WO2010137096A1 - 洗濯機 - Google Patents

洗濯機 Download PDF

Info

Publication number
WO2010137096A1
WO2010137096A1 PCT/JP2009/007023 JP2009007023W WO2010137096A1 WO 2010137096 A1 WO2010137096 A1 WO 2010137096A1 JP 2009007023 W JP2009007023 W JP 2009007023W WO 2010137096 A1 WO2010137096 A1 WO 2010137096A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
motor
washing machine
control means
magnetization
Prior art date
Application number
PCT/JP2009/007023
Other languages
English (en)
French (fr)
Inventor
世渡智和
志賀剛
Original Assignee
株式会社東芝
東芝コンシューマエレクトロニクス・ホールディングス株式会社
東芝ホームアプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝コンシューマエレクトロニクス・ホールディングス株式会社, 東芝ホームアプライアンス株式会社 filed Critical 株式会社東芝
Priority to CN200980159498.3A priority Critical patent/CN102449219B/zh
Priority to EP09845163A priority patent/EP2436821A1/en
Priority to KR1020117026911A priority patent/KR101332868B1/ko
Publication of WO2010137096A1 publication Critical patent/WO2010137096A1/ja
Priority to US13/303,508 priority patent/US20120068659A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/34Arrangements for starting
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/06Arrangements for speed regulation of a single motor wherein the motor speed is measured and compared with a given physical value so as to adjust the motor speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/20Arrangements for starting
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/10Power supply arrangements, e.g. stand-by circuits
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F34/00Details of control systems for washing machines, washer-dryers or laundry dryers
    • D06F34/28Arrangements for program selection, e.g. control panels therefor; Arrangements for indicating program parameters, e.g. the selected program or its progress
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/42Safety arrangements, e.g. for stopping rotation of the receptacle upon opening of the casing door
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the present invention relates to a washing machine that generates a rotational driving force for performing a washing operation by a permanent magnet motor including a permanent magnet having a coercive force at a level at which the amount of magnetization can be easily changed on the rotor side. .
  • the applicant arranges a permanent magnet having a coercive force level that can easily change the magnetizing amount in a part of the rotor magnet as disclosed in Patent Document 1, and changes the magnetizing amount of the magnet. Therefore, we are considering applying a motor whose characteristics can be changed dynamically to a washing machine. By adopting such a configuration, it is possible to change the torque characteristics of the motor when the required output characteristics change greatly, such as in the washing operation or the dehydration operation, or according to the weight of the laundry. JP 2006-28095 A
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a washing machine that can avoid a shortage of motor output torque at the start of the next operation even when the operation is interrupted or stopped. There is to do.
  • the washing machine comprising a permanent magnet having a coercive force at a level at which the amount of magnetization can be easily changed on the rotor side, and generating a rotational driving force for performing a washing operation.
  • a magnetization amount control means for generating an exciting current so as to change the magnetization amount of the permanent magnet The magnetization amount control means performs the interruption or the stop after the permanent magnet is magnetized when the operation being executed is interrupted or when the operation is stopped. . With such a configuration, when the interrupted operation is restarted or when the operation is started next time, the permanent magnet is in a state of being increased in magnetism, which is necessary for starting the permanent magnet motor. A sufficient torque can be obtained.
  • the washing machine according to claim 2 is provided with a permanent magnet having a coercive force at a level at which the amount of magnetization can be easily changed on the rotor side, and generates a permanent driving force for performing a washing operation.
  • the magnetization amount control means sets the permanent magnet in a magnetized state immediately after the power is turned on. With this configuration, even if the previous operation of the washing machine is interrupted or terminated with the permanent magnet demagnetized, the torque necessary to start the permanent magnet motor is obtained. You can get enough.
  • the washing machine includes a permanent magnet having a coercive force at a level at which the amount of magnetization can be easily changed on the rotor side, and generates a permanent driving force for performing a washing operation.
  • the washing machine of the tenth aspect since the permanent magnet is in a magnetized state as a pretreatment when the permanent magnet is in a demagnetized state, the amount of demagnetization can be accurately controlled, and the permanent magnet motor The output characteristics can be changed appropriately.
  • FIG. 1 is a flowchart showing a processing portion that is performed at the end of operation of the washing machine according to the first embodiment.
  • FIG. 2 (a) is a flowchart showing the magnetizing process of the alnico magnet
  • FIG. 2 (b) is a flowchart showing the demagnetizing process.
  • FIG. 3 is a diagram showing the relationship between the stop position of the rotor and the signal output levels of the rotational position sensor.
  • FIG. 4 is a diagram showing a process in a case where a general washing machine performs a fully automatic operation and a transition of the motor rotation speed.
  • FIG. 5A is a plan view schematically showing the overall configuration of the drum motor
  • FIG. 5B is an enlarged perspective view showing a part of the rotor.
  • FIG. 5A is a plan view schematically showing the overall configuration of the drum motor
  • FIG. 5B is an enlarged perspective view showing a part of the rotor.
  • FIG. 6 is a longitudinal side view showing the configuration of the washing / drying machine.
  • FIG. 7 is a diagram schematically showing a drive system of the drum motor.
  • FIG. 8 is a diagram showing functional blocks of sensorless vector control performed for the drum motor.
  • FIG. 9 is a flowchart showing a processing portion when the power is turned on in the second embodiment.
  • FIG. 10 is a view corresponding to FIG. 9 showing the third embodiment.
  • FIG. 11 is a flowchart showing a process when the pause button is turned on during operation in the fourth embodiment.
  • FIG. 12 is a flowchart showing a process when the power-off button is turned on during operation in the fifth embodiment.
  • FIG. 13 shows the sixth embodiment, corresponding to FIG. 12 corresponding to the dehydration operation.
  • FIG. 14 is a view corresponding to FIG. 13 showing a seventh embodiment.
  • FIG. 15 is a view corresponding to FIG. 12 or FIG. 13 showing the eighth embodiment.
  • 4 is a rotating drum (rotating tank), 9 is a door, 11 is a drum motor (permanent magnet motor), 30 is a control circuit (magnetization amount control means, weight detection means, motor control means), and 32 is an inverter circuit.
  • 48 is a photocoupler (input state detection means)
  • 51 is a rotation position sensor (rotation speed detection means)
  • 92 is a rotor
  • 97 is an alnico magnet (permanent magnet).
  • FIG. 6 which shows the longitudinal side surface of the washing / drying machine
  • a water tank 2 is elastically supported by a plurality of support devices 3 in a horizontal state inside the outer box 1.
  • a rotating drum (hereinafter simply referred to as a drum) 4 is rotatably disposed in the water tank 2 in a coaxial state with the water tank 2.
  • the drum 4 has a large number of dewatering holes 4a (only a part of which is shown) serving as ventilation holes on the peripheral side wall and the rear wall, and also functions as a washing tub, a dewatering tub and a drying chamber.
  • a plurality of baffles 4 b (only one is shown) are provided on the inner peripheral surface of the drum 4.
  • the outer box 1, the water tank 2 and the drum 4 all have openings 5, 6 and 7 for putting in and out the laundry on the front surface (right side in the figure), respectively.
  • the portion 6 is connected in watertight communication with a bellows 8 that is elastically deformable.
  • the opening 5 of the outer box 1 is provided with a door 9 for opening and closing the opening.
  • the drum 4 has a rotating shaft 10 on the back surface.
  • the rotating shaft 10 is supported by a bearing (not shown) and attached to the outside of the back surface of the water tank 2.
  • a drum motor (washing / dehydrating motor, permanent magnet motor) 11 composed of a phase brushless DC motor is driven to rotate.
  • the rotating shaft 10 is integral with a rotating shaft of a drum motor (hereinafter simply referred to as a motor) 11, and the drum 4 is driven by a direct drive system.
  • the casing 13 is supported on the bottom plate 1a of the outer box 1 via a plurality of support members 12, and the discharge port 13a and the suction port 13b are formed at the upper right end portion and the upper left end portion of the casing 13, respectively.
  • the compressor 15 which comprises the heat pump (refrigeration cycle) 14 is installed in the bottom plate 1a.
  • a condenser 16 and an evaporator 17 that also constitute the heat pump 14 are installed in order from the right side to the left side, and a blower fan 18 is disposed at the right end.
  • the dish-shaped water receiving portion 13 c is formed in a portion of the casing 13 located below the evaporator 17.
  • the intake port 19 is formed in the upper part of the front part in the water tank 2, and the exhaust port 20 is formed in the lower part of the back part.
  • the intake port 19 is connected to the discharge port 13 a of the casing 13 through a linear duct 21 and an extendable connecting duct 22.
  • the exhaust port 20 is connected to the suction port 13 b of the casing 13 via an annular duct 23 and an extendable connecting duct 24.
  • the annular duct 23 is attached to the outside of the back surface portion of the water tank 2 and is formed so as to be concentric with the motor 11. That is, the inlet side of the annular duct 23 is connected to the exhaust port 20, and the outlet side is connected to the suction port 13 b via the connecting duct 24.
  • the air circulation path 25 is constituted by the casing 13, the connection duct 22, the linear duct 21, the intake port 19, the exhaust port 20, the annular duct 23, and the connection duct 14.
  • the water supply valve 26 composed of a three-way valve is disposed at the upper rear part in the outer box 1, and the detergent feeder 26a is disposed at the upper front part.
  • the water supply valve 26 has a water inlet connected to a water faucet via a water supply hose, a first water outlet connected to an upper water inlet of the detergent feeder 26a via a water supply hose 26b for washing, The water outlet is connected to the lower water inlet of the detergent dispenser 26a through the rinsing water supply hose 26c.
  • the water outlet of the detergent feeder 26a is connected to the water inlet 2a formed in the upper part of the water tank 2 via the water supply hose 26d.
  • the drain port 2b is formed in the rear part of the bottom part of the water tank 2, and this drain port 2b is connected to the drain hose 27 via the drain valve 27a.
  • a part of the drain hose 27 is telescopic.
  • the water receiving part 13c of the casing 13 is connected to the middle part of the drainage hose 27 via the drainage hose 28 and the check valve 28a.
  • the operation panel unit 29 is disposed on the upper front portion of the outer box 1, and the operation panel unit 29 is provided with a display and various operation switches (not shown).
  • the display / operation board 57 is provided on the back surface of the operation panel unit 29 and communicates with a control circuit (magnetization amount control unit, weight detection unit) 30 built in the substrate case 110 to operate the operation panel unit. 29 is controlled.
  • the control circuit 30 is constituted by a microcomputer, and controls the water supply valve 26, the motor 11 and the drain valve 27a in accordance with the operation of the operation switch of the operation panel unit 29, and performs washing, rinsing and dewatering washing operations, 11 and a compressor motor (compressor motor, not shown) composed of a three-phase brushless DC motor that drives the compressor 15 is controlled to execute a drying operation.
  • a compressor motor compressor motor, not shown
  • FIG. 7 schematically shows the drive system of the motor 11.
  • the inverter circuit (PWM control type inverter, magnetization amount control means) 32 is configured by connecting six IGBTs (semiconductor switching elements) 33a to 33f in a three-phase bridge, and between the collectors and emitters of the IGBTs 33a to 33f.
  • the flywheel diodes 34a to 34f are connected.
  • the emitters of the IGBTs 33d, 33e, 33f on the lower arm side are connected to the ground through shunt resistors (current detection means) 35u, 35v, 35w.
  • the common connection point between the emitters of the IGBTs 33d, 33e, and 33f and the shunt resistors 35u, 35v, and 35w is connected to the control circuit 30 via the level shift circuit 36, respectively.
  • the resistance values of the shunt resistors 35u to 35w are set to 0.1 ⁇ , for example.
  • the level shift circuit 36 includes an operational amplifier and the like, amplifies the terminal voltage of the shunt resistors 35u to 35w, and gives a bias so that the output range of the amplified signal is within the positive side (for example, 0 to + 3.3V). . Further, when the upper and lower arms of the inverter circuit 32 are short-circuited, the overcurrent comparison circuit 38 performs overcurrent detection in order to prevent circuit destruction.
  • the drive power supply circuit 39 is connected to the input side of the inverter circuit 32, and a 100V AC power supply 40 is converted into a full-wave rectifier circuit 41 composed of a diode bridge and two capacitors (electrolytic capacitor) connected in series.
  • the double voltage full wave rectification is performed by 42 a and 42 b, and a DC voltage of about 280 V is supplied to the inverter circuit 32.
  • Each phase output terminal of the inverter circuit 32 is connected to each phase winding 11 u, 11 v, 11 w of the motor 11.
  • a relay 47 is inserted between one end of the AC power supply 40 and one side of the AC input terminal of the full-wave rectifier circuit 41, and a photocoupler (PC, input state detection means) is provided between the AC input terminals. 48 are connected through resistance elements 59a and 59b, respectively.
  • the normally open power switch 49 is connected to the relay 47 in parallel. When the power switch 49 is turned on by a user and closed by a momentary operation, both ends of the relay 47 are short-circuited, and initial power is supplied to the control circuit 30. Then, the control circuit 30 maintains the subsequent power supply by energizing a coil (not shown) of the relay 47 and closing the relay 47. Further, the control circuit 30 determines whether or not the AC power supply 40 is input by referring to the output signal of the photocoupler 48 corresponding to the AC power supply frequency (frequency 50 Hz / 60 Hz signal).
  • the control circuit 30 detects the currents Iau to Iaw flowing through the windings 11u to 11w of the motor 11 obtained through the level shift circuit 36, and based on the current value, the phase ⁇ and the rotational angular velocity of the secondary rotating magnetic field. In addition to estimating ⁇ , the three-phase current is subjected to orthogonal coordinate transformation and dq (direct-quadrature) coordinate transformation to obtain an excitation current component Id and a torque current component Iq. When a speed command is given from the outside, the control circuit 30 generates current commands Idref and Iqref based on the estimated phase ⁇ , rotational angular velocity ⁇ , and current components Id and Iq, and converts them into voltage commands Vd and Vq. Then, orthogonal coordinate transformation and three-phase coordinate transformation are further performed. Finally, a drive signal is generated as a PWM signal and output to the windings 11u to 11w of the motor 11 via the inverter circuit 32.
  • the first power supply circuit 43 steps down the drive power supply of about 280V supplied to the inverter circuit 32 to generate a control power supply of 15V and supplies it to the control circuit 30 and the drive circuit 44.
  • the second power supply circuit 45 is a three-terminal regulator that generates 3.3V power from the 15V power generated by the first power circuit 43 and supplies the 3.3V power to the control circuit 30.
  • the high voltage driver circuit 46 is arranged to drive the IGBTs 33 a to 33 c on the upper arm side in the inverter circuit 32.
  • the rotor of the motor 11 is provided with a rotational position sensor 51 (u, v, w) constituted by, for example, a Hall IC for use at startup, and the rotational position sensor 51 (position detection means) outputs The rotor position signal is supplied to the control circuit 30. That is, the control circuit 30 performs vector control using the rotational position sensor 51 up to the rotational speed (for example, about 30 rpm) at which the rotor position can be estimated when the motor 11 is started, After reaching, the sensorless vector control without using the rotational position sensor 51 is switched.
  • a rotational position sensor 51 u, v, w
  • the rotational position sensor 51 position detection means
  • the compressor motor has a configuration that is substantially symmetric to the drive system of the motor 11, although not specifically illustrated. Further, a series circuit of resistance elements 52 a and 52 b is connected between the output terminal of the power supply circuit 39 and the ground, and a common connection point thereof is connected to an input terminal of the control circuit 30.
  • the control circuit 30 reads the input voltage of the inverter circuit 32 divided by the resistance elements 52a and 52b and uses it as a reference for determining the PWM signal duty.
  • a series circuit of a diode 53 and resistor elements 54a and 54b (induced voltage detection means) is connected between the W-phase output terminal of the inverter circuit 32 and the ground, and a capacitor (induced voltage detection) is connected to the resistor element 54b. Means) 55 are connected in parallel.
  • the common connection point of the resistance elements 54a and 54b is connected to the input terminal of the control circuit 30, and the control circuit 30 detects the induced voltage generated in the winding 11W when the motor 11 is idling. .
  • the control circuit 30 controls various electrical components 56 such as a door lock control circuit and a drying fan motor, and inputs / outputs operation signals and control signals to / from the display / operation board 57 described above. Do.
  • the drive of the door lock actuator 58 for locking (locking) and unlocking (unlocking) the door 9 is controlled according to the progress of the washing operation.
  • FIG. 8 is a diagram showing functional blocks of sensorless vector control performed by the control circuit 30 for the motor 11 (and the compressor motor). This configuration is the same as that disclosed in, for example, Japanese Patent Application Laid-Open No. 2003-181187, and will be briefly described here.
  • ( ⁇ , ⁇ ) represents an orthogonal coordinate system obtained by orthogonal transformation of a three-phase (UVW) coordinate system with an electrical angle interval of 120 degrees corresponding to each phase of the motor 11, and (d, q) is The coordinate system of the secondary magnetic flux which is rotating with rotation of the rotor of the motor 11 is shown.
  • the subtracter 62 is supplied with the target speed command ⁇ ref from the speed command output unit 60 as a subtracted value and the detected speed ⁇ of the motor 11 detected by an estimator 63 as a subtracted value.
  • the result is given to a speed PI (Proportional-Integral) control unit 65.
  • the speed PI control unit 65 performs PI (proportional integration) control based on the difference between the target speed command ⁇ ref and the detected speed ⁇ , and generates and subtracts the q-axis current command value Iqref and the d-axis current command value Idref. Are output as subtracted values to the devices 66q and 66d, respectively.
  • the subtractors 66q and 66d are respectively provided with the q-axis current value Iq and the d-axis current value Id output from the ⁇ / dq conversion unit 67 as subtraction values, and the subtraction results are respectively supplied to the current PI control units 68q and 68d.
  • the control period in the speed PI control unit 65 is set to 1 msec.
  • the current PI controllers 68q and 68d perform PI control based on the difference amount between the q-axis current command value Iqref and the d-axis current command value Idref, and generate the q-axis voltage command value Vq and the d-axis voltage command value Vd. And output to the dq / ⁇ conversion unit 69.
  • the dq / ⁇ conversion unit 69 is given a rotational phase angle (rotor position angle) ⁇ of the secondary magnetic flux detected by the estimator 63, and voltage command values Vd and Vq are converted into voltage commands based on the rotational phase angle ⁇ . Convert to values V ⁇ and V ⁇ .
  • the voltage command values V ⁇ and V ⁇ output from the dq / ⁇ conversion unit 69 are converted into three-phase voltage command values Vu, Vv and Vw by the ⁇ / UVW conversion unit 70 and output.
  • the voltage command values Vu, Vv, Vw are given to one fixed contact 71ua, 71va, 71wa of the changeover switches 71u, 71v, 71w, and are output from the initial pattern output unit 76 to the other fixed contact 71ub, 71vb, 71wb.
  • Voltage command values Vus, Vvs, and Vws are given.
  • the movable contacts 71uc, 71vc, 71wc of the changeover switches 71u, 71v, 71w are connected to the input terminal of the PWM forming unit 73.
  • the PWM forming unit 73 modulates a 15.6 kHz carrier (triangular wave) based on the voltage command values Vus, Vvs, Vws or Vu, Vv, Vw, and outputs PWM signals Vup (+, ⁇ ), Vvp (+, -) And Vwp (+,-) are output to the inverter circuit 32.
  • the PWM signals Vup to Vwp are output as signals having a pulse width corresponding to the voltage amplitude based on the sine wave so that, for example, a sine wave current is passed through the phase windings 11u, 11v, 11w of the motor 11.
  • the A / D converter 74 outputs current data Iau, Iav, and Iaw obtained by A / D converting voltage signals appearing at the emitters of the IGBTs 33d to 33f to the UVW / ⁇ converter 75.
  • the UVW / ⁇ conversion unit 75 converts the three-phase current data Iau, Iav, Iaw into biaxial current data I ⁇ , I ⁇ in an orthogonal coordinate system according to a predetermined arithmetic expression. Then, the biaxial current data I ⁇ and I ⁇ are output to the ⁇ / dq converter 67.
  • the ⁇ / dq conversion unit 67 obtains the rotor position angle ⁇ of the motor 11 from the estimator 63 at the time of vector control, thereby obtaining the biaxial current data I ⁇ , I ⁇ on the rotational coordinate system (d, q) according to a predetermined arithmetic expression.
  • the estimator 63 and the subtractors 66d and 66q are output to the estimator 63 and the subtractors 66d and 66q as described above.
  • the estimator 63 estimates the rotor position angle ⁇ and the rotational speed ⁇ based on the q-axis voltage command value Vq, the d-axis voltage command value Vd, the q-axis current value Iq, and the d-axis current value Id, and outputs them to each unit. .
  • a startup pattern is applied by the initial pattern output unit 76 and forced commutation is performed.
  • the estimator 63 is activated to shift to sensorless vector control in which the rotor position angle ⁇ and the rotational speed ⁇ are estimated. In the case of a compressor motor, the process shifts from forced commutation to sensorless vector control.
  • the switching control unit 77 controls switching of the selector switch 71 based on the duty information of the PMW signal given from the PWM forming unit 73.
  • the configuration excluding the inverter circuit 32 is a block of functions realized by the software of the control circuit 30.
  • the current control period in the vector control is set to 128 ⁇ sec, for example.
  • the PWM carrier wave period is 64 ⁇ sec on the motor 11 side and 128 ⁇ sec on the compressor motor side.
  • the control circuit 30 and the inverter circuit 32 constitute an inverter device 99.
  • FIG. 5A is a plan view schematically showing the overall configuration of the motor 11, and FIG. 5B is a perspective view showing an enlarged part.
  • the motor 11 includes a stator 91 and a rotor 92 provided on the outer periphery of the stator 91.
  • the stator 91 includes a stator core 93 and stator windings 11u, 11v, and 11.
  • the stator core 93 has an annular yoke portion 93a and a large number of teeth portions 93b protruding radially from the outer peripheral portion of the yoke portion 93a.
  • the stator windings 11u, 11v, and 11w are connected to the teeth portions 93b. It is wound.
  • the rotor 92 has a configuration in which a frame 94, a rotor core 95, and a plurality of permanent magnets 96 and 97 are integrated with a mold resin (not shown).
  • the frame 94 is formed into a flat bottomed cylindrical shape by pressing, for example, an iron plate that is a magnetic material.
  • the permanent magnets 96 and 97 constitute a rotor magnet 98.
  • the rotor core 95 is disposed on the inner peripheral portion of the peripheral side wall of the frame 94, and the inner peripheral surface thereof is formed in a concavo-convex shape having a plurality of convex portions 95a that protrude in an arc shape toward the inside. .
  • Neodymium magnets 96 (first permanent magnets) and alnico magnets 97 (second permanent magnets) are inserted into the respective insertion holes 95b and 95c.
  • the coercive force of the neodymium magnet 96 is about 900 kA / m
  • the coercive force of the alnico magnet 97 is about 100 kA / m
  • the coercive force differs by about 9 times.
  • each of these two types of permanent magnets 96 and 97 forms one magnetic pole, and for example, a total of 48 pieces are arranged in each of 24 pieces so that the magnetization direction is along the radial direction of the motor 11. Has been.
  • the adjacent permanent magnets 96 and 97 have magnetic poles in opposite directions. (A state in which one N pole is inside and the other N pole is outside), and a magnetic path (magnetic flux) is generated between the neodymium magnet 96 and the Alnico magnet 97 in the direction indicated by the arrow B, for example. That is, a magnetic path passing through both the neodymium magnet 96 having a large coercive force and the alnico magnet 97 having a small coercive force is formed.
  • FIG. 4 shows a process in a case where a general washing machine performs fully automatic operation.
  • the horizontal axis represents elapsed time (minutes), and the vertical axis represents the rotation speed (rpm) of the motor 11.
  • rpm rotation speed
  • (A) to (O) in the figure correspond to the following steps.
  • the main strokes in which the change in the rotational speed of the motor 11 is significant are (B) washing stroke, (E) rinsing dehydration (1) stroke, (G) rinsing stirring (1) stroke, (J) rinsing dehydration. (2) stroke, (L) rinsing and stirring (2) stroke, (O) final dehydration stroke.
  • the maximum rotation speed of the motor 11 in the strokes (B), (G), and (L) is about 50 rpm
  • the maximum rotation speed in the strokes (E) and (J) is about 1300 rpm
  • the maximum rotation speed in the stroke (O) is It is about 850 rpm.
  • the output torque of the motor 11 in the strokes (B), (G), and (L) is about 280 kgf ⁇ cm
  • the output torque in the strokes (E) and (J) is about 20 to 30 kgf ⁇ cm. That is, the strokes (B), (G), and (L) are operated with low speed rotation and high output torque, and the strokes (E) and (J) are operated with high speed rotation and low output torque.
  • the pattern is the same as the rinse dehydration process of (E) and (J).
  • the field speed control is performed to increase the number of rotations.
  • the rotor 92 of the motor 11 is changed.
  • the magnetic flux of the rotor magnet 98 is dynamically changed so that the motor 11 conforms to the characteristics required for each operation of the washing machine.
  • the magnetic flux of the entire rotor magnet 98 is increased by increasing (magnetizing) the magnetization amount of the alnico magnet 97, and dehydration.
  • the magnetic flux of the entire rotor magnet 98 is controlled by decreasing (demagnetizing) the amount of magnetization of the alnico magnet 97.
  • FIG. 2A is a flowchart showing processing when the Alnico magnet 97 is demagnetized from the dehydrating operation to the washing / rinsing operation.
  • a brake operation is started (step S1).
  • step S2 YES
  • a d-axis current is output so as to magnetize the alnico magnet 97.
  • Step S3 the rotational position of the rotor 92 is fixed by applying a d-axis current.
  • the energized phase is changed so that the rotor 92 is moved by one electrical angle (1/24 mechanical angle) from that state (step S4), and the d-axis current is output again (step S5).
  • step S5 To do.
  • the Alnico magnets 97 are arranged in the order of U, V, W,... In the clockwise direction.
  • the stator 91 Alnico magnets 97 to which the teeth portions 93b face each other are arranged in the order of U, W, V, U, W, V,. Accordingly, in step S3, every other alnico magnet 97 is magnetized as described above, and the alnico magnet 97 positioned between them is in an incompletely magnetized state. Therefore, when the rotor 92 is moved by one electrical angle in step S4, the remaining alnico magnet 97 can be favorably magnetized.
  • the rotational position sensor 51 grasps the position of the rotor 92 in the stopped state before that, and the energization is performed according to the stopped position. Determine the phase. That is, as shown in FIG. 3, the output levels of the signals A, B, and C of the rotational position sensors (Hall sensors) 51u, 51v, and 51w differ depending on the electrical angle of 60 degrees according to the stop position of the rotor 92. There are six states.
  • FIG. 2 (b) is a flowchart showing a process for demagnetizing the alnico magnet 97 from the magnetized state when shifting from the washing / rinsing operation to the dehydrating operation.
  • the basic procedure is the same as in the case of FIG. 2A, and only steps S8 and S10 corresponding to steps S3 and S5 are “demagnetizing current output”.
  • FIG. 1 is a flowchart showing a processing portion performed by the control circuit 30 in order to end the operation of the washing machine after the (O) final dehydration process shown in FIG. 4 is completed.
  • the control circuit 30 performs the magnetizing process shown in FIG. 2A (corresponding to the magnetizing (7) shown in step S12 and FIG. 4).
  • the door 9 is unlocked (unlocked) by the door lock actuator 58, and a control signal is output to the display / operation board 57 so as to perform notification processing of the end of operation (step S13).
  • the relay 47 is opened to cut off the power supply, and an end state is reached.
  • the rotor magnet 98 constituting the motor 11 is provided with the alnico magnet 97 having a coercive force at a level at which the amount of magnetization can be easily changed, and the control circuit 30 includes the inverter circuit 32.
  • the control circuit 30 puts the alnico magnet 97 in a magnetized state when stopping the operation of the washing machine. Therefore, when the washing machine starts operation next time, the Alnico magnet 97 is in a state of being increased in magnetism, and a sufficient torque required to start the motor 11 can be obtained. Reliability can be improved.
  • the rotation speed set in the motor 11 at the final stage of the drying process is, for example, about 100 rpm, and therefore the motor 11 is operated in a state of being magnetized. Will end.
  • increasing / decreasing the magnetic flux of the rotor magnet 98 by increasing / decreasing the amount of magnetization of the alnico magnet 97 is expressed as “increasing / decreasing the motor 11”.
  • FIG. 9 shows the second embodiment.
  • the same parts as those of the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • FIG. 9 is a flowchart showing a processing part when the power is turned on by the user turning on the power “ON” switch arranged on the operation panel unit 29.
  • the control circuit 30 confirms the magnetized state of the rotor magnet 98 of the motor 11 immediately after the power is turned on (initial reading, step S21).
  • control circuit 30 records to what stage the series of steps shown in FIG. 4 has been completed, so that a flag indicating the progress of the step is displayed in an internal nonvolatile memory (not shown). It is written every time it ends. Therefore, the magnetized state of the rotor magnet 98 at that time can be confirmed by referring to the flag.
  • the process proceeds to the next process (step S23). ). That is, in this case, since the sensing process for detecting the weight of the laundry or the washing operation is started thereafter, a large output torque can be obtained when the motor 11 is started. There is no problem at all.
  • step S24 the control circuit 30 once locks the door 9 (step S24).
  • step S25 the door 9 is unlocked (step S26), and the process proceeds to step S27.
  • step S25 it is possible to prevent the laundry from being put into the drum 4 before performing the magnetizing process, This is to prevent the hand from being put into the hand.
  • the control circuit 30 brings the motor 11 into a magnetized state immediately after the washing machine is powered on. Even if it is interrupted in the magnetized state or has been terminated, a sufficient torque for starting the motor 11 can be obtained, and the reliability of the washing machine can be improved.
  • FIG. 10 shows the third embodiment, and shows a processing part when the power is turned on as in the second embodiment.
  • a determination step of “Is the door lock released?” S27 is arranged. That is, as a result of initial reading in step S21, if the door 9 is unlocked (step S27: YES), there is no problem and the process proceeds to the next step (step S23).
  • step S27 NO
  • the previous operation end has not undergone an appropriate procedure as in the first embodiment, and for example, a power failure or a power plug disconnection has occurred. It may have ended in a regular way. Therefore, in this case, the process goes to step S22 to confirm the magnetized state of the motor 11, and according to the result, steps S25 and S26 are executed in the same manner as in the second embodiment.
  • the control circuit 30 brings the motor 11 into a magnetized state when the door 9 is locked immediately after the washing machine is turned on.
  • the torque necessary to start the motor 11 can be sufficiently obtained. The reliability of the washing machine can be improved.
  • FIG. 11 shows a fourth embodiment.
  • the fourth embodiment shows a process in a case where an operation button (a pause button and a start button may be used in combination) for instructing a pause is turned on by the user during the operation of the washing machine.
  • the control circuit 30 determines whether or not the motor 11 is in a magnetized state in the same manner as in steps S21 and S22 of the second embodiment ( Step S33).
  • step S33 If the motor 11 is in a magnetized state in step S33 (YES), the operation state at that time is confirmed, and for example, it is determined whether the door 9 can be unlocked from the water level in the drum 4 (step S33). S34). If it can be released (YES), the door 9 is unlocked (step S35), and a state of waiting for an input by the user (release of the temporary stop) is entered (step S36). If the door 9 cannot be unlocked in step S34 (NO), the process proceeds to step S36.
  • step S37 if the motor 11 is in a demagnetized state in step S33 (NO), after performing a magnetizing process (step S37), the process proceeds to step S34. That is, when the washing machine is in a paused state, the rotation is stopped if the motor 11 is rotating, and then the motor 11 is restarted from the stopped state when the paused state is released by a user input operation. Will be. At this time, if the rotor magnet 98 is in a demagnetized state, it is conceivable that the starting torque is insufficient. Therefore, the magnetizing process is performed before the input standby state is entered in step S36.
  • the control circuit 30 performs an on operation of the pause button that is an input operation for interrupting the operation by the user.
  • the motor 11 is magnetized, so that the necessary torque can be ensured when the temporary stop state is released and the motor 11 is restarted.
  • FIG. 12 shows a fifth embodiment.
  • 5th Example shows the process when the operation button (power-off button) which instruct
  • the control circuit 30 shuts off the AC power supply 40 by opening the relay 47. Thereafter, the operation is performed using the electric power charged in the capacitor 42.
  • step S43 determines whether or not the motor 11 is in a magnetized state (step S43) in the same manner as in step S33 of the fourth embodiment. If the motor 11 is in a magnetized state (YES), special processing is performed. Without being performed, the state is shifted to a state where the power is cut off (step S44). On the other hand, if the motor 11 is in a demagnetized state in step S43 (NO), the process is increased (step S45) and the process proceeds to step S44. That is, when the operation of the washing machine is stopped and then started again, the motor 11 is restarted from the stopped state. At this time, if the rotor magnet 98 is in a demagnetized state, it is conceivable that the starting torque is insufficient.
  • the control circuit 30 while the motor 11 is in a demagnetized state, the control circuit 30 performs an on operation of the power-off button that is an input operation for shutting off the power by the user. When this happens, the motor 11 is in a magnetized state, so that the torque required to start the motor 11 can be secured when the operation is started next time.
  • the control circuit 30 does not open the relay 47 when it is determined as “YES” in step S41, and after the step is determined as “YES” in step S43 or after executing step S45. The relay 47 may be opened.
  • FIG. 13 shows a sixth embodiment. 6th Example shows the process when a power-off button is turned ON by the user while the washing machine is dehydrating.
  • step S51 step S51
  • step S52 step S52: YES
  • the control circuit 30 opens the relay 47 to cut off the AC power supply 40. Thereafter, similarly to the fifth embodiment, the operation is performed using the electric power charged in the capacitor 42.
  • the control circuit (motor control means) 30 controls to turn off all the IGBTs 33 of the inverter circuit (motor control means) 32 and starts the regenerative braking operation (step S54).
  • the motor 11 In the dehydration process, as shown in FIG. 4, the motor 11 is in a demagnetized state and rotates at a relatively high speed of about 1300 rpm or 850 rpm. Therefore, when regenerative braking is performed, large regenerative electric power is generated, and the electric power is charged in the capacitor 42 via the flywheel diode 34.
  • the control circuit 30 performs the magnetizing process of the motor 11 using the charged power (step S57), and then the power supply is cut off. Transition is made (step S58).
  • the motor 30 when the motor 11 is rotating at a high speed in a state where the motor 11 is demagnetized in the dehydration process, the motor 30 turns on the motor when the power-off button is turned on by the user. Since the regenerative brake is applied to the motor 11 and the motor 11 is magnetized using the generated regenerative power, the power consumption can be suppressed.
  • FIG. 14 shows the seventh embodiment, and the differences from the sixth embodiment will be described.
  • step S52 of the sixth embodiment is replaced with a determination step S52A of "Is there an AC input?"
  • the control circuit 30 refers to the pulse signal of the AC power supply frequency output from the photocoupler (input state detection means) 48. If the pulse signal is continuously output, “AC input is present (YES)”. Judge.
  • step S52A when the output of the pulse signal is not continuously output for three cycles, for example, it is determined that “AC input is not present (NO)”.
  • steps S54 to S58 are executed as in the sixth embodiment.
  • the case of determining that “AC input is absent” includes, for example, a power failure or instantaneous power failure of the commercial AC power supply 40, a fuse being disconnected in the home wiring, a breaker being opened, or a power plug of the washing machine It is assumed that the battery has dropped from the outlet.
  • the control circuit 30 determines that “no AC input” based on the output signal of the photocoupler 48 when the motor 11 is rotating at high speed while being demagnetized in the dehydration process. If it judges, since the regenerative brake will be applied with respect to the motor 11 and the motor 11 will be in a magnetized state using the regenerated electric power which generate
  • FIG. 15 shows an eighth embodiment, and the differences from the sixth and seventh embodiments will be described.
  • the rotational speed of the motor 11 is equal to or less than a predetermined threshold value.
  • Step S61: YES Magnetization processing is performed (Step S57). The rotational speed of the motor 11 is detected based on the change period of the position signal output from the rotational position sensor (rotational speed detection means) 51.
  • the magnetizing process is performed, the regenerative braking operation is resumed (step S58) until the rotation of the motor 11 is stopped (step S63).
  • the control circuit 30 controls the motor 11 when the rotational speed of the motor 11 detected by the rotational position sensor 51 is equal to or less than a predetermined threshold value.
  • a predetermined threshold value a predetermined threshold value.
  • the motor 11 is demagnetized before starting the final dehydration process (O) (6).
  • the process of FIG. 2B is executed, the process of FIG. 2A is executed before that.
  • demagnetizing the Alnico magnet 97 it is relatively difficult to accurately control the demagnetization amount, but when increasing the Alnico magnet 97, it is easy to saturate the magnetization amount. Therefore, if the demagnetization is performed based on the maximum amount of magnetization, the amount of demagnetization can be accurately controlled.
  • the present invention is not limited to the embodiments described above or shown in the drawings, and the following modifications or expansions are possible.
  • an induced voltage generated when the motor 11 is rotated at a constant rotational speed may be detected and determined based on the magnitude of the induced voltage. Further, in this case, the induced voltage may be obtained by calculation based on the voltage / current equation of the motor inside the estimator 63.
  • the first and second permanent magnets are not limited to neodymium magnets and alnico magnets, respectively, and may be appropriately changed as long as they are magnetic materials that satisfy the coercive force conditions. In the case where it is possible to cope with all the operating characteristics only by the amount of change in magnetization of the second permanent magnet, the first permanent magnet is unnecessary.
  • the rotation axis of the drum 4 may have an inclination of about 10 to 15 degrees in the elevation angle direction with respect to the horizontal.
  • steps S21 and S22 may be deleted, and steps S24 to S26 may be executed whenever the power is turned on.
  • steps S25 and S26 may be executed.
  • steps S37 may be executed.
  • step S45 may be executed. .
  • the input state detection means may be a current transformer, for example. You may implement each Example suitably combining them. You may apply to the washing machine which does not have a drying function. Moreover, you may apply to the vertical washing machine which stirs a water flow using a pulsator.
  • the washing machine according to the present invention is useful for a machine that requires high torque output during washing operation and high-speed rotation during dehydration operation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Textile Engineering (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)

Abstract

 本発明は、ロータ側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石を備えて構成され、洗濯運転を行うための回転駆動力を発生させる永久磁石モータ(11)と、前記永久磁石の着磁量を変化させるように励磁電流を発生させる着磁量制御手段(30,32)とを備え、前記着磁量制御手段(30,32)は、実行している運転を中断させる場合、又は運転を停止させる場合には、前記永久磁石を増磁状態にしてから、前記中断又は前記停止を行うことを特徴とする洗濯機である。

Description

洗濯機
 本発明は、ロータ側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石を備えて構成される永久磁石モータにより、洗濯運転を行うための回転駆動力を発生させる洗濯機に関する。
 出願人は、特許文献1に開示されているような、ロータマグネットの一部に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石を配置し、その磁石の着磁量を変化させることで、特性をダイナミックに変更可能なモータを洗濯機に適用することを検討している。斯様な構成を採用すると、洗濯運転や脱水運転のように要求される出力特性が大きく変化する場合や、洗濯物の重量に応じてモータのトルク特性を変化させることが可能になる。
特開2006-28095号公報
 しかしながら、上記のような構成の洗濯機では、運転の途中で永久磁石が減磁された状態にある時に運転が中断されたり、或いは電源の供給が遮断されるなどして停止されると、次に運転を開始する場合には、モータを起動する際の出力トルクが不足することが想定される。
 本発明は上記事情に鑑みてなされたものであり、その目的は、運転の中断や停止が発生した場合でも、次回の運転開始時に、モータの出力トルクが不足することを回避できる洗濯機を提供することにある。
 請求項1記載の洗濯機は、ロータ側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石を備えて構成され、洗濯運転を行うための回転駆動力を発生させる永久磁石モータと、
 前記永久磁石の着磁量を変化させるように励磁電流を発生させる着磁量制御手段とを備え、
 前記着磁量制御手段は、実行している運転を中断させる場合、又は運転を停止させる場合には、前記永久磁石を増磁状態にしてから、前記中断又は前記停止を行うことを特徴とする。斯様に構成すれば、中断した運転を再開させる場合、又は次回に運転を開始する場合には、永久磁石は増磁された状態になっているので、永久磁石モータを起動させるために必要なトルクを十分に得ることができる。
 また、請求項2記載の洗濯機は、ロータ側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石を備えて構成され、洗濯運転を行うための回転駆動力を発生させる永久磁石モータと、
 前記永久磁石の着磁量を変化させるように励磁電流を発生させる着磁量制御手段とを備え、
 前記着磁量制御手段は、電源が投入された直後に、前記永久磁石を増磁状態にすることを特徴とする。斯様に構成すれば、たとえ前回の洗濯機の運転が、永久磁石が減磁された状態で中断されていたり、又は終了していたとしても、永久磁石モータを起動させるために必要なトルクを十分に得ることができる。
 また、請求項10記載の洗濯機は、ロータ側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石を備えて構成され、洗濯運転を行うための回転駆動力を発生させる永久磁石モータと、
 前記永久磁石の着磁量を変化させるように励磁電流を発生させる着磁量制御手段とを備え、
 前記着磁量制御手段は、前記永久磁石を減磁状態にする場合には、その前処理として前記永久磁石を増磁状態にすることを特徴とする。すなわち、永久磁石を減磁させる場合、減磁量を正確に制御するのは比較的困難であるが、永久磁石を増磁させる場合、増磁量を飽和させることは容易であるから、最大増磁量を基準として減磁を行うようにすれば、減磁量を正確に制御することができる。
 請求項1又は2記載の洗濯機によれば、中断した運転を再開させる場合、又は次回に運転を開始する場合に、永久磁石モータを起動させるために必要なトルクを十分に得ることができるので、信頼性を向上させることが可能となる。
 請求項10記載の洗濯機によれば、永久磁石を減磁状態にする場合の前処理として永久磁石を増磁状態にするので、減磁量を正確に制御することができ、永久磁石モータの出力特性を適切に変化させることが可能となる。
図1は第1実施例であり、洗濯機の運転終了時に行う処理部分を示すフローチャートである。 図2(a)はアルニコ磁石の増磁処理、図2(b)は同減磁処理を示すフローチャートである。 図3はロータの停止位置と回転位置センサの各信号出力レベルとの関係を示す図である。 図4は一般的な洗濯機が全自動運転を行う場合の行程と、モータ回転数の推移とを示す図である。 図5(a)はドラムモータの全体構成を概略的に示す平面図、図5(b)はロータの一部を拡大して示す斜視図である。 図6は洗濯乾燥機の構成を示す縦断側面図である。 図7はドラムモータの駆動系を概略的に示す図である。 図8はドラムモータについて行なうセンサレスベクトル制御の機能ブロックを示す図である。 図9は第2実施例であり、電源が投入された場合の処理部分を示すフローチャートである。 図10は第3実施例を示す図9相当図である。 図11は第4実施例であり、運転中に一時停止ボタンがオンされた場合の処理を示すフローチャートである。 図12は第5実施例であり、運転中に電源切ボタンがオンされた場合の処理を示すフローチャートである。 図13は第6実施例であり、脱水運転中に対応する図12相当図である。 図14は第7実施例を示す図13相当図である。 図15は第8実施例を示す図12又は図13相当図である。
 図面中、4は回転ドラム(回転槽)、9は扉、11はドラムモータ(永久磁石モータ)、30は制御回路(着磁量制御手段,重量検知手段,モータ制御手段)、32はインバータ回路(着磁量制御手段,モータ制御手段)、48はフォトカプラ(入力状態検知手段)、51は回転位置センサ(回転数検知手段)、92はロータ、97はアルニコ磁石(永久磁石)を示す。
 (第1実施例)
 以下、ヒートポンプ式洗濯乾燥機(ランドリー機器)に適用した第1実施例について、図1乃至図8を参照して説明する。洗濯乾燥機の縦断側面を示す図6において、外箱1の内部には、水槽2が複数の支持装置3により弾性支持されて水平状態に配設されている。この水槽2の内部には、これと同軸状態で回転ドラム(以下、単にドラムと称す)4が回転可能に配設されている。このドラム4は、周側壁及び後壁に通風孔を兼ねる脱水孔4a(一部のみ図示)を多数有し、洗濯槽、脱水槽及び乾燥室としても機能する。また、複数のバッフル4b(1個のみ図示)が、ドラム4の内周面に設けられている。
 上記外箱1、水槽2及びドラム4において、いずれも前面部(図中、右側部)には、洗濯物出し入れ用の開口部5、6及び7をそれぞれ有しており、開口部5と開口部6とは、弾性変形可能なベロー8により水密に連通接続されている。また、外箱1の開口部5には、これを開閉する扉9が設けられている。また、ドラム4は、背面部に回転軸10を有しており、この回転軸10は、軸受(図示せず)により支持されて、水槽2の背面部の外側に取付けられたアウタロータ型の三相ブラシレスDCモータからなるドラムモータ(洗い・脱水モータ,永久磁石モータ)11により回転駆動される。尚、回転軸10はドラムモータ(以下、単にモータと称す)11の回転軸と一体であり、ドラム4は、ダイレクトドライブ方式により駆動される。
 ケーシング13は、外箱1の底板1aに複数の支持部材12を介して支持されており、吐出口13a及び吸入口13bは、ケーシング13の右端部上部及び左端部上部にそれぞれ形成されている。また、ヒートポンプ(冷凍サイクル)14を構成する圧縮機15が底板1aに設置されている。更に、ケーシング13内には、同じくヒートポンプ14を構成する凝縮器16及び蒸発器17が右側から左側に向け順に設置されているとともに、送風ファン18が右端部に位置して配設されている。皿状の水受け部13cは、ケーシング13における蒸発器17の下方に位置する部位に形成されている。
 吸気口19は、水槽2において前面部の上部に形成され、排気口20は背面部下部に形成されている。吸気口19は、直線状ダクト21及び伸縮自在な連結ダクト22を介してケーシング13の吐出口13aに接続されている。また、排気口20は、環状ダクト23及び伸縮自在の連結ダクト24を介してケーシング13の吸入口13bに接続されている。環状ダクト23は、水槽2の背面部の外側に取付けられており、モータ11と同心円状をなすように形成されている。すなわち、環状ダクト23の入口側が排気口20に接続され、出口側が連結ダクト24を介して吸入口13bに接続されている。そして、空気循環経路25が、上記ケーシング13、連結ダクト22、直線状ダクト21、吸気口19、排気口20、環状ダクト23及び連結ダクト14によって構成されている。
 三方弁からなる給水弁26は、外箱1内における後方上部に配設され、洗剤投入器26aは、前方上部に配設されている。給水弁26は、その入水口が給水ホースを介して水道の蛇口に接続され、第1の出水口が洗い用給水ホース26bを介して洗剤投入器26aの上段の入水口に接続され、第2の出水口がすすぎ用給水ホース26cを介して洗剤投入器26aの下段の入水口に接続されている。そして、洗剤投入器26aの出水口は、水槽2の上部に形成された給水口2aに給水ホース26dを介して接続されている。
 排水口2bは、水槽2の底部の後方部位に形成されており、この排水口2bは、排水弁27aを介して排水ホース27に接続されている。なお、排水ホース27の一部は伸縮自在になっている。そして、ケーシング13の水受け部13cは、排水ホース28及び逆止弁28aを介して排水ホース27の途中部位に接続されている。
 操作パネル部29は、外箱1の前面上部に配置されており、この操作パネル部29には、図示はしないが、表示器及び各種の操作スイッチが設けられている。また、表示・操作用基板57は、操作パネル部29の裏面に設けられ、基板ケース110に内蔵される制御回路(着磁量制御手段,重量検知手段)30と通信を行うことで操作パネル部29が制御される。制御回路30は、マイクロコンピュータで構成されており、操作パネル部29の操作スイッチの操作に応じて給水弁26、モータ11及び排水弁27aを制御し、洗い、すすぎ及び脱水の洗濯運転や、モータ11及び圧縮機15を駆動する三相ブラシレスDCモータからなる圧縮機モータ(コンプレッサモータ,図示せず)を制御して乾燥運転を実行する。
 図7は、モータ11の駆動系を概略的に示すものである。インバータ回路(PWM制御方式インバータ,着磁量制御手段)32は、6個のIGBT(半導体スイッチング素子)33a~33fを三相ブリッジ接続して構成され、各IGBT33a~33fのコレクタ-エミッタ間には、フライホイールダイオード34a~34fが接続されている。下アーム側のIGBT33d、33e、33fのエミッタは、シャント抵抗(電流検出手段)35u、35v、35wを介してグランドに接続されている。また、IGBT33d、33e、33fのエミッタとシャント抵抗35u、35v、35wとの共通接続点は、夫々レベルシフト回路36を介して制御回路30に接続されている。尚、モータ11の巻線11u~11wには、電流が最大で15A程度流れるので、シャント抵抗35u~35wの抵抗値は、例えば0.1Ωに設定されている。
 レベルシフト回路36はオペアンプなどを含んで構成され、シャント抵抗35u~35wの端子電圧を増幅すると共にその増幅信号の出力範囲が正側に収まるように(例えば、0~+3.3V)バイアスを与える。また、過電流比較回路38は、インバータ回路32の上下アームが短絡した場合、回路の破壊を防止するために過電流検出を行なう。
 駆動用電源回路39は、インバータ回路32の入力側に接続されており、100Vの交流電源40を、ダイオードブリッジで構成される全波整流回路41及び直列接続された2個のコンデンサ(電解コンデンサ)42a、42bにより倍電圧全波整流し、約280Vの直流電圧をインバータ回路32に供給する。インバータ回路32の各相出力端子は、モータ11の各相巻線11u、11v、11wに接続されている。
 尚、交流電源40の一端と全波整流回路41の交流入力端子の一方側との間には、リレー47が挿入されており、交流入力端子間にはフォトカプラ(PC,入力状態検知手段)48が、抵抗素子59a,59bをそれぞれ介して接続されている。また、常開型の電源スイッチ49は、リレー47に対して並列に接続されている。電源スイッチ49がユーザによりオン操作されモーメンタリ動作によって閉じると、リレー47の両端が短絡されて制御回路30に初期電源が供給される。すると、制御回路30は、リレー47の図示しないコイルに通電してリレー47を閉じることで以降の電源供給を維持する。また制御回路30は、交流電源周波数に応じたフォトカプラ48の出力信号(周波数50Hz/60Hzの信号)を参照することで、交流電源40が入力されているか否かを判定する。
 制御回路30は、レベルシフト回路36を介して得られるモータ11の巻線11u~11wに流れる電流Iau~Iawを検出し、その電流値に基づいて2次側の回転磁界の位相θ及び回転角速度ωを推定すると共に、三相電流を直交座標変換及びd-q(direct-quadrature) 座標変換して励磁電流成分Id、トルク電流成分Iqを得る。
 そして、制御回路30は外部より速度指令が与えられると、推定した位相θ及び回転角速度ω並びに電流成分Id、Iqに基づいて電流指令Idref 、Iqref を生成し、それらを電圧指令Vd、Vqに変換すると、更に直交座標変換及び三相座標変換を行なう。最終的には、駆動信号がPWM信号として生成され、インバータ回路32を介してモータ11の巻線11u~11wに出力される。
 第1電源回路43は、インバータ回路32に供給される約280Vの駆動用電源を降圧して15Vの制御用電源を生成し、制御回路30及び駆動回路44に供給する。また、第2電源回路45は、第1電源回路43によって生成された15V電源より3.3V電源を生成し、制御回路30に供給する三端子レギュレータである。高圧ドライバ回路46は、インバータ回路32における上アーム側のIGBT33a~33cを駆動するために配置されている。
 また、モータ11のロータには、起動時に使用するための例えばホールICで構成される回転位置センサ51(u,v,w)が配置されており、回転位置センサ51(位置検出手段)が出力するロータの位置信号は、制御回路30に与えられている。すなわち、制御回路30は、モータ11の起動時において、ロータ位置の推定が可能となる回転速度(例えば、約30rpm)までは、回転位置センサ51を使用してベクトル制御を行い、上記回転速度に達した以降は、回転位置センサ51を使用しないセンサレスベクトル制御に切り替える。
 そして、圧縮機モータについては、具体的には図示しないが、モータ11の駆動系とほぼ対称な構成が配置されている。
 また、電源回路39の出力端子とグランドとの間には、抵抗素子52a,52bの直列回路が接続されており、それらの共通接続点は、制御回路30の入力端子に接続されている。制御回路30は、抵抗素子52a,52bにより分圧されたインバータ回路32の入力電圧を読み込み、PWM信号デューティを決定するための基準とする。
 インバータ回路32のW相出力端子とグランドとの間には、ダイオード53,抵抗素子54a,54b(誘起電圧検出手段)の直列回路が接続されており、抵抗素子54bには、コンデンサ(誘起電圧検出手段)55が並列に接続されている。そして、抵抗素子54a,54bの共通接続点は、制御回路30の入力端子に接続されており、制御回路30は、モータ11が空転している場合に巻線11Wに発生する誘起電圧を検出する。
 その他、制御回路30は、例えばドアロック制御回路や乾燥用ファンモータ等の各種電装品56を制御したり、前述した表示・操作用基板57との間で操作信号や制御信号等の入出力を行う。また、洗濯運転の進行状況に応じて扉9の施錠(ロック),解錠(アンロック)を行うためのドアロックアクチュエータ58の駆動を制御する。
 図8は、制御回路30が、モータ11(並びに圧縮機モータ)について行なうセンサレスベクトル制御の機能ブロックを示す図である。この構成は、例えば特開2003-181187号公報などに開示されているものと同様であり、ここでは概略的に説明する。尚、図8において、(α,β)はモータ11の各相に対応する電気角120度間隔の三相(UVW)座標系を直交変換した直交座標系を示し、(d,q)は、モータ11のロータの回転に伴い回転している2次磁束の座標系を示す。
 減算器62には、速度指令出力部60より目標速度指令ωrefが被減算値として、エスティメータ(Estimator) 63により検出されたモータ11の検出速度ωが減算値として与えられ、減算器62の減算結果は、速度PI(Proportional-Integral) 制御部65に与えられる。速度PI制御部65は、目標速度指令ωref と検出速度ωとの差分量に基づいてPI(比例積分)制御を行い、q軸電流指令値Iqrefとd軸電流指令値Idrefとを生成して減算器66q、66dに被減算値として夫々出力する。減算器66q、66dには、αβ/dq変換部67より出力されるq軸電流値Iq、d軸電流値Idが減算値として夫々与えられ、減算結果は、電流PI制御部68q、68dに夫々与えられる。尚、速度PI制御部65における制御周期は1m秒に設定されている。
 電流PI制御部68q、68dは、q軸電流指令値Iqrefとd軸電流指令値Idrefとの差分量に基づいてPI制御を行い、q軸電圧指令値Vq及びd軸電圧指令値Vdを生成してdq/αβ変換部69に出力する。dq/αβ変換部69には、エスティメータ63によって検出された2次磁束の回転位相角(ロータ位置角)θが与えられ、その回転位相角θに基づいて電圧指令値Vd、Vqを電圧指令値Vα、Vβに変換する。
 dq/αβ変換部69が出力する電圧指令値Vα、Vβは、αβ/UVW変換部70により三相の電圧指令値Vu、Vv、Vwに変換されて出力される。電圧指令値Vu、Vv、Vwは、切換スイッチ71u、71v、71wの一方の固定接点71ua、71va、71waに与えられ、他方の固定接点71ub、71vb、71wbには、初期パターン出力部76より出力される電圧指令値Vus、Vvs、Vwsが与えられる。切換スイッチ71u、71v、71wの可動接点71uc、71vc、71wcは、PWM形成部73の入力端子に接続されている。
 PWM形成部73は、電圧指令値Vus、Vvs、Vws又はVu、Vv、Vwに基づいて15.6kHzのキャリア(三角波)を変調した各相のPWM信号Vup(+,-) 、Vvp(+,-) 、Vwp(+,-) をインバータ回路32に出力する。PWM信号Vup~Vwpは、例えばモータ11の各相巻線11u、11v、11wに正弦波状の電流が通電されるよう、正弦波に基づいた電圧振幅に対応するパルス幅の信号として出力される。
 A/D変換部74は、IGBT33d~33fのエミッタに現れる電圧信号をA/D変換した電流データIau、Iav、IawをUVW/αβ変換部75に出力する。UVW/αβ変換部75は、三相の電流データIau、Iav、Iawを所定の演算式に従って直交座標系の2軸電流データIα、Iβに変換する。そして、2軸電流データIα、Iβをαβ/dq変換部67に出力する。
 αβ/dq変換部67は、ベクトル制御時にはエスティメータ63よりモータ11のロータ位置角θを得ることで、所定の演算式に従って2軸電流データIα、Iβを回転座標系(d,q)上のd軸電流値Id、q軸電流値Iqに変換すると、それらを前述のようにエスティメータ63及び減算器66d、66qに出力する。
 エスティメータ63は、q軸電圧指令値Vq、d軸電圧指令値Vd、q軸電流値Iq、d軸電流値Idに基づいてロータの位置角θ及び回転速度ωを推定し、各部に出力する。ここで、モータ11は、起動時には、初期パターン出力部76による起動パターンが印加され強制転流が行われる。その後、回転位置センサ51によりセンサ信号に基づきベクトル制御を行うと、エスティメータ63が起動されてモータ11のロータの位置角θ及び回転速度ωが推定されるセンサレスベクトル制御に移行する。尚、圧縮機モータの場合は、強制転流からセンサレスベクトル制御に移行する。
 切換え制御部77は、PWM形成部73より与えられるPMW信号のデューティ情報に基づいて切換スイッチ71の切換えを制御する。尚、以上の構成において、インバータ回路32を除く構成は、制御回路30のソフトウエアによって実現されている機能をブロック化したものである。ベクトル制御における電流制御周期は例えば128μ秒に設定されている。但し、PWM搬送波周期は、モータ11側が64μ秒,圧縮機モータ側が128μ秒となっている。そして、制御回路30とインバータ回路32とがインバータ装置99を構成している。
 図5は、モータ11の全体構成を概略的に示す(a)平面図、(b)は一部を拡大して示す斜視図である。モータ11は、ステータ91と、これの外周に設けられたロータ92とから構成され、ステータ91は、ステータコア93とステータ巻線11u,11v,11とから構成されている。ステータコア93は、環状のヨーク部93aと、当該ヨーク部93aの外周部から放射状に突出する多数のティース部93bとを有しており、ステータ巻線11u,11v,11wは、各ティース部93bに巻装されている。
 ロータ92は、フレーム94とロータコア95と複数の永久磁石96,97とを図示しないモールド樹脂により一体化した構成である。フレーム94は、磁性体である例えば鉄板をプレス加工することで扁平な有底円筒状に形成されている。そして、永久磁石96,97は、ロータマグネット98を構成している。
 ロータコア95は、フレーム94の周側壁の内周部に配置されており、その内周面は、内方に向けて円弧状に突出する複数の凸部95aを有した凹凸状に形成されている。これら複数の凸部95aの内部には、軸方向に貫通し、短辺の長さが異なる矩形状挿入穴95b,95cが形成されており、それらが1つずつ交互に、環状に配置されている。各挿入穴95b,95cには、ネオジム磁石96(第1永久磁石)と、アルニコ磁石97(第2永久磁石)とが挿入されている。この場合、ネオジム磁石96の保磁力は約900kA/m、アルニコ磁石97の保磁力は約100kA/mであり、保磁力が9倍程度異なっている。
 また、これら2種類の永久磁石96,97は、それぞれ1種類で1磁極を形成しており、その磁化方向がモータ11の径方向に沿うように、例えば各24個ずつ、合計で48個配置されている。このように2種類の永久磁石96,97を交互に且つその磁化方向が径方向に沿うように配置することで、隣同士に配置された永久磁石96,97が互いに反対方向に磁極を有する状態(一方のN極が内側、他方のN極が外側となる状態)となり、これらネオジム磁石96とアルニコ磁石97との間に例えば矢印Bで示す方向に磁気経路(磁束)が生ずる。すなわち、保磁力が大きいネオジム磁石96と保磁力が小さいアルニコ磁石97の双方を通過する磁気経路が形成されるようになっている。
 次に、本実施例の作用について図1乃至図4も参照して説明する。図4は、一般的な洗濯機が全自動運転を行う場合の行程を示すもので、横軸が経過時間(分)、縦軸がモータ11の回転数(rpm)である。尚、上記で説明した構成は洗濯乾燥機であるが、説明の都合上、乾燥運転については省略している。図中の(A)~(O)は、次の各行程に対応している。(A)給水・撹拌行程,(B)洗い行程,(C)排水行程,(D)バランス取り(1)行程,(E)すすぎ脱水(1)行程,(F)給水行程,(G)すすぎ撹拌(1)行程,(H)排水行程,(I)バランス取り(2)行程,(J)すすぎ脱水(2)行程,(K)給水行程,(L)すすぎ撹拌(2)行程,(M)排水行程,(N)バランス取り行程,(O)最終脱水。また、図中(1)~(7)は、モータ11の増減磁を行うタイミングであり、それぞれ以下の処理を示している。(1)増磁,(2)減磁大,(3)増磁,(4)減磁大,(5)増磁,(6)減磁小,(7)増磁。
 これらの内、モータ11の回転数の変化が顕著となる主たる行程は、(B)洗い行程,(E)すすぎ脱水(1)行程,(G)すすぎ撹拌(1)行程,(J)すすぎ脱水(2)行程,(L)すすぎ撹拌(2)行程,(O)最終脱水行程である。行程(B),(G),(L)におけるモータ11の最高回転数は50rpm程度であり、行程(E),(J)における最高回転数は1300rpm程度、行程(O)の最高回転数は850rpm程度となっている。また、行程(B),(G),(L)におけるモータ11の出力トルクは280kgf・cm程度、行程(E),(J)における出力トルクは20~30kgf・cm程度である。すなわち、行程(B),(G),(L)は低速回転・高出力トルクでの運転となり、行程(E),(J)は高速回転・低出力トルクでの運転となる。
 尚、洗濯乾燥機が、ドラム4内の洗濯物に熱を加えながら脱水を行う「プリヒート脱水」運転の場合は、(E),(J)のすすぎ脱水行程と同様なパターンとなる。
 そして、従来の洗濯機では、前述したように、高速回転・低出力トルク運転では弱め界磁制御を行うことで回転数をより上昇させるなどしていたが、本実施例では、モータ11のロータ92を構成するアルニコ磁石97の着磁量を変化させて、モータ11を、洗濯機の各運転について要求される特性に適合するようにロータマグネット98の磁束をダイナミックに変化させる。
 すなわち、洗い・すすぎ運転のように低速回転・高出力トルクが要求される場合には、アルニコ磁石97の着磁量を増加(増磁)させることでロータマグネット98全体の磁束を増加させ、脱水運転のように高速回転・低出力トルクが要求される場合は、アルニコ磁石97の着磁量を減少(減磁)させることでロータマグネット98全体の磁束を減少させるように制御する。
 以下、アルニコ磁石97の着磁量を変化させる処理について説明する。図2(a)は、脱水運転から洗い・すすぎ運転に移行する場合に、アルニコ磁石97が減磁されている状態から増磁させる場合の処理を示すフローチャートである。脱水運転におけるドラム4-モータ11の回転を停止させるためブレーキ動作を開始し(ステップS1)、回転が停止すると(ステップS2:YES)、アルニコ磁石97を増磁させるようにd軸電流を出力する(ステップS3)。この場合、d軸電流を与えることでロータ92の回転位置が固定される。次に、その状態からロータ92を1電気角度分(1/24機械角分)移動させるように通電相を変化させて(ステップS4)、再度d軸電流を出力すると(ステップS5)処理を終了する。
 ここで、図5(a)に示すように、アルニコ磁石97は時計回りにU,V,W,…の順に並んでおり、例えば最上部のU相を基準にロータ92を位置決めすると、ステータ91のティース部93bが相対するアルニコ磁石97は、U,W,V,U,W,V,…の1つ置き順となる。したがって、ステップS3では上記のようにアルニコ磁石97が1つ置きに増磁され、それらの間に位置するアルニコ磁石97は、着磁が不完全な状態となる。そこで、ステップS4でロータ92を1電気角度分移動させると、残りのアルニコ磁石97を良好に増磁させることが可能となる。
 また、ステップS3においてd軸電流を発生させて最初の増磁を行う場合には、それ以前に、回転位置センサ51により停止状態にあるロータ92の位置を把握し、その停止位置に応じて通電相を決定する。すなわち、図3に示すように、ロータ92の停止位置に応じて、回転位置センサ(ホールセンサ)51u,51v,51wの各信号A,B,Cの出力レベルは、電気角60度毎に異なる6つの状態がある。そこで、センサ信号A,B,Cの出力レベルに対応した通電相でd軸電流を与え、ロータ92を、30度,90度,150度,…の各位置に固定すれば、通電時におけるロータ92の回転移動量が少なくなるため、騒音を抑制できる。尚、洗濯機は室内に設置される場合が多いため、騒音を低減することは極めて重要である。
 また、図2(b)は、洗い・すすぎ運転から脱水運転に移行する場合に、アルニコ磁石97を、増磁されている状態から減磁させる場合の処理を示すフローチャートである。基本的な手順は、図2(a)のケースと同じであり、ステップS3,S5に対応するステップS8,S10が「減磁電流出力」となっているだけである。
 図1は、図4に示す(O)最終脱水行程を完了した後に、洗濯機の運転を終了させるために制御回路30が行う処理部分を示すフローチャートである。制御回路30は、(O)最終脱水行程が完了すると(ステップS11)、図2(a)に示す増磁処理を行う(ステップS12,図4に示す増磁(7)に対応)。そして、ドアロックアクチュエータ58により扉9のロック状態を解除(解錠)すると共に、運転が終了したことの報知処理を行うように、表示・操作用基板57に制御信号を出力する(ステップS13)。そして、リレー47を開いて電源供給を遮断し、終了状態となる。
 以上のように本実施例によれば、モータ11を構成するロータマグネット98に着磁量を容易に変更可能なレベルの保磁力を有するアルニコ磁石97を備え、制御回路30が、インバータ回路32を介して、アルニコ磁石97の着磁量を変化させるように励磁電流を発生させる場合に、制御回路30は、洗濯機の運転を停止させる際には、アルニコ磁石97を増磁状態にする。したがって、洗濯機が次回に運転を開始する場合には、アルニコ磁石97は増磁された状態になっており、モータ11を起動させるために必要なトルクを十分に得ることができ、洗濯機の信頼性を向上させることが可能となる。
 また、洗濯機が乾燥行程を行った後に運転を終了する場合、乾燥行程の最終段階でモータ11に設定される回転数は例えば100rpm程度であるから、モータ11は増磁された状態で運転を終了することになる。
 尚、以降では、アルニコ磁石97の着磁量を増減させてロータマグネット98の磁束を増減させることを、「モータ11を増減磁する」と表現する。
 (第2実施例)
 図9は第2実施例を示すものであり、第1実施例と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図9は、ユーザが操作パネル部29に配置されている電源「入」スイッチをオンすることで、電源が投入された場合の処理部分を示すフローチャートである。制御回路30は、電源が投入された直後に、モータ11のロータマグネット98の着磁状態が、どのようになっているかを確認する(初期読み込み,ステップS21)。
 ここで、制御回路30は、図4に示す一連の行程がどの段階まで完了したかを記録するため、内部の不揮発性メモリ(図示せず)に行程の進捗状態を示すフラグを、各行程が終了する毎に書き込んでいる。したがって、上記フラグを参照することで、その時点のロータマグネット98の着磁状態を確認可能となっている。例えば、第1実施例のように、通常通り最終脱水行程が完了した後に、モータ11の増磁処理を行って運転を終了していれば(ステップS22:YES)次の行程に進む(ステップS23)。
 すなわちこの場合、以降に洗濯物の重量を検知するセンシング処理や、或いは洗い運転を開始するため、モータ11を起動する場合に大きな出力トルクを得ることができるから、そのまま次の行程に進むことに全く問題はない。
 一方、ステップS22において、モータ11が減磁された状態であることを示していれば(NO)、制御回路30は、一旦扉9をロック状態にする(ステップS24)。そして、増磁処理を行うと(ステップS25)、扉9のロックを解除してから(ステップS26)ステップS27に移行する。ここで、ステップS25を実行する際に扉9をロック状態にするのは、増磁処理を行う以前にドラム4の内部に洗濯物が投入されてしまうことを防止したり、ユーザがドラム4内に手を入れることを防止するためである。
 以上のように第2実施例によれば、制御回路30は、洗濯機に電源が投入された直後にモータ11を増磁状態にするので、たとえ前回の洗濯機の運転が、モータ11が減磁された状態で中断されていたり、或いは終了していたとしてもモータ11を起動させるために必要なトルクを十分に得ることができ、洗濯機の信頼性を向上させることが可能となる。
 (第3実施例)
 図10は第3実施例を示すもので、第2実施例と同様に電源が投入された場合の処理部分を示しており、ステップS22に替えて「ドアロックは解除状態か?」の判断ステップS27が配置されている。すなわち、ステップS21で初期読み込みを行った結果、扉9のロックが解除されていれば(ステップS27:YES)、問題はないのでそのまま次の行程に進む(ステップS23)。
 一方、扉9がロックされている状態にあると(ステップS27:NO)、前回の運転終了が第1実施例のように適切な手順を経ておらず、例えば停電や、電源プラグの脱落といったイレギュラーな形で終了した可能性がある。そこでこの場合、ステップS22に移行してモータ11の着磁状態を確認し、その結果に応じて第2実施例と同様にステップS25,S26を実行する。
 以上のように第3実施例によれば、制御回路30は、洗濯機に電源が投入された直後に、扉9がロックされている状態にあるとモータ11を増磁状態にするので、第2実施例と同様に、前回の洗濯機の運転が、モータ11が減磁された状態で中断や終了となっていても、モータ11を起動させるために必要なトルクを十分に得ることができ、洗濯機の信頼性を向上させることが可能となる。
 (第4実施例)
 図11は第4実施例を示すものである。第4実施例は、洗濯機の運転中に、ユーザにより一時停止を指示する操作ボタン(一時停止ボタン,スタートボタンが兼用される場合もある)がオンされた場合の処理を示す。一時停止ボタンがオン操作されると(ステップS31:YES)、制御回路30は、第2実施例のステップS21,S22と同様にして、モータ11が増磁状態にあるか否かを判断する(ステップS33)。
 ステップS33においてモータ11が増磁状態であれば(YES)、その時点の運転状態を確認し、例えばドラム4内の水位などから扉9のロックを解除可能な状態か否かを判断する(ステップS34)。解除可能であれば(YES)、扉9のロックを解除して(ステップS35)、ユーザによる入力(一時停止の解除)を待機する状態となる(ステップS36)。また、ステップS34において扉9のロックが解除不能であれば(NO)ステップS36に移行する。
 一方、ステップS33においてモータ11が減磁状態であれば(NO)、増磁処理を行ってから(ステップS37)ステップS34に移行する。すなわち、洗濯機が一時停止状態になると、モータ11が回転中であれば回転は停止されるので、その後、ユーザの入力操作により一時停止状態が解除されると、モータ11は停止状態から再起動されることになる。この時、ロータマグネット98が減磁された状態になっていると、起動トルクが不足することが考えられるので、ステップS36において入力待機状態となる前に増磁処理を行う。
 以上のように第4実施例によれば、制御回路30は、モータ11が減磁状態になっている間に、ユーザにより運転を中断するための入力操作である一時停止ボタンのオン操作が行われるとモータ11を増磁状態にするので、一時停止状態が解除されてモータ11を再起動する場合に、必要なトルクを確保できる。
 (第5実施例)
 図12は第5実施例を示すものである。第5実施例は、洗濯機の運転中に、ユーザにより電源「切(オフ)」を指示する操作ボタン(電源切ボタン)がオンされた場合の処理を示す。電源切ボタンがオン操作されると(ステップS41:YES)、制御回路30は、リレー47を開くことで交流電源40を遮断する。以降は、コンデンサ42に充電されている電力を使用して動作する。
 それから、制御回路30は、第4実施例のステップS33と同様にしてモータ11が増磁状態にあるか否かを判断し(ステップS43)、増磁状態にあれば(YES)特段の処理を行うことなく、そのまま電源が遮断される状態に移行する(ステップS44)。一方、ステップS43において、モータ11が減磁状態であれば(NO)、増磁処理を行ってから(ステップS45)ステップS44に移行する。
 すなわち、洗濯機の運転が停止された後、次に運転が開始される場合には、モータ11は停止状態から再起動されることになる。この時、ロータマグネット98が減磁された状態になっていると起動トルクが不足することが考えられるので、増磁処理を行うようにする。
 以上のように第5実施例によれば、制御回路30は、モータ11が減磁状態になっている間に、ユーザにより電源を遮断するための入力操作である電源切ボタンのオン操作が行われるとモータ11を増磁状態にするので、次回に運転を開始する場合に、モータ11を起動するために必要なトルクを確保できる。尚、第5実施例の場合、制御回路30は、ステップS41で「YES」と判断した段階でリレー47を開かずに、ステップS43で「YES」と判断した段階や、ステップS45を実行した後にリレー47を開くようにしても良い。
 (第6実施例)
 図13は第6実施例を示すものである。第6実施例は、洗濯機が脱水運転中にユーザにより電源切ボタンがオンされた場合の処理を示す。脱水行程が行われている間に(ステップS51)電源切ボタンがオン操作されると(ステップS52:YES)、制御回路30は、リレー47を開くことで交流電源40を遮断する。以降は、第5実施例と同様に、コンデンサ42に充電されている電力を使用して動作する。
 そして、制御回路(モータ制御手段)30は、インバータ回路(モータ制御手段)32のIGBT33を全てオフするように制御して、回生ブレーキ動作を開始させる(ステップS54)。脱水行程では、図4に示すように、モータ11は減磁された状態にあり、1300rpm,或いは850rpm程度の比較的高速で回転している。したがって、回生ブレーキを行うと大きな回生電力が発生し、その電力はフライホイールダイオード34を介してコンデンサ42に充電される。回生ブレーキの作用によりモータ11の回転が停止すると(ステップS56)、制御回路30は、その充電電力を利用してモータ11の増磁処理を行い(ステップS57)、その後電源が遮断される状態に移行する(ステップS58)。
 以上のように第6実施例によれば、制御回路30は、モータ11が脱水行程において減磁された状態で高速回転している場合に、ユーザにより電源切ボタンがオン操作されると、モータ11に対して回生ブレーキを作用させ、発生する回生電力を利用してモータ11を増磁状態にするので、電力消費を抑制できる。
 (第7実施例)
 図14は第7実施例を示すものであり、第6実施例と異なる部分について説明する。第7実施例は、第6実施例のステップS52を、「AC入力はあるか?」の判断ステップS52Aに置き換えたものである。ここで、制御回路30は、フォトカプラ(入力状態検知手段)48が出力する交流電源周波数のパルス信号を参照し、そのパルス信号が継続して出力されていれば「AC入力あり(YES)」と判断する。
 一方、ステップS52Aにおいて、上記パルス信号の出力が、例えば3周期分連続して出力されない状態になると、「AC入力なし(NO)」と判断する。そしてこの場合、第6実施例と同様にステップS54~S58を実行する。このように「AC入力なし」と判断するケースは、例えば商用交流電源40の停電又は瞬時停電が発生したり、家庭内配線でヒューズが断線したり、ブレーカが開いたり、或いは洗濯機の電源プラグがコンセントから脱落した場合などが想定される。
 以上のように第7実施例によれば、制御回路30は、モータ11が脱水行程において減磁された状態で高速回転している場合にフォトカプラ48の出力信号に基づき「AC入力なし」と判断すると、モータ11に対して回生ブレーキを作用させ、発生する回生電力を利用してモータ11を増磁状態にするので、第6実施例と同様に電力消費を抑制できる。
 (第8実施例)
 図15は第8実施例であり、第6,第7実施例と異なる部分について説明する。第8実施例では、第6,第7実施例のように脱水行程の途中でモータ11の回転を停止させるため回生ブレーキ動作を行う場合、モータ11の回転数が所定の閾値以下になった段階で(ステップS61:YES)増磁処理を行う(ステップS57)。尚、モータ11の回転数は、回転位置センサ(回転数検知手段)51が出力する位置信号の変化周期に基づいて検知する。そして、増磁処理を行うと、回生ブレーキ動作を再開させて(ステップS58)モータ11の回転を停止させるまで行うようにする(ステップS63)。
 以上のように第8実施例によれば、制御回路30は、回生ブレーキが作用している場合に、回転位置センサ51により検知されるモータ11の回転数が所定の閾値以下になるとモータ11を増磁状態にする。すなわち、モータ11の巻線11u~11wに大きな逆起電力が発生している期間を避けて増磁処理を行うので、インバータ回路32が破壊されることを防止しつつ、回生電力を適切に利用して電力消費を抑制できる。
 (第9実施例)
 第9実施例は、例えば図4に示す行程チャートにおいて、最終脱水行程(O)を開始する前にモータ11を減磁処理するが(6)、その減磁処理の前処理として増磁処理を行うようにする。すなわち、図2(b)の処理を実行する場合は、その前に図2(a)の処理を実行する。アルニコ磁石97を減磁させる場合、減磁量を正確に制御するのは比較的困難であるが、アルニコ磁石97を増磁させる場合、増磁量を飽和させることは容易である。したがって、最大増磁量を基準として減磁を行うようにすれば、減磁量を正確に制御することができる。
 本発明は上記し又は図面に記載した実施例にのみ限定されるものではなく、以下のような変形又は拡張が可能である。
 モータ11の着磁状態を判定する場合には、モータ11を一定回転数で回転させた場合に発生する誘起電圧を検出し、その誘起電圧の大きさに基づいて判定しても良い。また、この場合の誘起電圧は、エスティメータ63の内部において、モータの電圧・電流方程式に基づき行う演算で得られるものを用いても良い。
 第1,第2永久磁石は、それぞれネオジム磁石,アルニコ磁石に限ることなく、保磁力の条件を満たす磁性材料であれば適宜変更して良い。
 第2永久磁石の着磁変化量のみで全ての運転特性に対応させることができる場合、第1永久磁石は不要である。
 各実施例を適宜組み合わせて実施しても良い。
 ドラム4の回転軸は、水平に対して仰角方向に10度~15度程度の傾きを持たせるようにしても良い。
 第2実施例において、ステップS21,S22を削除し、電源が投入された場合は必ずステップS24~S26を実行しても良い。また、第3実施例でも同様に、ステップS27で「NO」と判断すると、ステップS25,S26を実行しても良い。
 さらに、第4実施例でも同様に、ステップS31で「YES」と判断するとステップS37を実行しても良く、第5実施例でもステップS41で「YES」と判断するとステップS45を実行しても良い。
 第7実施例において、AC入力の有無を判定する場合、必ずしも交流電源40の3周期の継続出力を確認する必要はない。
 入力状態検知手段は、その他例えば電流トランスなどでも良い。
 各実施例を、適宜組み合わせて実施しても良い。
 乾燥機能を持たない洗濯機に適用しても良い。また、パルセータを用いて水流を撹拌させる縦型の洗濯機に適用しても良い。
 以上のように、本発明にかかる洗濯機は、洗い運転時における高トルク出力と、脱水運転時における高速回転とが要求されるものに有用である。

Claims (10)

  1.  ロータ(92)側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石(97)を備えて構成され、洗濯運転を行うための回転駆動力を発生させる永久磁石モータ(11)と、前記永久磁石(97)の着磁量を変化させるように励磁電流を発生させる着磁量制御手段(30,32)とを備えた洗濯機において、
     前記着磁量制御手段(30,32)は、実行している運転を中断させる場合、又は運転を停止させる場合には、前記永久磁石(97)を増磁状態にしてから、前記中断又は前記停止を行うことを特徴とする洗濯機。
  2.  ロータ(92)側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石(97)を備えて構成され、洗濯運転を行うための回転駆動力を発生させる永久磁石モータ(11)と、前記永久磁石(97)の着磁量を変化させるように励磁電流を発生させる着磁量制御手段(30,32)とを備えた洗濯機において、
     前記着磁量制御手段(30,32)は、電源が投入された直後に、前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
  3.  請求の範囲第2項記載の洗濯機において、
     前記着磁量制御手段(30,32)は、電源が投入された直後に、回転槽(4)を開閉する扉(9)が施錠状態になっていると、前記永久磁石(11)を増磁状態にすることを特徴とする洗濯機。
  4.  請求の範囲第1項ないし第3項の何れかに記載の洗濯機において、
     前記着磁量制御手段(30,32)は、前記永久磁石(97)が減磁状態になっている間に、ユーザにより運転を中断するための入力操作が行われると、前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
  5.  請求の範囲第1項ないし第3項の何れかに記載の洗濯機において、
     前記着磁量制御手段(30,32)は、前記永久磁石(97)が減磁状態になっている間に、ユーザにより電源を遮断するための入力操作が行われると、前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
  6.  請求の範囲第1項ないし第3項の何れかに記載の洗濯機において、
     前記永久磁石(97)が減磁された状態で前記永久磁石モータ(11)が高速回転している場合に、ユーザにより電源を遮断するための入力操作が行われると、前記永久磁石モータ(11)に対して回生ブレーキを作用させるモータ制御手段(30,32)を備え、
     前記着磁量制御手段(30,32)は、前記回生ブレーキにより発生する回生電力を利用して、前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
  7.  請求の範囲第1項ないし第3項の何れかに記載の洗濯機において、
     商用交流電源の入力状態を検知する入力状態検知手段(48)と、
     前記永久磁石(97)が減磁された状態で前記永久磁石モータ(11)が高速回転している場合に、前記入力状態検知手段(48)により前記商用交流電源(40)の入力が検知されなくなると、前記永久磁石モータ(11)に対して回生ブレーキを作用させるモータ制御手段(30,32)とを備え、
     前記着磁量制御手段(30,32)は、前記回生ブレーキにより発生する回生電力を利用して、前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
  8.  請求の範囲第6項記載の洗濯機において、
     前記永久磁石モータ(11)の回転数を検知する回転数検知手段(51)を備え、
     前記着磁量制御手段(30,32)は、前記回生ブレーキが作用している場合に、前記回転数検知手段(51)により検知される回転数が所定の閾値以下になると、前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
  9.  請求の範囲第7項記載の洗濯機において、
     前記永久磁石モータ(11)の回転数を検知する回転数検知手段(51)を備え、
     前記着磁量制御手段(30,32)は、前記回生ブレーキが作用している場合に、前記回転数検知手段(51)により検知される回転数が所定の閾値以下になると、前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
  10.  ロータ(92)側に着磁量を容易に変更可能なレベルの保磁力を有する永久磁石(97)を備えて構成され、洗濯運転を行うための回転駆動力を発生させる永久磁石モータ(11)と、前記永久磁石(97)の着磁量を変化させるように励磁電流を発生させる着磁量制御手段(30,32)とを備えた洗濯機において、
     前記着磁量制御手段(30,32)は、前記永久磁石(97)を減磁状態にする場合には、その前処理として前記永久磁石(97)を増磁状態にすることを特徴とする洗濯機。
PCT/JP2009/007023 2009-05-25 2009-12-18 洗濯機 WO2010137096A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN200980159498.3A CN102449219B (zh) 2009-05-25 2009-12-18 洗濯机
EP09845163A EP2436821A1 (en) 2009-05-25 2009-12-18 Washing machine
KR1020117026911A KR101332868B1 (ko) 2009-05-25 2009-12-18 세탁기
US13/303,508 US20120068659A1 (en) 2009-05-25 2011-11-23 Washing machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009125253A JP5468306B2 (ja) 2009-05-25 2009-05-25 洗濯機
JP2009-125253 2009-05-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/303,508 Continuation US20120068659A1 (en) 2009-05-25 2011-11-23 Washing machine

Publications (1)

Publication Number Publication Date
WO2010137096A1 true WO2010137096A1 (ja) 2010-12-02

Family

ID=43222240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/007023 WO2010137096A1 (ja) 2009-05-25 2009-12-18 洗濯機

Country Status (6)

Country Link
US (1) US20120068659A1 (ja)
EP (1) EP2436821A1 (ja)
JP (1) JP5468306B2 (ja)
KR (1) KR101332868B1 (ja)
CN (1) CN102449219B (ja)
WO (1) WO2010137096A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003802A (ja) * 2012-06-19 2014-01-09 Sanden Corp モータ制御装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081274B2 (ja) * 2013-04-05 2017-02-15 東芝ライフスタイル株式会社 洗濯機のモータ制御装置及びモータ制御装置の保護方法
JP6232852B2 (ja) 2013-08-30 2017-11-22 株式会社島津製作所 モータ制御装置およびターボ分子ポンプ
CN104790171B (zh) * 2014-01-22 2019-05-31 青岛海尔洗衣机有限公司 一种电脑板模块化的洗衣机
KR20150133968A (ko) * 2014-05-21 2015-12-01 삼성전자주식회사 비동기 통신회로, 및 이를 포함하는 세탁기
KR102338469B1 (ko) * 2015-01-30 2021-12-14 삼성전자주식회사 세탁기 및 그 제어 방법
CN106026848A (zh) * 2016-07-07 2016-10-12 姜德志 一种具备变频电机驱动功能的洗衣机控制板
JP2018086232A (ja) * 2016-07-28 2018-06-07 三星電子株式会社Samsung Electronics Co.,Ltd. 洗濯機
CN108940914A (zh) * 2017-05-18 2018-12-07 厦门大钧精密工业有限公司 浮标自动称重及其磁铁磁通量检测机
JP6943642B2 (ja) * 2017-06-13 2021-10-06 東芝ライフスタイル株式会社 洗濯機

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181187A (ja) 2001-12-13 2003-07-02 Toshiba Corp 洗濯機のインバータ装置及び洗濯乾燥機のインバータ装置
JP2004049644A (ja) * 2002-07-22 2004-02-19 Sharp Corp 洗濯機
JP2005058595A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd 洗濯又は乾燥システム
JP2008246234A (ja) * 2008-07-08 2008-10-16 Sharp Corp 洗濯機
WO2009060588A1 (ja) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba 洗濯機のインバータ装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4843516A (en) * 1987-09-21 1989-06-27 Electro-Matic Products Co. Demagnetizing apparatus and method
JPH07267525A (ja) * 1994-03-31 1995-10-17 Nippon Otis Elevator Co エレベータ用インバータ装置
JP3309648B2 (ja) * 1995-06-22 2002-07-29 三菱電機株式会社 エレベータの制御装置
JP2000059905A (ja) * 1998-08-10 2000-02-25 Toyota Autom Loom Works Ltd バッテリで駆動される車両の回生制動装置
US6737828B2 (en) * 2001-07-19 2004-05-18 Matsushita Electric Industrial Co., Ltd. Washing machine motor drive device
JP4223880B2 (ja) * 2003-07-31 2009-02-12 トヨタ自動車株式会社 モータ駆動装置
DE10357502A1 (de) * 2003-12-09 2005-07-07 BSH Bosch und Siemens Hausgeräte GmbH Elektrische Maschine
US20050168067A1 (en) * 2004-01-29 2005-08-04 Yen-Weay Hsu Dynamic adaptive damping attenuant mechanism and energy recycling system on braking
KR101176076B1 (ko) * 2006-02-15 2012-08-24 엘지전자 주식회사 세탁기의 직결식 모터
KR101279513B1 (ko) * 2007-01-04 2013-06-28 엘지전자 주식회사 비엘디시 모터 및 이를 구비한 세탁기
JP2008271698A (ja) * 2007-04-19 2008-11-06 Hokuto Seigyo Kk モータ駆動装置
JP5002335B2 (ja) * 2007-05-29 2012-08-15 株式会社東芝 モータ制御装置,洗濯機及びモータ制御方法
EP2192684B1 (en) * 2007-09-18 2020-07-08 Kabushiki Kaisha Toshiba Variable magnetic flux drive system
JP5112219B2 (ja) * 2007-11-05 2013-01-09 株式会社東芝 永久磁石モータ、洗濯機、および、制御装置
JP5259241B2 (ja) * 2008-04-23 2013-08-07 株式会社東芝 モータ制御装置,モータ駆動システム,洗濯機,空調機,永久磁石モータの着磁量変更方法
JP4834712B2 (ja) * 2008-10-15 2011-12-14 株式会社東芝 モータ制御装置,モータ制御システム,洗濯機及び永久磁石モータの着磁方法
JP4837020B2 (ja) * 2008-11-25 2011-12-14 株式会社東芝 永久磁石モータおよび洗濯機
JP4762299B2 (ja) * 2008-12-10 2011-08-31 株式会社東芝 ドラム式洗濯機
JP5398348B2 (ja) * 2009-05-20 2014-01-29 株式会社東芝 永久磁石モータおよび洗濯機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003181187A (ja) 2001-12-13 2003-07-02 Toshiba Corp 洗濯機のインバータ装置及び洗濯乾燥機のインバータ装置
JP2004049644A (ja) * 2002-07-22 2004-02-19 Sharp Corp 洗濯機
JP2005058595A (ja) * 2003-08-19 2005-03-10 Matsushita Electric Ind Co Ltd 洗濯又は乾燥システム
WO2009060588A1 (ja) * 2007-11-07 2009-05-14 Kabushiki Kaisha Toshiba 洗濯機のインバータ装置
JP2008246234A (ja) * 2008-07-08 2008-10-16 Sharp Corp 洗濯機

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014003802A (ja) * 2012-06-19 2014-01-09 Sanden Corp モータ制御装置
US9595899B2 (en) 2012-06-19 2017-03-14 Sanden Holdings Corporation Motor control device

Also Published As

Publication number Publication date
US20120068659A1 (en) 2012-03-22
EP2436821A1 (en) 2012-04-04
CN102449219B (zh) 2014-11-12
JP2010269070A (ja) 2010-12-02
KR101332868B1 (ko) 2013-11-25
KR20120023652A (ko) 2012-03-13
JP5468306B2 (ja) 2014-04-09
CN102449219A (zh) 2012-05-09

Similar Documents

Publication Publication Date Title
JP5468306B2 (ja) 洗濯機
TWI452821B (zh) 洗衣機之變頻裝置
JP4834712B2 (ja) モータ制御装置,モータ制御システム,洗濯機及び永久磁石モータの着磁方法
JP5178400B2 (ja) 洗濯乾燥機
US20100139333A1 (en) Motor controller and drum washing machine
EP2790316A2 (en) Sensorless control apparatus and method of washing machine
JP4786163B2 (ja) ヒートポンプ式乾燥機及び洗濯乾燥機
JP2010226914A (ja) モータ制御装置,ドラム式洗濯機及び永久磁石モータの着磁制御方法
JP5508760B2 (ja) 洗濯機
JP5508758B2 (ja) 洗濯機
JP5601827B2 (ja) 洗濯機
JP2011188637A (ja) 洗濯機の製造方法、洗濯機、及び洗濯機のロータの取外方法並びに取付方法
JP5121623B2 (ja) 洗濯機のインバータ装置
JP2011188668A (ja) モータ制御装置及び洗濯機
JP5275408B2 (ja) ヒートポンプ式乾燥機
KR101451429B1 (ko) 모터, 이를 포함하는 세탁기 및 그 제어방법
JP2010220400A (ja) モータ制御装置,モータ制御システム,洗濯機及び永久磁石モータの着磁方法
JP5670077B2 (ja) モータ制御装置及び洗濯機
KR20150085285A (ko) 세탁기 및 그 제어방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159498.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117026911

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009845163

Country of ref document: EP