WO2010137081A1 - 真空断熱材を備えた冷蔵庫 - Google Patents

真空断熱材を備えた冷蔵庫 Download PDF

Info

Publication number
WO2010137081A1
WO2010137081A1 PCT/JP2009/003859 JP2009003859W WO2010137081A1 WO 2010137081 A1 WO2010137081 A1 WO 2010137081A1 JP 2009003859 W JP2009003859 W JP 2009003859W WO 2010137081 A1 WO2010137081 A1 WO 2010137081A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
insulating material
vacuum heat
spacer
refrigerator
Prior art date
Application number
PCT/JP2009/003859
Other languages
English (en)
French (fr)
Inventor
越後屋恒
荒木邦成
井関崇
石渡寛人
鶴賀俊光
新井祐志
Original Assignee
日立アプライアンス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立アプライアンス株式会社 filed Critical 日立アプライアンス株式会社
Priority to CN2009801595882A priority Critical patent/CN102449417A/zh
Publication of WO2010137081A1 publication Critical patent/WO2010137081A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/062Walls defining a cabinet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/06Arrangements using an air layer or vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure

Definitions

  • the present invention relates to a refrigerator, and particularly relates to a shape of a vacuum heat insulating material and a related configuration of the vacuum heat insulating material and the outer box and the inner box.
  • the vacuum heat insulating material is generally arranged in a flat part on the outer box side of the refrigerator case, for example, in consideration of workability and the like.
  • the original heat insulation performance cannot be sufficiently exhibited due to the heat bridge effect of the material.
  • high temperature parts such as a heat radiating pipe, may be installed on the outer box side, a heat bridge of the jacket material is promoted, and a predetermined effect may not be obtained.
  • the heat bridge means that the vacuum heat insulating material installed in the refrigerator outer box having a high thermal conductivity passes through the outer box from the high temperature outside air, and further covers the outer cover material of the vacuum heat insulating material shown in FIG.
  • a vacuum heat insulating material is arrange
  • vacuum insulation material is embedded in hard urethane foam between the outer box and inner box on the surface where the outer box surface area becomes higher than the outside air temperature, and the vacuum insulation material deteriorates over time The example of the refrigerator which is going to hold down is shown.
  • the vacuum heat insulating material supported by the spacer fixed to the outer box side between an outer box and an inner box is arrange
  • a refrigerator is shown in which hard urethane foam is filled in the gap between the outer box and the vacuum heat insulating material and between the inner box and the vacuum heat insulating material.
  • the spacer is arranged in parallel with the foaming direction of the rigid urethane foam and has a bottom and a top that are in contact with the vacuum heat insulating material and the outer box, respectively, and the rigid urethane foam is interposed between the bottom and the outer box and between the top and the vacuum heat insulating material.
  • a refrigerator provided with a flow path that can be passed has been proposed.
  • the heat radiating pipe when the heat radiating pipe is disposed on the outer box side, the heat radiating pipe is located between the top and the top of the spacer and does not contact the bottom of the spacer, that is, the vacuum heat insulating material.
  • An example of a refrigerator in which the material is not easily affected by the heat of the heat radiating pipe is shown.
  • the heat insulating performance when used in a high temperature atmosphere, there is a tendency for the heat insulating performance to be lowered compared to when used in a low temperature atmosphere.
  • the heat insulation performance is reduced before the lifetime of the refrigerator is reached. There was a possibility of a significant decrease.
  • the urethane spacer is installed only between the outer box and the vacuum heat insulating material, when the hard urethane foam rises in the foaming direction, if it flows a lot between the outer box and the vacuum heat insulating material due to flow resistance etc., The vacuum insulation material is peeled off from the spacer by the foaming pressure, and the vacuum insulation material may generate unfilled parts (voids) of urethane foam when it comes into contact with the inner box. It wasn't.
  • the conventional refrigerator shown by patent document 2 has the spacer installed between the vacuum heat insulating material and an outer box, the bottom part adhere
  • the spacers are arranged in parallel with the foaming direction, there is an advantage that urethane is easily filled between the vacuum heat insulating material and the outer box.
  • the adhesive surface of the outer box is a divided rectangular surface, the adhesive area is not sufficient and is installed only on the outer box side as in Patent Document 1, for example, between the outer box and the vacuum heat insulating material.
  • the vacuum heat insulating material may be peeled off by the foaming pressure of the foamed urethane and may come into contact with the inner box, thereby causing an unfilled portion (void).
  • the vacuum heat insulating material when placing the vacuum heat insulating material on the outer box, it is pressed to stabilize the adhesion, but since the bonding surface of the spacer is an island-shaped rectangular surface, an uneven shape appears on the outer box surface, and the appearance There was a problem with the above appearance.
  • a fixing means (spacer) and a support member are disposed between the vacuum heat insulating material and the outer box, and the vacuum heat insulating material and the inner box, respectively.
  • An object of the present invention is to provide a refrigerator in which the vacuum heat insulating material is not peeled off by the foaming pressure of urethane, and an unfilled portion (void) portion is not generated. It is another object of the present invention to provide a means or method for suppressing the occurrence of irregularities on the surface of the outer box due to the spacer, strengthening the fixing of the vacuum heat insulating material, and embedding the vacuum heat insulating material in urethane foam.
  • the present invention mainly adopts the following configuration.
  • a refrigerator comprising urethane foam and a vacuum heat insulating material between an outer box and an inner box, wherein the vacuum heat insulating material is separated from the outer box via a spacer on one surface thereof, and supporting means on the other surface via a supporting means.
  • the urethane foam is filled between the vacuum heat insulating material and the outer box and between the vacuum heat insulating material and the inner box.
  • the spacer forms a flat surface in which an adhesion surface between the vacuum heat insulating material and the outer box is continuous, and the urethane foam extends from an inlet provided between the outer box and the vacuum heat insulating material to a bottom surface.
  • a plurality of arrays are arranged so as to ensure a space that does not block the liquid and foamed flows.
  • the spacer has a surface shape that firmly adheres to the solidified urethane foam on a plane along the flow direction of the urethane foam, and specifically, the plane of the spacer penetrates the plane.
  • a plurality of holes are provided in the flow direction, or a plurality of grooves along the flow direction are provided in a direction intersecting the flow direction on the plane of the spacer.
  • the spacer has a substantially H-shaped cross-section, and the opposed flat surface in the substantially H-shape serves as an adhesive surface between the outer box and the vacuum heat insulating material. Furthermore, it is set as the structure which provides a groove
  • the heat insulating performance of the vacuum heat insulating material is effectively exhibited by installing the vacuum heat insulating material in a state separated from the outer box and the inner box by the spacer and the supporting member that are fixing means of the vacuum heat insulating material. As a result, the heat insulation performance can be improved.
  • the adhesive surface of the spacer with the vacuum heat insulating material and the adhesive surface of the outer box are made continuous, the adhesive force at the respective adhesive surfaces is increased, so that the vacuum heat insulating material can be firmly fixed.
  • the adhesion surface of the spacer is a continuous flat surface, the load applied to the outer box becomes average, so that shapes such as irregularities do not appear on the surface of the outer box.
  • the spacer has a continuous flat surface, it is easy to apply an adhesive and the like, and the number of assembling operations can be reduced, so that the cost can be reduced.
  • the vacuum heat insulating material is sandwiched between the spacer and the support member by providing the support member on the side opposite to the side where the spacer is disposed, the vacuum heat insulating material is not peeled off from the spacer by the foaming pressure, and the urethane foam It is filled uniformly. Thereby, the refrigerator with favorable heat insulation performance can be provided. Furthermore, since the vacuum heat insulating material can secure a certain distance from the heat radiating pipe at a high temperature, it is possible to suppress the deterioration of the heat insulating performance due to the heat effect and the deterioration of the heat insulating performance due to the heat bridge.
  • FIGS. 10 and FIG. 13 are diagrams showing comparative examples to be compared with the present embodiment.
  • FIG. 1 is a front view showing an appearance of a refrigerator provided with a vacuum heat insulating material according to the first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the refrigerator provided with the vacuum heat insulating material according to the first embodiment, and is a sectional view taken along line AA of FIG.
  • FIG. 3 is a cross-sectional view of the vacuum heat insulating material used in the first embodiment.
  • FIG. 4 is a longitudinal sectional view of the refrigerator provided with the vacuum heat insulating material according to the first embodiment, and is a sectional view taken along line XX of FIG.
  • FIG. 5 is a cross-sectional view of the refrigerator provided with the vacuum heat insulating material according to the first embodiment, and is a cross-sectional view taken along the line ZZ of FIG.
  • FIG. 6 is a diagram showing the arrangement of the spacer with respect to the outer box and the foaming direction of the urethane foam according to the first embodiment.
  • FIG. 7 is an explanatory diagram showing the injection direction and the foaming direction of urethane foam used in the refrigerator according to the first embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG.
  • the refrigerator 1 having this embodiment shown in FIG. 1 has a refrigerator compartment 2, an ice storage compartment 3 (an ice making compartment 3a and an upper freezer compartment 3b), a freezer compartment 4, and a vegetable compartment 5 from the top. is doing.
  • symbol of FIG. 1 is a door which obstruct
  • An ice making room door 7a, an upper freezer compartment door 7b, a lower freezer compartment door 8, and a vegetable compartment door 9 are arranged. When the drawer type doors 6 to 9 are pulled out, the containers constituting each chamber are drawn out together with the doors.
  • Each door 6-9 is provided with a packing 11 for hermetically sealing the refrigerator main body 1, and is attached to the indoor peripheral edge of each door 6-9.
  • a partition heat insulation wall 12 is disposed to insulate and partition between the refrigerator compartment 2 and the ice making room 3a and the upper freezer room 3b.
  • This partition heat insulation wall 12 is a heat insulation wall having a thickness of about 30 to 50 mm, and is made of styrofoam, foam heat insulation material (urethane foam), vacuum heat insulation material, etc., each of which can be used alone or in combination with a plurality of heat insulation materials. It has been. Since the temperature zone is the same between the ice making chamber 3a and the upper freezing chamber 3b and the lower freezing chamber 4, a partition member 13 having a packing 11 receiving surface is provided instead of a partition heat insulating wall for partition heat insulation.
  • a partition heat insulation wall 14 is provided between the lower freezer compartment 4 and the vegetable compartment 5 to insulate the compartment.
  • it is a heat insulation wall of about 30 to 50 mm, which is also made of styrofoam or foam insulation. Made of materials (urethane foam), vacuum insulation, etc.
  • partition heat insulation walls are installed in partitions of rooms with different storage temperature zones such as refrigeration and freezing.
  • the storage compartment of the refrigerator compartment 2, the ice making compartment 3a and the upper freezer compartment 3b, the lower freezer compartment 4, and the vegetable compartment 5 is divided and formed in the box 20, respectively.
  • the invention is not particularly limited to this.
  • the refrigerator doors 6a and 6b, the ice making door 7a, the upper freezer compartment door 7b, the lower freezer compartment door 8, and the vegetable compartment door 9 are also particularly limited in terms of opening and closing by rotation, opening and closing by drawer, and the number of divided doors. It is not a thing.
  • the box 20 includes an outer box 21 and an inner box 22, and a heat insulating part is provided in a space formed by the outer box 21 and the inner box 22 to insulate each storage chamber in the box 20 from the outside.
  • a vacuum heat insulating material 50 is disposed in a space between the outer box 21 and the inner box 22, and a space other than the vacuum heat insulating material 50 is filled with a foam heat insulating material 23 such as urethane foam.
  • the vacuum heat insulating material 50 is demonstrated in FIG. 3, it is fixedly supported by the fixing member 70, the supporting member 80, etc. which are mentioned later.
  • a refrigerator 28 is provided on the back side of the freezer compartments 3a and 4 in order to cool the refrigerator compartment 2, the freezer compartments 3a and 4 and the vegetable compartment 5 to a predetermined temperature.
  • the refrigeration cycle is configured by connecting the cooler 28, the compressor 30, the condenser 31, and a capillary tube (not shown). Above the cooler 28, a blower 27 that circulates the cool air cooled by the cooler 28 in the refrigerator and maintains a predetermined low temperature is disposed.
  • the heat insulating partitions 12 and 14 are arranged, respectively, and the expanded polystyrene 33 and the vacuum heat insulating material 50c are used. It is configured.
  • the heat insulating partitions 12 and 14 may be filled with a foam heat insulating material 23 such as urethane foam, and are not particularly limited to the foamed polystyrene 33 and the vacuum heat insulating material 50c.
  • a concave portion 40 for accommodating an electrical component 41 such as a substrate for controlling the operation of the refrigerator 1 or a power supply substrate is formed in the rear portion of the top surface of the box 20, and a cover 42 that covers the electrical component 41.
  • the height of the cover 42 is arranged so as to be substantially the same height as the top surface of the outer box 21 in consideration of appearance design and securing the internal volume. Although it does not specifically limit, when the height of the cover 42 protrudes from the top
  • the recess 40 is disposed in a state where only the space for housing the electrical component 41 is recessed on the heat insulating material 23 side, so that the internal volume is inevitably sacrificed in order to ensure the heat insulating thickness. If the internal volume is increased, the thickness of the heat insulating material 23 between the recess 40 and the inner box 22 will be reduced.
  • the vacuum heat insulating material 50a is disposed in the heat insulating material 23 of the recess 40 to ensure and enhance the heat insulating performance.
  • the vacuum heat insulating material 50a is a single vacuum heat insulating material 50a formed in a substantially Z shape so as to straddle the case 45a and the electrical component 41 of the interior lamp 45 described above.
  • the cover 42 is made of a steel plate in consideration of a fire from the outside or a case where it is ignited for some reason.
  • the compressor 30 and the condenser 31 arranged at the lower back of the box 20 are components that generate a large amount of heat, in order to prevent heat from entering the inside of the box, a vacuum insulation is provided on the projection surface toward the inner box 22 side.
  • the material 50d is arranged.
  • the structure of the vacuum heat insulating material 50 will be described with reference to FIG.
  • the vacuum heat insulating material 50 includes a core material 51, an inner packaging material 52 for holding the core material 51 in a compressed state, and an outer jacket material 53 having a gas barrier layer covering the core material 51 held in a compressed state by the inner packaging material 52. , And an adsorbent 54.
  • the jacket material 53 is disposed on both surfaces of the vacuum heat insulating material 50, and is configured in a bag shape in which portions of a certain width are bonded together by thermal welding from the ridge line of the laminate film having the same size.
  • the core material 51 glass wool having an average fiber diameter of 4 ⁇ m was used as a laminate of inorganic fibers not bonded or bound with a binder or the like.
  • outgas since outgas is reduced by using a laminate of inorganic fiber materials (on the other hand, in the case of an organic material, gas is generated during evacuation or over time, and this gas is referred to as outgas.
  • This is advantageous in terms of heat insulation performance, but is not particularly limited to this, and may be inorganic fibers such as ceramic fibers, rock wool, glass fibers other than glass wool, and the like.
  • the inner packaging material 52 may be unnecessary.
  • an organic resin fiber material can be used in addition to the inorganic fiber material.
  • organic resin fibers there are no particular restrictions on use as long as the heat resistant temperature is cleared.
  • polystyrene, polyethylene terephthalate, polypropylene, and the like are generally fiberized so as to have a fiber diameter of about 1 to 30 ⁇ m by a melt blown method, a spunbond method, or the like. If it is a fiberization method, it will not ask in particular.
  • the laminate structure of the jacket material 53 is not particularly limited as long as it has gas barrier properties and can be thermally welded.
  • the surface protective layer, the first gas barrier layer, the second gas barrier layer, the heat It is a laminate film composed of four layers of welding layers
  • the surface layer is a resin film serving as a protective material
  • the first gas barrier layer is provided with a metal vapor deposition layer on the resin film
  • the second gas barrier layer is a resin having a high oxygen barrier property.
  • a metal vapor deposition layer is provided on the film, and the first gas barrier layer and the second gas barrier layer are bonded so that the metal vapor deposition layers face each other.
  • a film having low hygroscopicity was used as in the surface layer.
  • the surface layer is a biaxially stretched film of polypropylene, polyamide, polyethylene terephthalate
  • the first gas barrier layer is a biaxially stretched polyethylene terephthalate film with aluminum deposition
  • the second gas barrier layer is a two-layered film with aluminum deposition.
  • An axially stretched ethylene vinyl alcohol copolymer resin film, a biaxially stretched polyvinyl alcohol resin film with aluminum deposition, or an aluminum foil was used, and the heat-welded layer was an unstretched polyethylene, polypropylene, or other film.
  • the layer structure and material of the four-layer laminate film are not particularly limited to these.
  • a metal foil or a resin film is provided with a gas barrier film made of an inorganic layer compound, a resin gas barrier coating material such as polyacrylic acid, or DLC (diamond-like carbon).
  • a resin gas barrier coating material such as polyacrylic acid, or DLC (diamond-like carbon).
  • a polybutylene terephthalate film having a high oxygen barrier property may be used for the heat welding layer.
  • the surface layer is a protective material for the first gas barrier layer, but in order to improve the vacuum exhaust efficiency in the manufacturing process of the vacuum heat insulating material, it is preferable to dispose a resin having a low hygroscopic property.
  • the resin-based film other than the metal foil used for the second gas barrier layer usually has a gas barrier property that is significantly deteriorated by moisture absorption. While suppressing deterioration of gas barrier property, the moisture absorption amount of the whole laminate film is suppressed. As a result, even in the vacuum evacuation process of the vacuum heat insulating material 50 described above, the amount of moisture brought into the jacket material 53 can be reduced, so that the vacuum evacuation efficiency is greatly improved, leading to higher performance of heat insulation performance. .
  • the lamination (bonding) of each film is generally performed by a dry lamination method through a two-component curable urethane adhesive, but the type of adhesive and the bonding method are particularly limited to this. It is not necessary to use any other method such as a wet laminating method or a thermal laminating method.
  • a polyethylene film that can be thermally welded is used for the encapsulating material 52, and a physical adsorption type synthetic zeolite is used for the adsorbent 54, but these are not limited to these materials.
  • the inner packaging material 52 may be a polypropylene film, a polyethylene terephthalate film, a polybutylene terephthalate film or the like that has low hygroscopicity and can be thermally welded and has little outgas, and the adsorbent 54 adsorbs moisture and gas. Either adsorption or chemical reaction type adsorption may be used.
  • FIGS. 4 and 5 show the XX cut surface and the ZZ cut surface in FIG. 2 and FIG.
  • the refrigerator 1 which concerns on 1st Embodiment is the example which embed
  • the vacuum heat insulating materials 50a and 50b were directly attached to the outer boxes 21a and 21b for the top surface and the back surface, respectively, and the bottom surfaces were attached to the inner box 22 surface.
  • the vacuum heat insulating material 50c is illustrated in FIG. 2, but the vacuum heat insulating material 50c is not used in the first embodiment. As illustrated, there is no problem even if the vacuum heat insulating material 50c is used.
  • the spacer 70 is arranged inside the outer box 21e so as to be parallel to the foaming direction 23b of the urethane foam as shown in FIG.
  • the description of the shape and arrangement of the spacer 70 will be described later.
  • a foaming method of urethane foam will be described with reference to FIG.
  • FIG. 7 it arrange
  • the urethane foam is made into a liquid by mixing a foaming agent into the urethane. The urethane is dropped in a liquid form from the inlet 25, and the foamed urethane rises upward from the gel-like bottom surface. It will solidify over time.
  • the spacer 70 has an adhesive surface 70a, 70b that is a continuous plane, and has an H-shaped cross-sectional shape having a columnar portion 70c that connects the adhesive surfaces 70a and 70b.
  • the bonding surface 70a is bonded to the vacuum heat insulating material 50e, and the opposite bonding surface 70b is bonded to the outer box 21e.
  • a through-hole 70d is provided in the columnar portion 70c of the spacer 70 for strengthening the adhesiveness with the urethane foam 23. When the urethane foam 23 flows into the through hole 70d, the spacer 70 is buried in the urethane foam and firmly fixed.
  • ABS resin is used as the material of the spacer 70. ABS resin is selected because it is easy to injection mold, but AS (acrylonitrile styrene copolymer compound), PS (polystyrene) and other resins may be used as the material, and the molding method is also extruded. There is no particular limitation using molding or other methods.
  • the spacer 70 is preferably made of a material having a thermal conductivity of less than 1 (W / m ⁇ K) in order to make it difficult to transfer heat.
  • the H-shaped cross-sectional shape shown in FIG. 6 is a shape that facilitates the flow of the foamed urethane without hindering its flow, and a shape that increases the contact area of the foamed urethane with the foam and strengthens the fixed relationship with the foam. It is.
  • a surface layer is a biaxially stretched polypropylene film
  • a 1st gas barrier layer is a biaxially stretched polyethylene terephthalate film with aluminum vapor deposition
  • 2nd The gas barrier layer was a biaxially stretched ethylene vinyl alcohol copolymer resin film with aluminum vapor deposition
  • the heat welded layer was an unstretched linear low density polyethylene film.
  • non-binder glass wool which is an aggregate of glass fibers having an average fiber diameter of 4 ⁇ m, which is an inorganic fiber material, was used. Other materials are as described above.
  • the vacuum heat insulating material 50 shown in FIG. 3 has a rectangular shape (which may be a square or a polygonal shape) when viewed from the thin direction (the vertical direction in the drawing in the example of FIG. 3), 4 consisting of pairs of short sides and long sides. If the edge part of the side is floating from the outer box or the inner box, the influence of the heat bridge via the edge part can be avoided. That is, if the four sides of the vacuum heat insulating material 50 are in contact with the outer box or the inner box, heat conduction wraps around the end, so-called heat bridge occurs, and the heat insulation performance is lowered. It is necessary to arrange the heat insulating material 50 at a substantially middle position between the outer box and the inner box.
  • a synthetic rubber-based adhesive hot melt adhesive (not shown) is applied to the bonding surface 70 a of the spacer 70, and a plurality of them are disposed at predetermined positions on the vacuum heat insulating material 50.
  • the spacer 70 is pasted.
  • spacers having an H-shaped cross section are attached in parallel along the foaming direction 23 b.
  • a similar adhesive is applied to one surface of the support member 80 and a plurality of support members 80 are attached to predetermined positions of the vacuum heat insulating material 50.
  • a hot melt adhesive is similarly applied to the adhesive surface 70b of the spacer 70, and after adhering to the inner surface of the outer box 21e, the same adhesive is applied to the other surface of the support member 80, and the inner box is then applied.
  • the outer surface of 22 is brought into contact with and fixed.
  • attaching a spacer is the inner surface of an outer box
  • the two-part curable urethane foam (urethane and foaming agent) is dropped directly into several places in the liquid state on the outer surface of the inner box 22 and then solidified by foaming and solidifying into a substantially ball shape.
  • the support member 80 may be used. Assembling is completed by bringing the inner box to which the support member 80 is fixed into contact with the vacuum heat insulating material. With this support member, when the outer box 21e and the inner box 22 are combined, the vacuum heat insulating material 50e can be held in a sandwiched state by the spacer 70 and the support member 80.
  • a foam adhesive such as foam melt is directly applied to the inner box 22 or the vacuum heat insulating material 50e, or a foam heat insulating material such as styrofoam or rigid urethane foam formed into a block shape, etc. May be arranged in the inner box 22 or the vacuum heat insulating material 50e.
  • a molded product made of a resin material or the like may be placed in advance in the inner box 22 by bonding or bonding.
  • the vacuum heat insulating material 50 described above By incorporating the vacuum heat insulating material 50 described above into the refrigerator, the vacuum heat insulating material is installed in a state of being separated from the outer box and the inner box, and it is possible to avoid a decrease in heat insulating performance due to the heat bridge caused by the vacuum heat insulating material. In addition, since the vacuum heat insulating material is kept at a certain distance from the inner box by the support means 80, it is possible to prevent the vacuum heat insulating material from peeling off in the inner box direction due to the rising of the foamed urethane foam.
  • the space between the outer box 21e and the vacuum heat insulating material 50e and between the inner box 22 and the vacuum heat insulating material 50e are as follows.
  • the unfilled portion (void) portion was not confirmed, and it was confirmed that the urethane foam 23 was uniformly filled.
  • FIG. 8 is a view showing the arrangement of the spacer with respect to the outer box and the foaming direction of urethane foam in the second embodiment. Also in the second embodiment, the structure of the refrigerator provided with the vacuum heat insulating material according to the first embodiment described in FIGS. 1, 3, 4, 5, and 7 is the same. Is used.
  • a spacer 71 used in the second embodiment is the same as the urethane foam 23, which is formed in advance in a predetermined shape with a molding die (not shown), and is continuous like the spacer 70 of the first embodiment.
  • a substantially groove portion (not shown) that does not penetrate in the same direction as the foaming direction 23b may be provided.
  • the specific example of the spacer 71 shown in FIG. 8A is not a rail-shaped H-shaped cross-sectional shape, but has a rectangular cross-sectional shape for ease of manufacturing.
  • the spacer 71 is not limited to rigid urethane foam, but can be used as long as it has a heat insulation effect such as styrofoam, phenol foam, and the like. In view of handling and cost, a foamed heat insulating member is preferable.
  • the spacer 73 may be used.
  • the unfilled portion (void) collar portion is formed between the outer box 21e and the vacuum heat insulating material 50e and in the space between the inner box 22 and the vacuum heat insulating material 50e. It was not confirmed but it was confirmed that the urethane foam 23 was uniformly filled as in the first embodiment. As a result of measuring the heat insulation performance of the refrigerator adopting the second embodiment, when Comparative Example 1 described later was set to 100 (index), it was 95 and a good result was obtained.
  • FIG. 9 is a diagram showing a comparative example 1 of a standard regarding the heat insulation performance to be compared with the embodiment of the present invention, and is a cross-sectional view along the line XX.
  • the vacuum heat insulating material 50e of the outer box 21e that is both side surfaces does not use the spacer 70, and the outer box as in the prior art.
  • the inner member 22 was directly pasted with a hot melt adhesive, and the inner box 22 was not provided with the support member 80. All other specifications are the same as in the first and second embodiments.
  • FIG. 10 is a view showing Comparative Example 2 regarding the heat insulation performance to be compared with the embodiment of the present invention, and is a layout view in which spacers are arranged in a block shape.
  • the refrigerator shown as Comparative Example 2 is a block material 75 made of styrofoam as shown in FIG. 10 instead of the spacer 70 for fixing the vacuum heat insulating material 50e employed in the first and second embodiments of the present invention.
  • the adhesive was placed on the outer box 21e. And it was set as the specification which does not provide the supporting member 80 in the inner box 22 side. The rest is the same as in the first and second embodiments.
  • the urethane foam flows a lot in the portion where the block material 75 between the vacuum heat insulating material 50e and the outer box 21e is relatively small, and the foaming pressure of the urethane foam 23 causes a vacuum.
  • the heat insulating material 50e was pushed to the inner box 22 side and peeled off from the block material 75 (because the support member is not interposed between the inner box).
  • the vacuum heat insulating material 50e was in contact with the inner box 22, and a large unfilled portion (void) portion was generated in this portion, so that the urethane foam 23 could not be uniformly filled.
  • the heat insulation performance of the refrigerator having no unfilled part (void) part in Comparative Example 2 was 102 when Comparative Example 1 was set to 100 (index). It is considered that the heat insulating performance was deteriorated because the flow of urethane foam was inhibited by using a large number of block members 75.
  • the spacer 77 used in the third embodiment is provided with a relief groove so that the heat radiating pipe 90 does not contact the spacer 70 of the first embodiment.
  • the spacer 77 can be placed on the projection surface of the heat radiating pipe 90 fixed to the inner surface of the outer box 21e with an aluminum tape 91.
  • the relief groove 77c is provided.
  • channel 77c it was set as the width
  • the heat radiating pipe 90 a pipe having a long overall length bent several times as shown in the figure was used. The other specifications are the same as those in the first embodiment.
  • FIG. 13 is a view showing a comparative example 3 regarding the heat insulation performance to be compared with the embodiment of the present invention, and is a layout view in which heat radiating pipes are arranged around the vacuum heat insulating material.
  • the vacuum heat insulating material 50e is directly attached to the outer box 21e on both sides with the hot melt adhesive as in Comparative Example 1, and the inner box 22 is not provided with the support member 80.
  • a heat radiating pipe 90 was arranged around 50e as shown in the figure.
  • the other specifications are the same as those in the first embodiment.
  • the refrigerator according to the present embodiment has a heat bridge effect peculiar to a vacuum heat insulating material by arranging the vacuum heat insulating material by a spacer and a support member approximately in the middle of the urethane foam. It is possible to provide an energy-saving refrigerator that can be reduced and has good heat insulation performance.
  • the fixing member of the vacuum heat insulating material has a shape having an adhesive surface composed of a continuous flat surface, so that the assembly workability is dramatically improved and the cost reduction by reducing the man-hours required for the assembly is effective. It is something that demonstrates. Specifically, when arranging the vacuum heat insulating material, by making the bonding surface between the vacuum heat insulating material and the outer box in the spacer a continuous flat surface, the bonding area can be increased, so the spacer and the vacuum heat insulating material and Adhesion with the outer box can be strengthened, and the adhesive surface is a continuous flat surface, which makes it easy to perform adhesive application work and pasting work.
  • the support member on the inner box side or the inner box side surface of the vacuum heat insulating material, a structure in which the vacuum heat insulating material is sandwiched between the spacer and the supporting member can be taken, so the vacuum heat insulating material is peeled off by the foaming pressure. You can expect the effect that it will not be.
  • the heat dissipation characteristics are improved by adopting a spacer with a relief groove that can secure a distance that does not cause the heat insulating performance to deteriorate due to heat. It is possible to provide a refrigerator that can greatly improve energy saving. This embodiment can be widely applied not only to refrigerators but also to products, equipment, houses / buildings, and vehicles such as automobiles and trains that require heat insulating materials.

Abstract

 真空断熱材と外箱及び内箱との間にスペーサと支持部材を配置して、発泡ウレタンの発泡圧によって真空断熱材が剥がれることなく、発泡ウレタンの未充填部を発生させない冷蔵庫を提供する。 真空断熱材50eを配置する際、スペーサ70における真空断熱材50eおよび外箱21eとの接着面を連続した平面とすることで、接着面積を大きくすることができるため、スペーサ70と真空断熱材50e及び外箱21eとの接着を強固にすることができ、接着面が連続した平面であるため、接着剤塗布作業や貼付け作業がしやすくなる。さらに、内箱側又は真空断熱材の内箱側の面に、支持部材80を配置することによって、スペーサ70と支持部材80により真空断熱材50eがサンドイッチされる構造がとれるため、発泡圧によって真空断熱材50eが剥がされることはない。

Description

真空断熱材を備えた冷蔵庫
 本発明は、冷蔵庫に係わり、特に真空断熱材の形状、及び真空断熱材と外箱及び内箱との関連構成に関するものである。
 近年、地球温暖化防止等の地球環境保護の観点から、冷蔵庫においても省エネルギー化が求められている。また、最近の社会背景として、共働き化や核家族化の傾向にあるため、週末の休みを利用して食材を纏め買いする家庭が増えていること等から、冷蔵庫の大容量化ニーズは年々高まっている。
 従来から冷蔵庫は、省エネルギー化のため、冷蔵庫筐体の断熱材である硬質ウレタンフォームに真空断熱材を併用して断熱性能を大幅に向上させた製品が発売されている。真空断熱材は硬質ウレタンフォームの10倍以上の断熱性能を有するものである。
 従来の技術としては、真空断熱材は一般的には作業性等を考慮して、例えば冷蔵庫筐体の外箱側の平坦な部分に配置される例が多いが、真空断熱材特有である外被材のヒートブリッジ影響によって本来の断熱性能を十分に発揮することができていない場合があった。また、外箱側には放熱パイプ等の高温部品を設置する場合があるため、外被材のヒートブリッジを助長し、所定の効果が得られないことがあった。ここで、ヒートブリッジとは、熱伝導率の高い冷蔵庫外箱に設置された真空断熱材が、温度の高い外気から外箱を通し,さらに後述する図3に示す真空断熱材の外被材(例えばアルミ箔を材料とする)の端部に形成された折り曲げ部を介して、芯材を通ることなく発泡ウレタン(硬質ウレタンフォーム)に橋絡する現象(逆に冷蔵庫内部から外気への流れでも同様)を云い、本発明の説明においても同様の意味で用いる。
 また、特許文献1に示される従来技術として、真空断熱材を両側面、天面、背面、底面及び前面の各面に配置し、外箱の表面積に対し真空断熱材の被覆率が50%を超え80%以下として省エネルギー効果を高め、外箱表面積が外気温度よりも高くなる面において真空断熱材を外箱と内箱の中間で硬質ウレタンフォーム内に埋設して真空断熱材の経時的な劣化を押さえようとする冷蔵庫の例が示されている。
 また、特許文献2に示される従来技術として、外箱と内箱の間に外箱側に固定されたスペーサに支持された真空断熱材が、外箱と内箱に接しないように配置されるとともに、外箱と真空断熱材および内箱と真空断熱材との隙間に硬質ウレタンフォームが充填された冷蔵庫が示されている。スペーサは、硬質ウレタンフォームの発泡方向に並列され、真空断熱材と外箱にそれぞれ接している底部と頂部を有しており、底部と外箱および頂部と真空断熱材の間に硬質ウレタンフォームが通過できる流路を設けた冷蔵庫が提案されている。また、この従来技術においては、外箱側に放熱パイプを配置する場合、放熱パイプがスペーサの頂部と頂部の間に位置しており、スペーサの底部すなわち真空断熱材には接触しないため、真空断熱材が放熱パイプの熱影響を受け難い構造とした冷蔵庫の例が示されている。
特開2003-14368号公報 特開2005-55086号公報
 一般に真空断熱材の特性として、低温雰囲気中で使用した場合に比べ、高温雰囲気中で使用した場合は断熱性能が低下する傾向が見られる。特に放熱パイプ等の高温部品に接して使用した場合は、真空断熱材の断熱性能を低下させる虞があるのと、外被材のヒートブリッジ影響により、冷蔵庫の寿命年数を迎える前に断熱性能が著しく低下する可能性があった。
 また、特許文献1に示される従来の冷蔵庫の構造では、外箱側に設けたウレタン製のスペーサにより真空断熱材を硬質ウレタンフォーム(発泡ウレタン)の中間位置になるように配置しているが、真空断熱材の姿勢を安定化するため、数多くのスペーサを1つ1つ配置しなくてはならず、組み立て工数が増加する課題がある。また、スペーサが大きすぎると硬質ウレタンフォームの流れを阻害する要因となり、小さすぎると発泡圧に耐えることができないという課題もあった。
 また、ウレタンスペーサが外箱と真空断熱材の間にのみ設置されていることから、硬質ウレタンフォームが発泡方向に立ち上がる際、流動抵抗等によって外箱と真空断熱材の間に多く流れた場合、発泡圧によって真空断熱材がスペーサから剥がされ、真空断熱材が内箱に接触する等によって発泡ウレタンの未充填部(ボイド)を発生させることがあり、真空断熱材の断熱性能を十分に発揮できていなかった。
 また、特許文献2に示される従来の冷蔵庫は、真空断熱材と外箱の間に設置されたスペーサが、その底部を真空断熱材に接着され、さらに外箱に接着された頂部が互い違いになった略波形状を形成しており、そのスペーサを発泡方向に並列するように設けているため、真空断熱材と外箱の間にもウレタンが充填されやすいという利点はあるが、波形状の頂部と外箱の接着面が分割された矩形面であるため、接着面積が十分に取れず、特許文献1と同様に外箱側のみに設置されていることから、例えば外箱と真空断熱材の間のウレタンが早く立ち上がった場合等において、発泡ウレタンの発泡圧によって真空断熱材が剥がされて内箱に接触する等して、未充填部(ボイド)を発生させてしまうことがあった。また、真空断熱材を外箱に配置する際に、接着を安定させるために押付けるが、スペーサの接着面が島状の矩形面であるため、外箱表面に凹凸形状が現れてしまい、外観上の見栄えの課題があった。
 本発明は、真空断熱材と外箱、及び真空断熱材と内箱の間にそれぞれ固定手段(スペーサ)および支持部材を配置して、万一、発泡ウレタンの発泡バランスが崩れた場合でも、発泡ウレタンの発泡圧によって真空断熱材が剥がれることがなく、未充填部(ボイド)部分を発生させない冷蔵庫を提供することを目的とする。また、スペーサによる外箱表面の凹凸不良の発生を抑制し、真空断熱材の固定を強固にし、真空断熱材を発泡ウレタン中に埋設するための手段乃至方法を提供することを目的とする。
 前記課題を解決するために、本発明は主として次のような構成を採用する。
 外箱と内箱の間に発泡ウレタンと真空断熱材とを備えた冷蔵庫であって、前記真空断熱材は、その一面にスペーサを介して前記外箱と離隔され、その他面に支持手段を介して前記内箱と離隔されて設置され、前記真空断熱材と前記外箱の間、及び前記真空断熱材と前記内箱の間に前記発泡ウレタンが充填されている構成とする。さらに、前記スペーサは、前記真空断熱材及び前記外箱との接着面が連続した平坦面を形成し、前記外箱と前記真空断熱材との間に設けられた注入口から底面へ前記発泡ウレタンが液流動する方向、及び前記底面から前記注入口の方向へ前記発泡ウレタンが発泡流動する方向において、前記液流動及び発泡流動を遮らない空間を確保できるように複数配列される構成とする。
 また、前記スペーサは、前記発泡ウレタンの流動方向に沿う平面に、固化した発泡ウレタンとの固着を強固にする表面形状を有し、具体的には、前記スペーサの平面には、前記平面を貫通する穴が前記流動方向に複数設けら、または、前記スペーサの平面には、前記流動方向に沿った溝が前記流動方向と交差する方向に複数設けられる構成とする。
 また、前記スペーサは、その断面形状が略H形を形成し、前記略H形における対向する平坦面が前記外箱と前記真空断熱材との接着面となる構成とする。さらに、前記スペーサにおける前記平坦面の一方に溝又は凹部を設け、前記外箱に固定された放熱パイプを前記溝又は凹部に配設する構成とする。さらに、前記冷蔵庫における前記支持部材は、発泡系の材料からなり、前記真空断熱材の前記他面に又は前記内箱の外側面に配設される構成とする。
 本発明によれば、真空断熱材の固定手段であるスペーサと支持部材によって真空断熱材が外箱と内箱から離れた状態で設置されることにより、真空断熱材の断熱性能を効果的に発揮できるようになり、断熱性能を良好とすることができる。
 また、スペーサの真空断熱材との接着面および外箱の接着面を連続した平面とすることで、それぞれの接着面における接着力が大きくなるので、真空断熱材を強固に固定することができる。また、スペーサの接着面が連続した平面であるため、外箱にかかる荷重が平均的になるため、外箱表面に凹凸等の形状が浮き出ることがない。さらに、スペーサが連続した平面を持つことで接着剤等の塗布が容易になり、組み立て作業工数も低減できるため、低コスト化の効果も奏でる。
 また、スペーサを配置した側と反対側に支持部材を設けたことによって、真空断熱材がスペーサと支持部材でサンドイッチするので、発泡圧によって真空断熱材がスペーサから剥がされることが無く、発泡ウレタンが均一に充填されるものである。これにより断熱性能が良好な冷蔵庫を提供することができるものである。さらに、真空断熱材が高温になる放熱パイプと一定の距離を確保できるため、熱影響による断熱性能の劣化や、ヒートブリッジによる断熱性能の悪化を抑制できる。
本発明の第1の実施形態に係る真空断熱材を備えた冷蔵庫の外観を示す正面図である。 第1の実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図であり、図1のA-A線の切断図である。 第1の実施形態に用いた真空断熱材の断面図である。 第1の実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図であり、図2のX-X線の切断図である。 第1の実施形態に係る真空断熱材を備えた冷蔵庫の横断面図であり、図1のZ-Z線の切断図である。 第1の実施形態に関するスペーサの外箱に対する配置と発泡ウレタンの発泡方向を示す図である。 第1の実施形態に関する冷蔵庫に用いた発泡ウレタンの注入方向と発泡方向を示す説明図である。 第2の実施形態に関するスペーサの外箱に対する配置と発泡ウレタンの発泡方向を示す図である。 本発明の実施形態と対比すべき断熱性能に関する基準の比較例1を示す図であり、X-X線の切断図である。 本発明の実施形態と対比すべき断熱性能に関する比較例2を示す図であり、ブロック状にスペーサを配列した配置図である。 第3の実施形態に関するスペーサの形状と放熱パイプとの関連構造を示す図である。 第3の実施形態に関するスペーサの形状と放熱パイプとの配置構造を示す図である。 本発明の実施形態と対比すべき断熱性能に関する比較例3を示す図であり、真空断熱材の周辺に放熱パイプを配列した配置図である。
 本発明の実施形態に係る真空断熱材を備えた冷蔵庫について、図面を参照しながら以下詳細に説明する。本発明の第1の実施形態については図1~図7を用いて、第2の実施形態については図8を用いて、第3の実施形態については図11と図12を用いて、それぞれ説明する。なお、図9、図10及び図13は本実施形態と対比すべき比較例を示す図である。
「第1の実施形態」
 本発明の第1の実施形態に係る真空断熱材を備えた冷蔵庫について、図1~図7を参照しながら説明する。図1は本発明の第1の実施形態に係る真空断熱材を備えた冷蔵庫の外観を示す正面図である。図2は第1の実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図であり、図1のA-A線の切断図である。図3は第1の実施形態に用いた真空断熱材の断面図である。
 また、図4は第1の実施形態に係る真空断熱材を備えた冷蔵庫の縦断面図であり、図2のX-X線の切断図である。図5は第1の実施形態に係る真空断熱材を備えた冷蔵庫の横断面図であり、図1のZ-Z線の切断図である。図6は第1の実施形態に関するスペーサの外箱に対する配置と発泡ウレタンの発泡方向を示す図である。図7は第1の実施形態に関する冷蔵庫に用いた発泡ウレタンの注入方向と発泡方向を示す説明図である。
示す冷蔵庫の正面図であり、図2は図1のA-A断面図を示している。
 図1に示す本実施形態を備えた冷蔵庫1は、図2に示すように、上から冷蔵室2、貯氷室3(製氷室3aと上段冷凍室3b)、冷凍室4、野菜室5を有している。図1の符号は、上記各室の前面開口部を閉塞する扉であり、上からヒンジ10等を中心に回動する冷蔵室扉6a,6b、冷蔵室扉6a,6b以外は全て引き出し式の扉であり、製氷室扉7aと上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9を配置する。これらの引き出し式扉6~9は扉を引き出すと、各室を構成する容器が扉と共に引き出されてくる。各扉6~9には冷蔵庫本体1とを密閉するためのパッキン11を備え、各扉6~9の室内側外周縁に取り付けられている。
 また、冷蔵室2と製氷室3a及び上段冷凍室3bとの間を区画断熱するために仕切断熱壁12を配置している。この仕切断熱壁12は厚さ30~50mm程度の断熱壁で、スチロフォーム、発泡断熱材(発泡ウレタン)、真空断熱材等でできており、それぞれを単独使用又は複数の断熱材を組み合わせて作られている。製氷室3a及び上段冷凍室3bと下段冷凍室4の間は、温度帯が同じであるため区画断熱する仕切り断熱壁ではなく、パッキン11受面を形成した仕切り部材13を設けている。下段冷凍室4と野菜室5の間には区画断熱するための仕切断熱壁14を設けており、仕切断熱壁12と同様に30~50mm程度の断熱壁で、これまたスチロフォーム、或いは発泡断熱材(発泡ウレタン)、真空断熱材等で作られている。基本的に冷蔵、冷凍等の貯蔵温度帯の異なる部屋の仕切りには仕切断熱壁を設置している。
 なお、箱体20内には上から冷蔵室2、製氷室3a及び上段冷凍室3b、下段冷凍室4、野菜室5の貯蔵室をそれぞれ区画形成しているが、各貯蔵室の配置については特にこれに限定するものではない。また、冷蔵室扉6a,6b、製氷室扉7a、上段冷凍室扉7b、下段冷凍室扉8、野菜室扉9に関しても回転による開閉、引き出しによる開閉及び扉の分割数等について、特に限定するものではない。
 箱体20は、外箱21と内箱22とを備え、外箱21と内箱22とによって形成される空間に断熱部を設けて箱体20内の各貯蔵室と外部とを断熱している。この外箱21と内箱22の間の空間に真空断熱材50を配置し、真空断熱材50以外の空間には発泡ウレタン等の発泡断熱材23を充填してある。真空断熱材50については図3で説明するが、後述する固定部材70、支持部材80等で固定支持されている。
 また、冷蔵庫の冷蔵室2、冷凍室3a、4、野菜室5等の各室を所定の温度に冷却するために冷凍室3a、4の背側には冷却器28が備えられており、この冷却器28と圧縮機30と凝縮機31、図示しないキャピラリーチューブとを接続し、冷凍サイクルを構成している。冷却器28の上方にはこの冷却器28にて冷却された冷気を冷蔵庫内に循環して所定の低温温度を保持する送風機27が配設されている。また、冷蔵庫の冷蔵室2と製氷室3a及び上段冷凍室3b、冷凍室4と野菜室5を区画する断熱材として、それぞれ断熱仕切り12,14を配置し、発泡ポリスチレン33と真空断熱材50cで構成されている。この断熱仕切り12,14については発泡ウレタン等の発泡断熱材23を充填しても良く、特に発泡ポリスチレン33と真空断熱材50cに限定するものではない。
 また、箱体20の天面後方部には冷蔵庫1の運転を制御するための基板や電源基板等の電気部品41を収納するための凹部40が形成されており、電気部品41を覆うカバー42が設けられている。カバー42の高さは外観意匠性と内容積確保を考慮して、外箱21の天面とほぼ同じ高さになるように配置している。特に限定するものではないが、カバー42の高さが外箱の天面よりも突き出る場合は10mm以内の範囲に収めることが望ましい。これに伴って、凹部40は断熱材23側に電気部品41を収納する空間だけ窪んだ状態で配置されるため、断熱厚さを確保するため必然的に内容積が犠牲になってしまう。内容積をより大きくとると凹部40と内箱22間の断熱材23の厚さが薄くなってしまう。
 このため、凹部40の断熱材23中に真空断熱材50aを配置して断熱性能を確保、強化している。本実施形態では、真空断熱材50aを前述の庫内灯45のケース45aと電気部品41に跨るように略Z形状に成形した1枚の真空断熱材50aとしている。尚、前記カバー42は外部からのもらい火や何らかの原因で発火した場合等を考慮し鋼板製としている。また、箱体20の背面下部に配置された圧縮機30や凝縮機31は発熱の大きい部品であるため、庫内への熱侵入を防止するため、内箱22側への投影面に真空断熱材50dを配置している。
 真空断熱材50について、図3を用いてその構成を説明する。真空断熱材50は、芯材51と該芯材51を圧縮状態に保持するための内包材52、前記内包材52で圧縮状態に保持した芯材51を被覆するガスバリヤ層を有する外被材53、及び吸着剤54とから構成される。外被材53は前記真空断熱材50の両面に配置され、同じ大きさのラミネートフィルムの稜線から一定の幅の部分を熱溶着により貼り合わせた袋状で構成されている。
 なお、本実施形態において、芯材51についてはバインダー等で接着や結着していない無機繊維の積層体として平均繊維径4μmのグラスウールを用いた。前記芯材51については、無機系繊維材料の積層体を使用することによりアウトガスが少なくなるため(一方、有機系の場合、真空引きのとき又は経時的にガスが発生し、このガスをアウトガスと云う)、断熱性能的に有利であるが、特にこれに限定するものではなく、例えばセラミック繊維やロックウール、グラスウール以外のガラス繊維等の無機繊維等でもよい。芯材51の種類によっては内包材52が不要の場合もある。
 また、芯材51については、無機系繊維材料の他に、有機系樹脂繊維材料を用いることができる。有機系樹脂繊維の場合、耐熱温度等をクリヤーしていれば特に使用に際しては制約されるものではない。具体的には、ポリスチレンやポリエチレンテレフタレート、ポリプロピレン等をメルトブローン法やスパンボンド法等で1~30μm程度の繊維径になるように繊維化するのが一般的であるが、繊維化できる有機系樹脂や繊維化方法であれば特に問うものではない。
 外被材53のラミネート構成についてはガスバリヤ性を有し、熱溶着可能であれば特に限定するものではないが、本実施形態においては、表面保護層、第1ガスバリヤ層、第2ガスバリヤ層、熱溶着層の4層構成からなるラミネートフィルムとし、表面層は保護材の役割を持つ樹脂フィルムとし、第1ガスバリヤ層は樹脂フィルムに金属蒸着層を設け、第2ガスバリヤ層は酸素バリヤ性の高い樹脂フィルムに金属蒸着層を設け、第1ガスバリヤ層と第2ガスバリヤ層は金属蒸着層同士が向かい合うように貼り合わせている。熱溶着層については表面層と同様に吸湿性の低いフィルムを用いた。
 具体的には、表面層を二軸延伸タイプのポリプロピレン、ポリアミド、ポリエチレンテレフタレート等の各フィルム、第1ガスバリヤ層をアルミニウム蒸着付きの二軸延伸ポリエチレンテレフタレートフィルム、第2ガスバリヤ層をアルミニウム蒸着付きの二軸延伸エチレンビニルアルコール共重合体樹脂フィルム又はアルミニウム蒸着付きの二軸延伸ポリビニルアルコール樹脂フィルム、或いはアルミ箔とし、熱溶着層を未延伸タイプのポリエチレン、ポリプロピレン等の各フィルムとした。この4層構成のラミネートフィルムの層構成や材料については特にこれらに限定するものではない。例えば第1ガスバリヤ層や第2ガスバリヤ層として、金属箔、或いは樹脂系のフィルムに無機層状化合物、ポリアクリル酸等の樹脂系ガスバリヤコート材、DLC(ダイヤモンドライクカーボン)等によるガスバリヤ膜を設けたものや、熱溶着層には例えば酸素バリヤ性の高いポリブチレンテレフタレートフィルム等を用いても良い。
 表面層については第1ガスバリヤ層の保護材であるが、真空断熱材の製造工程における真空排気効率を良くするためにも、好ましくは吸湿性の低い樹脂を配置するのが良い。また、通常、第2ガスバリヤ層に使用する金属箔以外の樹脂系フィルムは、吸湿することによってガスバリヤ性が著しく悪化してしまうため、熱溶着層についても吸湿性の低い樹脂を配置することで、ガスバリヤ性の悪化を抑制すると共に、ラミネートフィルム全体の吸湿量を抑制するものである。これにより、先に述べた真空断熱材50の真空排気工程においても、外被材53が持ち込む水分量を小さくできるため、真空排気効率が大幅に向上し、断熱性能の高性能化につながっている。尚、各フィルムのラミネート(貼り合せ)は、二液硬化型ウレタン接着剤を介してドライラミネート法によって貼り合わせるのが一般的であるが、接着剤の種類や貼り合わせ方法には特にこれに限定するものではなく、ウェットラミネート法、サーマルラミネート法等の他の方法によるものでも何ら構わない。
 また、内包材52については本実施形態では熱溶着可能なポリエチレンフィルム、吸着剤54については物理吸着タイプの合成ゼオライトを用いたが、いずれもこれらの材料に限定するものではない。内包材52についてはポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム等、吸湿性が低く熱溶着でき、アウトガスが少ないものであれば良く、吸着剤54については水分やガスを吸着するもので、物理吸着、化学反応型吸着のどちらでも良い。
 次に、第1の実施形態に係る冷蔵庫について図4及び図5を用いて説明する。図4及び図5は、図2及び図1におけるX-X切断面及びZ-Z切断面を示すものである。第1の実施形態に係る冷蔵庫1は、箱体20に使用する真空断熱材50のうち、外箱21の両側面21eに配置する真空断熱材50eを、発泡ウレタン23の略中間に埋設した例である。その他、天面と背面については外箱21a,21bにそれぞれ真空断熱材50a,50bを直接貼り付け、底面については内箱22面に貼り付けた。仕切り断熱12,13については図2には真空断熱材50cを図示しているが、第1の実施形態においては真空断熱材50cを使用しなかった。図示の通り、真空断熱材50cについては使用しても何ら問題はない。
 真空断熱材50eの固定方法については、外箱21eの内側にスペーサ70を図6(a)の如く発泡ウレタンの発泡方向23bに並列するように配置した。スペーサ70の形状と配置の説明については後述するが、ここで、発泡ウレタンの発泡方法について図7を用いて説明する。
 図7において、冷蔵庫1の背面の外板21cが上面になるように図示しない発泡治具内に配置し、図7(a)に示すように、外板21cに設けた注入孔25から発泡ウレタン23を矢印23aの方向に注入する。その後、発泡ウレタンは、図7(b)に示すように冷蔵庫1の前面部21fに溜った後に発泡を開始し、矢印23bの方向に立ち上がるように発泡が進み、全体に充填される。なお、発泡ウレタンは,ウレタンに発泡剤を混入させて液状としたものであり、注入口25からは液状で滴下され、ゲル状になった底面からは発泡ウレタンは泡状となって上方に立ち上がっていき次第に固化するものである。
 次に、第1の実施形態に関するスペーサ70について説明する。図6(a)に示されるように、スペーサ70は、連続した平面からなる接着面70a、70bを有し、接着面70aと70bを結ぶ柱状部70cを有するH形断面形状から構成される。接着面70aは真空断熱材50eと、反対側の接着面70bは外箱21eとそれぞれ接着される。スペーサ70の柱状部70cには発泡ウレタン23との接着性を強固にするための貫通孔70dを設ける。この貫通孔70dに発泡ウレタン23が流入することで、スペーサ70が発泡ウレタン中に埋没して強固に固定されることになる。
 貫通孔70dについては、図6(b)に示すように、貫通しない溝70eを柱状部70cの両面に発泡方向23bに沿って設けてもよく、場合によっては貫通孔70dや柱状部70cへの溝加工については省略しても構わない。スペーサ70の材料として、本実施形態ではABS樹脂を用いた。ABS樹脂は射出成形しやすい材料であることから選定したものであるが、材質についてはAS(アクリロニトリルスチレン共重合化合物)、PS(ポリスチレン)およびその他の樹脂を用いてもよく、成形方法についても押出し成形やその他の方法等を用い、特に限定するものではない。スペーサ70は熱を伝え難くさせるために、熱伝導率が1(W/m・K)未満の材料が望ましい。図6に示すH形断面形状は、発泡ウレタンがその流動を妨げられることなく流れ易くする形状であり、且つ発泡ウレタンの発泡との接触面積を大きくして発泡との固定関係を強固にする形状である。
 また、本実施形態に用いた真空断熱材50については、外被材53のラミネート構成として、表面層を二軸延伸ポリプロピレンフィルム、第1ガスバリヤ層をアルミニウム蒸着付き二軸延伸ポリエチレンテレフタレートフィルム、第2ガスバリヤ層をアルミニウム蒸着付き二軸延伸エチレンビニルアルコール共重合体樹脂フィルム、熱溶着層を未延伸タイプの直鎖状低密度ポリエチレンフィルムとした。芯材51については、無機系繊維材料である平均繊維径4μmのガラス繊維の集合体であるノンバインダーのグラスウールを用いた。その他の材料については上述した通りである。
 次に、第1の実施形態に係る真空断熱材における外箱と内箱の間での配置について図4と図5を参照しながら説明する。図3に示す真空断熱材50が薄厚方向(図3の図示例で紙面上下方向)からみて矩形形状であると(正方形又は多角形形状でも構わない)、短辺と長辺の対からなる4辺の端縁部が外箱又は内箱から浮いていれば、当該端縁部を介したヒートブリッジの影響を避けることができる。すなわち、真空断熱材50の4辺の端部が外箱又は内箱に接していると、当該端部を介した熱伝導の回り込み、いわゆるヒートブリッジが発生して断熱性能が低くなるので、真空断熱材50を外箱と内箱の略中間位置に配置する必要がある。
 そこで、図4、図5及び図6(a)に示すように、スペーサ70の接着面70aに図示しない合成ゴム系粘着タイプのホットメルト接着剤を塗布し、真空断熱材50の所定位置に複数のスペーサ70を貼付ける。図6に示すように、発泡方向23bに沿って並列にH形断面形状のスペーサを貼り付ける。また、支持部材80の一面に同様な接着剤を塗布して真空断熱材50の所定位置に複数の支持部材80を貼り付ける。これによって、真空断熱材50の薄厚方向の両面にスペーサ70と支持部材80が配置された構造体ができあがる。続いて、スペーサ70の接着面70bにも同様にホットメルト接着剤を塗布し、外箱21eの内側の面に接着した後に、支持部材80の他面に同様な接着剤を塗布して内箱22の外側面を当接させて固着する。
 なお、真空断熱材の外箱と内箱の略中間位置への配置(組み込み)手法については、上述の手法に限ることはなく、例えば、スペーサを接着後の真空断熱材を外箱の内側面に接着配置した後、内箱22の外側面に、二液硬化性の発泡ウレタン(ウレタンと発泡剤)を液状のまま数箇所に直接滴下させ、略ボール状に発泡固化させてこの固化したものを支持部材80としてもよい。この支持部材80の固着された内箱を真空断熱材に当接させることによって組み込み完了となる。この支持部材により、外箱21eと内箱22を組合せた際に真空断熱材50eがスペーサ70と支持部材80によってサンドイッチされた状態に保持することができる。
 支持部材80については発泡ウレタン以外にもフォームメルト等の発泡系接着剤を内箱22或いは真空断熱材50eに直接塗布したり、ブロック状に成形したスチロフォームや硬質ウレタンフォーム等の発泡断熱材等を内箱22或いは真空断熱材50eに配置してもよい。樹脂材料からなる成形品等を予め内箱22に嵌め込みや接着等で配置してもよい。
 以上説明した真空断熱材50の冷蔵庫への組み込みによって、真空断熱材は外箱と内箱から離れた状態で設置されることとなり、真空断熱材によるヒートブリッジによる断熱性能の低下を回避することができ、さらに支持手段80によって真空断熱材が内箱と一定の間隔を保持しているので、発泡ウレタンの発泡立ち上がりに伴う真空断熱材の内箱方向への剥がれを防止することができる。
 真空断熱材の組み込みが完了した後に、図7に示すように、発泡ウレタンを注入した結果、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eのそれぞれの空間には、未充填部(ボイド)部は確認されず、発泡ウレタン23が均一に充填されていることを確認した。
 第1の実施形態に係る冷蔵庫の断熱性能を測定した結果、後述する比較例1(対比する基準となる構成例)を100(指数)とした場合、96(数値が小さい方が高断熱性能を表す)となり、真空断熱材50eを発泡ウレタン23の略中間に配置することで、断熱性能が約4%改善することを確認した。
「第2の実施形態」
 次に、本発明の第2の実施形態に係る真空断熱材を備えた冷蔵庫におけるスペーサの構造について、図8を参照しながら以下説明する。図8は第2の実施形態に関するスペーサの外箱に対する配置と発泡ウレタンの発泡方向を示す図である。第2の実施形態においても、図1、図3、図4、図5及び図7で説明した第1の実施形態に係る真空断熱材を備えた冷蔵庫の構造については同様であるので、この構造を援用する。
 図8において、第2の実施形態に用いたスペーサ71は、発泡ウレタン23と同じものを予め図示しない成形型で所定の形状に成形したもので、第1の実施形態のスペーサ70と同様に連続した平面からなる接着面71a,71bを有し、発泡ウレタン23との接着を強固にするため、発泡方向23bと同方向に貫通しない略溝部(不図示)を設けてもよい。図8(a)に示すスペーサ71の具体例は、レール状のH形断面形状ではなくて、製作上の簡易性から矩形断面の形状を形成している。
 第2の実施形態のスペーサ71については真空断熱材50eや外箱21eと接着しやすいように、少なくとも接着面71a,71bの表面はスキン層を形成していることが好ましい。それ以外の仕様については第1の実施形態と同様である。スペーサ71については硬質ウレタンフォームに限定するものではなく、スチロフォーム、フェノールフォーム、その他、断熱効果のあるものであれば使用することができる。取扱い性やコスト面を考慮すると、好ましくは発泡系の断熱部材がよい。また、スペーサ71の形状については、図8(b)に示すように、発泡ウレタン23の発泡方向23bに対して傾斜した傾斜面72cを有するスペーサ72や、図8(c)のようなH形断面のスペーサ73でもよい。
 上述した仕様のスペーサを用いて、発泡ウレタン23を注入した結果、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eのそれぞれの空間に、未充填部(ボイド) 部は確認されず、第1の実施形態と同様に発泡ウレタン23が均一に充填されていることを確認した。第2の実施形態を採用した冷蔵庫の断熱性能を測定した結果、後述する比較例1を100(指数)とした場合、95となり良好な結果が得られた。
「本実施形態と対比すべき基準となる比較例1」
 上述した本発明の第1と第2の実施形態と対比すべき断熱性能に関する基準の比較例1について、図9を参照しながら説明する。図9は本発明の実施形態と対比すべき断熱性能に関する基準の比較例1を示す図であり、X-X線の切断図である。
 比較例1に示す冷蔵庫は、本発明の第1の第2の実施形態において、両側面である外箱21eの真空断熱材50eはスペーサ70を使用せずに、従来技術のように、外箱21eの内面にホットメルト接着剤で直接貼り付け、内箱22には支持部材80を設けない構造とした。それ以外は全て第1と第2の実施形態と同じ仕様とした。
 以上の仕様で発泡ウレタンを充填した結果、真空断熱材50eと内箱22の間には未充填部(ボイド)部は確認されず、発泡ウレタンが均一に充填されていることを確認し、未充填部効果には問題はないが、比較例1の冷蔵庫の断熱性能については、前述の通り100(指数)である(基準値とする)。
「本実施形態と対比すべき基準となる比較例2」 
 図10は本発明の実施形態と対比すべき断熱性能に関する比較例2を示す図であり、ブロック状にスペーサを配列した配置図である。比較例2として示す冷蔵庫は、本発明の第1の第2の実施形態において採用した、真空断熱材50eを固定するスペーサ70の代わりに、図10の図示するようにスチロフォームからなるブロック材75を複数用い、第1と第2の実施形態と同様に真空断熱材50eに図示しないホットメルト接着剤を用いて貼り付けた後、外箱21eに接着配置した。そして、内箱22側には支持部材80を設けない仕様とした。それ以外は全て第1と第2の実施形態と同じとした。
 以上の仕様で発泡ウレタンを注入した結果、発泡ウレタンが真空断熱材50eと外箱21eの間のブロック材75が比較的少なく配置された部分に多く流れてしまい、発泡ウレタン23の発泡圧で真空断熱材50eが内箱22側に押され、ブロック材75から剥がれてしまった(支持部材が内箱との間に介在していないので)。これにより真空断熱材50eは内箱22と接触し、この部分に大きな未充填部(ボイド)部が発生したため、発泡ウレタン23を均一に充填することができなかった。その後、同じ仕様で何度か試したが、発泡ウレタン23の注入配分や注入量を調整することで未充填部(ボイド)発生を防止できる場合もあったが、ウレタン充填不良の発生頻度が多く、不安定な結果となった。
 比較例2で未充填部(ボイド)部がない冷蔵庫の断熱性能については、比較例1を100(指数)とした場合102となった。多数のブロック材75を使用したことにより、発泡ウレタンの流動を阻害したため、断熱性能を悪化させたものと考えられる。
「第3の実施形態」
 次に、第3の実施形態に関するスペーサの形状と放熱パイプとの関連構造並びに配置構造について、図11と図12を参照しながら以下説明する。第3の実施形態に用いたスペーサ77は、図11(a)に示すように、第1の実施形態のスペーサ70に放熱パイプ90が当接しないように逃げ溝を設けたものである。図11(b)に示すように、外箱21eの内面にアルミテープ91で固定された放熱パイプ90の投影面上にスペーサ77を設置することができるように、接着面77bに放熱パイプ90用の逃げ溝77cを設けた。溝77cについては、放熱パイプ90の直径よりも広い幅と高さとして、発泡ウレタン23が放熱パイプ23と溝77cの間を流動して埋まるように設定した。放熱パイプ90については図示の通り数回曲げた全長が長いものを使用した。それ以外については第1の実施形態と同じ仕様とした。
 以上の仕様で発泡ウレタンを充填した結果、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eの間、さらには放熱パイプ90の周囲のそれぞれには未充填部(ボイド)部は確認されず、発泡ウレタンが均一に充填されていることを確認した。
 第3の実施形態の冷蔵庫の断熱性能を測定した結果、比較例1を100(指数)とした場合96となり、実施例1と同様の効果が得られた。また、1年相当経過後に断熱性能を測定した結果、指数99を示した。
「本実施形態と対比すべき基準となる比較例3」
 図13は本発明の実施形態と対比すべき断熱性能に関する比較例3を示す図であり、真空断熱材の周辺に放熱パイプを配列した配置図である。比較例3は前述の比較例1と同じく両側面である外箱21eに真空断熱材50eをホットメルト接着剤で直接貼り付け、内箱22には支持部材80を設けない仕様とし、真空断熱材50eの周囲に放熱パイプ90を図示の如く配置した。それ以外は第1の実施形態と同じ仕様とした。
 以上の仕様で発泡ウレタンを充填した結果、外箱21eと真空断熱材50eの間および内箱22と真空断熱材50eの間、さらには放熱パイプ90の周囲のそれぞれには未充填部(ボイド)部は確認されず、発泡ウレタンが均一に充填されていることを確認した。比較例3の冷蔵庫の断熱性能を測定した結果、比較例1と同等であった。また、1年相当経過後に断熱性能を測定した結果、指数107を示した。
 以上説明した本発明の第1、第2及び第3の実施形態と比較例1,2,3とを対比した件を取り纏めると次のようになった。本実施形態と比較例の消費電力についてみると、これらの冷蔵庫の消費電力量を測定した結果、比較例1を100(指数)とした場合、第1の実施形態が90、第2の実施形態が89、第3の実施形態が85、比較例2が106、比較例3が103となった。第3の実施形態については、放熱パイプ90を配置した結果、放熱性が向上した効果により消費電力量が低減し、省エネ性で優位であることが確認できた。また、第3の実施形態と比較例3の1年相当経過後の断熱性能から、真空断熱材と放熱パイプが近接して配置された場合、真空断熱材が放熱パイプの熱影響により断熱性能が悪化している傾向が見られるが、第3の実施形態のように一定距離を維持し、放熱パイプが発泡ウレタンで断熱されることによって真空断熱材に与える熱影響の度合いが軽減されるため断熱性能の経時劣化を抑制しているといえる。
 従来技術のように、スペーサを外箱にのみ設置して真空断熱材を配置したのでは発泡ウレタンの発泡圧で真空断熱材が剥がされ、ウレタンの未充填部(ボイド)の発生等の不具合発生頻度が高いものとなっていたのに対して、本実施形態に係る冷蔵庫は、真空断熱材を発泡ウレタンの略中間にスペーサと支持部材によって配置することで、真空断熱材特有のヒートブリッジ影響を低減することができ、断熱性能の良好な省エネ冷蔵庫を提供できるものである。本実施形態のように、真空断熱材の固定部材が連続した平面からなる接着面を有する形状にしたことで、組み立て作業性が飛躍的に向上し、組み立てにかかる工数低減によるコスト低減に効果を発揮するものである。具体的には、真空断熱材を配置する際、スペーサにおける真空断熱材および外箱との接着面を連続した平面とすることで、接着面積を大きくすることができるため、スペーサと真空断熱材および外箱との接着を強固にすることを可能とし、接着面が連続した平面であるため、接着剤塗布作業や貼付け作業がしやすくなる。さらに、内箱側又は真空断熱材の内箱側の面に、支持部材を配置することによって、スペーサと支持部材により真空断熱材がサンドイッチされる構造がとれるため、発泡圧によって真空断熱材が剥がされることはないという効果が期待できる。
 また、真空断熱材の投影面内に放熱パイプを配置しても、真空断熱材が熱による断熱性能の悪化等を生じさせない距離を確保できる逃げ溝付きのスペーサを採用したことによって、放熱特性が大幅に向上し、より省エネを実現できる冷蔵庫を提供できるものである。本実施形態は冷蔵庫のみならず、断熱材を必要とする製品、機器、住宅・建物及び自動車や電車等の車両分野にも広く適用できる。
 1;冷蔵庫、2;冷蔵室、3a;製氷室、3b;上段冷凍室、4;下段冷凍室、5;野菜室、6a;冷蔵室扉、6b;冷蔵室扉、7a;製氷室扉、7b;上段冷凍室扉、8;下段冷凍室扉、9;野菜室扉、10;扉用ヒンジ、11;パッキン、12,14;断熱仕切り、13;仕切り部材、20;箱体、21;外箱、21a;天板、21b;後板、21d;底板、21e;側面、21f;前面、22;内箱、23;断熱材、23a;注入方向、23b;発泡方向、25;注入孔、27;送風機、28;冷却器、30;圧縮機、31;凝縮機、33;発泡ポリスチレン、40;凹部、41;電気部品、42;カバー、50,50a,50b,50c,50d,50e;真空断熱材、51;芯材、52;内包材、53;外被材、54;吸着剤、70;スペーサ、70a,70b;接着面、70c;柱状部、71;スペーサ、71a,71b;接着面、72;スペーサ、72c;傾斜部、73;スペーサ、75;ブロック材、77;スペーサ、77c;溝部、80;支持部材、90;放熱パイプ、91;アルミテープ。

Claims (11)

  1.  外箱と内箱の間に発泡ウレタンと真空断熱材とを備えた冷蔵庫であって、
     前記真空断熱材は、その一面にスペーサを介して前記外箱と離隔され、その他面に支持手段を介して前記内箱と離隔されて設置され、
     前記真空断熱材と前記外箱の間、及び前記真空断熱材と前記内箱の間に前記発泡ウレタンが充填されている
     ことを特徴とする冷蔵庫。
  2.  請求項1において、
     前記スペーサは、前記真空断熱材及び前記外箱との接着面が連続した平坦面を形成し、
     さらに、前記スペーサは、前記外箱と前記真空断熱材との間に設けられた注入口から底面へ前記発泡ウレタンが液流動する方向、及び前記底面から前記注入口の方向へ前記発泡ウレタンが発泡流動する方向において、前記液流動及び発泡流動を遮らない空間を確保できるように複数配列される
     ことを特徴とする冷蔵庫。
  3.  請求項1において、
     前記スペーサは、前記発泡ウレタンの流動方向に沿う平面に、固化した発泡ウレタンとの固着を強固にする表面形状を有することを特徴とする冷蔵庫。
  4.  請求項3において、
     前記スペーサの平面には、前記平面を貫通する穴が前記流動方向に複数設けられることを特徴とする冷蔵庫。
  5.  請求項3において、
     前記スペーサの平面には、前記流動方向に沿った溝が前記流動方向と交差する方向に複数設けられることを特徴とする冷蔵庫。
  6.  請求項2において、
     前記スペーサは、前記発泡ウレタンの流動方向に沿う平面に、固化した発泡ウレタンとの固着を強固にする表面形状を有することを特徴とする冷蔵庫。
  7.  請求項6において、
     前記スペーサの平面には、前記平面を貫通する穴が前記流動方向に複数設けられることを特徴とする冷蔵庫。
  8.  請求項6において、
     前記スペーサの平面には、前記流動方向に沿った溝が前記流動方向と交差する方向に複数設けられることを特徴とする冷蔵庫。
  9.  請求項1において、
     前記スペーサは、その断面形状が略H形を形成し、前記略H形における対向する平坦面が前記外箱と前記真空断熱材との接着面となる
     ことを特徴とする冷蔵庫。
  10.  請求項9において、
     前記平坦面の一方に溝又は凹部を設け、前記外箱に固定された放熱パイプを前記溝又は凹部に配設することを特徴とする冷蔵庫。
  11.  請求項1において、
     前記支持部材は、発泡系の材料からなり、前記真空断熱材の前記他面に又は前記内箱の外側面に配設されることを特徴とする冷蔵庫。
PCT/JP2009/003859 2009-05-29 2009-08-11 真空断熱材を備えた冷蔵庫 WO2010137081A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801595882A CN102449417A (zh) 2009-05-29 2009-08-11 具备真空绝热材料的冰箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009131245A JP2010276310A (ja) 2009-05-29 2009-05-29 真空断熱材を備えた冷蔵庫
JP2009-131245 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010137081A1 true WO2010137081A1 (ja) 2010-12-02

Family

ID=43222227

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003859 WO2010137081A1 (ja) 2009-05-29 2009-08-11 真空断熱材を備えた冷蔵庫

Country Status (4)

Country Link
JP (1) JP2010276310A (ja)
KR (1) KR20120024665A (ja)
CN (1) CN102449417A (ja)
WO (1) WO2010137081A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102735015A (zh) * 2011-04-15 2012-10-17 三菱电机株式会社 冰箱
EP2463605A3 (de) * 2010-12-09 2014-01-22 BSH Bosch und Siemens Hausgeräte GmbH Gehäusekomponente für ein Kältegerät
EP4067782A4 (en) * 2019-11-26 2022-12-28 Qingdao Haier Refrigerator Co., Ltd REFRIGERATION DEVICE

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101861832B1 (ko) 2011-11-04 2018-05-29 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
JP6021064B2 (ja) * 2013-01-10 2016-11-02 パナソニックIpマネジメント株式会社 断熱パネルおよびその製造方法
WO2014196609A1 (ja) * 2013-06-07 2014-12-11 三菱電機株式会社 断熱箱体及び冷蔵庫
WO2017048793A1 (en) 2015-09-14 2017-03-23 Viking Cold Solutions, Inc. Interior integration of phase change material and insulated packaging for the temperature preservation of perishable contents
CN107806731A (zh) * 2016-09-09 2018-03-16 松下电器产业株式会社 隔热箱
KR101962146B1 (ko) * 2018-05-21 2019-03-26 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
JP6768102B2 (ja) * 2019-03-04 2020-10-14 東芝ライフスタイル株式会社 断熱キャビネット
JP7261459B2 (ja) * 2019-03-05 2023-04-20 アクア株式会社 冷蔵庫およびその製造方法
KR102082314B1 (ko) * 2019-03-12 2020-02-27 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
CN111721058A (zh) * 2019-03-21 2020-09-29 青岛海尔电冰箱有限公司 一种真空绝热板的贴敷方法及冰箱
CN111721059A (zh) * 2019-03-21 2020-09-29 青岛海尔电冰箱有限公司 一种真空绝热板的贴敷方法及冰箱
CN109968580A (zh) * 2019-03-28 2019-07-05 合肥华凌股份有限公司 制冷设备及其生产方法
KR102257728B1 (ko) * 2019-08-02 2021-05-31 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
KR102182071B1 (ko) * 2020-01-31 2020-11-23 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
KR102332599B1 (ko) * 2020-01-31 2021-12-01 엘지전자 주식회사 진공 공간부를 구비하는 냉장고
CN111486652B (zh) * 2020-02-28 2022-01-25 青岛海尔电冰箱有限公司 冰箱
CN111238142B (zh) * 2020-02-28 2022-01-21 青岛海尔电冰箱有限公司 冰箱
JP2022077371A (ja) * 2020-11-11 2022-05-23 アクア株式会社 冷蔵庫
KR102491917B1 (ko) * 2020-11-17 2023-01-27 엘지전자 주식회사 진공 공간부를 구비하는 냉장고

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155884U (ja) * 1984-03-22 1985-10-17 シャープ株式会社 断熱箱体
JPH11270778A (ja) * 1998-03-20 1999-10-05 Isuzu Motors Ltd 断熱部材、および断熱壁構造
JP2005055086A (ja) * 2003-08-05 2005-03-03 Mitsubishi Electric Corp 冷蔵庫及びその製造方法
JP2005299972A (ja) * 2004-04-08 2005-10-27 Sanyo Electric Co Ltd 冷蔵庫
JP2007178080A (ja) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd 冷蔵庫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60155884U (ja) * 1984-03-22 1985-10-17 シャープ株式会社 断熱箱体
JPH11270778A (ja) * 1998-03-20 1999-10-05 Isuzu Motors Ltd 断熱部材、および断熱壁構造
JP2005055086A (ja) * 2003-08-05 2005-03-03 Mitsubishi Electric Corp 冷蔵庫及びその製造方法
JP2005299972A (ja) * 2004-04-08 2005-10-27 Sanyo Electric Co Ltd 冷蔵庫
JP2007178080A (ja) * 2005-12-28 2007-07-12 Matsushita Electric Ind Co Ltd 冷蔵庫

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463605A3 (de) * 2010-12-09 2014-01-22 BSH Bosch und Siemens Hausgeräte GmbH Gehäusekomponente für ein Kältegerät
CN102735015A (zh) * 2011-04-15 2012-10-17 三菱电机株式会社 冰箱
EP4067782A4 (en) * 2019-11-26 2022-12-28 Qingdao Haier Refrigerator Co., Ltd REFRIGERATION DEVICE

Also Published As

Publication number Publication date
CN102449417A (zh) 2012-05-09
JP2010276310A (ja) 2010-12-09
KR20120024665A (ko) 2012-03-14

Similar Documents

Publication Publication Date Title
WO2010137081A1 (ja) 真空断熱材を備えた冷蔵庫
JP2010276308A (ja) 真空断熱材を備えた冷蔵庫
JP5492685B2 (ja) 真空断熱材及びそれを用いた冷蔵庫
JP5689387B2 (ja) 冷蔵庫及びその製造方法
KR100662530B1 (ko) 냉장고
KR100617666B1 (ko) 냉장고
JP5544338B2 (ja) 真空断熱材及びこれを用いた冷蔵庫
JP2009228917A (ja) 冷蔵庫
JP2009024922A (ja) 冷蔵庫
JP5372877B2 (ja) 真空断熱材及びそれを用いた冷蔵庫
JP2013061131A (ja) 真空断熱材を備えた冷蔵庫
JP2013119878A (ja) 真空断熱材用芯材、その真空断熱材用芯材を有する真空断熱材及びその真空断熱材を適用した冷蔵庫
JP2011153721A (ja) 冷蔵庫
JP5401258B2 (ja) 冷蔵庫
JP2011099566A (ja) 真空断熱パネル及び冷蔵庫
JP2011149624A (ja) 冷蔵庫
JP2012026583A (ja) 冷蔵庫
JP2013053722A (ja) 真空断熱材及びこれを用いた断熱機器
JP2013024440A (ja) 冷蔵庫
JP5401422B2 (ja) 真空断熱材及びこれを用いた冷蔵庫
JP2012026622A (ja) 真空断熱材及びこれを用いた冷蔵庫
JP5982276B2 (ja) 真空断熱材及び真空断熱材を用いた冷蔵庫
JP2015055368A (ja) 真空断熱材及びそれを用いた冷蔵庫
JP6000922B2 (ja) 真空断熱材及びそれを用いた冷温熱機器
JP2013249975A (ja) 冷蔵庫

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159588.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117028317

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09845148

Country of ref document: EP

Kind code of ref document: A1