WO2010137249A1 - リチウム二次電池用負極活物質、リチウム二次電池用負極電極、それらを用いた車載用リチウム二次電池、及びリチウム二次電池用負極活物質の製造方法 - Google Patents

リチウム二次電池用負極活物質、リチウム二次電池用負極電極、それらを用いた車載用リチウム二次電池、及びリチウム二次電池用負極活物質の製造方法 Download PDF

Info

Publication number
WO2010137249A1
WO2010137249A1 PCT/JP2010/003309 JP2010003309W WO2010137249A1 WO 2010137249 A1 WO2010137249 A1 WO 2010137249A1 JP 2010003309 W JP2010003309 W JP 2010003309W WO 2010137249 A1 WO2010137249 A1 WO 2010137249A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium secondary
negative electrode
secondary battery
active material
electrode active
Prior art date
Application number
PCT/JP2010/003309
Other languages
English (en)
French (fr)
Inventor
池田大佐
田川和樹
Original Assignee
新日鐵化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵化学株式会社 filed Critical 新日鐵化学株式会社
Publication of WO2010137249A1 publication Critical patent/WO2010137249A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode active material for a lithium secondary battery, a negative electrode for a lithium secondary battery, an in-vehicle lithium secondary battery using them, and a method for producing a negative electrode active material for a lithium secondary battery.
  • Lithium secondary batteries have high energy density compared to other secondary batteries, so they can be reduced in size and weight, so mobile phones, personal computers, personal digital assistants (PDAs) and personal digital assistants (PDAs) It is widely used as a power source for mobile electronic devices such as handy video cameras, and its demand is expected to increase in the future.
  • hybrid electric vehicles that combine a gasoline engine with an electric vehicle or a motor driven by a nickel metal hydride battery have been developed and the number of such vehicles is increasing. .
  • HEV Hybrid Electric Vehicle
  • lithium secondary batteries are attracting attention as a means of meeting this demand.
  • a carbon material that is excellent in terms of safety and life is generally used as a negative electrode material (negative electrode active material).
  • graphite material is an excellent material with high energy density, which is obtained at a high temperature of at least about 2,000 ° C., usually about 2,600 to 3,000 ° C., but has high input / output characteristics. And has problems with cycle characteristics. For this reason, for example, for high input / output applications such as power storage and electric vehicles, the use of a low-crystalline carbon material that is fired at a temperature lower than that of the graphite material and has a low degree of graphitization is mainly studied.
  • the characteristics of the lithium secondary battery are required to sufficiently reduce the potential on the negative electrode side to improve the actual battery voltage and exhibit sufficiently high output characteristics.
  • the discharge capacity of the lithium secondary battery can be raised as an important characteristic so that the current that is the energy source of the hybrid electric vehicle can be sufficiently supplied.
  • the ratio of the charge capacity to the discharge capacity, that is, the initial efficiency is required to be high so that the discharge current amount is sufficiently higher than the charge current amount.
  • the lithium secondary battery preferably maintains a high charge capacity up to a high current density, and a high capacity maintenance rate is also required. That is, it is required to improve such characteristics as output characteristics, discharge capacity, initial efficiency, capacity maintenance ratio and the like in a balanced manner.
  • Patent Document 1 discloses a carbonaceous material that defines a specific specific surface area, an X-ray diffraction crystal thickness, and the like obtained by pyrolysis or calcining carbonization of an organic compound as a negative electrode material using intercalation or doping.
  • HEV high-voltage
  • Patent Document 2 discloses the use of a carbonaceous material obtained by heat-treating a specific coating layer on a carbonaceous material having a graphite-like structure as a negative electrode material
  • Patent Document 3 discloses a low-temperature material as a negative electrode material.
  • Carbon materials having a relatively high discharge capacity have been disclosed by removing impurities to a higher degree by heat-treating in an inert atmosphere using coke heat-treated as a raw material. However, it did not have sufficient battery characteristics for in-vehicle applications.
  • Patent Document 4 discloses that a lithium secondary battery having a large charge / discharge capacity can be supplied by using heat-treated coke obtained by heat-treating raw coke of petroleum or coal at 500 to 850 ° C. as a negative electrode material. However, it was not sufficient in terms of output characteristics for in-vehicle applications such as HEV.
  • Patent Document 5 discloses a negative electrode material obtained by carbonizing an organic material or a carbonaceous material by adding a phosphorus compound
  • Patent Document 6 discloses a carbon material containing boron and silicon as graphite.
  • JP 62-90863 A Japanese Patent Laid-Open No. 6-5287 JP-A-8-102324 JP-A-9-320602 JP-A-3-137010 Japanese Patent Laid-Open No. 11-40158
  • the present invention can sufficiently improve the output characteristics of a lithium secondary battery, and has novel characteristics that are practically required for in-vehicle applications such as for HEV including discharge capacity, initial efficiency, and capacity maintenance ratio. It aims at obtaining a negative electrode active material.
  • the inventors of the present invention conducted intensive studies to achieve the above object. As a result, with respect to 100 parts by weight of coal-based and / or petroleum-based (hereinafter referred to as “coal-based”) raw coke, phosphorus compound and boron compound are 0.1 to 6.0 weight parts in terms of phosphorus and boron, respectively.
  • the negative electrode active material for a lithium secondary battery which is obtained by firing a coke material added at a ratio of parts, sufficiently reduces the potential of the negative electrode of the lithium secondary battery and improves the actual battery voltage
  • the present invention has been completed by finding out that it has practical characteristics required for in-vehicle use such as output characteristics, discharge capacity, initial efficiency and capacity retention rate. *
  • coal-based coke refers to petroleum-based and / or coal-based heavy oil, for example, using a coking facility such as a delayed coker, and the maximum temperature reached is about 400 ° C. to 700 ° C. It means a product obtained by carrying out a thermal decomposition / polycondensation reaction for about 24 hours.
  • the output characteristics of a lithium secondary battery can be sufficiently improved, and have practical characteristics required for in-vehicle applications such as for HEV including discharge capacity, initial efficiency, and capacity maintenance ratio, and performance.
  • a negative electrode active material excellent in balance can be provided.
  • the negative electrode active material for a lithium secondary battery according to the present invention is prepared by first using a coal-based heavy oil, for example, a coking facility such as a delayed coker, at a maximum temperature of about 400 ° C. to 700 ° C. for about 24 hours. Coal coke is obtained by advancing thermal decomposition and polycondensation reaction. Thereafter, the obtained coal-based raw coke mass is pulverized to a predetermined size.
  • An industrially used pulverizer can be used for the pulverization. Specific examples include an atomizer, a Raymond mill, an impeller mill, a ball mill, a cutter mill, a jet mill, and a hybridizer, but are not particularly limited thereto.
  • the heavy coal oil used here may be either a heavy petroleum oil or a heavy coal oil, but the heavy heavy oil is richer in aromaticity.
  • it is advantageous to use heavy heavy coal oil because it has the advantage of low content of heteroelements such as N and S that cause irreversible reaction with lithium and has low volatile content.
  • the size of the pulverized coal-based raw coke powder and the coal-based calcined coke powder is not particularly limited, but the average particle size required as the median diameter is more preferably 5 to 15 ⁇ m, At this time, the BET specific surface area is more preferably 5 m 2 / g or less. When the average particle diameter is less than 5 ⁇ m, the specific surface area increases excessively, and the initial efficiency of the obtained lithium secondary battery may be reduced. On the other hand, when the average particle diameter exceeds 15 ⁇ m, the charge / discharge characteristics of the lithium secondary battery may be deteriorated. If the BET specific surface area exceeds 5 m 2 / g, as described above, the specific surface area may increase excessively and the initial efficiency of the lithium secondary battery may be reduced.
  • the BET specific surface area is desirably about 2 m 2 / g or more from the viewpoint of forming fine pores.
  • the addition of the phosphorus compound and the boron compound can be performed at the time when the lump of coal-based raw coke is obtained instead of obtaining the coal-based raw coke powder (second addition method).
  • second addition method by putting the lump of coal-based raw coke into a pulverizer and simultaneously putting the above-described phosphorus compound and boron compound into the pulverizer and pulverizing the lump, the phosphorus compound and the boron compound Coal-based raw coke powder obtained by adding can be obtained.
  • both of the first addition method and the second addition method differ only in the manufacturing process of the lithium secondary battery negative electrode active material due to the difference in the specific method of addition, and the lithium secondary battery There is almost no change in the output characteristics, discharge capacity, initial efficiency, and capacity retention rate of the negative electrode active material itself.
  • the amount of the phosphorus compound added is preferably 0.1 to 6.0 parts by weight, more preferably 0.5 to 5.0 parts by weight in terms of phosphorus with respect to 100 parts by weight of coal-based raw coke. It is preferable. If the addition amount is less than the lower limit, the effect of adding the phosphorus compound may not be sufficiently obtained. On the other hand, if the addition amount exceeds the upper limit, the crystallization of the coke surface may progress and the output characteristics may deteriorate. is there.
  • the amount of the boron compound added is preferably 0.1 to 6.0 parts by weight, more preferably 0.5 to 5.0 parts by weight in terms of boron with respect to 100 parts by weight of coal-based raw coke. It is preferable that If the addition amount is less than the lower limit, the effect of adding the boron compound may not be sufficiently obtained. On the other hand, if the addition amount exceeds the upper limit, carbonization of coke is excessively promoted, and unreacted boron may remain. There is a risk that the output characteristics, discharge capacity, initial efficiency, and capacity retention rate of the negative electrode active material for lithium secondary batteries will deteriorate.
  • phosphoric acids are preferable from the viewpoints of easily preparing an aqueous solution and having high safety.
  • Phosphoric acid orthophosphoric acid
  • boron carbide B 4 C
  • carbon which is a constituent element of coke which is a base material of the negative electrode active material.
  • other components since other components are not included, it is because the bad influence to the negative electrode active material by this component can be suppressed.
  • the firing temperature is preferably 800 ° C. or higher and 1400 ° C. or lower at the highest temperature reached.
  • the range is preferably 900 ° C to 1200 ° C, more preferably 900 ° C to 1100 ° C. If the firing temperature exceeds the upper limit, the crystal growth of the coke material is excessively promoted, and the output characteristics, discharge capacity, initial efficiency, capacity retention rate of the negative electrode active material for lithium secondary batteries may be deteriorated, and From the viewpoint of mass productivity, it is not preferable.
  • the firing temperature is lower than the lower limit, not only the sufficient crystal growth is not possible, but also the addition effect of phosphorus compound and boron compound is not sufficient in the carbonization process of coke, and similarly, the negative electrode active material for lithium secondary battery Output characteristics, discharge capacity, initial efficiency, and capacity retention rate may be deteriorated.
  • the holding time at the highest temperature is not particularly limited, but is preferably 30 minutes or more.
  • the firing atmosphere is not particularly limited, but may be an inert gas atmosphere such as argon or nitrogen, a non-oxidizing atmosphere in a non-sealed state such as a rotary kiln, or a non-oxidizing atmosphere in a sealed state such as a lead hammer furnace. An oxidizing atmosphere may be used.
  • a lithium-containing transition metal oxide LiM (1) x O 2 (wherein, x is 0 ⁇ x ⁇ 1 in the range, wherein M (1) represents a transition metal and consists of at least one of Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, In)
  • LiM (1) y M (2) 2-y O 4 wherein y is a numerical value in the range of 0 ⁇ y ⁇ 1, where M (1) and M (2) represent transition metals) , Co, Ni, Mn, Ti, Cr, V, Fe, Zn, Al, Sn, In), transition metal chalcogenides (Ti, S 2 , NbSe, etc.), vanadium oxide (V 2 O 5, V 6 O 13 , V 2 O 4, V 3 O 6, etc.) and a lithium compound,
  • General formula M x Mo 6 Ch 6-y where x is a numerical value in
  • Examples of the electrolyte filling the space between the positive electrode and the negative electrode can be used, for example LiClO 4, LiBF 4, LiPF 6 , LiAsF 6, LiB (C 6 H 5), LiCl , LiBr, Li 3 SO 3 , Li (CF 3 SO 2 ) 2 N, Li (CF 3 SO 2 ) 3 C, Li) CF 3 CH 2 OSO 2 ) 2 N, Li (CF 3 CF 2 CH 2 OSO 2 ) 2 N, Li (HCF 2 CF 2 CH 2 OSO 2 ) 2 N, Li ((CF 3 ) 2 CHOSO 2 ) 2 N, LiB [C 6 H 3 (CF 3 ) 2 ] 4 Mention may be made of mixtures of more than one species.
  • non-aqueous electrolyte examples include propylene carbonate, ethylene carbonate, butylene carbonate, chloroethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 1,1-dimethoxyethane, 1,2-dimethoxyethane, 1,2 -Diethoxyethane, ⁇ -butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, anisole, diethyl ether, sulfolane, methylsulfolane, acetonitrile, chloronitrile, propionitrile , Trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethylorthoformate, nitrobenzene , Benzoyl chloride, benzoyl bromid
  • a fluorine resin powder such as polyvinylidene fluoride (PVDF) or a polyimide (PI) resin, styrene butadiene rubber (SBR), carboxymethyl cellulose (CMC) ) And the like, and the binder and the negative electrode active material are mixed using a solvent such as N-methylpyrrolidone (NMP), dimethylformamide, water, alcohol or the like.
  • PVDF polyvinylidene fluoride
  • PI polyimide
  • SBR styrene butadiene rubber
  • CMC carboxymethyl cellulose
  • a slurry is prepared, applied to a current collector, and dried.
  • Example 1 Using a refined pitch from which heavy quinoline insolubles have been removed from coal-based heavy oil, bulk coke produced by heat treatment at a temperature of 500 ° C. for 24 hours by a delayed coking method (raw coke) is obtained.
  • the raw coke powder having an average particle size of 9.9 ⁇ m was obtained.
  • Phosphoric acid ester (14% by mass active phosphorus solid resin: trade name HCA manufactured by Sanko Co., Ltd., chemical name: 9,10-dihydro-9-oxa-10) with respect to 100 parts by weight of the raw coke powder obtained as described above.
  • -Osfaphenanthrene-10-oxide IV 25.0 parts by weight (phosphorus conversion: 3.5 parts by weight) and boron carbide 1.9 parts by weight (boron conversion: 1.5 parts by weight) were added.
  • the coke material formed by adding the phosphate ester and boron carbide is heated from room temperature at a rate of 600 ° C./hour, and after reaching 900 ° C. (maximum temperature reached), the carbon is kept for another 2 hours for carbonization. Treatment (firing) was performed to obtain a negative electrode active material for a lithium secondary battery.
  • PVDF polyvinylidene fluoride
  • NMP N-methylpyrrolidone
  • a solution of LiPF 6 dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate (volume ratio of 1: 1) at a concentration of 1 mol / l is used, and a coin cell is formed using a porous membrane of propylene as a separator.
  • the lithium secondary battery was manufactured.
  • the discharge characteristics when a constant current discharge of 5 mA / cm 2 was carried out in a voltage range where the lower limit voltage of terminal voltage was 0 V and the upper limit voltage of discharge was 1.5 V at a constant temperature of 25 ° C. were examined. The results are shown in Table 1.
  • Example 2 In Example 1, the amount of phosphate ester added and the amount of boron carbide were changed from 3.5 parts by weight in terms of phosphorus and 1.5 parts by weight in terms of boron to 2.5 parts by weight in terms of phosphorus and 2 in terms of boron. Except for changing to 5 parts by weight (Example 2), 1.5 parts by weight in terms of phosphorus, and 3.5 parts by weight (Example 3) in terms of boron, the same operation as in Example 1 was performed, and lithium was A secondary battery was obtained. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 1 (Comparative Example 1) Using a coke material of 100 parts by weight of raw coke powder and without adding phosphate ester and boron carbide, the same operation as in Example 1 was performed to obtain a lithium secondary battery. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 2 A lithium secondary battery was obtained in the same manner as in Example 1 except that 100 parts by weight of raw coke powder was used and 5.0 parts by weight of phosphoric acid ester alone was added. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 A lithium secondary battery was obtained in the same manner as in Example 1 except that 100 parts by weight of raw coke powder was used and 5.0 parts by weight of boron carbide was added in terms of boron. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 lithium secondary batteries were obtained in the same manner as in Examples 1 to 3, except that the firing temperature (maximum temperature reached) of the coke material was changed from 900 ° C. to 1000 ° C. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 7 to 9 lithium secondary batteries were obtained in the same manner as in Examples 1 to 3, except that the firing temperature (maximum temperature reached) of the coke material was changed from 900 ° C. to 1100 ° C. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Examples 7 to 9 lithium secondary batteries were obtained in the same manner as in Comparative Examples 1 to 3, except that the coke material firing temperature (maximum temperature reached) was changed from 900 ° C. to 1100 ° C. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 10 to 12 lithium secondary batteries were obtained in the same manner as in Examples 1 to 3, except that the firing temperature (maximum temperature reached) of the coke material was changed from 900 ° C. to 1200 ° C. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Comparative Examples 10 to 12 lithium secondary batteries were obtained in the same manner as in Comparative Examples 1 to 3, except that the coke material firing temperature (maximum temperature reached) was changed from 900 ° C. to 1200 ° C. Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 1.
  • Example 13 In Example 5, the amount of phosphate ester added and the amount of boron carbide were changed from 2.5 parts by weight in terms of phosphorus and boron to 0.5 parts by weight in terms of phosphorus and 0.5 parts by weight in terms of boron ( Example 13), 0.5 parts by weight in terms of phosphorus, 2.5 parts by weight in terms of boron (Example 14), 0.5 parts by weight in terms of phosphorus, 5.0 parts by weight in terms of boron (Example 15) 2.5 parts by weight in terms of phosphorus, 0.5 parts by weight in terms of boron (Example 16), 2.5 parts by weight in terms of phosphorus, 5.0 parts by weight in terms of boron (Example 17), in terms of phosphorus 5.0 parts by weight, 0.5 parts by weight in terms of boron (Example 18), 5.0 parts by weight in terms of phosphorus, 2.5 parts by weight in terms of boron (Example 19), 5.0 parts by weight in terms of phosphorus
  • the negative electrode active material for lithium secondary batteries according to Examples obtained by firing a coke material obtained by adding phosphate ester and boron chloride to raw coke powder according to the present invention. It can be seen that the performance balance of output characteristics, discharge capacity, initial efficiency and capacity maintenance rate is good. In particular, by adding the added amount in a ratio of 0.5 to 5.0 parts by weight in terms of phosphorus and boron with respect to 100 parts by weight of raw coke powder, the output characteristic (W) is 10 W or more.
  • the discharge capacity (mAh / g) is 280 (mAh / g) or higher, the initial efficiency (%) is 75 (%) or higher, and the capacity retention rate (%) is 68 (%) or higher. It can be seen that a carbon material for a negative electrode material of a lithium secondary battery (a negative electrode active material for a lithium secondary battery) is obtained.
  • Comparative Examples 1, 4, 7 and 10 are cases in which a coke material composed only of raw coke powder is used, but the capacity retention rate is higher at each firing temperature than in the examples according to the present invention. It can be seen that the characteristics are inferior. In particular, when the firing temperature is 1000 ° C. or less, the discharge capacity (mAh / g) is 280 (mAh / g) or more, but the output characteristic (W) is lower than that of the example according to the present invention. It can be seen that the balance of the characteristics as the carbon material for the negative electrode material of the lithium secondary battery is inferior.
  • the output characteristic (W) is 10 (W) or more, but the discharge capacity (mAh / g) is less than 280 (mAh / g), and the negative electrode of the lithium secondary battery It turns out that the balance of the characteristic as a carbon material for materials is inferior.
  • Comparative Examples 2, 5, 8 and 11 are cases where only a phosphorus compound is added to raw coke powder, but the capacity retention ratio is higher than that of the example according to the present invention at each firing temperature. It turns out that it is inferior. In particular, when the firing temperature is 1100 ° C. or lower, the output characteristic (W) is less than 11 (W), and it can be seen that the balance of the characteristic is inferior compared to the example according to the present invention.
  • Comparative Examples 3, 6, 9 and 12 are cases where only a boron compound was added to raw coke powder, but the capacity retention rate was higher than that of the example according to the present invention at each firing temperature. It turns out that it is inferior.
  • the firing temperature is 1100 ° C. or lower
  • the discharge capacity (mAh / g) is 280 (mAh / g) or higher
  • the output characteristics (W) are lower than in the embodiment according to the present invention. It can be seen that the balance of the characteristics as the carbon material for the negative electrode material of the lithium secondary battery is inferior.
  • Example 21 A lithium secondary battery was produced in the same manner as in Example 2 except that the binder used in producing the negative electrode foil was changed from polyvinylidene fluoride to a polyimide resin (manufactured by Ube Industries). Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 3. For comparison, the results relating to Example 2 are also shown in Table 2.
  • Example 22 A lithium secondary battery was produced in the same manner as in Example 5 except that the binder used for producing the negative electrode foil was changed from polyvinylidene fluoride to a polyimide resin (manufactured by Ube Industries). Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 3. For comparison, the results regarding Example 5 are also shown in Table 2.
  • Example 23 A lithium secondary battery was produced in the same manner as in Example 8, except that the binder used in producing the negative electrode foil was changed from polyvinylidene fluoride to polyimide resin (manufactured by Ube Industries). Further, the discharge characteristics were examined in the same manner as in Example 1. The results are shown in Table 3. For comparison, the results regarding Example 8 are also shown in Table 2.
  • DOD depth of discharge: Depth of Discharge
  • the output characteristic (W) is 11 W or more
  • the discharge capacity (mAh / g) is 350 (mAh / g) or more
  • the initial efficiency (%) is 77 (%) or more
  • the capacity retention rate (%) It can be seen that a carbon material for a negative electrode material of a lithium secondary battery (a negative electrode active material for a lithium secondary battery) exhibiting good discharge characteristics of 76% or more can be obtained.

Abstract

石炭系及び/又は石油系(以下、石炭系等という)生コークス100重量部に対して、リン化合物及びホウ素化合物を、リン及びホウ素換算で各々0.1重量部~6.0重量部の割合で添加したコークス材料を焼成し、安定した充放電特性を呈し、出力特性、初期効率及び容量維持率に優れた、新規なリチウム二次電池負極活物質を得る。

Description

リチウム二次電池用負極活物質、リチウム二次電池用負極電極、それらを用いた車載用リチウム二次電池、及びリチウム二次電池用負極活物質の製造方法
 本発明は、リチウム二次電池用負極活物質、リチウム二次電池用負極電極、それらを用いた車載用リチウム二次電池、及びリチウム二次電池用負極活物質の製造方法に関する。
 リチウム二次電池は、他の二次電池と比較して高いエネルギー密度を有することから、小型化・軽量化が可能であるため、携帯電話、パソコン、携帯情報端末(PDA:Personal Digital Assistant)およびハンディビデオカメラ等の移動電子機器の電源として多く利用されており、今後もその需要は益々高くなると予想されている。
 また、エネルギー問題や環境問題に対応するために、電気自動車やニッケル水素電池駆動のモーターとガソリンエンジンとを組み合わせたハイブリッド電気自動車(HEV:Hybrid Electric Vehicle)が開発され、その普及台数を伸ばしている。これらの自動車では、使用する電池のさらなる高性能化が要求されており、この要求に応えるものとしてもリチウム二次電池が注目を集めている。
 リチウム二次電池は、負極材(負極活物質)として、安全性および寿命の面で優れる炭素材料が一般に用いられる。炭素材料のなかでも黒鉛材料は、少なくとも2,000℃程度以上、通常は2,600~3,000℃程度の高温で得られる、高エネルギー密度を持つ優れた材料であるが、高入出力特性やサイクル特性に課題を有している。このため、例えば電力貯蔵用や電気自動車等の高入出力用途には、黒鉛材料よりも低い温度で焼成され、黒鉛化度の低い低結晶炭素材料の利用が主に研究されている。 
 近年においては、ハイブリッド電気自動車のさらなる高性能化の観点から、リチウム二次電池に対してもさらなる高性能化が求められており、その性能の向上が急務となっている。特にリチウム二次電池の特性としては、負電極側の電位を十分に低減して実電池電圧を向上させ、十分に高い出力特性を呈することが要求される。
 また、ハイブリッド電気自動車のエネルギー源である電流を十分に供給できるように、リチウム二次電池の放電容量が重要な特性として上げられる。加えて、充電電流量に比較して放電電流量が十分に高くなるように、放電容量に対する充電容量の割合、すなわち初期効率が高いことも要求される。
 さらに、短時間での充電を可能とすべく、リチウム二次電池は高電流密度まで高い充電容量を維持することが好ましく、容量維持率が高いことも要求されている。すなわち、この様な出力特性、放電容量、初期効率、容量維持率等の特性をバランス良く高めることが要求される。
 この様なリチウム二次電池を目的として、負極材としてコークスや黒鉛等の炭素材料が多く検討されているが、上述した放電容量を増大させることはできるものの、初期効率は十分でない。また、実電池電圧が不十分であって近年の高出力特性を満足することができず、容量維持率の要件をも満足することができない。
 例えば、特許文献1には、インターカレーション又はドーピングを利用した負極材として、有機化合物の熱分解又は焼成炭化により得られる特定の比表面積及びX線回折結晶厚み等を規定した炭素質材料が開示されているが、HEV用などの車載用途においては未だ不十分であった。
 特許文献2には、黒鉛類似構造を有する炭素質などに特定の被覆層を設けて熱処理して得られる炭素質材料を負極材として用いることが開示され、特許文献3には、負極材として低温で熱処理されたコークスを原料として不活性雰囲気下、熱処理をすることにより、より高度に不純物を除去することで、比較的高い放電容量を有する炭素材料が開示されているが、いずれもやはりHEV用などの車載用途において十分な電池特性を有するものではなかった。
 また、特許文献4には、石油又は石炭の生コークスを500~850℃にて熱処理した熱処理コークスを負極材とすることで、充・放電容量の大きなリチウム二次電池を供給しうることが開示されているが、HEV用などの車載用途において出力特性の面で十分でなかった。
 以上のようなコークス等を原料とした低結晶炭素材料のリチウム二次電池用負極材の研究は殆んどが小型携帯機器用電源としての二次電池用負極材の特性改善に向けられていて、HEV用二次電池に代表される大電流入出力リチウム二次電池用に適した充分な特性を有する負極材が開発されていなかったのが実情である。
 他方、有機材料又は炭素質材料に、各種化合物を添加して電池特性を向上させることも検討されている。例えば、特許文献5には、有機材料又は炭素質材料にリン化合物を添加して炭素化することにより得られる負極材が開示され、特許文献6には、ホウ素及びケイ素を含有する炭素材料を黒鉛化して得られる負極材が開示されているが、いずれも、上記と同様に、HEV用などの車載用途において出力特性等の面で実用化には未だ十分ではない。
特開昭62-90863号公報 特開平6-5287号公報 特開平8-102324号公報 特開平9-320602号公報 特開平3-137010号公報 特開平11-40158号公報
 本発明は、リチウム二次電池の出力特性を十分に向上させることができるとともに、放電容量、初期効率及び容量維持率を含むHEV用などの車載用途に要求される実用特性を備えた、新規な負極活物質を得ることを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討を実施した。その結果、石炭系及び/又は石油系(以下、石炭系等という)生コークス100重量部に対して、リン化合物及びホウ素化合物を、リン及びホウ素換算で各々0.1重量部~6.0重量部の割合で添加したコークス材料を、焼成してなることを特徴とするリチウム二次電池用負極活物質が、リチウム二次電池の負電極の電位を十分に低減して実電池電圧を向上させることができ、出力特性、放電容量、初期効率及び容量維持率などの車載用途に要求される実用特性を備えたものであることを見出し、本発明を完成した。 
 なお、本発明における“石炭系等生コークス”とは、石油系及び/又は石炭系重質油を例えばディレードコーカー等のコークス化設備を用い、最高到達温度が400℃~700℃程度の温度で24時間程度、熱分解・重縮合反応を実施して得たものを意味する。
 本発明によれば、リチウム二次電池の出力特性を十分に向上させることが出来るとともに、放電容量、初期効率及び容量維持率を含むHEV用などの車載用途に要求される実用特性を備え、性能バランスに優れた負極活物質を提供することが出来る。
 以下、本発明を、リチウム二次電池用負極活物質の実施の形態に基づいて、より詳細に説明する。
 本発明のリチウム二次電池用負極活物質は、最初に、石炭系等重質油を例えばディレードコーカー等のコークス化設備を用い、最高到達温度が400℃~700℃程度の温度で24時間程度、熱分解・重縮合反応を進めることによって石炭系等生コークスを得る。その後、得られた石炭系等生コークスの塊を所定の大きさに粉砕する。粉砕には、工業的に用いられる粉砕機を使用することができる。具体的にはアトマイザー、レイモンドミル、インペラーミル、ボールミル、カッターミル、ジェットミル、ハイブリダイザー等を挙げることができるが、特にこれに限定されるものではない。
 ここで使用される石炭系等重質油は、石油系重質油であっても石炭系重質油であっても構わないが、石炭系重質油の方が芳香族性に富んでおり、且つリチウムとの不可逆反応を生じるN、S等のヘテロ元素の含有量が少ない利点を有し、揮発分も少ないため、石炭系重質油を使用する方が好ましい。
 なお、粉砕後の石炭系等生コークス粉及び石炭系等か焼コークス粉の大きさは特に限定されるものではないが、メジアン径として求められる平均粒子径が5~15μmであるとより好ましく、このとき、BET比表面積が5m/g以下であるとより好ましい。平均粒子径が5μmを下回ると比表面積が過度に増加して、得られたリチウム二次電池の初期効率が低下するおそれがある。一方、平均粒子径が15μmを上回るとリチウム二次電池の充放電特性が低下するおそれがある。BET比表面積は5m/gを上回ると、上述したように、比表面積が過度に増加して、リチウム二次電池の初期効率が低下するおそれがある。BET比表面積は微細細孔を形成する観点からは2m/g以上程度であることが望ましい
 上述したコークス粉には、リン化合物及びホウ素化合物を添加する。添加は、上述した石炭系等生コークス粉と、以下に示すような量のリン化合物及びホウ素化合物とを配合して所定の型に入れることによって行う(第1の添加法)。
 リン化合物及びホウ素化合物の添加は、石炭系等生コークス粉を得た後に行なう代わりに、石炭系等生コークスの塊を得た時点で行なうこともできる(第2の添加法)。この場合は、石炭系等生コークスの塊を粉砕機に入れるととともに、同時に上述したリン化合物及びホウ素化合物を前記粉砕機に入れて前記塊の粉砕を行なうことによって、前記リン化合物及び前記ホウ素化合物が添加してなる石炭系等生コークス粉を得ることができる。
 したがって、石炭系等生コークスの塊の粉砕と同時にリン化合物及びホウ素化合物を添
加させることができるので、焼成の際に別途リン化合物等を添加させる操作を省略することができ、リチウム二次電池用負極活物質の製造工程の全体を簡略化することができる。
 但し、上記第1の添加法及び第2の添加法のいずれも、添加の具体的な手法が異なることによって、リチウム二次電池負極活物質の製造工程が異なるのみであって、リチウム二次電池用負極活物質自体の出力特性や放電容量、初期効率、容量維持率にはほとんど変化がない。
 上記リン化合物の添加量は、石炭系等生コークス100重量部に対してリン換算で0.1~6.0重量部であることが好ましく、さらには0.5~5.0重量部であることが好ましい。添加量が下限未満ではリン化合物を添加する効果が十分得られないおそれがあり、一方、添加量が上限を超えるとコークスの表面の低結晶化が進み、出力特性が低下するおそれがあるためである。
 また、上記ホウ素化合物の添加量は、石炭系等生コークス100重量部に対してホウ素換算で0.1~6.0重量部であることが好ましく、さらには0.5~5.0重量部であることが好ましい。添加量が下限未満ではホウ素化合物を添加する効果が十分得られないおそれがあり、一方、添加量が上限を超えるとコークスの炭化が過剰に促進されるためと、未反応のホウ素が残存するおそれがあり、リチウム二次電池用負極活物質の出力特性や放電容量、初期効率、容量維持率が劣化してしまう恐れがある。
 上述したリン化合物としては、容易に水溶液を調製でき、かつ高い安全性を有する等の観点からリン酸類が好ましい。リン酸類としては、リン酸(オルトリン酸)を用いることがより好ましいが、これに限らず直鎖状ポリリン酸や環状ポリリン酸、あるいは各種リン酸エステル化合物等から適宜選択して用いることができる。これらのリン酸類は、いずれか1つを単独で使用してよく、また、2以上を配合して使用してもよい。
 また、上述したホウ素化合物としては炭化ホウ素(BC)を用いることが好ましい。これは、炭化ホウ素が焼成中に分解したとしても、その結果得られる成分は、本発明の目的を達成するためのホウ素、及び負極活物質の母材であるコークスの構成元素である炭素のみであって、その他の成分を含まないことから、かかる成分による負極活物質への悪影響を抑制することができるからである。
 こうしたコークスについて、焼成を行う。この焼成温度は、最高到達温度で800℃以上1400℃以下とすることがよい。好ましくは900℃~1200℃、更に好ましくは900℃~1100℃の範囲である。焼成温度が上限を超えると、コークス材料の結晶成長が過剰に促進され、リチウム二次電池用負極活物質の出力特性や放電容量、初期効率、容量維持率が劣化してしまう恐れがあり、また、量産性の観点からも好ましくない。一方、焼成温度が下限よりも低いと、十分な結晶成長ができないのみならず、コークスの炭化過程でリン化合物及びホウ素化合物の添加効果が十分でなく、同様に、リチウム二次電池用負極活物質の出力特性や放電容量、初期効率、容量維持率が劣化してしまう恐れがある。
 また、最高到達温度での保持時間は特に限定しないが30分以上が好ましい。また、焼成雰囲気は、特に限定されないが、アルゴンあるいは窒素等の不活性ガス雰囲気でもよく、ロータリーキルンの様な非密閉状態での非酸化雰囲気でもよいし、リードハンマー炉の様な密閉状態での非酸化雰囲気でもよい。
 こうした本発明の負極活物質を負極材に用いてリチウム二次電池を構成する場合、相対する正極としては、リチウム含有遷移金属酸化物LiM(1)(式中、xは0≦x≦1の範囲の数値であり、式中M(1)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、あるいはLiM(1)M(2)2-y(式中、yは0≦y≦1の範囲の数値であり、式中、M(1)、M(2)は遷移金属を表し、Co、Ni、Mn、Ti、Cr、V、Fe、Zn、Al、Sn、Inの少なくとも1種類からなる)、遷移金属カルコゲン化物(Ti、S、NbSe、等)、バナジウム酸化物(V5、13、V4、6、等)およびリチウム化合物、一般式MMoCh6-y(式中、xは0≦x≦4、yは0≦y≦1の範囲の数値であり、式中Mは遷移金属をはじめとする金属、Chはカルコゲン金属を表す)で表されるシュブレル相化合物、あるいは活性炭、活性炭素繊維等の正極活物質を用いることができる。
 また、上記正極と負極との間を満たす電解質としては、従来公知のものをいずれも使用することができ、例えばLiClO、LiBF、LiPF、LiAsF、LiB(C)、LiCl、LiBr、LiSO、Li(CFSO)N、Li(CFSO)C、Li)CFCHOSO)N、Li(CFCFCHOSO)N、Li(HCFCFCHOSO)N、Li((CFCHOSON、LiB[C(CF]等の1種または2種以上の混合物を挙げることができる。
 また、非水系電解質としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、1,1-ジメトキシエタン、1,2-ジメトキシエタン、1,2-ジエトキシエタン、γ-ブチロラクトン、テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、アニソール、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、クロロニトリル、プロピオニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N-メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3-メチル-2-オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイト等の単独溶媒もしくは2種類以上の混合溶媒を使用できる。
 なお、上記負極活物質を用いて負極を構成する場合は、一般には、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂粉末あるいはポリイミド(PI)系樹脂、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等の水溶性粘結剤を炭素質バインダーにして、このバインダーと、上記負極活物質とを、N-メチルピロリドン(NMP)、ジメチルホルムアミドあるいは水、アルコール等の溶媒を用いて混合することによりスラリーを作製し、集電体上に塗布、乾燥することによって行う。
 以下に本発明を実施例に基づいて具体的に説明する。但し、これら実施例によって、本発明の内容が制限されるものではない。
 (実施例1)
石炭系重質油よりキノリン不溶分を除去した精製ピッチを用い、ディレードコーキング法によって500℃の温度で24時間熱処理して製造した塊状コークス(生コークス)を得、ジェットミルにて微粉砕及び整粒し、平均粒径が9.9μmの生コークス粉を得た。
 上述のようにして得た生コークス粉100重量部に対して、リン酸エステル(14質量%活性リン固形樹脂:三光社製商品名HCA、化学名:9,10-ジヒドロ-9-オキサ-10-オスファフェナントレン-10-オキサイド )25.0重量部(リン換算:3.5重量部)、炭化ホウ素1.9重量部(ホウ素換算:1.5重量部)を添加した。
 次いで、リン酸エステル及び炭化ホウ素を添加してなる上記コークス材料を、室温から600℃/時間の速度で昇温して、900℃に到達(最高到達温度)後、さらに2時間保持して炭化処理(焼成)を行い、リチウム二次電池用負極活物質を得た。
 次いで、リチウム二次電池用負極活物質にバインダーとしてポリフッ化ビニリデン(PVDF、(株式会社クレハ製)を5質量%加え、N-メチルピロリドン(NMP)を溶媒として混練してスラリーを作製し、これを厚さ18μmの銅箔に均一となるように塗布して負極電極箔を得た。この負極電極箔を乾燥し所定の電極密度にプレスすることにより電極シートを作製し、このシートから直径15mmΦの円形に切り出すことにより負極電極を作製した。この負極電極単極での電極特性を評価するために、対極には約15.5mmΦに切り出した金属リチウムを用いた。
 また、電解液としてエチレンカーボネートとジエチルカーボネートとの混合溶媒(体積比1:1混合)にLiPFを1mol/lの濃度で溶解したものを用い、セパレーターにプロピレンの多孔質膜を用いてコインセルを作製し、リチウム二次電池を作製した。25℃の恒温下、端子電圧の充電下限電圧を0V、放電の上限電圧を1.5Vとした電圧範囲で5mA/cmの定電流放電を実施した際の、放電特性を調べた。結果を表1に示す。
 (実施例2~3)
実施例1において、添加するリン酸エステルの量と炭化ホウ素の量を、リン換算で3.5重量部、ホウ素換算1.5重量部から、リン換算で2.5重量部、ホウ素換算で2.5重量部(実施例2)、リン換算で1.5重量部、ホウ素換算で3.5重量部(実施例3)、に変更した以外は、実施例1と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (比較例1)
生コークス粉100重量部のコークス材料を使用し、リン酸エステル及び炭化ホウ素を添加せずに、実施例1と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (比較例2)
生コークス粉100重量部のコークス材料を使用し、リン酸エステルのみをリン換算で5.0重量部添加した以外は、実施例1と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (比較例3)
生コークス粉100重量部のコークス材料を使用し、炭化ホウ素のみをホウ素換算で5.0重量部添加した以外は、実施例1と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (実施例4~6)
実施例1~3において、コークス材料の焼成温度(最高到達温度)を900℃から1000℃に変更した以外は、それぞれ実施例1~3と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (比較例4~6)
比較例1~3において、コークス材料の焼成温度(最高到達温度)を900℃から1000℃に変更した以外は、それぞれ比較例1~3と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (実施例7~9)
実施例1~3において、コークス材料の焼成温度(最高到達温度)を900℃から1100℃に変更した以外は、それぞれ実施例1~3と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (比較例7~9)
比較例1~3において、コークス材料の焼成温度(最高到達温度)を900℃から1100℃に変更した以外は、それぞれ比較例1~3と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (実施例10~12)
実施例1~3において、コークス材料の焼成温度(最高到達温度)を900℃から1200℃に変更した以外は、それぞれ実施例1~3と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (比較例10~12)
比較例1~3において、コークス材料の焼成温度(最高到達温度)を900℃から1200℃に変更した以外は、それぞれ比較例1~3と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表1に示す。
 (実施例13~20)
実施例5において、添加するリン酸エステルの量と炭化ホウ素の量を、リン及びホウ素換算で各々2.5重量部から、リン換算で0.5重量部、ホウ素換算で0.5重量部(実施例13)、リン換算で0.5重量部、ホウ素換算で2.5重量部(実施例14)、リン換算で0.5重量部、ホウ素換算で5.0重量部(実施例15)、リン換算で2.5重量部、ホウ素換算で0.5重量部(実施例16)、リン換算で2.5重量部、ホウ素換算で5.0重量部(実施例17)、リン換算で5.0重量部、ホウ素換算で0.5重量部(実施例18)、リン換算で5.0重量部、ホウ素換算で2.5重量部(実施例19)、リン換算で5.0重量部、ホウ素換算で5.0重量部(実施例20)、とした以外は、それぞれ実施例5と同様の操作を行い、リチウム二次電池を得た。また、実施例1と同様にして放電特性を調べた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2から明らかなように、本発明に従って生コークス粉にリン酸エステル及び化ホウ素を添加したコークス材料を焼成することにより得た、実施例に係わるリチウム二次電池用負極活物質においては、出力特性、放電容量、初期効率及び容量維持率の性能バランスがよいことがわかる。特にその添加量を、生コークス粉100重量部に対してリン及びホウ素換算で各々0.5重量部~5.0重量部の割合で添加することによって、出力特性(W)が10W以上であって、放電容量(mAh/g)が280(mAh/g)以上、かつ初期効率(%)が75(%)以上、かつ容量維持率(%)が68(%)以上の良好な放電特性を示すリチウム二次電池の負極材用炭素材料(リチウム二次電池用負極活物質)が得られることが分かる
 なお、比較例1、4、7及び10は、生コークス粉のみからなるコークス材料を使用した場合であるが、容量維持率が本発明に従った実施例に比較して、各焼成温度において当該特性が劣ることが分かる。特に焼成温度が1000℃以下の場合には、放電容量(mAh/g)が280(mAh/g)以上であるが、出力特性(W)が本発明に従った実施例に比較して低下しており、リチウム二次電池の負極材用炭素材料としての特性のバランスが劣ることが分かる。また、焼成温度が1200℃の場合には、出力特性(W)が10(W)以上あるが、放電容量(mAh/g)が280(mAh/g)未満であり、リチウム二次電池の負極材用炭素材料としての特性のバランスが劣ることが分かる。 
 また、比較例2、5、8及び11は、生コークス粉にリン化合物のみを添加した場合であるが、容量維持率が本発明に従った実施例に比較して、各焼成温度において当該特性が劣ることが分かる。特に焼成温度が1100℃以下の場合には、出力特性(W)が11(W)未満であり、本発明に従った実施例に比較して、当該特性のバランスが劣ることが分かる。
 また、比較例3、6、9及び12は、生コークス粉にホウ素化合物のみを添加した場合であるが、容量維持率が本発明に従った実施例に比較して、各焼成温度において当該特性が劣ることが分かる。特に焼成温度が1100℃以下の場合には、放電容量(mAh/g)が280(mAh/g)以上であるが、出力特性(W)が本発明に従った実施例に比較して低下しており、リチウム二次電池の負極材用炭素材料としての特性のバランスが劣ることが分かる。
 (実施例21)
負極電極箔を作製する際に用いるバインダーをポリフッ化ビニリデンからポリイミド樹脂(宇部興産社製)に代えた以外は、実施例2と同様にしてリチウム二次電池を作製した。また、実施例1と同様にして放電特性を調べた。結果を表3に示す。なお、比較のため、実施例2に関する結果も併せて表2に示す。
 (実施例22)
負極電極箔を作製する際に用いるバインダーをポリフッ化ビニリデンからポリイミド樹脂(宇部興産社製)に代えた以外は、実施例5と同様にしてリチウム二次電池を作製した。また、実施例1と同様にして放電特性を調べた。結果を表3に示す。なお、比較のため、実施例5に関する結果も併せて表2に示す。
 (実施例23)
負極電極箔を作製する際に用いるバインダーをポリフッ化ビニリデンからポリイミド樹脂(宇部興産社製)に代えた以外は、実施例8と同様にしてリチウム二次電池を作製した。また、実施例1と同様にして放電特性を調べた。結果を表3に示す。なお、比較のため、実施例8に関する結果も併せて表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、リチウム二次電池用負極活物質から負極電極を作製する際に使用するバインダーを、ポリフッ化ビニリデンからポリイミドに変更した場合においても、DOD(放電深度:Depth of Discharge):50が十分に小さく、出力特性が増大していることが分かる。すなわち、上記負極材用炭素材料からなる上記負極電極の実質的な電位が低下して上記二次電池の実電池電圧が上昇し、これによって出力特性が増大していることが分かる。
 また、出力特性(W)が11W以上であって、放電容量(mAh/g)が350(mAh/g)以上、かつ初期効率(%)が77(%)以上、かつ容量維持率(%)が76(%)以上の良好な放電特性を示すリチウム二次電池の負極材用炭素材料(リチウム二次電池用負極活物質)が得られることが分かる。
 一方、表3から明らかなように、リチウム二次電池の負極電極を作製する際に使用するバインダーがポリイミドの場合において、ポリフッ化ビニリデンをバインダーとした場合に比較して、DOD(放電深度:Depth of Discharge):50が減少し、これによって出力特性(W)が向上していることが分かる。また、容量維持率(%)についても、向上していることが分かる。なお、このようにバインダーの種類を代えたことによって、二次電池の放電特性が変化する原因については、現在明らかとはなっていない。
 以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。

Claims (17)

  1.  石炭系及び/又は石油系(以下、石炭系等という)生コークス100重量部に対して、リン化合物及びホウ素化合物を、リン及びホウ素換算で各々0.1重量部~6.0重量部の割合で添加したコークス材料を、焼成してなることを特徴とする、リチウム二次電池負極活物質。
  2.  前記生コークスが粉砕された粉末状であることを特徴とする、請求項1記載のリチウム二次電池負極活物質。
  3.  前記生コークスの平均粒子径が、5μm~15μmの範囲であることを特徴とする、請求項2記載のリチウム二次電池負極活物質。
  4.  前記生コークスのBET比表面積が、5m/g以下であることを特徴とする、請求項2又は3記載のリチウム二次電池負極活物質。
  5.  前記生コークスの合計量100重量部に対して、前記リン化合物をリン換算で0.5重量部~5.0重量部、前記ホウ素化合物をホウ素換算で0.5重量部~5.0重量部の割合で添加させることを特徴とする、請求項1~4のいずれかに記載のリチウム二次電池負極活物質。
  6.  前記焼成は、800℃~1400℃の温度で実施することを特徴とする、請求項1~5のいずれかに記載のリチウム二次電池負極活物質。
  7.  出力特性(W)が10W以上、放電容量(mAh/g)が280(mAh/g)以上、初期効率(%)が75(%)以上、及び容量維持率(%)が68(%)以上であることを特徴とする、請求項1~6のいずれかに記載のリチウム二次電池負極活物質。
  8.  請求項1~7のいずれかに記載のリチウム二次電池負極活物質と、このリチウム負極活物質に対するバインダーとを備えることを特徴とする、リチウム二次電池負極電極。
  9.  前記バインダーは、ポリフッ化ビニリデン及びポリイミドの少なくとも一方であることを特徴とする、請求項8記載のリチウム二次電池負極電極。
  10.  前記バインダーは、ポリイミドであることを特徴とする、請求項9記載のリチウム二次電池負極電極。
  11.  請求項1~7のいずれかに記載のリチウム二次電池負極活物質を用いた車載用二次電池。
  12.  ハイブリッド自動車、電気自動車用途であることを特徴とする請求項11記載の車載用二次電池。
  13.  石炭系及び/又は石油系(以下、石炭系等という)生コークス100重量部に対して、リン化合物及びホウ素化合物を、リン及びホウ素換算で各々0.1重量部~6.0重量部の割合で添加してコークス材料を調整する工程と、
     前記コークス材料を焼成する工程と、
    を備えることを特徴とする、リチウム二次電池負極活物質の製造方法。
  14.  前記コークス材料を調整する際に、前記石炭系等生コークスを粉砕して粉末状とすることを特徴とする、請求項13記載のリチウム二次電池負極活物質の製造方法。
  15.  前記コークス材料を調整する際に、前記石炭系等生コークスを粉砕する前若しくは同時に、前記リン化合物及びホウ素化合物を添加することを特徴とする、請求項14記載のリチウム二次電池負極活物質の製造方法。
  16.  前記石炭系等コークスの100重量部に対して、前記リン化合物をリン換算で0.5重量部~5.0重量部、前記ホウ素化合物をホウ素換算で0.5重量部~5.0重量部の割合で添加させることを特徴とする、請求項13~15のいずれかに記載のリチウム二次電池負極活物質の製造方法。
  17.  前記焼成は、800℃~1400℃の温度で実施することを特徴とする、請求項13~16のいずれかに記載のリチウム二次電池負極活物質の製造方法。
PCT/JP2010/003309 2009-05-29 2010-05-17 リチウム二次電池用負極活物質、リチウム二次電池用負極電極、それらを用いた車載用リチウム二次電池、及びリチウム二次電池用負極活物質の製造方法 WO2010137249A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-131482 2009-05-29
JP2009131482 2009-05-29
JP2009266765A JP5603590B2 (ja) 2009-05-29 2009-11-24 リチウム二次電池用負極活物質及びそれを用いた車載用リチウム二次電池
JP2009-266765 2009-11-24

Publications (1)

Publication Number Publication Date
WO2010137249A1 true WO2010137249A1 (ja) 2010-12-02

Family

ID=43222380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003309 WO2010137249A1 (ja) 2009-05-29 2010-05-17 リチウム二次電池用負極活物質、リチウム二次電池用負極電極、それらを用いた車載用リチウム二次電池、及びリチウム二次電池用負極活物質の製造方法

Country Status (3)

Country Link
JP (1) JP5603590B2 (ja)
TW (1) TWI557971B (ja)
WO (1) WO2010137249A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453505A1 (en) * 2010-11-12 2012-05-16 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same
CN113539703A (zh) * 2021-07-19 2021-10-22 桂林电子科技大学 一种MOFs衍生物Co-Ni-B-P复合材料及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011068097A1 (ja) * 2009-12-02 2011-06-09 新日鐵化学株式会社 二次電池用負極及びこれを用いた二次電池
WO2016157508A1 (en) * 2015-03-27 2016-10-06 Nec Corporation Boron-doped activated carbon material

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290843A (ja) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd リチウム二次電池
JPH0831422A (ja) * 1994-07-19 1996-02-02 Nippon Steel Corp リチウム二次電池負極用炭素材料とその製造方法
JPH09320599A (ja) * 1996-05-30 1997-12-12 Ricoh Co Ltd 非水電解質二次電池
JPH10233207A (ja) * 1997-02-17 1998-09-02 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極
JPH1167207A (ja) * 1997-08-12 1999-03-09 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極
JP2002270169A (ja) * 2001-03-06 2002-09-20 Nippon Steel Corp リチウム二次電池負極用材料とその製造方法およびリチウム二次電池
JP2003297357A (ja) * 2002-04-02 2003-10-17 Nippon Steel Chem Co Ltd リチウム二次電池負極材料とその製造方法
JP2005203370A (ja) * 2004-01-17 2005-07-28 Samsung Sdi Co Ltd リチウム二次電池用アノード及びそれを利用したリチウム二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005056581A (ja) * 2001-04-26 2005-03-03 Japan Storage Battery Co Ltd 非水電解質二次電池用炭素材料及びそれを用いた非水電解質二次電池
JP5162093B2 (ja) * 2005-12-21 2013-03-13 昭和電工株式会社 黒鉛材料、電池電極用炭素材料、及び電池
CN101087021B (zh) * 2007-07-18 2014-04-30 深圳市贝特瑞新能源材料股份有限公司 锂离子电池用人造石墨负极材料及其制备方法
WO2009022664A1 (ja) * 2007-08-10 2009-02-19 Showa Denko K.K. リチウム系二次電池用負極、炭素系負極活物質の製造方法及びリチウム系二次電池及びその用途

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290843A (ja) * 1992-04-09 1993-11-05 Sanyo Electric Co Ltd リチウム二次電池
JPH0831422A (ja) * 1994-07-19 1996-02-02 Nippon Steel Corp リチウム二次電池負極用炭素材料とその製造方法
JPH09320599A (ja) * 1996-05-30 1997-12-12 Ricoh Co Ltd 非水電解質二次電池
JPH10233207A (ja) * 1997-02-17 1998-09-02 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極
JPH1167207A (ja) * 1997-08-12 1999-03-09 Toyota Central Res & Dev Lab Inc リチウム二次電池用負極
JP2002270169A (ja) * 2001-03-06 2002-09-20 Nippon Steel Corp リチウム二次電池負極用材料とその製造方法およびリチウム二次電池
JP2003297357A (ja) * 2002-04-02 2003-10-17 Nippon Steel Chem Co Ltd リチウム二次電池負極材料とその製造方法
JP2005203370A (ja) * 2004-01-17 2005-07-28 Samsung Sdi Co Ltd リチウム二次電池用アノード及びそれを利用したリチウム二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2453505A1 (en) * 2010-11-12 2012-05-16 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same
US9070933B2 (en) 2010-11-12 2015-06-30 Nippon Steel Chemical Co., Ltd. Negative electrode active material of lithium secondary battery, secondary battery using the same, method for manufacturing the same
CN113539703A (zh) * 2021-07-19 2021-10-22 桂林电子科技大学 一种MOFs衍生物Co-Ni-B-P复合材料及其制备方法和应用

Also Published As

Publication number Publication date
TWI557971B (zh) 2016-11-11
JP5603590B2 (ja) 2014-10-08
JP2011009185A (ja) 2011-01-13
TW201115814A (en) 2011-05-01

Similar Documents

Publication Publication Date Title
US9130230B2 (en) Negative electrode active material with improved safety, and secondary battery comprising same
JP5603589B2 (ja) リチウム二次電池用負極活物質及びそれを用いた車載用リチウム二次電池
JP5469347B2 (ja) リチウム二次電池負極活物質の製造方法
JP5715572B2 (ja) 二次電池用負極及びこれを用いた二次電池
JP5603590B2 (ja) リチウム二次電池用負極活物質及びそれを用いた車載用リチウム二次電池
WO2009104690A1 (ja) 非水電解質二次電池負極活物質及び非水電解質二次電池負極活物質の製造方法
JP5242210B2 (ja) 非水電解質二次電池負極用活物質および非水電解質二次電池の製造方法
JP5662698B2 (ja) リチウム二次電池用負極活物質及びそれを用いた車載用リチウム二次電池
KR20110138606A (ko) 전해액 함침성이 우수한 이차전지용 음극 및 이를 포함하는 이차전지
JP5697954B2 (ja) リチウム二次電池用負極活物質及びそれを用いたリチウム二次電池
JP2017016773A (ja) リチウムイオン二次電池負極及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10780211

Country of ref document: EP

Kind code of ref document: A1