WO2010134344A1 - 炭化珪素半導体装置およびその製造方法 - Google Patents

炭化珪素半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2010134344A1
WO2010134344A1 PCT/JP2010/003389 JP2010003389W WO2010134344A1 WO 2010134344 A1 WO2010134344 A1 WO 2010134344A1 JP 2010003389 W JP2010003389 W JP 2010003389W WO 2010134344 A1 WO2010134344 A1 WO 2010134344A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
type
silicon carbide
concentration
semiconductor device
Prior art date
Application number
PCT/JP2010/003389
Other languages
English (en)
French (fr)
Inventor
渡辺友勝
三浦成久
中尾之泰
谷岡寿一
古橋壮之
日野史郎
今泉昌之
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2011514340A priority Critical patent/JP5408248B2/ja
Publication of WO2010134344A1 publication Critical patent/WO2010134344A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors
    • H01L29/7828Vertical transistors without inversion channel, e.g. vertical ACCUFETs, normally-on vertical MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor

Definitions

  • the present invention relates to a method for manufacturing a silicon carbide semiconductor device.
  • SiC silicon carbide
  • Patent Document 1 As a method for forming a p-base ohmic contact in an SiC device, when forming a high-concentration p-type impurity region (p ++ region) for the contact in the SiC layer, p-type impurity ions (Al , B, Ga, etc.) has been proposed to be performed at a temperature of 400 ° C. or higher. According to this method, it is possible to prevent the crystallinity of the contact portion from being deteriorated due to ion implantation, and to avoid contact failure in the SiC device. Further, Patent Document 2 shows an example of suppressing crystal deterioration when ion implantation is performed by heating the SiC layer to 400 ° C. or lower when performing ion implantation at a certain concentration into the SiC layer.
  • p-type impurity ions Al , B, Ga, etc.
  • p-type ions high concentration (1e19 ⁇ 1e21cm -3) (Al , B, Ga , etc.)
  • the metal electrode Made by connection In order to lower the contact resistivity, it is effective to set the ion implantation concentration higher, but on the other hand, since the high concentration ion implantation significantly deteriorates the crystal in the p ++ region, Can cause process failure. For example, in the sacrificial oxidation process or the hydrogen etching process at a high temperature, the p ++ region is etched deeper than the other regions. against this background, a method for forming a higher concentration p ++ region without causing a process failure is desired.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a silicon carbide semiconductor device capable of reducing the ohmic contact resistance without causing a process failure and a method for manufacturing the same. .
  • a method for manufacturing a silicon carbide semiconductor device includes a step of preparing a substrate having a silicon carbide layer, and implanting predetermined ions into the silicon carbide layer to a depth of 50 nm from the surface of the silicon carbide layer.
  • the range of the impurity concentration of the ions form a 1e20 cm -3 or less in the region and a high concentration of impurity concentration is 1e20 cm -3 or more of the ions to the surface from a depth of more than 50nm position of the silicon carbide layer
  • a silicon carbide semiconductor device includes a substrate having a silicon carbide layer, a region formed at a depth of 50 nm from the surface of the silicon carbide layer, and a concentration of ion-implanted impurities of 1e20 cm ⁇ 3 or less. And a high concentration region formed at a depth of 50 nm or more from the surface of the silicon carbide layer, the concentration of the ion-implanted impurity being 1e20 cm ⁇ 3 or more, and the high concentration region from the surface of the silicon carbide layer.
  • An opening and an electrode that is in ohmic contact with the impurity region formed in the opening are provided.
  • the present invention since it is possible to suppress the crystal deterioration in the surface portion of the impurity region, it is possible to prevent the upper surface of the impurity region from being excessively etched even through a high temperature process such as a sacrificial oxidation process. Further, since the impurity region has a high concentration region having an impurity concentration of 1e20 cm ⁇ 3 or more, the resistance can be reduced. Further, by forming the electrode that is in ohmic contact with the impurity region in the opening reaching the high concentration region, a low contact resistivity can be realized between the impurity region and the electrode.
  • FIG. 1 is a diagram showing a configuration of a silicon carbide semiconductor device according to a first embodiment.
  • 5 is a process diagram showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 5 is a process diagram showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 5 is a process diagram showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 5 is a process diagram showing the method for manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 5 shows a structure of a silicon carbide semiconductor device according to a second embodiment.
  • FIG. 11 is a process diagram showing a method for manufacturing a silicon carbide semiconductor device according to a second embodiment.
  • FIG. 11 is a process diagram showing a method for manufacturing a silicon carbide semiconductor device according to a second embodiment.
  • FIG. 11 is a process diagram showing a method for manufacturing a silicon carbide semiconductor device according to a second embodiment.
  • FIG. 6 shows a structure of a silicon carbide semiconductor device according to a third embodiment.
  • FIG. 6 is a process diagram showing a method for manufacturing a silicon carbide semiconductor device according to a third embodiment.
  • FIG. 6 is a process diagram showing a method for manufacturing a silicon carbide semiconductor device according to a third embodiment.
  • FIG. 1 is a diagram showing an example of a p-type ion implantation concentration profile in the depth direction of a SiC layer in a contact p ++ region of a silicon carbide semiconductor device (SiC device) according to the present invention.
  • This p ++ region is formed by implanting p-type ions such as Al, B, and Ga.
  • FIG. 1 also shows an example of a p ++ region for contact in a conventional SiC device in which p-type ions are implanted into a box profile as a comparison target.
  • p-type ions are implanted at a substantially uniform concentration (approximately 2e20 cm ⁇ 3 in the example of FIG. 1) from the surface of the SiC layer to a certain depth. That is, in the conventional contact p ++ region, a region where the p-type ion implantation concentration is high is exposed on the surface.
  • a region having an implantation concentration of 1e20 cm ⁇ 3 or more is referred to as a “high concentration region”.
  • the implantation concentration is 1e20 cm ⁇ 3 or less, so that the crystal deterioration is suppressed.
  • Figure 2 is a diagram for explaining a difference in etching characteristics between the p ++ region according to conventional p ++ region and the present invention shown in FIG. Specifically, after the implantation of p-type ions, the p ++ region is electrically activated by annealing at 1300 to 2100 ° C., the surface is thermally oxidized at 1100 to 1300 ° C., and an oxide film formed thereby is formed. The etching depth on the surface of the p ++ region when etching is performed using hydrofluoric acid is shown.
  • the region where the crystal is significantly degraded is also at a deep position.
  • the oxidation rate in the oxidation treatment is about the same as that in the region where ions are not implanted, and oxidation is prevented from proceeding at high speed. Therefore, it is oxidized only to a position shallower than the conventional p ++ region, and the subsequent etching depth by hydrofluoric acid does not become excessively deep.
  • FIG. 2 The results of FIG. 2 have been described for the case where a thermal oxide film is formed and removed using hydrofluoric acid (so-called sacrificial oxidation process). This phenomenon may be caused by a high-temperature hydrogen etching process or an additional SiC epitaxial process. The same is observed in the layer formation process. This means that the present invention is applicable to various high temperature processes.
  • FIG. 3 is a diagram showing a semiconductor device (TLM measurement device) used for the TLM measurement.
  • the TLM measurement device has a p-type ion implantation region 3 that is a p ++ region in an upper portion of a SiC epitaxial layer 2 formed on the SiC substrate 1.
  • a plurality of ohmic electrodes 6 that are in ohmic contact with the p-type ion implantation region 3 are formed on the p-type ion implantation region 3.
  • the thermal oxide film 5 formed on the SiC epitaxial layer 2 other than the region where the ohmic electrode 6 is formed is formed by a sacrificial oxidation process in the process of forming the TLM measurement device.
  • an SiC substrate 1 is prepared, and an SiC epitaxial layer 2 having a film thickness of 0.3 ⁇ m or more is laminated thereon by thermal CVD (Chemical Vapor Deposition) (FIG. 4A).
  • This thermal CVD method was performed under the conditions of temperature: 1500 to 1800 ° C., atmospheric pressure: 25 MPa, carrier gas species: H 2 , and generated gas species: SiH 4 and C 3 H 8 .
  • a mask (not shown) for selectively performing ion implantation is formed on the SiC epitaxial layer 2, and p-type impurity ions of Al, B, or Ga are implanted into the SiC epitaxial layer 2 to form p-type.
  • An ion implantation region 3 (impurity region) is formed (FIG. 4B).
  • This ion implantation is performed under the condition that the implantation concentration profile in the depth direction of the SiC epitaxial layer 2 is the p ++ region of the present invention shown in FIG. That is, while the implantation concentration of 1e20 cm -3 or less range from the surface of the SiC epitaxial layer 2 to a depth of 50 nm, to form a 1e20 cm -3 or more high density regions 3a deeper than 50nm. Further, a high concentration region 3a of 1e20 cm ⁇ 3 or more formed by this ion implantation is formed at a depth of 700 nm or less from the surface of the SiC epitaxial layer 2. This is because the breakdown voltage of the p-type ion implantation region 3 is lowered when the high concentration region 3a is formed at a position deeper than 700 nm from the surface.
  • the mask is removed, and activation annealing at 1300 to 2100 ° C. is performed to electrically activate the p-type ion implantation region 3 including the high concentration region 3a.
  • the surface of the SiC epitaxial layer 2 is thermally oxidized at 800 to 1400 ° C. to form a thermal oxide film 5 (FIG. 4C).
  • the thermal oxide film 5 on the region for forming the ohmic electrode 6 in the p-type ion implantation region 3 is removed using hydrofluoric acid, and the p-type ion implantation region 3 exposed in the region is removed by RIE.
  • An opening having a predetermined depth is formed by (Reactive Ion Etching) (FIG. 5A).
  • an ohmic electrode 6 is formed on the region (FIG. 5B).
  • the TLM measurement device of FIG. 3 is formed.
  • FIG. 6 is a diagram showing the results of TLM measurement using the TLM measurement device of FIG. 3, and the contact resistivity [ ⁇ cm 2 ] between the p-type ion implantation region 3 and the ohmic electrode 6 and the p-type ion
  • Each of the sheet resistances [ ⁇ / ⁇ ] of the implantation region 3 shows the dependency on the etching depth of the RIE (that is, the depth of the opening above the p-type ion implantation region 3) D [nm].
  • the sheet resistance value of the p-type ion implantation region 3 is almost constant until the etching depth D reaches about 70 nm, but increases beyond that. This is because when the etching depth is 70 nm or more, the high-concentration region 3a acting to lower the sheet resistance value of the p-type ion implantation region 3 is thinned by the etching.
  • the contact resistivity between the p-type ion implantation region 3 and the ohmic electrode 6 increases as the etching depth D increases until the etching depth D reaches about 70 nm. It becomes smaller, but increases beyond that. That is, the contact resistivity takes the minimum value (about 8e-5 ⁇ cm 2 ) when the etching depth D is about 70 nm. This is because the p-type ion implantation concentration peak in the p-type ion implantation region 3 is formed at a deep position from the surface of the SiC epitaxial layer 2 (in this example, a depth of about 70 nm).
  • the implantation concentration of p-type ions from the surface of the SiC epitaxial layer 2 to a depth of 50 nm is 1e20 cm ⁇ 3 or less. Therefore, excessive etching of the surface of the p-type ion implantation region 3 during a high temperature process such as thermal oxidation can be avoided.
  • a high-concentration region 3a having low resistance (a region where the implantation concentration of p-type ions is 1e20 cm ⁇ 3 or more) exists at a position deep from the surface of the SiC epitaxial layer 2, p-type ion implantation is performed as shown in FIG. If the ohmic electrode 6 is formed on the p-type ion implantation region 3 after removing the shallow portion of the region 3 (up to about 70 nm in the example of FIG. 6) by the RIE technique, the ohmic contact having a low resistivity (FIG. 6). In this example, about 8e-5 ⁇ cm 2 ) can be obtained.
  • the reason why the low contact resistivity was obtained is that the ohmic electrode 6 could be connected to a region where the ion implantation concentration was very high (high concentration region 3a).
  • a defect level is interposed at the connection portion between the amorphous layer and the ohmic electrode 6 in the p-type ion implantation region 3 caused by the crystal deterioration due to ion implantation. It is mentioned that electrical conduction occurred.
  • FIG. 7 shows a Raman spectrum obtained by evaluating a region where Al ions having a high concentration of 1e20 cm ⁇ 3 or more are ion-implanted into the 4H-type SiC epitaxial layer 12 under the ion implantation conditions of the present invention by a DUV Raman method.
  • FIG. 7A is a spectrum diagram when ion implantation is performed at room temperature (less than 175 ° C.)
  • FIG. 7B is an ion implantation at 175 ° C. (temperature of 175 ° C. or higher). It is a spectrum figure at the time of performing by.
  • the ion concentration of ions implanted into the region (near the surface) from the surface of the SiC epitaxial layer 12 to about 50 nm is 1e20 cm ⁇ 3 or less
  • the ion implantation is performed at a low temperature of less than 175 ° C.
  • the inventors set the implantation concentration of p-type ions near the surface to 1e20 cm ⁇ 3 or less, but at a position deeper than that.
  • the p-type ion implantation region 3 can be prevented from being excessively etched during a high-temperature process, and a low resistance and high resistance can be provided in a deep region of the p-type ion implantation region 3. It has been found that the concentration region 3a is formed.
  • the surface portion of the p-type ion implantation region 3 is removed by the RIE technique or the like to expose the high concentration region 3a, and the ohmic electrode is formed thereon. If 6 is connected, an ohmic contact with a low resistivity can be obtained.
  • a region formed by ions having an impurity concentration of 1e20 cm ⁇ 3 or less is defined as 50 nm or less from the surface (the depth at which the impurity concentration is 1e20 cm ⁇ 3 or more is less than 70 nm).
  • a low-resistance contact is obtained up to a depth of about 70 nm, which is an etching depth at which the sheet resistance increases. From this, it can be seen that the contact resistance is affected by the depth of the impurity concentration of approximately 1e20 cm ⁇ 3 , and that the contact having a low resistance can be obtained by etching up to the depth of the impurity concentration of 1e20 cm ⁇ 3 or more.
  • the depth of the region having an impurity concentration of 1e20 cm ⁇ 3 or less may be adjusted according to the etching depth. For example, when an etching process having a depth of about 30 nm is employed, the depth of the region having an impurity concentration of 1e20 cm ⁇ 3 or less can be set to about 30 nm or less. For example, when an etching process with a depth of about 70 nm is employed, the depth of the region having an impurity concentration of 1e20 cm ⁇ 3 or less can be set to about 70 nm or less.
  • FIG. 8 is a cross sectional view showing a configuration of the MOSFET as the silicon carbide semiconductor device according to the first embodiment of the present invention.
  • the MOSFET is formed using an n-type SiC substrate 11 and an n-type SiC epitaxial layer 12 formed thereon.
  • a p-type base region 13 is formed on the SiC epitaxial layer 12, and an n-type source region 14 is formed on the surface portion of the SiC epitaxial layer 12 in the p-type base region 13.
  • a channel layer 16 is formed on the SiC epitaxial layer 12 so as to straddle between the pair of n-type source regions 14. That is, the channel layer 16 has both end portions located on the two n-type source regions 14 and the center portion located on the SiC epitaxial layer 12 (n-type region) between the two p-type base regions 13. It is arranged.
  • a gate electrode 18 is provided via a gate insulating film 17. Similarly to the channel layer 16, the gate electrode 18 is also formed so as to straddle between the pair of n-type source regions 14. In other words, the gate electrode 18 also has both ends positioned on the two n-type source regions 14 and the center positioned on the SiC epitaxial layer 12 (n-type region) between the two p-type base regions 13. Arranged.
  • an interlayer insulating film 19 for electrically insulating the source and the gate is formed on the gate electrode 18.
  • the channel layer 16 may be omitted if not necessary.
  • a source electrode 20 connected to the n-type source region 14 is formed on the n-type source region 14.
  • a p-type contact region 15 which is a p ++ region is formed next to the n-type source region 14 in the p-type base region 13, and the source electrode 20 includes the n-type source region 14 and the p-type contact region. 15 is formed so as to straddle the top. Therefore, the source electrode 20 is not only connected to the n-type source region 14 but also ohmically connected to the p-type base region 13 through the p-type contact region 15.
  • the drain electrode 21 is formed on the lower surface of the SiC substrate 11.
  • the p-type contact region 15 has a high-concentration region 15 a having a p-type ion implantation concentration of 1e20 cm ⁇ 3 or more at a position deeper than 50 nm from the upper surface of the SiC epitaxial layer 12.
  • An opening having a depth reaching the high concentration region 15a is formed in the upper portion of the p-type contact region 15, and the source electrode 20 is formed so as to enter the opening. Therefore, the source electrode 20 is formed in the high concentration region 15a. It will be connected to the part.
  • the p-type contact region 15 and the source electrode 20 of the MOSFET of FIG. 8 correspond to the p-type ion implantation region 3 and the ohmic electrode 6 of the TLM measurement device shown in FIG. Therefore, an ohmic contact having a low resistivity is realized between the p-type contact region 15 and the source electrode 20.
  • an SiC substrate 11 whose surface is inclined by a certain angle (off angle) with respect to a crystal plane as a reference plane is prepared. Then, an SiC epitaxial layer 12 having a film thickness of 1.0 to 100 ⁇ m is laminated on the SiC substrate 11 by a thermal CVD method (FIG. 9A).
  • This thermal CVD method is performed, for example, under conditions of temperature: 1500 to 1800 ° C., pressure: 25 MPa, carrier gas species: H 2 , and generated gas species: SiH 4 and C 3 H 8 .
  • a p-type base region 13 formation mask is formed, and p-type impurity ions of Al, B, or Ga are implanted into the SiC epitaxial layer 12, thereby forming the p-type.
  • Base region 13 is formed. This ion implantation is performed, for example, under conditions of an implantation depth of 0.5 to 3.0 ⁇ m and an implantation concentration of 1e17 to 1e19 cm ⁇ 3 . Thereafter, the mask is removed.
  • a mask in which the formation region of the n-type source region 14 is opened is formed, and n-type impurity ions of N, As, or P are implanted into the SiC epitaxial layer 12.
  • a source region 14 is formed (FIG. 9B). This ion implantation is performed, for example, under conditions of an implantation depth of 0.1 to 2.0 ⁇ m and an implantation concentration of 1e18 to 1e20 cm ⁇ 3 . Remove the mask. Thereafter, the mask is removed.
  • This ion implantation is performed under the condition that the implantation concentration profile in the depth direction of the SiC epitaxial layer 12 is the p ++ region of the present invention shown in FIG. That is, while the implantation concentration of 1e20 cm -3 or less range from the surface of the SiC epitaxial layer 12 to a depth of 50 nm, to form a 1e20 cm -3 or more high density regions 15a deeper than 50nm.
  • the peak value of the implantation concentration in the high concentration region 15a is 1e20 to 1e22 cm ⁇ 3 .
  • the mask is removed, and activation annealing at 1300 to 2100 ° C. is performed to electrically activate the p-type base region 13, the n-type source region 14, and the p-type contact region 15.
  • an additional epitaxial growth layer is deposited on the SiC epitaxial layer 12 and is patterned using a lithography technique and an RIE technique to form the channel layer 16 (FIG. 10A). This step is not necessary when the formation of the channel layer 16 is omitted.
  • a thermal oxide film is formed on the surfaces of the SiC epitaxial layer 12 and the channel layer 16 at 800 to 1400 ° C. and removed by hydrofluoric acid (sacrificial oxidation process). Since the ion implantation concentration is 1e20 cm ⁇ 3 or less at the upper part of the p-type contact region 15 and no significant crystal deterioration occurs, the upper part of the p-type contact region 15 is excessively etched by this sacrificial oxidation process. Is prevented.
  • a gate insulating film 17 is formed on the entire surface (including the channel layer 16) on the SiC epitaxial layer 12 (FIG. 10B). Then, a gate electrode 18 is formed on the gate insulating film 17 by using a lithography technique and an etching technique (FIG. 10C). Subsequently, an interlayer insulating film 19 for electrically insulating the source and the gate is laminated on the entire surface (FIG. 11A).
  • the gate insulating film 17 and the interlayer insulating film 19 on the n-type source region 14 and the p-type contact region 15 are removed using a lithography technique and an etching technique, and the upper surfaces of the n-type source region 14 and the p-type contact area 15 are removed. A contact hole reaching to is formed.
  • the n-type source region 14 and the p-type contact region 15 (or only the portion of the p-type contact region 15) exposed in the contact hole are etched to a depth where the high-concentration region 15a is located by the RIE technique, and then the contact hole is formed.
  • the source electrode 20 connected to both the n-type source region 14 and the p-type contact region 15 is formed (FIG. 11B). As a result, the source electrode 20 is connected to the portion of the high concentration region 15 a of the p-type contact region 15.
  • the depth at which the upper portion of the p-type contact region 15 is etched is determined according to the implantation concentration profile of the p-type ions forming the p-type contact region 15. It is desirable that the depth surely reaches the high concentration region 15a, and the depth at which the contact resistivity between the source electrode 20 and the p-type contact region 15 is minimum is most desirable.
  • the material for the source electrode 20 is not limited to Ni, and Ti, Al, Mo, Cr, Pt, W, Si, TiC, or an alloy thereof may be used.
  • the drain electrode 21 is formed on the entire lower surface of the SiC substrate 11 (FIG. 11C). Thereafter, a heat treatment for alloying SiC with the contact portion of the source electrode 20 with the n-type source region 14 and the p-type contact region 15 and the contact portion of the drain electrode 21 with the SiC substrate 11 is performed. This heat treatment is performed, for example, under the conditions of temperature: 950 to 1000 ° C., processing time: 20 to 60 seconds, and heating rate: 10 to 25 ° C./second. Thus, the MOSFET shown in FIG. 8 is completed.
  • the present embodiment it is possible to realize an ohmic contact having a sufficiently low contact resistivity between the source electrode 20 and the p-type contact region 15 without causing a decrease in the breakdown voltage capability of the MOSFET or an increase in on-resistance.
  • FIG. 12 is a cross sectional view showing a configuration of a MOSFET as a silicon carbide semiconductor device according to the second embodiment.
  • elements having the same functions as those shown in FIG. 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the p-type base region 13 has a high-concentration region 13a having a p-type ion implantation concentration of 1e20 cm ⁇ 3 or more at a position deeper than 50 nm from the upper surface of the SiC epitaxial layer 12.
  • the p-type contact region 15 also has a high-concentration region 15a having a p-type ion implantation concentration of 1e20 cm ⁇ 3 or more at a position deeper than 50 nm from the upper surface of the SiC epitaxial layer 12, as in the first embodiment. Yes.
  • An opening having a depth reaching the high concentration region 15a is formed in the upper portion of the p-type contact region 15, and the source electrode 20 is formed so as to enter the opening. Therefore, the source electrode 20 is formed in the high concentration region 15a. Connected to the part.
  • an SiC substrate 11 whose surface is inclined by a certain angle (off angle) with respect to a crystal plane as a reference plane is prepared. Then, an SiC epitaxial layer 12 having a film thickness of 1.0 to 100 ⁇ m is laminated on the SiC substrate 11 by a thermal CVD method (FIG. 13A).
  • This thermal CVD method is performed, for example, under conditions of temperature: 1500 to 1800 ° C., pressure: 25 MPa, carrier gas species: H 2 , and generated gas species: SiH 4 and C 3 H 8 .
  • a p-type base region 13 formation mask is formed, and p-type impurity ions of Al, B, or Ga are implanted into the SiC epitaxial layer 12, thereby forming the p-type.
  • a base region 13 is formed (FIG. 13B).
  • This ion implantation is performed under the condition that the implantation concentration profile in the depth direction of the SiC epitaxial layer 12 is the p ++ region of the present invention shown in FIG. That is, while the implantation concentration of 1e20 cm -3 or less range from the surface of the SiC epitaxial layer 12 to a depth of 50 nm, to form a 1e20 cm -3 or more high density regions 15a deeper than 50nm.
  • the peak value of the implantation concentration in the high concentration region 15a is 1e20 to 1e22 cm ⁇ 3 . Thereafter, the mask is removed.
  • a mask in which the formation region of the n-type source region 14 is opened is formed, and n-type impurity ions of N, As, or P are implanted into the SiC epitaxial layer 12.
  • a source region 14 is formed (FIG. 13C). This ion implantation is performed, for example, under conditions of an implantation depth of 0.1 to 2.0 ⁇ m and an implantation concentration of 1e18 to 1e20 cm ⁇ 3 . Remove the mask. Thereafter, the mask is removed.
  • This ion implantation is performed under the condition that the implantation concentration profile in the depth direction of the SiC epitaxial layer 12 is the p ++ region of the present invention shown in FIG. That is, while the implantation concentration of 1e20 cm -3 or less range from the surface of the SiC epitaxial layer 12 to a depth of 50 nm, to form a 1e20 cm -3 or more high density regions 15a deeper than 50nm.
  • the peak value of the implantation concentration in the high concentration region 15a is 1e20 to 1e22 cm ⁇ 3 .
  • the mask is removed, and activation annealing at 1300 to 2100 ° C. is performed to electrically activate the p-type base region 13, the n-type source region 14, and the p-type contact region 15.
  • an additional epitaxial growth layer is deposited on the SiC epitaxial layer 12, and is patterned using a lithography technique and an RIE technique, thereby forming a channel layer 16 (FIG. 14A). This step is not necessary when the formation of the channel layer 16 is omitted.
  • a thermal oxide film is formed on the surfaces of the SiC epitaxial layer 12 and the channel layer 16 at 800 to 1400 ° C. and removed by hydrofluoric acid (sacrificial oxidation process).
  • the upper part of the n-type source region 14 and the p-type contact region 15 has an ion implantation concentration of 1e20 cm ⁇ 3 or less and no significant crystal degradation has occurred. Therefore, in this sacrificial oxidation process, the p-type base region 13 and the p-type contact region 15 are formed. Excessive etching of the upper portion of the contact region 15 is prevented.
  • a gate insulating film 17 is formed on the entire surface of the SiC epitaxial layer 12 (including on the channel layer 16) (FIG. 14B). Then, a gate electrode 18 is formed on the gate insulating film 17 by using a lithography technique and an etching technique (FIG. 14C). Subsequently, an interlayer insulating film 19 for electrically insulating the source and the gate is laminated on the entire surface (FIG. 15A).
  • the gate insulating film 17 and the interlayer insulating film 19 on the n-type source region 14 and the p-type contact region 15 are removed using a lithography technique and an etching technique, and the upper surfaces of the n-type source region 14 and the p-type contact area 15 are removed. A contact hole reaching to is formed.
  • the n-type source region 14 and the p-type contact region 15 (or only the portion of the p-type contact region 15) exposed in the contact hole are etched to a depth where the high-concentration region 15a is located by the RIE technique, and then the contact hole is formed.
  • the source electrode 20 connected to both the n-type source region 14 and the p-type contact region 15 is formed (FIG. 15B). As a result, the source electrode 20 is connected to the portion of the high concentration region 15 a of the p-type contact region 15.
  • the depth at which the upper portion of the p-type contact region 15 is etched is determined according to the implantation concentration profile of the p-type ions forming the p-type contact region 15. It is desirable that the depth surely reaches the high concentration region 15a, and the depth at which the contact resistivity between the source electrode 20 and the p-type contact region 15 is minimum is most desirable.
  • the material for the source electrode 20 is not limited to Ni, and Ti, Al, Mo, Cr, Pt, W, Si, TiC, or an alloy thereof may be used.
  • the drain electrode 21 is formed on the entire lower surface of the SiC substrate 11 (FIG. 15C). Thereafter, a heat treatment for alloying SiC with the contact portion of the source electrode 20 with the n-type source region 14 and the p-type contact region 15 and the contact portion of the drain electrode 21 with the SiC substrate 11 is performed. This heat treatment is performed, for example, under the conditions of temperature: 950 to 1000 ° C., processing time: 20 to 60 seconds, and heating rate: 10 to 25 ° C./second. Thus, the MOSFET shown in FIG. 12 is completed.
  • the contact resistivity is sufficient between the source electrode 20 and the p-type contact region 15 without causing a decrease in the breakdown voltage capability of the MOSFET and an increase in the on-resistance. Low ohmic contact.
  • the range from the surface of the SiC epitaxial layer 12 to a depth of 50 nm is set to an implantation concentration of 1e20 cm ⁇ 3 or less and 1e20 cm ⁇ 3 or more at a position deeper than 50 nm.
  • a high concentration region 15a is formed.
  • Embodiment 3 shows an example in which the present invention is applied to a diode element.
  • FIG. 16 is a cross sectional view showing a configuration of a diode element as the silicon carbide semiconductor device according to the third embodiment of the present invention.
  • the diode element is formed using an n-type SiC substrate 51 and an n-type SiC epitaxial layer 52 formed thereon.
  • a p-type body region 53 is formed on the SiC epitaxial layer 52
  • a p-type contact region 54 is formed on the surface portion of the SiC epitaxial layer 52 in the p-type body region 53
  • an anode electrode 57 is formed thereon. Is connected.
  • Cathode electrode 58 is provided on the lower surface of SiC substrate 51.
  • a p-type termination region 55 is formed on the outer periphery of the p-type body region 53 to suppress electric field concentration in that portion.
  • a protective insulating film 56 is provided on the surface of the diode element (the surface of the SiC epitaxial layer 52 excluding the formation region of the anode electrode 57).
  • the p-type contact region 54 has a high-concentration region 54 a having a p-type ion implantation concentration of 1e20 cm ⁇ 3 or more at a position deeper than 50 nm from the upper surface of the SiC epitaxial layer 52.
  • a high-concentration region 54 a having a p-type ion implantation concentration of 1e20 cm ⁇ 3 or more at a position deeper than 50 nm from the upper surface of the SiC epitaxial layer 52.
  • an opening having a depth reaching the high concentration region 54a is formed, and the anode electrode 57 is formed so as to enter the opening, so that the anode electrode 57 is formed in the high concentration region 54a. It will be connected to the part.
  • the p-type contact region 54 and the anode electrode 57 of the diode element in FIG. 16 correspond to the p-type ion implantation region 3 and the ohmic electrode 6 of the TLM measurement device shown in FIG. Therefore, an ohmic contact with a low resistivity is realized between the p-type contact region 54 and the anode electrode 57.
  • an SiC substrate 51 whose surface is inclined by a certain angle (off angle) with respect to a crystal plane as a reference plane is prepared.
  • an SiC epitaxial layer 52 having a film thickness of 1.0 to 100 ⁇ m is laminated on the SiC substrate 51 by a thermal CVD method (FIG. 17A).
  • This thermal CVD method is performed, for example, under conditions of temperature: 1500 to 1800 ° C., pressure: 25 MPa, carrier gas species: H 2 , and generated gas species: SiH 4 and C 3 H 8 .
  • a mask having an opening for forming the p-type body region 53 is formed, and p-type impurity ions of Al, B, or Ga are implanted into the SiC epitaxial layer 52, thereby forming the p-type.
  • Body region 53 is formed. This ion implantation is performed, for example, under conditions of an implantation depth of 0.5 to 3.0 ⁇ m and an implantation concentration of 1e17 to 1e19 cm ⁇ 3 . Thereafter, the mask is removed.
  • a mask having an opening for forming the p-type termination region 55 is formed, and p-type impurity ions of Al, B, or Ga are implanted into the SiC epitaxial layer 52, thereby forming the p-type.
  • a termination region 55 is formed (FIG. 17B). This ion implantation is performed, for example, under conditions of an implantation depth of 0.5 to 3.0 ⁇ m and an implantation concentration of 1e16 to 1e16 cm ⁇ 3 . Thereafter, the mask is removed.
  • a mask having an opening for forming the p-type contact region 54 is formed, and p-type impurity ions of Al, B, or Ga are implanted into the SiC epitaxial layer 52, whereby p ++ A p-type contact region 54 as a region is formed (FIG. 17C).
  • This ion implantation is performed under the condition that the implantation concentration profile in the depth direction of the SiC epitaxial layer 52 is as shown in the p ++ region of the present invention shown in FIG. That is, while the implantation concentration of 1e20 cm -3 or less range from the surface of the SiC epitaxial layer 52 to a depth of 50 nm, to form a 1e20 cm -3 or more high density regions 54a deeper than 50nm.
  • the peak value of the implantation concentration in the high concentration region 54a is 1e20 to 1e22 cm ⁇ 3 .
  • the mask is removed, and activation annealing at 1300 to 2100 ° C. is performed to electrically activate the p-type body region 53, the p-type contact region 54, and the p-type termination region 55.
  • a thermal oxide film is formed on the surface of the SiC epitaxial layer 52 at 800 to 1400 ° C., and is removed by hydrofluoric acid (sacrificial oxidation process). Since the ion implantation concentration is 1e20 cm ⁇ 3 or less at the upper part of the p-type contact region 54 and no significant crystal deterioration occurs, the upper part of the p-type contact region 54 is excessively etched by this sacrificial oxidation process. Is prevented.
  • a protective insulating film 56 is formed on the entire surface of the SiC epitaxial layer 52 (FIG. 18A). Then, the protective insulating film 56 on the p-type contact region 54 is removed using a lithography technique and an etching technique. Further, the exposed p-type contact region 54 is etched to a depth where the high-concentration region 54a is located by RIE technology, and Ni is laminated on that portion, thereby forming an anode electrode 57 connected to the p-type contact region 54 ( FIG. 18B). As a result, the anode electrode 57 is connected to the high concentration region 54a of the p-type contact region 54.
  • the depth at which the upper portion of the p-type contact region 54 is etched is determined according to the implantation concentration profile of the p-type ions forming the p-type contact region 54. It is desirable that the depth surely reaches the high concentration region 54a, and the depth at which the contact resistivity between the anode electrode 57 and the p-type contact region 54 is minimized is most desirable.
  • the material for the anode electrode 57 is not limited to Ni, and Ti, Al, Mo, Cr, Pt, W, Si, TiC, or an alloy thereof may be used.
  • the cathode electrode 58 is formed on the entire lower surface of the SiC substrate 51 (FIG. 18C). Thereafter, a heat treatment for alloying SiC with the contact portion between the n-type source region 14 and the p-type contact region 54 in the anode electrode 57 and the contact portion with the SiC substrate 51 in the cathode electrode 58 is performed. This heat treatment is performed, for example, under the conditions of temperature: 950 to 1000 ° C., processing time: 20 to 60 seconds, and heating rate: 10 to 25 ° C./second. Thus, the diode element shown in FIG. 16 is completed.
  • an ohmic contact having a sufficiently low contact resistivity is provided between the anode electrode 57 and the p-type contact region 54 without causing a decrease in the breakdown voltage capability of the diode element and an increase in the forward on-resistance. realizable.
  • the conductivity type of the SiC substrate 11 is replaced with a p-type in the configuration shown in FIG. 12, an IGBT configuration is obtained.
  • the source region (4) and source electrode (10) of the MOSFET correspond to the emitter region and emitter electrode of the IGBT, respectively, and the drain electrode (11) of the MOSFET corresponds to the collector electrode.
  • the present invention can also be applied to the n-type region.
  • the present invention when the present invention is applied to a p-channel MOSFET in which the conductivity type of each region is reversed with respect to the configuration of FIG. 12, the n-type base region (region 13) and the n-type contact region (region 15) are applied.
  • the implantation concentration of n-type impurity ions N, As, or P is set to 1e20 cm ⁇ in the range from the surface of the SiC epitaxial layer to a depth of 50 nm. 3 or less, and 1e20 cm ⁇ 3 or more at a position deeper than 50 nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 プロセス不良を伴わずにオーミックコンタクトの低抵抗化が可能な炭化珪素半導体装置およびその製造方法を提供する。炭化珪素半導体であるMOSFETは、SiCエピタキシャル層12に形成され、ソース電極20がオーミック接続するp型コンタクト領域15不純物領域を備える。p型コンタクト領域15は、SiCエピタキシャル層12の表面から50nmまでの深さの範囲では不純物濃度が1e20cm-3以下であり、且つ、表面から50nm以上の位置に不純物濃度が1e20cm-3以上の高濃度領域15aが形成されている。ソース電極20は、高濃度領域15aに達する開口内に形成されている。

Description

炭化珪素半導体装置およびその製造方法
 この発明は、炭化珪素半導体装置の製造方法に関するものである。
 珪素(Si)を用いたパワーデバイスの物性限界を打破するために、炭化珪素(SiC)を用いたパワーデバイスの開発が進んでいる。特に、低抵抗率のオーミックコンタクトは、炭化珪素半導体装置(SiCデバイス)に必要不可欠であり、それを実現するための高濃度ドーピング層形成技術の確立は極めて重要である。
 例えば下記の特許文献1では、SiCデバイスにおけるpベースオーミックコンタクトの形成手法として、そのコンタクト用の高濃度p型不純物領域(p++領域)をSiC層に形成する際、p型不純物イオン(Al、B、Ga等)の注入を400℃以上の温度で行うことが提案されている。この手法によれば、イオン注入によるコンタクト部の結晶性の悪化を防止でき、SiCデバイスにおけるコンタクト不良を回避することができる。また特許文献2では、SiC層へのある程度の濃度のイオン注入を行う際に、SiC層を400℃以下に加熱してイオン注入する場合の結晶劣化の抑制例が示されている。
特開2007-066959号公報 特開2007-227655号公報
 炭化珪素を用いたMOSFETのpベースオーミックコンタクトは、高濃度(1e19~1e21cm-3)のp型イオン(Al、B、Ga等)を注入して形成するp++領域と、金属電極との接続によって成される。コンタクト抵抗率を低くするためには、イオンの注入濃度をより高く設定することが有効であるが、その反面、高濃度のイオン注入はp++領域の結晶を著しく劣化させるため、デバイス作製時におけるプロセス不良の原因となり得る。例えば、犠牲酸化プロセスや高温での水素エッチング処理の際に、p++領域の部分が他の領域よりも深くエッチングされてしまう。このような背景から、プロセス不良を伴わない、より高濃度なp++領域の形成方法が望まれている。
 本発明は以上のような課題を解決するためになされたものであり、プロセス不良を伴わずにオーミックコンタクトの低抵抗化が可能な炭化珪素半導体装置およびその製造方法を提供することを目的とする。
 本発明に係る炭化珪素半導体装置の製造方法は、炭化珪素層を有する基板を用意する工程と、前記炭化珪素層に所定のイオンを注入して、前記炭化珪素層の表面から50nmまでの深さの範囲には前記イオンの不純物濃度が1e20cm-3以下の領域を形成し、且つ、前記炭化珪素層の表面から50nm以上の深さの位置に前記イオンの不純物濃度が1e20cm-3以上の高濃度領域を形成するイオン注入工程と、前記炭化珪素層の表面から前記高濃度領域に達する深さの開口を形成する工程と、前記開口内に前記高濃度領域とオーミック接続する電極を形成する工程とを備えるものである。
 本発明に係る炭化珪素半導体装置は、炭化珪素層を有する基板と、前記炭化珪素層の表面から50nmまでの深さの範囲に形成され、イオン注入された不純物の濃度が1e20cm-3以下の領域と、前記炭化珪素層の表面から50nm以上の深さに形成され、イオン注入された前記不純物の濃度が1e20cm-3以上の高濃度領域と、前記炭化珪素層の表面から前記高濃度領域に達する開口と、前記開口内に形成された前記不純物領域とオーミック接続する電極とを備えるものである。
 本発明によれば、不純物領域の表面部における結晶劣化を抑制できるため、例えば犠牲酸化プロセス等の高温プロセスを経ても不純物領域の上面が過剰にエッチングされることを防止できる。また不純物領域は、不純物濃度が1e20cm-3以上の高濃度領域を備えるため、その低抵抗化を図ることができる。また、不純物領域にオーミック接続させる電極を、高濃度領域に達する開口内に形成することにより、不純物領域と電極との間で低いコンタクト抵抗率を実現することができる。
本発明に係るp++領域におけるp型イオンの注入濃度プロファイルの一例を示す図である。 従来のp++領域と本発明に係るp++領域とのエッチング特性の違いを説明するための図である。 本発明に係るp++領域の評価を行うためのTLM測定に用いた半導体装置(TLM測定用デバイス)を示す図である。 TLM測定用デバイスの形成工程図である。 TLM測定用デバイスの形成工程図である。 TLM測定用デバイスを用いて評価した、p型イオン注入領域のシート抵抗およびpベースオーミックコンタクト抵抗率とエッチング深さとの関係を示す図である。 DUVラマン法で評価した、p型イオン注入領域のラマンスペクトル図である。 実施の形態1に係る炭化珪素半導体装置の構成を示す図である。 実施の形態1に係る炭化珪素半導体装置の製造方法を示す工程図である。 実施の形態1に係る炭化珪素半導体装置の製造方法を示す工程図である。 実施の形態1に係る炭化珪素半導体装置の製造方法を示す工程図である。 実施の形態2に係る炭化珪素半導体装置の構成を示す図である。 実施の形態2に係る炭化珪素半導体装置の製造方法を示す工程図である。 実施の形態2に係る炭化珪素半導体装置の製造方法を示す工程図である。 実施の形態2に係る炭化珪素半導体装置の製造方法を示す工程図である。 実施の形態3に係る炭化珪素半導体装置の構成を示す図である。 実施の形態3に係る炭化珪素半導体装置の製造方法を示す工程図である。 実施の形態3に係る炭化珪素半導体装置の製造方法を示す工程図である。
 以下、本発明の実施の形態について説明するが、まずは本発明の概要について説明する。図1は、本発明に係る炭化珪素半導体装置(SiCデバイス)のコンタクト用のp++領域におけるSiC層の深さ方向に対するp型イオンの注入濃度プロファイルの一例を示す図である。このp++領域は、Al、B、Ga等のp型イオンを注入することにより形成される。
 図1には、比較の対象として、p型イオンをボックスプロファイルに注入する従来のSiCデバイスにおけるコンタクト用のp++領域の例も示している。従来のSiCデバイスのコンタクト用p++領域では、SiC層の表面からある程度の深さまで範囲にほぼ均一濃度(図1の例では、2e20cm-3程度)でp型イオンが注入されていた。つまり、従来のコンタクト用p++領域では、p型イオンの注入濃度が高い領域が表面に露出している。
 それに対し、本発明に係るSiCデバイスのp++領域では、SiC層の表面から50nmまでの範囲では注入濃度を1e20cm-3以下にし、注入濃度が1e20cm-3以上の領域を50nmよりも深い位置に形成している。以下、注入濃度が1e20cm-3以上の領域を「高濃度領域」と称する。SiC層の表面から50nmまでの範囲では注入濃度を1e20cm-3以下にしているため、結晶劣化が抑制されている。
 図2は、図1に示した従来のp++領域と本発明に係るp++領域とのエッチング特性の違いを説明するための図である。具体的には、p型イオンの注入後、1300~2100℃のアニールによりp++領域を電気的に活性化し、その表面を1100~1300℃で熱酸化し、それにより形成された酸化膜をフッ化水素酸を用いてエッチングしたときにおける、p++領域表面のエッチング深さを示している。
 図2の表に示すように、従来のp++領域では表面から約100nm程度がエッチングされた。一方、本発明に係るp++領域では表面から約30nmだけがエッチングされ、これはイオンを注入していない領域と同等である。
 この結果は、イオンが高濃度に注入された領域では、結晶が著しく劣化するため、熱酸化処理における酸化速度が速くなることに起因している。即ち、従来のp++領域のようにイオン注入濃度が高い領域が表面に露出していると、熱酸化処理で表面から深い位置まで酸化され、その後のフッ化水素酸を用いたエッチングによって深くエッチングされる。
 一方、本発明のようにイオンが高濃度に注入された高濃度領域(1e20cm-3以上の領域)が深い位置に形成されていれば、著しく結晶が劣化した領域も深い位置になるため、熱酸化処理での酸化速度はイオンを注入していない領域と同程度であり、高速に酸化が進むことが防止される。よって、従来のp++領域よりも浅い位置までしか酸化されず、その後のフッ化水素酸によるエッチング深さが過剰に深くなることはない。
 図2の結果は、熱酸化膜を形成しそれをフッ化水素酸を用いて除去した場合(いわゆる犠牲酸化プロセス)について説明したが、この現象は、高温の水素エッチングプロセスや、追加のSiCエピタキシャル層形成プロセスにおいても同様に観察される。このことは本発明が、様々な高温プロセスに対して適用可能であることを意味している。
 また本発明者等は、本発明に係るp++領域を用いたコンタクト領域におけるコンタクト抵抗率について、TLM(Transfer Length Method)測定により評価を行った。図3は、そのTLM測定に用いた半導体装置(TLM測定用デバイス)を示す図である。
 図3の如く、当該TLM測定用デバイスは、SiC基板1上に形成されたSiCエピタキシャル層2内の上部にp++領域であるp型イオン注入領域3を有している。p型イオン注入領域3の上には、当該p型イオン注入領域3にオーミック接続する複数のオーミック電極6が形成されている。またSiCエピタキシャル層2上におけるオーミック電極6の形成領域以外の部分に形成されている熱酸化膜5は、当該TLM測定用デバイスの形成過程の犠牲酸化プロセスで形成したものである。
 ここで、図3のTLM測定用デバイスの製造工程を図4,図5に示す工程図に基づいて説明する。
 まずSiC基板1を用意し、その上に熱CVD(Chemical Vapor Deposition)法により、膜厚0.3μm以上のSiCエピタキシャル層2を積層する(図4(a))。この熱CVD法は、温度:1500~1800℃、気圧:25MPa、キャリアガス種:H2、生成ガス種:SiH4およびC38の条件で行った。
 SiCエピタキシャル層2の上に、イオン注入を選択的に行うためのマスク(不図示)を形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層2に注入することにより、p型イオン注入領域3(不純物領域)を形成する(図4(b))。
 このイオン注入は、SiCエピタキシャル層2の深さ方向の注入濃度プロファイルが、図1に示した本発明のp++領域のようになる条件で行う。即ち、SiCエピタキシャル層2の表面から50nmの深さまでの範囲を1e20cm-3以下の注入濃度にすると共に、50nmより深い位置に1e20cm-3以上の高濃度領域3aを形成する。また、このイオン注入で形成する1e20cm-3以上の高濃度領域3aをSiCエピタキシャル層2の表面から700nm以下の深さの位置に形成する。これは、高濃度領域3aを表面から700nmの深さより深い位置に形成すると、p型イオン注入領域3の耐圧が低下するからである。
 その後マスクを除去し、1300~2100℃の活性化アニールを行うことで、高濃度領域3aを含むp型イオン注入領域3を電気的に活性化させる。
 次に、800~1400℃でSiCエピタキシャル層2の表面を熱酸化させることにより、熱酸化膜5を形成する(図4(c))。続いて、p型イオン注入領域3のオーミック電極6を形成するための領域上の熱酸化膜5を、フッ化水素酸を用いて除去し、その領域に露出したp型イオン注入領域3をRIE(Reactive Ion Etching)により所定の深さの開口を形成する(図5(a))。そして、その領域上にオーミック電極6を形成する(図5(b))。以上により、図3のTLM測定用デバイスが形成される。
 図6は、図3のTLM測定用デバイスを用いたTLM測定の結果を示す図であり、p型イオン注入領域3とオーミック電極6との間のコンタクト抵抗率[Ωcm2]、およびp型イオン注入領域3のシート抵抗[Ω/□]それぞれにおける、上記のRIEのエッチング深さ(即ち、p型イオン注入領域3上部の開口の深さ)D[nm]への依存性を示している。
 図6に破線で示すように、p型イオン注入領域3のシート抵抗値は、エッチング深さDが約70nmに達するまではほぼ一定であるが、それを超えると増大する。これは、エッチング深さが70nm以上になると、p型イオン注入領域3のシート抵抗値を低くするように作用している高濃度領域3aがそのエッチングにより薄くなるためである。
 一方、図6に実線で示すように、p型イオン注入領域3とオーミック電極6との間のコンタクト抵抗率は、エッチング深さDが約70nmに達するまでは、エッチング深さDが大きくなるに従い小さくなるが、それを超えると増大する。つまりコンタクト抵抗率は、エッチング深さDが約70nmのときに最小値(約8e-5Ωcm2)をとる。これは、p型イオン注入領域3におけるp型イオンの注入濃度のピークが、SiCエピタキシャル層2の表面から深い位置(この例では約70nmの深さ)に形成されていたことによる。
 以上の評価により、図4および図5を用いて説明した手法で形成したp型イオン注入領域3では、SiCエピタキシャル層2の表面から50nmの深さまでのp型イオンの注入濃度を1e20cm-3以下にしているため、熱酸化等の高温プロセスの際にp型イオン注入領域3の表面が過剰にエッチングされることを回避できる。
 またSiCエピタキシャル層2の表面から深い位置に、低抵抗な高濃度領域3a(p型イオンの注入濃度が1e20cm-3以上の領域)が存在するため、図5(a)の如くp型イオン注入領域3の浅い部分(図6の例では70nm程度まで)をRIE技術により除去してから、p型イオン注入領域3の上にオーミック電極6を形成すれば、抵抗率の低いオーミックコンタクト(図6の例では約8e-5Ωcm2)を得ることができる。
 なお、低いコンタクト抵抗率が得られた要因としては、イオンの注入濃度が非常に高い領域(高濃度領域3a)に対してオーミック電極6を接続させることができたことが挙げられる。
 また、低いコンタクト抵抗率が得られたもう一つの要因としては、イオン注入による結晶劣化により生じたp型イオン注入領域3内のアモルファス層とオーミック電極6との接続部分において欠陥準位を介した電気伝導が生じたことが挙げられる。
 図7は、4H型のSiCエピタキシャル層12に、本発明のイオン注入条件により1e20cm-3以上の高濃度のAlイオンをイオン注入した領域を、DUVラマン(Deep UV Raman)法で評価したラマンスペクトル図である。ここで、図7の(a)は、イオン注入を室温(175℃未満)で行なった場合のスペクトル図であり、図7の(b)は、イオン注入を175℃(175℃以上の温度)で行なった場合のスペクトル図である。
 図7に示されるスペクトル図において、図7(b)のように175℃以上の温度でイオン注入された場合には、注入される前と同じポリタイプ(ここでは4H型)が保持されているのに対し、図7(a)のように175℃未満の低温でイオン注入された場合には、注入される前と同じポリタイプ(ここでは4H型)とは異なるポリタイプ(ここでは3C型)の結晶の存在を示すピークが見られる。
 図7の結果から、本発明のイオン注入のように高濃度のイオンを注入した場合、イオン注入時の温度が室温のように低い場合と175℃を超える温度の場合では、同じ低抵抗コンタクトが得られていても、結晶型が異なることがわかる。
 したがって、SiCエピタキシャル層12の表面から50nmまでの領域(表面付近)にイオン注入するイオン濃度を1e20cm-3以下にすることにより、175℃未満と低温でイオン注入した場合は、もとの結晶型を保つことは難しいが再結晶化により別のポリタイプへの成長が進むことによって低抵抗率のオーミックコンタクトが得られ、また、175℃以上の温度でイオン注入した場合は、注入後の活性化アニールによる元のポリタイプへの再結晶化が容易になり、さらに低抵抗率のオーミックコンタクトを得ることができる。
 このように本発明者等は、SiCエピタキシャル層2にp型イオン注入領域3を形成する際、表面近傍のp型イオンの注入濃度を1e20cm-3以下にする一方で、それよりも深い位置に1e20cm-3以上の高濃度注入を行うことにより、高温プロセス中にp型イオン注入領域3が過剰にエッチングされることを防止でき、且つ、p型イオン注入領域3の深い領域に低抵抗の高濃度領域3aが形成されることを見出した。このp型イオン注入領域3によれば、オーミック電極6を形成する際に、p型イオン注入領域3の表面部をRIE技術等により除去して高濃度領域3aを露出させ、その上にオーミック電極6を接続させれば、低抵抗率のオーミックコンタクトを得ることができる。
 なお、これまでの本発明の概要においては、イオンにより形成される、不純物濃度が1e20cm-3以下の領域を表面から50nm以下(不純物濃度が1e20cm-3以上になる深さが70nm弱以上)として説明し、図6に示されるように、シート抵抗が増加するエッチング深さである70nm程度の深さまで低抵抗のコンタクトが得られる結果を得ている。このことから、不純物濃度がおおよそ1e20cm-3の深さがコンタクト抵抗を左右し、不純物濃度が1e20cm-3以上になる深さの領域までエッチングすれば低抵抗のコンタクトを得られることがわかる。なお、不純物濃度が1e20cm-3以下の領域の深さは、エッチングする深さに応じて調整してもよい。例えば、深さ30nm程度のエッチングするプロセスを採用する場合に、不純物濃度が1e20cm-3以下の領域の深さを30nm程度以下にすることも可能である。また、例えば、深さ70nm程度のエッチングするプロセスを採用する場合に、不純物濃度が1e20cm-3以下の領域の深さを70nm程度以下にすることも可能である。
 このように、エッチングする深さに応じて、エッチングする深さより浅い箇所のイオン注入不純物濃度が1e20cm-3以下とし、エッチングする深さより深い位置に不純物濃度を1e20cm-3以上とした高濃度領域を設けても良い。ただし、エッチングは、明確に制御できる10nm以上行うものとする。
 以上では、本発明の特徴をTLM測定用デバイスの例およびDUVラマン評価の例を用いて本発明の概要を説明したが、ここからは、本発明を具体的な半導体装置に適用した実施の形態について説明する。
 <実施の形態1>
 図8は、本発明の実施の形態1に係る炭化珪素半導体装置としてのMOSFETの構成を示す断面図である。当該MOSFETは、n型のSiC基板11およびその上に形成されたn型のSiCエピタキシャル層12を用いて形成されている。SiCエピタキシャル層12の上部には、p型ベース領域13が形成されており、p型ベース領域13内におけるSiCエピタキシャル層12の表面部分にn型ソース領域14が形成されている。
 SiCエピタキシャル層12上には、一対のn型ソース領域14間に跨るように、チャネル層16が形成されている。つまりチャネル層16は、両端部が2つのn型ソース領域14上に位置し、中央部が2つのp型ベース領域13の間のSiCエピタキシャル層12(n型領域)の上に位置するように配設されている。
 チャネル層16上には、ゲート絶縁膜17を介してゲート電極18が設けられる。ゲート電極18も、チャネル層16と同様に、一対のn型ソース領域14間に跨るように形成される。つまりゲート電極18も、両端部が2つのn型ソース領域14上に位置し、中央部が2つのp型ベース領域13の間のSiCエピタキシャル層12(n型領域)の上に位置するように配設される。
 ゲート電極18の上には、ソース・ゲート間を電気的に絶縁するための層間絶縁膜19が形成されている。なお、上記のチャネル層16は、必要でなければ省略してもよい。
 n型ソース領域14の上には、それに接続するソース電極20が形成される。またp型ベース領域13内におけるn型ソース領域14の隣には、p++領域であるp型コンタクト領域15が形成されており、ソース電極20は、n型ソース領域14とp型コンタクト領域15の上に跨るように形成される。よってソース電極20は、n型ソース領域14に接続するだけでなく、p型コンタクト領域15を通してp型ベース領域13にもオーミック接続される。なお、ドレイン電極21は、SiC基板11の下面に形成される。
 p型コンタクト領域15は、SiCエピタキシャル層12の上面から50nmより深い位置に、p型イオンの注入濃度が1e20cm-3以上の高濃度領域15aを有している。
p型コンタクト領域15の上部は、高濃度領域15aに達する深さの開口が形成されており、ソース電極20はその開口内に入り込むように形成されるため、当該ソース電極20は高濃度領域15aの部分に接続されることとなる。
 即ち、図8のMOSFETのp型コンタクト領域15およびソース電極20は、それぞれ図3に示したTLM測定用デバイスのp型イオン注入領域3およびオーミック電極6に相当する。よってp型コンタクト領域15とソース電極20との間で、抵抗率の低いオーミックコンタクトが実現される。
 以下、図9~図11に示す工程図を参照しつつ、図8のMOSFETの製造方法を説明する。
 まず、基準面としての結晶面に対し、表面が一定の角度(オフ角)だけ傾けられたSiC基板11を用意する。そしてSiC基板11の上に、熱CVD法により、膜厚1.0~100μmのSiCエピタキシャル層12を積層する(図9(a))。この熱CVD法は、例えば、温度:1500~1800℃、気圧:25MPa、キャリアガス種:H2、生成ガス種:SiH4およびC38の条件で行う。
 次に、SiCエピタキシャル層12上に、p型ベース領域13の形成領域を開口したマスクを形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層12に注入することにより、p型ベース領域13を形成する。このイオン注入は、例えば、注入深さ0.5~3.0μm、注入濃度1e17~1e19cm-3の条件で行う。その後、マスクを除去する。
 続いて、SiCエピタキシャル層12上に、n型ソース領域14の形成領域を開口したマスクを形成し、N、As、あるいはPのn型不純物イオンをSiCエピタキシャル層12に注入することで、n型ソース領域14を形成する(図9(b))。このイオン注入は、例えば、注入深さ0.1~2.0μm、注入濃度1e18~1e20cm-3の条件で行う。マスクを除去する。その後、マスクを除去する。
 さらに、SiCエピタキシャル層12上に、p型コンタクト領域15の形成領域を開口したマスクを形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層12に注入することで、p++領域であるp型コンタクト領域15を形成する(図9(c))。
 このイオン注入は、SiCエピタキシャル層12の深さ方向の注入濃度プロファイルが、図1に示した本発明のp++領域のようになる条件で行う。即ち、SiCエピタキシャル層12の表面から50nmの深さまでの範囲を1e20cm-3以下の注入濃度にすると共に、50nmより深い位置に1e20cm-3以上の高濃度領域15aを形成する。高濃度領域15aにおける注入濃度のピーク値は1e20~1e22cm-3とする。
 その後マスクを除去し、1300~2100℃の活性化アニールを行うことで、p型ベース領域13、n型ソース領域14、p型コンタクト領域15を電気的に活性化させる。
 そしてSiCエピタキシャル層12の上に、追加のエピタキシャル成長層を堆積させ、それをリソグラフィ技術およびRIE技術を用いてパターニングすることで、チャネル層16を形成する(図10(a))。チャネル層16の形成を省略する場合は、この工程は不要である。
 ここで、800~1400℃でSiCエピタキシャル層12およびチャネル層16の表面に熱酸化膜を形成し、それをフッ化水素酸により除去する(犠牲酸化プロセス)。p型コンタクト領域15の上部は、イオンの注入濃度が1e20cm-3以下であり、著しい結晶劣化は生じていないので、この犠牲酸化プロセスで、p型コンタクト領域15の上部が過剰にエッチングされることは防止される。
 その後、SiCエピタキシャル層12上の全面(チャネル層16上を含む)に、ゲート絶縁膜17を形成する(図10(b))。そしてゲート絶縁膜17上に、リソグラフィ技術およびエッチング技術を用いて、ゲート電極18を形成する(図10(c))。続いて、ソース・ゲート間を電気的に絶縁するための層間絶縁膜19を、全面に積層する(図11(a))。
 続いて、リソグラフィ技術およびエッチング技術を用い、n型ソース領域14およびp型コンタクト領域15上のゲート絶縁膜17および層間絶縁膜19を除去し、n型ソース領域14およびp型コンタクト領域15の上面に達するコンタクトホールを形成する。
 コンタクトホールに露出したn型ソース領域14およびp型コンタクト領域15(もしくはp型コンタクト領域15の部分のみ)を、RIE技術により高濃度領域15aが位置する深さまでエッチングした後、当該コンタクトホール内にNiを積層させることで、n型ソース領域14およびp型コンタクト領域15の両方に接続するソース電極20を形成する(図11(b))。その結果、ソース電極20は、p型コンタクト領域15の高濃度領域15aの部分に接続されることになる。
 p型コンタクト領域15の上部をエッチングする深さは、p型コンタクト領域15を形成したp型イオンの注入濃度プロファイルに応じて決定される。その深さは確実に高濃度領域15aに達するものであることが望ましく、ソース電極20とp型コンタクト領域15とのコンタクト抵抗率が最小となる深さが最も望ましい。またソース電極20用の材料はNiに限らず、Ti、Al、Mo、Cr、Pt、W、Si、TiC、あるいはこれらの合金を用いてもよい。
 そして、SiC基板11の下面全面にドレイン電極21を形成する(図11(c))。
その後、ソース電極20におけるn型ソース領域14およびp型コンタクト領域15との接触部分、並びに、ドレイン電極21におけるSiC基板11との接触部分を、SiCとの合金化させるための熱処理を行う。この熱処理は、例えば、温度:950~1000℃、処理時間:20~60秒間、昇温速度:10~25℃/秒の条件で行う。以上により、図8に示したMOSFETが完成する。
 本実施の形態によれば、MOSFETの耐圧能力の低下やオン抵抗の増大を招くことなく、ソース電極20とp型コンタクト領域15との間でコンタクト抵抗率が十分に低いオーミックコンタクトを実現できる。
 <実施の形態2>
 実施の形態2では、本発明をp型ベース領域13に対しても適用する。図12は、実施の形態2に係る炭化珪素半導体装置としてのMOSFETの構成を示す断面図である。同図においては、図8に示したものと同様の機能を有する要素には同一符号を付してあるので、それらの詳細な説明は省略する。
 本実施の形態では、p型ベース領域13が、SiCエピタキシャル層12の上面から50nmより深い位置に、p型イオンの注入濃度が1e20cm-3以上の高濃度領域13aを有している。
 なお、p型コンタクト領域15も、実施の形態1と同様に、SiCエピタキシャル層12の上面から50nmより深い位置に、p型イオンの注入濃度が1e20cm-3以上の高濃度領域15aを有している。p型コンタクト領域15の上部は、高濃度領域15aに達する深さの開口が形成されており、ソース電極20はその開口内に入り込むように形成されるため、当該ソース電極20は高濃度領域15aの部分に接続される。
 以下、図13~図15に示す工程図を参照しつつ、図12のMOSFETの製造方法を説明する。
 まず、基準面としての結晶面に対し、表面が一定の角度(オフ角)だけ傾けられたSiC基板11を用意する。そしてSiC基板11の上に、熱CVD法により、膜厚1.0~100μmのSiCエピタキシャル層12を積層する(図13(a))。この熱CVD法は、例えば、温度:1500~1800℃、気圧:25MPa、キャリアガス種:H2、生成ガス種:SiH4およびC38の条件で行う。
 次に、SiCエピタキシャル層12上に、p型ベース領域13の形成領域を開口したマスクを形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層12に注入することにより、p型ベース領域13を形成する(図13(b))。
 このイオン注入は、SiCエピタキシャル層12の深さ方向の注入濃度プロファイルが、図1に示した本発明のp++領域のようになる条件で行う。即ち、SiCエピタキシャル層12の表面から50nmの深さまでの範囲を1e20cm-3以下の注入濃度にすると共に、50nmより深い位置に1e20cm-3以上の高濃度領域15aを形成する。高濃度領域15aにおける注入濃度のピーク値は1e20~1e22cm-3とする。その後、マスクを除去する。
 続いて、SiCエピタキシャル層12上に、n型ソース領域14の形成領域を開口したマスクを形成し、N、As、あるいはPのn型不純物イオンをSiCエピタキシャル層12に注入することで、n型ソース領域14を形成する(図13(c))。このイオン注入は、例えば、注入深さ0.1~2.0μm、注入濃度1e18~1e20cm-3の条件で行う。マスクを除去する。その後、マスクを除去する。
 さらに、SiCエピタキシャル層12上に、p型コンタクト領域15の形成領域を開口したマスクを形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層12に注入することで、p++領域であるp型コンタクト領域15を形成する(図13(d))。
 このイオン注入は、SiCエピタキシャル層12の深さ方向の注入濃度プロファイルが、図1に示した本発明のp++領域のようになる条件で行う。即ち、SiCエピタキシャル層12の表面から50nmの深さまでの範囲を1e20cm-3以下の注入濃度にすると共に、50nmより深い位置に1e20cm-3以上の高濃度領域15aを形成する。高濃度領域15aにおける注入濃度のピーク値は1e20~1e22cm-3とする。
 その後マスクを除去し、1300~2100℃の活性化アニールを行うことで、p型ベース領域13、n型ソース領域14、p型コンタクト領域15を電気的に活性化させる。
 そしてSiCエピタキシャル層12の上に、追加のエピタキシャル成長層を堆積させ、それをリソグラフィ技術およびRIE技術を用いてパターニングすることで、チャネル層16を形成する(図14(a))。チャネル層16の形成を省略する場合は、この工程は不要である。
 ここで、800~1400℃でSiCエピタキシャル層12およびチャネル層16の表面に熱酸化膜を形成し、それをフッ化水素酸により除去する(犠牲酸化プロセス)。n型ソース領域14およびp型コンタクト領域15の上部は、イオンの注入濃度が1e20cm-3以下であり、著しい結晶劣化は生じていないので、この犠牲酸化プロセスで、p型ベース領域13およびp型コンタクト領域15の上部が過剰にエッチングされることは防止される。
 その後、SiCエピタキシャル層12上の全面(チャネル層16上を含む)に、ゲート絶縁膜17を形成する(図14(b))。そしてゲート絶縁膜17上に、リソグラフィ技術およびエッチング技術を用いて、ゲート電極18を形成する(図14(c))。続いて、ソース・ゲート間を電気的に絶縁するための層間絶縁膜19を、全面に積層する(図15(a))。
 続いて、リソグラフィ技術およびエッチング技術を用い、n型ソース領域14およびp型コンタクト領域15上のゲート絶縁膜17および層間絶縁膜19を除去し、n型ソース領域14およびp型コンタクト領域15の上面に達するコンタクトホールを形成する。
 コンタクトホールに露出したn型ソース領域14およびp型コンタクト領域15(もしくはp型コンタクト領域15の部分のみ)を、RIE技術により高濃度領域15aが位置する深さまでエッチングした後、当該コンタクトホール内にNiを積層させることで、n型ソース領域14およびp型コンタクト領域15の両方に接続するソース電極20を形成する(図15(b))。その結果、ソース電極20は、p型コンタクト領域15の高濃度領域15aの部分に接続されることになる。
 p型コンタクト領域15の上部をエッチングする深さは、p型コンタクト領域15を形成したp型イオンの注入濃度プロファイルに応じて決定される。その深さは確実に高濃度領域15aに達するものであることが望ましく、ソース電極20とp型コンタクト領域15とのコンタクト抵抗率が最小となる深さが最も望ましい。またソース電極20用の材料はNiに限らず、Ti、Al、Mo、Cr、Pt、W、Si、TiC、あるいはこれらの合金を用いてもよい。
 そして、SiC基板11の下面全面にドレイン電極21を形成する(図15(c))。
その後、ソース電極20におけるn型ソース領域14およびp型コンタクト領域15との接触部分、並びに、ドレイン電極21におけるSiC基板11との接触部分を、SiCとの合金化させるための熱処理を行う。この熱処理は、例えば、温度:950~1000℃、処理時間:20~60秒間、昇温速度:10~25℃/秒の条件で行う。以上により、図12に示したMOSFETが完成する。
 本実施の形態によれば、実施の形態1と同様に、MOSFETの耐圧能力の低下やオン抵抗の増大を招くことなく、ソース電極20とp型コンタクト領域15との間でコンタクト抵抗率が十分に低いオーミックコンタクトを実現できる。
 さらに本実施の形態では、p型ベース領域13においても、SiCエピタキシャル層12の表面から50nmの深さまでの範囲を1e20cm-3以下の注入濃度にすると共に、50nmより深い位置に1e20cm-3以上の高濃度領域15aを形成している。それにより、p型ベース領域13の上部における結晶劣化を抑制してプロセス不良の発生を抑えつつ、p型ベース領域13のシート抵抗を充分に小さくすることができる。
 <実施の形態3>
 実施の形態3では、本発明をダイオード素子に適用した例を示す。図16は、本発明の実施の形態3に係る炭化珪素半導体装置としてのダイオード素子の構成を示す断面図である。当該ダイオード素子は、n型のSiC基板51およびその上に形成されたn型のSiCエピタキシャル層52を用いて形成されている。SiCエピタキシャル層52の上部には、p型ボディ領域53が形成されており、p型ボディ領域53内におけるSiCエピタキシャル層52の表面部分にp型コンタクト領域54が形成され、その上にアノード電極57が接続される。またカソード電極58は、SiC基板51の下面に設けられる。
 p型ボディ領域53の外周部には、その部分における電界集中を抑制するためのp型終端領域55が形成されている。またダイオード素子の表面(アノード電極57の形成領域を除くSiCエピタキシャル層52の表面)には、保護絶縁膜56が設けられている。
 p型コンタクト領域54は、SiCエピタキシャル層52の上面から50nmより深い位置に、p型イオンの注入濃度が1e20cm-3以上の高濃度領域54aを有している。
p型コンタクト領域54の上部は、高濃度領域54aに達する深さの開口が形成されており、アノード電極57はその開口内に入り込むように形成されるため、当該アノード電極57は高濃度領域54aの部分に接続されることとなる。
 即ち、図16のダイオード素子のp型コンタクト領域54およびアノード電極57は、それぞれ図3に示したTLM測定用デバイスのp型イオン注入領域3およびオーミック電極6に相当する。よってp型コンタクト領域54とアノード電極57との間で、抵抗率の低いオーミックコンタクトが実現される。
 以下、図17および図18に示す工程図を参照しつつ、図15のダイオード素子の製造方法を説明する。
 まず、基準面としての結晶面に対し、表面が一定の角度(オフ角)だけ傾けられたSiC基板51を用意する。そしてSiC基板51の上に、熱CVD法により、膜厚1.0~100μmのSiCエピタキシャル層52を積層する(図17(a))。この熱CVD法は、例えば、温度:1500~1800℃、気圧:25MPa、キャリアガス種:H2、生成ガス種:SiH4およびC38の条件で行う。
 次に、SiCエピタキシャル層52上に、p型ボディ領域53の形成領域を開口したマスクを形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層52に注入することにより、p型ボディ領域53を形成する。このイオン注入は、例えば、注入深さ0.5~3.0μm、注入濃度1e17~1e19cm-3の条件で行う。その後、マスクを除去する。
 続いて、SiCエピタキシャル層52上に、p型終端領域55の形成領域を開口したマスクを形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層52に注入することにより、p型終端領域55を形成する(図17(b))。このイオン注入は、例えば、注入深さ0.5~3.0μm、注入濃度1e16~1e16cm-3の条件で行う。その後、マスクを除去する。
 さらに、SiCエピタキシャル層52上に、p型コンタクト領域54の形成領域を開口したマスクを形成し、Al、B、あるいはGaのp型不純物イオンをSiCエピタキシャル層52に注入することで、p++領域であるp型コンタクト領域54を形成する(図17(c))。
 このイオン注入は、SiCエピタキシャル層52の深さ方向の注入濃度プロファイルが、図1に示した本発明のp++領域のようになる条件で行う。即ち、SiCエピタキシャル層52の表面から50nmの深さまでの範囲を1e20cm-3以下の注入濃度にすると共に、50nmより深い位置に1e20cm-3以上の高濃度領域54aを形成する。高濃度領域54aにおける注入濃度のピーク値は1e20~1e22cm-3とする。
 その後マスクを除去し、1300~2100℃の活性化アニールを行うことで、p型ボディ領域53、p型コンタクト領域54およびp型終端領域55を電気的に活性化させる。
 次いで、800~1400℃でSiCエピタキシャル層52の表面に熱酸化膜を形成し、それをフッ化水素酸により除去する(犠牲酸化プロセス)。p型コンタクト領域54の上部は、イオンの注入濃度が1e20cm-3以下であり、著しい結晶劣化は生じていないので、この犠牲酸化プロセスで、p型コンタクト領域54の上部が過剰にエッチングされることは防止される。
 その後、SiCエピタキシャル層52上の全面に、保護絶縁膜56を形成する(図18(a))。そしてリソグラフィ技術およびエッチング技術を用い、p型コンタクト領域54上の保護絶縁膜56を除去する。さらに露出したp型コンタクト領域54を、RIE技術により高濃度領域54aが位置する深さまでエッチングし、その部分にNiを積層させることで、p型コンタクト領域54に接続するアノード電極57を形成する(図18(b))。その結果、アノード電極57は、p型コンタクト領域54の高濃度領域54aの部分に接続されることになる。
 p型コンタクト領域54の上部をエッチングする深さは、p型コンタクト領域54を形成したp型イオンの注入濃度プロファイルに応じて決定される。その深さは確実に高濃度領域54aに達するものであることが望ましく、アノード電極57とp型コンタクト領域54とのコンタクト抵抗率が最小となる深さが最も望ましい。またアノード電極57用の材料はNiに限らず、Ti、Al、Mo、Cr、Pt、W、Si、TiC、あるいはこれらの合金を用いてもよい。
 そして、SiC基板51の下面全面にカソード電極58を形成する(図18(c))。
その後、アノード電極57におけるn型ソース領域14およびp型コンタクト領域54との接触部分、並びに、カソード電極58におけるSiC基板51との接触部分を、SiCとの合金化させるための熱処理を行う。この熱処理は、例えば、温度:950~1000℃、処理時間:20~60秒間、昇温速度:10~25℃/秒の条件で行う。以上により、図16に示したダイオード素子が完成する。
 本実施の形態によれば、ダイオード素子の耐圧能力の低下や順方向オン抵抗の増大を招くことなく、アノード電極57とp型コンタクト領域54との間でコンタクト抵抗率が十分に低いオーミックコンタクトを実現できる。
 <実施の形態4>
 実施の形態1,2では、本発明をMOSFETに適用した例を示したが、本発明の適用はそれに限定されるものではない。例えばIGBT(Insulated Gate Bipolar Transistor)やダイオード素子に対しても適用可能である。
 例えば、図12に示した構成に対し、SiC基板11の導電型をp型に置き換えればIGBTの構成となる。その場合、MOSFETのソース領域(4)およびソース電極(10)は、それぞれIGBTのエミッタ領域およびエミッタ電極に対応し、MOSFETのドレイン電極(11)はコレクタ電極に対応することになる。
 また以上の説明では、本発明をp型の領域に適用した例のみを示したが、本発明はn型の領域に対しても適用可能である。例えば、図12の構成に対して各領域の導電型を逆にしたpチャネル型MOSFETに本発明を適用する場合、n型のベース領域(領域13)やn型のコンタクト領域(領域15)に適用できる。その場合、n型のベース領域および/またはコンタクト領域の形成の際、n型不純物イオンであるN、As、あるいはPの注入濃度を、SiCエピタキシャル層の表面から50nmの深さまでの範囲を1e20cm-3以下にし、50nmより深い位置に1e20cm-3以上にする。
 1 SiC基板、2 SiCエピタキシャル層、3 p型イオン注入領域、3a 高濃度領域、5 熱酸化膜、6 オーミック電極、11 SiC基板、12 SiCエピタキシャル層、13 p型ベース領域、13a 高濃度領域、14 n型ソース領域、15 p型コンタクト領域、15a 高濃度領域、16 チャネル層、17 ゲート絶縁膜、18 ゲート電極、19 層間絶縁膜、20 ソース電極、21 ドレイン電極、51 SiC基板、52 SiCエピタキシャル層、53 p型ボディ領域、54 p型コンタクト領域、54a 高濃度領域、55 p型終端領域、56 保護絶縁膜、57 アノード電極、58 カソード電極。

Claims (8)

  1. 炭化珪素層を有する基板を用意する工程と、
    前記炭化珪素層に所定のイオンを注入して、前記炭化珪素層の表面から50nmまでの深さの範囲には前記イオンの不純物濃度が1e20cm-3以下の領域を形成し、且つ、前記炭化珪素層の表面から50nm以上の深さの位置に前記イオンの不純物濃度が1e20cm-3以上の高濃度領域を形成するイオン注入工程と、
    前記開口内に前記高濃度領域とオーミック接続する電極を形成する工程と
    を備えることを特徴とする炭化珪素半導体装置の製造方法。
  2. 請求項1記載の炭化珪素半導体装置の製造方法であって、
    前記イオン注入工程において、前記炭化珪素層が175℃未満に保持されることを特徴とする炭化珪素半導体装置の製造方法。
  3. 請求項1または2記載の炭化珪素半導体装置の製造方法であって、
    前記所定のイオンは、N、P、As、Al、BおよびGaのいずれかを含むことを特徴とする炭化珪素半導体装置の製造方法。
  4. 請求項1または2記載の炭化珪素半導体装置の製造方法であって、
    前記電極は、Ni、Ti、Al、Mo、Cr、Pt、W、Si、TiC、あるいはこれらの合金から成るものであることを特徴とする炭化珪素半導体装置の製造方法。
  5. 炭化珪素層を有する基板と、
    前記炭化珪素層の表面から50nmまでの深さの範囲に形成され、イオン注入された不純物の濃度が1e20cm-3以下の領域と、
    前記炭化珪素層の表面から50nm以上の深さに形成され、イオン注入された前記不純物の濃度が1e20cm-3以上の高濃度領域と、
    前記炭化珪素層の表面から前記高濃度領域に達する開口と、
    前記開口内に形成された前記不純物領域とオーミック接続する電極と
    を備えることを特徴とする炭化珪素半導体装置。
  6. 請求項5記載の炭化珪素半導体装置であって、
    前記高濃度領域は、前記炭化珪素層の表面から50nmまでの深さの範囲の領域と異なるポリタイプ結晶を有することを特徴とする炭化珪素半導体装置。
  7. 請求項5記載の炭化珪素半導体装置であって、
    前記高濃度領域を構成する不純物は、N、P、As、Al、BおよびGaのいずれかを含むことを特徴とする炭化珪素半導体装置。
  8. 請求項5記載の炭化珪素半導体装置であって、
    前記電極は、Ni、Ti、Al、Mo、Cr、Pt、W、Si、TiC、あるいはこれらの合金から成るものであることを特徴とする炭化珪素半導体装置。
PCT/JP2010/003389 2009-05-20 2010-05-20 炭化珪素半導体装置およびその製造方法 WO2010134344A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011514340A JP5408248B2 (ja) 2009-05-20 2010-05-20 炭化珪素半導体装置およびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-121776 2009-05-20
JP2009121776 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134344A1 true WO2010134344A1 (ja) 2010-11-25

Family

ID=43126035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003389 WO2010134344A1 (ja) 2009-05-20 2010-05-20 炭化珪素半導体装置およびその製造方法

Country Status (2)

Country Link
JP (1) JP5408248B2 (ja)
WO (1) WO2010134344A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012129492A (ja) * 2010-11-26 2012-07-05 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法
JP2012186324A (ja) * 2011-03-07 2012-09-27 Toshiba Corp 半導体装置
JP5102411B2 (ja) * 2010-09-06 2012-12-19 パナソニック株式会社 半導体装置およびその製造方法
JP2013070036A (ja) * 2011-09-07 2013-04-18 Toyota Motor Corp SiC半導体素子の製造方法
WO2013146328A1 (ja) * 2012-03-30 2013-10-03 富士電機株式会社 炭化珪素半導体装置の製造方法及び当該方法により製造された炭化珪素半導体装置
JP2014127709A (ja) * 2012-12-27 2014-07-07 Toshiba Corp 半導体装置及びその製造方法
EP2998986A1 (en) * 2014-09-19 2016-03-23 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
JP2016058499A (ja) * 2014-09-08 2016-04-21 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6589263B2 (ja) * 2014-09-11 2019-10-16 富士電機株式会社 半導体装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168653A (ja) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2009049198A (ja) * 2007-08-20 2009-03-05 New Japan Radio Co Ltd 半導体装置およびその製造方法
JP2009182271A (ja) * 2008-01-31 2009-08-13 Toshiba Corp 炭化珪素半導体装置
JP2009266871A (ja) * 2008-04-22 2009-11-12 Panasonic Corp 炭化珪素半導体装置およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168653A (ja) * 2001-12-03 2003-06-13 Matsushita Electric Ind Co Ltd 半導体装置およびその製造方法
JP2009049198A (ja) * 2007-08-20 2009-03-05 New Japan Radio Co Ltd 半導体装置およびその製造方法
JP2009182271A (ja) * 2008-01-31 2009-08-13 Toshiba Corp 炭化珪素半導体装置
JP2009266871A (ja) * 2008-04-22 2009-11-12 Panasonic Corp 炭化珪素半導体装置およびその製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5102411B2 (ja) * 2010-09-06 2012-12-19 パナソニック株式会社 半導体装置およびその製造方法
JP2012129492A (ja) * 2010-11-26 2012-07-05 Mitsubishi Electric Corp 炭化珪素半導体装置およびその製造方法
US8932944B2 (en) 2010-11-26 2015-01-13 Mitsubishi Electric Corporation Silicon carbide semiconductor device manufacturing method
JP2012186324A (ja) * 2011-03-07 2012-09-27 Toshiba Corp 半導体装置
JP2013070036A (ja) * 2011-09-07 2013-04-18 Toyota Motor Corp SiC半導体素子の製造方法
US9768260B2 (en) 2012-03-30 2017-09-19 Fuji Electric Co., Ltd. Fabrication method of silicon carbide semiconductor apparatus and silicon carbide semiconductor apparatus fabricated thereby
WO2013146328A1 (ja) * 2012-03-30 2013-10-03 富士電機株式会社 炭化珪素半導体装置の製造方法及び当該方法により製造された炭化珪素半導体装置
JP2013211485A (ja) * 2012-03-30 2013-10-10 National Institute Of Advanced Industrial & Technology 炭化珪素半導体装置の製造方法及び該方法により製造された炭化珪素半導体装置
JP2014127709A (ja) * 2012-12-27 2014-07-07 Toshiba Corp 半導体装置及びその製造方法
US9431246B2 (en) 2012-12-27 2016-08-30 Kabushiki Kaisha Toshiba Semiconductor device with low contact resistance SIC region
JP2016058499A (ja) * 2014-09-08 2016-04-21 富士電機株式会社 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
JP2016063112A (ja) * 2014-09-19 2016-04-25 株式会社東芝 半導体装置及びその製造方法
EP2998986A1 (en) * 2014-09-19 2016-03-23 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US10424640B2 (en) 2014-09-19 2019-09-24 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US10707306B2 (en) 2014-09-19 2020-07-07 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same

Also Published As

Publication number Publication date
JPWO2010134344A1 (ja) 2012-11-08
JP5408248B2 (ja) 2014-02-05

Similar Documents

Publication Publication Date Title
JP5408248B2 (ja) 炭化珪素半導体装置およびその製造方法
JP5525940B2 (ja) 半導体装置および半導体装置の製造方法
JP4935741B2 (ja) 炭化珪素半導体装置の製造方法
JP5613640B2 (ja) 半導体装置の製造方法
JP4965576B2 (ja) 半導体装置及びその製造方法
JP5102411B2 (ja) 半導体装置およびその製造方法
JP5995347B2 (ja) SiC半導体装置及びその製造方法
US20150001554A1 (en) Silicon carbide semiconductor device
JP7103444B2 (ja) 炭化珪素半導体素子
JP2006066439A (ja) 半導体装置およびその製造方法
WO2010024243A1 (ja) バイポーラ型半導体装置およびその製造方法
JP6242640B2 (ja) 半導体装置およびその製造方法
JP2010034481A (ja) 半導体装置の製造方法および半導体装置
JP5885284B2 (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
WO2012172988A1 (ja) 炭化珪素半導体装置及び炭化珪素半導体装置の製造方法
JP2007066959A (ja) 炭化珪素半導体装置の製造方法
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
US8772139B2 (en) Method of manufacturing semiconductor device
JP6395299B2 (ja) 炭化珪素半導体素子及び炭化珪素半導体素子の製造方法
JP6686581B2 (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
US10032894B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
JP2017168687A (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP2006093206A (ja) SiC半導体装置およびSiC半導体装置の製造方法
JP2017168679A (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
JP2017168681A (ja) 半導体装置および半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011514340

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10777580

Country of ref document: EP

Kind code of ref document: A1