WO2010137582A1 - チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス - Google Patents

チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス Download PDF

Info

Publication number
WO2010137582A1
WO2010137582A1 PCT/JP2010/058815 JP2010058815W WO2010137582A1 WO 2010137582 A1 WO2010137582 A1 WO 2010137582A1 JP 2010058815 W JP2010058815 W JP 2010058815W WO 2010137582 A1 WO2010137582 A1 WO 2010137582A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium titanate
lithium
compound
titanium oxide
particles
Prior art date
Application number
PCT/JP2010/058815
Other languages
English (en)
French (fr)
Inventor
斉昭 森山
昌利 本間
和良 竹島
悠介 奥田
直也 永橋
Original Assignee
石原産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石原産業株式会社 filed Critical 石原産業株式会社
Priority to EP10780537.6A priority Critical patent/EP2436650B1/en
Priority to CA2760985A priority patent/CA2760985A1/en
Priority to KR1020117028185A priority patent/KR101761428B1/ko
Priority to CN201080021706.6A priority patent/CN102428031B/zh
Priority to JP2011516021A priority patent/JP5726074B2/ja
Priority to US13/321,973 priority patent/US9126847B2/en
Priority to KR1020177005974A priority patent/KR101829177B1/ko
Publication of WO2010137582A1 publication Critical patent/WO2010137582A1/ja
Priority to HK12110573.0A priority patent/HK1169822A1/zh
Priority to US14/812,125 priority patent/US9452940B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/45Aggregated particles or particles with an intergrown morphology
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to lithium titanate excellent in battery characteristics, particularly rate characteristics, and a method for producing the same.
  • the present invention also relates to an electrode active material containing the lithium titanate and an electricity storage device using the electrode containing the electrode active material.
  • lithium secondary batteries have high energy density and excellent cycle characteristics, in recent years, they have rapidly spread to small batteries such as power supplies for portable devices. On the other hand, large batteries for the power industry and automobiles are used. Development is also desired. Electrode active materials for these large lithium secondary batteries are required to have long-term reliability and high input / output characteristics. In particular, lithium negative electrode active materials are promising for lithium titanate, which has excellent safety, long life, and excellent rate characteristics.
  • Various lithium titanates have been proposed for electrode active materials.
  • lithium titanate is known in which spherical secondary particles are granulated to improve filling properties and battery characteristics (Patent Documents 1 and 2). Such lithium titanate secondary particles are produced by drying and granulating a titanium compound and a lithium compound, followed by firing.
  • crystalline titanium In a method in which a slurry containing a titanic acid compound and a lithium compound is dried, granulated, and then heated and fired, a crystalline titanium oxide and a titanic acid compound are added to a lithium compound solution preheated to 50 ° C. or more to prepare the slurry. (Patent Document 3), a method of preparing the slurry at a temperature lower than 45 ° C. (Patent Document 4), and the like are also used.
  • Patent Document 5 there is also a technology to improve the large current characteristics and cycle characteristics by crushing and refiring lithium titanate to give pores with an average pore diameter in the range of 50 to 500 mm on the surface of lithium titanate particles.
  • the present invention provides a lithium titanate excellent in battery characteristics, particularly rate characteristics, and a method for producing the same.
  • lithium titanate secondary particles having at least macropores on the surface are more excellent in rate characteristics, and such lithium titanate has the above-described crystalline titanium and titanium.
  • a slurry containing an acid compound and a lithium compound is dried and granulated and then fired to obtain secondary particles of lithium titanate, two or more kinds of particles are used as the crystalline titanium oxide, or crystalline titanium oxide and It has been found that the titanic acid compound can be obtained at a specific blending ratio, and the present invention has been completed.
  • the present invention is a lithium titanate containing secondary particles in which primary particles of lithium titanate are aggregated and having at least macropores on the surface of the secondary particles, and a slurry containing crystalline titanium oxide, titanate compound and lithium compound
  • a method for producing lithium titanate in which crystalline titanium oxide is used in an amount more than four times the weight ratio in terms of TiO 2 with respect to the titanate compound.
  • An electricity storage device using the lithium titanate of the present invention as an electrode active material has excellent battery characteristics, particularly rate characteristics.
  • FIG. 1 is an adsorption / desorption isotherm of Example 1 (Sample A).
  • the present invention is lithium titanate, including secondary particles in which primary particles of lithium titanate are aggregated, and has at least a macropore on the surface of the secondary particles.
  • lithium titanate since lithium titanate is used as the secondary particles, irregularities and voids between the primary particles are formed on the particle surface, the contact area with the electrolytic solution is increased, and the amount of lithium ion adsorption / desorption is increased. it can.
  • the pore diameter of the powder is generally determined by analyzing the nitrogen adsorption / desorption isotherm obtained by the nitrogen adsorption method using the HK method, the BJH method, etc. to obtain the pore distribution, and calculating the total pore volume calculated from the pore distribution. And the measured specific surface area.
  • cm 3 (STP) / g is a value obtained by converting the nitrogen adsorption / desorption amount into a volume in a standard state (temperature 0 ° C., atmospheric pressure 101.3 KPa).
  • V a (0.99) is more preferably at least 55 cm 3 (STP) / g.
  • the nitrogen adsorption amount (V a (0.50)) at a relative pressure of 0.50 is 10 cm 3 (STP) / g or less, and ⁇ V d ⁇ a is continuously, That is, if each of the two or more consecutive measurement points does not take a value of 5 cm 3 (STP) / g or more, it is assumed that no micropore or mesopore is present.
  • V a (0.50) is more preferably 8 cm 3 (STP) / g or less, and ⁇ V d ⁇ a is further preferably not continuously taking a value of 3 cm 3 (STP) / g or more.
  • the average particle diameter of secondary particles is preferably in the range of 0.5 to 100 ⁇ m from the viewpoint of packing properties.
  • the particle shape of the secondary particles is preferably isotropic from the viewpoint of battery characteristics, and more preferably spherical or polyhedral.
  • the primary particles constituting the secondary particles are not particularly limited, but if the average particle diameter (50% median diameter by electron microscopy) is in the range of 0.01 to 2.0 ⁇ m, secondary particles in the above range are used. It is preferable because the diameter can be easily obtained, and isotropic shapes such as a spherical shape and a polyhedral shape are preferable because secondary particles having an isotropic shape are easily obtained.
  • These secondary particles are in a state in which the primary particles are firmly bonded to each other, and are not aggregated or mechanically consolidated by interaction between particles such as van der Waals force, but are used industrially. It is not easily disintegrated by ordinary mechanical pulverization, and most remains as secondary particles.
  • the lithium titanate of the present invention is preferably represented by the composition formula Li x Ti y O 4 , and more preferably a single phase of lithium titanate. However, some titanium oxide may be mixed as long as the effect of the present invention is not impaired.
  • the values of x and y in the general formula are preferably in the range of 0.5 to 2 in terms of x / y values, and those of the spinel type represented by the composition formula Li 4 Ti 5 O 12 are particularly preferable.
  • the surface of the secondary particles may be coated with at least one selected from inorganic compounds such as silica and alumina, and organic compounds such as surfactants and coupling agents.
  • inorganic compounds such as silica and alumina
  • organic compounds such as surfactants and coupling agents.
  • These coating species can carry 1 type, can laminate 2 or more types as a plurality of carrying layers, and can carry 2 or more types as a mixture and a compound.
  • carbon can be included in the interior or surface of the lithium titanate secondary particles.
  • Inclusion of carbon is preferable because electric conductivity is improved, and the amount of carbon is preferably in the range of 0.05 to 30% by weight in terms of C. If it is less than this range, the desired electrical conductivity cannot be obtained, and if it is more, the inactive material component in the electrode increases, which is not preferable because the battery capacity decreases.
  • a more preferable carbon amount is in the range of 0.1 to 15% by weight.
  • the amount of carbon can be analyzed by a CHN analysis method, a high frequency combustion method, or the like.
  • different metal elements other than titanium and lithium can be included in the secondary particles.
  • the different metal element is preferably magnesium, aluminum, zirconium or the like, and one or more of these can be used.
  • the amount of different metal elements is preferably in the range of 0.05 to 15% by weight in terms of Mg, Al, and Zr. More preferably, Al and Mg are in the range of 0.05 to 10% by weight, and Zr is in the range of 0.1 to 10% by weight. For Al and Mg, the range of 0.1 to 5% by weight is more preferable.
  • the amount of the different metal element can be analyzed by, for example, an inductively coupled plasma (ICP) method.
  • ICP inductively coupled plasma
  • the present invention is a method for producing lithium titanate, wherein a slurry containing crystalline titanium oxide, a titanate compound and a lithium compound is dried and granulated, and then fired to obtain lithium titanate secondary particles.
  • a slurry containing crystalline titanium oxide, a titanate compound and a lithium compound is dried and granulated, and then fired to obtain lithium titanate secondary particles.
  • (1) Crystalline titanium oxide containing at least two types of crystalline titanium oxide particles having different average particle diameters is used (hereinafter sometimes referred to as (1) production method) and / or (2) crystalline oxidation Titanium is used in an amount more than four times as much as the TiO 2 weight ratio with respect to the titanic acid compound (hereinafter sometimes referred to as (2) production method).
  • starting materials such as crystalline titanium oxide, a titanic acid compound, and a lithium compound are added to a liquid medium, and a slurry containing them is prepared.
  • concentration of the titanium component in the slurry is industrially advantageous when it is in the range of 120 to 300 g / liter in terms of TiO 2 , and more preferably in the range of 150 to 250 g / liter.
  • the medium water, an organic solvent such as alcohol, or a mixture thereof can be used, and industrially, it is preferable to use water or an aqueous medium mainly composed of water.
  • the temperature of the liquid medium containing the lithium compound is preferably in the range of 25 to 100 ° C. because the reaction between the titanate compound and the lithium compound proceeds in the slurry preparation stage, and lithium titanate is easily obtained during firing. A range of 50 to 100 ° C. is more preferable.
  • the crystalline titanium oxide and the titanic acid compound may be added to the liquid medium containing the lithium compound separately, in parallel, or in a mixture.
  • lithium compound when the reaction is performed in water or an aqueous medium containing water as a main component, it is preferable to use a water-soluble lithium compound such as lithium hydroxide, lithium carbonate, lithium nitrate, or lithium sulfate. Among them, lithium hydroxide having high reactivity is preferable.
  • the titanate compound TiO (OH) 2 or metatitanic acid represented by TiO 2 ⁇ H 2 O, Ti (OH) 4 or orthotitanate represented by TiO 2 ⁇ 2H 2 O, or a mixture thereof
  • the titanic acid compound is obtained by heat hydrolysis or neutralization hydrolysis of a hydrolyzable titanium compound.
  • metatitanic acid is heat hydrolysis of titanyl sulfate (TiOSO 4 ), neutralization hydrolysis of titanium chloride at a high temperature, etc.
  • Orthotitanic acid is a neutralized hydrolysis of titanium sulfate (Ti (SO 4 ) 2 ) and titanium chloride (TiCl 4 ) at a low temperature, and a mixture of metatitanic acid and orthotitanic acid is a neutralized titanium chloride. It can be obtained by appropriately controlling the hydrolysis temperature. If an ammonium compound such as ammonia, ammonium carbonate, ammonium sulfate, or ammonium nitrate is used as the neutralizing agent for neutralization hydrolysis, it can be decomposed and volatilized during firing.
  • the titanium compound in addition to the inorganic compounds such as titanium sulfate, titanyl sulfate, and titanium chloride, organic compounds such as titanium alkoxide may be used.
  • titanium dioxide represented by the composition formula TiO 2 is preferably used.
  • the crystal form of titanium dioxide anatase type, rutile type, brookite type and the like can be used without limitation.
  • the crystalline titanium oxide may have a single crystal form, a mixed crystal containing two or more crystal forms, or a part of amorphous. If the average particle diameter of the crystalline titanium oxide particles contained in the crystalline titanium oxide is in the range of 0.01 to 0.4 ⁇ m, the viscosity of the slurry is hardly increased even at a high concentration, which is preferable.
  • Crystalline titanium oxide can be obtained by a known method for producing a titanium dioxide pigment, for example, a so-called sulfuric acid method in which titanyl sulfate is hydrolyzed and calcined by heating, a so-called chlorine method in which titanium tetrachloride is oxidized in a gas phase, and the like.
  • two or more kinds of crystalline titanium oxide particles having different average particle diameters can be used.
  • other crystals can be used.
  • the titanium oxide particles are 1.3 times or more, preferably 1.3 times or more and 40 times or less, more preferably 1.3 times or more and 10 times or less, still more preferably 1.3 times or more and 3.5 times or less. It is preferable that the average particle diameter is as follows.
  • the crystal form of each particle may be the same or different.
  • the average particle diameter is 50% median diameter by electron microscopy, and the preferred average particle diameter of the crystalline titanium oxide particles having the smallest average particle diameter is 0.01 to 0.20 ⁇ m.
  • the average particle diameter of the other crystalline titanium oxide particles can be adjusted as appropriate by granulating into secondary particles according to the average particle diameter of the smallest one. Alternatively, if primary particles of crystalline titanium oxide are used, the average particle diameter is preferably in the range of 0.05 to 0.40 ⁇ m.
  • the weight of the crystalline titanium oxide having an average particle diameter of 1.3 times or more with respect to the weight of the crystalline titanium oxide having the smallest average particle diameter is in the range of 0.1 to 5 times. When there are a plurality of crystalline titanium oxides having an average particle size of 1.3 times or more, the total weight is used as a reference. If the total amount of the crystalline titanium oxide particles is in the range of 1 to 10 times the weight ratio in terms of TiO 2 with respect to the titanate compound, lithium titanate is advantageously produced industrially. It is preferable because it is possible.
  • the amount of crystalline titanium oxide used is more than 4 times the amount of titanic acid compound, preferably 4.2 times or more, but there is no particular upper limit.
  • the following is preferable because the slurry viscosity is suitable for dry granulation.
  • the crystalline titanium oxide may be one kind of crystalline titanium oxide particles, or two or more kinds of crystalline titanium oxide particles having different average particle diameters and crystal shapes.
  • the dry granulation method For example, (A) a method of spray-drying the slurry and granulating it into secondary particles, and (B) a solid-liquid separation of the solid content contained in the slurry. And a method of pulverizing and granulating into secondary particles of a desired size.
  • the method (A) is preferable because the particle diameter can be easily controlled and spherical secondary particles can be easily obtained.
  • the spray dryer used for spray drying can be appropriately selected according to the properties and processing capacity of the slurry, such as a disk type, a pressure nozzle type, a two-fluid nozzle type, and a four-fluid nozzle type.
  • the secondary particle size can be controlled by, for example, adjusting the solid content concentration in the slurry, or if the disk type is the above, the rotational speed of the disk is a pressure nozzle type, a two-fluid nozzle type, a four-fluid nozzle type, etc.
  • the size of the sprayed droplets can be controlled by adjusting the spray pressure, the nozzle diameter, the flow rate of each fluid, and the like. Properties such as the concentration and viscosity of the slurry are appropriately set according to the ability of the spray dryer.
  • An organic binder may be used when the viscosity of the slurry is low and granulation is difficult, or in order to further facilitate control of the particle diameter.
  • the organic binder used include (1) vinyl compounds (polyvinyl alcohol, polyvinyl pyrrolidone, etc.), (2) cellulose compounds (hydroxyethyl cellulose, carboxymethyl cellulose, methyl cellulose, ethyl cellulose, etc.), and (3) protein compounds ( Gelatin, gum arabic, casein, sodium caseinate, ammonium caseinate, etc.), (4) acrylic acid compounds (sodium polyacrylate, ammonium polyacrylate, etc.), (5) natural polymer compounds (starch, dextrin, agar) , Sodium alginate, etc.), (6) synthetic polymer compounds (polyethylene glycol, etc.), etc., and at least one selected from these can be used. Especially, what does not contain inorganic components, such as soda, is more preferable because it is easily decomposed and volatilized by firing.
  • the firing temperature varies depending on the firing atmosphere and the like, but in order to produce lithium titanate, it may be about 550 ° C. or higher, and preferably 1000 ° C. or lower to prevent sintering between secondary particles. From the viewpoint of promoting the production of Li 4 Ti 5 O 12 and improving the rate characteristics, a more preferable firing temperature is in the range of 550 to 850 ° C., and more preferably in the range of 650 to 850 ° C. As the firing atmosphere, a non-oxidizing atmosphere or the like can be selected as appropriate.
  • the obtained lithium titanate secondary particles are sintered and agglomerated after firing, they may be pulverized using a flake crusher, a hammer mill, a pin mill, a bantam mill, a jet mill or the like, if necessary.
  • the lithium titanate secondary particles may further include a step of containing carbon.
  • a step of containing carbon As a specific method for containing carbon, (A) a slurry containing crystalline titanium oxide, a titanic acid compound and a lithium compound is dried and granulated and fired, and the obtained fired product is subjected to the presence of a carbon-containing substance. And (B) a method of drying and granulating a slurry containing crystalline titanium oxide, a titanic acid compound, a lithium compound and a carbon-containing substance, and firing.
  • the calcination temperature of the carbon-containing material is preferably in the range of 150 to 1000 ° C.
  • the calcination temperature is preferably in the range of 550 to 1000 ° C., where lithium titanate is easily generated.
  • a non-oxidizing atmosphere or the like can be appropriately selected in the air, but it is preferably performed in a non-oxidizing atmosphere.
  • Examples of the carbon-containing substance include carbon black, acetylene black, ketjen black, and organic compounds.
  • the organic compounds may be used after being heated and decomposed in advance.
  • a hydrocarbon compound and / or an oxygen-containing hydrocarbon compound in which components other than carbon hardly remain is preferable.
  • Examples of the hydrocarbon compounds include (a) alkane compounds (methane, ethane, propane, etc.), (b) alkene compounds (ethylene, propylene, etc.), (c) alkyne compounds (acetylene, etc.), (d) And cycloalkane compounds (cyclohexane, etc.) and (e) aromatic compounds (benzene, toluene, xylene, etc.).
  • oxygen-containing hydrocarbon compounds include (a) alcohol compounds ((a) monohydric alcohols (methanol, ethanol, propanol, etc.), (b) dihydric alcohols (ethylene glycol, etc.), and (c) trihydric alcohols. (Trimethylolethane, trimethylolpropane, etc.), (d) polyalcohol (polyvinyl alcohol, etc.), (b) ether compounds ((a) ether monomers (diethyl ether, ethyl methyl ether, etc.), (b) poly Ethers (polyethylene glycol, polyethylene oxide, polypropylene ether, etc.), etc.
  • alcohol compounds ((a) monohydric alcohols (methanol, ethanol, propanol, etc.), (b) dihydric alcohols (ethylene glycol, etc.), and (c) trihydric alcohols. (Trimethylolethane, trimethylolpropane, etc.), (d) polyalcohol (polyvinyl alcohol, etc.
  • carboxylic acid compounds ((a) oxycarboxylic acids (citric acid, malic acid, etc.), (b) monocarboxylic acids (acetic acid, formic acid, etc.), (c) Dicarboxylic acid (oxalic acid, malonic acid, etc.), (d) Aromatic carboxylic acid (benzoic acid, etc.), etc.
  • Products formaldehyde, acetaldehyde, etc.), (e) phenolic compounds (phenol, catechol, pyrogallol, etc.), (he) sugars (glucose, sucrose, cellulose, etc.), etc.
  • a compound serving as a binder such as polyalcohol or polyether can be selected.
  • a step of incorporating different metal elements other than titanium and lithium into the lithium titanate secondary particles can be provided.
  • a specific method of including the different metal element in the secondary particles (A) a method of adding a compound of a different metal element to a slurry containing crystalline titanium oxide, a titanate compound and a lithium compound, and (B) a different metal Examples thereof include a method of drying and granulating a slurry containing crystalline titanium oxide containing an element, a titanic acid compound and a lithium compound, and firing.
  • the compound of the dissimilar metal element can be mixed in advance with crystalline titanium oxide or a titanic acid compound, and if it is crystalline titanium oxide, the compound of the dissimilar metal element is formed on the particle surface.
  • the hydrolyzable titanium compound may be hydrolyzed in the presence of a compound of a different metal element to obtain a mixture.
  • the crystalline titanium oxide containing the different metal element used in the method (B) can be obtained by mixing and baking a titanium compound and a compound of a different metal element.
  • the compound of the different metal element an oxide, hydrated oxide, chloride, carbonate, nitrate, sulfate, or the like of the different metal element is appropriately selected according to the methods (A) and (B).
  • this invention is an electrode active material, Comprising:
  • the said lithium titanate is characterized by the above-mentioned.
  • the present invention is an electricity storage device, wherein an electrode including the electrode active material is used.
  • the electricity storage device include a lithium battery, a lithium capacitor, and the like, which are composed of an electrode, a counter electrode, a separator, and an electrolytic solution.
  • the electrode is appropriately added with a conductive material and a binder in the electrode active material. It is obtained by molding or applying to the electrode plate.
  • the conductive material include carbon-containing materials such as carbon black, acetylene black, and ketjen black.
  • the binder examples include fluorine resins such as polytetrafluoroethylene, polyvinylidene fluoride, and fluorine rubber, and styrene butadiene rubber. And water-soluble resins such as carboxymethyl cellulose and polyacrylic acid.
  • the electrode active material can be used as a positive electrode, and a lithium-containing metal, lithium alloy, or a carbon-containing material such as graphite can be used as a counter electrode.
  • the electrode active material is used as a negative electrode, and a lithium / transition metal composite oxide such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, a lithium / nickel composite oxide, a lithium / vanadine composite oxide, Olivine type compounds such as lithium, iron, and complex phosphate compounds can be used.
  • a lithium / transition metal composite oxide such as a lithium / manganese composite oxide, a lithium / cobalt composite oxide, a lithium / nickel composite oxide, a lithium / vanadine composite oxide, Olivine type compounds such as lithium, iron, and complex phosphate compounds
  • a capacitor an asymmetric capacitor using the electrode active material and a carbon-containing material such as graphite or activated carbon can be used.
  • a porous polyethylene film or the like is used, and for the electrolyte, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ⁇ -butyl lactone, 1,2-dimethoxyethane, etc.
  • Conventional materials such as those obtained by dissolving lithium salts such as LiPF 6 , LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , and LiBF 4 in the above solvent can be used.
  • the present invention is another power storage device, characterized in that an electrode including the electrode active material and not including a conductive material is used. Since lithium titanate has insulating properties, conventionally, it has been difficult to obtain charge / discharge capacity unless a conductive material such as a carbon-containing material such as carbon black, acetylene black, or ketjen black is used in combination. In the electricity storage device of the invention, a practically sufficient charge / discharge capacity can be obtained without using a conductive material. Moreover, this electricity storage device has excellent rate characteristics.
  • the term “electrode does not contain a conductive material” means not only that the conductive material is not blended with the electrode, but also that lithium titanate does not contain a conductive material such as carbon inside or on the surface. Also includes states.
  • the above-mentioned materials can be used as the electrode active material, binder, electrolyte solution and the like used for the counter electrode of this electrode.
  • Example 1 (Production method of (1)) To 340 ml of 4.5 mol / liter lithium hydroxide aqueous solution, crystalline titanium dioxide particles (a) (anatase type) having an average particle diameter of 0.10 ⁇ m and crystalline titanium dioxide particles having an average particle diameter of 0.07 ⁇ m ( b) 50 g of (anatase type and rutile type mixed crystal) was added and dispersed.
  • the liquid temperature was kept at 80 ° C., and 650 ml of an aqueous slurry in which 50 g of titanic acid compound (orthotitanic acid) was dispersed in terms of TiO 2 was added, and crystalline titanium oxide, titanic acid compound and A slurry containing a lithium compound was obtained.
  • This slurry was spray dried using a GB210-B type spray dryer (manufactured by Yamato Kagaku Co., Ltd.) under the conditions of an inlet temperature of 190 ° C. and an outlet temperature of 80 ° C. to obtain a dried granulated product. Firing was performed in the atmosphere at a temperature of 700 ° C.
  • lithium titanate (sample A) of the present invention represented by the composition formula Li 4 Ti 5 O 12 .
  • a transmission electron microscope H-7000 type and an image diffraction apparatus Luzex IIIU type both manufactured by Hitachi, Ltd. were used.
  • Example 2 (Production method of (1)) In 340 ml of 4.5 mol / liter lithium hydroxide aqueous solution, 85.7 g of crystalline titanium dioxide particles (b) (anatase type and rutile type mixed crystal) having an average particle size of 0.07 ⁇ m, and an average particle size of 21.5 g of 0.13 ⁇ m crystalline titanium dioxide particles (c) (anatase type and rutile type mixed crystal) were added and dispersed.
  • b crystalline titanium dioxide particles
  • c anatase type and rutile type mixed crystal
  • Example B lithium titanate (sample B) of the present invention represented by the composition formula Li 4 Ti 5 O 12 .
  • Example 3 (Production method of (1)) 50 g of lithium titanate (sample A) obtained in Example 1 and 2.5 g of polyethylene glycol were uniformly mixed, and the mixture was calcined at a temperature of 500 ° C. for 2 hours in a nitrogen atmosphere to obtain titanic acid of the present invention. Lithium (Sample C) was obtained. Analysis using a CHN elemental analyzer Vario ELIII type (manufactured by Elementar) revealed that sample C contained 0.80% by weight of carbon in terms of C.
  • Example 4 (Production method of (1))
  • the amount of crystalline titanium dioxide particles (a), (b) and titanic acid compound used was 53.2 g in terms of TiO 2
  • the amount of titanic acid compound aqueous slurry added was 680 ml.
  • the lithium titanate of the present invention (sample D) containing 2.1% by weight of magnesium in terms of Mg in the same manner as in Example 1 except that 8.8 g of magnesium hydroxide (containing 3.5 g as Mg) was added.
  • An ICP emission analyzer SPS-3100 type manufactured by Seiko Instruments Inc. was used for the measurement of the amount of magnesium.
  • Example 5 (Production method of (1))
  • the amount of crystalline titanium dioxide particles (a), (b) and titanic acid compound used was 54.5 g in terms of TiO 2
  • the amount of titanic acid compound aqueous slurry added was 690 ml.
  • lithium titanate (sample E) of the present invention containing aluminum was obtained in the same manner as in Example 1 except that 12.3 g of aluminum hydroxide (containing 4.1 g of Al) was added.
  • the aluminum content of Sample E was measured in the same manner as in Example 4, it was 2.3% by weight in terms of Al.
  • Example 6 (Production method of (1))
  • the amount of crystalline titanium dioxide particles (a), (b) and titanic acid compound used was 53.2 g in terms of TiO 2
  • the amount of titanic acid compound aqueous slurry added was 680 ml.
  • the lithium titanate of the present invention (sample F) containing 8.4 wt% of zirconium in terms of Zr in the same manner as in Example 1 except that 9.3 g of zirconium oxide (including 6.9 g of Zr) was added.
  • Example 7 (Production method of (2)) 125 g of crystalline titanium dioxide particles (b) having an average particle diameter of 0.07 ⁇ m were added to and dispersed in 340 ml of a 4.5 mol / liter lithium hydroxide aqueous solution. While stirring this slurry, the liquid temperature was kept at 80 ° C., and 250 ml of an aqueous slurry in which 25 g of titanic acid compound (ortho titanic acid) was dispersed in terms of TiO 2 was added, and crystalline titanium oxide, titanic acid compound and A slurry containing a lithium compound was obtained. Thereafter, the dry granulated product was prepared and fired in the same manner as in Example 1 to obtain a lithium titanate of the present invention (sample G) represented by the composition formula Li 4 Ti 5 O 12 .
  • Comparative Example 1 75 g of crystalline titanium dioxide particles (b) having an average particle size of 0.07 ⁇ m were added to and dispersed in 340 ml of a 4.5 mol / liter lithium hydroxide aqueous solution. While stirring this slurry, the liquid temperature was kept at 80 ° C., and 720 ml of an aqueous slurry in which 75 g of titanic acid compound (orthotitanic acid) was dispersed in terms of TiO 2 was added, and crystalline titanium oxide, titanic acid compound and A slurry containing a lithium compound was obtained. The subsequent preparation and firing of the dried granulated product were carried out in the same manner as in Example 1 to obtain a comparative target lithium titanate (sample H) represented by the composition formula Li 4 Ti 5 O 12 .
  • Comparative Example 2 In Comparative Example 1, the amount of crystalline titanium dioxide particles (b) used was 111.5 g, the amount of titanic acid compound (ortho titanic acid) was 38.5 g in terms of TiO 2 , and a 375 milliliter aqueous slurry was used. In the same manner as in Comparative Example 1, a comparative lithium titanate (sample I) represented by the composition formula Li 4 Ti 5 O 12 was obtained.
  • Comparative Example 3 1500 ml of an aqueous slurry in which 150 g of titanic acid compound (ortho titanic acid) is dispersed in terms of TiO 2 is added to 340 ml of 4.5 mol / liter lithium hydroxide aqueous solution, and the liquid temperature is kept at 80 ° C. while stirring. Thereby, the slurry containing a titanic acid compound and a lithium compound was obtained.
  • the subsequent dry granulated material preparation and firing were carried out in the same manner as in Example 1 to obtain a comparative target lithium titanate (sample J) represented by the composition formula Li 4 Ti 5 O 12 .
  • Examples 8-14 Lithium titanate (samples A to G) obtained in Examples 1 to 7, acetylene black powder as a conductive agent, and polyvinylidene fluoride resin as a binder were mixed at a weight ratio of 100: 5: 7. And paste in a mortar to prepare a paste. This paste was applied on an aluminum foil, dried at a temperature of 120 ° C. for 10 minutes, punched into a circle having a diameter of 12 mm, and pressed at 17 MPa to obtain a working electrode. The amount of active material contained in the electrode was 3 mg.
  • This working electrode was vacuum-dried at 120 ° C. for 4 hours, and then incorporated as a positive electrode in a sealable coin-type cell in a glove box having a dew point of ⁇ 70 ° C. or lower.
  • As the negative electrode a metal lithium having a thickness of 0.5 mm formed into a circle having a diameter of 12 mm was used.
  • As the non-aqueous electrolyte a mixed solution of ethylene carbonate and dimethyl carbonate (mixed in a volume ratio of 1: 2) in which LiPF 6 was dissolved at a concentration of 1 mol / liter was used.
  • the working electrode was placed in a lower can of a coin-type cell, a porous polypropylene film was placed thereon as a separator, and a nonaqueous electrolyte was dropped from above. Further, a negative electrode, a 0.5 mm thick spacer for adjusting the thickness, and a spring (both made of SUS316) are put thereon, and an upper can with a propylene gasket is put on the outer peripheral edge to seal and sealed.
  • An electricity storage device was obtained (samples K to Q). Each is designated as Examples 8-14.
  • Example 15 the electricity storage device of the present invention was prepared in the same manner as in Example 8 except that the paste A was prepared by mixing sample A and polyvinylidene fluoride resin at a weight ratio of 100: 7 without using acetylene black. (Sample R) was obtained.
  • Comparative Examples 4-6 In Example 8, except that the samples H to J obtained in Comparative Examples 1 to 3 were used in place of the sample A, in the same manner as in Example 8, the power storage devices (samples S to U) to be compared were used. Obtained. These are referred to as Comparative Examples 4 to 6, respectively.
  • Example 16 Lithium titanate obtained in Example 1 (sample A), acetylene black powder as a conductive agent, and polyvinylidene fluoride resin as a binder were mixed at a weight ratio of 100: 3: 10 and kneaded in a mortar. A paste was prepared. This paste was applied on an aluminum foil, dried at a temperature of 120 ° C. for 10 minutes, punched into a circle having a diameter of 12 mm, and pressed at 17 MPa to obtain a working electrode. The amount of active material contained in the electrode was 4 mg.
  • lithium manganate M01Y01: manufactured by Mitsui Kinzoku Co., Ltd.
  • acetylene black as a conductive additive
  • polyvinylidene fluoride resin as a binder at a weight ratio of 100: 10: 10
  • Application and drying were performed at a temperature of 120 ° C. for 10 minutes, cut into a circle having a diameter of 12 mm, and pressed at 17 MPa to obtain a positive electrode.
  • the amount of active material contained in the electrode was 8 mg.
  • Each of these electrodes was vacuum-dried at a temperature of 120 ° C. for 5 hours, and then incorporated into a sealable coin-type test cell in a glove box having a dew point of ⁇ 70 ° C. or less.
  • the cell for evaluation was made of stainless steel (SUS316) having an outer diameter of 20 mm and a height of 3.2 mm.
  • the lithium manganate electrode is placed in the lower can of the evaluation cell as a positive electrode, a porous polypropylene film is placed thereon as a separator, a working electrode as a negative electrode, a 1.0 mm thick spacer for adjusting the thickness, and a spring.
  • Comparative Example 7 In Example 16, a comparative power storage device (Sample W) was obtained in the same manner as in Example 16 except that Sample J obtained in Comparative Example 3 was used instead of Sample A. This is referred to as Comparative Example 7.
  • Evaluation 1 Measurement of nitrogen adsorption / desorption amount
  • the nitrogen adsorption / desorption amount of the lithium titanates (samples A to G, J) obtained in Examples 1 to 7 and Comparative Example 3 was determined using a highly accurate fully automatic gas adsorption amount (BELSORP). -MiniII type: manufactured by Nippon Bell Co., Ltd.). About 1 g of the sample was taken in a measurement cell that had been vacuum degassed for about one day, and subjected to vacuum degassing for 3 hours at a temperature of 150 ° C.
  • FIG. 1 The adsorption / desorption isotherm of Sample A is shown in FIG. 1
  • ADS is an adsorption isotherm
  • DES is a desorption isotherm
  • p / p0 is a relative pressure
  • V a is an adsorption amount
  • V d is a desorption amount.
  • Respective nitrogen adsorption amounts (V a (0.99) , V a (0.50) ) at relative pressures of 0.99 and 0.50, with a relative pressure of 0.05 interval, a range of 0.45 to 0.90
  • Table 1 shows the difference ( ⁇ V d ⁇ a (p) ) between the nitrogen desorption amount and the nitrogen adsorption amount when measured by the above method. It can be seen that all of the lithium titanates of the present invention have V a (0.99) of 50 cm 3 (STP) / g or more and have macropores on the secondary particle surfaces.
  • V a (0.50) is 10 cm 3 (STP) / g or less, and ⁇ V d ⁇ a (p) does not continuously take a value of 5 cm 3 (STP) / g or more, resulting in hysteresis. It can be seen that it has almost no mesopores or micropores.
  • Evaluation 2 Evaluation of rate characteristics of power storage device using lithium titanate as positive electrode active material
  • the power storage devices (samples K to U) obtained in Examples 8 to 15 and Comparative Examples 4 to 6 were subjected to various current amounts.
  • the discharge capacity was measured and the capacity retention rate (%) was calculated.
  • the measurement was performed by setting the voltage range to 1 to 3 V, the charging current to 0.25 C, and the discharging current to 0.25 C to 30 C.
  • the environmental temperature was 25 ° C.
  • the capacity retention rate is (X n / X 0.25 ) ⁇ 100, where X 0.25 is the measured value of the discharge capacity at 0.25 C and X n is the measured value in the range of 0.5 C to 30 C. Calculated by the formula.
  • 1 C means a current value that can be fully charged in one hour
  • 0.48 mA corresponds to 1 C in this evaluation.
  • Table 2 The results are shown in Table 2. It can be seen that all of the electricity storage devices of the present invention have a capacity retention rate of 30% or more at 30 C and excellent rate characteristics.
  • the electricity storage device of the present invention that does not contain a conductive material has excellent rate characteristics equivalent to those of an electricity storage device containing a conductive material.
  • Evaluation 3 Evaluation of rate characteristics of an electricity storage device using lithium titanate as a negative electrode active material
  • the discharge capacity was varied with various charge current amounts.
  • the capacity retention rate (%) was calculated by measurement. The measurement was performed after aging for 3 hours after producing the electricity storage device, and after charging and discharging at 0.25 C for 2 cycles and conditioning, the voltage range was 1.5 to 2.8 V, and the discharge current was 0.25 C.
  • the charging current was set in the range of 0.25 C to 10 C.
  • the environmental temperature was 25 ° C.
  • the capacity retention rate is (X n / X 0.25 ) ⁇ 100, where X 0.25 is the measured value of discharge capacity at 0.25 C charge, and X n is the measured value in the range of 0.5 C to 10 C. It was calculated by the following formula. Here, 1C means a current value that can be fully charged in 1 hour, and 0.64 mA corresponds to 1C in this evaluation. The results are shown in Table 3. It can be seen that the electricity storage device of the present invention has a capacity retention rate of 10% or more at 10 C and is excellent in rate characteristics even when used as a negative electrode active material.
  • the lithium titanate of the present invention has excellent battery characteristics, particularly rate characteristics, and is useful for power storage devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 チタン酸リチウムを、一次粒子が集合した二次粒子とし、二次粒子表面に少なくともマクロポアを付与することによってレート特性に優れ、蓄電デバイスに有用なチタン酸リチウムを提供する。 このようなチタン酸リチウムは、結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒した後、焼成してチタン酸リチウム二次粒子を得る方法において、(1)平均粒子径の異なる少なくとも2種の結晶性酸化チタン粒子を含む結晶性酸化チタンを用いる、及び/又は(2)結晶性酸化チタンをチタン酸化合物に対しTiO換算の重量比で4倍より多い量で用いる方法によって得られる。 このチタン酸リチウムは、本来、チタン酸リチウムが絶縁性であるにもかかわらず、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素含有物質を導電材として併用せずに蓄電デバイスに用いても、実用上、十分な充放電容量が得られる。

Description

チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス
 本発明は、電池特性、特にレート特性に優れたチタン酸リチウム及びその製造方法に関する。また、前記チタン酸リチウムを含む電極活物質、それを含む電極を用いた蓄電デバイスに関する。
 リチウム二次電池は、高エネルギー密度で、且つサイクル特性に優れていることから、近年、携帯機器電源等の小型電池に急速に普及しており、一方、電力産業用や自動車用等の大型電池にも展開が望まれている。これら大型リチウム二次電池の電極活物質には、長期信頼性や高入出力特性が求められ、特に負極活物質には、安全性と寿命に優れ、レート特性にも優れたチタン酸リチウムが有望視され、電極活物質用に種々のチタン酸リチウムが提案されている。例えば、球状二次粒子に造粒して充填性を改良し、電池特性を向上させたチタン酸リチウムが知られている(特許文献1、2)。このようなチタン酸リチウム二次粒子は、チタン化合物とリチウム化合物を乾燥造粒後、焼成して製造されており、更に、チタン酸リチウム二次粒子の放電容量を改良するために、結晶性チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒後、加熱焼成する方法において、50℃以上に予熱したリチウム化合物の溶液に、結晶性酸化チタンとチタン酸化合物を添加して前記スラリーを調製する方法(特許文献3)や、前記スラリーの調製を45℃より低い温度で行なう方法(特許文献4)等も用いられている。一方、チタン酸リチウムを粉砕、再焼成することで、チタン酸リチウムの粒子表面に、平均細孔径が50~500Åの範囲にある細孔を付与し、大電流特性やサイクル特性を向上させる技術も知られている(特許文献5)。
特開2001-192208号公報 特開2002-211925号公報 特開2005-239460号公報 特開2005-239461号公報 特開2007-18883号公報
 本発明は、電池特性、特にレート特性に優れたチタン酸リチウム及びその製造方法を提供する。
 本発明者らは、鋭意研究を重ねた結果、表面に少なくともマクロポアを有するチタン酸リチウムの二次粒子は、一層レート特性に優れること、このようなチタン酸リチウムは、前記の結晶性チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒後、焼成してチタン酸リチウムの二次粒子を得る方法において、結晶性酸化チタンに特定の2種以上の粒子を用いるか、結晶性酸化チタンとチタン酸化合物を特定の配合比とすることによって得られることを見出し、本発明を完成させた。
 即ち、本発明は、チタン酸リチウムの一次粒子が集合した二次粒子を含み、二次粒子表面に少なくともマクロポアを有するチタン酸リチウムであり、結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒した後、焼成してチタン酸リチウム二次粒子を得る方法において、(1)平均粒子径の異なる少なくとも2種の結晶性酸化チタン粒子を含む結晶性酸化チタンを用いる、及び/又は(2)結晶性酸化チタンをチタン酸化合物に対しTiO換算の重量比で4倍より多い量で用いる、チタン酸リチウムの製造方法である。
 本発明のチタン酸リチウムを電極活物質に用いた蓄電デバイスは、電池特性、特にレート特性が優れたものとなる。
図1は、実施例1(試料A)の吸脱着等温線である。
 本発明は、チタン酸リチウムであって、チタン酸リチウムの一次粒子が集合した二次粒子を含み、二次粒子表面に少なくともマクロポアを有することを特徴とする。本発明では、チタン酸リチウムを二次粒子としているので、粒子表面に凹凸や一次粒子間の空隙が形成され、電解液との接触面積が大きくなり、リチウムイオンの吸脱着量が多くすることができる。しかも、この二次粒子表面の凹凸、一次粒子間の空隙等がマクロポア、即ち、細孔径が50nm以上の細孔を形成しているので、細孔径が2nm以下のマクロポアや、細孔径が2~50nmのメソポアを有しているものと比べ、リチウムイオンの吸脱着に負荷が掛かり難く、このため、優れたレート特性が得られるものと推測される。粉体の細孔径は、一般的に、窒素吸着法で求めた窒素の吸脱着等温線をHK法、BJH法等で解析して細孔分布を求め、細孔分布から算出した全細孔容積と、比表面積の測定値とから求められる。しかし、これらの方法では、マイクロポア、メソポアの細孔径は比較的正確に測定できるものの、マクロポアの細孔径の測定値は、精度が非常に低いと言われている。一方で、該吸脱着等温線において、高圧の相対圧での窒素吸着量が高ければ、マクロポアの存在を示していると言われており、本発明では、相対圧0.99での窒素吸着量(Va(0.99)とする)が50cm(STP)/g以上である場合、マクロポアを有しているとする。尚、本発明における「cm(STP)/g」とは、窒素吸脱着量を標準状態(温度0℃、気圧101.3KPa)の体積に換算した値である。Va(0.99)は、少なくとも55cm(STP)/gであればより好ましい。
 更に、二次粒子表面にマイクロポア、メソポアがほとんど存在しなければ、リチウムイオンの吸脱着に一層負荷が掛かり難く、レート特性に有利である。メソポア、マイクロポアがほとんど存在しないことは、該吸脱着等温線において、低圧の相対圧での窒素吸着量が低く、しかも、吸着等温線と脱着等温線の形状に著しい相違が生じない、即ち、ヒステリシスが生じていないことによって示されると言われている。ヒステリシスが生じないことは、例えば、相対圧を0.05間隔とし、0.45~0.90の範囲で測定した際の窒素脱着量と窒素吸着量との差(ΔVd-aとする)が、非常に小さいことで、具体的に表すことができる。そして、本発明では、相対圧0.50での窒素吸着量(Va(0.50)とする)が10cm(STP)/g以下にあり、且つ、ΔVd-aが連続的に、すなわち2以上の連続する上記の測定点のそれぞれで5cm(STP)/g以上の値を取らない場合、マイクロポア、メソポアを有していないとする。Va(0.50)は、8cm(STP)/g以下にあれば更に好ましく、ΔVd-aは、連続的に3cm(STP)/g以上の値を取らなければ更に好ましい。
 二次粒子の平均粒子径(レーザー散乱法による50%メジアン径)は、充填性の点で、0.5~100μmの範囲が好ましい。また、二次粒子の粒子形状は、電池特性上、等方性であるのが好ましく、球状又は多面体状であるのが更に好ましい。二次粒子を構成する一次粒子には、特に制限は無いが、平均粒子径(電子顕微鏡法による50%メジアン径)が0.01~2.0μmの範囲にあれば、前記範囲の二次粒子径が得られ易いので好ましく、粒子形状が球状、多面体状等の等方性形状であれば、等方性形状の二次粒子が得られ易いので好ましい。この二次粒子は、一次粒子同士が強固に結合した状態にあり、ファンデルワース力等の粒子間の相互作用で凝集したり、機械的に圧密化されたものではなく、工業的に用いられる通常の機械的粉砕では容易に崩壊せず、ほとんどが二次粒子として残るものである。
 本発明のチタン酸リチウムは、組成式LiTi4で表されるものが好ましく、チタン酸リチウムの単一相であれば更に好ましい。しかし、本発明の効果を損なわない範囲であるなら、若干の酸化チタンが混合していても良い。前記一般式中のx、yの値は、x/yの値で表して0.5~2の範囲が好ましく、組成式LiTi12で表されるスピネル型のものが特に好ましい。
 本発明では、二次粒子の粒子表面に、シリカ、アルミナ等の無機化合物、界面活性剤、カップリング剤等の有機化合物から選ばれる少なくとも1種を被覆しても良い。これらの被覆種は、1種を担持することも、2種以上を複数の担持層として積層することも、2種以上を混合物や複合化物として担持させることもできる。
 あるいは、チタン酸リチウム二次粒子の内部や表面に、炭素を含ませることもできる。炭素を含ませると、電気伝導性が良くなるので好ましく、炭素量は、C換算で0.05~30重量%の範囲が好ましい。この範囲より少ないと所望の電気伝導性が得られず、多いと電極内の非活物質成分が増えることで、電池容量が低下し好ましくない。より好ましい炭素量は、0.1~15重量%の範囲である。尚、炭素量は、CHN分析法、高周波燃焼法等により分析できる。
 また、二次粒子にチタン、リチウム以外の異種金属元素を含ませることもできる。異種金属元素は、マグネシウム、アルミニウム、ジルコニウム等であれば好ましく、これらの中の1種又は2種以上を用いることができる。異種金属元素量は、Mg、Al、Zr換算で0.05~15重量%の範囲が好ましい。より好ましくは、Al、Mgは0.05~10重量%の範囲であり、Zrは0.1~10重量%の範囲である。また、Al、Mgについては、0.1~5重量%の範囲が一層好ましい。尚、異種金属元素量は、例えば、誘導結合プラズマ(ICP)法により分析できる。
 次に、本発明は、チタン酸リチウムの製造方法であって、結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒した後、焼成してチタン酸リチウム二次粒子を得る方法において、(1)平均粒子径の異なる少なくとも2種の結晶性酸化チタン粒子を含む結晶性酸化チタンを用いる(以下、(1)の製法という場合がある)、及び/又は(2)結晶性酸化チタンをチタン酸化合物に対しTiO換算の重量比で4倍より多い量で用いる(以下、(2)の製法という場合がある)ことを特徴とする。
 本発明においては、先ず、結晶性酸化チタン、チタン酸化合物、リチウム化合物等の出発物質を、媒液に添加し、これらを含むスラリーを調製する。スラリー中のチタン成分の濃度は、TiO換算で120~300g/リットルの範囲であると工業的に有利で好ましく、150~250g/リットルの範囲であれば更に好ましい。媒液には、水又はアルコール等の有機溶媒、あるいはそれらの混合物を用いることができ、工業的には水又は水を主成分とする水性媒液を用いるのが好ましい。媒液に、それぞれの出発物質を添加する順序に制限は無いが、予め媒液にリチウム化合物を添加した後、結晶性酸化チタン、チタン酸化合物を添加すると、スラリーの増粘やゲル化が生じ難いので好ましい。リチウム化合物を含む媒液の温度は、25~100℃の温度の範囲であると、スラリーの調製段階でチタン酸化合物とリチウム化合物の反応が進み、焼成時にチタン酸リチウムが得られ易いので好ましく、50~100℃の範囲であれば更に好ましい。結晶性酸化チタンとチタン酸化合物は、リチウム化合物を含む媒液に、別々に添加しても、並行添加しても、混合物にして添加しても良い。
 リチウム化合物には、反応を水又は水を主成分とする水性媒液中で行なう場合は、水酸化リチウム、炭酸リチウム、硝酸リチウム、硫酸リチウム等の水溶性リチウム化合物を用いるのが好ましい。中でも、反応性の高い水酸化リチウムが好ましい。
 チタン酸化合物としては、TiO(OH)またはTiO・HOで表されるメタチタン酸、Ti(OH)またはTiO・2HOで表されるオルトチタン酸、あるいはそれらの混合物などを用いることができる。チタン酸化合物は加水分解性チタン化合物の加熱加水分解や中和加水分解により得られ、例えば、メタチタン酸は硫酸チタニル(TiOSO)の加熱加水分解、塩化チタンの高温下での中和加水分解等で、オルトチタン酸は硫酸チタン(Ti(SO)、塩化チタン(TiCl)の低温下での中和加水分解で、また、メタチタン酸とオルトチタン酸の混合物は塩化チタンの中和加水分解温度を適宜制御することで得られる。中和加水分解に用いる中和剤としては、アンモニア、炭酸アンモニウム、硫酸アンモニウム、硝酸アンモニウムなどアンモニウム化合物を用いれば、焼成時に分解、揮散させることができる。チタン化合物としては前記の硫酸チタン、硫酸チタニル、塩化チタンなどの無機系のもの以外に、チタンアルコキシドのような有機系のものも用いても良い。
 結晶性酸化チタンは、組成式TiO2で表される二酸化チタンを用いるのが好ましく、二酸化チタンの結晶形は、アナターゼ型、ルチル型、ブルッカイト型等を制限無く用いることができる。また、結晶性酸化チタンには、単一の結晶形を有していても、2種以上の結晶形を含む混晶であっても良く、非晶質を一部含んでいても良い。結晶性酸化チタンに含まれる結晶性酸化チタン粒子の平均粒子径が、0.01~0.4μmの範囲であれば、高濃度にしてもスラリーの粘度が高くなり難いので好ましい。結晶性酸化チタンは、公知の二酸化チタン顔料の製造方法によって、例えば、硫酸チタニルを加熱加水分解・焼成する所謂硫酸法、四塩化チタンを気相酸化する所謂塩素法等によって得ることができる。
 前記(1)の方法において、平均粒子径が異なる結晶性酸化チタン粒子は、2種あるいは3種以上を用いることができ、平均粒子径が最小である結晶性酸化チタン粒子に対し、他の結晶性酸化チタン粒子が1.3倍以上、好ましくは1.3倍以上、40倍以下、より好ましくは1.3倍以上、10倍以下、更に好ましくは1.3倍以上、3.5倍以下の平均粒子径を有していれば、本発明の効果が得られ易く好ましい。それぞれの粒子の結晶形は、同種であっても異種であっても良い。平均粒子径は電子顕微鏡法による50%メジアン径であり、平均粒子径が最小である結晶性酸化チタン粒子の好ましい平均粒子径は、0.01~0.20μmである。他の結晶性酸化チタン粒子の平均粒子径は、最小のものの平均粒子径に応じて、二次粒子に造粒することによって適宜調整できる。あるいは、結晶性酸化チタンの一次粒子を用いるのであれば、その平均粒子径は、0.05~0.40μmの範囲が好ましい。また、平均粒子径が最小である結晶性酸化チタンの重量に対し、1.3倍以上の平均粒子径を有する結晶性酸化チタンの重量は、0.1~5倍量の範囲である。1.3倍以上の平均粒子径を有する結晶性酸化チタンが複数、存在する場合は、その合計重量を基準とする。結晶性酸化チタン粒子の使用量は、これらの合計量がチタン酸化合物に対し、TiO換算の重量比で、1~10倍量の範囲であれば、工業的に有利にチタン酸リチウムを製造できるので好ましい。
 前記(2)の方法においては、結晶性酸化チタンの使用量は、チタン酸化合物に対して4倍量より多く、好ましくは4.2倍以上であれば、特に上限は無いが、10倍量以下とすると、スラリー粘度が乾燥造粒に適したものとなるので好ましい。結晶性酸化チタンは、1種の結晶性酸化チタン粒子であっても、平均粒子径や、結晶形の異なる2種以上の結晶性酸化チタン粒子であっても良い。
 前記スラリーを乾燥造粒した後、焼成してチタン酸リチウムを得る。乾燥造粒の方法には公知の方法を用いることができ、例えば、(A)スラリーを噴霧乾燥し、二次粒子に造粒する方法、(B)スラリー中に含まれる固形分を固液分離、乾燥後、粉砕して、所望の大きさの二次粒子に造粒する方法等が挙げられる。特に、(A)の方法は、粒子径の制御が容易であり、球状二次粒子が得られ易いので好ましい。噴霧乾燥に用いる噴霧乾燥機は、ディスク式、圧力ノズル式、二流体ノズル式、四流体ノズル式等、スラリーの性状や処理能力に応じて、適宜選択することができる。二次粒子径の制御は、例えば、スラリー中の固形分濃度を調整したり、あるいは、上記のディスク式ならディスクの回転数を、圧力ノズル式、二流体ノズル式、四流体ノズル式等ならば、噴霧圧やノズル径、各流体の流量を調整する等して、噴霧される液滴の大きさを制御することにより行える。スラリーの濃度、粘度等の性状は、噴霧乾燥機の能力に応じて適宜設定する。
 スラリーの粘度が低く、造粒し難い場合や、粒子径の制御を更に容易にするために、有機系バインダーを用いても良い。用いる有機系バインダーとしては、例えば、(1)ビニル系化合物(ポリビニルアルコール、ポリビニルピロリドン等)、(2)セルロース系化合物(ヒドロキシエチルセルロース、カルボキシメチルセルロース、メチルセルロース、エチルセルロース等)、(3)タンパク質系化合物(ゼラチン、アラビアゴム、カゼイン、カゼイン酸ソーダ、カゼイン酸アンモニウム等)、(4)アクリル酸系化合物(ポリアクリル酸ソーダ、ポリアクリル酸アンモニウム等)、(5)天然高分子化合物(デンプン、デキストリン、寒天、アルギン酸ソーダ等)、(6)合成高分子化合物(ポリエチレングリコール等)等が挙げられ、これらから選ばれる少なくとも1種を用いることができる。中でも、ソーダ等の無機成分を含まないものは、焼成により分解、揮散し易いので更に好ましい。
 焼成温度としては、焼成雰囲気などにより異なるが、チタン酸リチウムを生成するためには、概ね550℃以上でよく、二次粒子間の焼結を防ぐため、1000℃以下とするのが好ましい。LiTi12の生成促進とレート特性の向上の点から、より好ましい焼成温度は、550~850℃の範囲であり、650~850℃の範囲であれば更に好ましい。焼成雰囲気としては、大気中、非酸化性雰囲気等を適宜選択できる。焼成後、得られたチタン酸リチウム二次粒子同士が焼結、凝集していれば、必要に応じてフレーククラッシャ、ハンマミル、ピンミル、バンタムミル、ジェットミルなどを用いて粉砕しても良い。
 本発明では、チタン酸リチウム二次粒子に、更に、炭素を含ませる工程が含まれていても良い。炭素を含ませる具体的な方法としては、(A)結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒して焼成した後、得られた焼成物を炭素含有物質の存在下で再度焼成する方法、(B)結晶性酸化チタン、チタン酸化合物、リチウム化合物及び炭素含有物質を含むスラリーを乾燥造粒して焼成する方法等が挙げられる。炭素含有物質の焼成温度は、(A)の場合は、150~1000℃の範囲が好ましく、(B)の場合は、チタン酸リチウムを生成させ易い550~1000℃の範囲とするのが好ましい。焼成雰囲気としては、大気中、非酸化性雰囲気等を適宜選択できるが、非酸化性雰囲気下で行うのが好ましい。
 炭素含有物質としては、カーボンブラック、アセチレンブラック、ケッチェンブラックや、有機化合物が挙げられ、有機化合物は、予め加熱して加熱分解してから用いても良い。有機化合物を用いる場合、炭素以外の成分が残留し難い炭化水素化合物及び/又は酸素含有炭化水素化合物が好ましい。炭化水素化合物としては、例えば、(イ)アルカン系化合物(メタン、エタン、プロパン等)、(ロ)アルケン系化合物(エチレン、プロピレン等)、(ハ)アルキン系化合物(アセチレン等)、(ニ)シクロアルカン系化合物(シクロヘキサン等)、(ホ)芳香族系化合物(ベンゼン、トルエン、キシレン等)等が挙げられる。酸素含有炭化水素化合物としては、例えば、(イ)アルコール系化合物((a)1価アルコール(メタノール、エタノール、プロパノール等)、(b)2価アルコール(エチレングリコール等)、(c)3価アルコール(トリメチロールエタン、トリメチロールプロパン等)、(d)ポリアルコール(ポリビニルアルコール等)等)、(ロ)エーテル系化合物((a)エーテルモノマー(ジエチルエーテル、エチルメチルエーテル等)、(b)ポリエーテル(ポリエチレングリコール、ポリエチレンオキシド、ポリプロピレンエーテル等)等、(ハ)カルボン酸系化合物((a)オキシカルボン酸(クエン酸、リンゴ酸等)、(b)モノカルボン酸(酢酸、ギ酸等)、(c)ジカルボン酸(シュウ酸、マロン酸等)、(d)芳香族カルボン酸(安息香酸等)等)、(ニ)アルデヒド系化合物(ホルムアルデヒド、アセトアルデヒド等)、(ホ)フェノール系化合物(フェノール、カテコール、ピロガロール等)、(へ)糖類(グルコーズ、スクロース、セルロース等)等が挙げられる。乾燥造粒を噴霧乾燥で行なう場合、有機化合物には、例えば、ポリアルコール、ポリエーテル等バインダーとなる化合物を選択することもできる。
 また、チタン酸リチウム二次粒子に、チタン、リチウム以外の異種金属元素を含ませる工程を設けることもできる。異種金属元素を二次粒子に含ませる具体的な方法としては、(A)結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーに異種金属元素の化合物を添加する方法、(B)異種金属元素を含む結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒して焼成する方法等が挙げられる。(A)の方法では、異種金属元素の化合物は、予め、結晶性酸化チタンやチタン酸化合物に混合しておくことができ、結晶性酸化チタンであれば、その粒子表面に異種金属元素の化合物を被覆することで混合物を得ても良く、チタン酸化合物の場合は、異種金属元素の化合物の存在下で、加水分解性チタン化合物の加水分解を行って、混合物を得ても良い。(B)の方法で用いる異種金属元素を含む結晶性酸化チタンは、チタン化合物と異種金属元素の化合物を混合し焼成することで得られる。異種金属元素の化合物は、(A)、(B)の方法に応じて、異種金属元素の酸化物、含水酸化物、塩化物、炭酸塩、硝酸塩、硫酸塩等を適宜選択する。
 次に、本発明は電極活物質であって、前記チタン酸リチウムを含むことを特徴とする。また、本発明は、蓄電デバイスであって、前記電極活物質を含む電極を用いたことを特徴とする。蓄電デバイスとしては、具体的には、リチウム電池、リチウムキャパシタ等が挙げられ、これらは電極、対極及びセパレーターと電解液とからなり、電極は、前記電極活物質に導電材とバインダーを加え、適宜成形または極板に塗布して得られる。導電材としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素含有物質が、バインダーとしては、例えば、ポリ四フッ化エチレン、ポリフッ化ビニリデン、フッ素ゴム等のフッ素樹脂や、スチレンブタジエンゴム等のゴム系バインダー、カルボキシメチルセルロース、ポリアクリル酸等の水溶性樹脂が挙げられる。リチウム電池の場合、前記電極活物質を正極に用い、対極として金属リチウム、リチウム合金など、または黒鉛等の炭素含有物質を用いることができる。あるいは、前記電極活物質を負極として用い、正極にリチウム・マンガン複合酸化物、リチウム・コバルト複合酸化物、リチウム・ニッケル複合酸化物、リチウム・バナジン複合酸化物等のリチウム・遷移金属複合酸化物、リチウム・鉄・複合リン酸化合物等のオリビン型化合物等を用いることができる。キャパシタの場合は、前記電極活物質と、黒鉛や活性炭等の炭素含有物質を用いた非対称型キャパシタとすることができる。セパレーターには、いずれにも、多孔性ポリエチレンフィルムなどが用いられ、電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ‐ブチルラクトン、1,2-ジメトキシエタンなどの溶媒にLiPF6、LiClO4、LiCF3SO3、LiN(CF3SO22、LiBF4等のリチウム塩を溶解させたものなど常用の材料を用いることができる。
 更に、本発明は、他の蓄電デバイスであって、前記の電極活物質を含み、且つ導電材を含まない電極を用いたことを特徴とする。チタン酸リチウムは絶縁性を有するので、従来は、何らかの、例えばカーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素含有物質などの導電材を併用しないと、充放電容量が得られ難かったが、本発明の蓄電デバイスでは、導電材を用いなくても、実用上、十分な充放電容量が得られる。また、この蓄電デバイスは、優れたレート特性を有している。尚、本発明において、電極が「導電材を含まない」とは、単に導電材が電極に配合されていない状態ばかりでなく、チタン酸リチウムがその内部や表面に炭素などの導電材を含まない状態も包含する。この電極の対極に用いる電極活物質や、バインダー、電解液等は、前記のものを用いることができる。
 以下に本発明の実施例を示すが、これらは本発明を限定するものではない。
実施例1((1)の製法)
 4.5モル/リットルの水酸化リチウム水溶液340ミリリットルに、平均粒子径が0.10μmの結晶性二酸化チタン粒子(a)(アナターゼ型)及び平均粒子径が0.07μmの結晶性二酸化チタン粒子(b)(アナターゼ型とルチル型の混晶)を、それぞれ50gを添加し分散させた。このスラリーを撹拌しながら液温を80℃に保ち、チタン酸化合物(オルトチタン酸)を、TiO2換算で50g分散させた水性スラリー650ミリリットルを添加して、結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを得た。このスラリーをGB210-B型噴霧乾燥機(ヤマト科学社製)を用いて、入口温度190℃、出口温度80℃の条件で噴霧乾燥を行い乾燥造粒物を得た後、乾燥造粒物を大気中700℃の温度で3時間焼成を行い、組成式LiTi12で表される、本発明のチタン酸リチウム(試料A)を得た。尚、結晶性二酸化チタン粒子の平均粒子径の測定には、透過電子顕微鏡H-7000型及び画像回折装置ルーゼックスIIIU型(いずれも日立製作所製)を用いた。
実施例2((1)の製法)
 4.5モル/リットルの水酸化リチウム水溶液340ミリリットルに、平均粒子径が0.07μmの結晶性二酸化チタン粒子(b)(アナターゼ型とルチル型の混晶)85.7gと、平均粒子径が0.13μmの結晶性二酸化チタン粒子(c)(アナターゼ型とルチル型の混晶)21.5gを添加し分散させた。このスラリーを撹拌しながら液温を80℃に保ち、チタン酸化合物(オルトチタン酸)を、TiO2換算で42.9g分散させた水性スラリー420ミリリットルを添加して、結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを得た。その後の乾燥造粒物の調製及び焼成は、実施例1と同様にして、組成式LiTi12で表される、本発明のチタン酸リチウム(試料B)を得た。
実施例3((1)の製法)
 実施例1で得られたチタン酸リチウム(試料A)50gとポリエチレングリコール2.5gを均一に混合し、窒素雰囲気下で、混合物を500℃の温度で2時間焼成して、本発明のチタン酸リチウム(試料C)を得た。CHN元素分析装置Vario ELIII型(Elementar社製)で分析したところ、試料Cには、C換算で炭素が0.80重量%含まれていることが判った。
実施例4((1)の製法)
 実施例1において、結晶性二酸化チタン粒子(a)、(b)及びチタン酸化合物の使用量を、TiO2換算でそれぞれ53.2gとし、チタン酸化合物の水性スラリーの添加量を680ミリリットルとして、更に、水酸化マグネシウム8.8g(Mgとして3.5g含む)を添加した以外は実施例1と同様にして、マグネシウムをMg換算で2.1重量%含む、本発明のチタン酸リチウム(試料D)を得た。マグネシウム量の測定には、ICP発光分析装置SPS-3100型(セイコーインスツル社製)を用いた。
実施例5((1)の製法)
 実施例1において、結晶性二酸化チタン粒子(a)、(b)及びチタン酸化合物の使用量を、TiO2換算でそれぞれ54.5gとし、チタン酸化合物の水性スラリーの添加量を690ミリリットルとして、更に、水酸化アルミニウム12.3g(Alとし4.1g含む)を添加した以外は実施例1と同様にして、アルミニウムを含む、本発明のチタン酸リチウム(試料E)を得た。試料Eのアルミニウムの含有量を、実施例4と同様に測定したところ、Al換算で2.3重量%であった。
実施例6((1)の製法)
 実施例1において、結晶性二酸化チタン粒子(a)、(b)及びチタン酸化合物の使用量を、TiO2換算でそれぞれ53.2gとし、チタン酸化合物の水性スラリーの添加量を680ミリリットルとして、更に、酸化ジルコニウム9.3g(Zrとし6.9g含む)を添加した以外は実施例1と同様にして、ジルコニウムをZr換算で8.4重量%含む、本発明のチタン酸リチウム(試料F)を得た。
実施例7((2)の製法)
 4.5モル/リットルの水酸化リチウム水溶液340ミリリットルに、平均粒子径が0.07μmの結晶性二酸化チタン粒子(b)125gを添加し分散させた。このスラリーを撹拌しながら液温を80℃に保ち、チタン酸化合物(オルトチタン酸)を、TiO2換算で25g分散させた水性スラリー250ミリリットルを添加して、結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを得た。その後の乾燥造粒物の調製及び焼成は、実施例1と同様にして、組成式LiTi12で表される、本発明のチタン酸リチウム(試料G)を得た。
比較例1
 4.5モル/リットルの水酸化リチウム水溶液340ミリリットルに、平均粒子径が0.07μmの結晶性二酸化チタン粒子(b)75gを添加し分散させた。このスラリーを撹拌しながら液温を80℃に保ち、チタン酸化合物(オルトチタン酸)を、TiO2換算で75g分散させた水性スラリー720ミリリットルを添加して、結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを得た。その後の乾燥造粒物の調製及び焼成は、実施例1と同様にして、組成式LiTi12で表される、比較対象のチタン酸リチウム(試料H)を得た。
比較例2
 比較例1において、結晶性二酸化チタン粒子(b)の使用量を111.5g、チタン酸化合物(オルトチタン酸)の使用量をTiO2換算で38.5gとして、375ミリリッの水性スラリーとした以外は、比較例1と同様にして、組成式LiTi12で表される、比較対象のチタン酸リチウム(試料I)を得た。
比較例3
 4.5モル/リットルの水酸化リチウム水溶液340ミリリットルに、チタン酸化合物(オルトチタン酸)を、TiO換算で150g分散させた水性スラリー1500ミリリットル添加し、撹拌しながら液温を80℃に保つことで、チタン酸化合物及びリチウム化合物を含むスラリーを得た。その後の乾燥造粒物の調製及び焼成は、実施例1と同様にして、組成式LiTi12で表される、比較対象のチタン酸リチウム(試料J)を得た。
実施例8~14
 実施例1~7で得られたチタン酸リチウム(試料A~G)と、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリフッ化ビニリデン樹脂を重量比で100:5:7で混合し、乳鉢で練り合わせ、ペーストを調製した。このペーストをアルミ箔上に塗布し、120℃の温度で10分乾燥した後、直径12mmの円形に打ち抜き、17MPaでプレスして作用極とした。電極中に含まれる活物質量は、3mgであった。
 この作用極を120℃の温度で4時間真空乾燥した後、露点-70℃以下のグローブボックス中で、密閉可能なコイン型セルに正極として組み込んだ。コイン型セルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。負極には厚み0.5mmの金属リチウムを直径12mmの円形に成形したものを用いた。非水電解液として1モル/リットルとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を用いた。
 作用極はコイン型セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、その上から非水電解液を滴下した。さらにその上に負極と、厚み調整用の0.5mm厚スペーサー及びスプリング(いずれもSUS316製)をのせ、プロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封し、本発明の蓄電デバイスを得た(試料K~Q)。それぞれを、実施例8~14とする。
実施例15
 実施例8おいて、アセチレンブラックを用いずに、試料Aとポリフッ化ビニリデン樹脂を重量比で100:7で混合し、ペーストを調製した以外は実施例8と同様にして、本発明の蓄電デバイス(試料R)を得た。
比較例4~6
 実施例8おいて、試料Aに替えて比較例1~3で得られた試料H~Jを用いたこと以外は実施例8と同様にして、比較対象の蓄電デバイス(試料S~U)を得た。それぞれを、比較例4~6とする。
実施例16
 実施例1で得られたチタン酸リチウム(試料A)と、導電剤としてのアセチレンブラック粉末、及び結着剤としてのポリフッ化ビニリデン樹脂を重量比で100:3:10で混合し、乳鉢で練り合わせ、ペーストを調製した。このペーストをアルミ箔上に塗布し、120℃の温度で10分乾燥した後、直径12mmの円形に打ち抜き、17MPaでプレスして作用極とした。電極中に含まれる活物質量は、4mgであった。
 活物質として市販のマンガン酸リチウム(M01Y01:三井金属社製)、導電助剤としてアセチレンブラック、結着剤としてポリフッ化ビニリデン樹脂を重量比100:10:10で混練し、アルミニウム箔集電体へ塗布、120℃の温度で10分間乾燥を行い、直径12mmの円形に切り出し17MPaでプレスして正極を得た。電極中に含まれる活物質量は、8mgであった。
 これらの電極それぞれを120℃の温度で5時間真空乾燥した後、露点-70℃以下のグローブボックス中で、密閉可能なコイン型の試験用セルに組み込んだ。評価用のセルには材質がステンレス製(SUS316)で外径20mm、高さ3.2mmのものを用いた。マンガン酸リチウム電極は正極として評価用セルの下部缶に置き、その上にセパレーターとして多孔性ポリプロピレンフィルムを置き、更にその上に負極としての作用極と、厚み調整用の1.0mm厚スペーサーとスプリング(ともにSUS316製)をのせ、その上から非水電解液として1モル/リットルとなる濃度でLiPFを溶解したエチレンカーボネートとジメチルカーボネートの混合溶液(体積比で1:2に混合)を滴下し、プロピレン製ガスケットのついた上部缶を被せて外周縁部をかしめて密封し、本発明の蓄電デバイス(試料V)を得た。
比較例7
 実施例16において、試料Aにかえて比較例3で得られた試料Jを用いたこと以外は実施例16と同様にして、比較対象の蓄電デバイス(試料W)を得た。これを、比較例7とする。
評価1:窒素吸脱着量の測定
 実施例1~7及び比較例3で得られたチタン酸リチウム(試料A~G、J)の窒素の吸脱着量を、高精度全自動ガス吸着量(BELSORP‐miniII型:日本ベル株式会社製)を使用して測定した。試料約1gを、約一日真空脱気した測定セルに採り、前処理装置(BELLPREP‐vacII型:日本ベル株式会社製)で150℃の温度で3時間の真空脱ガス処理を行った後、液体窒素温度下(77K)で高純度窒素ガスを吸脱着させて、吸脱着等温線を得た。試料Aの吸脱着等温線を、図1に示す。図1において、「ADS」は吸着等温線であり、「DES」は脱着等温線であり、「p/p0」は相対圧を、「V」は吸着量を、「V」は脱着量を表す。相対圧0.99及び0.50におけるそれぞれの窒素吸着量(Va(0.99)、Va(0.50))、相対圧を0.05間隔とし0.45~0.90の範囲で測定した際の窒素脱着量と窒素吸着量との差(ΔVd-a(p))を表1に示す。本発明のチタン酸リチウムは、いずれもVa(0.99)が50cm(STP)/g以上であり、二次粒子表面にマクロポアを有していること判る。また、Va(0.50)が10cm(STP)/g以下あり、しかも、ΔVd-a(p)が連続して5cm(STP)/g以上の値を取らず、ヒステリシスが生じていないので、メソポアやマイクロポアをほとんど有していないことが判る。
Figure JPOXMLDOC01-appb-T000001
評価2:チタン酸リチウムを正極活物質に用いた蓄電デバイスのレート特性の評価
 実施例8~15、比較例4~6で得られた蓄電デバイス(試料K~U)について、種々の電流量で放電容量を測定して容量維持率(%)を算出した。測定は、電圧範囲を1~3Vに、充電電流は0.25Cに、放電電流は0.25C~30Cの範囲に設定して行った。環境温度は25℃とした。容量維持率は、0.25Cでの放電容量の測定値をX0.25、0.5C~30Cの範囲での測定値をXとすると、(X/X0.25)×100の式で算出した。尚、ここで1Cとは、1時間で満充電できる電流値を言い、本評価では、0.48mAが1Cに相当する。容量維持率が高いほうが、レート特性が優れている。結果を、表2に示す。本発明の蓄電デバイスは、いずれも、30Cでの容量維持率が70%以上であり、レート特性に優れていることが判る。また、導電材を含まない本発明の蓄電デバイスは、導電材を配合した蓄電デバイスと同等の優れたレート特性を有している。
Figure JPOXMLDOC01-appb-T000002
評価3:チタン酸リチウムを負極活物質に用いた蓄電デバイスのレート特性の評価
 実施例16、比較例7で得られた蓄電デバイス(試料V、W)について、種々の充電電流量で放電容量を測定して容量維持率(%)を算出した。測定は、蓄電デバイスを作製した後3時間熟成してから、0.25Cで2サイクル充放電してコンディショニングを行った後、電圧範囲を1.5~2.8Vに、放電電流は0.25Cに、充電電流は0.25C~10Cの範囲に設定して行った。環境温度は25℃とした。容量維持率は、0.25C充電での放電容量の測定値をX0.25、0.5C~10Cの範囲での測定値をXとすると、(X/X0.25)×100の式で算出した。尚、ここで1Cとは、1時間で満充電できる電流値を言い、本評価では、0.64mAが1Cに相当する。結果を、表3に示す。本発明の蓄電デバイスは、10Cでの容量維持率が70%以上であり、負極活物質に用いても、レート特性に優れていることが判る。
Figure JPOXMLDOC01-appb-T000003
 本発明のチタン酸リチウムは電池特性、特にレート特性に優れ、蓄電デバイスに有用である。

Claims (16)

  1.  チタン酸リチウムの一次粒子が集合した二次粒子を含み、二次粒子表面に少なくともマクロポアを有するチタン酸リチウム。
  2.  窒素の吸脱着等温線における相対圧0.99での窒素吸着量が50cm(STP)/g以上にある請求項1記載のチタン酸リチウム。
  3.  窒素の吸脱着等温線における相対圧0.50での窒素吸着量が10cm(STP)/g以下にあり、且つ、相対圧を0.05間隔とし0.45~0.90の範囲で測定した際の窒素脱着量と窒素吸着量との差が、連続的に5cm(STP)/g以上の値を取らない請求項1記載のチタン酸リチウム。
  4.  組成式LiTi12で表される請求項1記載のチタン酸リチウム。
  5.  炭素を含む請求項1記載のチタン酸リチウム。
  6.  異種金属元素を含む請求項1記載のチタン酸リチウム。
  7.  異種金属元素がマグネシウム、アルミニウム、ジルコニウムから選ばれる少なくとも1種である請求項6記載のチタン酸リチウム。
  8.  結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒した後、焼成してチタン酸リチウム二次粒子を得る方法において、(1)平均粒子径の異なる少なくとも2種の結晶性酸化チタン粒子を含む結晶性酸化チタンを用いる、及び/又は(2)結晶性酸化チタンをチタン酸化合物に対しTiO換算の重量比で4倍より多い量で用いる、チタン酸リチウムの製造方法。
  9.  前記(1)の方法において、平均粒子径が最小である結晶性酸化チタン粒子に対し、他の結晶性酸化チタン粒子が1.3倍以上の平均粒子径を有する請求項8記載のチタン酸リチウムの製造方法。
  10.  更にチタン酸リチウム二次粒子に炭素を含ませる工程を含む請求項8記載のチタン酸リチウムの製造方法。
  11.  (A)結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒して焼成した後、得られた焼成物を炭素含有物質の存在下で再焼成するか、又は(B)結晶性酸化チタン、チタン酸化合物、リチウム化合物及び炭素含有物質を含むスラリーを乾燥造粒して焼成する請求項10記載のチタン酸リチウムの製造方法。
  12.  更にチタン酸リチウム二次粒子に異種金属元素を含ませる工程を含む請求項8記載のチタン酸リチウムの製造方法。
  13.  (A)結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーに異種金属元素の化合物を添加するか、又は(B)異種金属元素を含む結晶性酸化チタン、チタン酸化合物及びリチウム化合物を含むスラリーを乾燥造粒して焼成する請求項12記載のチタン酸リチウムの製造方法。
  14.  請求項1記載のチタン酸リチウムを含む電極活物質。
  15.  請求項14記載の電極活物質を含む電極を用いた蓄電デバイス。
  16.  請求項14記載の電極活物質を含み、且つ導電剤を含まない電極を用いた蓄電デバイス。
PCT/JP2010/058815 2009-05-26 2010-05-25 チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス WO2010137582A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP10780537.6A EP2436650B1 (en) 2009-05-26 2010-05-25 Lithium titanate, process for production of same, and electrode active material and electricity storage device each comprising same
CA2760985A CA2760985A1 (en) 2009-05-26 2010-05-25 Lithium titanate comprising secondary particles
KR1020117028185A KR101761428B1 (ko) 2009-05-26 2010-05-25 티탄산 리튬, 그 제조 프로세스 및 그를 각각 포함하는 전극 활물질 및 축전 디바이스
CN201080021706.6A CN102428031B (zh) 2009-05-26 2010-05-25 钛酸锂、生产钛酸锂的方法以及各自包含钛酸锂的电极活性材料和蓄电装置
JP2011516021A JP5726074B2 (ja) 2009-05-26 2010-05-25 チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス
US13/321,973 US9126847B2 (en) 2009-05-26 2010-05-25 Lithium titanate, electrode active material and electricity storage device each comprising the same
KR1020177005974A KR101829177B1 (ko) 2009-05-26 2010-05-25 티탄산 리튬, 그 제조 프로세스 및 그를 각각 포함하는 전극 활물질 및 축전 디바이스
HK12110573.0A HK1169822A1 (zh) 2009-05-26 2012-10-24 鈦酸鋰、生產鈦酸鋰的方法以及各自包含鈦酸鋰的電極活性材料和蓄電裝置
US14/812,125 US9452940B2 (en) 2009-05-26 2015-07-29 Lithium titanate, electrode active material and electricity storage device each comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009126029 2009-05-26
JP2009-126029 2009-05-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/321,973 A-371-Of-International US9126847B2 (en) 2009-05-26 2010-05-25 Lithium titanate, electrode active material and electricity storage device each comprising the same
US14/812,125 Division US9452940B2 (en) 2009-05-26 2015-07-29 Lithium titanate, electrode active material and electricity storage device each comprising the same

Publications (1)

Publication Number Publication Date
WO2010137582A1 true WO2010137582A1 (ja) 2010-12-02

Family

ID=43222690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058815 WO2010137582A1 (ja) 2009-05-26 2010-05-25 チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス

Country Status (9)

Country Link
US (2) US9126847B2 (ja)
EP (1) EP2436650B1 (ja)
JP (1) JP5726074B2 (ja)
KR (2) KR101829177B1 (ja)
CN (2) CN102428031B (ja)
CA (1) CA2760985A1 (ja)
HK (2) HK1169822A1 (ja)
TW (1) TWI471270B (ja)
WO (1) WO2010137582A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102107906A (zh) * 2010-12-30 2011-06-29 清华大学深圳研究生院 一种钛酸锂材料的制备方法
WO2011122046A1 (ja) * 2010-03-31 2011-10-06 日本ケミコン株式会社 チタン酸リチウムナノ粒子、チタン酸リチウムナノ粒子とカーボンの複合体、その製造方法、この複合体からなる電極材料、この電極材料を用いた電極、電気化学素子及び電気化学キャパシタ
JP2012197187A (ja) * 2011-03-18 2012-10-18 Tanaka Chemical Corp カーボン複合チタン酸リチウム、その製造方法、非水電解質電池用活物質、及び非水電解質電池
US20120321930A1 (en) * 2011-06-16 2012-12-20 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery using the same
CN102891302A (zh) * 2011-07-19 2013-01-23 西门子公司 钛酸锂活性物质及其制备方法和可再充电锂电池
JP2013518376A (ja) * 2010-01-28 2013-05-20 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲー 導電剤が添加されていないリチウムイオン二次電池用の電極
JP2013518377A (ja) * 2010-01-28 2013-05-20 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲー リチウムイオン二次電池用の電極
JPWO2011145443A1 (ja) * 2010-05-18 2013-07-22 株式会社村田製作所 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2013531600A (ja) * 2010-05-21 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー チタン化合物を製造する方法
JP2014001110A (ja) * 2012-06-20 2014-01-09 Taiyo Yuden Co Ltd リチウムチタン複合酸化物、その製造方法及び電池用電極
JP5447517B2 (ja) * 2009-06-23 2014-03-19 株式会社村田製作所 非水電解液二次電池
JP2016009578A (ja) * 2014-06-24 2016-01-18 株式会社トクヤマ 複合チタン酸リチウム粉末の製造方法
JP2016526008A (ja) * 2013-06-05 2016-09-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウムチタンスピネルの調製方法及びその使用
JPWO2015033619A1 (ja) * 2013-09-05 2017-03-02 石原産業株式会社 非水電解質二次電池及びその製造方法
JP2017114699A (ja) * 2015-12-21 2017-06-29 大塚化学株式会社 多孔質複合粒子及びその製造方法
JP2017152133A (ja) * 2016-02-23 2017-08-31 太平洋セメント株式会社 非水電解質二次電池用負極活物質の製造方法
JP2017168325A (ja) * 2016-03-16 2017-09-21 株式会社東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質電池および電池パック
JP2018504767A (ja) * 2015-01-21 2018-02-15 エルジー・ケム・リミテッド 出力特性が向上したリチウム二次電池
US20180351171A1 (en) * 2016-02-05 2018-12-06 Lg Chem, Ltd. Negative electrode active material, and negative electrode and lithium secondary battery which include the same

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493375A (en) * 2011-08-03 2013-02-06 Leclancha S A Aqueous slurry for battery electrodes
DE102012208608A1 (de) * 2012-05-23 2013-11-28 Robert Bosch Gmbh Verfahren zum Herstellen einer Elektrode für einen elektrochemischen Energiespeicher und Elektrode
KR101539843B1 (ko) * 2012-07-13 2015-07-27 주식회사 엘지화학 고밀도 음극 활물질 및 이의 제조방법
CN103682294B (zh) * 2012-09-24 2016-08-03 中信国安盟固利动力科技有限公司 一种合成钛酸锂纳米微球的制备方法
RU2538254C1 (ru) * 2013-07-17 2015-01-10 Хожбауди Хамзатович Альвиев Способ получения наноразмерных порошков композита на основе титаната лития
KR102384822B1 (ko) * 2014-02-25 2022-04-08 퀀텀스케이프 배터리, 인코포레이티드 삽입 및 변환 물질 양자 모두를 갖는 하이브리드 전극
KR101630198B1 (ko) * 2014-11-19 2016-06-14 주식회사 포스코이에스엠 리튬 티타늄 복합 산화물
WO2016088193A1 (ja) 2014-12-02 2016-06-09 株式会社 東芝 負極活物質、非水電解質電池及び電池パック
US10505186B2 (en) 2015-01-30 2019-12-10 Kabushiki Kaisha Toshiba Active material, nonaqueous electrolyte battery, battery pack and battery module
EP3364484A1 (en) 2015-01-30 2018-08-22 Kabushiki Kaisha Toshiba Battery module and battery pack
JP6067902B2 (ja) 2015-03-13 2017-01-25 株式会社東芝 活物質、非水電解質電池、電池パック、組電池、及び自動車
JP7080584B2 (ja) * 2017-03-17 2022-06-06 株式会社東芝 二次電池、電池パック、および車両
KR102090572B1 (ko) * 2018-03-12 2020-03-18 (주)포스코케미칼 알루미늄으로 코팅된 1차 입자를 포함하는 리튬티탄 복합산화물 및 이의 제조 방법
CN109326791B (zh) * 2018-09-03 2021-08-03 中国石油天然气股份有限公司 一种线状多孔钛酸锂材料及其制备和产品

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753214A (ja) * 1993-08-10 1995-02-28 Kawatetsu Mining Co Ltd チタン酸アルカリ粉末、その製造方法、その含有複合材料及びチタン酸アルカリ焼結体の製造方法
JPH10251020A (ja) * 1997-03-11 1998-09-22 Ishihara Sangyo Kaisha Ltd 金属置換チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
JP2001192208A (ja) 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP2002117832A (ja) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2002211925A (ja) 2000-11-20 2002-07-31 Ishihara Sangyo Kaisha Ltd チタン酸リチウム及びその製造方法並びにそれを用いてなるリチウム電池
JP2005239460A (ja) 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd チタン酸リチウムの製造方法及び該チタン酸リチウムを用いてなるリチウム電池
JP2005239461A (ja) 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd チタン酸リチウムの製造方法及び該チタン酸リチウムを用いてなるリチウム電池
JP2006306952A (ja) * 2005-04-27 2006-11-09 Dainippon Ink & Chem Inc 水性グラビアインキ用顔料ベース
JP2007018883A (ja) 2005-07-07 2007-01-25 Toshiba Corp 負極活物質、非水電解質電池及び電池パック

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1207572A1 (en) * 2000-11-15 2002-05-22 Dr. Sugnaux Consulting Mesoporous electrodes for electrochemical cells and their production method
CA2327370A1 (fr) * 2000-12-05 2002-06-05 Hydro-Quebec Nouvelle methode de fabrication de li4ti5o12 pur a partir du compose ternaire tix-liy-carbone: effet du carbone sur la synthese et la conductivite de l'electrode
US7968231B2 (en) * 2005-12-23 2011-06-28 U Chicago Argonne, Llc Electrode materials and lithium battery systems
JP4709710B2 (ja) * 2006-08-04 2011-06-22 株式会社東芝 非水電解質電池、電池パック及び自動車
CN100450930C (zh) * 2006-08-17 2009-01-14 北京理工大学 一种用于锂二次电池负极材料尖晶石钛酸锂的制备方法
CN100530780C (zh) * 2006-12-29 2009-08-19 深圳市贝特瑞电子材料有限公司 复合钛酸锂电极材料及其制备方法
CN101842319B (zh) * 2007-08-30 2013-06-05 石原产业株式会社 钛酸化合物、制造该钛酸化合物的方法、含有该钛酸化合物的电极活性材料和使用该电极活性材料的存储设备
CN102083753A (zh) * 2008-07-07 2011-06-01 旭硝子株式会社 核—壳粒子及核—壳粒子的制造方法
CN101373829B (zh) 2008-10-07 2011-05-11 深圳市贝特瑞新能源材料股份有限公司 钛系负极活性物质及其制备方法、钛系锂离子动力电池
KR101093712B1 (ko) * 2009-01-15 2011-12-19 삼성에스디아이 주식회사 리튬 이차 전지용 음극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
AU2010289325A1 (en) 2009-09-03 2012-03-29 Molecular Nanosystems, Inc. Methods and systems for making electrodes having at least one functional gradient therein and devices resulting therefrom

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753214A (ja) * 1993-08-10 1995-02-28 Kawatetsu Mining Co Ltd チタン酸アルカリ粉末、その製造方法、その含有複合材料及びチタン酸アルカリ焼結体の製造方法
JPH10251020A (ja) * 1997-03-11 1998-09-22 Ishihara Sangyo Kaisha Ltd 金属置換チタン酸リチウムおよびその製造方法ならびにそれを用いてなるリチウム電池
JP2001192208A (ja) 1999-06-03 2001-07-17 Titan Kogyo Kk リチウムチタン複合酸化物及びその製造方法、並びにその用途
JP2002117832A (ja) * 2000-10-06 2002-04-19 Toyota Central Res & Dev Lab Inc リチウム二次電池
JP2002211925A (ja) 2000-11-20 2002-07-31 Ishihara Sangyo Kaisha Ltd チタン酸リチウム及びその製造方法並びにそれを用いてなるリチウム電池
JP2005239460A (ja) 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd チタン酸リチウムの製造方法及び該チタン酸リチウムを用いてなるリチウム電池
JP2005239461A (ja) 2004-02-25 2005-09-08 Ishihara Sangyo Kaisha Ltd チタン酸リチウムの製造方法及び該チタン酸リチウムを用いてなるリチウム電池
JP2006306952A (ja) * 2005-04-27 2006-11-09 Dainippon Ink & Chem Inc 水性グラビアインキ用顔料ベース
JP2007018883A (ja) 2005-07-07 2007-01-25 Toshiba Corp 負極活物質、非水電解質電池及び電池パック

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KUANG-CHE HSIAO ET AL.: "Microstructure effect on the electrochemical property of Li4Ti5012 as an anode material for lithium-ion batteries", ELECTROCHIMICA ACTA, vol. 53, no. ISS.24, 2008, pages 7242 - 7247, XP023438223 *
See also references of EP2436650A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5447517B2 (ja) * 2009-06-23 2014-03-19 株式会社村田製作所 非水電解液二次電池
JP2013518376A (ja) * 2010-01-28 2013-05-20 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲー 導電剤が添加されていないリチウムイオン二次電池用の電極
JP2013518377A (ja) * 2010-01-28 2013-05-20 ジュート−ヘミー イーペー ゲーエムベーハー ウント コー カーゲー リチウムイオン二次電池用の電極
WO2011122046A1 (ja) * 2010-03-31 2011-10-06 日本ケミコン株式会社 チタン酸リチウムナノ粒子、チタン酸リチウムナノ粒子とカーボンの複合体、その製造方法、この複合体からなる電極材料、この電極材料を用いた電極、電気化学素子及び電気化学キャパシタ
US9296623B2 (en) 2010-03-31 2016-03-29 Nippon Chemi-Con Corporation Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method of production thereof, electrode material consisting of said composite, electrode, electrochemical element, and electrochemical capacitor employing said electrode material
JP5553110B2 (ja) * 2010-05-18 2014-07-16 株式会社村田製作所 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JPWO2011145443A1 (ja) * 2010-05-18 2013-07-22 株式会社村田製作所 電極活物質およびその製造方法、ならびにそれを備えた非水電解質二次電池
JP2013531600A (ja) * 2010-05-21 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー チタン化合物を製造する方法
CN102107906A (zh) * 2010-12-30 2011-06-29 清华大学深圳研究生院 一种钛酸锂材料的制备方法
JP2012197187A (ja) * 2011-03-18 2012-10-18 Tanaka Chemical Corp カーボン複合チタン酸リチウム、その製造方法、非水電解質電池用活物質、及び非水電解質電池
US20120321930A1 (en) * 2011-06-16 2012-12-20 Samsung Sdi Co., Ltd. Electrode assembly and secondary battery using the same
CN102891302A (zh) * 2011-07-19 2013-01-23 西门子公司 钛酸锂活性物质及其制备方法和可再充电锂电池
JP2014001110A (ja) * 2012-06-20 2014-01-09 Taiyo Yuden Co Ltd リチウムチタン複合酸化物、その製造方法及び電池用電極
US10170758B2 (en) 2013-06-05 2019-01-01 Johnson Matthey Public Limited Company Process for the preparation of lithium titanium spinel and its use
JP2016526008A (ja) * 2013-06-05 2016-09-01 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウムチタンスピネルの調製方法及びその使用
US10749173B2 (en) 2013-06-05 2020-08-18 Johnson Matthey Public Limited Company Process for the preparation of lithium titanium spinel and its use
JPWO2015033619A1 (ja) * 2013-09-05 2017-03-02 石原産業株式会社 非水電解質二次電池及びその製造方法
JP2016009578A (ja) * 2014-06-24 2016-01-18 株式会社トクヤマ 複合チタン酸リチウム粉末の製造方法
JP2018504767A (ja) * 2015-01-21 2018-02-15 エルジー・ケム・リミテッド 出力特性が向上したリチウム二次電池
JP2017114699A (ja) * 2015-12-21 2017-06-29 大塚化学株式会社 多孔質複合粒子及びその製造方法
US20180351171A1 (en) * 2016-02-05 2018-12-06 Lg Chem, Ltd. Negative electrode active material, and negative electrode and lithium secondary battery which include the same
US10784510B2 (en) * 2016-02-05 2020-09-22 Lg Chem, Ltd. Negative electrode active material, and negative electrode and lithium secondary battery which include the same
JP2017152133A (ja) * 2016-02-23 2017-08-31 太平洋セメント株式会社 非水電解質二次電池用負極活物質の製造方法
JP2017168325A (ja) * 2016-03-16 2017-09-21 株式会社東芝 非水電解質電池用活物質、非水電解質電池用電極、非水電解質電池および電池パック

Also Published As

Publication number Publication date
CN104319383A (zh) 2015-01-28
EP2436650A4 (en) 2012-11-14
CN102428031A (zh) 2012-04-25
EP2436650B1 (en) 2016-11-02
US9452940B2 (en) 2016-09-27
US20120070744A1 (en) 2012-03-22
CN104319383B (zh) 2018-04-17
KR20170028455A (ko) 2017-03-13
HK1202707A1 (en) 2015-10-02
KR20120023021A (ko) 2012-03-12
HK1169822A1 (zh) 2013-02-08
JP5726074B2 (ja) 2015-05-27
EP2436650A1 (en) 2012-04-04
US9126847B2 (en) 2015-09-08
KR101761428B1 (ko) 2017-07-25
TW201111285A (en) 2011-04-01
JPWO2010137582A1 (ja) 2012-11-15
CA2760985A1 (en) 2010-12-02
TWI471270B (zh) 2015-02-01
CN102428031B (zh) 2016-08-10
KR101829177B1 (ko) 2018-02-13
US20160009567A1 (en) 2016-01-14

Similar Documents

Publication Publication Date Title
JP5726074B2 (ja) チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス
JP5612856B2 (ja) チタン酸化合物及びその製造方法並びに該チタン酸化合物を含む電極活物質、該電極活物質を用いてなる蓄電デバイス
JP5612857B2 (ja) チタン酸化合物及びその製造方法並びに該チタン酸化合物を含む電極活物質、電極活物質を用いてなる蓄電デバイス
Luo et al. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery
JP5926959B2 (ja) チタン酸リチウム、該チタン酸リチウムの製造方法、該製造方法に用いるスラリー、該チタン酸リチウムを含む電極活物質及び該電極活物質を用いたリチウム二次電池
JP3894778B2 (ja) チタン酸リチウム及びそれを用いてなるリチウム電池
JP2012169217A (ja) リチウムイオン二次電池用の正極活物質およびその製造方法
TWI636960B (zh) 鈦酸化合物、鈦酸鹼金屬化合物及此等的製造方法,以及將此等作爲活性物質使用的蓄電裝置
JP2012248333A (ja) 電極活物質及びその製造方法、並びに該電極活物質を用いてなる蓄電デバイス
JP5830842B2 (ja) チタン酸リチウム粒子粉末の製造法及び非水電解質二次電池
JP2015097206A (ja) 電極活物質及びその製造方法、並びに該電極活物質を用いてなる蓄電デバイス

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080021706.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780537

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011516021

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2760985

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2010780537

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010780537

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13321973

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117028185

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE