WO2014187769A1 - Mit siliciumdioxid umhüllte, bewuchshemmende metalloxide - Google Patents

Mit siliciumdioxid umhüllte, bewuchshemmende metalloxide Download PDF

Info

Publication number
WO2014187769A1
WO2014187769A1 PCT/EP2014/060222 EP2014060222W WO2014187769A1 WO 2014187769 A1 WO2014187769 A1 WO 2014187769A1 EP 2014060222 W EP2014060222 W EP 2014060222W WO 2014187769 A1 WO2014187769 A1 WO 2014187769A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
oxide
shell particles
shell
particles
Prior art date
Application number
PCT/EP2014/060222
Other languages
English (en)
French (fr)
Inventor
Magdalena KERN
Sabine LEICK
Juri Tschernjaew
Katharina Schulz
Rüdiger MERTSCH
Günther MICHAEL
Original Assignee
Evonik Industries Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Industries Ag filed Critical Evonik Industries Ag
Publication of WO2014187769A1 publication Critical patent/WO2014187769A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/06Treatment with inorganic compounds
    • C09C3/063Coating
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/26Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests in coated particulate form
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/04Compounds of zinc
    • C09C1/043Zinc oxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/22Compounds of iron
    • C09C1/24Oxides of iron
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3653Treatment with inorganic compounds
    • C09C1/3661Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • C09D7/62Additives non-macromolecular inorganic modified by treatment with other compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the invention relates to silica-coated, antifouling metal oxides, their preparation and use.
  • Anti-fouling coatings containing metal oxides are known.
  • the main problem with the use of metal oxides is their exponential release. This requires a high proportion of metal oxides necessary in the paint, assuming a biologically active biocide concentration over the period of the life of the coating.
  • the technical object of this invention was therefore to provide an antifouling material with a reduced content of biocidal substances, in which an approximately linear release of these biocidal substances is achieved or with the same content of biocidal substances a longer efficacy is achieved.
  • Technical task was further to provide a method for producing this material.
  • the invention relates to core-shell particles whose shell consists essentially of particulate silicon dioxide having a thickness of 0.1 to 10 ⁇ m, preferably 0.5 to 5 ⁇ m, and whose core consists essentially of at least one
  • antifouling metal oxide which is in spherical and / or spheroidal form with an average particle diameter of 1 to 20 ⁇ , preferably 2 to 10 ⁇ , most preferably 3 to 7 ⁇ , exist.
  • "Essentially” is intended to mean that the proportion of silicon dioxide in the shell and the proportion of antifouling metal oxide in the core in each case at least 98 wt .-%, usually at least 99.5 wt .-%, is.
  • particle form herein is meant that the silica does not surround the core as a closed film, but is in the form of particles which in turn are aggregated and / or agglomerated, and protrusions and
  • FIG. 1 shows an SEM image of the particles according to the invention.
  • the shell of the particles according to the invention is not dense. It is assumed that the particles form a porous shell and the porosity can be varied over the layer thickness, whereby the release behavior of the metal oxide can likewise be varied.
  • the binding of the shell to the core is such that when dispersed,
  • the core of the core-shell particles according to the invention has an approximately spherical or spheroidal shape. "Approximately” is intended to mean that
  • the core metal oxide is an antifouling metal oxide. By inhibiting the growth is to be understood that these metal oxides are capable of surface colonization by animals, inclusive
  • the core metal oxide may be a single metal oxide, a physical mixture of two or more metal oxides, or a mixed oxide of two or more metal oxides.
  • a mixed oxide there is an intimate mixing of the mixed oxide components at the atomic level.
  • the antifouling metal oxide is selected from the group consisting of copper oxide, titanium dioxide, iron oxide, manganese oxide, vanadium oxide, tin oxide and zinc oxide.
  • core-shell particles whose core comprises or consists of copper (I) oxide as its main constituent.
  • the constituents of the core can be determined, for example, by means of X-ray diffractometry.
  • the shell of the particles according to the invention consists essentially of
  • silica in the context of the invention also includes silicic acids. These have hydroxyl groups on their surface.
  • the silicas preferably have an aggregated structure.
  • silicas are fumed silicas and precipitated silicas.
  • Pyrogenic silicas are prepared by flame hydrolysis of silicon compounds such as chlorosilanes. This procedure is a
  • hydrolyzable silicon halide reacted with a flame formed by combustion of hydrogen and an oxygen-containing gas.
  • the combustion flame thereby provides water for the hydrolysis of the silicon halide and sufficient heat for the hydrolysis reaction.
  • a silica produced in this way is called pyrogenic, hydrophilic silica.
  • primary particles are initially formed, which are almost free of internal pores. These primary particles fuse during the process via so-called sintering necks to aggregates, the
  • pyrogenic silicas having a BET surface area of 90 to 300 m 2 / g.
  • the average primary particle diameter is preferably 5 to 50 nm.
  • hydrophobicized silica particles are part of the shell of the particles according to the invention. These can be obtained, for example, by reacting the hydroxyl groups present on the surface of hydrophilic silicas with organosilanes, haloorganosilanes, silazanes or polysiloxanes.
  • Hexadecyltriethoxysilane, dimethylpolysiloxane, nonafluorohexyltrimethoxysilane, tridecaflourooctyltrimethoxysilane, tridecaflourooctyltriethoxysilane can be used as a hydrophobing agent. Even with hydrophobized silicas, the best results are obtained starting from pyrogenic silicic acids.
  • a particular embodiment of the invention provides that the shell comprises a mixture of hydrophilic and hydrophobic silica particles.
  • the proportion of the antifouling metal oxide and the silicon dioxide can be varied within wide limits.
  • the proportion of the antifouling metal oxide and the silicon dioxide can be varied within wide limits.
  • the proportion of the silicon dioxide can be varied within wide limits.
  • the metal oxide and silicon dioxide each 30 to 70 wt .-% based on the core-shell particles. Particularly preferred is a
  • the core-shell particles contain from 80 to 90% by weight of antifouling metal oxide, based on the core-shell particles.
  • the proportion of antifouling metal oxide and silicon dioxide in total is generally at least 98 wt .-%, preferably at least 99.5 wt .-%, each based on the core-shell particles.
  • the proportion of components can be determined by chemical analysis or X-ray fluorescence analysis.
  • the ratio of the average thickness of the sheath to the mean core diameter of the core-sheath particles is preferably 1:50 to 1: 2 or 1:50 to 5: 1, particularly preferably 1:10 to 1: 3.
  • the BET surface area, determined in accordance with DIN 66131, of the core-shell particles according to the invention is preferably 30 to 150 m 2 / g and particularly preferably 50 to 100 m 2 / g.
  • Another object of the invention is a method for producing the core-shell particles in which particles consisting essentially of silica and particles consisting essentially of at least one
  • antifouling metal oxide selected from the group consisting of Copper oxide, titanium dioxide, iron oxide, manganese oxide, vanadium oxide, tin oxide and zinc oxide, with a specific energy input of 200 to 2000 kJ / kg, preferably 500 to 1800 kJ / kg, most preferably 700 to 1500 kJ / kg brings into contact.
  • the specific energy input is calculated according to:
  • m mass of the starting materials silicon dioxide and metal oxide.
  • the energy input is best done with an aggregate with a power of at least 1 kW, preferably 1 to 20 kW, more preferably 2 to 10 kW.
  • a particularArrangementsfom of the invention provides, when InANDbnngen a mixture of hydrophilic and hydrophobic silica particles
  • the contact pad is a dry contact pad. This means that in the method according to the invention no liquid is used. However, it is possible that moisture adheres to the feedstocks, these water of crystallization or possibly a liquid
  • the Inuttonbnngen is preferably carried out in a rotor ball mill.
  • the grinding balls are preferably made of steel.
  • P D refers to the total, registered power, ie including silicon dioxide, metal oxide and grinding balls.
  • P D , o describes the idling power, ie without silicon dioxide, metal oxide and grinding balls.
  • Rotor ball mill is preferably 10 to 80 vol .-%, preferably 20 to 50 vol .-%, each based on the volume of the rotor ball mill.
  • the duration of the contacting is preferably 0.1 to 120 minutes, more preferably 0.2 to 60 minutes, most preferably 0.5 to 10 minutes.
  • finer particles may be separated following contacting.
  • the tamped density is determined by means of DIN EN ISO 787/1 1.
  • Another object of the invention is a coating containing the core-shell particles.
  • the proportion of the core-shell particles in the coating is preferably at least 5 wt .-%, particularly preferably 10 to 60 wt .-%, each based on the coating.
  • the coating usually also contains film-forming resins. Suitable polymers for this purpose are, for example, hydroxyl or carboxyl groups
  • Suitable hardeners are known to the person skilled in the art.
  • Another object of the invention is a with the invention
  • Coating coated substrate In principle, all substrates are suitable, for example those made of metal, plastic or glass fiber. Accordingly, the coating for use in the aquatic area may be part of a
  • Sport boat a commercial ship, submerged in water structure such as jetties, quay walls, oil rigs, navigation marks or probes.
  • the coating can be applied by known methods such as dipping, brushing, spraying or knife coating. Examples
  • AEROSIL ® R805 BET surface area 150 m 2 / g, tamped density approx. 60 g / l,
  • AEROSIL ® R9200 BET surface area 150 to 190 m 2 / g, tamped density approx. 200 g / l, both Evonik Industries. Copper (I) oxide, Sigma-Aldrich; mean particle diameter 5.9 ⁇
  • the material is copper coated with a silicon dioxide film, with a copper content of 97% and a BET surface area of 1 m 2 / g.
  • the thickness of the shell is calculated on the basis of the amount and the dimension of the metal oxide used and the amount of silica particles used.
  • the calculation is exemplary for 0.06 kg of copper oxide with a mean
  • the thickness of the silica shell is 5.19 ⁇ .
  • Metal oxide particles and silica particles that are not present as part of the shell is negligible or that this proportion is nonexistent.
  • the grinding chamber of the rotor ball mill is filled with 66 g of copper (I) oxide, 100 g
  • AEROSIL ® R805 and 7.5 kg steel balls with a diameter of 4.8 mm and a density of 7550 kg / m 3 filled.
  • the total filling level of the grinding chamber is 66%. After filling, the grinding chamber is covered with nitrogen.
  • the speed of the agitator is 850 rpm.
  • the grinding chamber is double-walled cooled with water.
  • the grinding time t is 2 min.
  • the specific energy input is 825 kJ / kg.
  • the BET surface area of the resulting core-shell particles is 70 m 2 / g.
  • Tamped density is 760 g / l.
  • the calculated thickness of the shell is about 12.8 ⁇ .
  • FIG. 1 shows a SEM image of the core-shell particles.
  • the grinding chamber of the rotor ball mill is filled with 100 g of copper (I) oxide, 66 g
  • AEROSIL ® R9200 7.5 kg steel balls with a diameter of 4.8 mm and a density of 7550 kg / m 3 filled.
  • the total filling level of the grinding chamber is 66%. After filling, the grinding chamber is covered with nitrogen. The speed of the agitator is 850 rpm. The grinding chamber is double-walled cooled with water. The grinding time t is 2 min.
  • the specific energy input is 825 kJ / kg.
  • the calculated thickness of the shell is about 5.2 ⁇ .
  • Example 3a (comparison): In a pleated filter 0.625 g CU2O, corresponding to 1, 1 g / l copper, weighed and closed the pleated filter. The sealed pleated filter is placed at 20 to 25 ° C in a 250 ml seawater (Marine broth, Difco 2216, sterile) filled glass bottle and is completely surrounded by the liquid. The mixture is stirred with a magnetic stirrer at a speed of 300 rpm and the copper release is determined every 30 minutes.
  • seawater Marine broth, Difco 2216, sterile
  • Example 3b (Comparative): Analogously to Example 3a, except that 0.275 g STANDARD ® resist AT, Eckart used instead of Cu 2 O. It is used in US7147921 as anti-fouling substance.
  • Example 3c Analogously to Example 3a, but 1.563 g of the core-shell particles from Example 1 are used. The results from Examples 3a-c are reproduced in FIG. The concentration of Cu 2+ ions is shown as a function of the experimental time. In this case, comparative experiment 3a with circles, comparative experiment 3b with rhombuses and experiment 3c according to the invention with squares are characterized. It turns out that the release of Cu 2+ ions in the comparative experiments 3a and 3b is significantly faster than in inventive example 3c.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Paints Or Removers (AREA)
  • Silicon Compounds (AREA)

Abstract

Kern-Hülle-Partikel, deren Hülle im Wesentlichen aus partikulärem Siliciumdioxid mit einer Dicke von 0,1 bis 10 µm und deren Kern im Wesentlichen aus wenigstens einembewuchshemmenden Metalloxid, welchesin sphärischer und/oder sphäroider Form mit einem mittleren Partikeldurchmesser von 1 bis 20 µm vorliegt, bestehen.

Description

Mit Siliciumdioxid umhüllte, bewuchshemmende Metalloxide
Die Erfindung betrifft mit Siliciumdioxid umhüllte, bewuchshemmende Metalloxide, deren Herstellung und Verwendung.
Bewuchshemmende Beschichtungen, die Metalloxide enthalten, sind bekannt. Das Hauptproblem bei der Verwendung von Metalloxiden ist deren exponentielle Freisetzung. Dies bedingt einen hohen notwendigen Anteil an Metalloxiden im Lack, wenn man von einer biologisch wirksamen Biozid-Konzentration über den Zeitraum der Lebensdauer der Beschichtung ausgeht.
In der US7147921 wird vorgeschlagen die Problematik der Freisetzung durch eine Umhüllung von Kupfer mit einem Siliciumdioxidfilm zu lösen. Tatsächlich ist zu beobachten, dass trotz des Siliciumdioxidfilmes eine unerwünscht rasche Freisetzung des Kupfers erfolgt.
Die technische Aufgabe dieser Erfindung war daher, ein bewuchshemmendes Material mit reduziertem Gehalt an bioziden Substanzen bereitzustellen, bei dem eine annähernd lineare Freisetzung dieser bioziden Substanzen erreicht wird oder bei gleichem Gehalt an bioziden Substanzen eine längere Wirksamkeit erreicht wird. Technische Aufgabe war weiterhin ein Verfahren zur Herstellung dieses Materials bereitzustellen.
Gegenstand der Erfindung sind Kern-Hülle-Partikel, deren Hülle im Wesentlichen aus partikulärem Siliciumdioxid mit einer Dicke von 0,1 bis 10 μιτι, bevorzugt 0,5 bis 5 μιτι, und deren Kern im Wesentlichen aus wenigstens einem
bewuchshemmenden Metalloxid, welches in sphärischer und/oder sphäroider Form mit einem mittleren Partikeldurchmesser von 1 bis 20 μιτι, bevorzugt 2 bis 10 μιτι, ganz besonders bevorzugt 3 bis 7 μιτι, vorliegt, bestehen. „Im Wesentlichen" soll bedeuten, dass der Anteil von Siliciumdioxid in der Hülle und der Anteil an bewuchshemmendem Metalloxid im Kern jeweils wenigstens 98 Gew.-%, in der Regel wenigstens 99,5 Gew.-%, beträgt. ln„partikulärer Form" bedeutet hierbei, dass das Siliciumdioxid nicht als geschlossener Film den Kern umgibt, sondern in Form von Partikeln, die ihrerseits aggregiert und/oder agglomeriert sind, vorliegen und Erhebungen und
Vertiefungen der Hülle bedingen. Figur 1 zeigt eine REM-Aufnahme der erfindungsgemäßen Partikel. Im Gegensatz zu einem, einen Kern umgebenden, dichten Film, ist die Hülle der erfindungsgemäßen Partikel nicht als dicht zu bezeichnen. Es wird davon ausgegangen, dass die Partikel eine poröse Hülle bilden und die Porosität über die Schichtdicke variiert werden kann, wodurch ebenfalls das Freisetzungsverhalten des Metalloxids variiert werden kann. Die Bindung der Hülle zum Kern ist dabei derart, dass bei Dispergierung,
beispielsweise mittels eines Dissolvers, nur eine minimale oder keine Ablösung der Hülle vom Kern zu beobachten ist.
Der Kern der erfindungsgemäßen Kern-Hülle-Partikel weist eine annähernd sphärische oder sphäroide Form auf.„Annähernd" soll bedeuten, dass
Abweichungen von einer idealen sphärischen oder sphäroiden Form des Kernes möglich sind. Das im Kern vorliegende Metalloxid ist ein bewuchshemmendes Metalloxid. Unter bewuchshemmend ist zu verstehen, dass diese Metalloxide in der Lage sind eine Oberflächenbesiedelung durch Tiere, inklusive
Mikroorganismen, und Pflanzen auf Objekten, auf die die Partikel durch
Beschichtung eingebracht sind, zu verzögern, einzudämmen oder zu verhindern, insbesondere bei Objekten, welche mit Wasser, insbesondere Meerwasser, in Kontakt stehen. Gemäß der Erfindung kann das im Kern vorliegende Metalloxid ein einzelnes Metalloxid, eine physikalische Mischung von zwei oder mehreren Metalloxiden oder ein Mischoxid aus zwei oder mehreren Metalloxiden sein. Bei einem Mischoxid liegt eine innige Vermischung der Mischoxidkomponenten auf atomarer Ebene vor.
Bevorzugt ist das bewuchshemmende Metalloxid aus der Gruppe bestehend aus Kupferoxid, Titandioxid, Eisenoxid, Manganoxid, Vanadiumoxid, Zinnoxid und Zinkoxid ausgewählt. Am besten geeignet sind Kern-Hülle-Partikel, deren Kern als Hauptbestandteil Kupfer-(l)-oxid aufweist oder daraus besteht. Die Bestandteile des Kernes können beispielsweise mittels Röntgendiffraktometrie ermittelt werden.
Die Hülle der erfindungsgemäßen Partikel besteht im Wesentlichen aus
Siliciumdioxid. Darüber hinaus umfasst Siliciumdioxid im Rahmen der Erfindung auch Kieselsäuren. Diese weisen auf ihrer Oberfläche Hydroxylgruppen auf.
Bevorzugt weisen die Kieselsäuren eine aggregierte Struktur auf. Typische
Vertreter von Kieselsäuren sind pyrogene Kieselsäuren und Fällungskieselsäuren.
Die besten Ergebnisse werden mit pyrogenen Kieselsäuren erhalten. Pyrogene Kieselsäuren werden durch Flammenhydrolyse von Siliciumverbindungen, wie beispielsweise Chlorsilanen, hergestellt. Bei diesem Verfahren wird ein
hydrolysierbares Siliciumhalogenid mit einer Flamme zur Reaktion gebracht, die durch Verbrennung von Wasserstoff und eines sauerstoffhaltigen Gases gebildet worden ist. Die Verbrennungsflamme stellt dabei Wasser für die Hydrolyse des Siliciumhalogenides und genügend Wärme zur Hydrolysereaktion zur Verfügung. Eine so hergestellte Kieselsäure wird als pyrogene, hydrophile Kieselsäure bezeichnet. Bei diesem Prozess werden zunächst Primärpartikel gebildet, die nahezu frei von inneren Poren sind. Diese Primärteilchen verschmelzen während des Prozesses über sogenannte Sinterhälse zu Aggregaten, die ein
dreidimensionales Netzwerk bilden. Mehrere Aggregate können schließlich Agglomerate bilden.
Bevorzugt handelt es sich um pyrogene Kieselsäuren mit einer BET-Oberfläche von 90 bis 300 m2/g. Der mittlere Primärpartikeldurchmesser beträgt bevorzugt 5 bis 50 nm. Es ist ebenso möglich, dass hydrophobierte Kieselsäurepartikel Bestandteil der Hülle der erfindungsgemäßen Partikel sind. Diese können beispielsweise erhalten werden, indem man die auf der Oberfläche von hydrophilen Kieselsäuren vorliegenden Hydroxylgruppen mit Organosilanen, Halogenorganosilanen, Silazanen oder Polysiloxanen umsetzt. Bevorzugt können Octyltrimethoxysilan, Octyltriethoxysilan, Hexamethyldisilazan, 3-Methacryloxypropyltrimethoxysilan, 3-Methacryloxypropyltriethoxysilan, Hexadecyltrimethoxysilan,
Hexadecyltriethoxysilan, Dimethylpolysiloxan, Nonafluorohexyltrimethoxysilan, Tridecaflourooctyltrimethoxysilan, Tridecaflourooctyltriethoxysilan als Mittel zur Hydrophobierung eingesetzt werden. Auch bei den hydrophobierten Kieselsäuren werden die besten Ergebnisse ausgehend von pyrogenen Kieselsäuren erhalten.
Eine besondere Ausführungsform der Erfindung sieht vor, dass die Hülle ein Gemisch von hydrophilen und hydrophoben Siliciumdioxidpartikeln aufweist.
Der Anteil des bewuchshemmenden Metalloxides und des Siliciumdioxides kann in weiten Grenzen variiert werden. Bevorzugt beträgt der Anteil an
bewuchshennnnendenn Metalloxid und Siliciumdioxid, jeweils 30 bis 70 Gew.-% bezogen auf die Kern-Hülle-Partikel. Besonders bevorzugt ist eine
Ausführungsform, bei der der Anteil an bewuchshemmendem Metalloxid 50 bis 60 Gew.-% und der an Siliciumdioxid 40 bis 50 Gew.-% beträgt.
In einer besonderen Ausführungsform, enthalten die Kern-Hülle-Partikel 80 bis 90 Gew.-% bewuchshemmendes Metalloxid, bezogen auf die Kern-Hülle-Partikel.
Der Anteil an bewuchshemmendem Metalloxid und Siliciumdioxid in Summe beträgt in der Regel wenigstens 98 Gew.-%, bevorzugt wenigstens 99,5 Gew.-%, jeweils bezogen auf die Kern-Hülle-Partikel. Der Anteil der Komponenten kann durch chemische Analyse oder Röntgenfluoreszenzanalyse bestimmt werden. Das Verhältnis von mittlerer Dicke der Hülle zu mittlerem Kerndurchmesser der Kern-Hülle-Partikel ist bevorzugt 1 :50 bis 1 :2 oder 1 :50 bis 5:1 , besonders bevorzugt 1 :10 bis 1 :3.
Die BET-Oberfläche, bestimmt nach DIN 66131 , der erfindungsgemäßen Kern- Hülle-Partikel beträgt bevorzugt 30 bis 150 m2/g und besonders bevorzugt 50 bis 100 m2/g.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der Kern- Hülle-Partikel bei dem man Partikel, die im Wesentlichen aus Siliciumdioxid bestehen und Partikel, die im Wesentlichen aus wenigstens einem
bewuchshemmenden Metalloxid ausgewählt aus der Gruppe bestehend aus Kupferoxid, Titandioxid, Eisenoxid, Manganoxid, Vanadiumoxid, Zinnoxid und Zinkoxid bestehen, mit einem spezifischen Energieeintrag von 200 bis 2000 kJ/kg, bevorzugt 500 bis 1800 kJ/kg, ganz besonders bevorzugt 700 bis 1500 kJ/kg, in Kontakt bringt. Der spezifische Energieeintrag berechnet sich nach:
Spezifischer Energieeintrag = (PD - PD,O) x t / m,
mit
PD = gesamte eingetragene Leistung
PD,O = Leerlaufleistung
t = Zeit des Energieeintrages
m = Masse der Einsatzstoffe Siliciumdioxid und Metalloxid.
Der Energieeintrag erfolgt am besten mit einem Aggregat mit einer Leistung von wenigstens 1 kW, bevorzugt 1 bis 20 kW, besonders bevorzugt 2 bis 10 kW.
Bei einem spezifischen Energieeintrag von weniger als 200 KJ/kg oder mehr als 2000 kJ/kg werden keine erfindungsgemäßen Kern-Hülle-Partikel erhalten.
Vielmehr wird davon ausgegangen, dass sich bei weniger als 200 kJ/kg ein physikalisches Gemisch aus Siliciumdioxidpartikeln und Metalloxidpartikeln bildet. Bei mehr als 2000 kJ/kg wird davon ausgegangen, dass die Strukturen der Einsatzstoffe zerstört werden, so dass keine erfindungsgemäßen Partikel resultieren können.
Eine besondere Ausführungsfom der Erfindung sieht vor, beim Inkontaktbnngen ein Gemisch von hydrophilen und hydrophoben Siliciumdioxidpartikeln
einzusetzen.
Bei dem Inkontaktbnngen handelt es sich um ein trockenes Inkontaktbnngen. Dies bedeutet, dass bei dem erfindungsgemäßen Verfahren keine Flüssigkeit eingesetzt wird. Es ist jedoch möglich, dass den Einsatzstoffen Feuchtigkeit anhaftet, diese Kristallwasser aufweisen oder gegebenenfalls ein flüssiges
Reaktionsprodukt gebildet wird.
Das Inkontaktbnngen erfolgt bevorzugt in einer Rotorkugelmühle. Die Mahlkugeln sind bevorzugt aus Stahl. Bei Einsatz einer Rotorkugelmühle bezieht sich PD auf die gesamte, eingetragene Leistung, d.h. inklusive Siliciumdioxid, Metalloxid und Mahlkugeln. PD,o beschreibt die Leerlaufleistung, d.h. ohne Siliciumdioxid, Metalloxid und Mahlkugeln. Das Füllvolumen der Einsatzstoffe in der
Rotorkugelmühle beträgt bevorzugt 10 bis 80 Vol.-%, bevorzugt 20 bis 50 Vol.-%, jeweils bezogen auf das Volumen der Rotorkugelmühle.
Die Dauer des Inkontaktbringens beträgt bevorzugt 0,1 bis 120 Minuten, besonders bevorzugt 0,2 bis 60 Minuten, ganz besonders bevorzugt 0,5 bis 10 Minuten.
Gegebenenfalls können im Anschluss an das Inkontaktbringen feinteiligere Partikel abgetrennt werden.
Die Stampfdichte der eingesetzten, im Wesentlichen aus Siliciumdioxid
bestehenden Partikel beträgt bevorzugt 20 - 300 g/l, besonders bevorzugt 50 - 200 g/l. Die Stampfdichte wird bestimmt mittels DIN EN ISO 787/1 1 .
Bevorzugt werden Kupfer-(l)-oxid und pyrogene Kieselsäure mit einer BET- Oberfläche von 90 bis 300 m2/g eingesetzt.
Ein weiterer Gegenstand der Erfindung ist eine Beschichtung, welche die Kern- Hülle-Partikel enthält. Der Anteil der Kern-Hülle-Partikel in der Beschichtung beträgt bevorzugt wenigstens 5 Gew.-%, besonders bevorzugt 10 bis 60 Gew.-%, jeweils bezogen auf die Beschichtung. Die Beschichtung enthält in der Regel weiterhin filmbildende Harze. Geeignete Polymere hierfür sind beispielsweise Hydroxyl- oder Carboxyl-Gruppen
aufweisende Acrylate, Silikonharze, Polyester oder Polyurethane. Geeignete Härter sind dem Fachmann bekannt.
Ein weiterer Gegenstand der Erfindung ist ein mit der erfindungsgemäßen
Beschichtung beschichtetes Substrat. Prinzipiell sind alle Substrate geeignet, beispielsweise solche aus Metall, Kunststoff oder Glasfaser. Entsprechend kann die Beschichtung für die Anwendung im aquatischen Bereich Teil eines
Sportbootes, eines kommerziellen Schiffes, in Wasser eintauchendes Bauwerk wie Bootsstege, Kaimauern, Ölbohrplattformen, Fahrwassermarkierungen oder Messsonden sein.
Die Beschichtung kann mittels bekannter Verfahren wie Tauchen, Streichen, Sprühen oder Rakeln aufgebracht werden. Beispiele
Einsatzstoffe
AEROSIL® R805, BET-Oberfläche 150 m2/g, Stampfdichte ca. 60 g/l,
AEROSIL® R9200, BET-Oberfläche 150 bis 190 m2/g, Stampfdichte ca. 200 g/l, beide Evonik Industries. Kupfer-(l)-oxid, Sigma-Aldrich; mittlerer Partikeldurchmesser 5,9 μιτι
STANDART® Resist AT, Eckart. Bei dem Material handelt es sich um ein mit einem Siliciumdioxidfilm umhülltes Kupfer, mit einem Kupfergehalt von 97% und einer BET-Oberfläche von 1 m2/g.
Rotorkugelmühle Simoloyer® CM05, Firma Zoz GmbH, Wenden. Im Rahmen der Erfindung wird die Dicke der Hülle ausgehend von der Menge und der Dimension des eingesetzten Metalloxides und der Menge der eingesetzten Siliciumdioxidpartikel berechnet.
Die Berechnung ist beispielhaft für 0,06 kg Kupferoxid mit einem mittleren
Partikeldurchmesser d5o von 5,9 μιτι und einer Dichte pKupferoxid von 6000 kg/m3 und 0,04 kg pyrogener Kieselsäure mit einem mittleren Primärpartikeldurchmesser dprimär von 12 ηιτι und einer Stampfdichte psiiica von 200 kg/m3 dargestellt.
1 ) Volumen Kupferoxid:
Vo, Kupferoxid = 4/3 ·ττ· Γ3 = π/6· d3 = ττ/6 · (5,9 · 10"6 m)3 = 1 ,08· 10"16 m3
2) Gesamtvolumen Kupferoxid:
VKupferoxid = m/p = 0,06 kg/(6000 kg/m3) = 1 ,00-10"5 m3
Anzahl Kupferoxid-Partikel: nKupferoxid = VKupferoxid/Vo, Kupferoxid = 9,29·10 ιυ
3) Gesamtvolumen pyrogene Kieselsäure:
Vsüica = m/p = 0,04 kg/(200 kg/m3) = 2,00· 10"4 m3 4) Annahme pyrogene Kieselsäure als dichte Kugelpackung auf Kupferoxid- Partikel
AV = Volumen der Partikel von pyrogener Kieselsäure pro Kupferoxid-Partikel AV = Vsiiica nKupferoxid = 2,00-10"4 m3/(9,29- 1010) = 2,15-10"15 m3 5) Volumen Kupferoxid + Silica = V = V0, Kupferoxid + AV = 2,26 -10"15 m3
6) Schichtdicke
d3 = V-6/π; d = 1 ,63 · 10"5 m; Ad = d-d50 = 1 ,04 · 10"5 m
Demnach beträgt die Dicke der Kieselsäurehülle 5,19 μιτι.
REM/BSE-Auswertungen zeigen, dass der Anteil an nicht umhüllten
Metalloxidpartikeln und Siliciumdioxidpartikeln, die nicht als Teil der Hülle vorliegen, vernachlässigbar gering ist oder dass dieser Anteil überhaupt nicht existent ist.
Es wird auch für den Fall, dass pyrogene Kieselsäuren als Bestandteil der erfindungsgemäßen Kern-Hülle-Partikel vorliegen, keine oder nur eine
vernachlässigbare, verdickende Wirkung der Beschichtung beobachtet, wenn diese in Zubereitungen zur Herstellung eines bewuchshemmenden Substrates eingearbeitet werden.
Beispiel 1 :
Der Mahlraum der Rotorkugelmühle wird mit 66 g Kupfer-(l)-oxid, 100 g
AEROSIL® R805 und 7,5 kg Stahlkugeln mit einem Durchmesser von 4,8 mm und einer Dichte von 7550 kg/m3 gefüllt. Der insgesamte Füllgrad des Mahlraumes beträgt 66 %. Nach dem Einfüllen wird der Mahlraum mit Stickstoff überschichtet.
Die Drehzahl des Rührwerks beträgt 850 U/min. Der Mahlraum wird doppelwandig mit Wasser gekühlt. Die Mahldauer t beträgt 2 min.
Der spezifische Energieeintrag beträgt 825 kJ/kg.
Die BET-Oberfläche der erhaltenen Kern-Hülle-Partikel beträgt 70 m2/g. Die
Stampfdichte beträgt 760 g/l.
Die berechnete Dicke der Hülle beträgt ca. 12,8 μιτι.
Figur 1 zeigt eine REM-Aufnahme der Kern-Hülle-Partikel. Bei
Ultraschallbehandlung läßt sich keine nennenswerte Ablösung der Hülle feststellen. Das heißt, es handelt sich um eine stabile Hülle. Beispiel 2:
Der Mahlraum der Rotorkugelmühle wird mit 100 g Kupfer-(l)-oxid, 66 g
AEROSIL® R9200 und 7,5 kg Stahlkugeln mit einem Durchmesser von 4,8 mm und einer Dichte von 7550 kg/m3 gefüllt. Der insgesamte Füllgrad des Mahlraumes beträgt 66 %. Nach dem Einfüllen wird der Mahlraum mit Stickstoff überschichtet. Die Drehzahl des Rührwerks beträgt 850 U/min. Der Mahlraum wird doppelwandig mit Wasser gekühlt. Die Mahldauer t beträgt 2 min.
Der spezifische Energieeintrag beträgt 825 kJ/kg.
Die berechnete Dicke der Hülle beträgt ca. 5,2 μιτι.
Beispiel 3: Freisetzung von Kupferionen
Beispiel 3a (Vergleich): In einen Faltenfilter werden 0,625 g CU2O, entsprechend 1 ,1 g/l Kupfer, eingewogen und der Faltenfilter verschlossen. Der verschlossene Faltenfilter wird bei 20 bis 25°C in eine mit 250 ml Meerwasser (Marine broth, Difco 2216, steril) gefüllte Glasflasche gegeben und ist von der Flüssigkeit vollständig umgeben. Es wird mit einem Magnetrührer bei einer Drehzahl von 300 U/min gerührt und alle 30 Minuten die Kupferfreisetzung bestimmt.
Die Bestimmung der freigesetzten Cu2+-lonen erfolgt nach Oxidation mit
Wasserstoffperoxid kolorimetrisch . Beispiel 3b (Vergleich) : Analog Beispiel 3a, jedoch werden 0,275 g STANDART® Resist AT, Eckart anstelle von CU2O eingesetzt. Es wird in der US7147921 als bewuchshemmender Stoff eingesetzt.
Beispiel 3c (gemäß Erfindung): Analog Beispiel 3a, jedoch werden 1 ,563 g der Kern-Hülle-Partikel aus Beispiel 1 eingesetzt. Die Ergebnisse aus den Beispielen 3a-c sind in Figur 2 wiedergegeben. Dabei ist die Konzentration an Cu2+-lonen in Abhängigkeit von der Versuchszeit dargestellt. Dabei ist der Vergleichsversuch 3a mit Kreisen, der Vergleichsversuch 3b mit Rauten und der erfindungsgemäße Versuch 3c mit Quadraten gekennzeichnet. Es zeigt sich, dass die Freisetzung von Cu2+-lonen in den Vergleichsversuchen 3a und 3b deutlich schneller ist, als im erfindungsgemäßen Beispiel 3c.

Claims

Patentansprüche
1 . Kern-Hülle-Partikel,
deren Hülle im Wesentlichen aus partikulärem Siliciumdioxid mit einer Dicke von 0,1 bis 10 μιτι und deren Kern im Wesentlichen aus wenigstens einem bewuchshemmenden Metalloxid, welches in sphärischer und/oder sphäroider Form mit einem mittleren Partikeldurchmesser von 1 bis 20 μιτι vorliegt, bestehen.
2. Kern-Hülle-Partikel nach Anspruch 1 ,
dadurch gekennzeichnet, dass
das bewuchshemmende Metalloxid aus der Gruppe bestehend aus
Kupferoxid, Titandioxid, Eisenoxid, Manganoxid, Vanadiumoxid, Zinnoxid und Zinkoxid ausgewählt ist.
3. Kern-Hülle-Partikel nach den Ansprüchen 1 oder 2,
dadurch gekennzeichnet, dass
der Hauptbestandteil des Kernes Kupfer-(l)-oxid ist.
4. Kern-Hülle-Partikel nach den Ansprüchen 1 bis 3,
dadurch gekennzeichnet, dass
die Hülle aggregierte Kieselsäurepartikel umfasst.
5. Kern-Hülle-Partikel nach den Ansprüchen 1 bis 4
dadurch gekennzeichnet, dass
die Hülle hydrophobierte Kieselsäurepartikel umfasst.
6. Kern-Hülle-Partikel nach den Ansprüchen 1 bis 5,
dadurch gekennzeichnet, dass
sie 30 bis 70 Gew.-% bewuchshemmendes Metalloxid, bezogen auf die Kern-Hülle-Partikel, enthalten.
7. Kern-Hülle-Partikel nach den Ansprüchen 1 bis 5,
dadurch gekennzeichnet, dass
sie 80 bis 90 Gew.-% bewuchshemmendes Metalloxid, bezogen auf die Kern-Hülle-Partikel, enthalten.
8. Kern-Hülle-Partikel nach den Ansprüchen 1 bis 7,
dadurch gekennzeichnet, dass
das Verhältnis von mittlerer Dicke der Hülle zu mittlerem Kerndurchmesser 1 :50 bis 1 :2 ist.
9. Kern-Hülle-Partikel nach den Ansprüchen 1 bis 8,
dadurch gekennzeichnet, dass
ihre BET-Oberfläche 30 bis 150 m2/g ist.
10. Kern-Hülle-Partikel nach den Ansprüchen 1 bis 9,
dadurch gekennzeichnet, dass
ihre Stampfdichte 400 - 1000 g/l ist.
1 1 . Verfahren zur Herstellung der Kern-Hülle-Partikel gemäß der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass
man Partikel, die im Wesentlichen aus Siliciumdioxid bestehen und Partikel, die im wesentlichen aus wenigstens einem bewuchshemmenden Metalloxid ausgewählt aus der Gruppe bestehend aus Kupferoxid, Titandioxid,
Eisenoxid, Manganoxid, Vanadiumoxid, Zinnoxid und Zinkoxid bestehen, mit einem spezifischen Energieeintrag von 200 bis 2000 kJ/kg in Kontakt bringt.
12. Verfahren nach Anspruch 1 1 ,
dadurch gekennzeichnet, dass
das Inkontaktbringen in einer Rotorkugelmühle erfolgt.
13. Verfahren nach den Ansprüchen 1 1 oder 12,
dadurch gekennzeichnet, dass
die Dauer des Inkontaktbringens 0,1 - 120 Minuten beträgt.
14. Verfahren nach den Ansprüchen 1 1 bis 13,
dadurch gekennzeichnet, dass
man im Anschluss an die Vermahlung feinteiligere Partikel abtrennt.
15. Verfahren nach Anspruch 1 1 bis 14,
dadurch gekennzeichnet, dass die Partikel, die im Wesentlichen aus Siliciumdioxid bestehen, eine
Stampfdichte 20 - 300 g/l aufweisen.
16. Verfahren nach Anspruch 1 1 bis 15
dadurch gekennzeichnet, dass
Kupfer-(l)-oxid eingesetzt und pyrogene Kieselsäure eingesetzt werden.
17. Kern-Hülle-Partikel erhältlich nach dem Verfahren gemäß der Ansprüche 1 1 bis 16.
18. Beschichtung enthaltend die Kern-Hülle-Partikel gemäß der Ansprüche 1 bis 10.
19. Beschichtetes Substrat enthaltend die Beschichtung nach Anspruch 18.
PCT/EP2014/060222 2013-05-24 2014-05-19 Mit siliciumdioxid umhüllte, bewuchshemmende metalloxide WO2014187769A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP13169088.5 2013-05-24
EP13169088 2013-05-24

Publications (1)

Publication Number Publication Date
WO2014187769A1 true WO2014187769A1 (de) 2014-11-27

Family

ID=48485021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/060222 WO2014187769A1 (de) 2013-05-24 2014-05-19 Mit siliciumdioxid umhüllte, bewuchshemmende metalloxide

Country Status (2)

Country Link
TW (1) TW201509810A (de)
WO (1) WO2014187769A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020277A1 (de) * 2014-11-12 2016-05-18 Evonik Degussa GmbH Zusammensetzung mit gesteuerter Freisetzung von bioziden Metallionen
WO2016146484A1 (de) * 2015-03-18 2016-09-22 Evonik Degussa Gmbh Lacksystem enthaltend ein bewuchshemmendes metalloxid und eine pyrogene kieselsäure
EP3875544A1 (de) 2020-03-06 2021-09-08 Evonik Operations GmbH Lacksystem mit anti-fouling-eigenschaft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0557880A1 (de) * 1992-02-17 1993-09-01 Nakamura, Kenji Antibakterielle poröse anorganische Kapsel und Verfahren zur Herstellung derselben
US7147921B2 (en) 2003-04-04 2006-12-12 Ppg Industries Ohio, Inc. Anti-fouling coatings containing silica-coated copper
EP2305607A1 (de) * 2008-07-07 2011-04-06 Asahi Glass Company Limited Kern-hülle-partikel und verfahren zur herstellung der kern-hülle-partikel
WO2013036746A1 (en) * 2011-09-08 2013-03-14 Corning Incorporated Antimicrobial composite material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0557880A1 (de) * 1992-02-17 1993-09-01 Nakamura, Kenji Antibakterielle poröse anorganische Kapsel und Verfahren zur Herstellung derselben
US7147921B2 (en) 2003-04-04 2006-12-12 Ppg Industries Ohio, Inc. Anti-fouling coatings containing silica-coated copper
EP2305607A1 (de) * 2008-07-07 2011-04-06 Asahi Glass Company Limited Kern-hülle-partikel und verfahren zur herstellung der kern-hülle-partikel
WO2013036746A1 (en) * 2011-09-08 2013-03-14 Corning Incorporated Antimicrobial composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3020277A1 (de) * 2014-11-12 2016-05-18 Evonik Degussa GmbH Zusammensetzung mit gesteuerter Freisetzung von bioziden Metallionen
WO2016146484A1 (de) * 2015-03-18 2016-09-22 Evonik Degussa Gmbh Lacksystem enthaltend ein bewuchshemmendes metalloxid und eine pyrogene kieselsäure
DE102015204896A1 (de) 2015-03-18 2016-09-22 Evonik Degussa Gmbh Lacksystem enthaltend ein bewuchshemmendes Metalloxid und eine pyrogene Kieselsäure
JP2018513240A (ja) * 2015-03-18 2018-05-24 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH 防汚性金属酸化物とヒュームドシリカとを含有する塗装系
US10308820B2 (en) 2015-03-18 2019-06-04 Evonik Degussa Gmbh Paint system containing anti-fouling metal oxide and fumed silica
EP3875544A1 (de) 2020-03-06 2021-09-08 Evonik Operations GmbH Lacksystem mit anti-fouling-eigenschaft

Also Published As

Publication number Publication date
TW201509810A (zh) 2015-03-16

Similar Documents

Publication Publication Date Title
DE3801535C2 (de) Kugelförmige Siliciumdioxid- oder Siliciumdioxid-Aluminiumoxid-Teilchen und Verfahren zu ihrer Herstellung
EP1304332B1 (de) Mit Aminogruppen oberflächenmodifizierte Feststoffe
EP2268729B1 (de) Partikuläre wachskomposite mit kern/hülle-struktur und verfahren zu deren herstellung sowie deren verwendung
EP2268725B1 (de) Partikuläre wachskomposite und verfahren zu deren herstellung sowie deren verwendung
DE102009028255A1 (de) Mikrostrukturierte multifunktionale anorganische Coating-Additive zur Vermeidung von Fouling (Biofilmbewuchs) bei aquatischen Anwendungen
DE10260323A1 (de) Wasserbenetzbare silylierte Metalloxide
DE10212121A1 (de) Verfahren zur Herstellung von nano-Zinkoxid-Dispersionen stabilisiert durch hydroxylgruppenhaltige anorganische Polymere
WO2014187769A1 (de) Mit siliciumdioxid umhüllte, bewuchshemmende metalloxide
EP2595919B1 (de) Siliciumdioxidpulver mit speziellen oberflächeneigenschaften und dieses pulver enthaltende tonerzusammensetzung
EP1749054A1 (de) Kautschukzusammensetzung, elastomer, verfahren zu deren herstellung und verwendung von verbundteilchen
WO2014187646A1 (de) Kupferoxid-siliciumdioxid-komposit
EP2291235B1 (de) Neue verbundwerkstoffe, herstellungsverfahren dafür und verwendung davon
EP3271426B1 (de) Lacksystem enthaltend ein bewuchshemmendes metalloxid und eine pyrogene kieselsäure
EP3020277B1 (de) Zusammensetzung mit gesteuerter Freisetzung von bioziden Metallionen
EP1597203A1 (de) Verfahren zum entfernung von phosphat aus wässern
EP3875544A1 (de) Lacksystem mit anti-fouling-eigenschaft
DE10164904B4 (de) Verfahren zur Herstellung eines Kern-Hülle-Teilchens, wobei der Kern ein nanoskaliges Teilchen ist und die Verwendung des Teilchens
WO2009007579A2 (fr) Nouveaux materiaux composites a base de cuivre, leur procede de preparation et leurs utilisations
EP3252008B1 (de) Nanostrukturierte mikropartikel aus silanisierten primärpartikeln mit steuer-barer redispergierbarkeit und verfahren zu deren herstellung
EP1952692A1 (de) Verfahren zur Herstellung eines antibakteriell bzw. antimikrobiell wirkenden keramsichen Werstoffes sowie dessen Verwendung
EP2877289A1 (de) Verfahren zur magnetischen abtrennung von fällungsprodukten aus fluiden mit hilfe von wiederverwendbaren, superparamagnetischen kompositpartikeln
DE4135264A1 (de) Pulverfoermige trockenstoffe, sowie ihre anwendung in beschichtungsstoffen
DE10353555A1 (de) Teilchenverbund, Verfahren zu deren Herstellung und deren Verwendung
DE3432756A1 (de) Im wesentlichen aus calciumcarbonat bestehende formkoerper und deren verwendung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14724485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14724485

Country of ref document: EP

Kind code of ref document: A1