Xylenol, methylpropylphenol, methylbutylphenol, dipropylphenol, dibutylphenol, nonylphenol, mesitol, 2,3,5-trimethylphenol, 2,3,6-trimethylphenol, etc. is not.
  • phenol and o-cresol are preferable, and phenol is more preferable from the viewpoint of reactivity with the epoxy resin.
  • these phenol compounds may be used alone or in combination of two or more.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms in R2, R3, R4 and R5 in the compound represented by the general formula (3) used for the production of the phenol resin (A) include a methyl group, an ethyl group, Propyl group, n-butyl group, isobutyl group, t-butyl group, n-pentyl group, 2-methylbutyl group, 3-methylbutyl group, t-pentyl group, n-hexyl group, 1-methylpentyl group, 2-methyl Pentyl group, 3-methylpentyl group, 4-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2,4-dimethylbutyl group, 3,3-dimethylbutyl group, 3,4 -Dimethylbutyl group, 4,4-dimethylbutyl group, 2-ethylbutyl group, 1-ethylbutyl group, cyclohexyl
  • CR11R12 (alkylidene group) in the compound represented by the general formula (3) used for the production of the phenol resin (A) includes methylidene group, ethylidene group, propylidene group, n-butylidene group, isobutylidene group, t- Butylidene group, n-pentylidene group, 2-methylbutylidene group, 3-methylbutylidene group, t-pentylidene group, n-hexylidene group, 1-methylpentylidene group, 2-methylpentylidene group, 3-methylpentylidene group Group, 4-methylpentylidene group, 2,2-dimethylbutylidene group, 2,3-dimethylbutylidene group, 2,4-dimethylbutylidene group, 3,3-dimethylbutylidene group, 3,4-dimethyl Butylidene group, 4,4-dimethylbutylidene
  • Examples of the halogen atom in X in the compound represented by the general formula (3) used for the production of the phenol resin (A) include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Examples of the alkoxy group having 1 to 6 carbon atoms in X in the compound represented by the general formula (3) used for the production of the phenol resin (A) include a methoxy group, an ethoxy group, a propoxy group, and an n-butoxy group.
  • the compound represented by the general formula (3) may be used alone or in combination of two or more.
  • p-xylylene glycol is preferable because it can be synthesized at a relatively low temperature and the reaction by-product can be easily distilled off and handled.
  • X is a halogen atom, hydrogen halide generated due to the presence of a small amount of moisture can be used as an acid catalyst.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms in R7, R8, R9, R10 and R6 in the compound represented by the general formula (4) used for the production of the phenol resin (A) include a methyl group, Ethyl, propyl, n-butyl, isobutyl, t-butyl, n-pentyl, 2-methylbutyl, 3-methylbutyl, t-pentyl, n-hexyl, 1-methylpentyl, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 2,2-dimethylbutyl group, 2,3-dimethylbutyl group, 2,4-dimethylbutyl group, 3,3-dimethylbutyl group, Examples include 3,4-dimethylbutyl group, 4,4-dimethylbutyl group, 2-ethylbutyl group, 1-ethylbutyl group, cyclohexyl group, and phenyl
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkoxy group having 1 to 6 carbon atoms examples include methoxy group, ethoxy group, propoxy group, n-butoxy group, isobutoxy group, t-butoxy group, n-pentoxy group, 2-methylbutoxy group, 3-methylbutoxy group, t-pentoxy group, n-hexoxy group, 1-methylpentoxy group, 2-methylpentoxy group, 3-methylpentoxy group, 4-methylpentoxy group, 2,2-dimethylbutoxy group, 2,3- Dimethylbutoxy group, 2,4-dimethylbutoxy group, 3,3-dimethylbutoxy group, 3,4-dimethylbutoxy group, 4,4-dimethylbutoxy group, 2-ethylbutoxy group, 1-ethylbutoxy group, etc. Can be mentioned.
  • the compound represented by the general formula (4) may be used singly or as a mixture of two or more.
  • R6 is preferably a methyl group and b is preferably 1 to 3.
  • X is methoxy, it is preferable because the reaction by-product can be easily distilled off and handled.
  • X is a halogen atom, hydrogen halide generated due to the presence of a small amount of moisture is used as an acid catalyst. Can be used.
  • the hydrocarbon group having 1 to 6 carbon atoms includes a methyl group, an ethyl group, a propyl group, and an n-butyl group.
  • alkyl-substituted aromatic compounds examples include toluene, o-xylene, m-xylene, p-xylene, 1,3,5-trimethylbenzene, 1,2,3-trimethylbenzene, 1,2,4.
  • the compound represented by General formula (5) may be used individually by 1 type, or may use 2 or more types together.
  • aldehydes used in the production of the phenol resin (A) include formaldehyde, paraformaldehyde, acetaldehyde, benzaldehyde and the like. Among these, formaldehyde and paraformaldehyde are preferable from the viewpoints of curability of the resin composition and raw material costs.
  • the method for synthesizing the phenol resin (A) is not particularly limited.
  • the compound represented by the general formula (3) is generally used with respect to 1 mol of the phenol compound. 0.1 to 0.6 mol in total with the compound represented by formula (4), formic acid, oxalic acid, p-toluenesulfonic acid, methanesulfonic acid, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, Lewis acid, etc.
  • the catalyst is reacted at a temperature of 50 to 200 ° C. at a temperature of 50 to 200 ° C.
  • the ratio of the total number of the structural units represented by the general formula (1) and the total number of the structural units represented by the general formula (2) in the entire phenol resin (A) is the ratio of the raw materials used.
  • a compound represented by the general formula (3): a compound represented by the general formula (4) 20: 80 to 80:20 in terms of molar ratio is given. it can.
  • the phenol resin (A) obtained by the first production method is a polymer represented by the following general formula (6), wherein m is preferably an integer of 0 to 20, and n is preferably an integer of 0 to 20. It is a mixture.
  • R1 is independently a hydrocarbon group having 1 to 6 carbon atoms
  • a is an integer of 0 to 3.
  • R6 is independently a hydrocarbon group having 1 to 6 carbon atoms
  • b is an integer of 1 to 4.
  • R2, R3, R4, R5, R7, R8, R9 and R10 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms. The terminal of the molecule is a hydrogen atom or a substituted or unsubstituted hydroxyphenyl group.
  • R2, R3, R4 and R5 in general formula (6) are the same as in general formula (3)
  • R7, R8, R9 and R10 in general formula (6) are the same as in general formula (4). is there.
  • m is preferably an integer of 0 to 20
  • n is preferably an integer of 0 to 20
  • the average value of is more preferably from 1 to 7, more preferably from 1.2 to 2.5
  • the average value of n is more preferably from 0.2 to 2, still more preferably from 0.4 to 1.
  • the values of m and n can be obtained by FD-MS analysis.
  • the molecular weight of the compound of the general formula (6) measured by the FD-MS analysis method is preferably 300 or more and 1500 or less, more preferably 500 or more and 900 or less.
  • the component (A1) comprising a polymer containing the structural unit represented by (2) is preferably 5% by mass or more and 80% by mass or less based on the total amount of the phenol resin (A) obtained by the first production method. More preferably, it is 8% by mass or more and 70% by mass or less, and particularly preferably 11% by mass or more and 50% by mass or less.
  • the content ratio of the component (A1) can be increased.
  • aldehydes are added to 1 mol of the alkyl-substituted aromatic compound represented by the general formula (5).
  • an alkali metal catalyst by adding 0.1 to 2.5 mol of an alkali metal catalyst such as sodium hydroxide or potassium hydroxide as a soot catalyst, or a strong acid such as paratoluenesulfonic acid, xylenesulfonic acid or sulfuric acid Is reacted at a temperature of 5 to 80 ° C. and in the case of an acidic catalyst at a temperature of 100 to 150 ° C. for 0.5 to 5 hours to obtain a reaction intermediate.
  • an alkali metal catalyst by adding 0.1 to 2.5 mol of an alkali metal catalyst such as sodium hydroxide or potassium hydroxide as a soot catalyst, or a strong acid such as paratoluenesulfonic acid, xylenesulfonic acid or sulfuric acid Is reacted at a temperature of 5 to 80 ° C. and in the case of an
  • the phenol resin (A) obtained by the second production method is represented by the following general formula (7), i is preferably an integer of 0 to 20, j is preferably an integer of 0 to 20, and k is A polymer mixture which is preferably an integer of 0 to 20 is preferred.
  • R1 is independently a hydrocarbon group having 1 to 6 carbon atoms
  • a is an integer of 0 to 3.
  • R6 is independently a hydrocarbon group having 1 to 6 carbon atoms
  • b is an integer of 1 to 4.
  • R2, R3, R4, R5, R7, R8, R9, R10, R15 and R16 are each independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • the terminal of the molecule is a hydrogen atom, a substituted or unsubstituted hydroxyphenyl group, or a phenyl group substituted with 1 to 4 hydrocarbon groups having 1 to 6 carbon atoms.
  • R2, R3, R4 and R5 in general formula (7) are the same as in general formula (3), and R7, R8, R9 and R10 in general formula (7) are the same as in general formula (4). is there.
  • Examples of the hydrocarbon group having 1 to 6 carbon atoms in R15 and R16 in the general formula (7) are the same as those in R2 in the general formula (3).
  • J and k are described as average values
  • the average value of i is more preferably 0.5 to 7, further preferably 1 to 4
  • the average value of j is more preferably 0.2 to 3
  • the average value of k is more preferably 0.4 to 2, more preferably 0 to 5, and still more preferably 0 to 3.
  • i By setting i to the upper limit value or less, the viscosity of the phenol resin itself is high, so that the fluidity of the resulting resin composition can be suppressed from decreasing. Moreover, by making j more than the said lower limit, the phenol resin obtained becomes difficult to adhere and it can suppress that the solder crack resistance of the resin composition obtained falls. By making j below the above upper limit value, it is possible to prevent the fluidity and curability of the resin composition from decreasing. Moreover, it can suppress that sclerosis
  • the values of i, j, and k can be obtained by an FD-MS analysis method.
  • the molecular weight of the compound of the general formula (7) measured by the FD-MS analysis method is preferably 350 or more and 1200 or less, more preferably 400 or more and 900 or less.
  • the component (A1) comprising a polymer containing the structural unit represented by (2) is preferably 5% by mass or more and 80% by mass or less based on the total amount of the phenol resin (A) obtained by the second production method. More preferably, it is 8% by mass or more and 70% by mass or less, and particularly preferably 11% by mass or more and 50% by mass or less.
  • a component comprising a polymer containing a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2)
  • Examples of the method for increasing the content ratio of A1 include a method of reducing the compounding amount or gradually adding the compound represented by the general formula (3) to the reaction system.
  • a method of reducing the content of the above-mentioned by-product a method of reducing the amount of formaldehyde, or removing unreacted aldehydes remaining in the reaction intermediate by a known method such as recrystallization or reduced pressure , Etc.
  • a binuclear component may be contained in the phenol resin (A) obtained by the second production method.
  • required by the area method of the gel permeation chromatograph (GPC) of standard polystyrene conversion has preferable 20% or less, More preferably, it is 15% or less.
  • GPC gel permeation chromatograph
  • the binuclear component can be reduced by increasing the degree of vacuum or increasing the treatment time in steam distillation or vacuum distillation after the synthesis of the phenol resin.
  • a method of reducing the production of a high molecular weight component by a method such as quickly discharging out of the system or lowering the cocondensation temperature can be used.
  • the progress of the reaction is represented by the general formula (3), the general formula (4), the generation status of water, hydrogen halide, or alcohol gas by-produced by the reaction of the reaction intermediate with phenol, or during the reaction.
  • the product can be sampled and confirmed by molecular weight by gel permeation chromatography.
  • the phenol resin (A) used in the present invention is a phenol resin composed of one or more components, and a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2) And a phenol resin containing the component (A1) made of a polymer containing, specifically, the following components 1) and 2) can be essential components and the following components 3) to 6) can be included.
  • a phenol aralkyl resin having a phenylene skeleton is a phenol resin composed of one or more components, and a structural unit represented by the general formula (1) and a structural unit represented by the general formula (2)
  • a phenol resin containing the component (A1) made of a polymer containing, specifically, the following components 1) and 2) can be essential components
  • Phenol novolak type resin 5) Phenol resin copolymerized with phenol aralkyl having a phenylene skeleton and phenol novolak type 6)
  • the phenol aralkyl resin having a phenylene skeleton has a low viscosity but is difficult to be fixed, so that the handling property is good and the curability is not impaired. It has excellent solderability and flame resistance, and can exhibit good continuous formability.
  • the raw material cost is lower than that of the phenol aralkyl resin having a phenylene skeleton, and it can be produced at a low cost.
  • the values of m and n in the general formula (6) and the values of i, j, and k in the general formula (7) can be obtained by FD-MS measurement.
  • the molecular weight and the number of repetitions (m, n and i, j) are determined from the detected mass (m / z). K), and by calculating the intensity ratio of each peak as a content ratio (mass), the average values of m and n and the average values of i, j, and k can be obtained. it can.
  • the content of the phenol novolac resin in the phenol resin (A) is preferably 5 to 20% by mass, more preferably based on the total amount of the phenol resin (A). Is 5 to 15% by mass. By setting it as the above range, good curability and flame resistance can be obtained.
  • the compounding amount of the phenol resin (A) in the resin composition for semiconductor encapsulation of the present invention is preferably 0.5% by mass or more, more preferably 1% with respect to the total mass of the resin composition for semiconductor encapsulation. It is at least mass%, more preferably at least 1.5 mass%. When the lower limit is within the above range, the resulting resin composition has good fluidity. Moreover, the amount of the phenol resin (A) in the resin composition for semiconductor encapsulation is preferably 10% by mass or less, more preferably 9% by mass with respect to the total mass of the semiconductor encapsulation resin composition. Preferably it is 8 mass% or less. When the upper limit is within the above range, the resulting resin composition has good solder resistance and curability.
  • the curing agent that can be used in combination include a polyaddition type curing agent, a catalyst type curing agent, and a condensation type curing agent.
  • polyaddition type curing agents include aliphatic polyamines such as diethylenetriamine (DETA), triethylenetetramine (TETA), and metaxylylene diamine (MXDA), diaminodiphenylmethane (DDM), and m-phenylenediamine (MPDA).
  • aromatic polyamines such as diaminodiphenylsulfone (DDS), polyamine compounds including dicyandiamide (DICY), organic acid dihydrazide, and the like; alicyclics such as hexahydrophthalic anhydride (HHPA) and methyltetrahydrophthalic anhydride (MTHPA) Acid anhydrides, including acid anhydrides, trimellitic anhydride (TMA), pyromellitic anhydride (PMDA), aromatic anhydrides such as benzophenone tetracarboxylic acid (BTDA), etc .; novolac-type phenolic resin, phenol Polyphenol compounds such as Rimmer; polysulfide, thioester, polymercaptan compounds such as thioethers; isocyanate prepolymer, isocyanate compounds such as blocked isocyanate; and organic acids such as carboxylic acid-containing polyester resins.
  • DDS diaminodiphenylsulfone
  • DIY dic
  • catalyst-type curing agent examples include tertiary amine compounds such as benzyldimethylamine (BDMA) and 2,4,6-trisdimethylaminomethylphenol (DMP-30); 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24); Lewis acids such as BF 3 complexes.
  • BDMA benzyldimethylamine
  • DMP-30 2,4,6-trisdimethylaminomethylphenol
  • 2-methylimidazole, 2-ethyl-4 -Imidazole compounds such as methylimidazole (EMI24)
  • Lewis acids such as BF 3 complexes.
  • condensation type curing agent examples include phenolic resin-based curing agents such as novolak type phenolic resin and resol type phenolic resin; urea resin such as methylol group-containing urea resin; melamine resin such as methylol group-containing melamine resin; Can be mentioned.
  • a phenol resin-based curing agent is preferable from the viewpoint of balance of flame resistance, moisture resistance, electrical characteristics, curability, storage stability, and the like.
  • the phenol resin-based curing agent is a monomer, oligomer, or polymer in general having two or more phenolic hydroxyl groups in one molecule, and its molecular weight and molecular structure are not particularly limited.
  • phenol novolak resin cresol novolak Resin, novolak resin such as naphthol novolak resin; polyfunctional phenol resin such as triphenolmethane phenol resin; modified phenol resin such as terpene modified phenol resin and dicyclopentadiene modified phenol resin; phenylene skeleton and / or biphenylene skeleton
  • Aralkyl type resins such as phenol aralkyl resins having phenylene and / or naphthol aralkyl resins having a biphenylene skeleton; bisphenol compounds such as bisphenol A and bisphenol F, etc.
  • Type may be used in combination of two or more be used alone.
  • the hydroxyl equivalent is preferably 90 g / eq or more and 250 g / eq or less from the viewpoint of curability.
  • the lower limit value of the blending ratio of the phenol resin (A) is preferably 20% by mass or more and 30% by mass or more with respect to the total curing agent. It is more preferable, and it is especially preferable that it is 50 mass% or more.
  • the upper limit of the mixture ratio of a phenol resin (A) is not specifically limited, For example, it can be 100 mass% or less with respect to all the hardening
  • the lower limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 0.8% by mass or more and more preferably 1.5% by mass or more in the total resin composition. preferable. When the lower limit value of the blending ratio is within the above range, sufficient fluidity can be obtained.
  • the upper limit of the blending ratio of the entire curing agent is not particularly limited, but is preferably 10% by mass or less and more preferably 8% by mass or less in the entire resin composition. . When the upper limit of the blending ratio is within the above range, good solder resistance can be obtained.
  • Examples of the epoxy resin (B) used in the resin composition for semiconductor encapsulation of the present invention include crystalline epoxy resins such as biphenyl type epoxy resins, bisphenol type epoxy resins, stilbene type epoxy resins, anthracene diol type epoxy resins; Novolac epoxy resins such as phenol novolac type epoxy resins and cresol novolac type epoxy resins; polyfunctional epoxy resins such as triphenolmethane type epoxy resins and alkyl-modified triphenolmethane type epoxy resins; phenol aralkyl type epoxy resins having a phenylene skeleton; Aralkyl type epoxy resins such as phenol aralkyl type epoxy resins having a biphenylene skeleton, naphthol aralkyl type epoxy resins having a phenylene skeleton, dihydroxynaphthalene type epoxy resins, A naphthol type epoxy resin such as an epoxy resin obtained by glycidyl etherification of a dimer of hydroxynaphthalen
  • epoxy resins preferably contain as little ionic impurities Na + ions and Cl ⁇ ions as possible from the viewpoint of the moisture resistance reliability of the resulting semiconductor sealing resin composition. Moreover, it is preferable that the epoxy equivalent of an epoxy resin is 100 g / eq or more and 500 g / eq or less from a sclerosing
  • biphenyl type epoxy resins and bisphenol type epoxy resins are preferable from the viewpoint of fluidity, and from the viewpoint of solder resistance, phenol aralkyl type epoxy resins having a phenylene skeleton, phenol aralkyl type epoxy resins having a biphenylene skeleton, and methoxynaphthalene.
  • a novolac type epoxy resin having a skeleton is preferable.
  • a triphenolmethane type epoxy resin, a naphthol aralkyl type epoxy resin having a phenylene skeleton, an anthracenediol type epoxy resin, and the like are preferable.
  • the amount of the epoxy resin (B) in the resin composition for semiconductor encapsulation is preferably 2% by mass or more, more preferably 4% by mass or more, based on the total mass of the resin composition for semiconductor encapsulation. .
  • the amount of the epoxy resin (B) in the resin composition for semiconductor encapsulation is preferably 15% by mass or less, more preferably 13% by mass or less, with respect to the total mass of the resin composition for semiconductor encapsulation. It is.
  • the upper limit is within the above range, the resulting resin composition has good solder resistance.
  • the phenol resin and the epoxy resin have an equivalent ratio (EP) / (OH) between the number of epoxy groups (EP) of all epoxy resins and the number of phenolic hydroxyl groups (OH) of all phenol resins, of 0.8 or more, It is preferable to mix
  • equivalent ratio is within the above range, sufficient curing characteristics can be obtained when the resulting resin composition is molded.
  • inorganic fillers (C) used in the semiconductor sealing resin composition of the present invention inorganic fillers generally used in the field can be used. Examples thereof include fused silica, spherical silica, crystalline silica, alumina, silicon nitride, and aluminum nitride.
  • the particle size of the inorganic filler is desirably 0.01 ⁇ m or more and 150 ⁇ m or less from the viewpoint of filling properties in the mold cavity.
  • the amount of the inorganic filler (C) in the resin composition for semiconductor encapsulation is preferably 80% by mass or more, more preferably 83% by mass or more, based on the total mass of the resin composition for semiconductor encapsulation. Yes, more preferably 86% by mass or more.
  • the amount of the inorganic filler (C) in the resin composition for semiconductor encapsulation is preferably 93% by mass or less, more preferably 91% by mass with respect to the total mass of the resin composition for semiconductor encapsulation. Or less, more preferably 90% by mass or less.
  • the upper limit is within the above range, the resulting resin composition has good fluidity and good moldability.
  • inorganic flame retardants such as metal hydroxides such as aluminum hydroxide and magnesium hydroxide, zinc borate, zinc molybdate and antimony trioxide described later, these inorganic flame retardants and the above It is desirable that the total amount of the inorganic filler is within the above range.
  • the semiconductor sealing resin composition of the present invention may contain a curing accelerator (D).
  • the curing accelerator (D) is not particularly limited as long as it accelerates the reaction between the epoxy group of the epoxy resin and the hydroxyl group of the phenol resin, and a generally used curing accelerator (D) can be used.
  • phosphorus-containing compounds such as organic phosphines, tetra-substituted phosphonium compounds, phosphobetaine compounds, adducts of phosphine compounds and quinone compounds, adducts of phosphonium compounds and silane compounds; 1,8-diazabicyclo (5 , 4, 0) Undecene-7, benzyldimethylamine, 2-methylimidazole and the like nitrogen-containing compounds.
  • a phosphorus atom-containing compound is preferable from the viewpoint of curability, and from the viewpoint of balance between fluidity and curability, a tetra-substituted phosphonium compound, a phosphobetaine compound, an adduct of a phosphine compound and a quinone compound, a phosphonium compound A catalyst having latency such as an adduct of silane compound and silane compound is more preferable.
  • tetra-substituted phosphonium compounds are particularly preferable.
  • phosphobetaine compounds, adducts of phosphine compounds and quinone compounds are particularly preferable, and in view of latent curability.
  • An adduct of a phosphonium compound and a silane compound is particularly preferable.
  • a tetra-substituted phosphonium compound is preferable.
  • Examples of the organic phosphine that can be used in the resin composition for encapsulating a semiconductor of the present invention include a first phosphine such as ethylphosphine and phenylphosphine; a second phosphine such as dimethylphosphine and diphenylphosphine; trimethylphosphine, triethylphosphine, and tributyl. Third phosphine such as phosphine and triphenylphosphine can be used.
  • Examples of the tetra-substituted phosphonium compound that can be used in the semiconductor sealing resin composition of the present invention include a compound represented by the following general formula (8).
  • P represents a phosphorus atom
  • R17, R18, R19 and R20 each independently represents an aromatic group or an alkyl group
  • A represents a functional group selected from a hydroxyl group, a carboxyl group and a thiol group.
  • AH is an aromatic organic having at least one functional group selected from a hydroxyl group, a carboxyl group, and a thiol group in the aromatic ring
  • x and y are integers of 1 to 3
  • z is an integer of 0 to 3
  • x y.
  • the compound represented by the general formula (8) is obtained, for example, as follows, but is not limited thereto. First, a tetra-substituted phosphonium halide, an aromatic organic acid and a base are mixed in an organic solvent and mixed uniformly to generate an aromatic organic acid anion in the solution system. Subsequently, when water is added, the compound represented by the general formula (8) can be precipitated.
  • R17, R18, R19, and R20 bonded to the phosphorus atom are phenyl groups and AH is bonded to the phosphorus atom from the viewpoint of excellent balance between the yield at the time of synthesis and the curing acceleration effect.
  • a compound having a hydroxyl group in an aromatic ring, that is, a phenol compound, and A is preferably an anion of the phenol compound.
  • Examples of the phosphobetaine compound that can be used in the semiconductor sealing resin composition of the present invention include compounds represented by the following general formula (9).
  • X1 represents an alkyl group having 1 to 3 carbon atoms
  • Y1 represents a hydroxyl group
  • f is an integer of 0 to 5
  • g is an integer of 0 to 4.
  • the compound represented by the general formula (9) is obtained as follows, for example. First, it is obtained through a step of bringing a triaromatic substituted phosphine, which is a third phosphine, into contact with a diazonium salt and replacing the triaromatic substituted phosphine with a diazonium group of the diazonium salt.
  • a triaromatic substituted phosphine which is a third phosphine
  • the present invention is not limited to this.
  • Examples of the adduct of a phosphine compound and a quinone compound that can be used in the semiconductor sealing resin composition of the present invention include compounds represented by the following general formula (10).
  • P represents a phosphorus atom
  • R21, R22 and R23 each independently represent an alkyl group having 1 to 12 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • R24, R25 and R26 independently of each other represents a hydrogen atom or a hydrocarbon group having 1 to 12 carbon atoms
  • R24 and R25 may be bonded to each other to form a ring.
  • Examples of the phosphine compound used as an adduct of a phosphine compound and a quinone compound include an aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • aromatic ring such as triphenylphosphine, tris (alkylphenyl) phosphine, tris (alkoxyphenyl) phosphine, trinaphthylphosphine, and tris (benzyl) phosphine.
  • Those having a substituent or a substituent such as an alkyl group or an alkoxyl group are preferred.
  • Examples of the substituent such as an alkyl group and an alkoxyl group include those having 1 to 6 carbon atoms. From the viewpoint of availability, tripheny
  • examples of the quinone compound used for the adduct of the phosphine compound and the quinone compound include o-benzoquinone, p-benzoquinone and anthraquinones, and among them, p-benzoquinone is preferable from the viewpoint of storage stability.
  • the adduct can be obtained by contacting and mixing in a solvent capable of dissolving both organic tertiary phosphine and benzoquinone.
  • the solvent is preferably a ketone such as acetone or methyl ethyl ketone, which has low solubility in the adduct.
  • the present invention is not limited to this.
  • R21, R22 and R23 bonded to the phosphorus atom are phenyl groups, and R24, R25 and R26 are hydrogen atoms, that is, 1,4-benzoquinone and triphenyl
  • R24, R25 and R26 are hydrogen atoms, that is, 1,4-benzoquinone and triphenyl
  • a compound to which phosphine has been added is preferred in that it reduces the thermal elastic modulus of the cured product of the resin composition.
  • Examples of the adduct of a phosphonium compound and a silane compound that can be used in the semiconductor sealing resin composition of the present invention include a compound represented by the following formula (11).
  • P represents a phosphorus atom
  • Si represents a silicon atom
  • R27, R28, R29 and R30 each independently represent an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group
  • X2 is an organic group bonded to the groups Y2 and Y3.
  • X3 is an organic group bonded to the groups Y4 and Y5.
  • Y2 and Y3 represent a group formed by releasing a proton from a proton donating group, and groups Y2 and Y3 in the same molecule are bonded to a silicon atom to form a chelate structure.
  • Y4 and Y5 represent a group formed by releasing a proton from a proton donating group, and groups Y4 and Y5 in the same molecule are bonded to a silicon atom to form a chelate structure.
  • X2 and X3 may be the same or different from each other, and Y2, Y3, Y4, and Y5 may be the same or different from each other.
  • Z1 is an organic group having an aromatic ring or a heterocyclic ring, or an aliphatic group.
  • R27, R28, R29 and R30 for example, phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, naphthyl group, hydroxynaphthyl group, benzyl group, methyl group, ethyl group, n-butyl group, n-octyl group, cyclohexyl group, and the like.
  • an aromatic group having a substituent such as phenyl group, methylphenyl group, methoxyphenyl group, hydroxyphenyl group, hydroxynaphthyl group, or the like.
  • a substituted aromatic group is more preferred.
  • X2 is an organic group that binds to Y2 and Y3.
  • X3 is an organic group bonded to the groups Y4 and Y5.
  • Y2 and Y3 are groups formed by proton-donating groups releasing protons, and groups Y2 and Y3 in the same molecule are combined with a silicon atom to form a chelate structure.
  • Y4 and Y5 are groups formed by proton-donating groups releasing protons, and groups Y4 and Y5 in the same molecule are combined with a silicon atom to form a chelate structure.
  • the groups X2 and X3 may be the same or different from each other, and the groups Y2, Y3, Y4, and Y5 may be the same or different from each other.
  • the groups represented by -Y2-X2-Y3- and Y4-X3-Y5- in general formula (11) are composed of groups in which a proton donor releases two protons.
  • Examples of proton donors include catechol, pyrogallol, 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, 2,2′-biphenol, 1,1′-bi-2-naphthol, salicylic acid, Examples include 1-hydroxy-2-naphthoic acid, 3-hydroxy-2-naphthoic acid, chloranilic acid, tannic acid, 2-hydroxybenzyl alcohol, 1,2-cyclohexanediol, 1,2-propanediol, and glycerin. Among these, catechol, 1,2-dihydroxynaphthalene, and 2,3-dihydroxynaphthalene are more preferable from the viewpoint of easy availability of raw materials and a curing acceleration effect.
  • Z1 in the general formula (11) represents an organic group or an aliphatic group having an aromatic ring or a heterocyclic ring, and specific examples thereof include a methyl group, an ethyl group, a propyl group, a butyl group, and a hexyl group.
  • Reactions such as aliphatic hydrocarbon groups such as octyl group and aromatic hydrocarbon groups such as phenyl group, benzyl group, naphthyl group and biphenyl group, glycidyloxypropyl group, mercaptopropyl group, aminopropyl group and vinyl group Among them, a methyl group, an ethyl group, a phenyl group, a naphthyl group, and a biphenyl group are more preferable from the viewpoint of thermal stability.
  • a silane compound such as phenyltrimethoxysilane and a proton donor such as 2,3-dihydroxynaphthalene are added to a flask containing methanol, and then dissolved.
  • Sodium methoxide-methanol solution is added dropwise with stirring.
  • crystals are precipitated. The precipitated crystals are filtered, washed with water, and vacuum dried to obtain an adduct of a phosphonium compound and a silane compound.
  • the lower limit of the blending ratio of the curing accelerator (D) that can be used in the resin composition for semiconductor encapsulation of the present invention is preferably 0.1% by mass or more in the total resin composition. Sufficient curability can be obtained when the lower limit of the blending ratio of the curing accelerator (D) is within the above range. Moreover, it is preferable that the upper limit of the mixture ratio of a hardening accelerator (D) is 1 mass% or less in all the resin compositions. Sufficient fluidity
  • liquidity can be obtained as the upper limit of the mixture ratio of a hardening accelerator (D) is in the said range.
  • a compound (E) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring (hereinafter also simply referred to as “compound (E)”) can be used.
  • the compound (E) in which a hydroxyl group is bonded to each of two or more adjacent carbon atoms constituting an aromatic ring is used as a curing accelerator (D) that promotes a crosslinking reaction between a phenol resin and an epoxy resin. Even when a phosphorus atom-containing curing accelerator having no latency is used, the reaction during melt-kneading of the resin composition can be suppressed, and the resin composition can be obtained stably.
  • the compound (E) also has an effect of lowering the melt viscosity of the resin composition and improving fluidity.
  • a monocyclic compound represented by the following general formula (12) or a polycyclic compound represented by the following general formula (13) can be used. You may have the substituent of.
  • R31 and R35 when one of R31 and R35 is a hydroxyl group and one is a hydroxyl group, the other is a hydrogen atom, a hydroxyl group or a substituent other than a hydroxyl group, and R32, R33, and R34 are a hydrogen atom, It is a hydroxyl group or a substituent other than a hydroxyl group.
  • R36 and R42 when one of R36 and R42 is a hydroxyl group and one is a hydroxyl group, the other is a hydrogen atom, a hydroxyl group or a substituent other than a hydroxyl group, and R37, R38, R39, R40, and R41 are , A hydrogen atom, a hydroxyl group or a substituent other than a hydroxyl group.
  • the monocyclic compound represented by the general formula (12) include catechol, pyrogallol, gallic acid, gallic acid ester, and derivatives thereof.
  • Specific examples of the polycyclic compound represented by the general formula (13) include 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene, and derivatives thereof.
  • a compound in which a hydroxyl group is bonded to each of two adjacent carbon atoms constituting an aromatic ring is preferable because of easy control of fluidity and curability.
  • the mother nucleus is a compound having a low volatility and a highly stable weighing naphthalene ring.
  • the compound (E) can be a compound having a naphthalene ring such as 1,2-dihydroxynaphthalene, 2,3-dihydroxynaphthalene and derivatives thereof.
  • These compounds (E) may be used individually by 1 type, or may use 2 or more types together.
  • the lower limit value of the compounding ratio of the compound (E) is preferably 0.01% by mass or more, more preferably 0.03% by mass or more, particularly preferably 0.05% by mass or more in the total resin composition. It is. When the lower limit value of the compounding ratio of the compound (E) is within the above range, a sufficient viscosity reduction and fluidity improvement effect of the resin composition can be obtained. Further, the upper limit of the compounding ratio of the compound (E) is preferably 1% by mass or less, more preferably 0.8% by mass or less, and particularly preferably 0.5% by mass or less in the total resin composition. is there. When the upper limit value of the compounding ratio of the compound (E) is within the above range, there is little possibility of causing a decrease in the curability of the resin composition and a decrease in the physical properties of the cured product.
  • a coupling agent (F) such as a silane coupling agent can be added in order to improve the adhesion between the epoxy resin and the inorganic filler.
  • a silane coupling agent such as a silane coupling agent
  • examples thereof include, but are not limited to, epoxy silane, amino silane, ureido silane, mercapto silane, etc., reacting between epoxy resin and inorganic filler, and interfacial strength between epoxy resin and inorganic filler. What is necessary is just to improve.
  • a silane coupling agent can also raise the effect of the compound (E) of reducing the melt viscosity of a resin composition and improving fluidity
  • the coupling agent (F) of the present invention may contain a silane coupling agent having a secondary amino group.
  • Examples of the epoxy silane include ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldimethoxysilane, and ⁇ - (3,4 epoxycyclohexyl) ethyltrimethoxysilane.
  • Examples of aminosilane include ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, and N- ⁇ (aminoethyl) ⁇ -aminopropyl.
  • Methyldimethoxysilane N-phenyl ⁇ -aminopropyltriethoxysilane, N-phenyl ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, N-6- (aminohexyl) 3 -Aminopropyltrimethoxysilane, N- (3- (trimethoxysilylpropyl) -1,3-benzenedimethanane, etc.
  • ureidosilane include ⁇ -ureidopropyltriethoxysilane, hexa Methyl disilazane, etc.
  • aminosilane It may be used as a latent aminosilane coupling agent in which the primary amino moiety is protected by reaction with a ketone or aldehyde, and examples of mercaptosilane include ⁇ -mercaptopropyltrimethoxysilane and 3-mercaptopropylmethyldimethoxysilane.
  • silane coupling agents that exhibit the same functions as mercaptosilane coupling agents by thermal decomposition, such as bis (3-triethoxysilylpropyl) tetrasulfide and bis (3-triethoxysilylpropyl) disulfide
  • silane coupling agents may be pre-hydrolyzed, and these silane coupling agents may be used alone or in combination of two or more. Good.
  • mercaptosilane is preferable from the viewpoint of the balance between solder resistance and continuous moldability
  • aminosilane is preferable from the viewpoint of fluidity, and is suitable for organic members such as polyimide on the silicon chip surface and solder resist on the substrate surface.
  • Epoxysilane is preferable from the viewpoint of adhesion.
  • the lower limit of the blending ratio of the coupling agent (F) such as a silane coupling agent that can be used in the resin composition for semiconductor encapsulation of the present invention is preferably 0.01% by mass or more in the total resin composition, More preferably, it is 0.05 mass% or more, Most preferably, it is 0.1 mass% or more. If the lower limit of the blending ratio of the coupling agent (F) such as a silane coupling agent is within the above range, the interface strength between the epoxy resin and the inorganic filler does not decrease, and good solder resistance in a semiconductor device Cracking properties can be obtained.
  • the mixture ratio of coupling agents (F), such as a silane coupling agent 1 mass% or less is preferable in all the resin compositions, More preferably, it is 0.8 mass% or less, Most preferably, it is 0.8. 6% by mass or less. If the upper limit of the blending ratio of the coupling agent (F) such as a silane coupling agent is within the above range, the interface strength between the epoxy resin and the inorganic filler does not decrease, and good solder resistance in a semiconductor device Cracking properties can be obtained.
  • the blending ratio of the coupling agent (F) such as a silane coupling agent is within the above range, the water absorption of the cured product of the resin composition does not increase, and good solder crack resistance in a semiconductor device. Can be obtained.
  • an inorganic flame retardant (G) can be added in order to improve flame retardancy.
  • a metal hydroxide or a composite metal hydroxide that inhibits the combustion reaction by dehydrating and absorbing heat during combustion is preferable in that the combustion time can be shortened.
  • the metal hydroxide include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide, and zirconia hydroxide.
  • the composite metal hydroxide is a hydrotalcite compound containing two or more metal elements, wherein at least one metal element is magnesium, and the other metal elements are calcium, aluminum, tin, titanium, iron Any metal element selected from cobalt, nickel, copper, or zinc may be used, and as such a composite metal hydroxide, a magnesium hydroxide / zinc solid solution is commercially available.
  • a magnesium hydroxide / zinc solid solution is commercially available.
  • aluminum hydroxide and magnesium hydroxide / zinc solid solution are preferable from the viewpoint of the balance between solder resistance and continuous moldability.
  • Said flame retardant may be used independently or may be used 2 or more types.
  • a surface treatment may be performed with a silicon compound such as a silane coupling agent or an aliphatic compound such as wax.
  • colorants such as carbon black, bengara and titanium oxide; natural waxes such as carnauba wax; synthetic waxes such as polyethylene wax; stearic acid and zinc stearate Release agents such as higher fatty acids and their metal salts or paraffin; low-stress additives such as silicone oil and silicone rubber may be appropriately blended.
  • the resin composition for encapsulating a semiconductor of the present invention is obtained by mixing a phenol resin, an epoxy resin, an inorganic filler, and the above-mentioned other additives, for example, uniformly at room temperature using a mixer or the like. Accordingly, it is possible to adjust to a desired degree of dispersion, fluidity, and the like by melt-kneading using a kneader such as a heating roll, a kneader, or an extruder, followed by cooling and pulverization as necessary.
  • a kneader such as a heating roll, a kneader, or an extruder
  • the semiconductor device of the present invention will be described.
  • a method for producing a semiconductor device using the resin composition for semiconductor encapsulation of the present invention for example, after a lead frame or a circuit board on which a semiconductor element is mounted is placed in a mold cavity, the resin for semiconductor encapsulation is used.
  • molding methods such as a transfer mold, a compression mold, and an injection mold, is mentioned.
  • Examples of the semiconductor element to be sealed include, but are not limited to, an integrated circuit, a large-scale integrated circuit, a transistor, a thyristor, a diode, and a solid-state imaging element.
  • DIP dual in-line package
  • PLCC chip carrier with plastic lead
  • QFP quad flat package
  • LQFP low profile quad flat package
  • SOP Small Outline Package
  • SOJ Small Outline J Lead Package
  • TSOP Thin Small Outline Package
  • TQFP Tape Carrier Package
  • BGA ball grid array
  • CSP chip size package
  • MABGA matrix array package ball grid array
  • a semiconductor device in which a semiconductor element is encapsulated by a molding method such as transfer molding of a resin composition for encapsulating a semiconductor is used as it is or at a temperature of about 80 ° C. to 200 ° C. for about 10 minutes to 10 hours. After this resin composition is completely cured, it is mounted on an electronic device or the like.
  • FIG. 1 is a view showing a cross-sectional structure of an example of a semiconductor device using a resin composition for encapsulating a semiconductor according to the present invention.
  • the semiconductor element 1 is fixed on the die pad 3 via the die bond material cured body 2.
  • the electrode pad of the semiconductor element 1 and the lead frame 5 are connected by a wire 4.
  • the semiconductor element 1 is sealed with a cured body 6 of a semiconductor sealing resin composition.
  • FIG. 2 is a view showing a cross-sectional structure of an example of a single-side sealed semiconductor device using the semiconductor sealing resin composition according to the present invention.
  • the semiconductor element 1 is fixed on the substrate 8 via the solder resist 7 and the die bond material cured body 2.
  • the electrode pads of the semiconductor element 1 and the electrode pads on the substrate 8 are connected by wires 4. Only one side of the substrate 8 on which the semiconductor element 1 is mounted is sealed by the cured body 6 of the semiconductor sealing resin composition.
  • the electrode pads on the substrate 8 are bonded to the solder balls 9 on the non-sealing surface side on the substrate 8 inside.
  • Phenol resin 1 A separable flask equipped with a stirrer, thermometer, reflux condenser and nitrogen inlet, m-xylene (Kanto Chemical Co., Ltd. special grade reagent, m-xylene, boiling point 139 ° C, molecular weight 106, purity 99.4%) After weighing 100 parts by mass and 198 parts by mass of 20% by mass sodium hydroxide, heating was started while replacing with nitrogen.
  • the system was stirred for 30 minutes while maintaining the temperature in the temperature range of 50 to 60 ° C., cooled to 10 ° C., and then paraformaldehyde (special grade reagent manufactured by Kanto Chemical Co., Inc., paraformaldehyde, molecular weight 106, purity 90%, After adding 47.2 parts by mass and reacting for 2 hours with stirring, the system was neutralized by gradually adding 100 parts by mass of 38% by mass hydrochloric acid aqueous solution. An intermediate containing was obtained. From the start of the reaction to the end of neutralization, the temperature was controlled so that the temperature in the system was in the range of 10 to 15 ° C.
  • phenol resin 1 represented by the following formula (14) (p in formula (14)) Is an integer from 0 to 20, q is an integer from 0 to 20, and r is an integer from 0 to 20, and the average values of p, q, and r are 1.7, 0.3, respectively.
  • the phenol resin 1 contains the component (A1) composed of a polymer containing the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2).
  • the amount of dinuclear body measured by gel permeation chromatograph area method was 6.8%
  • the total amount of polymer corresponding to component (A1) was measured by the relative intensity ratio of FD-MS.
  • the total amount of the polymer corresponding to A2) and the total amount of the polymer corresponding to component (A3) were 28%, 66% and 6%, respectively, in relative strength ratio.
  • ratio of the total number of the structural unit represented by General formula (1) in the phenol resin 1 whole and the total number of the structural unit represented by General formula (2) was 85/15.
  • the method of calculating the content of the binuclear component based on the measurement by the area method of the gel permeation chromatograph is as follows.
  • GPC measurement was performed, and a weight average molecular weight was calculated based on a calibration curve prepared using a polystyrene standard material.
  • the content of the binuclear component was calculated from the obtained molecular weight distribution curve by the area ratio (%) of the binuclear component to the entire phenol resin (A).
  • the GPC measurement was performed using tetrahydrofuran as an elution solvent under the conditions of a flow rate of 1.0 ml / min and a column temperature of 40 ° C.
  • the equipment used is as follows.
  • Phenol resin 2 A separable flask equipped with a stirrer, thermometer, reflux condenser, nitrogen inlet, 116.3 parts by weight of formaldehyde 37% aqueous solution (formalin 37% manufactured by Wako Pure Chemical Industries, Ltd.), 98% by weight sulfuric acid 37 .7 parts by mass, 100 parts by mass of m-xylene (special grade reagent manufactured by Kanto Chemical Co., Inc., m-xylene, boiling point 139 ° C., molecular weight 106, purity 99.4%) were weighed, and then heating with nitrogen substitution was started. did.
  • m-xylene special grade reagent manufactured by Kanto Chemical Co., Inc., m-xylene, boiling point 139 ° C., molecular weight 106, purity 99.4%
  • the system was stirred for 6 hours while maintaining the temperature in the temperature range of 90 to 100 ° C., cooled to room temperature, and then neutralized by gradually adding 150 parts by weight of 20 mass% sodium hydroxide.
  • 150 parts by weight of 20 mass% sodium hydroxide 839 parts by mass of phenol and 338 parts by mass of ⁇ , ⁇ '-dichloro-p-xylene were added and heated while purging with nitrogen and stirring, while maintaining the system temperature in the range of 110 to 120 ° C. Reacted for hours.
  • the hydrochloric acid gas generated in the system by the above reaction was discharged out of the system by a nitrogen stream. After completion of the reaction, unreacted components and water were distilled off under reduced pressure conditions of 150 ° C. and 2 mmHg.
  • a hydroxyl equivalent of 180, a softening point of 67 ° C., and an ICI viscosity of 0.60 dPa ⁇ s at 150 ° C. was obtained.
  • the GPC chart of the obtained phenol resin 2 is shown in FIG. 4, and the FD-MS chart is shown in FIG.
  • the phenol resin 2 was a thing containing the component (A1) which consists of a polymer containing the structural unit represented by General formula (1), and the structural unit represented by General formula (2).
  • the amount of dinuclear body was 6.6% as measured by gel permeation chromatography area method, and the total amount of the polymer corresponding to component (A1) was measured according to the relative intensity ratio of FD-MS.
  • the total amount of the polymer corresponding to A2) and the total amount of the polymer corresponding to component (A3) were 30%, 64% and 6%, respectively, in relative strength ratio.
  • the ratio of the total number of structural units represented by general formula (1) to the total number of structural units represented by general formula (2) in the entire phenol resin 2 was 85/15. .
  • Phenolic resin 3 phenol (special grade reagent manufactured by Kanto Chemical Co., Inc., phenol, melting point 40.9 ° C., molecular weight 94, purity 99.3%) 100 parts by mass, ⁇ , ⁇ ′-dichloro-p-xylene (Tokyo Chemical Industry) Reagent, melting point 100 ° C., molecular weight 175, purity 98%) 65.2 parts by mass, 2,5-bis- (chloromethyl) -p-xylene (Sigma Aldrich reagent, melting point 133 ° C., molecular weight) 203, purity 98%) 32.4 parts by mass in a separable flask, equipped with a stirrer, thermometer, reflux condenser and nitrogen inlet, heated while bubbling nitrogen, and stirred at the start of melting The reaction was continued for 5 hours while maintaining the temperature in the system in the range of 110 ° C to 120 ° C.
  • the phenol resin 3 includes a component (A1) composed of a polymer including the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2).
  • the total amount of the polymer corresponding to 1 and the total amount of the polymer corresponding to the component (A3) were 36.5%, 48.5%, and 15.0% in relative strength ratio, respectively.
  • the ratio of the total number of structural units represented by general formula (1) to the total number of structural units represented by general formula (2) in the entire phenol resin 3 was 72/28. .
  • Phenol resin 4 In the synthesis of phenol resin 1, 1,3,5-trimethylbenzene (Tokyo Kasei Kogyo deer special grade reagent, boiling point 165 ° C., molecular weight 120, purity 99%) 100 weights instead of m-xylene Parts, 20% by weight sodium hydroxide, 175 parts by weight, paraformaldehyde, 66.7 parts, phenol, 1372 parts, ⁇ , ⁇ '-dichloro-p-xylene
  • the phenol resin 4 represented by the following formula (16) (u in the formula (16) is an integer of 0 to 20, and v is an integer except that v is changed to 620 parts by mass.
  • the GPC chart of the obtained phenol resin 4 is shown in FIG. 6, and the FD-MS chart is shown in FIG.
  • the phenol resin 4 includes a component (A1) composed of a polymer including the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2). It could be confirmed.
  • the amount of dinuclear is 11%, and measured by the relative intensity ratio of FD-MS, the total amount of the polymer corresponding to component (A1), component (A2)
  • the ratio of the total number of structural units represented by general formula (1) to the total number of structural units represented by general formula (2) in the entire phenol resin 4 was 94/6. .
  • Phenol resin 5 Phenol aralkyl resin having a phenylene skeleton (manufactured by Mitsui Chemicals, Inc., XLC-4L, hydroxyl equivalent 168, softening point 62 ° C., ICI viscosity 0.76 dPa ⁇ s at 150 ° C.)
  • Phenol resin 6 Phenol (special grade reagent manufactured by Kanto Chemical Co., Inc., phenol, melting point 40.9 ° C., molecular weight 94, purity 99.3%) 100 parts by mass, xylene formaldehyde resin (manufactured by Fudou Co., Ltd., Nikanol LLL, average) Molecular weight molecular weight 340) 67.7 parts by mass, p-toluenesulfonic acid monohydrate (Wako Pure Chemical Industries, Ltd., p-toluenesulfonic acid, molecular weight 190, purity 99%) 0.03 parts by mass are separable.
  • the flask is weighed and heated while substituting with nitrogen, and stirring is started at the start of melting. After making it react for 1 hour after confirming that the system reached 110 ° C., 48.8 parts by mass of 37% formaldehyde aqueous solution (formalin 37% manufactured by Wako Pure Chemical Industries, Ltd.) and 0.5 parts by mass of oxalic acid was added over 30 minutes. Subsequently, the reaction was carried out for 120 minutes while maintaining the temperature in the system in the range of 100 ° C to 110 ° C. Until the end of the reaction, water generated in the system by the reaction or mixed into the system with the addition of formalin was discharged out of the system by a nitrogen stream.
  • formaldehyde aqueous solution formalin 37% manufactured by Wako Pure Chemical Industries, Ltd.
  • Phenol resin 7 Phenol resin represented by the following formula (18) (manufactured by FUDO Co., Ltd., Zystar GP-90, hydroxyl equivalent 197, softening point 86 ° C., ICI viscosity 3.1 dPa ⁇ s at 150 ° C.)
  • Phenol resin 8 Phenol novolac resin (manufactured by Sumitomo Bakelite Co., Ltd., PR-HF-3, hydroxyl group equivalent 104, softening point 80 ° C.)
  • the blocking evaluation of the phenol resin was performed as follows. In a cylindrical cylindrical container made of polypropylene having an inner diameter of 29 mm and a height of 10 cm, 20 g of granular phenol resin previously cooled to 5 ° C. was put, and a piston with an outer diameter of 29 mm and a mass of 200 g was inserted into the cylindrical container, and set to a predetermined temperature.
  • Phenol resins 1 to 4 corresponding to the phenol resin (A) containing the component (A1) composed of a polymer containing the structural unit represented by the general formula (1) and the structural unit represented by the general formula (2) are: Phenol resin 5 containing only the structural unit represented by the general formula (1) (XLC-4L manufactured by Mitsui Chemicals, Inc.) and phenol resins 6 and 7 containing only the structural unit represented by the general formula (2); As a result, the viscosity was low and the blocking property was excellent.
  • epoxy resin The following epoxy resins 1-8 were used.
  • Epoxy resin 1 Biphenyl type epoxy resin (Japan Epoxy Resin Co., Ltd., YX4000K. Epoxy equivalent 185, softening point 107 ° C.)
  • Epoxy resin 2 bisphenol F type epoxy resin (manufactured by Toto Kasei Co., Ltd., YSLV-80XY. Epoxy equivalent 190, softening point 80 ° C.)
  • Epoxy resin 3 sulfide type epoxy resin represented by the following formula (19) (manufactured by Toto Kasei Co., Ltd., YSLV-120TE. Epoxy equivalent 240, softening point 120 ° C.)
  • Epoxy resin 4 phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC3000, epoxy equivalent 276, softening point 58 ° C.)
  • Epoxy resin 5 bisphenol A type epoxy resin (Japan Epoxy Resin Co., Ltd., YL6810. Epoxy equivalent 172, softening point 45 ° C.)
  • Epoxy resin 6 Phenol aralkyl type epoxy resin having a phenylene skeleton (manufactured by Mitsui Chemicals, E-XLC-3L. Epoxy equivalent 238, softening point 52 ° C.)
  • Epoxy resin 7 Dicyclopentadiene-modified phenol type epoxy resin (manufactured by Dainippon Ink and Chemicals, HP 7200L. Epoxy equivalent 244, softening point 56 ° C.)
  • Epoxy resin 8 Novolac type epoxy resin having a methoxynaphthalene skeleton (Dainippon Ink & Chemicals, EXA-7320, epoxy equivalent 251, softening point 58 ° C.)
  • inorganic filler examples include 100 parts by mass of fused spherical silica FB560 (average particle size 30 ⁇ m) manufactured by Denki Kagaku Kogyo Co., Ltd., and 6.5 parts by mass of synthetic spherical silica SO-C2 (average particle size 0.5 ⁇ m) manufactured by Admatechs. A blend of 7.5 parts by mass of synthetic spherical silica SO-C5 (average particle size 30 ⁇ m) manufactured by Admatechs Corporation was used.
  • Curing accelerator 1 Curing accelerator represented by the following formula (20)
  • Curing accelerator 2 Curing accelerator represented by the following formula (21)
  • Curing accelerator 3 Curing accelerator represented by the following formula (22)
  • Curing accelerator 4 Curing accelerator represented by the following formula (23)
  • Curing accelerator 5 Triphenylphosphine (manufactured by Hokuko Chemical Co., Ltd., TPP)
  • Compound E As the compound E, a compound represented by the following formula (24) (manufactured by Tokyo Chemical Industry Co., Ltd., 2,3-naphthalenediol, purity 98%) was used.
  • Silane coupling agent The following silane coupling agents 1 to 3 were used.
  • Silane coupling agent 1 ⁇ -mercaptopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-803).
  • Silane coupling agent 2 ⁇ -glycidoxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-403).
  • Silane coupling agent 3 N-phenyl-3-aminopropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-573)
  • Flame retardants The following flame retardants 1-2 were used.
  • Flame retardant 1 Aluminum hydroxide (Sumitomo Chemical Co., Ltd., CL310)
  • Flame retardant 2 Magnesium hydroxide / zinc hydroxide solid solution composite metal hydroxide (Echo Mug Z-10, manufactured by Tateho Chemical Co., Ltd.)
  • Carbon black (MA600) manufactured by Mitsubishi Chemical Industries, Ltd. was used as a colorant.
  • Example 1 The following components were mixed at room temperature using a mixer, melt-kneaded with a heating roll at 80 ° C. to 100 ° C., then cooled and then pulverized to obtain a resin composition for semiconductor encapsulation.
  • Phenolic resin 1 5.91 parts by mass Epoxy resin 1 6.57 parts by mass Inorganic filler 1 86.5 parts by mass Curing accelerator 1 0.4 parts by mass Silane coupling agent 1 0.07 parts by mass Silane coupling agent 2 0 0.07 parts by mass Silane coupling agent 3 0.08 parts by mass Colorant 0.3 parts by mass Release agent 0.1 parts by mass
  • the obtained resin composition for semiconductor encapsulation was evaluated for the following items. The evaluation results are shown in Table 2.
  • Flame resistance Resin composition using a low-pressure transfer molding machine (KTS-30, manufactured by Kotaki Seiki Co., Ltd.) under conditions of a mold temperature of 175 ° C., an injection time of 15 seconds, a curing time of 120 seconds, and an injection pressure of 9.8 MPa.
  • the product was injection molded to produce a 3.2 mm thick flame resistant test piece.
  • the flame resistance test was done according to the specification of UL94 vertical method.
  • the table shows Fmax, ⁇ F and the fire resistance rank after the determination.
  • the resin composition obtained in Example 1 exhibited good flame resistance such as Fmax: 5 seconds, ⁇ F: 21 seconds, and flame resistance rank: V-0.
  • Wire flow rate 208 pin QFP package (dimension; 28 ⁇ 28 ⁇ 2) for wire flow rate evaluation test using tableted resin composition on low pressure transfer molding machine at 175 ° C., 6.9 MPa, 120 seconds .4 mm, Cu lead frame, test element: 9 ⁇ 9 mm, wire: Au, diameter 1.2 mils, length of about 5 mm) each was molded into 10 packages, and the molded 208-pin QFP package was observed with a soft X-ray transmission device .
  • the flow rate of the most flowed (deformed) wire in one package is (F)
  • the length of the wire is (L)
  • the flow rate F / L ⁇ 100 (%) was calculated and the average value of 10 packages was shown. In addition, less than 5% was accepted and 5% or more was made unacceptable as determination of the wire flow rate.
  • the resin composition obtained in Example 1 showed a good wire flow rate of 2.9%.
  • the obtained resin composition was adjusted with a powder molding press (S-20-A, manufactured by Tamagawa Machinery Co., Ltd.) to a weight of 15 g, size ⁇ 18 mm ⁇ height approximately 30 mm, and tableting Tablets were obtained by tableting at a pressure of 600 Pa.
  • a tablet supply magazine loaded with the obtained tablet was set in the molding apparatus.
  • a low pressure transfer automatic molding machine (GP-ELF, manufactured by Daiichi Seiko Co., Ltd.) is used as a molding device, under conditions of a mold temperature of 175 ° C., a molding pressure of 9.8 MPa, and a curing time of 120 seconds.
  • a silicon chip or the like is sealed with the composition, and an 80-pin QFP (Cu lead frame, package outer dimension: 14 mm ⁇ 20 mm ⁇ 2.0 mm thickness, pad size: 8.0 mm ⁇ 8.0 mm, chip size 7.0 mm ⁇ 7.0 mm ⁇ 0.35 mm thickness) was continuously performed up to 400 shots.
  • QFP Cu lead frame, package outer dimension: 14 mm ⁇ 20 mm ⁇ 2.0 mm thickness, pad size: 8.0 mm ⁇ 8.0 mm, chip size 7.0 mm ⁇ 7.0 mm ⁇ 0.35 mm thickness
  • the tablets in the magazine set in the molding apparatus are in a standby state in the magazine of the molding apparatus until they are actually used for molding, and a maximum of 13 tablets are stacked vertically at a surface temperature of about 30 ° C. Was in a state.
  • the tablet is fed and transported in the molding device by raising the push-up pin from the bottom of the magazine, so that the top tablet is pushed out from the top of the magazine and lifted by the mechanical arm to the transfer molding pot. Be transported. At this time, if the tablet sticks up and down during standby in the magazine, a conveyance failure occurs. In the section of conveyance failure in the table, the number of shots in which the conveyance failure was first confirmed, or a circle mark when no conveyance failure occurred.
  • the resin composition obtained in Example 1 showed good continuous moldability without tablet fixation or unfilled package during the test.
  • Solder resistance test 1 Resin composition using a low-pressure transfer molding machine (Daiichi Seiko Co., Ltd., GP-ELF) under conditions of a mold temperature of 180 ° C., an injection pressure of 7.4 MPa, and a curing time of 120 seconds.
  • the lead frame on which the semiconductor element (silicon chip) is mounted is sealed and molded, and 80 pQFP (Cu lead frame, the size is 14 ⁇ 20 mm ⁇ thickness 2.00 mm, the semiconductor element is 7 ⁇ 7 mm ⁇ thickness)
  • a semiconductor device having a thickness of 0.35 mm and the semiconductor element and the inner lead portion of the lead frame are bonded with a 25 ⁇ m diameter gold wire.
  • Example 1 The resin composition obtained in Example 1 showed a good reliability of 0/6.
  • Solder resistance test 2 A test was performed in the same manner as the solder resistance test 1 except that the humidification treatment conditions of the solder resistance test 1 described above were humidified at 85 ° C. and a relative humidity of 85% for 72 hours.
  • the resin composition obtained in Example 1 showed a good reliability of 0/6.
  • Examples 2 to 20 and Comparative Examples 1 to 5 Resin compositions were produced in the same manner as in Example 1 in accordance with the formulations shown in Tables 2 to 5, and evaluated in the same manner as in Example 1. (The units of the numerical values of the components in Tables 2 to 5 are those of Examples. 1 is part by mass). The evaluation results are shown in Tables 2 to 5.
  • Examples 1 to 20 include a phenol resin (A) containing a component (A1) composed of a polymer containing a structural unit represented by formula (1) and a structural unit represented by formula (2), and an epoxy resin.
  • (B) is a composition containing an inorganic filler (C), the composition ratio of the structural unit of the phenol resin (A) is changed, the composition containing other curing agents in addition to the phenol resin (A),
  • the wire flow rate, flame resistance, wire flow rate, continuous formability, and solder resistance were excellent.
  • the structural unit represented by the formula (1) includes the structural unit represented by the formula (1) and does not include the structural unit represented by the formula (2).
  • Comparative Examples 2 and 3 which are changed to phenol resins 6 and 7 which do not contain the structural unit represented by the formula (1), and in Comparative Examples 4 and 5 which use phenol resin 5 and phenol 6 or 7 together
  • phenol resin 5 and phenol 6 or 7 One of the items of fluidity (spiral flow), wire flow rate, flame resistance, continuous formability, and solder resistance was insufficient, resulting in poor property balance.
  • the structural unit represented by Formula (1) and the structural unit represented by Formula (2) are included as a hardening
  • the phenol resin (A) containing the polymer component (A1) results of excellent balance between fluidity (spiral flow), wire flow rate, flame resistance, continuous formability, and solder resistance
  • a phenol resin having only the structural unit represented by the formula (1) or a phenol resin having only the structural unit represented by the formula (2) is used as a curing agent, or It is a remarkable effect that exceeds the category that can be predicted or expected from the combined use.
  • the semiconductor It is suitable for sealing a device, particularly a semiconductor device in which chips are stacked in one package, or a semiconductor device having a smaller wire diameter than the conventional one.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 1又は2以上の成分からなるフェノール樹脂であって、第1の構造単位と第2の構造単位とを含む重合体からなる成分(A1)を含むフェノール樹脂(A)と、エポキシ樹脂(B)と、無機充填剤(C)と、を含むことを特徴とする半導体封止用樹脂組成物、ならびに、その半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られることを特徴とする半導体装置。

Description

半導体封止用樹脂組成物及び半導体装置
 本発明は、半導体封止用樹脂組成物及び半導体装置に関するものである。
 電子機器の小型化、軽量化、高性能化への要求はとどまることが無く、半導体素子(以下、「素子」、「チップ」ともいう。)の高集積化、高密度化は年々進行し、さらには半導体装置(以下、「パッケージ」ともいう。)の実装方式にも、表面実装技術が登場し、普及しつつある。このような半導体装置の周辺技術の進歩によって、半導体素子を封止する樹脂組成物への要求も厳しいものとなってきている。たとえば、表面実装工程では、吸湿した半導体装置が半田処理時に高温にさらされ、急速に気化した水蒸気の爆発的応力によってクラックや内部剥離が発生し、半導体装置の動作信頼性を著しく低下させる。さらには、鉛の使用撤廃の機運から、従来よりも融点の高い無鉛半田へ切り替えられ、実装温度が従来に比べ約20℃高くなり、上述の半田処理時の応力はより深刻となる。このように表面実装技術の普及と無鉛半田への切り替えによって、半導体封止用樹脂組成物にとって、耐半田性は重要な技術課題のひとつとなっている。
 また、近年の環境問題を背景に、従来用いられてきたブロム化エポキシ樹脂や酸化アンチモン等の難燃剤の使用を撤廃する社会的要請が高まりを見せており、これらの難燃剤を使用せずに、従来と同等の難燃性を付与する技術が必要となってきている。そのような代替難燃化技術として、例えば低粘度の結晶性エポキシ樹脂を適用し、より多くの無機充填剤を配合する手法が提案されている(例えば、特許文献1、特許文献2参照。)。しかしながら、これらの手法も、耐半田性と難燃性を十分満たしているとはいいがたい。
 さらに近年では、1パッケージ内にチップを積層する構造、あるいは従来よりもワイヤ線径をより細くした半導体装置が登場している。このような半導体装置では、従来よりも樹脂封止部分の肉厚が薄くなることで未充填が発生しやすい、あるいは成形中のワイヤ流れが発生しやすいなど、封止工程の歩留まりを低下させる懸念がある。そこで、樹脂組成物の流動特性を向上させるために、低分子量のエポキシ樹脂又はフェノール樹脂硬化剤を用いる手法が容易に想起されるが、同手法によって、樹脂組成物(タブレット)同士の固着による成形工程中の搬送不良、設備停止を起こしやすい(ハンドリング性の低下)、硬化性低下によって耐半田性、耐燃性、成形性のいずれかの特性が損なわれる、などの不具合が発生する場合がある。以上のように、半導体装置の細線化、薄型化によって、樹脂組成物は、流動性、ハンドリング性、耐半田性、耐燃性および、成形性をバランスさせることが重要課題となってきている。
特開平7-130919号公報 特開平8-20673号公報
 本発明は、流動性、ハンドリング性、耐半田性、耐燃性及び連続成形性のバランスが良好な半導体封止用樹脂組成物、ならびに、その硬化物により半導体素子を封止してなる信頼性に優れた半導体装置を経済的に提供するものである。
 本発明の半導体封止用樹脂組成物は、1又は2以上の成分からなるフェノール樹脂(A)であって、下記一般式(1):
Figure JPOXMLDOC01-appb-C000001
(上記一般式(1)において、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R2、R3、R4及びR5は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。)で表される構造単位と、
下記一般式(2):
Figure JPOXMLDOC01-appb-C000002
(上記一般式(2)において、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R6は、互いに独立して、炭素数1~6の炭化水素基であり、bは1~4の整数である。R7、R8、R9及びR10は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。)で表される構造単位と、を含む重合体からなる成分(A1)を含む前記フェノール樹脂(A)と、
 エポキシ樹脂(B)と、
 無機充填剤(C)と、
を含むことを特徴とする。
 さらに、本発明の半導体封止用樹脂組成物は、前記成分(A1)が1又は2以上の重合体からなり、電界脱離質量分析による測定で、前記成分(A1)に該当する重合体の相対強度の合計が、前記フェノール樹脂(A)の合計相対強度に対して10%以上、80%以下であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記フェノール樹脂(A)が、前記一般式(1)で表される構造単位を含み、かつ前記一般式(2)で表される構造単位を含まない重合体からなる成分(A2)をさらに含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記フェノール樹脂(A)が、前記一般式(2)で表される構造単位を含み、前記一般式(1)で表される構造単位を含まない重合体からなる成分(A3)をさらに含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記フェノール樹脂(A)全体における前記一般式(1)で表される構造単位の合計の数と、前記一般式(2)で表される構造単位の合計の数との比が30/70~95/5であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記一般式(2)で表される構造単位におけるR6がメチル基であり、bが1~3であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記フェノール樹脂(A)の150℃におけるICI粘度が、1.5dPa・s以下であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記フェノール樹脂(A)の軟化点が、63℃以上、85℃以下であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、標準ポリスチレン換算のゲルパーミエーションクロマトグラフ(GPC)法に基づく、前記フェノール樹脂(A)中の2核体成分の面積比率が20%以下であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記フェノール樹脂(A)が全硬化剤中に20質量%以上、100質量%以下含まれるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記エポキシ樹脂(B)が、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、アントラセンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂、メトキシナフタレン骨格を有するノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジシクロペンタジエン変性フェノール型エポキシ樹脂からなる群から選択される少なくとも1種のエポキシ樹脂であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記無機充填剤(C)の含有量が80質量%以上、93質量%以下であるものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、硬化促進剤(D)を含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記硬化促進剤(D)が、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物からなる群から選択される少なくとも1種の硬化促進剤を含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)を含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、カップリング剤(F)を含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記カップリング剤(F)が2級アミノ基を有するシランカップリング剤を含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、無機難燃剤(G)を含むものとすることができる。
 さらに、本発明の半導体封止用樹脂組成物は、前記無機難燃剤(G)が金属水酸化物、または複合金属水酸化物を含むものとすることができる。
 本発明の半導体装置は、上述の半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られることを特徴とする。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置などの間で変換したものもまた、本発明の態様として有効である。
 本発明に従うと、従来以上に流動性を向上させつつ、ハンドリング性、耐半田性、耐燃性及び連続成形性のバランスが良好な半導体封止用樹脂組成物、ならびに、その硬化物により半導体素子を封止してなる信頼性に優れた半導体装置を経済的に得ることができる。
 上述した目的、およびその他の目的、特徴および利点は、以下に述べる好適な実施の形態、およびそれに付随する以下の図面によってさらに明らかになる。
本発明に係る半導体封止用樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。 本発明に係る半導体封止用樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。 実施例で用いたフェノール樹脂1のGPCチャートである。 実施例で用いたフェノール樹脂2のGPCチャートである。 実施例で用いたフェノール樹脂3のGPCチャートである。 実施例で用いたフェノール樹脂4のGPCチャートである。 実施例で用いたフェノール樹脂1のFD-MSチャートである。 実施例で用いたフェノール樹脂2のFD-MSチャートである。 実施例で用いたフェノール樹脂3のFD-MSチャートである。 実施例で用いたフェノール樹脂4のFD-MSチャートである。
 本発明の半導体封止用樹脂組成物は、1又は2以上の成分からなるフェノール樹脂であって、一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むフェノール樹脂(A)と、エポキシ樹脂(B)と、無機充填剤(C)と、を含むことを特徴とする。これにより、従来以上に流動性を向上させつつ、ハンドリング性、耐半田性、耐燃性及び連続成形性のバランスに優れる半導体封止用樹脂組成物を得ることができる。また、本発明の半導体装置は、上述の半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られることを特徴とする。これにより、信頼性に優れた半導体装置を経済的に得ることができる。以下、本発明について詳細に説明する。
 先ず、半導体封止用樹脂組成物について説明する。本発明の半導体封止用樹脂組成物では、エポキシ樹脂の硬化剤として、1又は2以上の成分からなるフェノール樹脂であって、下記一般式(1)で表される構造単位及び下記一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むフェノール樹脂(A)を用いる。
Figure JPOXMLDOC01-appb-C000003
 ここで、一般式(1)において、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R2、R3、R4及びR5は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。
Figure JPOXMLDOC01-appb-C000004
 ここで、一般式(2)において、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R6は、互いに独立して、炭素数1~6の炭化水素基であり、bは1~4の整数である。R7、R8、R9及びR10は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。好ましくは、一般式(2)で表される構造単位におけるR6がメチル基であり、bが1~3である。
 フェノール樹脂(A)中の成分(A1)は、フェニレン骨格を有するフェノールアラルキル型フェノール樹脂と類似の骨格構造を有することで良好な硬化性と耐半田性とを示し、さらに一般式(2)で表される構造単位の置換基R6が疎水性であることから、良好な耐湿性を示すことができる。さらにフェノール樹脂(A)中の成分(A1)は、同程度の分子量を有するフェニレン骨格を有するフェノールアラルキル樹脂と比較して、固着が発生しにくく、良好なハンドリング性を示すという特徴も有する。固着の生じにくい理由について、詳細は不明であるが、部分的に置換基R6を含むことで、分子間力(ファンデルワールス力)が局所的に強く、それによって分子の運動が束縛される結果、軟化点が相対的に上昇するため、と推測される。フェノール樹脂(A)を用いた樹脂組成物は、ハンドリング性を損なうことなく優れた流動性と硬化性を示すことができ、かつその硬化物は、耐燃性に優れ、吸水率が低く、耐半田クラック性が向上するという特徴を有している。
 フェノール樹脂(A)は、一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むものであるが、一般式(1)で表される構造単位は含むものの一般式(2)で表される構造単位は含まない重合体からなる成分(A2)や、一般式(2)で表される構造単位は含むものの一般式(1)で表される構造単位は含まない重合体からなる成分(A3)をさらに含むことができる。このようなフェノール樹脂(A)全体における一般式(1)で表される構造単位の合計の数と、一般式(2)で表される構造単位の合計の数との比としては、30/70~95/5であることが好ましく、40/60~90/10であることがより好ましく、50/50~85/15であることが特に好ましい。ここで、本明細書における「~」は、すべてその上下両端を含むものである。両構造単位の合計の数の平均値での比が上記範囲にあることにより、耐燃性、ハンドリング性、連続成形性及び耐半田性のバランスに優れた半導体封止用樹脂組成物を得ることができる。尚、フェノール樹脂(A)全体における一般式(1)で表される構造単位の合計の数と、一般式(2)で表される構造単位の合計の数との比は、電界脱離質量分析(FD-MS)測定により求めることができる。検出質量(m/z)範囲50~2000にて測定した、FD-MS分析で検出された各ピークについて、検出質量(m/z)から分子量、及び繰り返し数を得ることができる。さらに各ピークの強度比を含有割合(質量)として算術計算することによって、一般式(1)および一般式(2)の各構造単位の含有比を求めることができる。
 ここで、本発明の半導体封止用樹脂組成物においては、成分(A1)が1又は2以上の重合体からなり、電界脱離質量分析による測定で、成分(A1)に該当する重合体の相対強度の合計が、フェノール樹脂(A)の合計相対強度に対して、好ましくは10%以上、80%以下であり、より好ましくは10%以上、60%以下であり、更に好ましくは10%以上、40%以下である。成分(A1)に該当する重合体の相対強度の合計を上記範囲内とすることにより、硬化性と耐半田性のバランスに優れた半導体封止用樹脂組成物を得ることができる。
 また、フェノール樹脂(A)の150℃におけるICI粘度は、好ましくは0.1dPa・s以上、1.5dPa・s以下であり、より好ましくは0.3dPa・s以上、0.7dPa・s以下である。フェノール樹脂(A)の150℃におけるICI粘度を上記範囲とすることにより、充填性に優れた半導体封止用樹脂組成物が得られる。
 また、フェノール樹脂(A)の軟化点は、好ましくは63℃以上、85℃以下であり、より好ましくは64℃以上、80℃以下である。フェノール樹脂(A)の軟化点を上記範囲とすることにより、耐燃性やハンドリング性に優れた半導体封止用樹脂組成物が得られる。
 このようなフェノール樹脂(A)の重合方法としては、特に限定されるものではないが、例えば、フェノール化合物、下記一般式(3)で表される化合物及び下記一般式(4)で表される化合物を共縮重合することにより得る方法(以下、「第1の製法」ともいう。)、下記一般式(5)で表されるアルキル置換芳香族化合物とアルデヒド類とを反応させた後、下記一般式(3)で表される化合物及びフェノール化合物を加えて共重合することにより得る方法(以下、「第2の製法」ともいう。)、などを挙げることができ、これらの重合方法を適宜組み合わせて重合してもよい。これらの中でも、第2の製法が原材料を安価で入手できるという点で好ましい。
Figure JPOXMLDOC01-appb-C000005
 ここで、一般式(3)において、R2、R3、R4及びR5は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。Xは、ハロゲン原子、水酸基又は炭素数1~6のアルコキシ基である。R11及びR12は、互いに独立して、炭素数1~5の炭化水素基又は水素原子である。
Figure JPOXMLDOC01-appb-C000006
 ここで、一般式(4)において、R6は、互いに独立して、炭素数1~6の炭化水素基であり、bは1~4の整数である。R7、R8、R9及びR10は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。Xは、ハロゲン原子、水酸基又は炭素数1~6のアルコキシ基である。R13及びR14は、互いに独立して、炭素数1~5の炭化水素基又は水素原子である。
Figure JPOXMLDOC01-appb-C000007
 ここで、一般式(5)において、R6は、互いに独立して、炭素数1~6の炭化水素基であり、bは1~4の整数である。
 フェノール樹脂(A)の製造に用いられるフェノール化合物としては、例えば、フェノール、o-クレゾール、p-クレゾール、m-クレゾール、フェニルフェノール、エチルフェノール、n-プロピルフェノール、iso-プロピルフェノール、t-ブチルフェノール、キシレノール、メチルプロピルフェノール、メチルブチルフェノール、ジプロピルフェノール、ジブチルフェノール、ノニルフェノール、メシトール、2,3,5-トリメチルフェノール、2,3,6-トリメチルフェノール等が挙げられるが、これらに限定されるものではない。これらの中でも、フェノール、o-クレゾールが好ましく、さらにフェノールが、エポキシ樹脂との反応性という観点から、より好ましい。フェノール樹脂(A)の製造において、これらのフェノール化合物は、1種類を単独で用いても、2種類以上を併用してもよい。
 フェノール樹脂(A)の製造に用いられる一般式(3)で表される化合物中のR2、R3、R4及びR5における炭素数1~6の炭化水素基の例としては、メチル基、エチル基、プロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、2-メチルブチル基、3-メチルブチル基、t-ペンチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、2,4-ジメチルブチル基、3,3-ジメチルブチル基、3,4-ジメチルブチル基、4,4-ジメチルブチル基、2-エチルブチル基、1-エチルブチル基、シクロヘキシル基、及びフェニル基等が挙げられる。
 フェノール樹脂(A)の製造に用いられる一般式(3)で表される化合物中の=CR11R12(アルキリデン基)としては、メチリデン基、エチリデン基、プロピリデン基、n-ブチリデン基、イソブチリデン基、t-ブチリデン基、n-ペンチリデン基、2-メチルブチリデン基、3-メチルブチリデン基、t-ペンチリデン基、n-ヘキシリデン、1-メチルペンチリデン基、2-メチルペンチリデン基、3-メチルペンチリデン基、4-メチルペンチリデン基、2,2-ジメチルブチリデン基、2,3-ジメチルブチリデン基、2,4-ジメチルブチリデン基、3,3-ジメチルブチリデン基、3,4-ジメチルブチリデン基、4,4-ジメチルブチリデン基、2-エチルブチリデン基、1-エチルブチリデン基、及びシクロヘキシリデン基等が挙げられる。
 フェノール樹脂(A)の製造に用いられる一般式(3)で表される化合物中のXにおけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。また、フェノール樹脂(A)の製造に用いられる一般式(3)で表される化合物中のXにおける炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペントキシ基、2-メチルブトキシ基、3-メチルブトキシ基、t-ペントキシ基、n-ヘキトキシ基、1-メチルペントキシ基、2-メチルペントキシ基、3-メチルペントキシ基、4-メチルペントキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、2,4-ジメチルブトキシ基、3,3-ジメチルブトキシ基、3,4-ジメチルブトキシ基、4,4-ジメチルブトキシ基、2-エチルブトキシ基、及び1-エチルブトキシ基等が挙げられる。
 フェノール樹脂(A)の製造において、一般式(3)で表される化合物は、一種類を単独で用いても、2種以上を混合して用いてもよい。中でも、p-キシリレングリコールは、比較的低温で合成が可能であり、反応副生成物の留去や取り扱いが容易であるため好ましい。Xがハロゲン原子である場合、微量の水分の存在に起因して発生するハロゲン化水素を酸触媒として利用することができる。
 フェノール樹脂(A)の製造に用いられる一般式(4)で表される化合物中のR7、R8、R9、R10及びR6において、炭素数1~6の炭化水素基の例としては、メチル基、エチル基、プロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、2-メチルブチル基、3-メチルブチル基、t-ペンチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、2,4-ジメチルブチル基、3,3-ジメチルブチル基、3,4-ジメチルブチル基、4,4-ジメチルブチル基、2-エチルブチル基、1-エチルブチル基、シクロヘキシル基、及びフェニル基等が挙げられる。
 フェノール樹脂(A)の製造に用いられる一般式(4)で表される化合物中の=CR13R14(アルキリデン基)としては、メチリデン基、エチリデン基、プロピリデン基、n-ブチリデン基、イソブチリデン基、t-ブチリデン基、n-ペンチリデン基、2-メチルブチリデン基、3-メチルブチリデン基、t-ペンチリデン基、n-ヘキシリデン、1-メチルペンチリデン基、2-メチルペンチリデン基、3-メチルペンチリデン基、4-メチルペンチリデン基、2,2-ジメチルブチリデン基、2,3-ジメチルブチリデン基、2,4-ジメチルブチリデン基、3,3-ジメチルブチリデン基、3,4-ジメチルブチリデン基、4,4-ジメチルブチリデン基、2-エチルブチリデン基、1-エチルブチリデン基、及びシクロヘキシリデン基等が挙げられる。
 フェノール樹脂(A)の製造に用いられる一般式(4)で表される化合物中のXにおいて、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基、n-ペントキシ基、2-メチルブトキシ基、3-メチルブトキシ基、t-ペントキシ基、n-ヘキトキシ基、1-メチルペントキシ基、2-メチルペントキシ基、3-メチルペントキシ基、4-メチルペントキシ基、2,2-ジメチルブトキシ基、2,3-ジメチルブトキシ基、2,4-ジメチルブトキシ基、3,3-ジメチルブトキシ基、3,4-ジメチルブトキシ基、4,4-ジメチルブトキシ基、2-エチルブトキシ基、及び1-エチルブトキシ基等が挙げられる。
 フェノール樹脂(A)の製造において、一般式(4)で表される化合物は、一種類を単独で用いても、2種以上を混合して用いてもよい。中でも、樹脂組成物の耐燃性と耐湿性のバランスという観点から、R6はメチル基であり、bは1~3であることが好ましい。Xがメトキシである場合は、反応副生成物の留去や取り扱いが容易であるため好ましく、Xがハロゲン原子である場合、微量の水分の存在に起因して発生するハロゲン化水素を酸触媒として利用することができる。
 フェノール樹脂(A)の製造に用いられる一般式(5)で表される化合物中のR6において、炭素数1~6の炭化水素基としては、メチル基、エチル基、プロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、2-メチルブチル基、3-メチルブチル基、t-ペンチル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、2,4-ジメチルブチル基、3,3-ジメチルブチル基、3,4-ジメチルブチル基、4,4-ジメチルブチル基、2-エチルブチル基、1-エチルブチル基、シクロヘキシル基、及びフェニル基等が挙げられる。このようなアルキル置換芳香族化合物としては、例えば、トルエン、o-キシレン、m-キシレン、p-キシレン、1,3,5-トリメチルベンゼン、1,2,3-トリメチルベンゼン、1,2,4-トリメチルベンゼン、エチルベンゼン、o-ジエチルベンゼン、m-ジエチルベンゼン、p-ジエチルベンゼン、1,3,5-トリエチルベンゼン、1,2,3-トリエチルベンゼン、n-1,2,4-トリエチルベンゼン、クメン、o-シメン、m-シメン、p-シメン、n-ブチルベンゼン、sec-ブチルベンゼン、tert-ブチルベンゼン、ペンチルベンゼン、ジペンチルベンゼン等が挙げられる。これらの中でも、原料価格や樹脂組成物の耐燃性と耐湿性のバランスという観点からトルエン、ジメチルベンゼン、トリメチルベンゼン、テトラメチルベンゼンが好ましい。フェノール樹脂(A)の製造において、一般式(5)で表される化合物は、1種類を単独で用いても、2種類以上を併用してもよい。
 フェノール樹脂(A)の製造に用いられるアルデヒド類としては、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒドなどが挙げられる。これらの中でも樹脂組成物の硬化性、原料コストの観点からホルムアルデヒド、パラホルムアルデヒドが好ましい。
 フェノール樹脂(A)の合成方法については特に限定されるものではないが、例えば、第1の製法の場合には、フェノール化合物1モルに対して、一般式(3)で表される化合物と一般式(4)で表される化合物とを合計0.1~0.6モル、蟻酸、シュウ酸、p-トルエンスルホン酸、メタンスルホン酸、塩酸、硫酸、燐酸、酢酸、ルイス酸、などの酸性触媒0.005~0.05モルを50~200℃の温度で、窒素フローにより発生ガス及び水分を系外へ排出しながら、2~20時間反応させ、反応終了後に残留するモノマーを減圧蒸留、水蒸気蒸留などの方法で留去することによって得ることができる。なお、フェノール樹脂(A)全体における一般式(1)で表される構造単位の合計の数と一般式(2)で表される構造単位の合計の数との比率は、使用した原料の比率をほぼ反映し、その配合比率の好ましい範囲としては、モル比で一般式(3)で表される化合物:一般式(4)で表される化合物=20:80~80:20を挙げることができる。
 第1の製法により得られるフェノール樹脂(A)は、下記一般式(6)で表され、mが好ましくは0~20の整数であり、nが好ましくは0~20の整数である重合体の混合物である。
Figure JPOXMLDOC01-appb-C000008
 ここで、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R6は、互いに独立して、炭素数1~6の炭化水素基であり、bは1~4の整数である。R2、R3、R4、R5、R7、R8、R9及びR10は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。分子の末端は、水素原子又は置換もしくは無置換のヒドロキシフェニル基である。一般式(6)中のR2、R3、R4、R5は、一般式(3)と同様であり、一般式(6)中のR7、R8、R9及びR10は、一般式(4)と同様である。
 一般式(6)で表され、mが好ましくは0~20の整数であり、nが好ましくは0~20の整数である重合体の混合物におけるm及びnの値を平均値で記載すると、mの平均値はより好ましくは1~7、さらに好ましくは1.2~2.5であり、nの平均値はより好ましくは0.2~2、さらに好ましくは0.4~1である。mの平均値を上記下限値以上とすることにより、得られる樹脂組成物のハンドリング性や樹脂組成物の硬化性の低下を抑制できる。また、mの平均値を上記上限値以下とすることにより、フェノール樹脂自体の粘度が高いため、得られる樹脂組成物の流動性が低下することを抑制できる。また、nの平均値を上記下限値以上とすることにより、得られる樹脂組成物の耐半田性及び搬送性が低下することを抑制できる。また、nの平均値を上記上限値以下とすることにより、樹脂組成物の流動性と硬化性とが低下し、成形性が低下することを抑制できる。なお、m及びnの値は、FD-MS分析法により求めることができる。一般式(6)の化合物のFD-MS分析法により測定される分子量は、好ましくは300以上、1500以下であり、より好ましくは500以上、900以下である。フェノール樹脂(A)自身でのハンドリングの容易性、樹脂組成物としての流動性、硬化性、耐燃性及び耐半田性のバランスを考慮すると、一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)は、第1の製法により得られるフェノール樹脂(A)の全量を基準として好ましくは5質量%以上、80質量%以下、より好ましくは8質量%以上、70質量%以下、特に好ましくは11質量%以上、50質量%以下であることが好ましい。
 第1の製法で得られるフェノール樹脂(A)中に含まれる成分(A1)を調整する方法として、例えば、一般式(4)で表される化合物の配合量を増やす、あるいは、一般式(3)で表される化合物を反応系に徐々に添加するなどの方法を採ることによって、成分(A1)の含有割合を高めることができる。
 また、フェノール樹脂(A)の合成方法のうち、第2の製法の場合には、例えば、一般式(5)で表されるアルキル置換芳香族化合物1モルに対して、アルデヒド類を1~2.5モル、 触媒として水酸化ナトリウム、水酸化カリウムなどのアルカリ金属触媒、またはパラトルエンスルホン酸、キシレンスルホン酸、硫酸などの強酸を0.1~2.5モル加えて、アルカリ金属触媒の場合には5~80℃の温度で、酸性触媒の場合には100~150℃の温度で、0.5~5時間反応して反応中間体を得る。次いで、一般式(3)で表される化合物0.2~5モル及びフェノール化合物1~20モル、シュウ酸、p-トルエンスルホン酸、メタンスルホン酸、塩酸、硫酸、燐酸、酢酸、ルイス酸などの酸性触媒0.005~0.05モルを加えて50~200℃の温度にて窒素フローにより発生ガスを系外へ排出しながら、2~20時間共縮合反応させ、反応終了後に残留するモノマー及び水分を減圧蒸留、水蒸気蒸留などの方法で留去することによって得ることができる。一般式(3)においてXがハロゲン原子である場合、微量の水分の存在に起因して発生するハロゲン化水素を酸触媒として用いることができる。
 第2の製法により得られるフェノール樹脂(A)は、下記一般式(7)で表され、iが好ましくは0~20の整数であり、jが好ましくは0~20の整数であり、kが好ましくは0~20の整数である重合体の混合物である。
Figure JPOXMLDOC01-appb-C000009
 ここで、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R6は、互いに独立して、炭素数1~6の炭化水素基であり、bは1~4の整数である。R2、R3、R4、R5、R7、R8、R9、R10、R15及びR16は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。分子の末端は、水素原子、置換もしくは無置換のヒドロキシフェニル基又は炭素数1~6の炭化水素基が1~4個置換したフェニル基である。一般式(7)中のR2、R3、R4、R5は、一般式(3)と同様であり、一般式(7)中のR7、R8、R9及びR10は、一般式(4)と同様である。一般式(7)中のR15及びR16における炭素数1~6の炭化水素基の例としては、一般式(3)中のR2と同様である。
 一般式(7)で表され、iが好ましくは0~20の整数であり、jが好ましくは0~20の整数であり、k好ましくはが0~20の整数である重合体の混合物におけるi、j及びkの値を平均値で記載すると、iの平均値はより好ましくは0.5~7、さらに好ましくは1~4であり、jの平均値はより好ましくは0.2~3、さらに好ましくは0.4~2であり、kの平均値はより好ましくは0~5、さらに好ましくは0~3である。iを上記下限値以上とすることにより、得られる樹脂組成物の硬化性が低下することを抑制できる。iを上記上限値以下とすることにより、フェノール樹脂自体の粘度が高いため、得られる樹脂組成物の流動性が低下することを抑制できる。また、jを上記下限値以上とすることにより、得られるフェノール樹脂は固着しにくくなり、得られる樹脂組成物の耐半田クラック性が低下することを抑制できる。jを上記上限値以下とすることにより、樹脂組成物の流動性と硬化性とが低下することを抑制できる。また、kを上記下限値以上とすることにより、硬化性が低下することを抑制できる。kを上記上限値以下とすることにより、樹脂組成物の耐燃性が低下することを抑制できる。なお、i、j及びkの値は、FD-MS分析法により求めることができる。一般式(7)の化合物のFD-MS分析法により測定される分子量は、好ましくは350以上、1200以下であり、より好ましくは400以上、900以下である。フェノール樹脂(A)自身でのハンドリングの容易性、樹脂組成物としての流動性、硬化性、耐燃性及び耐半田性のバランスを考慮すると、一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)は、第2の製法により得られるフェノール樹脂(A)の全量を基準として好ましくは5質量%以上、80質量%以下、より好ましくは8質量%以上、70質量%以下、特に好ましくは11質量%以上、50質量%以下であることが好ましい。
 ここで、第2の製法で得られるフェノール樹脂(A)中に、一般式(1)で表される構造単位と一般式(2)で表される構造単位とを含む重合体からなる成分(A1)の含有割合を高める手法としては、例えば、一般式(3)で表される化合物について、配合量を低減する、または、反応系に徐々に添加するなどの方法を挙げることができる。
 第2の製法で得られるフェノール樹脂(A)中には、一般式(1)で表される構造単位を含まず、かつ一般式(2)で表される構造単位を含まない重合体(一般式(7)でi=0、j=0である成分)を副生成物として含み得るが、フェノール樹脂(A)としてのハンドリング性や樹脂組成物の硬化性、流動性及び耐燃性を損なわない範囲でこれらの副生成物を含んでもよい。また、上述の副生成物の含有量を低減させる手法としては、ホルムアルデヒド配合量を低減、又は反応中間体中に残留する未反応のアルデヒド類を再結晶又は減圧などの公知の方法で除去する方法、などが挙げられる。
 第2の製法で得られるフェノール樹脂(A)中には2核体成分が含まれることがある。これらの含有割合について、標準ポリスチレン換算のゲルパーミエーションクロマトグラフ(GPC)の面積法により求められる含有量(面積比)は20%以下が好ましく、より好ましくは15%以下である。2核体量を上記上限値以下とすることにより、フェノール樹脂のブロッキングが生じることを抑制し、また樹脂組成物の硬化性が低下することを抑制することができる。上述の2核体を低減する方法としては、フェノール樹脂の合成後に、水蒸気蒸留あるいは減圧蒸留において、減圧度を高める、あるいは処理時間を長くするなどにより、2核体成分を低減することができる。
 ここで、より低粘度のフェノール樹脂を得るためには、フェノール化合物の配合量を増やす、ホルムアルデヒド成分を減らす、酸触媒の配合量を減らす、ハロゲン化水素ガスが発生する場合にはこれを窒素気流などで速やかに系外に排出する、共縮合温度を下げる、などの手法によって高分子量成分の生成を低減させる方法が使用できる。この場合、反応の進行は、一般式(3)、一般式(4)、反応中間体とフェノールとの反応で副生成する水、ハロゲン化水素、アルコールのガスの発生状況や、あるいは反応途中の生成物をサンプリングしてゲルパーミエーションクロマトグラフ法により分子量で確認することもできる。
 本発明で用いられるフェノール樹脂(A)は、1又は2以上の成分からなるフェノール樹脂であって、一般式(1)で表される構造単位と一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むフェノール樹脂を含み、具体的には、下記1)、2)の成分を必須成分とし、下記3)~6)の成分を含むことができる。
 1)フェニレン骨格を有するフェノールアラルキル樹脂と同様の構造であって、フェニレン骨格の水素原子の一部が炭素数1~6の炭化水素基で置換された樹脂
 2)フェニレン骨格を有するフェノールアラルキル樹脂とフェノールノボラック型樹脂を共重合したフェノール樹脂と同様の構造であって、フェニレン骨格の水素原子の一部が炭素数1~6の炭化水素基で置換された樹脂
 3)フェニレン骨格を有するフェノールアラルキル樹脂
 4)フェノールノボラック型樹脂
 5)フェニレン骨格を有するフェノールアラルキルとフェノールノボラック型を共重合したフェノール樹脂
 6)上記の1)~5)のフェノール樹脂で、分子の末端部又はヒドロキシフェニル基の置換基に、炭素数1~6の炭化水素基が1~4個置換したフェニル基が、直接、またはパラキシリレン基を介して結合した重合体
 上述の複数の構造の重合体を含むことにより、フェニレン骨格を有するフェノールアラルキル樹脂よりも、低粘度でありながらも固着し難いことでハンドリング性が良好であり、かつ硬化性を損なうことなく、耐半田性、耐燃性に優れ、良好な連続成形性をも発現することができる。とりわけ第2の製法の場合には、フェニレン骨格を有するフェノールアラルキル樹脂よりも原料コストが安く、低コストで製造することができる。
 一般式(6)のm、nの値及び一般式(7)のi、j、kの値は、FD-MS測定により求めることができる。検出質量(m/z)範囲50~2000にて測定した、FD-MS分析で検出された各ピークについて、検出質量(m/z)からは分子量、及び繰り返し数(m、n及びi、j、k)の値を得ることができ、さらに各ピークの強度比を含有割合(質量)として算術計算することによってm、nの各平均値及びi、j、kの各平均値を求めることができる。
 フェノール樹脂(A)がフェノールノボラック型樹脂を含む場合、フェノール樹脂(A)中のフェノールノボラック型樹脂の含有量は、フェノール樹脂(A)全量に対して、好ましくは5~20質量%、より好ましくは5~15質量%である。上述の範囲とすることによって、良好な硬化性と耐燃性を得ることができる。
 本発明の半導体封止用樹脂組成物におけるフェノール樹脂(A)の配合量は、半導体封止用樹脂組成物の全質量に対して、好ましくは0.5質量%以上であり、より好ましくは1質量%以上であり、さらに好ましくは1.5質量%以上である。下限値が上記範囲内であると、得られる樹脂組成物は良好な流動性を有する。また、半導体封止用樹脂組成物中のフェノール樹脂(A)の量は、半導体封止樹脂組成物の全質量に対して、好ましくは10質量%以下、より好ましくは9質量%であり、さらに好ましくは8質量%以下である。上限値が上記範囲内であると、得られる樹脂組成物は良好な耐半田性と硬化性を有する。
 本発明の半導体封止用樹脂組成物では、上記フェノール樹脂(A)を用いることによる効果が損なわれない範囲で、他の硬化剤を併用することができる。併用できる硬化剤としては、例えば重付加型の硬化剤、触媒型の硬化剤、縮合型の硬化剤等を挙げることができる。重付加型の硬化剤としては、例えば、ジエチレントリアミン(DETA)、トリエチレンテトラミン(TETA)、メタキシレリレンジアミン(MXDA)などの脂肪族ポリアミン、ジアミノジフェニルメタン(DDM)、m-フェニレンジアミン(MPDA)、ジアミノジフェニルスルホン(DDS)などの芳香族ポリアミンのほか、ジシアンジアミド(DICY)、有機酸ジヒドララジドなどを含むポリアミン化合物;ヘキサヒドロ無水フタル酸(HHPA)、メチルテトラヒドロ無水フタル酸(MTHPA)などの脂環族酸無水物、無水トリメリット酸(TMA)、無水ピロメリット酸(PMDA)、ベンゾフェノンテトラカルボン酸(BTDA)などの芳香族酸無水物などを含む酸無水物;ノボラック型フェノール樹脂、フェノールポリマーなどのポリフェノール化合物;ポリサルファイド、チオエステル、チオエーテルなどのポリメルカプタン化合物;イソシアネートプレポリマー、ブロック化イソシアネートなどのイソシアネート化合物;カルボン酸含有ポリエステル樹脂などの有機酸類などが挙げられる。
 触媒型の硬化剤としては、例えば、ベンジルジメチルアミン(BDMA)、2,4,6-トリスジメチルアミノメチルフェノール(DMP-30)などの3級アミン化合物;2-メチルイミダゾール、2-エチル-4-メチルイミダゾール(EMI24)などのイミダゾール化合物;BF錯体などのルイス酸などが挙げられる。
 縮合型の硬化剤としては、例えば、ノボラック型フェノール樹脂、レゾール型フェノール樹脂等のフェノール樹脂系硬化剤;メチロール基含有尿素樹脂のような尿素樹脂;メチロール基含有メラミン樹脂のようなメラミン樹脂などが挙げられる。
 これらの中でも、耐燃性、耐湿性、電気特性、硬化性、保存安定性等のバランスの点からフェノール樹脂系硬化剤が好ましい。フェノール樹脂系硬化剤は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマー全般であり、その分子量、分子構造を特に限定するものではないが、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂等のノボラック型樹脂;トリフェノールメタン型フェノール樹脂等の多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂等の変性フェノール樹脂;フェニレン骨格及び/又はビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレン及び/又はビフェニレン骨格を有するナフトールアラルキル樹脂等のアラルキル型樹脂;ビスフェノールA、ビスフェノールF等のビスフェノール化合物等が挙げられ、これらは1種類を単独で用いても2種類以上を併用してもよい。これらのうち、硬化性の点から水酸基当量は90g/eq以上、250g/eq以下のものが好ましい。
 このような他の硬化剤を併用する場合において、フェノール樹脂(A)の配合割合の下限値としては、全硬化剤に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、50質量%以上であることが特に好ましい。フェノール樹脂(A)の配合割合の上限値は、特に限定されないが、例えば全硬化剤に対して、100質量%以下とすることができる。配合割合が上記範囲内であると、耐燃性、耐半田性を保持しつつ、良好な流動性を発現させることができる。
 硬化剤全体の配合割合の下限値については、特に限定されるものではないが、全樹脂組成物中に、0.8質量%以上であることが好ましく1.5質量%以上であることがより好ましい。配合割合の下限値が上記範囲内であると、充分な流動性を得ることができる。また、硬化剤全体の配合割合の上限値についても、特に限定されるものではないが、全樹脂組成物中に、10質量%以下であることが好ましく、8質量%以下であることがより好ましい。配合割合の上限値が上記範囲内であると、良好な耐半田性を得ることができる。
 本発明の半導体封止用樹脂組成物に用いられるエポキシ樹脂(B)としては、例えば、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、アントラセンジオール型エポキシ樹脂等の結晶性エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂等の多官能エポキシ樹脂;フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂等のアラルキル型エポキシ樹脂;ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂等のナフトール型エポキシ樹脂;メトキシナフタレン骨格を有するノボラック型エポキシ樹脂;トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート等のトリアジン核含有エポキシ樹脂;ジシクロペンタジエン変性フェノール型エポキシ樹脂等の有橋環状炭化水素化合物変性フェノール型エポキシ樹脂が挙げられるが、これらに限定されるものではない。これらのエポキシ樹脂は、得られる半導体封止用樹脂組成物の耐湿信頼性の観点から、イオン性不純物であるNaイオンやClイオンを極力含まないことが好ましい。また、半導体樹脂組成物の硬化性の観点から、エポキシ樹脂のエポキシ当量は、100g/eq以上、500g/eq以下であることが好ましい。
 さらにその中でも、流動性の観点ではビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂等が好ましく、耐半田性の観点ではフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、メトキシナフタレン骨格を有するノボラック型エポキシ樹脂等が好ましい。また、片面封止型の半導体装置における低反り性の観点ではトリフェノールメタン型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、アントラセンジオール型エポキシ樹脂等が好ましい。このようなエポキシ樹脂であれば、後述する実施例で示すように、本発明のフェノール樹脂(A)と組み合わせて用いることにより、流動性を向上させつつ、ハンドリング性、耐半田性、耐燃性及び連続成形性のバランスが安定的に良好となる作用効果が得られる。
 半導体封止用樹脂組成物中のエポキシ樹脂(B)の量は、半導体封止用樹脂組成物の全質量に対して、好ましくは2質量%以上であり、より好ましくは4質量%以上である。下限値が上記範囲内であると、得られる樹脂組成物は良好な流動性を有する。また、半導体封止用樹脂組成物中のエポキシ樹脂(B)の量は、半導体封止用樹脂組成物の全質量に対して、好ましくは15質量%以下であり、より好ましくは13質量%以下である。上限値が上記範囲内であると、得られる樹脂組成物は良好な耐半田性を有する。
 なお、フェノール樹脂とエポキシ樹脂とは、全エポキシ樹脂のエポキシ基数(EP)と、全フェノール樹脂のフェノール性水酸基数(OH)との当量比(EP)/(OH)が、0.8以上、1.3以下となるように配合することが好ましい。当量比が上記範囲内であると、得られる樹脂組成物を成形する際、十分な硬化特性を得ることができる。
 本発明の半導体封止用樹脂組成物に用いられる無機充填剤(C)としては、当該分野で一般的に用いられる無機充填剤を使用することができる。例えば、溶融シリカ、球状シリカ、結晶シリカ、アルミナ、窒化珪素、窒化アルミ等が挙げられる。無機充填剤の粒径は、金型キャビティへの充填性の観点から、0.01μm以上、150μm以下であることが望ましい。
 半導体封止用樹脂組成物中の無機充填剤(C)の量は、半導体封止用樹脂組成物の全質量に対して、好ましくは80質量%以上であり、より好ましくは83質量%以上であり、さらに好ましくは86質量%以上である。下限値が上記範囲内であると、得られる樹脂組成物の硬化に伴う吸湿量の増加や、強度の低下が低減でき、したがって良好な耐半田クラック性を有する硬化物を得ることができる。また、半導体封止用樹脂組成物中の無機充填剤(C)の量は、半導体封止用樹脂組成物の全質量に対して、好ましくは93質量%以下であり、より好ましくは91質量%以下であり、さらに好ましくは90質量%以下である。上限値が上記範囲内であると、得られる樹脂組成物は良好な流動性を有するとともに、良好な成形性を備える。
 なお、後述する、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物や、硼酸亜鉛、モリブデン酸亜鉛、三酸化アンチモン等の無機系難燃剤を用いる場合には、これらの無機系難燃剤と上記無機充填剤の合計量を上記範囲内とすることが望ましい。
 本発明の半導体封止用樹脂組成物は、硬化促進剤(D)を含んでもよい。硬化促進剤(D)は、エポキシ樹脂のエポキシ基とフェノール樹脂の水酸基との反応を促進するものであればよく、一般に使用される硬化促進剤(D)を用いることができる。具体例としては、有機ホスフィン、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等のリン原子含有化合物;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、ベンジルジメチルアミン、2-メチルイミダゾール等の窒素原子含有化合物が挙げられる。これらのうち、硬化性の観点からはリン原子含有化合物が好ましく、流動性と硬化性のバランスの観点からは、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物等の潜伏性を有する触媒がより好ましい。流動性という点を考慮するとテトラ置換ホスホニウム化合物が特に好ましく、また耐半田性の観点では、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物が特に好ましく、また潜伏的硬化性という点を考慮すると、ホスホニウム化合物とシラン化合物との付加物が特に好ましい。また、連続成形性の観点では、テトラ置換ホスホニウム化合物が好ましい。
 本発明の半導体封止用樹脂組成物で用いることができる有機ホスフィンとしては、例えばエチルホスフィン、フェニルホスフィン等の第1ホスフィン;ジメチルホスフィン、ジフェニルホスフィン等の第2ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等の第3ホスフィンが挙げられる。
 本発明の半導体封止用樹脂組成物で用いることができるテトラ置換ホスホニウム化合物としては、例えば下記一般式(8)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 一般式(8)において、Pはリン原子を表し、R17、R18、R19及びR20は、それぞれ独立して芳香族基又はアルキル基を表し、Aはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸のアニオンを表し、AHはヒドロキシル基、カルボキシル基、チオール基から選ばれる官能基のいずれかを芳香環に少なくとも1つ有する芳香族有機酸を表し、x及びyは1~3の整数であり、zは0~3の整数であり、かつx=yである。
 一般式(8)で表される化合物は、例えば以下のようにして得られるがこれに限定されるものではない。まず、テトラ置換ホスホニウムハライドと芳香族有機酸と塩基を有機溶剤に混ぜ均一に混合し、その溶液系内に芳香族有機酸アニオンを発生させる。次いで水を加えると、一般式(8)で表される化合物を沈殿させることができる。一般式(8)で表される化合物において、合成時の収得率と硬化促進効果のバランスに優れるという観点では、リン原子に結合するR17、R18、R19及びR20がフェニル基であり、かつAHはヒドロキシル基を芳香環に有する化合物、すなわちフェノール化合物であり、かつAは該フェノール化合物のアニオンであるのが好ましい。
 本発明の半導体封止用樹脂組成物で用いることができるホスホベタイン化合物としては、例えば下記一般式(9)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 一般式(9)において、X1は炭素数1~3のアルキル基を表し、Y1はヒドロキシル基を表し、fは0~5の整数であり、gは0~4の整数である。
 一般式(9)で表される化合物は、例えば以下のようにして得られる。まず、第三ホスフィンであるトリ芳香族置換ホスフィンとジアゾニウム塩とを接触させ、トリ芳香族置換ホスフィンとジアゾニウム塩が有するジアゾニウム基とを置換させる工程を経て得られる。しかしこれに限定されるものではない。
 本発明の半導体封止用樹脂組成物で用いることができるホスフィン化合物とキノン化合物との付加物としては、例えば下記一般式(10)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 一般式(10)において、Pはリン原子を表し、R21、R22及びR23は、互いに独立して、炭素数1~12のアルキル基又は炭素数6~12のアリール基を表し、R24、R25及びR26は、互いに独立して、水素原子又は炭素数1~12の炭化水素基を表し、R24とR25は互いに結合して環を形成していてもよい。
 ホスフィン化合物とキノン化合物との付加物に用いるホスフィン化合物としては、例えばトリフェニルホスフィン、トリス(アルキルフェニル)ホスフィン、トリス(アルコキシフェニル)ホスフィン、トリナフチルホスフィン、トリス(ベンジル)ホスフィン等の芳香環に無置換又はアルキル基、アルコキシル基等の置換基が存在するものが好ましく、アルキル基、アルコキシル基等の置換基としては1~6の炭素数を有するものが挙げられる。入手しやすさの観点からはトリフェニルホスフィンが好ましい。
 またホスフィン化合物とキノン化合物との付加物に用いるキノン化合物としては、o-ベンゾキノン、p-ベンゾキノン、アントラキノン類が挙げられ、中でもp-ベンゾキノンが保存安定性の点から好ましい。
 ホスフィン化合物とキノン化合物との付加物の製造方法としては、有機第三ホスフィンとベンゾキノン類の両者が溶解することができる溶媒中で接触、混合させることにより付加物を得ることができる。溶媒としてはアセトンやメチルエチルケトン等のケトン類で付加物への溶解性が低いものがよい。しかしこれに限定されるものではない。
 一般式(10)で表される化合物において、リン原子に結合するR21、R22及びR23がフェニル基であり、かつR24、R25及びR26が水素原子である化合物、すなわち1,4-ベンゾキノンとトリフェニルホスフィンを付加させた化合物が樹脂組成物の硬化物の熱時弾性率を低下させる点で好ましい。
 本発明の半導体封止用樹脂組成物で用いることができるホスホニウム化合物とシラン化合物との付加物としては、例えば下記式(11)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 一般式(11)において、Pはリン原子を表し、Siは珪素原子を表す。R27、R28、R29及びR30は、互いに独立して、芳香環又は複素環を有する有機基、あるいは脂肪族基を表し、X2は、基Y2及びY3と結合する有機基である。X3は、基Y4及びY5と結合する有機基である。Y2及びY3は、プロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。Y4及びY5はプロトン供与性基がプロトンを放出してなる基を表し、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。X2、及びX3は互いに同一であっても異なっていてもよく、Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。Z1は芳香環又は複素環を有する有機基、あるいは脂肪族基である。
 一般式(11)において、R27、R28、R29及びR30としては、例えば、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ナフチル基、ヒドロキシナフチル基、ベンジル基、メチル基、エチル基、n-ブチル基、n-オクチル基及びシクロヘキシル基等が挙げられ、これらの中でも、フェニル基、メチルフェニル基、メトキシフェニル基、ヒドロキシフェニル基、ヒドロキシナフチル基等の置換基を有する芳香族基もしくは無置換の芳香族基がより好ましい。
 また、一般式(11)において、X2は、Y2及びY3と結合する有機基である。同様に、X3は、基Y4及びY5と結合する有機基である。Y2及びY3はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y2及びY3が珪素原子と結合してキレート構造を形成するものである。同様にY4及びY5はプロトン供与性基がプロトンを放出してなる基であり、同一分子内の基Y4及びY5が珪素原子と結合してキレート構造を形成するものである。基X2及びX3は互いに同一であっても異なっていてもよく、基Y2、Y3、Y4、及びY5は互いに同一であっても異なっていてもよい。このような一般式(11)中の-Y2-X2-Y3-、及びY4-X3-Y5-で表される基は、プロトン供与体が、プロトンを2個放出してなる基で構成されるものであり、プロトン供与体としては、例えば、カテコール、ピロガロール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン、2,2'-ビフェノール、1,1'-ビ-2-ナフトール、サリチル酸、1-ヒドロキシ-2-ナフトエ酸、3-ヒドロキシ-2-ナフトエ酸、クロラニル酸、タンニン酸、2-ヒドロキシベンジルアルコール、1,2-シクロヘキサンジオール、1,2-プロパンジオール及びグリセリン等が挙げられる。これらの中でも、原料入手の容易さと硬化促進効果のバランスという観点では、カテコール、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレンがより好ましい。
 また、一般式(11)中のZ1は、芳香環又は複素環を有する有機基又は脂肪族基を表し、これらの具体的な例としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基及びオクチル基等の脂肪族炭化水素基や、フェニル基、ベンジル基、ナフチル基及びビフェニル基等の芳香族炭化水素基、グリシジルオキシプロピル基、メルカプトプロピル基、アミノプロピル基及びビニル基等の反応性置換基などが挙げられるが、これらの中でも、メチル基、エチル基、フェニル基、ナフチル基及びビフェニル基が熱安定性の面から、より好ましい。
 ホスホニウム化合物とシラン化合物との付加物の製造方法としては、メタノールを入れたフラスコに、フェニルトリメトキシシラン等のシラン化合物、2,3-ジヒドロキシナフタレン等のプロトン供与体を加えて溶かし、次に室温攪拌下ナトリウムメトキシド-メタノール溶液を滴下する。さらにそこへ予め用意したテトラフェニルホスホニウムブロマイド等のテトラ置換ホスホニウムハライドをメタノールに溶かした溶液を室温攪拌下滴下すると結晶が析出する。析出した結晶を濾過、水洗、真空乾燥すると、ホスホニウム化合物とシラン化合物との付加物が得られる。しかし、これに限定されるものではない。
 本発明の半導体封止用樹脂組成物に用いることができる硬化促進剤(D)の配合割合の下限値は、全樹脂組成物中0.1質量%以上であることが好ましい。硬化促進剤(D)の配合割合の下限値が上記範囲内であると、充分な硬化性を得ることができる。また、硬化促進剤(D)の配合割合の上限値は、全樹脂組成物中1質量%以下であることが好ましい。硬化促進剤(D)の配合割合の上限値が上記範囲内であると、充分な流動性を得ることができる。
 本発明では、さらに芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)(以下、単に「化合物(E)」とも称する)を用いることができる。芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)は、これを用いることにより、フェノール樹脂とエポキシ樹脂との架橋反応を促進させる硬化促進剤(D)として、潜伏性を有しないリン原子含有硬化促進剤を用いた場合であっても、樹脂組成物の溶融混練中での反応を抑えることができ、安定して樹脂組成物を得ることができる。また、化合物(E)は、樹脂組成物の溶融粘度を下げ、流動性を向上させる効果も有するものである。化合物(E)としては、下記一般式(12)で表される単環式化合物、又は下記一般式(13)で表される多環式化合物等を用いることができ、これらの化合物は水酸基以外の置換基を有していてもよい。
Figure JPOXMLDOC01-appb-C000014
 一般式(12)において、R31及びR35のいずれか一方が水酸基であり、一方が水酸基の場合、他方は水素原子、水酸基又は水酸基以外の置換基であり、R32、R33及びR34は、水素原子、水酸基又は水酸基以外の置換基である。
Figure JPOXMLDOC01-appb-C000015
 一般式(13)において、R36及びR42のいずれか一方が水酸基であり、一方が水酸基の場合、他方は水素原子、水酸基又は水酸基以外の置換基であり、R37、R38、R39、R40及びR41は、水素原子、水酸基又は水酸基以外の置換基である。
 一般式(12)で表される単環式化合物の具体例としては、例えば、カテコール、ピロガロール、没食子酸、没食子酸エステル又はこれらの誘導体が挙げられる。また、一般式(13)で表される多環式化合物の具体例としては、例えば、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン及びこれらの誘導体が挙げられる。これらのうち、流動性と硬化性の制御のしやすさから、芳香環を構成する2個の隣接する炭素原子にそれぞれ水酸基が結合した化合物が好ましい。また、混練工程での揮発を考慮した場合、母核は低揮発性で秤量安定性の高いナフタレン環である化合物とすることがより好ましい。この場合、化合物(E)を、具体的には、例えば、1,2-ジヒドロキシナフタレン、2,3-ジヒドロキシナフタレン及びその誘導体等のナフタレン環を有する化合物とすることができる。これらの化合物(E)は1種類を単独で用いても2種以上を併用してもよい。
 上記化合物(E)の配合割合の下限値は、全樹脂組成物中に0.01質量%以上であることが好ましく、より好ましくは0.03質量%以上、特に好ましくは0.05質量%以上である。化合物(E)の配合割合の下限値が上記範囲内であると、樹脂組成物の充分な低粘度化と流動性向上効果を得ることができる。また、化合物(E)の配合割合の上限値は、全樹脂組成物中に1質量%以下であることが好ましく、より好ましくは0.8質量%以下、特に好ましくは0.5質量%以下である。化合物(E)の配合割合の上限値が上記範囲内であると、樹脂組成物の硬化性の低下や硬化物物性の低下を引き起こす恐れが少ない。
 本発明の半導体封止用樹脂組成物においては、エポキシ樹脂と無機充填剤との密着性を向上させるため、シランカップリング剤等のカップリング剤(F)を添加することができる。その例としては特に限定されるものではないが、エポキシシラン、アミノシラン、ウレイドシラン、メルカプトシラン等が挙げられ、エポキシ樹脂と無機充填剤との間で反応し、エポキシ樹脂と無機充填剤の界面強度を向上させるものであればよい。また、シランカップリング剤は、前述の化合物(E)と併用することで、樹脂組成物の溶融粘度を下げ、流動性を向上させるという化合物(E)の効果を高めることもできるものである。例えば、本発明のカップリング剤(F)は、2級アミノ基を有するシランカップリング剤を含んでもよい。
 エポキシシランとしては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、β-(3,4エポキシシクロヘキシル)エチルトリメトキシシラン等が挙げられる。また、アミノシランとしては、例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジメトキシシラン、N-フェニルγ-アミノプロピルトリエトキシシラン、N-フェニルγ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-6-(アミノヘキシル)3-アミノプロピルトリメトキシシラン、N-(3-(トリメトキシシリルプロピル)-1,3-ベンゼンジメタナン等が挙げられる。また、ウレイドシランとしては、例えば、γ-ウレイドプロピルトリエトキシシラン、ヘキサメチルジシラザン等が挙げられる。アミノシランの1級アミノ部位をケトンまたはアルデヒドを反応させて保護した潜在性アミノシランカップリング剤として用いてもよい。また、メルカプトシランとしては、例えば、γ-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシランのほか、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィドのような熱分解することによってメルカプトシランカップリング剤と同様の機能を発現するシランカップリング剤など、が挙げられる。またこれらのシランカップリング剤は予め加水分解反応させたものを配合してもよい。これらのシランカップリング剤は1種類を単独で用いても2種類以上を併用してもよい。
 本発明の場合、耐半田性と連続成型性のバランスという観点では、メルカプトシランが好ましく、流動性の観点では、アミノシランが好ましく、シリコンチップ表面のポリイミドや基板表面のソルダーレジストなどの有機部材への密着性という観点ではエポキシシランが好ましい。
 本発明の半導体封止用樹脂組成物に用いることができるシランカップリング剤等のカップリング剤(F)の配合割合の下限値としては、全樹脂組成物中0.01質量%以上が好ましく、より好ましくは0.05質量%以上、特に好ましくは0.1質量%以上である。シランカップリング剤等のカップリング剤(F)の配合割合の下限値が上記範囲内であれば、エポキシ樹脂と無機充填剤との界面強度が低下することがなく、半導体装置における良好な耐半田クラック性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の配合割合の上限値としては、全樹脂組成物中1質量%以下が好ましく、より好ましくは0.8質量%以下、特に好ましくは0.6質量%以下である。シランカップリング剤等のカップリング剤(F)の配合割合の上限値が上記範囲内であれば、エポキシ樹脂と無機充填剤との界面強度が低下することがなく、半導体装置における良好な耐半田クラック性を得ることができる。また、シランカップリング剤等のカップリング剤(F)の配合割合が上記範囲内であれば、樹脂組成物の硬化物の吸水性が増大することがなく、半導体装置における良好な耐半田クラック性を得ることができる。
 本発明の半導体封止用樹脂組成物においては、難燃性を向上させるために無機難燃剤(G)を添加することができる。なかでも燃焼時に脱水、吸熱することによって燃焼反応を阻害する金属水酸化物、または複合金属水酸化物が燃焼時間を短縮することができる点で好ましい。金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化バリウム、水酸化ジルコニアを挙げることができる。複合金属水酸化物としては、2種以上の金属元素を含むハイドロタルサイト化合物であって、少なくとも一つの金属元素がマグネシウムであり、かつ、その他の金属元素がカルシウム、アルミニウム、スズ、チタン、鉄、コバルト、ニッケル、銅、または亜鉛から選ばれる金属元素であればよく、そのような複合金属水酸化物としては、水酸化マグネシウム・亜鉛固溶体が市販品で入手が容易である。なかでも、耐半田性と連続成形性のバランスの観点からは水酸化アルミニウム、水酸化マグネシウム・亜鉛固溶体が好ましい。上記の難燃剤は、単独で用いても、2種以上用いてもよい。また、連続成形性への影響を低減する目的から、シランカップリング剤などの珪素化合物やワックスなどの脂肪族系化合物などで表面処理を行って用いてもよい。
 本発明の半導体封止用樹脂組成物では、前述した成分以外に、カーボンブラック、ベンガラ、酸化チタン等の着色剤;カルナバワックス等の天然ワックス、ポリエチレンワックス等の合成ワックス、ステアリン酸やステアリン酸亜鉛等の高級脂肪酸及びその金属塩類若しくはパラフィン等の離型剤;シリコーンオイル、シリコーンゴム等の低応力添加剤を適宜配合してもよい。
 本発明の半導体封止用樹脂組成物は、フェノール樹脂、エポキシ樹脂及び無機充填剤、ならびに上述のその他の添加剤等を、例えば、ミキサー等を用いて常温で均一に混合し、その後、必要に応じて、加熱ロール、ニーダー又は押出機等の混練機を用いて溶融混練し、続いて必要に応じて冷却、粉砕することにより、所望の分散度や流動性等に調整することができる。
 次に、本発明の半導体装置について説明する。本発明の半導体封止用樹脂組成物を用いて半導体装置を製造する方法としては、例えば、半導体素子を搭載したリードフレーム又は回路基板等を金型キャビティ内に設置した後、半導体封止用樹脂組成物をトランスファーモールド、コンプレッションモールド、インジェクションモールド等の成形方法で成形、硬化させることにより、この半導体素子を封止する方法が挙げられる。
 封止される半導体素子としては、例えば、集積回路、大規模集積回路、トランジスタ、サイリスタ、ダイオード、固体撮像素子等が挙げられるが、これらに限定されるものではない。
 得られる半導体装置の形態としては、例えば、デュアル・インライン・パッケージ(DIP)、プラスチック・リード付きチップ・キャリヤ(PLCC)、クワッド・フラット・パッケージ(QFP)、ロー・プロファイル・クワッド・フラット・パッケージ(LQFP)、スモール・アウトライン・パッケージ(SOP)、スモール・アウトライン・Jリード・パッケージ(SOJ)、薄型スモール・アウトライン・パッケージ(TSOP)、薄型クワッド・フラット・パッケージ(TQFP)、テープ・キャリア・パッケージ(TCP)、ボール・グリッド・アレイ(BGA)、チップ・サイズ・パッケージ(CSP)、マトリクス・アレイ・パッケージ・ボール・グリッド・アレイ(MAPBGA)、チップ・スタックド・チップ・サイズ・パッケージ等が挙げられるが、これらに限定されるものではない。
 半導体封止用樹脂組成物のトランスファーモールドなどの成形方法により半導体素子が封止された半導体装置は、そのまま、或いは80℃~200℃程度の温度で、10分~10時間程度の時間をかけてこの樹脂組成物を完全硬化させた後、電子機器等に搭載される。
 図1は、本発明に係る半導体封止用樹脂組成物を用いた半導体装置の一例について、断面構造を示した図である。ダイパッド3上に、ダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドとリードフレーム5との間はワイヤ4によって接続されている。半導体素子1は、半導体封止用樹脂組成物の硬化体6によって封止されている。
 図2は、本発明に係る半導体封止用樹脂組成物を用いた片面封止型の半導体装置の一例について、断面構造を示した図である。基板8上に、ソルダーレジスト7およびダイボンド材硬化体2を介して半導体素子1が固定されている。半導体素子1の電極パッドと基板8上の電極パッドとの間はワイヤ4によって接続されている。半導体封止用樹脂組成物の硬化体6によって、基板8の半導体素子1が搭載された片面側のみが封止されている。基板8上の電極パッドは基板8上の非封止面側の半田ボール9と内部で接合されている。
 以下、本発明を、実施例を参照して詳細に説明するが、本発明はこれらの実施例の記載に何ら限定されるものではない。以下に記載の各成分の配合量は、特に記載しない限り、質量部とする。
(硬化剤)
 硬化剤として、以下のフェノール樹脂1~7を使用した。
 フェノール樹脂1:セパラブルフラスコに撹拌装置、温度計、還流冷却器、窒素導入口を装着し、m-キシレン(関東化学(株)製特級試薬、m-キシレン、沸点139℃、分子量106、純度99.4%)100質量部、20質量%水酸化ナトリウム198質量部を秤量した後、窒素置換しながら加熱を開始した。系内の温度を50~60℃の温度範囲に維持しながら30分間攪拌し、10℃に冷却した後、パラホルムアルデヒド(関東化学(株)製特級試薬、パラホルムアルデヒド、分子量106、純度90%、粒状に粉砕したもの)47.2質量部を一気に加え、攪拌しながら2時間反応させた後、38質量%塩酸水溶液100質量部を徐々に添加することにより系内を中和し、メチロール化物を含む中間体を得た。なお、反応開始から中和終了まで、系内の温度は10~15℃の範囲となるよう温度制御操作を行った。この中間体にさらに、フェノール(関東化学(株)製特級試薬、フェノール、融点40.9℃、分子量94、純度99.3%)847質量部、α,α´-ジクロロ-p-キシレン(東京化成工業(株)製試薬、融点100℃、分子量175、純度98%)343質量部を加え、窒素置換及び攪拌を行いながら加熱し、系内温度を110~120℃の範囲に維持しながら5時間反応させた。上記の反応によって系内に発生した塩酸ガスは、窒素気流によって系外へ排出した。反応終了後、150℃、2mmHgの減圧条件で未反応成分と水分を留去した。ついでトルエン200質量部を添加し、均一溶解させた後、分液漏斗に移し、蒸留水150質量部を加えて振とうした後に、水層を棄却する操作(水洗)を洗浄水が中性になるまで繰り返し行った後、油層を125℃減圧処理することによってトルエン、残留未反応成分などの揮発成分を留去し、下記式(14)で表されるフェノール樹脂1(式(14)におけるpが0~20の整数、qが0~20の整数、rが0~20の整数である重合体の混合物であって、p、q、rの平均値は、それぞれ1.7、0.3、0.6である。水酸基当量175、軟化点64℃、150℃におけるICI粘度0.47dPa・s。)を得た。得られたフェノール樹脂1のGPCチャートを図3に、FD-MSチャートを図7に示す。たとえば、図7のFD-MS分析のm/z=514は、式(14)の(p,q,r)=(1,1,0)、左末端が水素原子、右末端がヒドロキシフェニル基である成分に、m/z=526は、式(14)の(p,q,r)=(1,1,0)、左末端が水素原子、右末端がm-キシレンである成分にそれぞれ相当し、フェノール樹脂1は一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むものであることが確認できた。また、ゲルパーミエーションクロマトグラフの面積法による測定で、2核体量は6.8%、FD-MSの相対強度比による測定で、成分(A1)に該当する重合体の合計量、成分(A2)に該当する重合体の合計量、成分(A3)に該当する重合体の合計量は、相対強度比でそれぞれ、28%、66%、6%であった。また、フェノール樹脂1全体における一般式(1)で表される構造単位の合計の数と、一般式(2)で表される構造単位の合計の数との比は、85/15であった。
 ここで、ゲルパーミエーションクロマトグラフの面積法による測定に基づき2核体成分の含有量を算出する方法は、以下の通りである。
 まず、GPC測定を行い、ポリスチレン標準物質を用いて作成した検量線をもとに、重量平均分子量を算出した。2核体成分の含有量は、得られた分子量分布曲線から、フェノール樹脂(A)全体に対する2核体成分の面積比率(%)により算出した。なお、GPC測定は、テトラヒドロフランを溶出溶媒として用い、流量1.0ml/分、カラム温度40℃の条件で実施した。使用した装置は下記の通りである。
・本体:東ソー社製・「HLC-8020」
・検出器:東ソー社製・「UV-8011」(波長280nmにセット)
・分析用カラム:昭和電工社製・「SHODEX KF-802、KF-803、KF-805」をこの順番で直列に組み合わせて使用
 また、軟化点の測定は、JIS K7234に準じて、環球法において測定された値を用いた。
 また、150℃におけるICI粘度の測定は、コーンプレート型粘度計CV-1S(東亜工業株式会社製)で測定した。
 フェノール樹脂2:セパラブルフラスコに撹拌装置、温度計、還流冷却器、窒素導入口を装着し、ホルムアルデヒド37%水溶液(和光純薬工業製ホルマリン37%)116.3質量部、98質量%硫酸37.7質量部、m-キシレン(関東化学(株)製特級試薬、m-キシレン、沸点139℃、分子量106、純度99.4%)100質量部を秤量した後、窒素置換しながら加熱を開始した。系内の温度を90~100℃の温度範囲に維持しながら6時間攪拌し、室温まで冷却した後、20質量%水酸化ナトリウム150重量部を徐々に添加することにより系内を中和した。この反応系、フェノール839質量部、α,α´-ジクロロ-p-キシレン338質量部を加え、窒素置換及び攪拌を行いながら加熱し、系内温度を110~120℃の範囲に維持しながら5時間反応させた。上記の反応によって系内に発生した塩酸ガスは、窒素気流によって系外へ排出した。反応終了後、150℃、2mmHgの減圧条件で未反応成分と水分を留去した。ついでトルエン200質量部を添加し、均一溶解させた後、分液漏斗に移し、蒸留水150質量部を加えて振とうした後に、水層を棄却する操作(水洗)を洗浄水が中性になるまで繰り返し行った後、油層を125℃減圧処理することによってトルエン、残留未反応成分などの揮発成分を留去し、下記式(14)で表されるフェノール樹脂2(式(14)におけるpが0~20の整数、qが0~20の整数、rが0~20の整数である重合体の混合物であって、p、q、rの平均値は、それぞれ1.8、0.3、0.6である。水酸基当量180、軟化点67℃、150℃におけるICI粘度0.60dPa・s。)を得た。得られたフェノール樹脂2のGPCチャートを図4に、FD-MSチャートを図8に示す。たとえば、図8のFD-MS分析のm/z=514は、式(14)の(p,q,r)=(1,1,0)、左末端が水素原子、右末端がヒドロキシフェニル基である成分に、m/z=526は、式(14)の(p,q,r)=(1,1,0)、左末端が水素原子、右末端がm-キシレンである成分に相当し、フェノール樹脂2は一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むものであることが確認できた。また、ゲルパーミエーションクロマトグラフの面積法による測定で、2核体量は6.6%、FD-MSの相対強度比による測定で、成分(A1)に該当する重合体の合計量、成分(A2)に該当する重合体の合計量、成分(A3)に該当する重合体の合計量は、相対強度比でそれぞれ、30%、64%、6%であった。また、フェノール樹脂2全体における一般式(1)で表される構造単位の合計の数と、一般式(2)で表される構造単位の合計の数との比は、85/15であった。
Figure JPOXMLDOC01-appb-C000016
 フェノール樹脂3:フェノール(関東化学(株)製特級試薬、フェノール、融点40.9℃、分子量94、純度99.3%)100質量部、α,α´-ジクロロ-p-キシレン(東京化成工業(株)製試薬、融点100℃、分子量175、純度98%)65.2質量部、2,5-ビス-(クロロメチル)-p-キシレン(シグマ・アルドリッチ社製試薬、融点133℃、分子量203、純度98%)32.4質量部をセパラブルフラスコに秤量し、撹拌装置、温度計、還流冷却器、窒素導入口を装着し、窒素バブリングしながら加熱し、溶融の開始に併せて攪拌を開始し、系内の温度を110℃~120℃の範囲に維持しながら5時間反応させた。反応開始から終了までの間、反応によって系内に発生する塩化水素ガスについては、窒素気流によって速やかに系外へ排出した。反応終了後の操作はフェノール樹脂1と同様の操作を行い、下記式(15)で表されるフェノール樹脂3(式(15)におけるsが0~20の整数、tが0~20の整数である重合体の混合物であって、s、tの平均値は、それぞれ1.6、0.6である。水酸基当量174、軟化点68℃、150℃におけるICI粘度0.65dPa・s。)を得た。GPCチャートを図5に、FD-MSチャートを図9に示す。たとえば、図9のFD-MS分析のm/z=514は、式(15)の(s,t)=(1,1)、左末端が水素原子、右末端がヒドロキシフェニル基である成分に相当し、フェノール樹脂3は一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むものであることが確認できた。また、ゲルパーミエーションクロマトグラフの面積法による測定で、2核体は検出されず、FD-MSの相対強度比による測定で、成分(A1)に該当する重合体の合計量、成分(A2)に該当する重合体の合計量、成分(A3)に該当する重合体の合計量は、相対強度比でそれぞれ、36.5%、48.5%、15.0%であった。また、フェノール樹脂3全体における一般式(1)で表される構造単位の合計の数と、一般式(2)で表される構造単位の合計の数との比は、72/28であった。
Figure JPOXMLDOC01-appb-C000017
 フェノール樹脂4:フェノール樹脂1の合成において、m-キシレンに代わり、1,3,5-トリメチルベンゼン(東京化成工業(株)製鹿特級試薬、沸点165℃、分子量120、純度99%)100重量部、20質量%水酸化ナトリウムの配合量を175質量部、パラホルムアルデヒドの配合量を66.7質量部、フェノールの配合量を1372質量部、α,α´-ジクロロ-p-キシレンの配合量を620質量部、に変更した以外は、フェノール樹脂1と同様の合成操作を行い、下記式(16)で表されるフェノール樹脂4(式(16)におけるuが0~20の整数、vが0~20の整数、wが0~20の整数である重合体の混合物であって、u、v、wの平均値は、それぞれ1.9、0.1、0.9である。水酸基当量164、軟化点68℃、150℃におけるICI粘度0.65dPa・s。)を得た。得られたフェノール樹脂4のGPCチャートを図6に、FD-MSチャートを図10に示す。たとえば、図10のFD-MS分析のm/z=528は、式(16)の(u,v,w)=(1,1,0)、左末端が水素原子、右末端がヒドロキシフェニル基である成分に相当し、フェノール樹脂4は一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むものであることが確認できた。また、ゲルパーミエーションクロマトグラフの面積法による測定で、2核体量は11%、FD-MSの相対強度比による測定で、成分(A1)に該当する重合体の合計量、成分(A2)に該当する重合体の合計量、成分(A3)に該当する重合体の合計量、(A1~A3)に該当しない(u=v=0)成分の合計量は、相対強度比でそれぞれ、12%、86%、1%、1%であった。また、フェノール樹脂4全体における一般式(1)で表される構造単位の合計の数と、一般式(2)で表される構造単位の合計の数との比は、94/6であった。
Figure JPOXMLDOC01-appb-C000018
 フェノール樹脂5:フェニレン骨格を有するフェノールアラルキル樹脂(三井化学(株)製、XLC-4L。水酸基当量168、軟化点62℃、150℃におけるICI粘度0.76dPa・s。)
 フェノール樹脂6:フェノール(関東化学(株)製特級試薬、フェノール、融点40.9℃、分子量94、純度99.3%)100質量部、キシレンホルムアルデヒド樹脂(フドー(株)製、ニカノールLLL、平均分子量分子量340)67.7質量部、p-トルエンスルホン酸一水和物(和光純薬工業(株)製p-トルエンスルホン酸・分子量190、純度99%)0.03質量部とをセパラブルフラスコに秤量し、窒素置換しながら加熱し、溶融の開始に併せて攪拌を開始する。系内が110℃に達したのを確認してから1時間反応させた後に、ホルムアルデヒド37%水溶液(和光純薬工業(株)製ホルマリン37%)48.8質量部と蓚酸0.5質量部を30分かけて添加した。ついで系内の温度を100℃~110℃の範囲を維持しながら120分間反応させた。反応終了までの間、反応によって系内に発生、又は、ホルマリン添加に伴い系内に混入した水分については、窒素気流によって系外へ排出した。反応終了後、160℃、2mmHgの減圧条件で未反応成分を留去し、ついでトルエン200質量部を添加し、均一溶解させた後、分液漏斗に移し、蒸留水150質量部を加えて振とうした後に、水層を棄却する操作(水洗)を洗浄水が中性になるまで繰り返し行った後、油層を125℃減圧処理することによってトルエン、残留未反応成分などの揮発成分を留去し、下記式(17)で表されるフェノール樹脂6(水酸基当量167、軟化点86℃、150℃におけるICI粘度2.1dPa・s)を得た。
Figure JPOXMLDOC01-appb-C000019
(xは1~10の整数、yは0~10の整数)
 フェノール樹脂7:下記式(18)で表されるフェノール樹脂(フドー(株)製、ザイスターGP-90。水酸基当量197、軟化点86℃、150℃におけるICI粘度3.1dPa・s。)
Figure JPOXMLDOC01-appb-C000020
 フェノール樹脂8:フェノールノボラック樹脂(住友ベークライト(株)製、PR-HF-3。水酸基当量104、軟化点80℃。)
 フェノール樹脂1~7の軟化点及びICI粘度を、以下の表1にまとめて示した。さらに、これらのフェノール樹脂のブロッキングについて評価した。結果を表1に記載する。
 なお、フェノール樹脂のブロッキング評価は、以下のようにして行った。内径29mm、高さ10cmのポリプロピレン製の円筒容器内に、予め5℃に冷却した顆粒状のフェノール樹脂を20g入れ、円筒容器内に外形29mm、質量200gのピストンを挿入し、所定温度に設定した恒温槽内で所定時間垂直に立てた状態でフェノール樹脂に荷重を与え、その後に円筒容器を逆さまにしてフェノール樹脂を取り出したとき、もとの顆粒状で容器から容易に取り出すことができたものを◎、ピストンの内部形状を保つが手で容易にほぐれる場合は○、ピストンの内部形状のまま手でほぐれない場合は×、樹脂が溶融して取り出すことができない場合を××とした。
Figure JPOXMLDOC01-appb-T000001
 一般式(1)で表される構造単位及び一般式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むフェノール樹脂(A)に相当するフェノール樹脂1~4は、一般式(1)で表される構造単位のみを含むフェノール樹脂5(三井化学(株)製XLC-4L)や一般式(2)で表される構造単位のみを含むフェノール樹脂6、7と比較して低粘度で、かつブロッキング性にも優れる結果であった。
(エポキシ樹脂)
 以下のエポキシ樹脂1~8を使用した。
 エポキシ樹脂1:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン(株)、YX4000K。エポキシ当量185、軟化点107℃。)
 エポキシ樹脂2:ビスフェノールF型エポキシ樹脂(東都化成(株)製、YSLV-80XY。エポキシ当量190、軟化点80℃。)
 エポキシ樹脂3:下記式(19)で表されるスルフィド型エポキシ樹脂(東都化成(株)製、YSLV-120TE。エポキシ当量240、軟化点120℃。)
Figure JPOXMLDOC01-appb-C000021
 エポキシ樹脂4:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬(株)製、NC3000。エポキシ当量276、軟化点58℃。)
 エポキシ樹脂5:ビスフェノールA型エポキシ樹脂(ジャパンエポキシレジン(株)、YL6810。エポキシ当量172、軟化点45℃。)
 エポキシ樹脂6:フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(三井化学(株)製、E-XLC-3L。エポキシ当量238、軟化点52℃。)
 エポキシ樹脂7:ジシクロペンタジエン変性フェノール型エポキシ樹脂(大日本インキ化学工業(株)製、HP7200L。エポキシ当量244、軟化点56℃。)
 エポキシ樹脂8:メトキシナフタレン骨格を有するノボラック型エポキシ樹脂(大日本インキ化学工業(株)製、EXA-7320。エポキシ当量251、軟化点58℃。)
 (無機充填剤)
 無機充填剤としては、電気化学工業(株)製溶融球状シリカFB560(平均粒径30μm)100質量部、アドマテックス社製合成球状シリカSO-C2(平均粒径0.5μm)6.5質量部、アドマテックス社製合成球状シリカSO-C5(平均粒径30μm)7.5質量部のブレンドを使用した。
 (硬化促進剤(D))
 以下の硬化促進剤1~5を使用した。
 硬化促進剤1:下記式(20)で表される硬化促進剤
Figure JPOXMLDOC01-appb-C000022
 硬化促進剤2:下記式(21)で表される硬化促進剤
Figure JPOXMLDOC01-appb-C000023
 硬化促進剤3:下記式(22)で表される硬化促進剤
Figure JPOXMLDOC01-appb-C000024
 硬化促進剤4:下記式(23)で表される硬化促進剤
Figure JPOXMLDOC01-appb-C000025
 硬化促進剤5:トリフェニルホスフィン(北興化学工業(株)製、TPP)
 (化合物E)
 化合物Eとして、下記式(24)で表される化合物(東京化成工業(株)製、2,3-ナフタレンジオール、純度98%)を使用した。
Figure JPOXMLDOC01-appb-C000026
 (シランカップリング剤)
 以下のシランカップリング剤1~3を使用した。
 シランカップリング剤1:γ-メルカプトプロピルトリメトキシシラン(信越化学工業(株)製、KBM-803)。
 シランカップリング剤2:γ-グリシドキシプロピルトリメトキシシラン(信越化学工業(株)製、KBM-403)。
 シランカップリング剤3:N-フェニル-3-アミノプロピルトリメトキシシラン(信越化学工業(株)製、KBM-573。)
 (難燃剤)
 以下の難燃剤1~2を使用した。
 難燃剤1:水酸化アルミニウム(住友化学(株)製、CL310)
 難燃剤2:水酸化マグネシウム・水酸化亜鉛固溶体複合金属水酸化物(タテホ化学工業(株)製、エコーマグZ-10)
 (着色剤)
 着色剤として、三菱化学工業(株)製のカーボンブラック(MA600)を使用した。
 (離型剤)
 離型剤として、日興ファイン(株)製のカルナバワックス(ニッコウカルナバ、融点83℃)を使用した。
 (実施例1)
 以下の成分をミキサーを用いて、常温で混合し、80℃~100℃の加熱ロールで溶融混練し、その後冷却し、次いで粉砕して、半導体封止用樹脂組成物を得た。
 フェノール樹脂1         5.91質量部
 エポキシ樹脂1          6.57質量部
 無機充填剤1           86.5質量部
 硬化促進剤1            0.4質量部
 シランカップリング剤1      0.07質量部
 シランカップリング剤2      0.07質量部
 シランカップリング剤3      0.08質量部
 着色剤                 0.3質量部
 離型剤                 0.1質量部
 得られた半導体封止用樹脂組成物を、以下の項目について評価した。評価結果を表2に示す。
 (評価項目)
 スパイラルフロー:低圧トランスファー成形機(コータキ精機(株)製、KTS-15)を用いて、EMMI-1-66に準じたスパイラルフロー測定用金型に、175℃、注入圧力6.9MPa、保圧時間120秒の条件で樹脂組成物を注入し、流動長を測定した。スパイラルフローは、流動性のパラメータであり、数値が大きい方が、流動性が良好である。単位はcm。実施例1で得られた樹脂組成物は、121cmと良好な流動性を示した。
 耐燃性:低圧トランスファー成形機(コータキ精機(株)製、KTS-30)を用いて、金型温度175℃、注入時間15秒、硬化時間120秒、注入圧力9.8MPaの条件で、樹脂組成物を注入成形して、3.2mm厚の耐燃試験片を作製した。得られた試験片について、UL94垂直法の規格に則り耐燃試験を行った。表には、Fmax、ΣF及び判定後の耐燃ランクを示した。実施例1で得られた樹脂組成物は、Fmax:5秒、ΣF:21秒、耐燃ランク:V-0と良好な耐燃性を示した。
 ワイヤ流れ率:タブレット化した樹脂組成物を低圧トランスファー成形機にて175℃、6.9MPa、120秒の条件にて、ワイヤ流れ量評価試験用の208ピンQFPパッケージ(寸法;28×28×2.4mm、Cuリードフレーム、テスト素子;9×9mm、ワイヤ;Au、直径1.2mils、長さ約5mm)を各10パッケージ成形し、成形した208ピンQFPパッケージを軟X線透過装置で観察した。ワイヤ流れ率の計算方法としては、1個のパッケージの中で最も流れた(変形した)ワイヤの流れ量を(F)、そのワイヤの長さを(L)として、流れ率=F/L×100(%)を算出し、10パッケージの平均値を示した。なお、ワイヤ流れ量の判定として5%未満を合格、5%以上を不合格とした。実施例1で得られた樹脂組成物は、2.9%と良好なワイヤ流れ率を示した。
 連続成形性:得られた樹脂組成物を粉末成型プレス機(玉川マシナリー(株)製、S-20-A)にて、重量15g、サイズφ18mm×高さ約30mmとなるよう調整し、打錠圧力600Paにて打錠してタブレットを得た。得られたタブレットを装填したタブレット供給マガジンを成形装置内部にセットした。成形には、成形装置として低圧トランスファー自動成形機(第一精工(株)製、GP-ELF)を用いて、金型温度175℃、成形圧力9.8MPa、硬化時間120秒の条件で、樹脂組成物によりシリコンチップ等を封止して80ピンQFP(Cu製リードフレーム、パッケージ外寸:14mm×20mm×2.0mm厚、パッドサイズ:8.0mm×8.0mm、チップサイズ7.0mm×7.0mm×0.35mm厚)を得る成形を、連続で400ショットまで行った。この際、50ショット毎にパッケージの成形状態(未充填の有無)を確認し、最初に未充填が確認できたショット数、また未充填が発生しなかった場合には○印を表の「充填不良」の項に記載した。なお、成形装置内にセットしたマガジン内のタブレットは、実際に成形で使用されるまでの間、成形装置のマガジン内に待機状態にあり、表面温度約30℃で、最大13個垂直に積み上げた状態にあった。成形装置内でのタブレットの供給搬送は、マガジンの最下部より突き上げピンが上昇することで、最上段のタブレットがマガジン上部から押し出され、機械式アームにて持ち上げられて、トランスファー成形用ポットへと搬送される。このとき、マガジン内で待機中にタブレットが上下で固着すると搬送不良が発生する。表の搬送不良の項には、最初に搬送不良が確認できたショット数、また搬送不良が発生しなかった場合には○印を記載した。実施例1で得られた樹脂組成物は、試験中にタブレット固着やパッケージ未充填は見られず、良好な連続成形性を示した。
 耐半田性試験1:低圧トランスファー成形機(第一精工(株)製、GP-ELF)を用いて、金型温度180℃、注入圧力7.4MPa、硬化時間120秒間の条件で、樹脂組成物を注入して半導体素子(シリコンチップ)が搭載されたリードフレーム等を封止成形し、80pQFP(Cu製リードフレーム、サイズは14×20mm×厚さ2.00mm、半導体素子は7×7mm×厚さ0.35mm、半導体素子とリードフレームのインナーリード部とは25μm径の金線でボンディングされている。)なる半導体装置を作製した。ポストキュアとして175℃で4時間加熱処理した半導体装置6個を、85℃、相対湿度60%で168時間加湿処理した後、IRリフロー処理(260℃、JEDEC・Level3条件に従う)を行った。これらの半導体装置内部の剥離及びクラックの有無を超音波探傷装置(日立建機ファインテック(株)製、mi-scope10)で観察し、剥離又はクラックのいずれか一方でも発生したものを不良とした。不良半導体装置の個数がn個であるとき、n/6と表示した。実施例1で得られた樹脂組成物は0/6と良好な信頼性を示した。
 耐半田性試験2:上述の耐半田性試験1の加湿処理条件を85℃、相対湿度85%で72時間加湿処理としたほかは、耐半田性試験1と同様に試験を実施した。実施例1で得られた樹脂組成物は0/6と良好な信頼性を示した。
 実施例2~20、比較例1~5
 表2~表5の配合に従い、実施例1と同様にして樹脂組成物を製造し、実施例1と同様にして評価した(表2~表5の各配合成分の数値の単位は、実施例1と同様に質量部である)。評価結果を表2~表5に示した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 実施例1~20は、式(1)で表される構造単位及び式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むフェノール樹脂(A)と、エポキシ樹脂(B)と、無機充填剤(C)とを含む組成物であり、フェノール樹脂(A)の構造単位の配合割合を変更したもの、フェノール樹脂(A)以外に他の硬化剤を含むもの、エポキシ樹脂(B)の種類を変更したもの、硬化促進剤(D)の種類を変更したもの、或いは、難燃剤の種類を変更したものを含むものであるが、いずれにおいても、流動性(スパイラルフロー)やワイヤ流れ率、耐燃性、ワイヤ流れ率、連続成形性、耐半田性のバランスに優れた結果が得られた。
 一方、式(1)で表される構造単位は含み、かつ式(2)で表される構造単位を含まないフェノール樹脂5に変更した比較例1、式(2)で表される構造単位は含み、かつ式(1)で表される構造単位を含まないフェノール樹脂6及び7に変更した比較例2及び3、ならびに、フェノール樹脂5とフェノール6又は7とを併用した比較例4、5においては、流動性(スパイラルフロー)やワイヤ流れ率、耐燃性、連続成形性、耐半田性、のいずれかの項目が十分でなく、特性バランスが劣る結果となった。
 上記の結果のとおり、硬化剤とエポキシ樹脂と無機充填剤とを含む樹脂組成物において、硬化剤として式(1)で表される構造単位及び式(2)で表される構造単位とを含む重合体からなる成分(A1)を含むフェノール樹脂(A)を用いた場合においてのみ、流動性(スパイラルフロー)やワイヤ流れ率、耐燃性、連続成形性、及び耐半田性、のバランスに優れる結果が得られるものであり、硬化剤として式(1)で表される構造単位のみを有するフェノール樹脂又は式(2)で表される構造単位のみを有するフェノール樹脂を用いた場合、あるいは、それらを併用した場合から予測又は期待できる範疇を超えた顕著な効果となっている。
 本実施例によれば、流動性(スパイラルフロー)、ワイヤ流れ率、ハンドリング性、耐半田性、耐燃性及び連続成形性のバランスに優れる半導体封止用樹脂組成物を得ることができるため、半導体装置、とりわけ、1パッケージ内にチップを積層する構造、あるいは従来よりもワイヤ線径をより細くした半導体装置の封止用として好適である。
 なお、当然ながら、上述した実施の形態および複数の変形例は、その内容が相反しない範囲で組み合わせることができる。また、上述した実施の形態および変形例では、各部の構造などを具体的に説明したが、その構造などは本願発明を満足する範囲で各種に変更することができる。
 この出願は、平成21年6月3日に出願された日本特許出願特願2009-134319を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (20)

  1.  1又は2以上の成分からなるフェノール樹脂(A)であって、
     下記一般式(1):
    Figure JPOXMLDOC01-appb-C000027
    (上記一般式(1)において、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R2、R3、R4及びR5は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。)で表される構造単位と、
     下記一般式(2):
    Figure JPOXMLDOC01-appb-C000028
    (上記一般式(2)において、R1は、互いに独立して、炭素数1~6の炭化水素基であり、aは0~3の整数である。R6は、互いに独立して、炭素数1~6の炭化水素基であり、bは1~4の整数である。R7、R8、R9及びR10は、互いに独立して、水素原子、又は炭素数1~6の炭化水素基である。)で表される構造単位と、を含む重合体からなる成分(A1)を含む前記フェノール樹脂(A)と、
     エポキシ樹脂(B)と、
     無機充填剤(C)と、
    を含む、半導体封止用樹脂組成物。
  2.  前記成分(A1)が1又は2以上の重合体からなり、電界脱離質量分析による測定で、前記成分(A1)に該当する重合体の相対強度の合計が、前記フェノール樹脂(A)の合計相対強度に対して10%以上、80%以下である、請求項1に記載の半導体封止用樹脂組成物。
  3.  前記フェノール樹脂(A)が、前記一般式(1)で表される構造単位を含み、かつ前記一般式(2)で表される構造単位を含まない重合体からなる成分(A2)をさらに含む、請求項1又は請求項2に記載の半導体封止用樹脂組成物。
  4.  前記フェノール樹脂(A)が、前記一般式(2)で表される構造単位を含み、前記一般式(1)で表される構造単位を含まない重合体からなる成分(A3)をさらに含む、請求項1ないし請求項3のいずれか1項に記載の半導体封止用樹脂組成物。
  5.  前記フェノール樹脂(A)全体における前記一般式(1)で表される構造単位の合計の数と、前記一般式(2)で表される構造単位の合計の数との比が30/70~95/5である、請求項1ないし請求項4のいずれか1項に記載の半導体封止用樹脂組成物。
  6.  前記一般式(2)で表される構造単位におけるR6がメチル基であり、bが1~3である、請求項1ないし請求項5のいずれか1項に記載の半導体封止用樹脂組成物。
  7.  前記フェノール樹脂(A)の150℃におけるICI粘度が、1.5dPa・s以下である、請求項1ないし請求項6のいずれか1項に記載の半導体封止用樹脂組成物。
  8.  前記フェノール樹脂(A)の軟化点が、63℃以上、85℃以下である、請求項1ないし請求項7のいずれか1項に記載の半導体封止用樹脂組成物。
  9.  標準ポリスチレン換算のゲルパーミエーションクロマトグラフ(GPC)法に基づく、前記フェノール樹脂(A)中の2核体成分の面積比率が、20%以下である、請求項1ないし請求項8のいずれか1項に記載の半導体封止用樹脂組成物。
  10.  前記フェノール樹脂(A)が全硬化剤中に20質量%以上、100質量%以下含まれる、請求項1ないし請求項9のいずれか1項に記載の半導体封止用樹脂組成物。
  11.  前記エポキシ樹脂(B)が、ビフェニル型エポキシ樹脂、ビスフェノール型エポキシ樹脂、スチルベン型エポキシ樹脂、アントラセンジオール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、フェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂、フェニレン骨格を有するナフトールアラルキル型エポキシ樹脂、ジヒドロキシナフタレン型エポキシ樹脂、ジヒドロキシナフタレンの2量体をグリシジルエーテル化して得られるエポキシ樹脂、メトキシナフタレン骨格を有するノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート、モノアリルジグリシジルイソシアヌレート、ジシクロペンタジエン変性フェノール型エポキシ樹脂からなる群から選択される少なくとも1種のエポキシ樹脂である、請求項1ないし請求項10のいずれか1項に記載の半導体封止用樹脂組成物。
  12.  前記無機充填剤(C)の含有量が80質量%以上、93質量%以下である、請求項1ないし請求項11のいずれか1項に記載の半導体封止用樹脂組成物。
  13.  硬化促進剤(D)をさらに含む、請求項1ないし請求項12のいずれか1項に記載の半導体封止用樹脂組成物。
  14.  前記硬化促進剤(D)が、テトラ置換ホスホニウム化合物、ホスホベタイン化合物、ホスフィン化合物とキノン化合物との付加物、ホスホニウム化合物とシラン化合物との付加物からなる群から選択される少なくとも1種の硬化促進剤を含む、請求項13に記載の半導体封止用樹脂組成物。
  15.  芳香環を構成する2個以上の隣接する炭素原子にそれぞれ水酸基が結合した化合物(E)をさらに含む、請求項1ないし請求項14のいずれか1項に記載の半導体封止用樹脂組成物。
  16.  カップリング剤(F)をさらに含む、請求項1ないし請求項15のいずれか1項に記載の半導体封止用樹脂組成物。
  17.  前記カップリング剤(F)が2級アミノ基を有するシランカップリング剤を含む、請求項16に記載の半導体封止用樹脂組成物。
  18.  無機難燃剤(G)をさらに含む、請求項1ないし請求項17のいずれか1項に記載の半導体封止用樹脂組成物。
  19.  前記無機難燃剤(G)が金属水酸化物、または複合金属水酸化物を含む、請求項18に記載の半導体封止用樹脂組成物。
  20.  請求項1ないし請求項19のいずれか1項に記載の半導体封止用樹脂組成物の硬化物で半導体素子を封止して得られる、半導体装置。
PCT/JP2010/003603 2009-06-03 2010-05-28 半導体封止用樹脂組成物及び半導体装置 WO2010140331A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117031243A KR101687847B1 (ko) 2009-06-03 2010-05-28 반도체 밀봉용 수지 조성물 및 반도체 장치
US13/322,037 US8883883B2 (en) 2009-06-03 2010-05-28 Resin composition for encapsulating semiconductor and semiconductor device
SG2011088945A SG176625A1 (en) 2009-06-03 2010-05-28 Resin composition for encapsulating semiconductor and semiconductor device
CN201080024180.7A CN102449020B (zh) 2009-06-03 2010-05-28 半导体封装用树脂组合物和半导体装置
JP2011518246A JP5708486B2 (ja) 2009-06-03 2010-05-28 半導体封止用樹脂組成物及び半導体装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-134319 2009-06-03
JP2009134319 2009-06-03

Publications (1)

Publication Number Publication Date
WO2010140331A1 true WO2010140331A1 (ja) 2010-12-09

Family

ID=43297474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003603 WO2010140331A1 (ja) 2009-06-03 2010-05-28 半導体封止用樹脂組成物及び半導体装置

Country Status (8)

Country Link
US (1) US8883883B2 (ja)
JP (1) JP5708486B2 (ja)
KR (1) KR101687847B1 (ja)
CN (1) CN102449020B (ja)
MY (1) MY156659A (ja)
SG (2) SG10201402583TA (ja)
TW (1) TWI499631B (ja)
WO (1) WO2010140331A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094028A (ja) * 2009-10-29 2011-05-12 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物、これを用いる半導体装置及び半導体封止用樹脂組成物の製造方法
JP2011094027A (ja) * 2009-10-29 2011-05-12 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及びこれを用いる半導体装置
WO2012102336A1 (ja) * 2011-01-28 2012-08-02 住友ベークライト株式会社 封止用エポキシ樹脂組成物及び電子部品装置
JP2012229312A (ja) * 2011-04-25 2012-11-22 Air Water Inc フェノール系重合体、その製法およびその用途
JP2015007687A (ja) * 2013-06-25 2015-01-15 日油株式会社 カラーフィルター保護膜用熱硬化性樹脂組成物、及びその硬化膜を備えるカラーフィルター
JP2018039981A (ja) * 2016-09-05 2018-03-15 住友ベークライト株式会社 エポキシ樹脂組成物および半導体装置
JP2018059095A (ja) * 2016-09-30 2018-04-12 明和化成株式会社 フェノール樹脂組成物、硬化剤、エポキシ樹脂組成物、硬化物、及び半導体装置
JP2020045380A (ja) * 2018-09-14 2020-03-26 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP2021004357A (ja) * 2016-02-25 2021-01-14 昭和電工マテリアルズ株式会社 エポキシ樹脂成形材料、成形物、成形硬化物、及び成形硬化物の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102666642A (zh) * 2009-10-26 2012-09-12 住友电木株式会社 半导体封装用树脂组合物及使用其的半导体装置
CN102558769B (zh) * 2010-12-31 2015-11-25 第一毛织株式会社 用于封装半导体器件的环氧树脂组合物以及由该环氧树脂组合物封装的半导体器件
CN103531693B (zh) * 2013-09-29 2016-10-05 杭州杭科光电股份有限公司 一种大发光角度的cob面光源的制备方法
US9780061B2 (en) * 2014-05-26 2017-10-03 Infineon Technologies Ag Molded chip package and method of manufacturing the same
JP6929069B2 (ja) * 2017-01-23 2021-09-01 株式会社ダイセル 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
JP2018119032A (ja) * 2017-01-23 2018-08-02 株式会社ダイセル 光反射用硬化性樹脂組成物及びその硬化物、並びに光半導体装置
KR20190104063A (ko) * 2017-01-23 2019-09-05 주식회사 다이셀 광반사용 경화성 수지 조성물 및 그의 경화물, 그리고 광반도체 장치
WO2018135557A1 (ja) * 2017-01-23 2018-07-26 株式会社ダイセル 硬化性エポキシ樹脂組成物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537795A (en) * 1976-07-09 1978-01-24 Mitsubishi Gas Chem Co Inc Preparatin of resins having high softening point
JPS61145255A (ja) * 1984-12-19 1986-07-02 Hitachi Chem Co Ltd 安定化された合成樹脂組成物
JPH10279669A (ja) * 1997-04-08 1998-10-20 Sumitomo Durez Co Ltd エポキシ樹脂硬化剤
JPH11255868A (ja) * 1998-03-11 1999-09-21 Sumikin Chemical Co Ltd フェノールアラルキル樹脂の製造方法
JP2009242480A (ja) * 2008-03-28 2009-10-22 Air Water Inc フェノール系重合体、その製法およびその用途
WO2010013406A1 (ja) * 2008-08-01 2010-02-04 住友ベークライト株式会社 半導体封止用樹脂組成物、およびこれを用いる半導体装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5214391A (en) 1975-07-24 1977-02-03 Nippon Telegr & Teleph Corp <Ntt> Process for production of light-emitting diode
JP3010110B2 (ja) 1993-11-04 2000-02-14 日東電工株式会社 半導体装置
JP3033445B2 (ja) 1994-07-05 2000-04-17 信越化学工業株式会社 樹脂用無機質充填剤及びエポキシ樹脂組成物
JP2964237B2 (ja) * 1998-02-18 1999-10-18 山崎産業株式会社 敷物及びその敷物の製造法
KR20010100875A (ko) 2000-04-06 2001-11-14 가마이 고로 반도체 캡슐화용 에폭시 수지 조성물 및 그를 사용한반도체 장치
JP4244777B2 (ja) * 2002-10-18 2009-03-25 日立化成工業株式会社 硬化性樹脂の硬化促進剤、硬化性樹脂組成物、電子部品装置、及びホスフィン誘導体の製造方法
US7157313B2 (en) 2003-01-17 2007-01-02 Sumitomo Bakelite Co., Ltd. Epoxy resin composition and semiconductor device using thereof
US20050267286A1 (en) * 2003-10-20 2005-12-01 Shinya Nakamura Curing accelerator for curing resin, curing resin composition, electronic component device and method for producing phosphine derivative
US7431990B2 (en) * 2004-05-27 2008-10-07 Sumitomo Bakelite Co Resin composition for encapsulating semiconductor chip and semiconductor device therewith

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537795A (en) * 1976-07-09 1978-01-24 Mitsubishi Gas Chem Co Inc Preparatin of resins having high softening point
JPS61145255A (ja) * 1984-12-19 1986-07-02 Hitachi Chem Co Ltd 安定化された合成樹脂組成物
JPH10279669A (ja) * 1997-04-08 1998-10-20 Sumitomo Durez Co Ltd エポキシ樹脂硬化剤
JPH11255868A (ja) * 1998-03-11 1999-09-21 Sumikin Chemical Co Ltd フェノールアラルキル樹脂の製造方法
JP2009242480A (ja) * 2008-03-28 2009-10-22 Air Water Inc フェノール系重合体、その製法およびその用途
WO2010013406A1 (ja) * 2008-08-01 2010-02-04 住友ベークライト株式会社 半導体封止用樹脂組成物、およびこれを用いる半導体装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011094027A (ja) * 2009-10-29 2011-05-12 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物及びこれを用いる半導体装置
JP2011094028A (ja) * 2009-10-29 2011-05-12 Sumitomo Bakelite Co Ltd 半導体封止用樹脂組成物、これを用いる半導体装置及び半導体封止用樹脂組成物の製造方法
US8987355B2 (en) 2011-01-28 2015-03-24 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for sealing, and electronic component device
WO2012102336A1 (ja) * 2011-01-28 2012-08-02 住友ベークライト株式会社 封止用エポキシ樹脂組成物及び電子部品装置
US20130277867A1 (en) * 2011-01-28 2013-10-24 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for sealing, and electronic component device
JP2012229312A (ja) * 2011-04-25 2012-11-22 Air Water Inc フェノール系重合体、その製法およびその用途
JP2015007687A (ja) * 2013-06-25 2015-01-15 日油株式会社 カラーフィルター保護膜用熱硬化性樹脂組成物、及びその硬化膜を備えるカラーフィルター
JP2021004357A (ja) * 2016-02-25 2021-01-14 昭和電工マテリアルズ株式会社 エポキシ樹脂成形材料、成形物、成形硬化物、及び成形硬化物の製造方法
JP7226395B2 (ja) 2016-02-25 2023-02-21 株式会社レゾナック エポキシ樹脂成形材料、成形物、成形硬化物、及び成形硬化物の製造方法
JP2018039981A (ja) * 2016-09-05 2018-03-15 住友ベークライト株式会社 エポキシ樹脂組成物および半導体装置
JP2018059095A (ja) * 2016-09-30 2018-04-12 明和化成株式会社 フェノール樹脂組成物、硬化剤、エポキシ樹脂組成物、硬化物、及び半導体装置
JP6993158B2 (ja) 2016-09-30 2022-01-13 明和化成株式会社 フェノール樹脂組成物、硬化剤、エポキシ樹脂組成物、硬化物、及び半導体装置
JP2020045380A (ja) * 2018-09-14 2020-03-26 日立化成株式会社 硬化性樹脂組成物及び電子部品装置
JP7322368B2 (ja) 2018-09-14 2023-08-08 株式会社レゾナック 硬化性樹脂組成物及び電子部品装置

Also Published As

Publication number Publication date
US8883883B2 (en) 2014-11-11
US20120061861A1 (en) 2012-03-15
SG176625A1 (en) 2012-01-30
SG10201402583TA (en) 2014-10-30
TW201105732A (en) 2011-02-16
MY156659A (en) 2016-03-15
KR20120026573A (ko) 2012-03-19
CN102449020A (zh) 2012-05-09
KR101687847B1 (ko) 2016-12-19
CN102449020B (zh) 2014-04-02
JPWO2010140331A1 (ja) 2012-11-15
TWI499631B (zh) 2015-09-11
JP5708486B2 (ja) 2015-04-30

Similar Documents

Publication Publication Date Title
JP5708486B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP6202114B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5549590B2 (ja) 半導体封止用樹脂組成物、およびこれを用いる半導体装置
JP5692070B2 (ja) 半導体封止用樹脂組成物、及び半導体装置
JP5494137B2 (ja) 半導体封止用樹脂組成物および半導体装置
JP5413127B2 (ja) 半導体封止用樹脂組成物、これを用いる半導体装置及び半導体封止用樹脂組成物の製造方法
JP5651968B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP5353636B2 (ja) 半導体封止用樹脂組成物及びこれを用いる半導体装置
JP2012246472A (ja) 封止用樹脂組成物及び電子部品装置
JP5868573B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP5776464B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5673237B2 (ja) 封止用樹脂組成物及び電子部品装置
JP2012077152A (ja) 電子部品封止用樹脂組成物及び電子部品装置
JP5573344B2 (ja) 封止用樹脂組成物及び電子部品装置
JP5488394B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP5488393B2 (ja) 半導体封止用樹脂組成物及び半導体装置
JP2011187892A (ja) 半導体封止用樹脂組成物、およびその硬化物を用いた半導体装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080024180.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011518246

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13322037

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117031243

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10783119

Country of ref document: EP

Kind code of ref document: A1