WO2010137209A1 - 液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法 - Google Patents

液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法 Download PDF

Info

Publication number
WO2010137209A1
WO2010137209A1 PCT/JP2010/001416 JP2010001416W WO2010137209A1 WO 2010137209 A1 WO2010137209 A1 WO 2010137209A1 JP 2010001416 W JP2010001416 W JP 2010001416W WO 2010137209 A1 WO2010137209 A1 WO 2010137209A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
liquid crystal
gradation
electrode
crystal display
Prior art date
Application number
PCT/JP2010/001416
Other languages
English (en)
French (fr)
Inventor
櫻井猛久
神崎修一
石原將市
中村正子
村田充弘
大竹忠
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10780172A priority Critical patent/EP2437109A4/en
Priority to US13/148,508 priority patent/US8669973B2/en
Priority to CN2010800051963A priority patent/CN102292666A/zh
Priority to JP2011515844A priority patent/JP5220921B2/ja
Priority to RU2011132280/28A priority patent/RU2011132280A/ru
Publication of WO2010137209A1 publication Critical patent/WO2010137209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134345Subdivided pixels, e.g. for grey scale or redundancy
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2074Display of intermediate tones using sub-pixels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3607Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals for displaying colours or for displaying grey scales with a specific pixel layout, e.g. using sub-pixels

Definitions

  • the present invention relates to a liquid crystal display element having improved response speed, a liquid crystal display device, and a display method for the liquid crystal display element.
  • Patent Document 1 For example, in Patent Document 1 below, for the purpose of improving the response speed, a correction data voltage is obtained by comparing and considering the data voltage of the current frame and the data voltage of the previous frame, and the correction data voltage is applied to the data line. The technology is described.
  • Patent Document 2 describes a technique for generating an electric field for controlling the alignment direction of liquid crystal molecules in the lateral direction for the purpose of improving viewing angle characteristics and the like.
  • liquid crystal display device in which a pair of signal wirings are provided on one substrate and liquid crystal molecules can move in parallel to the substrate by an electric field generated according to the potential difference is described.
  • Patent Document 3 describes a technique for providing regions having different applied voltages in one pixel for the purpose of improving viewing angle characteristics. Specifically, a technique is described in which a voltage dividing means is provided in a pixel to vary the voltage applied to the liquid crystal element.
  • Patent Document 1 First, the technique described in Patent Document 1 has a problem that a memory for storing display data of a previous frame is required.
  • Patent Document 2 In addition, the technique described in Patent Document 2 has a problem that if a pixel is divided by providing a sub-pixel in order to further improve the viewing angle characteristics, the number of signal wirings increases and the aperture ratio tends to decrease accordingly. There is a point.
  • the aperture ratio is likely to be lowered.
  • Patent Document 3 Further, the technique described in Patent Document 3 has a problem that only the maximum value of the applied voltage is different and the effect of improving the response speed is low.
  • an object of the present invention is to provide a liquid crystal display element, a display method of the liquid crystal display element, and a liquid crystal display device with improved response speed with a simple configuration.
  • an object of the present invention is to provide a liquid crystal display element, a liquid crystal display element display method, and a liquid crystal display device having a high response speed in a wide luminance region.
  • the liquid crystal display element of the present invention is A liquid crystal display element comprising two opposing substrates and a liquid crystal layer sandwiched between the substrates, wherein picture elements are arranged in a matrix, A pixel electrode and a common electrode are provided on one of the two substrates, The picture element is divided into a plurality of sub-picture elements, Between the sub picture elements, the distance between the picture element electrode and the common electrode is different.
  • At least two of the sub-picture elements are provided with switching elements,
  • the display is performed mainly with the sub-pixels having a small interval among the sub-pixels provided with the switching elements
  • the display is performed mainly with the sub-picture elements having a large interval among the sub-picture elements provided with the switching elements.
  • the high gradation region display is performed using the sub-pixels having the small intervals and the sub-pixels having the large intervals provided with switching elements.
  • display is performed with sub-pixels having a small electrode interval in the low gradation region, display is performed with sub-pixels having a large electrode interval in the middle gradation region, and display is performed in the high gradation region.
  • Display is performed with both sub-picture elements.
  • a picture with a small electrode interval in the electrode pair In a liquid crystal display element that controls the orientation of liquid crystal molecules contained in a liquid crystal layer using an electric field between a pixel electrode and a common electrode, which are electrode pairs provided on the same substrate, a picture with a small electrode interval in the electrode pair.
  • the response speed is increased with the element, and the response speed is decreased with the picture element having the large electrode interval.
  • the response speed of the picture element having a large electrode interval becomes slower particularly when the applied voltage is small.
  • the display in the low gradation region, which is a region where the applied voltage is low, the display is mainly performed with the sub picture element having a small electrode interval. In other words, the display is performed with almost no sub-picture element having a slow response speed and having a large electrode interval. Therefore, display with a high response speed can be performed in the low gradation region.
  • display is performed with the sub-picture element having a large electrode interval in the middle gradation area following the low gradation area.
  • the applied voltage is higher than that in the low gradation region, so that the response speed of the sub picture element having a large electrode interval is relatively high.
  • the applied voltage to the sub-pixel having the large electrode interval is further increased. Can do. Therefore, the response speed of the sub picture element can be further increased. As described above, display with a high response speed can be performed in the middle gradation region.
  • a liquid crystal display element with improved response speed can be obtained with a simple configuration in which only the sub-pixels to be displayed are switched.
  • the display method of the liquid crystal display element of the present invention is to solve the above problems, A display method for a liquid crystal display element comprising two opposing substrates and a liquid crystal layer sandwiched between the substrates, wherein picture elements are arranged in a matrix, A pixel electrode and a common electrode are provided on one of the two substrates, The picture element is divided into a plurality of sub-picture elements, Between the sub picture elements, the distance between the picture element electrode and the common electrode is different.
  • display is performed mainly with the sub-picture elements with a small interval
  • display is performed mainly with the sub-pixels with a large interval
  • display is performed using the sub-picture elements having a small interval and the sub-picture elements having a large interval.
  • the picture element electrode and the common electrode are provided on one of the two substrates, and the picture element is divided into a plurality of sub picture elements.
  • the spacing between the pixel electrode and the common electrode is different between the sub picture elements, and at least two of the sub picture elements are provided with switching elements,
  • the low gradation area mainly includes the sub picture element provided with the switching element. Display is performed with sub-pixels with a small interval, and in the middle gradation region, display is performed with sub-pixels with a large interval among the sub-pixels provided with switching elements. In the sub-pixels having a small interval and switching elements provided with switching elements, Display a large sub-picture element of is being performed.
  • the display method of the liquid crystal display element of the present invention is provided with the pixel electrode and the common electrode on one of the two substrates. It is divided into picture elements, and the distance between the picture element electrode and the common electrode is different among sub-picture elements.
  • the display is mainly performed with the sub-picture elements having a large interval, and in the high gradation area, the display is performed with the sub-picture elements having a small interval and the sub-picture elements having a large interval.
  • FIG. 1 illustrates an embodiment of the present invention and illustrates the relationship between brightness and an applied voltage.
  • FIG. 1 illustrates an embodiment of the present invention, and illustrates the relationship between brightness and an applied voltage.
  • FIG. 5 is a diagram illustrating an embodiment of the present invention and a relationship between brightness and response time. The other embodiment of this invention is shown and it is a figure which shows schematic structure of a liquid crystal display element.
  • FIG. 11 is a diagram illustrating another embodiment of the present invention and a relationship between an applied voltage and a response time.
  • FIG. 10 is a diagram illustrating another embodiment of the present invention and a relationship between applied voltage and brightness.
  • FIG. 10 is a diagram illustrating another embodiment of the present invention and a relationship between brightness and applied voltage.
  • FIG. 10 is a diagram illustrating another embodiment of the present invention and a relationship between brightness and response time.
  • FIG. 3 is a diagram illustrating an applied waveform according to the embodiment of the present invention. 1, showing an embodiment of the present invention, is a diagram illustrating an overall configuration of a liquid crystal display element.
  • FIG. 3 is a diagram illustrating an applied waveform according to the embodiment of the present invention. 1, showing an embodiment of the present invention, is a diagram illustrating an overall
  • FIG. 1 is a diagram showing a schematic configuration of a liquid crystal display element 10 of the present embodiment. Specifically, FIG. 1 shows a schematic configuration of the electrodes and wirings of one picture element 20 among the plurality of picture elements 20 arranged in a matrix.
  • the picture element 20 is divided into two regions (sub-picture elements 22). In each region, comb-like electrodes are formed, and the interval between the comb teeth is different between the regions. This will be specifically described below.
  • a plurality of approximately rectangular picture elements 20 are arranged in a matrix.
  • an area surrounded by the scanning signal lines 40 and the signal electrode lines 42 provided in directions orthogonal to each other forms one picture element 20.
  • the liquid crystal display element 10 includes two substrates (not shown) that sandwich a liquid crystal layer (not shown) containing liquid crystal molecules.
  • the scanning signal line 40 and the signal electrode line 42 are provided on one of the two substrates (hereinafter referred to as an array substrate).
  • the scanning signal lines 40 are provided in the horizontal direction (the double arrow X direction shown in FIG. 1), and the signal electrode lines are arranged in the vertical direction (the double arrow Y direction shown in FIG. 1). 42 is provided.
  • the liquid crystal display element 10 of the present embodiment is provided with two signal electrode lines 42 for one picture element 20.
  • the first signal electrode line 42 a is provided along one end side in the horizontal direction of the picture element 20
  • the second signal electrode line is provided along the other end side in the horizontal direction of the picture element 20. 42b is provided.
  • the array substrate is provided with a common signal line 44 along with the scanning signal line 40 in the lateral direction.
  • the picture element 20 includes an area surrounded by the scanning signal line 40, the common signal line 44, the first signal electrode line 42a, and the second signal electrode line 42b as shown in FIG. It has become.
  • the picture element 20 in the present embodiment is divided into two regions as described above, specifically, two sub picture elements 22 including a first sub picture element 22a and a second sub picture element 22b. ing.
  • Each of the sub picture elements 22 is controlled by a TFT 50 as a different switching element.
  • a first TFT 50a is provided in the vicinity of the intersection between the first signal electrode line 42a and the scanning signal line 40, and on the other hand, in the vicinity of the intersection between the second signal electrode line 42b and the scanning signal line 40.
  • the second TFT 50b is provided.
  • the first sub picture element 22a is switched by the first TFT 50a, and the second sub picture element 22b is switched by the second TFT 50b.
  • the pixel electrode 30 and the common electrode 36 are provided on an array substrate that is one of the two substrates facing each other.
  • the picture element electrode 30 and the common electrode 36 are formed in a comb shape.
  • the picture element electrode 30 includes a first picture element electrode 30a corresponding to the first sub picture element 22a and a second picture element electrode 30b corresponding to the second sub picture element 22b.
  • the first pixel electrode 30a is connected to a drain electrode (not shown) of the first TFT 50a, while the second pixel electrode 30b is a drain electrode (not shown) of the second TFT 50b. It is connected to the.
  • the common electrode 36 extends from the common signal line 44. Specifically, it extends in the vertical direction from the horizontal center position of the picture element 20.
  • the pixel electrode 30 and the common electrode 36 are both formed in a comb shape.
  • the first picture element electrode 30a and the second picture element electrode 30b are respectively connected to the picture element electrode trunk 34 extending in the longitudinal direction from the first TFT 50a and the second TFT 50b, and the picture element. It has the 1st pixel electrode comb-tooth part 32a and the 2nd pixel electrode comb-tooth part 32b which are the comb-tooth parts extended
  • the common electrode 36 is a common electrode main line portion 39 extending in the vertical direction from the common signal line 44 and a comb tooth portion extending in the horizontal direction from the common electrode main line portion 39. It has the 1st common electrode comb-tooth part 38a and the 2nd common electrode comb-tooth part 38b.
  • each sub-picture element 22 the comb electrodes of the picture element electrode 30 and the common electrode 36 are combined. Specifically, in the first sub-pixel 22a, the first pixel electrode comb-tooth portion 32a and the first common electrode comb-tooth portion 38a are combined, while in the second sub-pixel 22b, The second picture element electrode comb tooth portion 32b and the second common electrode comb tooth portion 38b are combined.
  • a lateral electric field is generated by one or more electrode pairs (the pixel electrode 30 and the common electrode 36) formed on one substrate, and the opposite side is formed.
  • the liquid crystal layer sandwiched between the substrate and the substrate is driven.
  • the electrode pair is made of a transparent conductor formed in the same layer on the same substrate, and the strength of the voltage applied between the electrodes, thereby reducing
  • the display is controlled by changing the direction of the liquid crystal molecules contained in the liquid crystal layer in accordance with the strength of the generated electric field.
  • the liquid crystal display element 10 is configured in units of picture elements 20 including a scanning signal line 40 as a gate, and a first signal electrode line 42a and a second signal electrode line 42b as sources. That is, the liquid crystal display element 10 has a so-called double source configuration. Then, a signal voltage from each of the signal electrode lines is applied to the comb-like pixel electrode 30 and a liquid crystal layer is formed by an electric field formed between the pixel electrode 30 and the common electrode 36 (between the electrode pair). Is driving.
  • Electrode spacing Next, the distance between the electrodes in the comb-like electrode will be described.
  • the distance between the electrodes is different between the first sub-picture element 22a and the second sub-picture element 22b.
  • a first distance d1 which is a distance between the first picture element electrode comb tooth part 32a and the first common electrode comb tooth part 38a, and the second sub picture element 22a.
  • a second interval d2 that is an interval between the second pixel electrode comb-tooth portion 32b and the second common electrode comb-tooth portion 38b in 22b is different.
  • the liquid crystal display element 10 of the present embodiment exemplifies a configuration in which the first interval d1 is wider than the second interval d2.
  • FIG. 2 is a diagram showing a schematic configuration of the liquid crystal display element 10 for explaining the relationship between the electrode interval and the response speed. Specifically, the arrangement of the picture element electrode 30 and the common electrode 36 in the picture element 20 is schematically shown.
  • an interval a which is an interval between the first pixel electrode comb tooth portion 32a and the first common electrode comb tooth portion 38a in the region a, and a second pixel electrode comb tooth portion 32b in the region b,
  • the distance a is larger.
  • the response speed may be slow as a whole. This is because the response speed becomes low particularly in a low gradation region where the applied voltage is small. This will be described below.
  • FIG. 3 is a diagram showing the relationship between the applied voltage ((V), the same applies hereinafter) and the response speed.
  • the white rhombus marks indicate the region (Ra) where the electrode interval is large, and the black square marks indicate the region (Rb) where the electrode interval is small.
  • the difference between the response time in the region (Ra) where the electrode interval is large and the response time in the region (Rb) where the electrode interval is small is large.
  • the response time in the region (Ra) where the electrode interval is large is longer than the response time in the region (Rb) where the electrode interval is small.
  • the response time may be delayed as a whole because the response time is long in the area (Ra) where the electrode interval is large particularly in the low gradation area.
  • an independent signal voltage is applied to each sub-picture element 22 to drive so as not to reduce the response speed.
  • the sub picture element 22 having a small electrode distance is not driven, and the sub picture element 22 having a large electrode distance is driven.
  • the picture element 22 is driven.
  • both the sub picture elements 22 are driven.
  • the slow response time region in the sub picture element 22 having a large electrode interval is not used, the response speed can be improved in all gradation regions (luminance regions).
  • the low gradation region, the medium gradation region, and the high gradation region have various ways of definition.
  • the intermediate gradation region is set to 30% to 45% of the maximum gradation value.
  • Gradation range from the gradation value of 55 to 70% of the maximum gradation value, and the low gradation area is the lowest gradation level of the middle gradation area from the minimum gradation value.
  • the gradation region up to the tone value may be used, and the high gradation region may be the gradation region from the upper limit gradation value of the intermediate gradation region to the maximum gradation value.
  • the same brightness of 0.6 can be obtained in a region where the electrode interval is large and a region where the electrode interval is small. .
  • the liquid crystal display element 10 of the present embodiment applies a voltage as shown in FIG.
  • FIG. 5 is a diagram showing the relationship between brightness (gradation) and applied voltage, and the outline of driving in this embodiment, and shows all gradation regions from the minimum gradation value to the maximum gradation value. ing. Further, in FIG. 5, similarly to each of the above drawings, the white diamond mark indicates a region with a large electrode interval, and the black square mark indicates a region with a small electrode interval. In other words, the white diamond mark indicates driving in the sub picture element 22 (hereinafter referred to as the first sub picture element 22a) corresponding to the region where the electrode interval is large in the sub picture element 22 provided in the picture element 20.
  • the first sub picture element 22a sub picture element 22
  • the black square mark indicates the driving in the sub-picture element 22 (hereinafter referred to as the second sub-picture element 22b) corresponding to the area where the electrode interval is small in the sub-picture element 22 provided in the picture element 20. .
  • the liquid crystal display element 10 of the present embodiment when it is desired to perform a display with a brightness of less than 0.6 (low gradation region), the first corresponding to the region having a large electrode interval.
  • the sub picture element 22a is not used because its response is slow, and a voltage is applied only to the second sub picture element 22b corresponding to the area where the electrode interval is small, which is a fast response area, and only this sub picture element is driven. Display with.
  • the display cannot be performed only with the second sub-picture element 22b.
  • the picture element 22a is used.
  • the region of the slow response speed (applied voltage range) of the first sub-picture element 22a is used. Display is performed using only the first sub-picture element 22a without lighting.
  • the applied voltage to the second sub picture element 22b while keeping the first sub picture element 22a at the maximum brightness Display by changing.
  • the minimum response speed can be obtained by driving by applying the waveform as described above.
  • FIG. 6 is a diagram showing the relationship between brightness and response speed.
  • the black square mark in FIG. 6 shows the liquid crystal display element 10 of this Embodiment
  • the white rhombus mark has shown the conventional liquid crystal display element.
  • the liquid crystal display element 10 of the present embodiment has a higher brightness area (all luminance areas) than the conventional liquid crystal display element. Even quick response characteristics could be obtained.
  • the response speed can be improved in the entire luminance region, in other words, in the entire gradation region.
  • the driving of the liquid crystal display element 10 of the present embodiment is based on the following concept.
  • each pixel is provided with sub-picture elements 22 in order to make the viewing angle characteristics different, and different voltage-transmittance relationships are formed between the sub-picture elements 22.
  • a method of realizing the different voltage-transmittance relationship there is a method of changing the electrode interval in the comb-like electrode.
  • the transmittance increases at the portion where the electrode interval is large, but the response time tends to be long.
  • the response time is fast. Therefore, even if it is driven with the same signal voltage as that where the electrode interval is small, a problem hardly occurs.
  • the response time becomes very slow. Therefore, if the portion with a large electrode interval is not used in the region where the response time is slow, the portion with the large electrode interval can be driven with the fast response time.
  • the response speed is controlled by independently changing the voltage supplied to the sub-pixel having a small electrode interval and the sub-pixel having a large electrode interval according to the brightness to be displayed.
  • the voltage to be applied to each sub-picture element 22 is generated by a signal generation source provided in the drive circuit according to the brightness to be displayed by each sub-picture element 22, and is distributed to each picture element.
  • signal electrode lines 42 first signal electrode line 42a, second signal electrode line 42b
  • two signal electrode lines 42 are provided in each picture element 20, and different signal voltages are applied to the sub picture element 22 having a narrow comb tooth interval (electrode gap) and the wide sub picture element 22. Accordingly, it is possible to apply a voltage that minimizes the response speed to the sub-pixels 22 by setting the voltages to be applied to the sub-pixels 22 having a narrow interval and the sub-pixels 22 having a wide interval. Then, by applying a voltage to each sub-picture element 22 as described above, it is possible to improve the response speed particularly in the vicinity of halftone brightness.
  • FIG. 7 is a diagram showing a schematic configuration of the liquid crystal display element 10 of the present embodiment.
  • the liquid crystal display element 10 of the present embodiment is characterized in that the picture element 20 is divided into three sub picture elements 22 as compared with the liquid crystal display element 10 of the first embodiment.
  • one picture element 20 includes a first sub picture element 22a having a large electrode interval and a second sub picture having a small electrode distance. It was divided into element 22b.
  • one picture element 20 includes a first sub picture element 22 a and a third sub picture element 22 c having a large electrode interval, and The second sub picture element 22b has a small electrode interval.
  • the first sub-picture element 22a and the third sub-picture element 22c have the same electrode spacing.
  • the third sub picture element 22c is provided in a region where the first sub picture element 22a is provided in the liquid crystal display element 10 of the first embodiment. That is, the size of the first sub-picture element 22a is reduced, and the third sub-picture element 22c is provided in a region generated thereby.
  • the third pixel electrode 30c which is the pixel electrode 30 in the third sub-picture element 22c, is from the pixel electrode trunk 34 extending from the drain electrode of the first TFT 50a. Has been stretched.
  • the third picture element electrode 30c is formed in a comb-like shape like the first picture element electrode 30a and the like, and has a third picture element electrode comb tooth portion 32c extending in the vertical direction. .
  • the common electrode 36 in the third sub-picture element 22c is formed in a comb-like shape as in the third picture element electrode 30c.
  • the third sub-picture element 22c includes a third common electrode comb-tooth portion 38c, which is a comb-tooth portion extending in a vertical direction from the common signal line 44 in a comb-tooth shape, and the common electrode 36. It is provided as.
  • the electrode interval in the third sub-picture element 22c is the distance between the third picture element electrode comb portion 32c and the third common electrode comb portion 38c (the third interval d3 shown in FIG. 7). .
  • the size of the third interval d3 is the same as the first interval d1 described above.
  • the viewing angle characteristics of the liquid crystal display element 10 can be improved. This is because a region (first sub-picture element 22a, second sub-picture element 22b, and third sub-picture element 22c) whose electrode directions are different by 90 degrees is provided in one picture element 20. is there.
  • the first interval d1 that is the electrode interval in the first sub picture element 22a and the third interval d3 that is the electrode interval in the third sub picture element 22c are provided. It was the same.
  • the third interval d3 does not need to be the same as the first interval d1, and may be a different interval.
  • the electrode spacing in the third sub-picture element 22c is located between the electrode spacing in the first sub-picture element 22a and the electrode spacing in the second sub-picture element 22b (hereinafter, the electrode spacing is assumed to be medium). It may be configured as follows. That is, the size of the third interval d3 can be set to the size between the first interval d1 and the second interval d2 described above.
  • the third sub-picture element 22c is provided in one picture element 20 in addition to the first sub-picture element 22a and the second sub-picture element 22b as described above, and the electrode intervals are different from each other.
  • a new TFT 50 for example, the third sub picture element 22c is driven. It is preferable to provide the third TFT. This is because the voltage to be applied to the third sub picture element 22c can be controlled separately.
  • FIGS. 8 to 11 correspond to FIGS. 3 to 6, respectively.
  • FIG. 8 shows the relationship between the applied voltage and the response time.
  • FIG. 9 shows the relationship between the applied voltage and the brightness.
  • 10 shows the relationship between brightness and applied voltage
  • FIG. 11 is a diagram showing the relationship between brightness and response time.
  • FIGS. 8 to 10 indicate the case where the electrode interval is medium
  • the white circles in FIG. 9 indicate the values of the region having a large electrode interval, the region in the electrode interval, and the region having a small electrode interval. The value to which is added is shown.
  • the second sub picture 22a, the second sub picture element 22b, and the third sub picture element 22c are arranged in ascending order of brightness.
  • the sub-picture elements 22 used for display are switched in the order of combined use of the second sub-picture element 22b (small electrode spacing) and the third sub-picture element 22c (medium electrode spacing).
  • the response time is shortened in the vicinity of the intermediate brightness as in the liquid crystal display element 10 of the first embodiment described above with reference to FIG. Can be obtained.
  • FIG. 12 is a diagram illustrating a waveform example applied to the liquid crystal display element 10, and illustrates a waveform example when the counter voltage is AC driven.
  • the counter voltage signal which is a signal applied to the common signal line 44, is AC driven so as to have a phase opposite to that of the voltage applied to each sub pixel 22, whereby each sub picture element 22.
  • the signal voltage applied to can be increased. And by driving in this way, the response speed of the liquid crystal display element 10 can be further improved.
  • FIG. 12 shows the signal signal voltage (Vs) applied to the signal electrode line 42, the counter voltage (Vcom) applied to the common signal line 44 (common electrode 36), and the scanning signal line 40.
  • the scanning signals (Vg, Vgh: high, Vgl: low) applied to are shown.
  • FIG. 12 shows an example in which a screen (frame) is formed with three lines in frame driving.
  • the liquid crystal display element 10 in order to eliminate the direct current component applied to the liquid crystal, a voltage having the same amplitude is applied with the opposite polarity of the first time in the second writing.
  • the counter voltage is AC-driven, and the counter voltage signal has an opposite phase to the voltage applied to each sub-picture element 22.
  • the voltage applied to the liquid crystal is the difference (A + B) between Vs and Vcom. Therefore, since the voltage applied to the liquid crystal can be increased, the response speed of the liquid crystal display element 10 can be further improved.
  • FIG. 13 is a schematic diagram showing the overall configuration of the liquid crystal display element 10.
  • the liquid crystal display element 10 of the present embodiment includes a liquid crystal display panel 12 in which picture elements 20 are arranged in a matrix, a display control unit 60, and a scanning signal control unit 62 as a gate driver.
  • a signal electrode control unit 64 as a source driver, and a common electrode control unit 66.
  • the display control unit 60 controls the scanning signal control unit 62 and the signal electrode control unit 64.
  • the lighting control of each sub-picture element 22 described with reference to FIG. 5 and the like is performed via the display control unit 60 and the common electrode control unit 66, particularly the signal electrode control unit 64.
  • the driving method described with reference to FIG. 12 and the like is performed via the display control unit 60 and the common electrode control unit 66, in particular, the common electrode control unit 66.
  • the first sub picture element 22a corresponding to the region having the large electrode interval, and the electrode interval.
  • the second sub picture element 22b corresponding to a small area can be used in combination.
  • the output ratio of each sub-picture element 22 is not particularly limited, good viewing angle characteristics can be obtained while improving the response speed by setting the ratio to 1: 9 or 9: 1.
  • the brightness contribution from the sub-pixel 22 having a large electrode interval is obtained, and the viewing angle is increased. It can be set as the structure which improves a characteristic.
  • each sub-picture element 22 in the liquid crystal display element 10 and the Line / Space in each sub-picture element 22 are not particularly limited, and various changes can be made.
  • the liquid crystal mode used for the liquid crystal display element 10 is not particularly limited, and can be used for, for example, IPS.
  • liquid crystal display devices such as a liquid crystal television and a mobile terminal can be configured by using each liquid crystal display element as a display unit.
  • the liquid crystal display element of the present invention is In the low gradation region, when the same potential is applied to the sub picture element having a small interval and the sub picture element having a large interval from the minimum gradation value, the luminance of the sub picture element having the large interval is It is a gradation region up to the gradation value corresponding to the applied voltage that becomes higher than the luminance of the sub-pixel with a small interval,
  • the intermediate gradation area is a gradation area that follows the low gradation area and has a gradation value up to a gradation value that can obtain luminance according to the gradation value only by the sub-pixels having a large interval.
  • the high gradation region is a gradation region subsequent to the intermediate gradation region and a gradation region up to the maximum gradation value.
  • the picture element having the small electrode interval Comparing the picture element having a large electrode interval and the picture element having a small electrode interval with respect to the luminance, which is the luminous intensity per unit area, in the region where the applied voltage is small, the picture element having the small electrode interval has a higher luminance. In the region where the applied voltage is large, the picture element having the larger electrode interval has higher luminance.
  • the luminance of the sub-pixel having the smaller electrode interval corresponds to the applied voltage that is higher than the luminance of the sub-pixel having the larger electrode interval.
  • the gradation area is a low gradation area. Therefore, the low voltage region that can be displayed by the sub-pixel having a small response between the electrodes having a high response speed can be surely set as the low gradation region.
  • a gradation area that can obtain a sufficient luminance only with the sub picture element having a large electrode interval in the gradation area that follows the low gradation area is defined as a middle gradation area.
  • the liquid crystal display element of the present invention is
  • the intermediate gradation region is a gradation region from a gradation value of 30% to 45% of the maximum gradation value to a gradation value of 55% to 70% of the maximum gradation value
  • the low gradation region is a gradation region from the minimum gradation value to the lower limit gradation value of the middle gradation region
  • the high gradation region is a gradation region from an upper limit gradation value of the medium gradation region to a maximum gradation value.
  • each gradation area can be easily set based on the gradation value. Specifically, based on the gradation value, since the applied voltage is low, an area where the response speed of the sub-pixel having a large electrode interval is slow can be set as the low gradation area. Further, based on the gradation value, since the applied voltage is relatively high, the response speed of the sub-pixel having a large electrode interval is increased, and a desired luminance can be obtained only by the sub-pixel having the large electrode interval.
  • the region that can be formed can be a middle gradation region.
  • the liquid crystal display element of the present invention is In the low gradation area, only the sub-pixels with a small interval are displayed. In the middle gradation region, display is performed only with the sub-picture elements having a large interval.
  • the display is performed only in the sub-picture elements suitable for increasing the response speed in each gradation region. Therefore, the response speed can be further increased.
  • the liquid crystal display element of the present invention is The picture element is divided into at least three sub-picture elements, At least three of the sub-picture elements are provided with switching elements, Among the sub-picture elements provided with switching elements, sub-picture elements located between the sub-picture elements with the small gap and the sub-picture elements with the large gap are sub-pictures within the gap. If it is plain, In the middle gradation area, in addition to the sub-pixels having a large interval in addition to the sub-pixels having a small interval, display is performed. In the high gradation region, display is mainly performed by sub-pixels in the interval in addition to the sub-pixels having a small interval and the sub-pixels having a large interval.
  • the liquid crystal display element of the present invention is The picture element is provided with a plurality of signal electrode lines so that different voltages can be supplied to the sub picture elements.
  • the liquid crystal display element of the present invention is The picture element is provided with a common signal line connected to the common electrode, common to the sub picture elements.
  • each sub-picture element can be easily configured to drive between the picture element electrode and the common electrode, and in each sub-picture element, the potential difference between the picture element electrode and the common electrode can be made different. Becomes easier.
  • the liquid crystal display element of the present invention is The picture element electrode and the common electrode are formed in a comb shape.
  • the electrode interval can be easily set and the electrode interval can be easily reduced, so that the response speed can be easily increased.
  • the liquid crystal display element of the present invention is The comb-teeth-shaped pixel electrode and the common electrode have different comb-tooth extending directions between the sub-pixels.
  • the extension direction of the comb teeth is different between the sub-picture elements. For this reason, regions having different alignment directions of liquid crystal molecules are formed in the pixel.
  • the viewing angle characteristics of the liquid crystal display element can be improved.
  • the liquid crystal display element of the present invention is The upper gradation value of the low gradation area and the upper gradation value of the intermediate gradation area are displayed after the display is switched from the low gradation area to the intermediate gradation area. It is characterized in that the response speed is set to a desired value or less after switching from the middle gradation area to the high gradation area.
  • the desired response speed can be satisfied in all gradation regions.
  • the brightness range for simultaneously driving a plurality of sub picture elements is increased, and the viewing angle characteristics can be improved.
  • the liquid crystal display element of the present invention is The counter voltage applied to the common electrode is inverted for each frame in the frame drive, The counter voltage is opposite in phase to the voltage applied to the pixel electrode.
  • the response speed can be further improved.
  • the liquid crystal display device of the present invention includes the liquid crystal display element as a display unit.
  • the present invention can be suitably used for a display device that requires a high response speed, such as a liquid crystal television.

Abstract

 絵素電極(30)と共通電極(36)とが設けられ、サブ絵素(22)の間で、絵素電極(30)と共通電極(36)との間隔(第1間隔d1・第2間隔d2)が異なり、低階調領域では、間隔の小さいサブ絵素(22)である第1サブ絵素(22a)で表示が行われ、中階調領域では、間隔の大きいサブ絵素(22)である第2サブ絵素(22b)で表示が行われ、高階調領域では、第1サブ絵素(22a)及び第2サブ絵素(22b)で表示が行われる。

Description

液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法
 本発明は、応答速度が改善された液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法に関するものである。
 従来から、液晶表示装置では、応答速度の改善と視野角特性の改善について種々の試みが行われてきた。そして、上記試みに関連して、液晶分子の配向方向を制御するための電界の発生のさせ方や、それに関連する画素電極の形状についても種々の提案が行われてきた。以下、その代表例を示す。
 (特許文献1)
 例えば下記特許文献1には、応答速度の改善等を目的として、現在フレームのデータ電圧と以前フレームのデータ電圧とを比較考慮して補正データ電圧を求め、その補正データ電圧をデータラインに印加する技術について記載されている。
 (特許文献2)
 また、下記特許文献2には、視野角特性の改善等を目的として、液晶分子の配向方向を制御するための電界を、横方向に発生させる技術について記載されている。
 具体的には、一方の基板に一対の信号配線が設けられ、その電位差に従い生じた電界により、液晶分子が上記基板に平行に移動可能な液晶表示装置について記載されている。
 (特許文献3)
 また、特許文献3には、視野角特性の改善等を目的として、一画素内に印加電圧の異なる領域を設ける技術について記載されている。具体的には、画素内に電圧分断手段を設けて、液晶素子に印加される電圧を異ならせる技術について記載されている。
日本国公開特許公報「特開2001-265298号公報(公開日:2001年9月28日)」 日本国公開特許公報「特開平6-148596号公報(公開日:1994年5月27日)」 日本国公開特許公報「特開2008-287115号公報(公開日:2008年11月27日)」 日本国公開特許公報「特開平10-319369号公報(公開日:1998年12月4日)」 日本国公開特許公報「特開2006-133724号公報(公開日:2006年5月25日)」 日本国公開特許公報「特開2006-201594号公報(公開日:2006年8月3日)」
 しかしながら、上記のような従来技術には下記の問題点がある。
 (特許文献1)
 まず、上記特許文献1に記載の技術には、以前フレームの表示データを記憶するためのメモリが必要となるという問題点がある。
 また、応答速度の改善に加えて視野角特性を改善するために、例えばサブ画素を設けて画素を分割した場合、サブ画素毎にデータラインに印加する電圧を制御することが容易ではないという問題点がある。
 (特許文献2)
 また、上記特許文献2に記載の技術には、視野角特性をより改善するためにサブ画素を設けて画素を分割すると、それに伴い信号配線の数が増加して開口率が低下しやすいという問題点がある。
 また、視野角特性の改善に加えて応答速度を改善するために、例えば上記信号配線の間隔を狭くすると、上記開口率がより低下しやすいという問題点がある。
 (特許文献3)
 また、上記特許文献3に記載の技術には、印加される電圧の最大値が異なるのみで、応答速度の改善効果が低いとの問題点がある。
 以上のように、従来技術では、簡易な構成で応答速度が改善された液晶表示装置を得ることは困難である。
 また、上記各技術には上述のような問題点があるため、例えば上記各技術を組み合わせても、視野角特性を改善しながら、併せて応答特性が改善された液晶表示装置を得ることは困難である。
 そこで本発明は、上記課題を解決するためになされたものであり、その目的は、簡易な構成で応答速度が改善された液晶表示素子、液晶表示素子の表示方法、及び液晶表示装置を提供することにある。より詳しくは、広い輝度領域で応答速度が速い液晶表示素子、液晶表示素子の表示方法、及び液晶表示装置を提供することにある。
 本発明の液晶表示素子は、上記課題を解決するために、
 対向する2枚の基板と、上記基板に挟持された液晶層とを備え、絵素がマトリクス状に配置されている液晶表示素子であって、
 上記2枚の基板のうちの一方の基板に、絵素電極と共通電極とが設けられており、
 上記絵素は、複数のサブ絵素に分割されており、
 上記サブ絵素の間で、絵素電極と共通電極との間隔が異なっており、
 上記サブ絵素の中の少なくとも2個のサブ絵素には、スイッチング素子が設けられており、
 表示における全階調領域を、低階調領域と中階調領域と高階調領域とに分けた場合、
 低階調領域では、主に、スイッチング素子が設けられた上記サブ絵素の中で上記間隔の小さいサブ絵素で表示が行われ、
 中階調領域では、主に、スイッチング素子が設けられた上記サブ絵素の中で上記間隔の大きいサブ絵素で表示が行われ、
 高階調領域では、スイッチング素子が設けられた、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素で表示が行われることを特徴とする。
 上記構成によれば、低階調領域では、電極間隔の小さいサブ絵素で表示が行われ、中階調領域では、電極間隔の大きいサブ絵素で表示が行われ、高階調領域では、上記両サブ絵素で表示が行われる。
 同一基板に設けられた電極対である絵素電極と共通電極との間の電界を用いて液晶層に含まれる液晶分子の配向を制御する液晶表示素子では、上記電極対における電極間隔が小さい絵素では応答速度が速くなり、上記電極間隔が大きい絵素では応答速度が遅くなる。また、上記電極間隔が大きい絵素では、特に印加電圧が小さい場合にその応答速度がより遅くなる。
 ここで、上記構成では、印加電圧が低くなる領域である低階調領域では、主として、上記電極間隔が小さいサブ絵素で表示が行われる。すなわち、応答速度が遅いサブ絵素である、上記電極間隔の大きいサブ絵素をほとんど用いることなく、表示が行われる。そのため、上記低階調領域において、応答速度の速い表示を行うことができる。
 また、上記構成では、低階調領域に続く中階調領域では、上記電極間隔の大きいサブ絵素で表示が行われる。この中階調領域では、上記低階調領域よりも印加電圧が高くなるので、上記電極間隔の大きいサブ絵素でも、その応答速度が比較的速くなる。そして、主に上記電極間隔の大きいサブ絵素のみを用いることで(上記電極間隔の小さいサブ絵素をほとんど用いないことで)、上記電極間隔の大きいサブ絵素に対する印加電圧をより高くすることができる。そのため、上記サブ絵素の応答速度をより早くすることができる。以上より、上記中階調領域において、応答速度の速い表示を行うことができる。
 また、上記構成では、高い輝度が要求される領域である上記高階調領域では、上記両サブ絵素を用いて表示が行われるので、所望の輝度を得ることができる。
 以上より、上記の構成によれば、表示するサブ絵素を切り替えるのみの簡易な構成で、応答速度が改善された液晶表示素子を得ることができる。
 また、本発明の液晶表示素子の表示方法は、上記課題を解決するために、
 対向する2枚の基板と、上記基板に挟持された液晶層とを備え、絵素がマトリクス状に配置されている液晶表示素子の表示方法であって、
 上記2枚の基板のうちの一方の基板に、絵素電極と共通電極とが設けられており、
 上記絵素は、複数のサブ絵素に分割されており、
 上記サブ絵素の間で、絵素電極と共通電極との間隔が異なっており、
 低階調領域では、主に上記間隔の小さいサブ絵素で表示を行い、
 中階調領域では、主に上記間隔の大きいサブ絵素で表示を行い、
 高階調領域では、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素で表示を行うことを特徴とする。
 本発明の液晶表示素子は、以上のように、2枚の基板のうちの一方の基板に、絵素電極と共通電極とが設けられており、絵素は、複数のサブ絵素に分割されており、上記サブ絵素の間で、絵素電極と共通電極との間隔が異なっており、上記サブ絵素の中の少なくとも2個のサブ絵素には、スイッチング素子が設けられており、表示における全階調領域を、低階調領域と中階調領域と高階調領域とに分けた場合、低階調領域では、主に、スイッチング素子が設けられた上記サブ絵素の中で上記間隔の小さいサブ絵素で表示が行われ、中階調領域では、主に、スイッチング素子が設けられた上記サブ絵素の中で上記間隔の大きいサブ絵素で表示が行われ、高階調領域では、スイッチング素子が設けられた、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素で表示が行われるものである。
 また、本発明の液晶表示素子の表示方法は、以上のように、2枚の基板のうちの一方の基板に、絵素電極と共通電極とが設けられており、絵素は、複数のサブ絵素に分割されており、サブ絵素の間で、絵素電極と共通電極との間隔が異なっており、低階調領域では、主に上記間隔の小さいサブ絵素で表示を行い、中階調領域では、主に上記間隔の大きいサブ絵素で表示を行い、高階調領域では、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素で表示を行う方法である。
 それゆえ、簡易な構成で応答速度が改善された液晶表示素子、及び液晶表示素子の表示方法を提供することができるという効果を奏する。
本発明の実施の形態を示すものであり、液晶表示素子の概略構成を示す図である。 本発明の実施の形態を示すものであり、液晶表示素子を構成する絵素の概略構成を示す図である。 本発明の実施の形態を示すものであり、印加電圧と応答時間との関係を示す図である。 本発明の実施の形態を示すものであり、印加電圧と明るさとの関係を示す図である。 本発明の実施の形態を示すものであり、本実施の形態を示すものであり、明るさと印加電圧との関係を示す図である。 本発明の実施の形態を示すものであり、明るさと応答時間との関係を示す図である。 本発明の他の実施の形態を示すものであり、液晶表示素子の概略構成を示す図である。 本発明の他の実施の形態を示すものであり、印加電圧と応答時間との関係を示す図である。 本発明の他の実施の形態を示すものであり、印加電圧と明るさとの関係を示す図である。 本発明の他の実施の形態を示すものであり、明るさと印加電圧との関係を示す図である。 本発明の他の実施の形態を示すものであり、明るさと応答時間との関係を示す図である。 本発明の実施の形態を示すものであり、印加する波形を示す図である。 本発明の実施の形態を示すものであり、液晶表示素子の全体構成を示す図である。
 以下、本発明の実施の形態について、詳細に説明する。
 〔実施の形態1〕
 本発明の一実施の形態について図1から図6に基づいて説明すると以下の通りである。
 図1は、本実施の形態の液晶表示素子10の概略構成を示す図である。詳しくは、上記図1は、マトリクス状に配置された複数個の絵素20のうちの1個の絵素20について、特にその電極及び配線の概略構成を示している。
 上記図1に示すように、本実施の形態の液晶表示素子10は、絵素20が2個の領域(サブ絵素22)に分かれている。そして、各領域には櫛歯状の電極が形成されており、その櫛歯の間隔が、上記領域間で相違している。以下具体的に説明する。
 (配線構成)
 本実施の形態の液晶表示素子10には、およそ長方形の絵素20が複数個マトリクス状に配置されている。そして、上記絵素20は、互いに直交する方向に設けられている走査信号線40と信号電極線42とに囲まれた領域が1個の絵素20となっている。
 具体的には、上記液晶表示素子10は、液晶分子を含む液晶層(図示せず)を挟持する2枚の基板(図示せず)を備えている。そして、上記2枚の基板のうちの一方の基板(以下、アレイ基板とする)に、上記走査信号線40と信号電極線42とが設けられている。図1に示す例では、横方向(図1に示す両矢印X方向)に、上記走査信号線40が設けられており、縦方向(図1に示す両矢印Y方向)に、上記信号電極線42が設けられている。
 詳しくは、本実施の形態の液晶表示素子10には、1個の絵素20について、上記信号電極線42が2本設けられている。具体的には、絵素20の横方向における一方の端辺に沿って第1信号電極線42aが設けられており、絵素20の横方向における他方の端辺に沿って第2信号電極線42bが設けられている。
 また、上記アレイ基板には、横方向に走査信号線40とともに、共通信号線44が設けられている。
 以上より、本実施の形態の絵素20は、上記図1に示すように、走査信号線40、共通信号線44、第1信号電極線42a及び第2信号電極線42bで囲まれた領域となっている。
 そして、本実施の形態における絵素20は、上記のように2個の領域、具体的には、第1サブ絵素22aと第2サブ絵素22bとの2個のサブ絵素22に分かれている。
 そして、上記各サブ絵素22は、各々異なるスイッチング素子としてのTFT50で制御されている。具体的には、上記第1信号電極線42aと上記走査信号線40との交差点近傍に第1TFT50aが設けられており、他方、上記第2信号電極線42bと上記走査信号線40との交差点近傍に第2TFT50bが設けられている。
そして、上記第1サブ絵素22aは上記第1TFT50aでスイッチングされ、上記第2サブ絵素22bは上記第2TFT50bでスイッチングされている。
 (電極構成)
 つぎに、上記絵素20における絵素電極などの構成について説明する。本実施の形態の液晶表示素子10では、対向する2枚の基板のうちの一方の基板であるアレイ基板上に絵素電極30と、共通電極36とが設けられている。そして、上記絵素電極30と共通電極36とは、櫛歯状に形成されている。
 まず上記絵素電極30について説明する。上記絵素電極30は、上記第1サブ絵素22aに対応する第1絵素電極30aと、上記第2サブ絵素22bに対応する第2絵素電極30bとから構成されている。
 そして、上記第1絵素電極30aは、上記第1TFT50aのドレイン電極(図示せず)に接続されており、他方、上記第2絵素電極30bは、上記第2TFT50bのドレイン電極(図示せず)に接続されている。
 つぎに、上記共通電極36について説明する。上記共通電極36は、上記共通信号線44から延設されている。具体的には、上記絵素20の上記横方向の中央位置から、上記縦方向に延設されている。
 そして、上記絵素電極30と上記共通電極36とは、いずれも櫛歯状に形成されている。
 具体的には、上記第1絵素電極30a及び上記第2絵素電極30bは、各々、上記第1TFT50a及び上記第2TFT50bから上記縦方向に延伸された絵素電極幹線部34と、この絵素電極幹線部34から上記横方向に延伸された櫛歯部分である、第1絵素電極櫛歯部32a及び第2絵素電極櫛歯部32bとを有している。
 他方、上記共通電極36は、上記共通信号線44から上記縦方向に延設されている共通電極幹線部39と、この共通電極幹線部39から上記横方向に延伸された櫛歯部分である、第1共通電極櫛歯部38a及び第2共通電極櫛歯部38bとを有している。
 そして、各々のサブ絵素22において、上記絵素電極30及び共通電極36の櫛歯が、組み合わされた配置となっている。具体的には、上記第1サブ絵素22aでは、上記第1絵素電極櫛歯部32aと上記第1共通電極櫛歯部38aとが組み合わされ、他方、上記第2サブ絵素22bでは、上記第2絵素電極櫛歯部32bと上記第2共通電極櫛歯部38bとが組み合わされて構成となっている。
 (駆動の概要)
 以上のように、本実施の形態の液晶表示素子10では、一方の基板上に形成される1組以上の電極対(絵素電極30と共通電極36)により横電界を発生させ、対向側の基板との間に狭持される液晶層を駆動するものである。具体的には、上記液晶表示素子10では、上記電極対は同一基板上の同一層に形成された透明な導電体からなり、各電極間に印加される電圧の強さ、引いてはそれにより発生する電界の強さに応じて、上記液晶層に含まれる液晶分子の向きを変えて表示を制御する。
 また、上記液晶表示素子10は、ゲートとしての走査信号線40と、ソースとしての第1信号電極線42a及び第2信号電極線42bとで構成される絵素20を単位として構成されている。すなわち、上記液晶表示素子10は、いわゆるダブルソースの構成となっている。そして、上記各信号電極線からの信号電圧を、上記櫛歯状の上記絵素電極30に印加し、これらと共通電極36との間(上記電極対間)でそれぞれ形成される電界により液晶層を駆動している。
 (電極間隔)
 つぎに、上記櫛歯状の電極における、電極の間隔について説明する。
 本実施の形態の液晶表示素子10では、上記第1サブ絵素22aと上記第2サブ絵素22bとで、上記電極の間隔が異なっている。具体的には、上記第1サブ絵素22aにおける上記第1絵素電極櫛歯部32aと上記第1共通電極櫛歯部38aとの間隔である第1間隔d1と、上記第2サブ絵素22bにおける上記第2絵素電極櫛歯部32bと上記第2共通電極櫛歯部38bとの間隔である第2間隔d2とが相違している。
 上記図1に示すように、本実施の形態の液晶表示素子10では、上記第1間隔d1の方が、上記第2間隔d2よりも広い構成を例示している。
 そして、本実施の形態の液晶表示素子10では、サブ絵素22の間で電極の上記間隔が異なるため、応答速度を向上させることができる。
 (電極間隔と応答速度)
 まず、電極間隔と応答速度との関係について説明する。図2は、電極間隔と応答速度との関係を説明するための液晶表示素子10の概略構成を示す図である。詳しくは、絵素20における、絵素電極30と共通電極36との配置の概略を示している。
 図2に示す構成では、1個の絵素内に、上記電極間隔の大きい領域である領域a(図2に示す領域Ra)と、上記電極間隔の小さい領域である領域b(図2に示す領域Rb)とが設けられている。
 具体的には、上記領域aにおける第1絵素電極櫛歯部32aと第1共通電極櫛歯部38aとの間隔である間隔aと、上記領域bにおける第2絵素電極櫛歯部32bと第2共通電極櫛歯部38bとの間隔である間隔bとを比較すると、上記間隔aの方が大きくなっている。
 上記図1及び図2に示すような、いわゆる櫛歯状の電極を用いた横電界駆動による液晶表示素子10の駆動においては、1個の絵素20内に2個以上のサブ絵素を設けて視野角特性の向上を図る構成が考えられる。そして、サブ絵素の間で、櫛歯状の電極の電極幅(Line、L)・間隔(Space、S)を変える構成が考えられる。すなわち、例えば上記図2に示すように、1個の絵素20内に、電極間隔の大きい領域aと、電極間隔の小さい領域bとを設ける構成である。
 ここで、1個の絵素20の中に複数個のサブ絵素22を設け、そのサブ絵素22間で上記電極間隔を異ならせた場合、全体として応答速度が遅くなる場合がある。これは、特に印加電圧が小さい低階調領域での応答速度が遅くなるためである。以下、説明する。
 図3は、印加電圧((V)、以下同様)と応答速度との関係を示す図である。上記図3において、白ひし形印は上記電極間隔が大きい領域(Ra)を示し、黒四角印は上記電極間隔が小さい領域(Rb)を示している。
 上記図3に示すように、印加電圧が小さい領域では、電極間隔が大きい領域(Ra)での応答時間と、電極間隔が小さい領域(Rb)での応答時間との間の差が大きく、上記電極間隔が大きい領域(Ra)での応答時間が、上記電極間隔が小さい領域(Rb)での応答時間よりも長くなっている。
 これに対して印加電圧が大きい領域では、電極間隔が大きい領域(Ra)での応答時間と、電極間隔が小さい領域(Rb)での応答時間との間の差は小さくなっている。
 そのため、1個の絵素20内に複数個のサブ絵素22を設け、サブ絵素22に電極間隔が大きい領域(Ra)と電極間隔が小さい領域(Rb)とを割り当てた場合、例えば全階調領域において上記両領域で表示を行うと、特に低階調領域で電極間隔が大きい領域(Ra)での応答時間が長いため、全体として応答時間が遅くなる場合がある。
 (本実施の形態での駆動)
 つぎに、本実施の形態における液晶表示素子10の駆動について説明する。
 本実施の形態の液晶表示素子10においては、各サブ絵素22に独立した信号電圧を印加し、応答速度の低下がないような駆動を行なう。
 具体的には、低い明るさを得たい場合(低階調領域)には電極間隔が小さいサブ絵素22のみを駆動する。
 そして、電極間隔が小さいサブ絵素22の最大明るさを上回る明るさを得たい場合(中階調領域)には、電極間隔が小さいサブ絵素22を駆動せずに、電極間隔の大きいサブ絵素22を駆動する。
 さらに、電極間隔の大きいサブ絵素22の最大明るさを上回る明るさを得たい場合(高階調領域)には、両方のサブ絵素22を駆動する。
 これにより、電極間隔の大きいサブ絵素22における、遅い応答時間の領域を使用しないため、すべての階調領域(輝度領域)で応答速度を向上させることができる。
 なお、上記低階調領域、上記中階調領域、及び、上記高階調領域は、種々の定め方があるが、例えば、上記中階調領域を、最大階調値の30%以上45%以下の階調値から、最大階調値の55%以上70%以下の階調値までの階調領域とし、上記低階調領域を、最小階調値から、上記中階調領域の下限の階調値までの階調領域とし、上記高階調領域を、上記中階調領域の上限の階調値から、最高階調値までの階調領域とすることもできる。
 (印加電圧と明るさ)
 図4は、印加電圧と明るさとの関係を示す図である。詳しくは、図4は、電極間隔が大きい領域(白ひし形印)と電極間隔が小さい領域(黒四角印)とにおける上記関係を示しており、また図4における白丸印は、電極間隔の大きい領域と電極間隔の小さい領域との値を加えた値を示している。上記電極間隔が大きい領域では、Line/Space=4/12umであり、上記電極間隔が小さい領域では、Line/Space=4/4umである。
 上記図4に示すように、上記構成の液晶表示素子10では、6Vを印加した場合に、上記電極間隔が大きい領域と電極間隔が小さい領域とで同じ0.6の明るさを得ることができる。
 この結果と、先に図3に基づいて説明した印加電圧と応答時間との関係とを用いて、本実施の形態の液晶表示素子10では、図5に示すような電圧を印加する。
 図5は、明るさ(階調)と印加電圧との関係、及び、本実施の形態における駆動の概略を示す図であり、最小階調値から最大階調値までの全階調領域を示している。また、図5では、上記各図と同様に、白ひし形印が電極間隔の大きい領域を示し、黒四角印が電極間隔の小さい領域を示している。言い換えると、上記白ひし形印は、絵素20内に設けられたサブ絵素22において、上記電極間隔の大きい領域に対応したサブ絵素22(以下第1サブ絵素22a)における駆動を示し、同様に上記黒四角印は、絵素20内に設けられたサブ絵素22において、上記電極間隔の小さい領域に対応したサブ絵素22(以下第2サブ絵素22b)における駆動を示している。
 上記図5に示すように、本実施の形態の液晶表示素子10では、明るさが0.6未満の表示を行いたい場合(低階調領域)には、電極間隔の大きい領域対応する第1サブ絵素22aはその応答が遅いことから用いず、応答の速い領域である、電極間隔の小さい領域対応する第2サブ絵素22bのみに電圧を印加し、このサブ絵素のみを駆動することで表示を行う。
 そして、明るさが0.6以上1.0未満の表示を行いたい場合(中階調領域)には、上記第2サブ絵素22bのみではその表示を行うことができないため、上記第1サブ絵素22aを用いる。ここで、上記第2サブ絵素22bを点灯させた状態では、上記第1サブ絵素22aの遅い応答速度の領域(印加電圧範囲)を用いることになるため、上記第2サブ絵素22bは点灯させずに、上記第1サブ絵素22aのみを用いて表示を行う。
 そして、明るさが1.0以上の表示を行いたい場合(高階調領域)には、上記第1サブ絵素22aを最大の明るさにしたまま、上記第2サブ絵素22bへの印加電圧を変えることで表示を行う。
 以上のような波形を印加して駆動を行うことで、最小の応答速度を得ることができる。
 図6は、明るさと応答速度との関係を示す図である。詳しくは、図6における黒四角印は本実施の形態の液晶表示素子10を示し、白ひし形印は従来の液晶表示素子を示している。
 上記図6に示すように、上記図5に基づいて説明した駆動を用いることで、本実施の形態の液晶表示素子10では、すべての明るさ領域(全輝度領域)において従来の液晶表示素子よりも速い応答特性を得ることができた。
 これは、先に説明した駆動を用いることで、各サブ絵素22の最も応答速度の速い領域を用いることができるためである。
 以上のように、本実施の形態の液晶表示素子10では、全輝度領域、言い換えると全階調領域において、応答速度を改善することができる。そして、本実施の形態の液晶表示素子10の駆動は以下の考え方に基づくものである。
 すなわち、例えば各絵素に、視角特性を異ならせるためにサブ絵素22を設け、サブ絵素22間で、異なった電圧-透過率の関係を形成する構成がある。そして、この異なる電圧-透過率の関係を実現する方法として、櫛歯状の電極における電極間隔を変える方法がある。
 ここで、上記電極間隔の大きい部分では透過率は大きくなるが、応答時間が長くなりやすい。この電極間隔の大きい部分では、高い電圧を印加する場合には、その応答時間が早いため、電極間隔の小さい部分と同じ信号電圧で駆動しても問題は生じにくい。これに対してこの電極間隔の大きい部分で、低い電圧を印加すると応答時間が非常に遅くなる。そこでこの応答時間が遅い領域で、上記電極間隔の大きい部分を用いなければ、早い応答時間のままで、上記電極間隔の大きい部分を駆動することができる。
 そこで、表示したい明るさに応じて、電極間隔の小さいサブ絵素と、電極間隔の大きいサブ絵素に供給する電圧を独立に変化させることで、応答速度を制御する。その際、各サブ絵素22に印加する電圧は、各サブ絵素22で表示すべき明るさに応じた電圧を駆動回路に設けた信号発生源で生成し、各絵素に配している複数の信号電極線42(第1信号電極線42a、第2信号電極線42b)を通じて各サブ絵素22に印加することで、表示すべき明るさに応じた各々異なった電圧を印加する。
 より具体的には、各絵素20に2本の信号電極線42を設け、櫛歯の間隔(電極間隔)の狭いサブ絵素22と、広いサブ絵素22に異なる信号電圧を印加する。これにより、間隔の狭いサブ絵素22と広いサブ絵素22とに印加する電圧を独立に設定して応答速度が最小になるような電圧を各サブ絵素22に印加することができる。そして、各サブ絵素22に上記のように電圧を印加することで、特に中間調の明るさ近傍での応答速度の向上を図ることができる。
 〔実施の形態2〕
 つぎに、本発明の液晶表示素子10に関する他の実施の形態について、図7から図11に基づいて説明すれば、以下のとおりである。
 なお、説明の便宜上、上記実施の形態1で説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
 図7は、本実施の形態の液晶表示素子10の概略構成を示す図である。本実施の形態の液晶表示素子10は、上記実施の形態1の液晶表示素子10と比べ、絵素20が3個のサブ絵素22に分かれていることを特徴とする。
 (電極間隔が大・小の構成)
 すなわち、上記図1に示したように、実施の形態1の液晶表示素子10は、1個の絵素20が、電極間隔の大きい第1サブ絵素22aと、電極間隔の小さい第2サブ絵素22bとに分かれていた。
 これに対して本実施の形態の液晶表示素子10は、上記図7に示すように、1個の絵素20が、電極間隔の大きい第1サブ絵素22a及び第3サブ絵素22c、並びに、電極間隔の小さい第2サブ絵素22bに分けられている。そして、上記第1サブ絵素22aと第3サブ絵素22cとでは、電極間隔の大きさが同じである。
 詳しくは、上記第3サブ絵素22cは、実施の形態1の液晶表示素子10において、第1サブ絵素22aが設けられていた領域に設けられている。すなわち、上記第1サブ絵素22aの大きさが小さくなり、それにより生じた領域に上記第3サブ絵素22cが設けられている。
 以下、上記第3サブ絵素22cにおける電極の構成について説明する。上記第3サブ絵素22cにおける絵素電極30である第3絵素電極30cは、上記第1絵素電極30aと同様に、上記第1TFT50aのドレイン電極から延伸された絵素電極幹線部34から延伸されている。そして、上記第3絵素電極30cは、上記第1絵素電極30aなどと同様に櫛歯状に形成されており、縦方向に延伸する第3絵素電極櫛歯部32cを有している。
 また、第3サブ絵素22cにおける共通電極36は、上記第3絵素電極30cと同様に櫛歯状に形成されている。具体的には、上記第3サブ絵素22cには、上記共通信号線44から縦方向に櫛歯状に延伸された櫛歯部である第3共通電極櫛歯部38cが、上記共通電極36として設けられている。
 そして、上記第3サブ絵素22cにおける電極間隔は、上記第3絵素電極櫛歯部32cと、上記第3共通電極櫛歯部38cとの間隔(図7に示す第3間隔d3)となる。本実施の形態の液晶表示素子10では、この第3間隔d3の大きさが、先に説明した第1間隔d1と同じである。
 上記の構成とすることで、液晶表示素子10の視野角特性を向上させることができる。これは、1個の絵素20内に、電極の方向が90度異なる領域(第1サブ絵素22a及び第2サブ絵素22bと、第3サブ絵素22c)が設けられているためである。
 (電極間隔が大・中・小の構成)
 つぎに、本実施の形態における他の構成例について説明する。
 すなわち、上記図7に示した液晶表示素子10では、上記第1サブ絵素22aにおける電極間隔である第1間隔d1と、上記第3サブ絵素22cにおける電極間隔である第3間隔d3とが同じであった。
 ここで、上記第3間隔d3は、上記第1間隔d1と同じである必要はなく、異なる間隔とすることもできる。例えば、第3サブ絵素22cにおける電極間隔を、上記第1サブ絵素22aでの電極間隔と上記第2サブ絵素22bでの電極間隔との間に位置する(以下電極間隔が中とする場合あり)ように構成することもできる。すなわち、第3間隔d3の大きさを、先に説明した第1間隔d1と第2間隔d2との間の大きさにすることができる。
 具体的には、例えば上記第1間隔d1を12um(第1サブ絵素22aにおけるLine/Space=4/12um)、上記第2間隔d2を4um(第2サブ絵素22bにおけるLine/Space=4/4um)とした場合、例えば上記第3間隔d3を8um(第3サブ絵素22cにおけるLine/Space=4/8um)等とすることができる。
 そして、上記のように1個の絵素20の中に、第1サブ絵素22a及び第2サブ絵素22bに加えて第3サブ絵素22cを設け、その電極間隔を互いに異ならせる場合には、上記第3サブ絵素22cを、上記第1サブ絵素22a及び第2サブ絵素22bと独立して駆動させるために、新たなTFT50、例えば上記第3サブ絵素22cを駆動するための第3TFT等を設けることが好ましい。それにより、上記第3サブ絵素22cに印加すべき電圧を、別個に制御することができるためである。
 以下、図8から図11に基づいて、上記構成の液晶表示素子10の特性について説明する。以下の説明では、第1サブ絵素22a、第2サブ絵素22b及び第3サブ絵素22cが独立に制御可能である場合の特性について説明する。
 上記図8から図11は、各々上記図3から図6に対応するものであり、図8は印加電圧と応答時間との関係を示し、図9は印加電圧と明るさとの関係を示し、図10は明るさと印加電圧との関係を示し、図11は明るさと応答時間との関係を示す図である。
 上記図8から図11の凡例の中で、先に説明したものと異なるものについて説明すると以下の通りである。図8から図10における白三角は、電極間隔が中である場合を示し、図9における白丸印は、電極間隔の大きい領域と、電極間隔の中の領域と、電極間隔の小さい領域との値を加えた値を示している。
 上記構成の液晶表示素子10では、図10に示すように、上記第1サブ絵素22a、第2サブ絵素22b及び第3サブ絵素22cについて、明るさが低い順から、第2サブ絵素22b(電極間隔小)、第3サブ絵素22c(電極間隔中)、第1サブ絵素22a(電極間隔大)、第1サブ絵素22a(電極間隔大)と第2サブ絵素22b(電極間隔小)との併用、第1サブ絵素22a(電極間隔大)と第3サブ絵素22c(電極間隔中)との併用、最後に第1サブ絵素22a(電極間隔大)と第2サブ絵素22b(電極間隔小)と第3サブ絵素22c(電極間隔中)との併用の順に表示に用いるサブ絵素22を切り替える。
 上記構成の液晶表示素子10では、上記図11に示すように、先に図6に基づいて説明した実施の形態1の液晶表示素子10と同様に中間の明るさ近傍での応答時間の短縮効果を得ることができる。
 (波形例)
 つぎに、本発明の液晶表示素子10に関する波形例について図12に基づいて説明する。図12は、上記液晶表示素子10に印加される波形例を示す図であり、対向電圧を交流駆動する場合の波形例を示している。
 上記液晶表示素子10では、共通信号線44に印加する信号である、対向電圧信号を、各サブ絵素22に印加する電圧と逆位相になるように交流駆動することで、各サブ絵素22に印加される信号電圧を増加させることができる。そして、このような駆動をすることで、液晶表示素子10の応答速度をより向上させることができる。以下、上記図12に基づいて説明する。
 上記図12は、より詳しくは、上記信号電極線42に印加される信号信号電圧(Vs)、共通信号線44(共通電極36)に印加される対向電圧(Vcom)、及び、走査信号線40に印加される走査信号(Vg、Vgh:ハイ、Vgl:ロウ)を示している。なお、上記図12には、フレーム駆動において、3ラインで画面(フレーム)が形成される例を示した。
 液晶表示素子10では、液晶に印加される直流成分をなくすため、2回目の書き込みでは1回目の反対極性で同じ振幅の電圧を印加する。ここで、上記図12に示す波形例では、対向電圧を交流駆動して、対向電圧信号を、各サブ絵素22に印加される電圧と逆位相としている。
 そのため、液晶に印加される電圧は、VsとVcomとの差(A+B)となる。これにより、液晶に印加される電圧を大きくすることができるので、液晶表示素子10の応答速度をより向上させることができる。
 なお、上記各電圧の値は特には限定されず、例えば、上記Vg=15V、Vs±5V、Vcom±5V等とすることができる。
 (全体構成)
 つぎに、上記液晶表示素子10の全体構成の概略について、図13に基づいて説明する。図13は、液晶表示素子10の全体構成を示す概略図である。
 上記図13に示すように、本実施の形態の液晶表示素子10は、絵素20がマトリクス状に配置された液晶表示パネル12と、表示制御部60と、ゲートドライバとしての走査信号制御部62と、ソースドライバとしての信号電極制御部64と、共通電極制御部66とを有している。上記表示制御部60は、上記走査信号制御部62と上記信号電極制御部64とを制御している。そして、例えば上記図5などに基づいて説明した各サブ絵素22の点灯制御は、上記表示制御部60及び共通電極制御部66、特には、上記信号電極制御部64を介して行われる。
 また、例えば上記図12などに基づいて説明した駆動方法は、上記表示制御部60及び共通電極制御部66、特には、上記共通電極制御部66を介して行われる。
 本発明は上記した各実施の形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施の形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。
 例えば、上記実施の形態1の液晶表示素子10において、明るさの低い領域、例えば、1.0までの領域において、上記電極間隔の大きい領域に対応する第1サブ絵素22aと、上記電極間隔の小さい領域に対応する第2サブ絵素22bとを併用することもできる。例えば、各サブ絵素22の出力比を、特には限定されないが、1:9や9:1などとすることで、応答速度を向上させながらも、良好な視野角特性を得ることができる。
 すなわち、応答速度が使用に支障とならない範囲で、電極間隔の大きいサブ絵素22にも電圧を印加することで、電極間隔の大きいサブ絵素22からの明るさの寄与を得て、視野角特性を向上させる構成とすることができる。
 また、上記液晶表示素子10における各サブ絵素22の面積比率や、各サブ絵素22における上記Line/Spaceは特には限定されず、種々変更が可能である。
 また、上記液晶表示素子10に用いられる液晶モードは特には限定されず、例えば、IPS等に対しても、用いることができる。
 また、上記各液晶表示素子を表示部として用いて、液晶テレビやモバイル端末等、種々の液晶表示装置を構成することもできる。
 また、本発明の液晶表示素子は、
 上記低階調領域は、最小階調値から、上記間隔の小さいサブ絵素と上記間隔の大きいサブ絵素とに同電位を印加した場合に、上記間隔の大きいサブ絵素の輝度が、上記間隔の小さいサブ絵素の輝度よりも高くなる印加電圧に対応する階調値までの階調領域であり、
 上記中階調領域は、上記低階調領域に続く階調領域で、かつ、上記間隔の大きいサブ絵素のみで、階調値に応じた輝度を得ることができる階調値までの階調領域であり、
 上記高階調領域は、上記中階調領域に続く階調領域で、かつ、最高階調値までの階調領域であることを特徴とする。
 単位面積あたりの光度である輝度について、上記電極間隔が大きい絵素と上記電極間隔が小さい絵素とを比較すると、印加電圧が小さい領域では、上記電極間隔の小さい絵素の方が輝度が高く、印加電圧が大きい領域では、上記電極間隔の大きい絵素の方が輝度が高くなる。
 ここで、上記構成によれば、同電位を印加した場合に、上記電極間隔の小さいサブ絵素の輝度の方が、上記電極間隔の大きいサブ絵素の輝度よりも高くなる印加電圧に対応する階調領域を低階調領域としている。そのため、応答速度の速い上記電極間隔の小さいサブ絵素で表示が可能な低電圧領域を、確実に低階調領域とすることができる。
 また、上記低階調領域に続く階調領域で、上記電極間隔の大きいサブ絵素のみで、十分な輝度を得ることができる階調領域を中階調領域としている。
 以上より、中間の明るさ近傍の領域において、より確実に応答速度が改善された液晶表示素子を得ることができる。
 また、本発明の液晶表示素子は、
 上記中階調領域は、最大階調値の30%以上45%以下の階調値から、最大階調値の55%以上70%以下の階調値までの階調領域であり、
 上記低階調領域は、最小階調値から、上記中階調領域の下限の階調値までの階調領域であり、
 上記高階調領域は、上記中階調領域の上限の階調値から、最高階調値までの階調領域であることを特徴とする。
 上記構成によれば、階調値に基づいて、各階調領域を容易に設定することができる。具体的には、階調値に基づいて、印加電圧が低いために上記電極間隔の大きいサブ絵素の応答速度が遅い領域を低階調領域とすることができる。また、階調値に基づいて、印加電圧が比較的高いために上記電極間隔の大きいサブ絵素の応答速度が速くなるとともに、上記電極間隔の大きいサブ絵素のみで所望の輝度を得ることができる領域を中階調領域とすることができる。
 また、本発明の液晶表示素子は、
 低階調領域では、上記間隔の小さいサブ絵素のみで表示を行い、
 中階調領域では、上記間隔の大きいサブ絵素のみで表示を行うことを特徴とする。
 上記構成によれば、各階調領域で、応答速度を速くするために適したサブ絵素のみで表示が行われる。そのため、応答速度をより速くすることができる。
 また、本発明の液晶表示素子は、
 上記絵素は、少なくとも3個のサブ絵素に分割されており、
 上記サブ絵素の中の少なくとも3個のサブ絵素には、スイッチング素子が設けられており、
 スイッチング素子が設けられた上記サブ絵素の中で、上記間隔が、上記間隔が小さいサブ絵素と上記間隔が大きいサブ絵素との間に位置するサブ絵素を、間隔の中のサブ絵素とした場合、
 中階調領域では、主に、上記間隔の大きいサブ絵素に加えて、上記間隔の小さいサブ絵素で表示が行われ、
 高階調領域では、主に、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素に加えて、上記間隔の中のサブ絵素で表示が行われることを特徴とする。
 また、本発明の液晶表示素子は、
 上記絵素には、上記各サブ絵素に異なる電圧を供給することが可能なように、複数本の信号電極線が設けられていることを特徴とする。
 上記構成によれば、各サブ絵素を異なる印加電圧で独立に駆動することが容易になる。
 また、本発明の液晶表示素子は、
 上記絵素には、上記各サブ絵素について共通の、上記共通電極に接続された共通信号線が設けられていることを特徴とする。
 上記構成によれば、各サブ絵素で、絵素電極と共通電極との間で駆動する構成が容易に実現でき、各サブ絵素において、絵素電極と共通電極との電位差を異ならせることが容易になる。
 また、本発明の液晶表示素子は、
 上記絵素電極及び上記共通電極が、櫛歯状に形成されていることを特徴とする。
 上記構成によれば、上記電極間隔の設定が容易になるとともに、電極間隔を小さくすることが容易になるため、応答速度を速くすることが容易になる。
 また、本発明の液晶表示素子は、
 上記櫛歯状の、絵素電極及び共通電極の櫛歯の延伸方向が、上記各サブ絵素の間で異なることを特徴とする。
 上記構成によれば、サブ絵素の間で、櫛歯の延伸方向が相違する。そのため、画素内に液晶分子の配向方向が異なる領域が形成される。
 したがって、液晶表示素子の視野角特性を改善することができる。
 また、本発明の液晶表示素子は、
 上記低階調領域の上限の階調値、及び、上記中階調領域の上限の階調値は、表示が上記低階調領域から上記中階調領域に切り替わった後、及び、表示が上記中階調領域から上記高階調領域に切り替わった後に、応答速度が所望の値以下となるように定められていることを特徴とする。
 上記構成によれば、例えば製品スペックなどから定められる所望の応答速度に関して、全階調領域において、所望の応答速度を満足することができる。
 そして、複数のサブ絵素を同時に駆動する明るさ範囲が増加し、視野角特性を向上させることができる。
 また、本発明の液晶表示素子は、
 上記共通電極に印加される対向電圧が、フレーム駆動におけるフレーム毎に反転するとともに、
 上記対向電圧が、上記絵素電極に印加される電圧と逆位相であることを特徴とする。
 上記構成によれば、液晶分子に印加される電圧を増加させることができるので、応答速度をより向上させることができる。
 また、本発明の液晶表示装置は、上記液晶表示素子を表示部として備えている。
 本発明は、速い応答速度が要求される表示装置、例えば液晶テレビなどに好適に利用することができる。
  10  液晶表示素子
  12  液晶表示パネル
  20  絵素
  22  サブ絵素
  22a 第1サブ絵素 (サブ絵素)
  22b 第2サブ絵素 (サブ絵素)
  22c 第3サブ絵素 (サブ絵素)
  30  絵素電極
  30a 第1絵素電極 (絵素電極)
  30b 第2絵素電極 (絵素電極)
  30c 第3絵素電極 (絵素電極)
  32a 第1絵素電極櫛歯部 (絵素電極の櫛歯)
  32b 第2絵素電極櫛歯部 (絵素電極の櫛歯)
  32c 第3絵素電極櫛歯部 (絵素電極の櫛歯)
  34  絵素電極幹線部 (絵素電極)
  36  共通電極
  38a 第1共通電極櫛歯部 (共通電極の櫛歯)
  38b 第2共通電極櫛歯部 (共通電極の櫛歯)
  38c 第3共通電極櫛歯部 (共通電極の櫛歯)
  39  共通電極幹線部 (共通電極)
  40  走査信号線
  42  信号電極線
  42a 第1信号電極線
  42b 第2信号電極線
  44  共通信号線
  50  TFT   (スイッチング素子)
  50a 第1TFT (スイッチング素子)
  50b 第2TFT (スイッチング素子)
  60  表示制御部
  62  走査信号制御部
  64  信号電極制御部
  66  共通電極制御部
  d1  第1間隔 (絵素電極と共通電極との間隔)
  d2  第2間隔 (絵素電極と共通電極との間隔)
  d3  第3間隔 (絵素電極と共通電極との間隔)

Claims (13)

  1.  対向する2枚の基板と、上記基板に挟持された液晶層とを備え、絵素がマトリクス状に配置されている液晶表示素子であって、
     上記2枚の基板のうちの一方の基板に、絵素電極と共通電極とが設けられており、
     上記絵素は、複数のサブ絵素に分割されており、
     上記サブ絵素の間で、絵素電極と共通電極との間隔が異なっており、
     上記サブ絵素の中の少なくとも2個のサブ絵素には、スイッチング素子が設けられており、
     表示における全階調領域を、低階調領域と中階調領域と高階調領域とに分けた場合、
     低階調領域では、主に、スイッチング素子が設けられた上記サブ絵素の中で上記間隔の小さいサブ絵素で表示が行われ、
     中階調領域では、主に、スイッチング素子が設けられた上記サブ絵素の中で上記間隔の大きいサブ絵素で表示が行われ、
     高階調領域では、スイッチング素子が設けられた、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素で表示が行われることを特徴とする液晶表示素子。
  2.  上記低階調領域は、最小階調値から、上記間隔の小さいサブ絵素と上記間隔の大きいサブ絵素とに同電位を印加した場合に、上記間隔の大きいサブ絵素の輝度が、上記間隔の小さいサブ絵素の輝度よりも高くなる印加電圧に対応する階調値までの階調領域であり、
     上記中階調領域は、上記低階調領域に続く階調領域で、かつ、上記間隔の大きいサブ絵素のみで、階調値に応じた輝度を得ることができる階調値までの階調領域であり、
     上記高階調領域は、上記中階調領域に続く階調領域で、かつ、最高階調値までの階調領域であることを特徴とする請求項1に記載の液晶表示素子。
  3.  上記中階調領域は、最大階調値の30%以上45%以下の階調値から、最大階調値の55%以上70%以下の階調値までの階調領域であり、
     上記低階調領域は、最小階調値から、上記中階調領域の下限の階調値までの階調領域であり、
     上記高階調領域は、上記中階調領域の上限の階調値から、最高階調値までの階調領域であることを特徴とする請求項1又は2に記載の液晶表示素子。
  4.  低階調領域では、上記間隔の小さいサブ絵素のみで表示を行い、
     中階調領域では、上記間隔の大きいサブ絵素のみで表示を行うことを特徴とする請求項1から3のいずれか1項に記載の液晶表示素子。
  5.  上記絵素は、少なくとも3個のサブ絵素に分割されており、
     上記サブ絵素の中の少なくとも3個のサブ絵素には、スイッチング素子が設けられており、
     スイッチング素子が設けられた上記サブ絵素の中で、上記間隔が、上記間隔が小さいサブ絵素と上記間隔が大きいサブ絵素との間に位置するサブ絵素を、間隔の中のサブ絵素とした場合、
     中階調領域では、主に、上記間隔の大きいサブ絵素に加えて、上記間隔の小さいサブ絵素で表示が行われ、
     高階調領域では、主に、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素に加えて、上記間隔の中のサブ絵素で表示が行われることを特徴とする請求項1に記載の液晶表示素子。
  6.  上記絵素には、上記各サブ絵素に異なる電圧を供給することが可能なように、複数本の信号電極線が設けられていることを特徴とする請求項1から5のいずれか1項に記載の液晶表示素子。
  7.  上記絵素には、上記各サブ絵素について共通の、上記共通電極に接続された共通信号線が設けられていることを特徴とする請求項6に記載の液晶表示素子。
  8.  上記絵素電極及び上記共通電極が、櫛歯状に形成されていることを特徴とする請求項1から7のいずれか1項に記載の液晶表示素子。
  9.  上記櫛歯状の、絵素電極及び共通電極の櫛歯の延伸方向が、上記各サブ絵素の間で異なることを特徴とする請求項8に記載の液晶表示素子。
  10.  上記低階調領域の上限の階調値、及び、上記中階調領域の上限の階調値は、表示が上記低階調領域から上記中階調領域に切り替わった後、及び、表示が上記中階調領域から上記高階調領域に切り替わった後に、応答速度が所望の値以下となるように定められていることを特徴とする請求項1から9のいずれか1項に記載の液晶表示素子。
  11.  上記共通電極に印加される対向電圧が、フレーム駆動におけるフレーム毎に反転するとともに、
     上記対向電圧が、上記絵素電極に印加される電圧と逆位相であることを特徴とする請求項1から10のいずれか1項に記載の液晶表示素子。
  12.  請求項1から11のいずれか1項に記載の液晶表示素子が表示部として用いられていることを特徴とする液晶表示装置。
  13.  対向する2枚の基板と、上記基板に挟持された液晶層とを備え、絵素がマトリクス状に配置されている液晶表示素子の表示方法であって、
     上記2枚の基板のうちの一方の基板に、絵素電極と共通電極とが設けられており、
     上記絵素は、複数のサブ絵素に分割されており、
     上記サブ絵素の間で、絵素電極と共通電極との間隔が異なっており、
     低階調領域では、主に上記間隔の小さいサブ絵素で表示を行い、
     中階調領域では、主に上記間隔の大きいサブ絵素で表示を行い、
     高階調領域では、上記間隔の小さいサブ絵素及び上記間隔の大きいサブ絵素で表示を行うことを特徴とする液晶表示素子の表示方法。
PCT/JP2010/001416 2009-05-29 2010-03-02 液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法 WO2010137209A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10780172A EP2437109A4 (en) 2009-05-29 2010-03-02 LIQUID CRYSTAL DISPLAY ELEMENT, LIQUID CRYSTAL DISPLAY DEVICE AND DISPLAY METHOD FOR THE LIQUID CRYSTAL DISPLAY ELEMENT
US13/148,508 US8669973B2 (en) 2009-05-29 2010-03-02 Liquid crystal display element, liquid crystal display device, and method for displaying with liquid crystal display element
CN2010800051963A CN102292666A (zh) 2009-05-29 2010-03-02 液晶显示元件、液晶显示装置和液晶显示元件的显示方法
JP2011515844A JP5220921B2 (ja) 2009-05-29 2010-03-02 液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法
RU2011132280/28A RU2011132280A (ru) 2009-05-29 2010-03-02 Элемент жидкокристаллического дисплея, жидкокристаллическое дисплейное устройство и способ отображения с помощью элемента жидкокристаллического дисплея

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009131555 2009-05-29
JP2009-131555 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137209A1 true WO2010137209A1 (ja) 2010-12-02

Family

ID=43222343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001416 WO2010137209A1 (ja) 2009-05-29 2010-03-02 液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法

Country Status (6)

Country Link
US (1) US8669973B2 (ja)
EP (1) EP2437109A4 (ja)
JP (1) JP5220921B2 (ja)
CN (1) CN102292666A (ja)
RU (1) RU2011132280A (ja)
WO (1) WO2010137209A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8558980B2 (en) 2010-12-29 2013-10-15 Au Optronics Corporation Pixel structure with rectangular common electrode
US8654295B2 (en) 2010-12-28 2014-02-18 Au Optronics Corporation Pixel structure
RU2654349C1 (ru) * 2014-11-07 2018-05-17 Шэньчжэнь Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд. Жидкокристаллическая панель и способ управления такой панелью

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120056110A (ko) * 2010-11-24 2012-06-01 삼성모바일디스플레이주식회사 액정 표시 장치 및 그 반전 구동 방법
CN202487576U (zh) * 2012-02-09 2012-10-10 京东方科技集团股份有限公司 阵列基板和双视场显示装置
CN102629041B (zh) 2012-02-09 2014-04-16 京东方科技集团股份有限公司 一种3d显示装置及其制造方法
CN102929054B (zh) * 2012-11-05 2015-03-25 京东方科技集团股份有限公司 一种阵列基板及像素的驱动方法
CN103901684B (zh) * 2012-12-28 2018-02-09 上海中航光电子有限公司 一种ips模式的液晶显示器
CN103941498B (zh) * 2013-11-15 2016-12-14 上海中航光电子有限公司 一种tft阵列基板、显示面板和显示装置
EP3612892A4 (en) * 2017-04-20 2020-11-25 Boe Technology Group Co. Ltd. LIQUID CRYSTAL DISPLAY PANEL, LIQUID CRYSTAL DISPLAY APPARATUS AND PROCESS OF OPERATION
CN106873264A (zh) 2017-04-27 2017-06-20 厦门天马微电子有限公司 阵列基板、液晶显示面板、显示装置和像素充电方法
CN106932976A (zh) * 2017-05-05 2017-07-07 京东方科技集团股份有限公司 显示装置、阵列基板及像素单元
KR102593430B1 (ko) * 2018-07-09 2023-10-26 삼성디스플레이 주식회사 발광 장치 및 이를 구비한 표시 장치

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148596A (ja) 1992-10-30 1994-05-27 Hitachi Ltd アクティブマトリクス型液晶表示装置
JPH10319369A (ja) 1997-05-16 1998-12-04 Hitachi Ltd 薄膜トランジスタ液晶表示装置
JPH11326955A (ja) * 1997-12-08 1999-11-26 Hyundai Electronics Ind Co Ltd 液晶表示装置
JP2001265298A (ja) 2000-02-03 2001-09-28 Samsung Electronics Co Ltd 液晶表示装置とその駆動方法及び装置
JP2001337339A (ja) * 1999-10-21 2001-12-07 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2003207795A (ja) * 2002-01-15 2003-07-25 Hitachi Ltd 液晶表示装置
JP2006133724A (ja) 2004-11-05 2006-05-25 Samsung Electronics Co Ltd 液晶表示装置及びその駆動装置
JP2006201594A (ja) 2005-01-21 2006-08-03 Sharp Corp 液晶表示装置
JP2008287115A (ja) 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100433596B1 (ko) 1999-10-21 2004-05-31 마쯔시다덴기산교 가부시키가이샤 액정표시장치
WO2005006068A1 (ja) * 2003-07-14 2005-01-20 Hitachi Displays, Ltd. 表示装置
JP4082683B2 (ja) * 2003-09-29 2008-04-30 株式会社 日立ディスプレイズ 半透過型液晶表示装置
JP4394512B2 (ja) * 2004-04-30 2010-01-06 富士通株式会社 視角特性を改善した液晶表示装置
JP4754205B2 (ja) * 2004-05-17 2011-08-24 パナソニック株式会社 プラズマディスプレイ装置及びプラズマディスプレイパネルの駆動方法
JP4453694B2 (ja) 2006-10-31 2010-04-21 セイコーエプソン株式会社 液晶装置及び電子機器
KR101348755B1 (ko) 2007-04-04 2014-01-07 삼성디스플레이 주식회사 디스플레이장치 및 그 제어방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06148596A (ja) 1992-10-30 1994-05-27 Hitachi Ltd アクティブマトリクス型液晶表示装置
JPH10319369A (ja) 1997-05-16 1998-12-04 Hitachi Ltd 薄膜トランジスタ液晶表示装置
JPH11326955A (ja) * 1997-12-08 1999-11-26 Hyundai Electronics Ind Co Ltd 液晶表示装置
JP2001337339A (ja) * 1999-10-21 2001-12-07 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2001265298A (ja) 2000-02-03 2001-09-28 Samsung Electronics Co Ltd 液晶表示装置とその駆動方法及び装置
JP2003207795A (ja) * 2002-01-15 2003-07-25 Hitachi Ltd 液晶表示装置
JP2006133724A (ja) 2004-11-05 2006-05-25 Samsung Electronics Co Ltd 液晶表示装置及びその駆動装置
JP2006201594A (ja) 2005-01-21 2006-08-03 Sharp Corp 液晶表示装置
JP2008287115A (ja) 2007-05-18 2008-11-27 Semiconductor Energy Lab Co Ltd 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2437109A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8654295B2 (en) 2010-12-28 2014-02-18 Au Optronics Corporation Pixel structure
US8558980B2 (en) 2010-12-29 2013-10-15 Au Optronics Corporation Pixel structure with rectangular common electrode
TWI412858B (zh) * 2010-12-29 2013-10-21 Au Optronics Corp 畫素結構
RU2654349C1 (ru) * 2014-11-07 2018-05-17 Шэньчжэнь Чайна Стар Оптоэлектроникс Текнолоджи Ко., Лтд. Жидкокристаллическая панель и способ управления такой панелью

Also Published As

Publication number Publication date
EP2437109A1 (en) 2012-04-04
EP2437109A4 (en) 2012-12-05
JPWO2010137209A1 (ja) 2012-11-12
US20110316843A1 (en) 2011-12-29
US8669973B2 (en) 2014-03-11
RU2011132280A (ru) 2013-07-10
JP5220921B2 (ja) 2013-06-26
CN102292666A (zh) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5220921B2 (ja) 液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法
US7817124B2 (en) Liquid crystal display panel, method for driving the same, and liquid crystal display apparatus using the same
JP5414974B2 (ja) 液晶表示装置
JP4880577B2 (ja) 液晶ディスプレイ及びその表示方法
JP5374013B2 (ja) 表示装置
KR20080090230A (ko) 디스플레이장치 및 그 제어방법
WO2006038598A1 (ja) 液晶表示装置
JP5128703B2 (ja) Tft基板及びこれを用いた液晶表示装置
KR20070070330A (ko) 액정표시장치
JP4254820B2 (ja) 電気光学装置及び電子機器
KR101048700B1 (ko) 액정표시장치 및 그 구동방법
KR20060078575A (ko) 액정 표시 패널 및 그 구동 방법
WO2011013262A1 (ja) 液晶表示素子、液晶表示装置、及び、液晶表示素子の表示方法
WO2020026954A1 (ja) 表示装置及びその駆動方法
WO2013139149A1 (zh) 液晶显示器驱动电路、液晶显示器及其驱动方法
JP3650280B2 (ja) 横電界型アクティブマトリクス液晶表示装置
KR20060070177A (ko) 액정표시장치와 그 구동방법
WO2010125716A1 (ja) 表示装置および表示装置の駆動方法
JP2008145886A (ja) 液晶表示装置、およびその駆動方法、並びに駆動回路
JP2007139980A (ja) 液晶表示装置、およびその駆動方法
KR101389252B1 (ko) 액정표시장치와 그 구동방법
JP2013246261A (ja) 表示装置及び表示装置の駆動方法
JP2007034294A (ja) 液晶表示装置
JP2008164848A (ja) 液晶表示装置
JP2010210675A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080005196.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780172

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515844

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010780172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 5678/CHENP/2011

Country of ref document: IN

Ref document number: 2010780172

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13148508

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011132280

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1008463

Country of ref document: BR