WO2010004814A1 - コア-シェル粒子およびコア-シェル粒子の製造方法 - Google Patents

コア-シェル粒子およびコア-シェル粒子の製造方法 Download PDF

Info

Publication number
WO2010004814A1
WO2010004814A1 PCT/JP2009/060196 JP2009060196W WO2010004814A1 WO 2010004814 A1 WO2010004814 A1 WO 2010004814A1 JP 2009060196 W JP2009060196 W JP 2009060196W WO 2010004814 A1 WO2010004814 A1 WO 2010004814A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
shell
particles
particle
oxide
Prior art date
Application number
PCT/JP2009/060196
Other languages
English (en)
French (fr)
Inventor
洋平 河合
米田 貴重
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP09794261A priority Critical patent/EP2305607A4/en
Priority to JP2010519697A priority patent/JP5633371B2/ja
Priority to CN2009801268043A priority patent/CN102083753A/zh
Publication of WO2010004814A1 publication Critical patent/WO2010004814A1/ja
Priority to US12/984,063 priority patent/US20110094416A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/08Sulfides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/28Compounds of silicon
    • C09C1/30Silicic acid
    • C09C1/3081Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • C01P2004/86Thin layer coatings, i.e. the coating thickness being less than 0.1 time the particle radius
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]

Definitions

  • the present invention relates to a core-shell particle and a method for producing the core-shell particle.
  • Metal oxide particles such as titanium oxide and zinc oxide are used as fillers for resins, cosmetics and the like because they have an ultraviolet shielding ability.
  • tin oxide doped with indium (hereinafter referred to as ITO) or the like has an infrared shielding ability and is therefore used as a filler for resin, a coating for glass, and the like.
  • the metal oxide particles have the following problems.
  • the core-shell is usually formed by using metal oxide particles as core particles and covering the surfaces of the particles with a shell made of a metal oxide such as silicon oxide (silica). Used as particles.
  • a metal oxide such as silicon oxide (silica).
  • the following are known as core-shell particles for cosmetics.
  • Silica-coated metal oxide powder having a silica film thickness of 0.1 to 100 nm Patent Document 1.
  • the core-shell particle (1) forms the shell under low temperature conditions, the shell has relatively large pores. Therefore, the problems (i) to (iii) cannot be sufficiently solved. Further, since the shell is formed under a low temperature condition, it takes time to form the shell.
  • the shell may be formed under a high temperature condition.
  • the material of the shell precipitates independently other than the surface of the core particle. Therefore, it is difficult to obtain core-shell particles having a dense shell.
  • the present invention provides a core-shell particle having a dense shell and a method capable of producing the core-shell particle in a short time.
  • the gist of the present invention is as follows.
  • [1] Core-shell particles in which a shell made of a metal oxide is formed on the surface of a core particle made of a material having a dielectric constant of 10 or more, and the thickness of the shell is 1 to 500 nm.
  • the maximum value of the pore volume of the shell having a pore diameter of 3 nm or less is 0.01 cc / g, and the average particle diameter in the dispersion medium is 1-1000 nm.
  • Core-shell particles characterized by [2] The core-shell particle according to [1], wherein the material of the core particle is a metal oxide, a metal sulfide, or a metal chalcogenide.
  • the core-shell particle according to [2], wherein the material of the core particle is zinc oxide, titanium oxide, or cerium oxide.
  • the core-shell particle according to [2], wherein the material of the core particle is indium-doped tin oxide or tin oxide.
  • the core-shell particle according to [2], wherein the material of the core particle is manganese-doped zinc sulfide, cadmium sulfide, zinc selenide, or europium-doped yttrium vanadate.
  • the core-shell particle according to any one of [1] to [4], wherein the average primary particle diameter of the core-shell particle is 1 to 500 nm.
  • the output of microwave is an output in which a liquid containing core particles made of a material having a dielectric constant of 10 or more and a metal oxide precursor is heated to 100 to 500 ° C.
  • core-shell particles of the present invention have a dense shell, the photocatalytic activity of the core particles is sufficiently suppressed, and the alteration and deterioration of the core particles are sufficiently suppressed. According to the method for producing core-shell particles of the present invention, core-shell particles having a dense shell can be produced in a short time.
  • Example 1 It is a pore volume histogram obtained by the nitrogen adsorption method of the core-shell particles obtained in Example 1 which is an example and Example 10 which is a comparative example.
  • the core-shell particle of the present invention is a core-shell particle in which a shell made of a metal oxide is formed on the surface of the core particle.
  • the dielectric constant of the material of the core particles is 10 or more, preferably 10 to 200, particularly preferably 15 to 100. If the dielectric constant of the material of the core particle is 10 or more, it becomes easy to absorb the microwave, so that the core particle can be selectively heated to a high temperature by the microwave.
  • the electric power that replaces heat inside the dielectric when irradiated with microwaves is expressed by the following equation (1).
  • the dielectric loss tangent is preferably 0.001-1, and particularly preferably 0.01-1.
  • the dielectric constant and the dielectric loss tangent can be calculated from values obtained by measuring the reflection coefficient and the phase by applying an electric field to the sample by a bridge circuit using a network analyzer in accordance with the provisions of JIS-R1627.
  • Examples of the material for the core particles include metal oxides, metal sulfides, and metal chalcogenides. These materials may be doped with other elements.
  • Examples of the element to be doped include Ce, Nd, Sm, Eu, Gd, Tb, Dy, Er, Tm, Yb, Al, Mn, Fe, Co, Ni, Cu, and Bi.
  • the doping amount of the element is preferably from 0.1 to 20 mol%, particularly preferably from 0.3 to 10 mol%, particularly preferably from 0.5 to 5 mol%, based on the metal oxide to be doped. When the doping amount is less than 0.1 mol%, the impurity level is insufficient and the performance is lowered, which is not preferable. When the doping amount is more than 20 mol%, the impurity level becomes excessive, and it acts on each other to deteriorate the performance, which is not preferable.
  • Materials having a dielectric constant of 10 or more include zinc oxide (dielectric constant: 18), titanium oxide (dielectric constant: 30), ITO (indium doped tin oxide) (dielectric constant: 24), and aluminum oxide (dielectric constant: 12). , Zirconium oxide (dielectric constant: 13), iron oxide (dielectric constant: 16), cadmium oxide (dielectric constant: 17), copper oxide (dielectric constant: 18), bismuth oxide (dielectric constant: 18), tungsten oxide (dielectric) Rate: 20), metal oxides such as cerium oxide (dielectric constant: 21), tin oxide (dielectric constant: 24), europium-doped yttrium vanadate (dielectric constant: 10); zinc sulfide (dielectric constant: 13), manganese Metal sulfides such as doped zinc sulfide (dielectric constant: 13) and cadmium sulfide (dielectric constant: 10); metal chalcogenides such as
  • the core particles particles composed of zinc oxide, particles composed of titanium oxide, or particles composed of cerium oxide are preferable from the viewpoint of excellent ultraviolet shielding ability, and particles composed of ITO from the viewpoint of excellent infrared shielding ability, or Particles made of tin oxide are preferred. Further, from the viewpoint of excellent fluorescence characteristics, particles made of manganese-doped zinc sulfide, particles made of cadmium sulfide, particles made of zinc selenide, or particles made of europium-doped yttrium vanadate are preferable.
  • the shape of the core particle is not particularly limited, and particles having a spherical shape, a square shape, a needle shape, a sheet shape, a chain shape, a fiber shape, a hollow shape, or the like can be used.
  • the metal oxide that forms the shell examples include silicon oxide, aluminum oxide, titanium oxide, zirconium oxide, tin oxide, and cerium oxide. Silicon oxide is preferable because a dense shell is formed.
  • the shell thickness of the core-shell particles is 1 to 500 nm, preferably 1 to 100 nm, and particularly preferably 1 to 30 nm. If the thickness of the shell is 1 nm or more, the substance cannot move through the shell, so that the photocatalytic activity of the core particles is sufficiently suppressed, and the deterioration and deterioration of the core particles are sufficiently suppressed. If the thickness of the shell is 500 nm or less, functions such as ultraviolet shielding ability and infrared shielding ability of the core particles are sufficiently exhibited.
  • the thickness of the shell can be adjusted by appropriately adjusting the amount of the metal oxide precursor, the microwave output, the irradiation time, and the like.
  • the thickness of the shell is determined by observing core-shell particles with a transmission electron microscope, randomly selecting 100 particles, measuring the shell thickness of each core-shell particle, and measuring 100 core-shell particles. It is a value obtained by averaging the thicknesses of the shells of particles.
  • the maximum value of the pore volume of the core-shell particles having a pore diameter of 3 nm or less (referred to as pore diameter) by the nitrogen adsorption method is 0.01 cc / g, 0.0001 to 0.01 cc / g is preferred.
  • the pore volume histogram obtained by the nitrogen adsorption method if the maximum value of the pore volume of the shell having a pore diameter of 3 nm or less is 0.01 cc / g, the shell becomes dense. It becomes impossible to move, the photocatalytic activity of the core particles is sufficiently suppressed, and the alteration and deterioration of the core particles are sufficiently suppressed.
  • the range where the pore diameter is 3 nm or less here is understood to include 3.4 nm or less in consideration of the first decimal place.
  • the peak having a pore diameter in the range of 3 nm or less is a peak related to pores existing in the shell, and the peak existing in the vicinity of 10 to 20 nm is core-shell. It is a peak derived from a hollow structure generated by elution of the core of the particle, and a broad peak existing in a range where the pore diameter is larger than around 20 nm is derived from voids existing between the core-shell particles. Since the core-shell particles of the present invention are characterized by having a dense shell, the core-shell particles are specified using the pore volume of pores having a pore diameter of 3 nm or less.
  • the average particle diameter of the core-shell particles in the dispersion medium is 1 to 1000 nm, preferably 3 to 1000 nm, and particularly preferably 3 to 300 nm. When the core-shell particles are used for applications requiring transparency, the average particle size is preferably 3 to 100 nm.
  • the average particle diameter of the core-shell particles is an average aggregate particle diameter of the core-shell particles in the dispersion medium, and is measured by a dynamic scattering method.
  • the average primary particle diameter of the core-shell particles is preferably 1 to 500 nm, more preferably 1 to 200 nm, and particularly preferably 1 to 100 nm.
  • the average primary particle size of the core-shell particles is determined by observing the core-shell particles with a transmission electron microscope, randomly selecting 100 particles, measuring the particle diameter of each core-shell particle, The average particle diameter of the core-shell particles.
  • the core-shell particles of the present invention described above have a dense shell. Therefore, the photocatalytic activity of the core particles is sufficiently suppressed, and the alteration and deterioration of the core particles are sufficiently suppressed.
  • the method for producing core-shell particles according to the present invention comprises irradiating a liquid containing core particles made of a material having a dielectric constant of 10 or more and a metal oxide precursor with microwaves, so that the surface of the core particles has a metal.
  • This is a method of forming a shell made of an oxide. Specific examples include a method having the following steps.
  • (A) A step of preparing a raw material liquid by adding a metal oxide precursor, water, an organic solvent, an alkali or an acid, a curing catalyst, or the like, if necessary, to a dispersion of core particles in which core particles are dispersed in a dispersion medium. .
  • the raw material liquid is irradiated with microwaves to heat the raw material liquid, and the metal oxide precursor is hydrolyzed with an alkali or acid to precipitate the metal oxide on the surface of the core particles, Forming to obtain a dispersion of core-shell particles.
  • C A step of removing the dispersion medium from the core-shell particle dispersion and collecting the core-shell particles as necessary.
  • the dielectric constant of the material of the core particles is 10 or more, preferably 10 to 200. If the dielectric constant of the material of the core particle is 10 or more, it becomes easy to absorb the microwave, so that the core particle can be selectively heated to a high temperature by the microwave.
  • the average particle diameter of the core particles in the dispersion is preferably 1 to 1000 nm, more preferably 1 to 300 nm. When the average particle diameter of the core particles is 1 nm or more, the surface area per mass of the core particles does not increase excessively, and the amount of metal oxide necessary for coating can be suppressed. When the average particle diameter of the core particles is 1000 nm or less, the dispersibility in the dispersion medium is good.
  • the average particle diameter of the core particles in the dispersion is an average aggregate particle diameter of the core particles in the dispersion medium, and is measured by a dynamic scattering method.
  • the concentration of the core particles in the dispersion is preferably 0.1 to 40% by mass, more preferably 0.5 to 20% by mass in the core particle dispersion (100% by mass).
  • concentration of the core particles is 0.1% by mass or more, the production efficiency of the core-shell particles becomes good.
  • concentration of the core particles is 40% by mass or less, the core particles hardly aggregate.
  • Dispersion media include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, methyl acetate, etc.) Glycol ethers (ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethyl sulfoxide, etc.) and the like. Since the dispersion medium requires water for hydrolysis of the metal oxide precursor, the dispersion medium preferably contains 5 to 100% by mass of water in 100% by mass of the dispersion medium.
  • Examples of the metal oxide precursor include metal alkoxide and the like, and alkoxysilane is preferable from the viewpoint of forming a dense shell.
  • Examples of the alkoxysilane include tetramethoxysilane, tetraethoxysilane (hereinafter referred to as TEOS), tetra n-propoxysilane, tetraisopropoxysilane and the like, and TEOS is preferable from the viewpoint of an appropriate reaction rate.
  • the amount of the metal oxide precursor is such that the shell thickness is 1 to 500 nm, preferably the shell thickness is 1 to 100 nm, particularly preferably 1 to 30 nm. Specifically, the amount of the metal oxide precursor (in terms of metal oxide) is preferably 0.1 to 10,000 parts by mass with respect to 100 parts by mass of the core particles.
  • alkali examples include potassium hydroxide, sodium hydroxide, ammonia, ammonium carbonate, ammonium hydrogen carbonate, dimethylamine, triethylamine, aniline and the like. Ammonia is preferable because it can be removed by heating.
  • the amount of the alkali is preferably such that the pH of the raw material liquid is 8.5 to 10.5 from the viewpoint that the metal oxide precursor is three-dimensionally polymerized to form a dense shell. An amount of 10.0 is more preferable.
  • Examples of the acid include hydrochloric acid and nitric acid. Since zinc oxide particles are dissolved in an acid, when using zinc oxide particles as core particles, it is preferable to hydrolyze the metal oxide precursor with an alkali.
  • the amount of the acid is preferably such that the pH of the raw material solution is 3.5 to 5.5.
  • the curing catalyst examples include metal chelate compounds, organotin compounds, metal alcoholates, metal fatty acid salts, and the like. From the viewpoint of shell strength, metal chelate compounds or organotin compounds are preferred, and metal chelate compounds are particularly preferred.
  • the amount of the curing catalyst (in terms of metal oxide) is preferably 0.1 to 20.0 parts by mass with respect to 100 parts by mass of the amount of metal oxide precursor (in terms of metal oxide), and preferably 0.2 to 8. 0 parts by mass is more preferable.
  • the microwave usually refers to an electromagnetic wave having a frequency of 300 MHz to 300 GHz. Usually, a microwave having a frequency of 2.45 ⁇ 0.05 GHz is used. However, the frequency at which the object to be heated is effectively heated may be selected, and the present invention is not limited to this. According to the Radio Law, frequency bands are defined for uses that use radio waves for purposes other than communication called IMS bands. For example, 433.92 ( ⁇ 0.87) MHz, 896 ( ⁇ 10) MHz, 915 ( Microwaves such as ⁇ 13) MHz, 2375 ( ⁇ 50) MHz, 2450 ( ⁇ 50) MHz, 5800 ( ⁇ 75) MHz, 24125 ( ⁇ 125) MHz may be used.
  • the microwave output is preferably an output in which the raw material liquid is heated to 100 to 500 ° C., and more preferably an output in which the raw material liquid is heated to 120 to 300 ° C. Specifically, 100 to 5000 W is preferable, and 500 to 3000 W is more preferable. If the temperature of the raw material liquid is 100 ° C. or higher, a dense shell can be formed in a short time. When the temperature of the raw material liquid is 500 ° C. or lower, the amount of metal oxide deposited on the surface other than the core particle surface can be suppressed.
  • the microwave irradiation time may be adjusted according to the microwave output (temperature of the raw material liquid) to the time for forming a shell having a desired thickness, and is, for example, 10 seconds to 60 minutes.
  • the microwave heat treatment may be a batch process, but in the case of mass production, continuous treatment with a flow-type apparatus is preferable.
  • the microwave irradiation method may be a single mode, but in the case of mass production, a multimode capable of heating uniformly is preferable.
  • Examples of a method for removing the dispersion medium from the core-shell particle dispersion and recovering the core-shell particles include the following methods.
  • C-1) A method of heating the dispersion of core-shell particles to volatilize the dispersion medium and the like.
  • C-2) A method of solid-liquid separation of a dispersion of core-shell particles and drying the solid content.
  • C-3) A method of spraying a dispersion of core-shell particles in a heated gas by using a spray dryer to volatilize the dispersion medium or the like (spray drying method).
  • C-4) A method in which the dispersion medium or the like is sublimated by cooling the core-shell particle dispersion and reducing the pressure (freeze-drying method).
  • the core-shell particle manufacturing method of the present invention since the raw material liquid containing the core particles made of a material having a dielectric constant of 10 or more and the metal oxide precursor is irradiated with microwaves, The core particles can be selectively heated to a high temperature. Therefore, even if the whole raw material liquid becomes high temperature, since the core particles are heated to a higher temperature, hydrolysis of the metal oxide precursor proceeds preferentially on the surface of the core particles, and the surface of the core particles A metal oxide is selectively deposited on the substrate. Therefore, the amount of the metal oxide that precipitates independently other than the surface of the core particle can be suppressed. Further, since the shell can be formed under high temperature conditions, a dense shell can be formed in a short time.
  • the coating composition of the present invention contains the core-shell particles of the present invention, a dispersion medium, and, if necessary, a binder.
  • Dispersion media include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, methyl acetate, etc.)
  • Glycol ethers ethylene glycol monoalkyl ether, etc.
  • nitrogen-containing compounds N, N-dimethylacetamide, N, N-dimethylformamide, etc.
  • sulfur-containing compounds dimethyl sulfoxide, etc.
  • binders examples include alkoxysilanes (tetramethoxysilane, TEOS, etc.), silicic acid oligomers obtained by hydrolyzing alkoxysilanes, silicon compounds having silanol groups (silicic acid, trimethylsilanol, etc.), active silica (water glass, orthosilicate). Acid sodium), organic polymers (polyethylene glycol, polyacrylamide derivatives, polyvinyl alcohol, etc.), active energy ray-curable compositions (acrylic curable compositions, etc.), and the like.
  • the mass ratio between the core-shell particles and the binder may be appropriately set depending on the function of the core-shell particles and the application to which the coating composition of the present invention is applied. Usually, 10/0 to 5/5 is preferable, and 9/1 to 7/3 is more preferable.
  • the core-shell particle / binder mass ratio
  • the solid content concentration of the coating composition of the present invention is preferably 0.1 to 20% by mass.
  • the coating composition of the present invention may contain particles other than the core-shell particles of the present invention as long as the effects of the present invention are not impaired.
  • the coating composition of the present invention comprises chlorides such as Mg, Ca, Sr and Ba, alkaline earth metal salts such as nitrates, sulfates, formates and acetates; inorganic acids, organic acids, bases, metal chelate compounds, Curing catalysts such as quaternary ammonium salts and organotin compounds; inorganic particles exhibiting ultraviolet shielding properties, infrared shielding properties, and conductivity; may contain known additives such as pigments, dyes, and surfactants.
  • the coating composition of the present invention is further blended with various coating compounding agents composed of inorganic and / or organic substances, hard coat, alkali barrier, coloring, conductivity, antistatic, polarized light, ultraviolet shielding, infrared shielding, antifouling, One or more functions selected from anti-fogging, photocatalyst, antibacterial, fluorescence, phosphorescence, refractive index control, water repellency, oil repellency, fingerprint removal, slipperiness, and the like may be provided.
  • additives usually used according to the function required for the coating film for example, antifoaming agent, leveling agent, ultraviolet absorber, viscosity modifier, antioxidant, antifungal agent Etc. can be suitably added.
  • various pigments that are usually used for coatings such as titania, zirconia, white lead, bengara, etc., can be blended.
  • the article of the present invention has a coating film formed of the coating composition of the present invention.
  • the thickness of the coating film is preferably 50 to 300 nm, more preferably 80 to 200 nm. When the thickness of the coating film is 50 nm or more, light interference occurs and an antireflection effect is exhibited. If the thickness of the coating film is 300 nm or less, the film can be formed without generating cracks.
  • the film thickness of the coating film can be obtained by measuring the coating and non-coating interfaces with a step gauge.
  • the coating film can be formed by applying the coating composition of the present invention to the surface of the substrate and drying it, followed by heating, baking, and active energy ray irradiation as necessary.
  • the material for the base material include glass, metal, organic polymer, silicon, and the like, and a base material on which a coating film is formed in advance may be used.
  • the glass include glass formed by a float method or the like.
  • the organic polymer include polyethylene terephthalate (hereinafter referred to as PET), polycarbonate, polymethyl methacrylate, triacetyl acetate, and the like.
  • Examples of the shape of the substrate include a plate and a film.
  • another functional layer an adhesion improving layer, a protective layer, etc.
  • a coating film made of an inorganic substance and / or an organic substance is formed in advance on the substrate, and a hard coat, an alkali barrier, coloring, conductivity, antistatic, polarization, ultraviolet shielding, infrared shielding, antifouling, antifogging, photocatalyst, antibacterial,
  • a hard coat an alkali barrier, coloring, conductivity, antistatic, polarization, ultraviolet shielding, infrared shielding, antifouling, antifogging, photocatalyst, antibacterial,
  • One or more functions selected from fluorescence, phosphorescence, refractive index control, water repellency, oil repellency, fingerprint removal, slipperiness, and the like may be provided.
  • a functional coating film composed of an inorganic substance and / or an organic substance is formed on the coating film to which the coating composition of the present invention is applied, and a hard coat, an alkali barrier, coloring, conductivity, antistatic, polarization,
  • the coating method include known methods such as bar coating, die coating, gravure coating, roll coating, flow coating, spray coating, online spray coating, ultrasonic spray coating, ink jet, and dip coating.
  • the on-line spray coating is a method of spray coating as it is on a line for molding a base material, and since a step of reheating the base material can be omitted, an article can be manufactured at low cost and is useful.
  • Examples 1 to 5 and 14 are examples, and examples 6 to 13 and 15 are comparative examples.
  • the average particle size of the core particles and core-shell particles in the dispersion medium was measured using a dynamic light scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac UPA).
  • the dielectric constant of the material of the core particle is reflected by applying an electric field to the sample by a bridge circuit using a network analyzer (manufactured by Agilent Technologies, PNA microwave vector network analyzer) in accordance with JIS-R1627. The coefficient and phase were calculated from the measured values.
  • Dispersion Core-shell particles are uniformly dispersed in a dispersion medium.
  • Precipitation The solid is not dispersed in the dispersion medium but is precipitated.
  • the core-shell particles are observed with a transmission electron microscope, 100 particles are randomly selected, the shell thickness of each core-shell particle is measured, and the shell thickness of 100 core-shell particles is measured. Averaged.
  • the pores existing in the core-shell particles include micropores ( ⁇ 2 nm), mesopores (2-50 nm), and macropores (50 nm ⁇ ) (the values in parentheses are the pore diameter values).
  • the DFT method which is the only analysis method that can be applied without distinction to the pore distribution in these different regions, was used. Since the pore volume histogram is obtained by the DFT method, the maximum pore volume value in the histogram was used as an evaluation index.
  • the acid resistance of the core particles was evaluated as follows.
  • the acid resistance evaluation result is a measure of weather resistance (fluorine resistance).
  • a 0.1 mol / L aqueous nitric acid solution was dropped into the core-shell particle dispersion to adjust the pH to 4, and the presence or absence of dissolution of the core particles was evaluated from the change in absorbance in the ultraviolet region after 1 hour.
  • The core particles are not dissolved by the acid.
  • X The core particles are dissolved by the acid.
  • the photocatalytic activity of the core-shell particles was evaluated as follows. Methylene blue was dissolved in the core-shell particle dispersion and then irradiated with black light. The presence or absence of photocatalytic activity was evaluated from the change in absorbance in the visible region after 6 hours. ⁇ : Core-shell particles do not exhibit photocatalytic activity. X: Core-shell particles exhibit photocatalytic activity.
  • the infrared shielding ability was evaluated as follows.
  • the evaluation result of the infrared shielding ability is a measure of the oxidation resistance of the core particles.
  • a coating film was formed by applying a dispersion of core-shell particles to glass, and the oxidation resistance was evaluated from the change in absorbance in the infrared region after baking at 650 ° C.
  • Infrared shielding ability does not decrease.
  • X Infrared shielding ability decreases.
  • the core-shell particles whose core particles are manganese-doped zinc sulfide particles were evaluated for moisture resistance as follows. A sample obtained by applying a dispersion of core-shell particles to a glass plate to form a coating film and firing at 200 ° C. is held in a constant temperature and humidity chamber at 85 ° C. and 85% for 1000 hours. The moisture resistance was evaluated from the change in strength. ⁇ : The emission intensity does not decrease. X: The emission intensity decreases.
  • Example 1 In a 200 mL quartz pressure vessel, 25.0 g of an aqueous dispersion of zinc oxide (dielectric constant: 18) particles (average particle size: 30 nm, solid content concentration: 20 mass%), TEOS (solid content concentration in terms of silicon oxide) : 28.8 mass%) 10.4 g, ethanol 63.7 g, and 28 mass% ammonia aqueous solution 0.9 g were added to prepare a raw material solution having a pH of 10. After sealing the pressure-resistant container, using a microwave heating device (Milestone, Micro SYNTH), the raw material liquid was irradiated with microwaves of maximum output: 500 W, frequency: 2.45 GHz for 5 minutes to hydrolyze TEOS.
  • a microwave heating device Micro SYNTH
  • the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured.
  • the acid resistance of the core-shell particles was evaluated. The results are shown in Table 1.
  • the pore volume histogram obtained by the nitrogen adsorption method in the sample after the acid resistance test is shown in FIG. Since no change was observed in the shell under the acid resistance test conditions in this example, the pore volume of the core-shell particles was evaluated based on the results of the pore volume histogram after the acid resistance test.
  • Table 4 shows the numerical data of the pore volume histogram of the core-shell particles obtained in Example 1.
  • Example 2 A core-shell particle dispersion (zinc oxide solid content concentration: 5.0 mass) in the same manner as in Example 1 except that the maximum microwave output was changed to 1000 W and the microwave irradiation time was changed to 2 minutes. %, Silicon oxide solid content concentration: 3.0% by mass).
  • the temperature of the reaction solution during microwave irradiation was 180 ° C.
  • the state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured.
  • Table 1 Using a rotary evaporator, the dispersion medium was removed from the core-shell particle dispersion at 60 ° C. to obtain powdery core-shell particles. With respect to the core-shell particles, the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured. In addition, the acid resistance of the core-shell particles was evaluated. The results are shown in Table 1.
  • Example 3 In a 200 mL quartz pressure vessel, 34.9 g of an aqueous dispersion of zinc oxide (dielectric constant: 18) particles (average particle size: 70 nm, solid content concentration: 20 mass%), TEOS (solid content concentration in terms of silicon oxide) : 28.8 mass%) 10.4 g of ethanol, 53.8 g of ethanol, and 0.9 g of 28 mass% ammonia aqueous solution were added to prepare a raw material liquid having a pH of 10.
  • microwave material is used to irradiate the raw material liquid with microwave of maximum output: 500W, frequency: 2.45GHz for 10 minutes, hydrolyze TEOS, and oxidize on the surface of zinc oxide particles Silicon was deposited to form a shell, and 100 g of a core-shell particle dispersion (zinc oxide solid content concentration: 7 mass%, silicon oxide solid content concentration: 3 mass%) was obtained.
  • the temperature of the reaction solution during microwave irradiation was 100 ° C.
  • the state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 1.
  • the dispersion medium was removed from the core-shell particle dispersion at 60 ° C. to obtain powdery core-shell particles.
  • the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured.
  • the acid resistance of the core-shell particles was evaluated. The results are shown in Table 1.
  • Example 4 In a 200 mL quartz pressure vessel, 50.0 g of an aqueous dispersion of titanium oxide (dielectric constant: 30) particles (average particle size: 20 nm, solid content concentration: 1% by mass), TEOS (solid content concentration in terms of silicon oxide) 28.8% by mass), 48.1 g of ethanol, and 0.9 g of 28% by mass aqueous ammonia solution were added to prepare a raw material solution having a pH of 10.
  • microwaves are used to irradiate the raw material liquid with microwaves of maximum output: 1000 W and frequency: 2.45 GHz for 5 minutes to hydrolyze TEOS and oxidize the surface of the titanium oxide particles
  • Silicon was precipitated to form a shell, and 100 g of a core-shell particle dispersion (titanium oxide solid content concentration: 0.5 mass%, silicon oxide solid content concentration: 0.3 mass%) was obtained.
  • the temperature of the reaction solution during microwave irradiation was 120 ° C.
  • the state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 1.
  • the dispersion medium was removed from the core-shell particle dispersion at 60 ° C. to obtain powdery core-shell particles.
  • the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured. Further, the photocatalytic activity of the core-shell particles was evaluated. The results are shown in Table 1.
  • Example 5 In a 200 mL quartz pressure vessel, 62.5 g of an aqueous dispersion (average particle size: 60 nm, solid content concentration: 8% by mass) of ITO (indium is 10 mol% relative to tin oxide, dielectric constant: 24) particles, 10.4 g of TEOS (solid content concentration in terms of silicon oxide: 28.8 mass%), 26.2 g of ethanol, and 0.9 g of 28 mass% ammonia aqueous solution were added to prepare a raw material liquid having a pH of 10.
  • ITO indium is 10 mol% relative to tin oxide, dielectric constant: 24
  • microwave material is used to irradiate the raw material liquid with microwave of maximum output: 500 W, frequency: 2.45 GHz for 5 minutes, hydrolyze TEOS, and silicon oxide on the surface of ITO particles
  • a core-shell particle dispersion ITO solid content concentration: 5 mass%, silicon oxide solid content concentration: 3 mass%.
  • the temperature of the reaction solution during microwave irradiation was 120 ° C.
  • the state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 1. Using a rotary evaporator, the dispersion medium was removed from the core-shell particle dispersion at 60 ° C.
  • Example 6 A raw material solution was prepared in the same manner as in Example 1. After sealing the pressure vessel, the raw material liquid was heated at 120 ° C. for 5 minutes using an oil bath. However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 7 The same operation as in Example 5 was performed except that heating with an oil bath was performed at 180 ° C. for 2 minutes. However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 8 A raw material solution was prepared in the same manner as in Example 4. After sealing the pressure vessel, the raw material liquid was heated at 120 ° C. for 5 minutes using an oil bath. However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 9 A raw material solution was prepared in the same manner as in Example 5. After sealing the pressure vessel, the raw material liquid was heated at 120 ° C. for 5 minutes using an oil bath. However, the solid was precipitated without being dispersed in the dispersion medium, and a dispersion of core-shell particles was not obtained. The results are shown in Table 2.
  • Example 10 In a 200 mL quartz pressure vessel, 25.0 g of an aqueous dispersion of silicon oxide (dielectric constant: 4.6) particles (average particle size: 45 nm, solid content concentration: 20% by mass), TEOS (solid in terms of silicon oxide) (Partial concentration: 28.8% by mass) 10.4 g of ethanol, 63.7 g of ethanol, and 0.9 g of 28% by mass of aqueous ammonia solution were added to prepare a raw material solution having a pH of 10.
  • silicon oxide dielectric constant: 4.6
  • TEOS solid in terms of silicon oxide
  • microwave material is used to irradiate the raw material liquid with microwave of maximum output: 1000W, frequency: 2.45GHz for 5 minutes, hydrolyze TEOS, and oxidize on the surface of silicon oxide particles Silicon was deposited to form a shell to obtain 100 g of a core-shell particle dispersion (core particle silicon oxide solid content concentration: 5 mass%, shell silicon oxide solid content concentration: 3 mass%).
  • the temperature of the reaction solution during microwave irradiation was 120 ° C.
  • the state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 2.
  • the dispersion medium was removed from the core-shell particle dispersion at 60 ° C. to obtain powdery core-shell particles.
  • the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured. The results are shown in Table 2.
  • the maximum value of the pore volume with a pore diameter of 3 nm or less was large, and a dense shell was not formed.
  • the pore volume histogram obtained by the nitrogen adsorption method in the sample after the acid resistance test is shown in FIG.
  • the numerical data of the pore volume histogram of the core-shell particles obtained in Example 10 are shown in Table 4.
  • Example 1 Compared with Example 1, since the maximum value of the pore volume with a pore diameter of 3 nm or less was large, it was considered that the acid resistance was low. The peak with a pore diameter in the vicinity of 10 to 20 nm was attributed to the formation of a hollow structure, and it was considered that the zinc oxide of the core particles was dissolved by the acid.
  • Example 11 A raw material solution was prepared in the same manner as in Example 1. After sealing the pressure vessel, the raw material liquid is heated at 60 ° C. for 60 minutes using an oil bath, the TEOS is hydrolyzed, silicon oxide is deposited on the surface of the zinc oxide particles, and a shell is formed. 100 g of a particle dispersion (zinc oxide solid content concentration: 5 mass%, silicon oxide solid content concentration: 3 mass%) was obtained. The state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 2. Using a rotary evaporator, the dispersion medium was removed from the core-shell particle dispersion at 60 ° C.
  • Example 12 A raw material solution was prepared in the same manner as in Example 4. After sealing the pressure-resistant container, the raw material liquid is heated at 60 ° C. for 60 minutes using an oil bath, the TEOS is hydrolyzed, silicon oxide is deposited on the surface of the titanium oxide particles, and a shell is formed. 100 g of a particle dispersion (titanium oxide solid content concentration: 0.5 mass%, silicon oxide solid content concentration: 0.3 mass%) was obtained. The state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 2. Using a rotary evaporator, the dispersion medium was removed from the core-shell particle dispersion at 60 ° C.
  • the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured. Further, the photocatalytic activity of the core-shell particles was evaluated. The results are shown in Table 2. The maximum value of the pore volume with a pore diameter of 3 nm or less was large, and a dense shell was not formed. Therefore, photocatalytic activity could not be suppressed.
  • Example 13 A raw material solution was prepared in the same manner as in Example 5. After sealing the pressure-resistant container, the raw material liquid is heated at 60 ° C. for 60 minutes using an oil bath, TEOS is hydrolyzed, silicon oxide is deposited on the surface of the ITO particles, a shell is formed, and core-shell particles 100 g of a dispersion liquid (ITO solid content concentration: 5 mass%, silicon oxide solid content concentration: 3 mass%) was obtained. The state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 2. Using a rotary evaporator, the dispersion medium was removed from the core-shell particle dispersion at 60 ° C.
  • the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured.
  • the core-shell particles were evaluated for infrared shielding ability. The results are shown in Table 2.
  • the maximum value of the pore volume with a pore diameter of 3 nm or less was large, and a dense shell was not formed. Therefore, the oxidation resistance was also inferior.
  • Example 14 In a 200 mL quartz pressure vessel, an aqueous dispersion of manganese-doped zinc sulfide (ZnS: Mn, 5 mol% manganese with respect to zinc sulfide, dielectric constant: 13) particles (average aggregated particle size: 10 nm, solid content concentration: 1) 0.0 mass%), TEOS (silicon oxide equivalent solid content concentration: 28.8 mass%) 4 g (target shell thickness: 3 nm), ethanol 42.4 g, 28 mass% ammonia aqueous solution 3.6 g And a raw material solution having a pH of 10 was prepared.
  • ZnS manganese-doped zinc sulfide
  • microwave material is used to irradiate the raw material liquid with microwave of maximum output: 1000 W, frequency: 2.45 GHz for 5 minutes, hydrolyze TEOS, and surface of manganese-doped zinc sulfide particles Then, silicon oxide was precipitated to form a shell, and 100 g of a core-shell particle dispersion (ZnS: Mn solid content concentration: 0.5 mass%, silicon oxide solid content concentration: 1.2 mass%) was obtained. .
  • the temperature of the reaction solution during microwave irradiation was 120 ° C. The state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 1.
  • the dispersion medium was removed from the core-shell particle dispersion at 60 ° C. to obtain powdery core-shell particles.
  • the maximum value of the shell thickness and the pore volume with a pore diameter of 3 nm or less was measured.
  • 50 g of a dispersion of core-shell particles ZnS: Mn solid content concentration: 0.5 mass%, silicon oxide solid content concentration: 1.2 mass%), silicic acid oligomer solution (solid content) 10 g of a concentration of 5% by mass) and 40 g of ethanol were added and stirred for 10 minutes to obtain a coating composition (solid content concentration of 1.4% by mass).
  • the coating composition is applied to the surface of a glass substrate (100 mm ⁇ 100 mm, thickness 3.5 mm) wiped with ethanol, spin-coated at 200 rpm for 60 seconds, homogenized, and then baked at 200 ° C. for 10 minutes. A coating film having a thickness of 100 nm was formed. The coating film was evaluated for moisture resistance using the change in fluorescence characteristics as an evaluation index. The results are shown in Table 3.
  • Example 15 A raw material solution was prepared in the same manner as in Example 14. After sealing the pressure vessel, the raw material liquid is heated at 60 ° C. for 60 minutes using an oil bath, TEOS is hydrolyzed, silicon oxide is deposited on the surface of the manganese-doped zinc sulfide particles, and a shell is formed. -100 g of a dispersion of shell particles (ZnS: Mn solid content concentration: 0.5 mass%, silicon oxide solid content concentration: 1.2 mass%) was obtained. The state of the core-shell particle dispersion was observed. Further, the average particle diameter of the core-shell particles in the dispersion medium was measured. The results are shown in Table 3.
  • the core particles are selectively heated, so that a dense shell is formed only around the core particles.
  • a heat source such as an oil bath
  • silica is deposited in areas other than the periphery of the core particles.
  • a hydrolysis reaction proceeds rapidly throughout the solution, resulting in the formation of a precipitate and a gel.
  • ZnO zinc oxide
  • TiO 2 Titanium oxide
  • MW Microwave
  • ZnO zinc oxide
  • TiO 2 Titanium oxide
  • SiO 2 silicon oxide
  • MW Microwave
  • OB Oil bath
  • ZnS Mn (manganese-doped zinc sulfide)
  • the core-shell particles of the present invention are useful as resin fillers, cosmetics, glass coatings and the like.
  • Articles on which a coating film made of the coating composition of the present invention is formed are transparent parts for vehicles (front transparent board, side transparent board, rear transparent board, etc.), architectural windows, transparent substrates for solar cells, optical filters, agricultural use. It is useful as a film.
  • the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2008-176868 filed on Jul. 7, 2008 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Composite Materials (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Paints Or Removers (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Silicon Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Catalysts (AREA)

Abstract

 緻密なシェルを有するコア-シェル粒子、および該コア-シェル粒子を短時間で製造できる方法を提供する。  誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、前記コア粒子の表面に金属酸化物からなるシェルを形成することによって、シェルの厚さが、1~500nmであり、窒素吸着法により得られる細孔容積ヒストグラムにおいて、前記シェルの細孔径3nm以下の細孔容積の最大値が、0.01cc/gであり、かつ分散媒中での平均粒子径が、1~1000nmであるコア-シェル粒子を得る。

Description

コア-シェル粒子およびコア-シェル粒子の製造方法
 本発明は、コア-シェル粒子および該コア-シェル粒子の製造方法に関する。
 酸化チタン、酸化亜鉛等の金属酸化物粒子は、紫外線遮蔽能を有することから、樹脂用フィラー、化粧料等として用いられている。また、インジウムがドープされた酸化スズ(以下、ITOと記す。)等は、赤外線遮蔽能を有することから、樹脂用フィラー、ガラス用コーティング等として用いられている。
 しかし、該金属酸化物粒子は、下記の問題を有する。
 (i)酸化チタン、酸化亜鉛等は光触媒活性を有するため、該金属酸化物粒子を樹脂用フィラー、化粧料等に用いた場合、有機物(樹脂、化粧料の他の成分等。)を分解してしまう。
 (ii)酸化亜鉛粒子をフッ素樹脂用フィラーに用いた場合、フッ素樹脂から遊離するフッ素化合物と酸化亜鉛とが反応してフッ化亜鉛に変質し、紫外線遮断能が低下する。
 (iii)ITO粒子を樹脂用フィラー、ガラス用コーティング等として用いた場合、ITOが酸化劣化して、赤外線遮蔽能が低下する。
 そのため、金属酸化物粒子を前記用途に用いる場合は、通常、金属酸化物粒子をコア粒子とし、該粒子の表面を、酸化ケイ素(シリカ)等の金属酸化物からなるシェルで被覆したコア-シェル粒子として用いる。
 たとえば、化粧料用のコア-シェル粒子としては、下記のものが知られている。
 (1)シリカ膜厚が0.1~100nmであるシリカ被覆金属酸化物粉(特許文献1)。
 しかし、(1)のコア-シェル粒子は、シェルを低温条件にて形成しているため、シェルが比較的大きな細孔を有している。そのため、前記(i)~(iii)の問題を充分に解決できない。また、シェルを低温条件にて形成しているため、シェルの形成に時間がかかる。
 前記(i)~(iii)の問題を解決するためには、緻密なシェルを形成する必要がある。緻密なシェルを形成するためには、シェルを高温条件にて形成すればよいが、シェルを高温条件にて形成した場合、シェルの材料がコア粒子の表面以外に単独で析出する。そのため、緻密なシェルを有するコア-シェル粒子を得ることは困難である。
国際公開第98/47476号パンフレット
 本発明は、緻密なシェルを有するコア-シェル粒子、および該コア-シェル粒子を短時間で製造できる方法を提供する。
 本発明は以下の構成を要旨とするものである。
 [1]誘電率が10以上の材料からなるコア粒子の表面に金属酸化物からなるシェルが形成されたコア-シェル粒子であり、前記シェルの厚さが1~500nmであり、窒素吸着法により得られる細孔容積ヒストグラムにおいて、前記シェルの細孔径3nm以下の細孔容積の最大値が、0.01cc/gであり、かつ分散媒中での平均粒子径が、1~1000nmである、ことを特徴とするコア-シェル粒子。
 [2]前記コア粒子の材料が、金属酸化物、金属硫化物、または金属カルコゲナイドである、[1]に記載のコア-シェル粒子。
 [3]前記コア粒子の材料が、酸化亜鉛、酸化チタン、または酸化セリウムである[2]に記載のコア-シェル粒子。
 [4]前記コア粒子の材料が、インジウムドープ酸化スズまたは酸化スズである[2]に記載のコア-シェル粒子。
 [5]前記コア粒子の材料が、マンガンドープ硫化亜鉛、硫化カドミウム、セレン化亜鉛、またはユウロピウムドープバナジン酸イットリウムである[2]に記載のコア-シェル粒子。
 [6]前記コア-シェル粒子の平均1次粒子径が1~500nmである[1]~[4]のいずれかに記載のコア-シェル粒子。
 [7]前記シェルの材料が、酸化ケイ素である、[1]~[6]のいずれかに記載のコア-シェル粒子。
 [8][1]~[7]のいずれかに記載のコア-シェル粒子を製造する方法であって、誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、前記コア粒子の表面に金属酸化物からなるシェルを形成する、コア-シェル粒子の製造方法。
 [9]マイクロ波の出力が、誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液が100~500℃に加熱される出力である、[8]に記載のコア-シェル粒子の製造方法。
 [10]金属酸化物前駆体が、アルコキシシランである、[8]または[9]に記載のコア-シェル粒子の製造方法。
 [11][1]~[7]のいずれかに記載のコア-シェル粒子と分散媒とを含む、塗料組成物。
 [12]基材上に、[11]に記載の塗料組成物からなる塗膜が形成された物品。
 本発明のコア-シェル粒子は、緻密なシェルを有するため、コア粒子の光触媒活性が充分に抑えられ、また、コア粒子の変質、劣化が充分に抑えられる。
 本発明のコア-シェル粒子の製造方法によれば、緻密なシェルを有するコア-シェル粒子を短時間で製造できる。
実施例である例1及び比較例である例10で得られたコア-シェル粒子の、窒素吸着法により得られる細孔容積ヒストグラムである。
<コア-シェル粒子>
 本発明のコア-シェル粒子は、コア粒子の表面に金属酸化物からなるシェルが形成されたコア-シェル粒子である。
 コア粒子の材料の誘電率は、10以上であり、10~200が好ましく、15~100が特に好ましい。コア粒子の材料の誘電率が10以上であれば、マイクロ波を吸収しやすくなるため、マイクロ波によってコア粒子を選択的に、かつ高温に加熱できる。
 マイクロ波を照射した際に誘電体内部で熱に代わる電力は下式(1)で示される。
 P=2πfEεtanδ(1)
 (P:電力、f:周波数、E:電界の大きさ、ε:誘電率、tanδ:誘電正接)
 したがって、発生熱量は誘電率と誘電正接の積によって決まるため、誘電率だけでなく誘電正接が大きい材料ほど加熱されやすい。誘電正接は、0.001~1が好ましく、0.01~1が特に好ましい。
 誘電率および誘電正接は、JIS-R1627の規定に則り、ネットワークアナライザを用いて、ブリッジ回路によって試料に電場を印加し、反射係数と位相を測定した値から算出することができる。
 コア粒子の材料としては、金属酸化物、金属硫化物、または金属カルコゲナイドが挙げられる。
 これらの材料は、他の元素がドープされていてもよい。ドープされる元素としては、Ce,Nd,Sm,Eu,Gd,Tb,Dy,Er,Tm,Yb,Al,Mn,Fe,Co,Ni,Cu,Bi等が挙げられる。
 元素のドープ量は、ドープされる金属酸化物に対して0.1~20mol%が好ましく、0.3~10mol%が特に好ましく、0.5~5mol%がとりわけ好ましい。ドープ量が0.1mol%より少ないと、不純物準位が不足して性能が低下するため好ましくない。ドープ量が20mol%より多いと、不純物準位が過剰になることで互いに作用して性能が低下するため好ましくない。
 誘電率が10以上の材料としては、酸化亜鉛(誘電率:18)、酸化チタン(誘電率:30)、ITO(インジウムドープ酸化スズ)(誘電率:24)、酸化アルミニウム(誘電率:12)、酸化ジルコニウム(誘電率:13)、酸化鉄(誘電率:16)、酸化カドミウム(誘電率:17)、酸化銅(誘電率:18)、酸化ビスマス(誘電率:18)、酸化タングステン(誘電率:20)、酸化セリウム(誘電率:21)、酸化スズ(誘電率:24)、ユウロピウムドープバナジン酸イットリウム(誘電率:10)等の金属酸化物;硫化亜鉛(誘電率:13)、マンガンドープ硫化亜鉛(誘電率:13)、硫化カドミウム(誘電率:10)等の金属硫化物;セレン化亜鉛(誘電率:10)等の金属カルコゲナイド;が挙げられる。
 コア粒子としては、紫外線遮蔽能に優れる点からは、酸化亜鉛からなる粒子、酸化チタンからなる粒子、または酸化セリウムからなる粒子が好ましく、赤外線遮蔽能に優れる点からは、ITOからなる粒子、または酸化スズからなる粒子が好ましい。また、蛍光特性に優れる点からは、マンガンドープ硫化亜鉛からなる粒子、硫化カドミウムからなる粒子、セレン化亜鉛からなる粒子、またはユウロピウムドープバナジン酸イットリウムからなる粒子が好ましい。
 コア粒子の形状は特に限定されず、球状、角状、針状、シート状、鎖状、繊維状、中空状等の形状の粒子を用いることができる。
 シェルを形成する金属酸化物としては、酸化ケイ素、酸化アルミニウム、酸化チタン、酸化ジルコニウム、酸化スズ、酸化セリウム等が挙げられ、緻密なシェルが形成される点から、酸化ケイ素が好ましい。
 コア-シェル粒子のシェルの厚さは、1~500nmであり、1~100nmが好ましく、1~30nmが特に好ましい。シェルの厚さが1nm以上であれば、シェルを介して物質の移動ができなくなるため、コア粒子の光触媒活性が充分に抑えられ、また、コア粒子の変質、劣化が充分に抑えられる。シェルの厚さが500nm以下であれば、コア粒子が有する紫外線遮蔽能、赤外線遮蔽能等の機能が充分に発揮される。
 シェルの厚さは、金属酸化物前駆体の量、マイクロ波の出力、照射時間等を適宜調整することにより調整できる。
 シェルの厚さは、コア-シェル粒子を透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各コア-シェル粒子のシェルの厚さを測定し、100個のコア-シェル粒子のシェルの厚さを平均した値である。
 コア-シェル粒子の、窒素吸着法による、前記シェルの細孔径(細孔直径をいう)3nm以下の細孔容積の最大値が、0.01cc/gであり、0.0001~0.01cc/gが好ましい。窒素吸着法により得られる細孔容積ヒストグラムにおいて、前記シェルの細孔径3nm以下の細孔容積の最大値が、0.01cc/gであれば、シェルが緻密となるため、シェルを介して物質の移動ができなくなり、コア粒子の光触媒活性が充分に抑えられ、また、コア粒子の変質、劣化が充分に抑えられる。
 なお、ここでいう細孔直径が3nm以下の範囲とは、小数点第1位を考慮して、3.4nm以下を含むものと解する。また、後述する実施例に記載したヒストグラムにおいて、細孔直径が3nm以下の範囲に示されるピークはシェルに存在する細孔に関連するピークであり、10~20nm付近に存在するピークはコア-シェル粒子のコアが溶出することによって生じる中空構造に由来するピークであり、20nm付近よりも細孔直径が大きい範囲に存在するブロードなピークはコア-シェル粒子間に存在する空隙に由来する。本発明のコア-シェル粒子は緻密なシェルを有することが特徴であるため、細孔直径が3nm以下の細孔の細孔容積を用いてコア-シェル粒子を特定するものである。
 コア-シェル粒子の分散媒中での平均粒子径は、1~1000nmであり、3~1000nmが好ましく、3~300nmが特に好ましい。なお、コア-シェル粒子が透明性を要求される用途に用いられる場合、平均粒子径は、3~100nmが好ましい。
 コア-シェル粒子の平均粒子径は、分散媒中におけるコア-シェル粒子の平均凝集粒子直径であり、動的散乱法で測定される。
 コア-シェル粒子の平均一次粒子径は、1~500nmが好ましく、1~200nmがより好ましく、1~100nmがとりわけ好ましい。
 コア-シェル粒子の平均一次粒子径は、コア-シェル粒子を透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各コア-シェル粒子の粒子直径を測定し、100個のコア-シェル粒子の粒子直径を平均した値である。
 以上説明した本発明のコア-シェル粒子は、緻密なシェルを有する。そのため、コア粒子の光触媒活性が充分に抑えられ、また、コア粒子の変質、劣化が充分に抑えられる。
<コア-シェル粒子の製造方法>
 本発明のコア-シェル粒子の製造方法は、誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、前記コア粒子の表面に金属酸化物からなるシェルを形成する方法である。
 具体的には、下記の工程を有する方法が挙げられる。
 (a)コア粒子を分散媒に分散させたコア粒子の分散液に、金属酸化物前駆体、必要に応じて水、有機溶媒、アルカリまたは酸、硬化触媒等を加え、原料液を調製する工程。
 (b)該原料液にマイクロ波を照射して該原料液を加熱するとともに、金属酸化物前駆体をアルカリまたは酸によって加水分解して、コア粒子の表面に金属酸化物を析出させ、シェルを形成し、コア-シェル粒子の分散液を得る工程。
 (c)必要に応じて、コア-シェル粒子の分散液から分散媒を除去し、コア-シェル粒子を回収する工程。
(a)工程:
 コア粒子の材料の誘電率は、10以上であり、10~200が好ましい。コア粒子の材料の誘電率が10以上であれば、マイクロ波を吸収しやすくなるため、マイクロ波によってコア粒子を選択的に、かつ高温に加熱できる。
 分散液中におけるコア粒子の平均粒子径は、1~1000nmが好ましく、1~300nmがより好ましい。コア粒子の平均粒子径が1nm以上であれば、コア粒子の質量あたりの表面積が増えすぎることがなく、被覆に必要な金属酸化物の量が抑えられる。コア粒子の平均粒子径が1000nm以下であれば、分散媒への分散性が良好となる。
 分散液中におけるコア粒子の平均粒子径は、分散媒中におけるコア粒子の平均凝集粒子径であり、動的散乱法で測定される。
 分散液中におけるコア粒子の濃度は、コア粒子の分散液(100質量%)中、0.1~40質量%が好ましく、0.5~20質量%がより好ましい。コア粒子の濃度が0.1質量%以上であれば、コア-シェル粒子の製造効率が良好となる。コア粒子の濃度が40質量%以下であれば、コア粒子が凝集しにくい。
 分散媒としては、水、アルコール類(メタノール、エタノール、イソプロパノール等)、ケトン類(アセトン、メチルエチルケトン等)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等)、エステル類(酢酸エチル、酢酸メチル等)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等)、含窒素化合物類(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等)、含硫黄化合物類(ジメチルスルホキシド等)等が挙げられる。
 分散媒は、金属酸化物前駆体の加水分解に水が必要であるため、分散媒100質量%中、5~100質量%の水を含むことが好ましい。
 金属酸化物前駆体としては、金属アルコキシド等が挙げられ、緻密なシェルを形成する点から、アルコキシシランが好ましい。
 アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン(以下、TEOSと記す。)、テトラn-プロポキシシラン、テトライソプロポキシシラン等が挙げられ、反応速度が適正な点から、TEOSが好ましい。
 金属酸化物前駆体の量は、シェルの厚さが1~500nmとなる量であり、シェルの厚さが1~100nmとなる量が好ましく、1~30nmとなる量が特に好ましい。
 金属酸化物前駆体の量(金属酸化物換算)は、具体的には、コア粒子100質量部に対して、0.1~10000質量部が好ましい。
 アルカリとしては、水酸化カリウム、水酸化ナトリウム、アンモニア、炭酸アンモニウム、炭酸水素アンモニウム、ジメチルアミン、トリエチルアミン、アニリン等が挙げられ、加温により除去可能な点から、アンモニアが好ましい。
 アルカリの量は、金属酸化物前駆体が三次元的に重合して緻密なシェルを形成しやすい点から、原料液のpHが8.5~10.5となる量が好ましく、9.0~10.0となる量がより好ましい。
 酸としては、塩酸、硝酸等が挙げられる。なお、酸化亜鉛粒子は酸に溶解するため、コア粒子として酸化亜鉛粒子を用いる場合、金属酸化物前駆体の加水分解はアルカリによって行うことが好ましい。
 酸の量は、原料液のpHが3.5~5.5となる量が好ましい。
 硬化触媒としては、金属キレート化合物、有機スズ化合物、金属アルコレート、金属脂肪酸塩等が挙げられ、シェルの強度の点から、金属キレート化合物、または有機スズ化合物が好ましく、金属キレート化合物が特に好ましい。
 硬化触媒の量(金属酸化物換算)は、金属酸化物前駆体の量(金属酸化物換算)の100質量部に対して0.1~20.0質量部が好ましく、0.2~8.0質量部がより好ましい。
(b)工程:
 マイクロ波とは、通常、周波数が300MHz~300GHzの電磁波を指す。通常は、周波数が2.45±0.05GHzのマイクロ波が用いられるが、被加熱物が有効に加熱される周波数を選択すればよく、これに限定されるものではない。電波法により、IMSバンドと呼ばれる通信以外の目的で電波を利用する用途のために周波数帯が定められており、たとえば433.92(±0.87)MHz、896(±10)MHz、915(±13)MHz、2375(±50)MHz、2450(±50)MHz、5800(±75)MHz、24125(±125)MHz等のマイクロ波を用いても良い。
 マイクロ波の出力は、原料液が100~500℃に加熱される出力が好ましく、原料液が120~300℃に加熱される出力がより好ましい。具体的には100~5000Wが好ましく、500~3000Wがより好ましい。
 原料液の温度が100℃以上であれば、緻密なシェルを短時間で形成できる。原料液の温度が500℃以下であれば、コア粒子表面以外で析出する金属酸化物の量が抑えられる。
 マイクロ波の照射時間は、マイクロ波の出力(原料液の温度)に応じて、所望の厚さのシェルが形成される時間に調整すればよく、たとえば、10秒~60分である。
 マイクロ波による加熱処理は、バッチ処理でもよいが、大量に製造する場合は流通式装置による連続処理が好ましい。また、マイクロ波の照射方式はシングルモードでもよいが、大量に製造する場合は、均一に加熱できるマルチモードが好ましい。
(c)工程:
 コア-シェル粒子の分散液から分散媒を除去し、コア-シェル粒子を回収する方法としては、下記の方法が挙げられる。
 (c-1)コア-シェル粒子の分散液を加熱して、分散媒等を揮発させる方法。
 (c-2)コア-シェル粒子の分散液を固液分離して、固形分を乾燥する方法。
 (c-3)スプレードライヤーを用い、加熱されたガス中にコア-シェル粒子の分散液を噴霧して分散媒等を揮発させる方法(スプレードライ法)。
 (c-4)コア-シェル粒子の分散液を冷却し減圧することで、分散媒等を昇華させる方法(凍結乾燥法)。
 以上説明した本発明のコア-シェル粒子の製造方法にあっては、誘電率が10以上の材料からなるコア粒子と金属酸化物前駆体とを含む原料液にマイクロ波を照射しているため、コア粒子を選択的に、かつ高温に加熱できる。そのため、原料液全体が高温になったとしても、コア粒子がさらに高温に加熱されているため、金属酸化物前駆体の加水分解がコア粒子の表面にて優先的に進行し、コア粒子の表面に金属酸化物が選択的に析出する。よって、コア粒子の表面以外に単独で析出する金属酸化物の量が抑えられる。また、シェルを高温条件にて形成できるため、緻密なシェルが短時間で形成される。
<塗料組成物>
 本発明の塗料組成物は、本発明のコア-シェル粒子と、分散媒と、必要に応じてバインダーとを含む。
 分散媒としては、水、アルコール類(メタノール、エタノール、イソプロパノール等)、ケトン類(アセトン、メチルエチルケトン等)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等)、エステル類(酢酸エチル、酢酸メチル等)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等)、含窒素化合物類(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等)、含硫黄化合物類(ジメチルスルホキシド等)等が挙げられる。
 バインダーとしては、アルコキシシラン(テトラメトキシシラン、TEOS等)、アルコキシシランを加水分解して得られるケイ酸オリゴマー、シラノール基を有するケイ素化合物(ケイ酸、トリメチルシラノール等)、活性シリカ(水ガラス、オルトケイ酸ナトリウム等)、有機ポリマー(ポリエチレングリコール、ポリアクリルアミド誘導体、ポリビニルアルコール等)、活性エネルギー線硬化性組成物(アクリル系硬化性組成物等)等が挙げられる。
 コア-シェル粒子とバインダーとの質量比(コア-シェル粒子/バインダー)は、コア-シェル粒子の機能や、本発明の塗料組成物が適用される用途によって適宜設定すればよい。通常は、10/0~5/5が好ましく、9/1~7/3がより好ましい。コア-シェル粒子/バインダー(質量比)が該範囲であれば、塗膜の硬さを維持し、塗膜のクラック発生を抑制しつつ、紫外線遮蔽等の機能を充分発現できる塗膜を形成できる。
 本発明の塗料組成物の固形分濃度は、0.1~20質量%が好ましい。
 本発明の塗料組成物は、本発明のコア-シェル粒子以外の粒子を、本発明の効果を損なわない範囲で含んでいてもよい。
 本発明の塗料組成物は、Mg、Ca、Sr、Ba等の塩化物、硝酸塩、硫酸塩、蟻酸塩、酢酸塩等のアルカリ土類金属塩;無機酸、有機酸、塩基、金属キレート化合物、4級アンモニウム塩、有機スズ化合物等の硬化触媒;紫外線遮蔽性、赤外線遮蔽性、導電性を示す無機粒子;顔料、染料、界面活性剤等の公知の添加剤を含んでいてもよい。
 本発明の塗料組成物には、さらに無機物及び/又は有機物からなる各種塗料用配合剤が配合され、ハードコート、アルカリバリア、着色、導電、帯電防止、偏光、紫外線遮蔽、赤外線遮蔽、防汚、防曇、光触媒、抗菌、蛍光、蓄光、屈折率制御、撥水、撥油、指紋除去、滑り性等より選ばれる1種または2種以上の機能が付与されてもよい。
 本発明の塗料組成物には、塗膜に求められる機能に応じて、通常使用される添加剤、例えば、泡立ち防止剤、レベリング剤、紫外線吸収剤、粘度調整剤、酸化防止剤、防カビ剤等を適宜添加することができる。また、塗膜を目的に応じた色に着色するため、塗料用として通常使用される種々の顔料、例えばチタニア、ジルコニア、鉛白、ベンガラ等を配合することも可能である。
<物品>
 本発明の物品は、本発明の塗料組成物からなる塗膜が形成されたものである。
 塗膜の膜厚は、50~300nmが好ましく、80~200nmがより好ましい。塗膜の膜厚が50nm以上であれば、光の干渉が起こり、反射防止効果が発現する。塗膜の膜厚が300nm以下であれば、クラックを発生させずに製膜できる。
 塗膜の膜厚は、塗工および非塗工界面を段差計で測定することによって得られる。
 塗膜は、基材表面に本発明の塗料組成物を塗布し、乾燥することによって、さらに必要に応じて加熱、焼成、活性エネルギー線照射を行うことによって形成できる。基材といてガラス板を用いる場合は、ガラスの強化工程において焼成されることがコストの点においてより好ましい。
 基材の材料としては、ガラス、金属、有機ポリマー、シリコン等が挙げられ、あらかじめ何らかの塗膜が形成されている基材でもよい。ガラスとしては、フロート法等により成形されたガラスが挙げられる。有機ポリマーとしては、ポリエチレンテレフタレート(以下、PETと記す。)、ポリカーボネート、ポリメタクリル酸メチル、トリアセチルアセテート等が挙げられる。
 基材の形状としては、板、フィルム等が挙げられる。
 本発明の物品には、別の機能層(密着改善層、保護層等)が本発明の効果を損なわない範囲において形成されていてもよい。なお、本発明においては、生産性、耐久性の点から、本発明における塗膜のみが形成されていることが好ましい。
 基材には、あらかじめ無機物及び/又は有機物からなる塗膜が形成され、ハードコート、アルカリバリア、着色、導電、帯電防止、偏光、紫外線遮蔽、赤外線遮蔽、防汚、防曇、光触媒、抗菌、蛍光、蓄光、屈折率制御、撥水、撥油、指紋除去、滑り性等より選ばれる1種または2種以上の機能が付与されていてもよい。さらにまた、本発明の塗料組成物が塗布されてなる塗膜の上に無機物及び/又は有機物からなる機能性の塗膜が形成され、ハードコート、アルカリバリア、着色、導電、帯電防止、偏光、紫外線遮蔽、赤外線遮蔽、防汚、防曇、光触媒、抗菌、蛍光、蓄光、屈折率制御、撥水、撥油、指紋除去、滑り性等より選ばれる1種または2種以上の機能が付与されてもよい。
 塗布方法としては、バーコート、ダイコート、グラビアコート、ロールコート、フローコート、スプレーコート、オンラインスプレーコート、超音波スプレーコート、インクジェット、ディップコート等の公知の方法が挙げられる。オンラインスプレーコートとは、基材を成型するライン上でそのままスプレー塗布する方法であり、基材を再加熱する工程が省けるため、物品を低コストで製造でき、有用である。
 以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例にのみに限定されるものではない。
 例1~5、14は、実施例であり、例6~13、15は、比較例である。
(コア粒子およびコア-シェル粒子の平均粒子径)
 分散媒中でのコア粒子およびコア-シェル粒子の平均粒子径は、動的光散乱法粒度分析計(日機装社製、マイクロトラックUPA)を用いて測定した。
(誘電率)
 コア粒子の材料の誘電率は、JIS-R1627の規定に則り、ネットワークアナライザ(アジレント・テクノロジー社製、PNAマイクロ波ベクトル・ネットワーク・アナライザ)を用いて、ブリッジ回路によって試料に電場を印加し、反射係数と位相を測定した値から算出した。
(液の状態)
 加熱後の原料液の状態を目視で確認した。
 分散:コア-シェル粒子が分散媒に均一に分散している。
 沈殿:固形物が分散媒に分散せず、沈殿している。
(シェルの厚さ)
 コア-シェル粒子を透過型電子顕微鏡にて観察し、100個の粒子を無作為に選び出し、各コア-シェル粒子のシェルの厚さを測定し、100個のコア-シェル粒子のシェルの厚さを平均した。
(細孔容積の最大値)
 比表面積・細孔分布測定装置(ユアサアイオニクス社製、AUTOSORB-1)を用いた。前処理として90℃で15時間真空脱気した後、液体窒素温度下(77.35K)で窒素吸脱着等温線を測定した。窒素吸脱着等温線をDFT法(密度汎関数理論Density Functional Theory)で解析して細孔容積ヒストグラムを求め、細孔容積の最大値を得た。測定は相対圧力P/P0が10e-6~0.995の範囲において等間隔で40ポイント 、圧力交差は2、平衡時間は3分とした。コア-シェル粒子に存在する細孔としては、マイクロポア(~2nm)、メソポア(2~50nm)、マクロポア(50nm~)がある(カッコ内の数値は細孔直径の値)。そのため、これらの異なる領域の細孔分布に対して区別なく適用できる唯一の解析手法であるDFT法を用いた。また、DFT法によって得られるのは細孔容積ヒストグラムなため、ヒストグラムにおける細孔容積の最大値を評価指標として用いた。
(耐酸性)
 コア粒子が酸化亜鉛粒子であるコア-シェル粒子については、下記のようにしてコア粒子の耐酸性を評価した。該耐酸性の評価結果は、耐候性(耐フッ素性)の目安となる。
 コア-シェル粒子分散液に0.1mol/Lの硝酸水溶液を滴下してpHを4に調整し、1時間経過後の紫外領域の吸光度の変化からコア粒子溶解の有無を評価した。
 ○:酸によりコア粒子が溶解しない。
 ×:酸によりコア粒子が溶解する。
(光触媒活性の抑制)
 コア粒子が酸化チタン粒子であるコア-シェル粒子については、下記のようにしてコア-シェル粒子の光触媒活性を評価した。
 コア-シェル粒子分散液にメチレンブルーを溶解させた後、ブラックライトを照射し、6時間経過後の可視領域の吸光度の変化から光触媒活性の有無を評価した。
 ○:コア-シェル粒子が光触媒活性を示さない。
 ×:コア-シェル粒子が光触媒活性を示す。
(赤外線遮蔽能)
 コア粒子がITO粒子であるコア-シェル粒子については、下記のようにして赤外線遮蔽能を評価した。該赤外線遮蔽能の評価結果は、コア粒子の耐酸化性の目安となる。
 コア-シェル粒子の分散液をガラスに塗布して塗膜を形成し、650℃焼成後の赤外領域の吸光度の変化から耐酸化性を評価した。
 ○:赤外線遮蔽能が低下しない。
 ×:赤外線遮蔽能が低下する。
(耐湿性)
 コア粒子がマンガンドープ硫化亜鉛粒子であるコア-シェル粒子については、下記のようにして耐湿性を評価した。
 コア-シェル粒子の分散液をガラス板に塗布して塗膜を形成し、200℃で焼成して得たサンプルを85℃85%の恒温恒湿槽に1000時間保持した後の、紫外線励起発光強度の変化から耐湿性を評価した。
 ○:発光強度が減少しない。
 ×:発光強度が減少する。
〔例1〕
 200mLの石英製耐圧容器に、酸化亜鉛(誘電率:18)粒子の水分散液(平均粒子径:30nm、固形分濃度:20質量%)の25.0g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の10.4g、エタノールの63.7g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置(マイルストーン社製、MicroSYNTH)を用い、原料液に最大出力:500W、周波数:2.45GHzのマイクロ波を5分間照射し、TEOSを加水分解して、酸化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(酸化亜鉛固形分濃度:5質量%、酸化ケイ素固形分濃度:3質量%)の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表1に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、耐酸性の評価を行った。結果を表1に示す。
 なお、耐酸性試験後のサンプルにおいて窒素吸着法により得られる細孔容積ヒストグラムを図1に示した。本実施例における耐酸性試験の条件ではシェルに変化は認められないため、耐酸性試験後の細孔容積ヒストグラムの結果をもって、コア-シェル粒子の細孔容積を評価した。例1で得られたコア-シェル粒子の細孔容積ヒストグラムの数値データを表4に示す。
〔例2〕
 マイクロ波の最大出力を1000Wに変更し、マイクロ波の照射時間を2分に変更した以外は、例1と同様にして、コア-シェル粒子の分散液(酸化亜鉛固形分濃度:5.0質量%、酸化ケイ素固形分濃度:3.0質量%)の100gを得た。マイクロ波照射中の反応液の温度は180℃であった。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表1に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、耐酸性の評価を行った。結果を表1に示す。
〔例3〕
 200mLの石英製耐圧容器に、酸化亜鉛(誘電率:18)粒子の水分散液(平均粒子径:70nm、固形分濃度:20質量%)の34.9g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の10.4g、エタノールの53.8g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:500W、周波数:2.45GHzのマイクロ波を10分間照射し、TEOSを加水分解して、酸化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(酸化亜鉛固形分濃度:7質量%、酸化ケイ素固形分濃度:3質量%)の100gを得た。マイクロ波照射中の反応液の温度は100℃であった。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表1に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、耐酸性の評価を行った。結果を表1に示す。
〔例4〕
 200mLの石英製耐圧容器に、酸化チタン(誘電率:30)粒子の水分散液(平均粒子径:20nm、固形分濃度:1質量%)の50.0g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の1g、エタノールの48.1g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:1000W、周波数:2.45GHzのマイクロ波を5分間照射して、TEOSを加水分解し、酸化チタン粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(酸化チタン固形分濃度:0.5質量%、酸化ケイ素固形分濃度:0.3質量%)の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。
 結果を表1に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、光触媒活性の評価を行った。結果を表1に示す。
〔例5〕
 200mLの石英製耐圧容器に、ITO(酸化スズに対してインジウムが10mol%、誘電率:24)粒子の水分散液(平均粒子径:60nm、固形分濃度:8質量%)の62.5g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の10.4g、エタノールの26.2g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:500W、周波数:2.45GHzのマイクロ波を5分間照射し、TEOSを加水分解して、ITO粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(ITO固形分濃度:5質量%、酸化ケイ素固形分濃度:3質量%)100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表1に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、赤外線遮蔽能の評価を行った。結果を表1に示す。
〔例6〕
 例1と同様にして原料液を調製した。耐圧容器を密封した後、オイルバスを用い、原料液を120℃で5分間加熱した。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例7〕
 オイルバスによる加熱を180℃で2分間行った以外は、例5と同様の操作を行った。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例8〕
 例4と同様にして原料液を調製した。耐圧容器を密封した後、オイルバスを用い、原料液を120℃で5分間加熱した。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例9〕
 例5と同様にして原料液を調製した。耐圧容器を密封した後、オイルバスを用い、原料液を120℃で5分間加熱した。しかし、固形物が分散媒に分散せずに沈殿し、コア-シェル粒子の分散液は得られなかった。結果を表2に示す。
〔例10〕
 200mLの石英製耐圧容器に、酸化ケイ素(誘電率:4.6)粒子の水分散液(平均粒子径:45nm、固形分濃度:20質量%)の25.0g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の10.4g、エタノールの63.7g、28質量%のアンモニア水溶液の0.9gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:1000W、周波数:2.45GHzのマイクロ波を5分間照射し、TEOSを加水分解して、酸化ケイ素粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(コア粒子の酸化ケイ素固形分濃度:5質量%、シェルの酸化ケイ素固形分濃度:3質量%)の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表2に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。結果を表2に示す。細孔径3nm以下の細孔容積の最大値が大きく、緻密なシェルは形成されなかった。
 なお、耐酸性試験後のサンプルにおいて窒素吸着法により得られる細孔容積ヒストグラムを図1に示した。例10で得られたコア-シェル粒子の細孔容積ヒストグラムの数値データを表4に示す。例1と比較して、細孔直径が3nm以下の細孔容積の最大値が大きいため、耐酸性が低いと考えられた。また、細孔直径が10~20nm付近のピークは中空構造形成によるものであり、コア粒子の酸化亜鉛が酸によって溶解したと考えられた。
〔例11〕
 例1と同様にして原料液を調製した。耐圧容器を密封した後、オイルバスを用い、原料液を60℃で60分間加熱し、TEOSを加水分解して、酸化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(酸化亜鉛固形分濃度:5質量%、酸化ケイ素固形分濃度:3質量%)100gを得た。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表2に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、耐酸性の評価を行った。結果を表2に示す。細孔径3nm以下の細孔容積の最大値が大きく、緻密なシェルは形成されなかった。そのため、耐酸性も劣っていた。
〔例12〕
 例4と同様にして原料液を調製した。耐圧容器を密封した後、オイルバスを用い、原料液を60℃で60分間加熱し、TEOSを加水分解して、酸化チタン粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(酸化チタン固形分濃度:0.5質量%、酸化ケイ素固形分濃度:0.3質量%)100gを得た。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表2に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、光触媒活性の評価を行った。結果を表2に示す。細孔径3nm以下の細孔容積の最大値が大きく、緻密なシェルは形成されなかった。そのため、光触媒活性を抑制できなかった。
〔例13〕
 例5と同様にして原料液を調製した。
 耐圧容器を密封した後、オイルバスを用い、原料液を60℃で60分間加熱し、TEOSを加水分解して、ITO粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(ITO固形分濃度:5質量%、酸化ケイ素固形分濃度:3質量%)100gを得た。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表2に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。また、該コア-シェル粒子について、赤外線遮蔽能の評価を行った。結果を表2に示す。細孔径3nm以下の細孔容積の最大値が大きく、緻密なシェルは形成されなかった。そのため、耐酸化性も劣っていた。
〔例14〕
 200mLの石英製耐圧容器に、マンガンドープ硫化亜鉛(ZnS:Mn、硫化亜鉛に対してマンガンが5mol%、誘電率:13)粒子の水分散液(平均凝集粒子径:10nm、固形分濃度:1.0質量%)の50g、TEOS(酸化ケイ素換算の固形分濃度:28.8質量%)の4g(目標シェル厚:3nm)、エタノールの42.4g、28質量%のアンモニア水溶液の3.6gを入れ、pHが10の原料液を調製した。
 耐圧容器を密封した後、マイクロ波加熱装置を用い、原料液に最大出力:1000W、周波数:2.45GHzのマイクロ波を5分間照射し、TEOSを加水分解して、マンガンドープ硫化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(ZnS:Mn固形分濃度:0.5質量%、酸化ケイ素固形分濃度:1.2質量%)の100gを得た。マイクロ波照射中の反応液の温度は120℃であった。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表1に示す。
 ロータリーエバポレータを用い、60℃にて、コア-シェル粒子の分散液から分散媒を除去し、粉末状のコア-シェル粒子を得た。該コア-シェル粒子について、シェルの厚さ、および細孔径3nm以下の細孔容積の最大値を測定した。
 200mLのガラス製容器に、コア-シェル粒子の分散液(ZnS:Mn固形分濃度:0.5質量%、酸化ケイ素固形分濃度:1.2質量%)の50g、ケイ酸オリゴマー溶液(固形分濃度5質量%)の10g、エタノールの40gを入れ、10分間撹拌して、塗料組成物(固形分濃度1.4質量%)を得た。
 該塗料組成物を、エタノール拭きしたガラス基板(100mm×100mm、厚さ3.5mm)の表面に塗布し、回転数200rpmで60秒間スピンコートして均一化した後、200℃で10分間焼成し、厚さ100nmの塗膜を形成した。該塗膜について蛍光特性の変化を評価指標とし、粒子の耐湿性評価を行った。結果を表3に示す。
〔例15〕
 例14と同様にして原料液を調製した。耐圧容器を密封した後、オイルバスを用い、原料液を60℃で60分間加熱し、TEOSを加水分解して、マンガンドープ硫化亜鉛粒子の表面に酸化ケイ素を析出させ、シェルを形成し、コア-シェル粒子の分散液(ZnS:Mn固形分濃度:0.5質量%、酸化ケイ素固形分濃度:1.2質量%)100gを得た。コア-シェル粒子の分散液の状態を観察した。また、分散媒中でのコア-シェル粒子の平均粒子径を測定した。結果を表3に示す。
 マイクロ波を用いた場合はコア粒子が選択的に加熱されるため、コア粒子の周辺にのみ緻密なシェルが形成する。一方、オイルバス等の熱源による加熱方法では溶液全体で加水分解反応が進行するため、コア粒子の周辺以外にシリカが析出してしまう。また、120℃の比較的高温で反応させた場合は、溶液全体で急速に加水分解反応が進行するために沈殿の生成やゲルが生じる。
Figure JPOXMLDOC01-appb-T000001
ZnO:酸化亜鉛、TiO2:酸化チタン、MW:マイクロ波
Figure JPOXMLDOC01-appb-T000002
ZnO:酸化亜鉛、TiO2:酸化チタン、SiO2:酸化ケイ素、MW:マイクロ波、
OB:オイルバス
Figure JPOXMLDOC01-appb-T000003
ZnS:Mn(マンガンドープ硫化亜鉛)
Figure JPOXMLDOC01-appb-T000004
 本発明のコア-シェル粒子は、樹脂用フィラー、化粧料、ガラス用コーティング等として有用である。本発明の塗料組成物からなる塗膜が形成された物品は、車両用透明部品(フロント透明基板、サイド透明基板、リア透明基板等)、建築窓、太陽電池用透明基板、光学フィルター、農業用フィルム等として有用である。

 なお、2008年7月7日に出願された日本特許出願2008-176868号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  誘電率が10以上の材料からなるコア粒子の表面に金属酸化物からなるシェルが形成されたコア-シェル粒子であり、
     前記シェルの厚さが1~500nmであり、
     窒素吸着法により得られる細孔容積ヒストグラムにおいて、前記シェルの細孔径3nm以下の細孔容積の最大値が、0.01cc/gであり、
     かつ分散媒中での平均粒子径が、1~1000nmである、ことを特徴とするコア-シェル粒子。
  2.  前記コア粒子の材料が、金属酸化物、金属硫化物、または金属カルコゲナイドである、請求項1に記載のコア-シェル粒子。
  3.  前記コア粒子の材料が、酸化亜鉛、酸化チタン、または酸化セリウムである請求項2に記載のコア-シェル粒子。
  4.  前記コア粒子の材料が、インジウムドープ酸化スズまたは酸化スズである請求項2に記載のコア-シェル粒子。
  5.  前記コア粒子の材料が、マンガンドープ硫化亜鉛、硫化カドミウム、セレン化亜鉛、またはユウロピウムドープバナジン酸イットリウムである請求項2に記載のコア-シェル粒子。
  6.  前記コア-シェル粒子の平均1次粒子径が1~500nmである請求項1~5のいずれかに記載のコア-シェル粒子。
  7.  前記シェルの材料が、酸化ケイ素である、請求項1~6のいずれかに記載のコア-シェル粒子。
  8.  請求項1~7のいずれかに記載のコア-シェル粒子を製造する方法であって、
     誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液に、マイクロ波を照射して、前記コア粒子の表面に金属酸化物からなるシェルを形成する、コア-シェル粒子の製造方法。
  9.  マイクロ波の出力が、誘電率が10以上の材料からなるコア粒子と、金属酸化物前駆体とを含む液が100~500℃に加熱される出力である、請求項8に記載のコア-シェル粒子の製造方法。
  10.  金属酸化物前駆体が、アルコキシシランである、請求項8または9に記載のコア-シェル粒子の製造方法。
  11.  請求項1~7のいずれかに記載のコア-シェル粒子と分散媒とを含む、塗料組成物。
  12.  基材上に、請求項11に記載の塗料組成物から形成される塗膜が形成された物品。
PCT/JP2009/060196 2008-07-07 2009-06-03 コア-シェル粒子およびコア-シェル粒子の製造方法 WO2010004814A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09794261A EP2305607A4 (en) 2008-07-07 2009-06-03 PARTICLE WITH C UR-ENVELOPE STRUCTURE AND PROCESS FOR PRODUCING A C UR-ENVELOPE STRUCTURE PARTICLE
JP2010519697A JP5633371B2 (ja) 2008-07-07 2009-06-03 コア−シェル粒子の製造方法
CN2009801268043A CN102083753A (zh) 2008-07-07 2009-06-03 核—壳粒子及核—壳粒子的制造方法
US12/984,063 US20110094416A1 (en) 2008-07-07 2011-01-04 Core-shell particles and method for producing core-shell particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008176868 2008-07-07
JP2008-176868 2008-07-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/984,063 Continuation US20110094416A1 (en) 2008-07-07 2011-01-04 Core-shell particles and method for producing core-shell particles

Publications (1)

Publication Number Publication Date
WO2010004814A1 true WO2010004814A1 (ja) 2010-01-14

Family

ID=41506936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060196 WO2010004814A1 (ja) 2008-07-07 2009-06-03 コア-シェル粒子およびコア-シェル粒子の製造方法

Country Status (5)

Country Link
US (1) US20110094416A1 (ja)
EP (1) EP2305607A4 (ja)
JP (1) JP5633371B2 (ja)
CN (1) CN102083753A (ja)
WO (1) WO2010004814A1 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295491A1 (en) * 2009-09-14 2011-03-16 Fujifilm Corporation Protective film and front sheet for solar cell
CN103160146A (zh) * 2013-04-02 2013-06-19 扬州大学 一种微波辅助铁氧体表面原位修饰的方法
CN103476524A (zh) * 2011-04-12 2013-12-25 韩国原子力研究院 制造具有良好氧化稳定性的具有核-壳结构的金属纳米粒子的方法
JP2014148427A (ja) * 2013-01-31 2014-08-21 Ishihara Sangyo Kaisha Ltd 絶縁性放熱フィラー及びその製造方法
WO2014178180A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Energy-efficient transparent solar film, method for fabricating solar film optical absorption material, and energy-efficient window
JP5726074B2 (ja) * 2009-05-26 2015-05-27 石原産業株式会社 チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス
JP2015199899A (ja) * 2014-04-03 2015-11-12 清水 茂夫 道路標示塗料、この塗料のマスターバッチペレット及びこのペレットを用いて施工された白色道路標示物
JP2016118679A (ja) * 2014-12-22 2016-06-30 三菱マテリアル株式会社 赤外線遮蔽積層体及びこれを用いた赤外線遮蔽材
JP2017024932A (ja) * 2015-07-21 2017-02-02 国立大学法人茨城大学 表面修飾ito粒子の製造方法
JP2017071758A (ja) * 2015-10-05 2017-04-13 エム・テクニック株式会社 塗料用ケイ素酸化物被覆酸化鉄組成物
JP2017145161A (ja) * 2016-02-16 2017-08-24 株式会社豊田中央研究所 誘電体薄膜
JP2017531555A (ja) * 2014-10-14 2017-10-26 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles 金属粒子と、2種の半導体とを含み、2種の半導体は、酸化インジウムからなる一方のものを含む光触媒組成物
CN113368810A (zh) * 2021-07-14 2021-09-10 南京信息工程大学 一种核壳型VOCs吸附剂及其制备方法
WO2021235152A1 (ja) * 2020-05-18 2021-11-25 信越化学工業株式会社 コーティング半導体ナノ粒子及びその製造方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9091812B2 (en) 2009-11-06 2015-07-28 Sharp Laboratories Of America, Inc. Energy-efficient transparent solar film
US20130148205A1 (en) * 2011-12-12 2013-06-13 Canon Kabushiki Kaisha Method of producing antireflection film
WO2013119550A1 (en) * 2012-02-10 2013-08-15 Alliance For Sustainable Energy, Llc Thin film photovoltaic devices with a minimally conductive buffer layer
WO2014077895A1 (en) 2012-11-19 2014-05-22 Alliance For Sustainable Energy, Llc Devices and methods featuring the addition of refractory metals to contact interface layers
US9139477B2 (en) * 2013-02-18 2015-09-22 General Electric Company Ceramic powders and methods therefor
WO2014187769A1 (de) * 2013-05-24 2014-11-27 Evonik Industries Ag Mit siliciumdioxid umhüllte, bewuchshemmende metalloxide
US9385000B2 (en) * 2014-01-24 2016-07-05 United Microelectronics Corp. Method of performing etching process
CN104275200B (zh) * 2014-09-17 2016-04-20 陕西科技大学 一种核壳结构ZnS/Ni2P复合物微球的制备方法
CN106794459B (zh) * 2014-11-21 2021-07-27 三菱化学株式会社 复合光催化剂的制造方法以及复合光催化剂
AU2016334203A1 (en) 2015-10-05 2018-03-15 M. Technique Co., Ltd. Metal oxide particles and method for producing same
US20190062525A1 (en) * 2015-10-16 2019-02-28 Avantama Ag Solution-processable hri inorganic/organic hybrid optical films
CN105804671B (zh) * 2016-06-03 2018-09-18 广东顺德孔山重工机械有限公司 一种潜孔钻机回转器用的钻杆伸缩式缓冲装置
CN107349928A (zh) * 2017-08-29 2017-11-17 江苏师范大学 一种SiO2@CeMnO复合光催化剂的制备方法
CN107540010B (zh) * 2017-09-21 2019-02-26 华中农业大学 一种ZnO@SiO2多核核壳纳米球的制备方法
JP2019066839A (ja) * 2017-09-28 2019-04-25 三菱マテリアル株式会社 赤外線遮蔽膜形成用液組成物及びこれを用いた赤外線遮蔽膜の製造方法及び赤外線遮蔽膜
JP2023003944A (ja) * 2021-06-25 2023-01-17 太陽誘電株式会社 誘電体、積層セラミックコンデンサ、誘電体の製造方法、および積層セラミックコンデンサの製造方法
CN115703933B (zh) * 2021-08-03 2023-07-07 香港科技大学 纳米微球、其制备方法及其用于隔热涂料的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047476A1 (fr) 1997-04-18 1998-10-29 Showa Denko K.K. Preparation cosmetique, poudre d'oxyde de metal recouverte de silice et son procede de preparation
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2002160907A (ja) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd 球状多孔質粒子およびその製造方法
JP2006527779A (ja) * 2003-06-17 2006-12-07 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド コア材料および少なくとも1層の誘電体層を含む顔料の製造方法
WO2008075784A1 (ja) * 2006-12-20 2008-06-26 Hoya Corporation 金属酸化物系ナノ粒子、その製造方法、ナノ粒子分散樹脂およびその製造方法
JP2008176868A (ja) 2007-01-19 2008-07-31 Hitachi-Lg Data Storage Inc ディスク装置及びその制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3437502A (en) * 1968-03-28 1969-04-08 Du Pont Titanium dioxide pigment coated with silica and alumina
JPH0615407B2 (ja) * 1986-05-07 1994-03-02 株式会社資生堂 光半導体およびその製法
JP4296529B2 (ja) * 2000-11-27 2009-07-15 テイカ株式会社 塩基性ガス除去用酸化チタン光触媒
DE60216932T2 (de) * 2001-06-13 2007-10-04 SDC Technologies-Asia Ltd., Ichihara Lack und damit lackierter gegenstand
ATE512115T1 (de) * 2003-01-22 2011-06-15 Univ Arkansas Monodisperse nanokristalle mit kern/schale und anderen komplexen strukturen sowie herstellungsverfahren dafür
FR2858420B1 (fr) * 2003-07-29 2005-11-25 Essilor Int Article d'optique comprenant un empilement anti-reflets multicouches et procede de preparation
JP2008043828A (ja) * 2006-08-10 2008-02-28 Mitsui Chemicals Inc 酸化珪素膜で被覆された光触媒を含有する金属材料
JP2008045221A (ja) * 2006-08-10 2008-02-28 Mitsui Chemicals Inc 酸化珪素膜で被覆された光触媒を含有する繊維処理剤
TW201004864A (en) * 2008-06-03 2010-02-01 Asahi Glass Co Ltd Method for producing core-shell particle, core-shell particle, method for producing hollow particle, paint composition and article

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998047476A1 (fr) 1997-04-18 1998-10-29 Showa Denko K.K. Preparation cosmetique, poudre d'oxyde de metal recouverte de silice et son procede de preparation
JP2001233611A (ja) * 2000-02-24 2001-08-28 Catalysts & Chem Ind Co Ltd シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
JP2002160907A (ja) * 2000-11-22 2002-06-04 Catalysts & Chem Ind Co Ltd 球状多孔質粒子およびその製造方法
JP2006527779A (ja) * 2003-06-17 2006-12-07 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド コア材料および少なくとも1層の誘電体層を含む顔料の製造方法
WO2008075784A1 (ja) * 2006-12-20 2008-06-26 Hoya Corporation 金属酸化物系ナノ粒子、その製造方法、ナノ粒子分散樹脂およびその製造方法
JP2008176868A (ja) 2007-01-19 2008-07-31 Hitachi-Lg Data Storage Inc ディスク装置及びその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2305607A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5726074B2 (ja) * 2009-05-26 2015-05-27 石原産業株式会社 チタン酸リチウム及びその製造方法並びにそれを用いた電極活物質及び蓄電デバイス
EP2295491A1 (en) * 2009-09-14 2011-03-16 Fujifilm Corporation Protective film and front sheet for solar cell
CN103476524A (zh) * 2011-04-12 2013-12-25 韩国原子力研究院 制造具有良好氧化稳定性的具有核-壳结构的金属纳米粒子的方法
CN103476524B (zh) * 2011-04-12 2016-06-01 韩国原子力研究院 制造具有氧化稳定性的具有核-壳结构的金属纳米粒子的方法
JP2014148427A (ja) * 2013-01-31 2014-08-21 Ishihara Sangyo Kaisha Ltd 絶縁性放熱フィラー及びその製造方法
CN103160146A (zh) * 2013-04-02 2013-06-19 扬州大学 一种微波辅助铁氧体表面原位修饰的方法
WO2014178180A1 (en) * 2013-04-29 2014-11-06 Sharp Kabushiki Kaisha Energy-efficient transparent solar film, method for fabricating solar film optical absorption material, and energy-efficient window
JP2015199899A (ja) * 2014-04-03 2015-11-12 清水 茂夫 道路標示塗料、この塗料のマスターバッチペレット及びこのペレットを用いて施工された白色道路標示物
JP2017531555A (ja) * 2014-10-14 2017-10-26 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles 金属粒子と、2種の半導体とを含み、2種の半導体は、酸化インジウムからなる一方のものを含む光触媒組成物
JP2016118679A (ja) * 2014-12-22 2016-06-30 三菱マテリアル株式会社 赤外線遮蔽積層体及びこれを用いた赤外線遮蔽材
WO2016104365A1 (ja) * 2014-12-22 2016-06-30 三菱マテリアル株式会社 赤外線遮蔽積層体及びこれを用いた赤外線遮蔽材
US10401542B2 (en) 2014-12-22 2019-09-03 Mitsubishi Materials Corporation Infrared light shielding laminate and infrared light shielding material using same
JP2017024932A (ja) * 2015-07-21 2017-02-02 国立大学法人茨城大学 表面修飾ito粒子の製造方法
JP2017071758A (ja) * 2015-10-05 2017-04-13 エム・テクニック株式会社 塗料用ケイ素酸化物被覆酸化鉄組成物
JP2017145161A (ja) * 2016-02-16 2017-08-24 株式会社豊田中央研究所 誘電体薄膜
WO2021235152A1 (ja) * 2020-05-18 2021-11-25 信越化学工業株式会社 コーティング半導体ナノ粒子及びその製造方法
JP2021181387A (ja) * 2020-05-18 2021-11-25 信越化学工業株式会社 コーティング半導体ナノ粒子及びその製造方法
CN113368810A (zh) * 2021-07-14 2021-09-10 南京信息工程大学 一种核壳型VOCs吸附剂及其制备方法

Also Published As

Publication number Publication date
CN102083753A (zh) 2011-06-01
JP5633371B2 (ja) 2014-12-03
EP2305607A4 (en) 2011-09-07
US20110094416A1 (en) 2011-04-28
JPWO2010004814A1 (ja) 2011-12-22
EP2305607A1 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
JP5633371B2 (ja) コア−シェル粒子の製造方法
JP5578073B2 (ja) コア−シェル粒子の製造方法および中空粒子の製造方法
TWI487664B (zh) Hollow particles, methods for their manufacture, coating compositions and articles
EP2253590A1 (en) Organosol containing magnesium fluoride hydroxide, and manufacturing method therefor
WO2006129411A1 (ja) 中空状SiO2を含有する分散液、塗料組成物及び反射防止塗膜付き基材
WO2010007956A1 (ja) 撥水性基体およびその製造方法
TWI726127B (zh) 光觸媒層合體
CN1290934C (zh) 角异色性光泽颜料
KR20150028979A (ko) 코팅 조성물 및 그의 용도
WO2007097284A1 (ja) 均一分散性光触媒コーティング液及びその製造方法並びにこれを用いて得られる光触媒活性複合材
US6479141B1 (en) Photocatalytic coating composition and product having photocatalytic thin film
JP2005226008A (ja) 日射遮蔽体形成用分散液及び日射遮蔽体並びにその製造方法
JP4409169B2 (ja) 着色顔料粒子を含む塗料、可視光遮蔽膜付基材
JP2005263620A (ja) 金属酸化物粒子およびその用途
JP2007031216A (ja) 金属酸化物粒子およびその用途
JP2006299087A (ja) 日射遮蔽膜形成用塗布液および日射遮蔽膜ならびに日射遮蔽機能を有する基材
TWI814742B (zh) 紅外線遮蔽膜形成用液組成物及使用其之紅外線遮蔽膜之製造方法及紅外線遮蔽膜
JP5471825B2 (ja) 熱線反射積層体及び熱線反射層形成用塗布液
JP2005194169A (ja) 赤外線遮蔽膜付きガラスおよびその製造方法
JP2011063478A (ja) リン含有五酸化アンチモン微粒子および該微粒子を含む透明導電性被膜形成用塗布液ならびに透明導電性被膜付基材
JP5087783B2 (ja) 表面被覆六ホウ化物粒子前駆体の製造方法と表面被覆六ホウ化物粒子前駆体、表面被覆六ホウ化物粒子並びにその分散体、および、表面被覆六ホウ化物粒子が用いられた構造体と物品
JP2005022941A (ja) 赤外線遮蔽ガラスおよびその製造方法
JP2011093754A (ja) 五酸化アンチモン系複合酸化物微粒子、該微粒子を含む透明被膜形成用塗布液および透明被膜付基材
WO2018198937A1 (ja) 被膜付き透明基板、被膜付き透明基板の被膜を形成するための塗工液及び被膜付き透明基板の製造方法
WO2018198936A1 (ja) 低反射膜付き透明基板、光電変換装置、低反射膜付き透明基板の低反射膜を形成するための塗工液及び低反射膜付き透明基板の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126804.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794261

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519697

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009794261

Country of ref document: EP