WO2010024243A1 - バイポーラ型半導体装置およびその製造方法 - Google Patents

バイポーラ型半導体装置およびその製造方法 Download PDF

Info

Publication number
WO2010024243A1
WO2010024243A1 PCT/JP2009/064776 JP2009064776W WO2010024243A1 WO 2010024243 A1 WO2010024243 A1 WO 2010024243A1 JP 2009064776 W JP2009064776 W JP 2009064776W WO 2010024243 A1 WO2010024243 A1 WO 2010024243A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide film
region
silicon carbide
semiconductor device
bipolar
Prior art date
Application number
PCT/JP2009/064776
Other languages
English (en)
French (fr)
Inventor
佑樹 根来
明彦 堀内
健介 岩永
誠一 横山
英喜 橋本
賢一 野中
雄介 前山
雅 佐藤
清水 正章
Original Assignee
本田技研工業株式会社
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 新電元工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2010526714A priority Critical patent/JPWO2010024243A1/ja
Priority to EP09809894.0A priority patent/EP2325872A4/en
Priority to CN2009801332463A priority patent/CN102132388A/zh
Priority to US13/060,697 priority patent/US20110169015A1/en
Publication of WO2010024243A1 publication Critical patent/WO2010024243A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/73Bipolar junction transistors
    • H01L29/732Vertical transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3171Partial encapsulation or coating the coating being directly applied to the semiconductor body, e.g. passivation layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • H01L23/3192Multilayer coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42304Base electrodes for bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/6606Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66272Silicon vertical transistors
    • H01L29/66295Silicon vertical transistors with main current going through the whole silicon substrate, e.g. power bipolar transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66416Static induction transistors [SIT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/7722Field effect transistors using static field induced regions, e.g. SIT, PBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0618Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/06181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13062Junction field-effect transistor [JFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the present invention relates to a bipolar semiconductor device and a manufacturing method thereof, and more particularly, to a bipolar semiconductor device and a manufacturing method thereof in which a current level is increased by removing surface states generated on the surface of a semiconductor element.
  • SiC silicon carbide
  • junction SiC power semiconductor devices include static induction transistors (Static Induction Transistor, “SIT”), junction field effect transistors (Junction Field Effect Transistor, “JFET”), or bipolar junction transistors (Bipolar Junction Transistor, “BJT”). ”)and so on.
  • SIT Static Induction Transistor
  • JFET junction field effect transistors
  • BJT Bipolar Junction Transistor
  • BJT is stacked on the low resistance n + -type 4H-SiC (0001) plane 8 degree off substrate in the order of n ⁇ -type high resistance region, p-type base region, and n + -type emitter region from the bottom. It is formed.
  • the emitter region is composed of a number of elongated regions. Electrodes for establishing electrical connection to the outside are formed in the emitter region, base region, and collector region.
  • FIG. 7 shows a cross-sectional structure of the BJT disclosed in Non-Patent Document 1.
  • the BJT 500 includes an n-type low resistance collector region 501, an n-type high resistance region 502, a p-type base region 503, an n-type low-resistance emitter region 504, and a p-type low resistance formed so as to surround the emitter region.
  • a base contact region 505 of a resistance region is provided.
  • a collector electrode 506, a base electrode 507, and an emitter electrode 508 for electrical connection are joined to the outside of the collector region 501, the base region 503 (base contact region 505), and the emitter region 504, respectively. Further, the entire exposed surface other than the electrodes of the BJT 500 is covered with a surface protective film 509.
  • a SiC semiconductor device In a SiC semiconductor device, atoms with uncompleted bonds exist on the SiC surface at a high density, and surface levels are formed. Electrons and holes generated inside the junction-type SiC semiconductor device are actively recombined at the surface level. Therefore, in order to increase the current amplification factor of the semiconductor device, recombination of electrons and holes is prevented. It is necessary. Therefore, if the surface level is removed in advance, the probability of recombination of electrons and holes can be reduced.
  • Patent Document 1 discloses a laminated structure made of a metal, an oxide film and a SiC semiconductor.
  • This laminated structure is a MOS structure in which an oxide film is formed on the surface of a SiC semiconductor and a metal is further formed on the oxide film.
  • electrical characteristics such as a current-voltage curve are affected according to the manufacturing conditions of the MOS structure. For this reason, the thickness of the oxide film was defined to eliminate the influence of the surface potential due to the MOS structure.
  • Patent Document 2 relates to a method for manufacturing a semiconductor device, which reduces the interface state density of a gate region of a SiC semiconductor.
  • the semiconductor device is a MOS semiconductor in which a gate insulating film is formed, and is a unipolar semiconductor.
  • the semiconductor device of Patent Document 2 by reducing the interface state density formed in the vicinity of the bottom of the conduction band, there is an effect on electrons, and the resistance of the channel region can be reduced.
  • main current main current
  • control current the current flowing between the main electrodes
  • control current the base current or the gate current flowing through the control electrode
  • the factor that lowers the current amplification factor is the recombination level of the semiconductor surface.
  • silicon by thermal oxidation, it is possible to form a silicon / oxide film interface having a small surface level that does not affect device characteristics.
  • SiC the surface level cannot be lowered sufficiently by thermal oxidation or subsequent heat treatment. Therefore, the bipolar SiC semiconductor device has a problem that it is difficult to obtain a sufficiently high current amplification factor because recombination of electrons and holes on the semiconductor surface cannot be suppressed.
  • the surface level (interface level) that affects the performance improvement of the MOS transistor is located in the energy band close to the conductive band 603 in the band gap 602 as shown by reference numeral 601 in FIG. Techniques for reducing levels are known.
  • the surface level that affects the improvement of the current amplification factor of the bipolar transistor in the case of n-type SiC is located near the center 604 (referred to as “mid gap”) of the band gap 602.
  • mid gap the center 604 of the band gap 602.
  • reference numeral 605 indicates a valence band
  • reference numeral 606 indicates a band gap of the insulator.
  • an object of the present invention is to provide a bipolar semiconductor device that can reduce the surface state density of a bipolar transistor, increase its current amplification factor, and improve transistor performance, and a method for manufacturing the same. There is.
  • a bipolar semiconductor device is a bipolar semiconductor device having a surface protective film on a surface of a semiconductor element, and the surface protective film includes a thermal oxide film formed on the surface of the semiconductor element, and a thermal oxide film.
  • the stacked oxide film is formed on the deposited oxide film formed thereon, and the deposited oxide film contains at least one of hydrogen element and nitrogen element at 10 18 cm ⁇ 3 or more.
  • a bipolar semiconductor device is a bipolar semiconductor device having a surface protective film on a surface of a semiconductor element.
  • the surface protective film includes a thermal oxide film formed on the surface of the semiconductor element, and a thermal oxide film.
  • the deposited oxide film has a laminated structure composed of a deposited oxide film formed on the deposited oxide film and a deposited nitrogen film formed on the deposited oxide film, and the deposited oxide film contains 10 19 cm ⁇ 3 or more of at least one of a hydrogen element and a nitrogen element. It is.
  • the deposited oxide film has a thickness of 150 nm or more.
  • the semiconductor element is a silicon carbide semiconductor element formed on a collector region of an n-type low resistance layer formed on one surface of the silicon carbide semiconductor crystal and on the other surface of the silicon carbide semiconductor crystal.
  • the protective film is formed on the surface of the silicon carbide semiconductor element between the base region and the emitter region.
  • the semiconductor element is a silicon carbide semiconductor element, and is formed on a drain region of an n-type low resistance layer formed on one surface of the silicon carbide semiconductor crystal and on the other surface of the silicon carbide semiconductor crystal.
  • a source region of the n-type low-resistance layer, a p-type gate region formed around the source region, an n-type high-resistance layer between the source region and the drain region, and a surface protective film It is formed on the surface of the silicon carbide semiconductor element between the gate region and the source region.
  • the semiconductor element is a silicon carbide semiconductor element, and includes a cathode region of an n-type resistance layer formed on one surface of the silicon carbide semiconductor crystal and a p formed on the other surface of the silicon carbide semiconductor crystal. And an anode electrode formed in the anode region, and a surface protective film is formed on the surface of the silicon carbide semiconductor element excluding the anode electrode.
  • the bipolar semiconductor device is provided with a p-type channel dope layer connected to the gate region in the high resistance layer.
  • a method for manufacturing a bipolar semiconductor device is a method for manufacturing a bipolar semiconductor device having a surface protective film on the surface of a silicon carbide semiconductor element, and a step of forming a thermal oxide film on the surface of the silicon carbide semiconductor element. And a step of forming a deposited oxide film on the thermal oxide film, the surface protection film is formed of a thermal oxide film and a deposited oxide film, and the deposited oxide film is at least one of hydrogen element and nitrogen element Is a method containing 10 18 cm ⁇ 3 or more.
  • a method for manufacturing a bipolar semiconductor device is a method for manufacturing a bipolar semiconductor device having a surface protective film on the surface of a silicon carbide semiconductor element, and a thermal oxide film on the surface of the silicon carbide semiconductor element. Forming a deposited oxide film on the thermal oxide film, and forming a deposited nitrogen film on the deposited oxide film, and the surface protection film is deposited with the thermal oxide film, the deposited oxide film, and the like.
  • the deposited oxide film is formed of a nitrogen film and contains at least one of hydrogen element and nitrogen element at 10 19 cm ⁇ 3 or more.
  • the deposited oxide film has a thickness of 150 nm or more in the above method.
  • the surface protective film (surface passivation film) formed on the exposed surface of the silicon carbide (SiC) semiconductor element is a laminated structure composed of a thermal oxide film and a deposited oxide film, or
  • the surface level generated in the silicon carbide semiconductor element (mid) is formed by a laminated structure composed of a thermal oxide film, a deposited oxide film, and a deposited nitride film, and the deposited oxide film contains a predetermined amount of hydrogen and nitrogen elements.
  • Gap level) can be reduced, and recombination of electrons and holes can be prevented. Further, this can increase the current amplification factor of the bipolar silicon carbide semiconductor device.
  • leakage current recombination current during forward operation, generated current during reverse operation
  • a bipolar silicon carbide semiconductor device that exhibits the above-described effects can be manufactured by a simple process and at a low cost.
  • FIG. 3 is a flowchart illustrating a method of manufacturing a bipolar semiconductor device according to the first embodiment of the present invention. It is sectional drawing which shows the device structure corresponding to each process of the manufacturing method of the bipolar type semiconductor device by 1st Example. It is the fragmentary longitudinal cross-sectional view which expanded and showed the device structure of the bipolar type semiconductor device (BJT) which concerns on 1st Embodiment.
  • FIG. 4 is a cross-sectional view similar to FIG. 3 showing an enlarged device structure of a bipolar semiconductor device (BJT) according to a second embodiment of the present invention. It is sectional drawing which expanded and showed the device structure of the bipolar type semiconductor device (pn diode) by 3rd Example of this invention.
  • FIG. 1 is a flowchart showing each step of the manufacturing method.
  • 2A to 2G show cross sections of the BJT 100 manufactured in each process.
  • FIG. 3 shows the laminated structure of the surface protective film in detail by enlarging (f) of FIG.
  • the BJT manufacturing method includes the following processes (1) to (11) (steps S11 to S21). As shown in FIG. 1, each process is executed in the order from step S11 to step S21.
  • Step S11 Step of preparing substrate (crystal) of n + type low-resistance SiC semiconductor element (step S11) (2) Step of forming n ⁇ type high resistance layer (step S12) (3) Step of forming a p-type channel dope layer (step S13) (4) Base region forming step (step S14) (5) Step of forming n + type low resistance layer (step S15) (6) Emitter etching process (step S16) (7) Step of ion implantation mask formation, high concentration ion implantation for base contact, and activation heat treatment (step S17) (8) Step of interface deactivation treatment and surface protective film formation (step S18) (9) Emitter electrode formation step (step S19) (10) Base electrode and collector electrode forming step (step S20) (11) Formation process of interlayer film and upper layer electrode (step S21)
  • the layered structure shown in FIG. 2A is formed by sequentially performing the above steps S11 to S15.
  • an n + -type low-resistance SiC semiconductor element substrate (crystal) 10 is prepared. “4H—SiC (0001) 8 ° off” is used for the substrate 10. Further, the substrate 10 becomes a collector region of an n-type low resistance layer at the bottom of the BJT 100 in the drawing.
  • step S12 nitrogen having a thickness of 10 ⁇ m and a concentration of 1 ⁇ 10 16 cm ⁇ 3 is doped as an impurity on the substrate 10 of the SiC semiconductor element by an epitaxial growth method.
  • the high resistance layer 11 is grown.
  • step S13 In the step of forming the channel dope layer (step S13), 0.1 to 0 at a concentration of 4 ⁇ 10 17 to 2 ⁇ 10 18 cm ⁇ 3 using aluminum (Al) as an impurity on the high resistance layer 11 by epitaxial growth. A 5 ⁇ m channel doped region 12 is grown.
  • a p-type base region 13 is grown on the channel dope layer 12 by an epitaxial growth method in the same manner.
  • n is doped on the base region 13 by nitrogen as an impurity with a thickness of 0.5 to 2.0 ⁇ m and a concentration of 1 to 5 ⁇ 10 19 cm ⁇ 3 by an epitaxial growth method.
  • a low resistance layer 14 of the mold is grown.
  • the low resistance layer 14 is a portion where an emitter region is formed by a subsequent etching process.
  • step S16 in the stacked structure shown in FIG. 2A, a silicon oxide film 21 is deposited on the upper surface by CVD, photolithography is performed, and then silicon is formed by RIE. The oxide film 21 is dry etched. Thus, an etching mask is formed. Then, using the etching mask made of the silicon oxide film 21, SiC etching is performed on the low resistance layer 14 by RIE, and the emitter region 14A is formed using the low resistance layer 14. In this SiC etching RIE, etching is performed at a depth of 0.5 to 2.1 ⁇ m in an atmosphere of HBr gas, CL 2 gas, H 2 / O 2 gas, or the like. The resulting structure is shown in FIG.
  • Ion implantation mask A mask is formed so that the surface portion for forming the base contact region 23 is exposed.
  • the mask is formed by depositing a silicon oxide film by a CVD method, performing photolithography, and then dry etching the silicon oxide film by RIE. In FIG. 2C, the mask is not shown. In FIG. 2C, only the base contact region 23 formed as a result is shown.
  • High-concentration ion implantation for base contact In the step of forming the base contact region 23, the base contact region 23 is formed by ion implantation using the ion implantation mask.
  • the ion to be implanted is, for example, aluminum (Al), and the depth of implantation is, for example, 0.2 ⁇ m.
  • the ion implantation amount is 1 ⁇ 10 18 to 10 19 cm ⁇ 3
  • the energy required for ion implantation is about 400 KeV at the maximum
  • multistage implantation is performed.
  • (3) Activation heat treatment In the step of activating the ion implantation layer, after the ion implantation, the implanted ions are electrically activated in the semiconductor, and a heat treatment is performed to eliminate crystal defects generated by the ion implantation. In this activation heat treatment, both the implanted ions in the base contact region 23 and the implanted ions in the recombination suppression region 22 are activated at the same time. Heat treatment is performed for about 10 to 30 minutes at a high temperature of about 1700 to 1900 ° C. using a high-frequency heat treatment furnace or the like. For example, argon gas (Ar) is used as the atmospheric gas, or
  • step S18 an interface deactivation process and a surface protective film forming process
  • the content of step S18 is shown in FIG. 2 (d) and is a characteristic part of the present invention.
  • reference numeral 30 indicates a surface protective film. Details of the surface protective film 30 are shown in FIG. 3 which is an enlarged view of FIG.
  • the interface deactivation process and the surface protection film formation process step S18
  • the following processes are performed.
  • (1) Interface Deactivation Treatment In the structure of the BJT 100 shown in FIG. 2C, the deactivation treatment is performed on the uppermost SiC surface. In the inactivation treatment for the SiC surface, sacrificial oxidation is performed first, followed by pyrogenic oxidation.
  • the sacrificial oxidation process is performed, for example, in a temperature environment of 1100 ° C. for 20 hours, and a sacrificial oxide film is formed on the SiC surface. Thereafter, the sacrificial oxide film is removed. Further, the subsequent pyrogenic oxidation treatment is performed in a temperature environment of 1000 ° C. for 1 to 4 hours, for example. Thereafter, a heat treatment of POA (Post Oxidation Anneal) using H 2 (hydrogen gas) is performed in a temperature environment of 1000 ° C. for 30 minutes, for example. POA is a heat treatment for reducing the impurity level at the interface of the SiC oxide film. Thus, as shown in FIG.
  • the thermal oxide film 31 is formed on the SiC surface of the BJT with a thickness of about 100 mm, for example.
  • (2) Surface protective film formation A PSG film (Phospho-Silicate-Glass) containing P (phosphorus) is deposited on the thermal oxide film 31, and the deposited oxide film 32 is formed as shown in FIG. For example, with a thickness of approximately 5000 mm.
  • annealing treatment heat treatment
  • NH 3 ammonia gas
  • This NH 3 annealing treatment is performed, for example, at a temperature condition of 740 ° C. for 50 to 100 minutes, and the pressure condition is 1 mbar.
  • the ratio of N 2 (nitrogen gas) to NH 3 (ammonia gas) is 1: 1.2.
  • the surface protective film 30 ((d), (e), (in FIG. 2) is formed on the exposed SiC surface in the BJT 100. f) and (g) are formed. That is, the thermal oxide film 31 and the deposited oxide film 32 are formed on the SiC surface from the emitter region 14A excluding the emitter electrode 41 in FIG. 3 to the base contact region 23 excluding the base electrode 42. By these films, the surface level generated in the SiC surface region can be removed.
  • the deposited oxide film 32 preferably contains 10 18 cm ⁇ 3 or more of at least one of hydrogen element and nitrogen element. More preferably, it is in the range of 10 18 cm ⁇ 3 to 10 23 cm ⁇ 3 . In this case, if both the hydrogen element and the nitrogen element are less than 10 18 cm ⁇ 3, the effect of removing the generated surface level is lost. Further, when at least one of hydrogen element and nitrogen element is more than 10 23 cm ⁇ 3 , the film quality cannot be maintained.
  • the thickness of the deposited oxide film 32 is preferably 150 nm or more. In this case, the film thickness is more preferably from 150 nm to 1000 nm. When the film thickness is smaller than 150 nm, that is, smaller than the film thickness of the electrode, it becomes difficult to form the electrode by the lift-off method or the like. Furthermore, the surface protective film may break down when a high voltage is applied to the semiconductor element. On the other hand, when the film thickness is thicker than 1000 nm, not only the effect of introducing a hydrogen element or a nitrogen element decreases, but also the process time becomes longer and the manufacturing cost becomes higher.
  • annealing in NO atmospheric pressure atmosphere annealing in a mixed atmosphere of NO and N 2 (normal pressure)
  • annealing in H 2 atmospheric pressure atmosphere annealing in NH 3 atmospheric pressure atmosphere
  • NH Any of the annealing treatments in a mixed atmosphere of 3 and N 2 (normal pressure) can be performed.
  • the emitter electrode 41 is formed on the surface of the emitter region 14A (low resistance layer 14) (FIG. 2E).
  • the emitter electrode 41 is formed by vapor deposition or sputtering using nickel or titanium.
  • photolithography, dry etching, wet etching, lift-off method or the like is used for the formation of the electrode pattern.
  • heat treatment is performed in order to reduce the contact resistance between the metal portion and the semiconductor portion.
  • the base electrode 42 and the collector electrode 43 are formed on the surfaces of the base contact region 23 and the collector region 10 (substrate 10), respectively (FIG. 2 (f)).
  • the collector electrode 43 is made of nickel or titanium
  • the base electrode 42 is made of titanium aluminum or the like.
  • the electrodes 42 and 43 are formed by vapor deposition or sputtering. For the formation of the electrode pattern, photolithography, dry etching, wet etching, lift-off method or the like is used. Further, after the electrodes 42 and 43 are formed, heat treatment is performed in order to reduce the contact resistance between the metal portion and the semiconductor portion.
  • step S21 an interlayer film and upper layer electrode forming step.
  • the upper layer electrode 51 for taking out the plurality of separated emitter electrodes 41 as one electrode is formed (FIG. 2 (g)).
  • the silicon oxide film or the like in the emitter electrode 41 is removed by photolithography and etching.
  • the upper layer electrode 51 is deposited.
  • aluminum (Al) is used as the material of the upper layer electrode 51.
  • the base contact high-concentration ion implantation region 23 in step S17 is formed to be deeper than the channel dope layer 12 which is a p-type SiC layer, and further, an emitter electrode 41, a base electrode 42, By defining the collector electrode 43 as a source electrode, a gate electrode, and a drain electrode, respectively, the semiconductor device and the manufacturing method thereof according to the first embodiment can be applied to a bipolar SIT (electrostatic induction transistor). .
  • the current amplification factor of the BJT 100 or SIT can be improved by about 20% by the surface protection film 30 formed of the thermal oxide film 31 and the deposited oxide film 32.
  • the deposited oxide film 32 contains about 2 to 3 ⁇ 10 19 cm ⁇ 3 of hydrogen element (hydrogen atom) and about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 of nitrogen element (nitrogen atom). Contains. It was confirmed that the deposited oxide film 32 at this time had a thickness of 150 to 1000 nm and the contents of the hydrogen element and the nitrogen element were the values shown above.
  • the NH 3 annealing step in the first embodiment is omitted, and a hydrogen element is included in the deposited oxide film. And / or a technique that does not introduce nitrogen element.
  • the bipolar semiconductor device is BJT200.
  • the manufacturing process of the BJT 200 according to the second embodiment is different from the first embodiment only in the contents of the interface deactivation process and the surface protective film forming process (step S18), and the other processes (step S11).
  • step S17 and S19 to S21) are the same as the BJT manufacturing process of the first embodiment.
  • FIG. 4 shows a cross-sectional structure in a state where the emitter electrode 41, the base electrode 42, and the collector electrode 43 are already formed.
  • the second embodiment is also the same as the first embodiment in that “(1) SiC surface deactivation process” and “(2) Surface protection film formation and heat treatment” are performed in step S18. .
  • a SiNx deposition process is performed after the formation of the deposited oxide film 32 based on the deposition of the PSG film.
  • a deposited nitride film 33 is formed on the deposited oxide film 32 with a thickness of 1000 to 2000 mm, for example.
  • the manufacturing process of BJT100 according to the first embodiment after deposition of the PSG film was NH 3 annealing process or the like
  • the first embodiment similarly to the NH 3 annealing treatment or the like before even depositing the SiNx in the second embodiment May be implemented.
  • the surface protective film 30 in the BJT 200 of the second embodiment has a laminated structure including a thermal oxide film 31, a deposited oxide film 32, and a deposited nitrogen film 33. These films are also formed on the SiC surface from the emitter region 14A excluding the emitter electrode 41 to the base contact region 23 excluding the base electrode 42, as in the first embodiment.
  • the deposited oxide film 32 is preferably in the range of 10 18 cm ⁇ 3 to 10 23 cm ⁇ 3 at least one of hydrogen and nitrogen. More preferably, it is contained at 10 19 cm ⁇ 3 or more. If both the hydrogen element and the nitrogen element are less than 10 18 cm ⁇ 3, the effect of removing the generated surface level is lost. Further, when at least one of hydrogen element and nitrogen element is more than 10 23 cm ⁇ 3 , the film quality cannot be maintained.
  • the thickness of the deposited oxide film 32 is preferably 150 nm to 1000 nm.
  • the film thickness is smaller than 150 nm, that is, smaller than the film thickness of the electrode, it becomes difficult to form the electrode by the lift-off method or the like. Furthermore, the surface protective film may break down when a high voltage is applied to the semiconductor element.
  • the film thickness is thicker than 1000 nm, not only the effect of introducing a hydrogen element or a nitrogen element decreases, but also the process time becomes longer and the manufacturing cost becomes higher.
  • the manufacturing method of the BJT 200 according to the second embodiment can also be applied to a bipolar SIT (electrostatic induction transistor) as in the description of the first embodiment.
  • the current amplification factor of the BJT 200 or SIT can be improved by about 20% by the surface protection film 30 including the thermal oxide film 31, the deposited oxide film 32, and the deposited nitride film 33.
  • the deposited oxide film 32 contains about 6 ⁇ 10 19 cm ⁇ 3 of hydrogen element (hydrogen atom) and about 2 ⁇ 10 19 to 6 ⁇ 10 19 cm ⁇ 3 of nitrogen element (nitrogen atom). ing. It was confirmed that the deposited oxide film 32 at this time had a thickness of 150 to 1000 nm and the contents of the hydrogen element and the nitrogen element were the values shown above.
  • the NH 3 annealing step in the first embodiment is omitted, and the deposited oxide film contains hydrogen.
  • a technique that does not introduce elements and / or nitrogen elements is used.
  • the bipolar semiconductor device of the third embodiment is a pn diode 300.
  • the stacked structure is constituted by a two-layer structure including a cathode region 61 and an anode region 62 as compared with the stacked structure shown in FIG. .
  • an interface deactivation process and a surface protection film forming process are performed on the exposed SiC surface. The content of this process is the same as the process of step S18 described in the first embodiment. Other manufacturing processes are determined and changed according to the manufacturing process of the pn diode.
  • a cathode electrode 63 is formed in the cathode region 61, and an anode electrode 64 is formed in the anode region 62. Further, on the SiC surface between the adjacent anode electrodes 64 (or the anode region 62), as in the case of the first embodiment, the surface protective film 30 having a laminated structure of the thermal oxide film 31 and the deposited oxide film 32 is formed. It is formed on the SiC surface from the anode region 62 to the cathode region 61 excluding the anode electrode 64 of FIG.
  • the third embodiment also has the same effect as the first embodiment.
  • the manufacturing methods of the thermal oxide film 31 and the deposited oxide film 32 are the same as the manufacturing method of the first embodiment.
  • the surface protective film 30 formed of the thermal oxide film 31 and the deposited oxide film 32 can improve the surface recombination current by about 20% and suppress the leakage current.
  • the deposited oxide film 32 contains about 2 to 3 ⁇ 10 19 cm ⁇ 3 of hydrogen element (hydrogen atom) and about 1 ⁇ 10 18 to 1 ⁇ 10 19 cm ⁇ 3 of nitrogen element (nitrogen atom). Contains. It was confirmed that the deposited oxide film 32 at this time had a thickness of 150 to 1000 nm and the contents of the hydrogen element and the nitrogen element were the values shown above.
  • the NH 3 annealing step in the third embodiment is omitted, and a hydrogen element and a deposited oxide film are included in the deposited oxide film. // A technique that does not introduce nitrogen element is used.
  • the bipolar semiconductor device of the fourth embodiment is also a pn diode 400. Since the semiconductor device is a pn diode 400, the stacked structure is a two-layer structure including a cathode region 61 and an anode region 62, as in the third embodiment.
  • the surface protection film 30 is formed in a laminated structure including a thermal oxide film 31, a deposited oxide film 32, and a deposited nitride film 33. ing.
  • the same interface deactivation process and surface protection film forming steps as those of the second embodiment are performed on the SiC surface.
  • the content of this process is the same as the process corresponding to step S18 in the second embodiment.
  • the contents of other manufacturing processes are determined according to the manufacturing process of the pn diode.
  • FIG. 6 other structures are the same as those shown in FIG.
  • the surface protective film 30 having a laminated structure of the thermal oxide film 31, the deposited oxide film 32, and the deposited nitride film 33 is formed.
  • the manufacturing methods of the thermal oxide film 31, the deposited oxide film 32, and the deposited nitride film 33 are the same as the manufacturing method described in the second embodiment.
  • the surface recombination current can be improved by about 20% by the surface protection film 30 including the thermal oxide film 31, the deposited oxide film 32, and the deposited nitride film 33, and the leakage current is suppressed. can do.
  • the deposited oxide film 32 contains about 6 ⁇ 10 19 cm ⁇ 3 of hydrogen element (hydrogen atom) and about 2 ⁇ 10 19 to 6 ⁇ 10 19 cm ⁇ 3 of nitrogen element (nitrogen atom). It was confirmed that the deposited oxide film 32 at this time had a thickness of 150 to 1000 nm and the contents of the hydrogen element and the nitrogen element were the values shown above.
  • the step of forming the deposited nitride film in the fourth embodiment is omitted, and the deposited oxide film is A technique that does not introduce hydrogen element and / or nitrogen element is used.
  • the present invention can be used to increase the current amplification factor by removing a surface level generated on the surface of a bipolar type SiC semiconductor device by forming a surface protective film containing hydrogen element and nitrogen element at a predetermined concentration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Bipolar Transistors (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 バイポーラ型トランジスタの表面準位密度を低減してその電流増幅率を高め、トランジスタ性能を向上することができるバイポーラ型半導体装置が開示される。バイポーラ型半導体装置(100)は、半導体素子の表面上に表面保護膜(30)を有する。該表面保護膜は、半導体素子の表面上に形成する熱酸化膜(31)と、熱酸化膜上に形成する堆積酸化膜(32)とからなる。該堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1018cm-3以上含まれる。

Description

バイポーラ型半導体装置およびその製造方法
 本発明はバイポーラ型半導体装置およびその製造方法に関し、特に、半導体素子の表面に生じる表面準位を取り除いてその電流増幅率を高めたバイポーラ型半導体装置およびその製造方法に関する。
 炭化珪素(シリコン・カーバイド(Silicon Carbide)、以下では「SiC」と記す。)を利用した半導体装置は、広く半導体装置に応用されているシリコンと比べて、バンドギャップエネルギが大きいことから、高電圧、大電力、高温動作の条件に適し、パワーデバイスなどへの適用が期待されている。現在、研究開発されているSiCパワーデバイスの構造は主に「MOS型」と「接合型」の2つの型に分類されている。
 接合型SiCパワー半導体デバイスには、静電誘導トランジスタ(Static Induction Transistor、「SIT」)や接合型電界効果トランジスタ(Junction Field Effect Transistor、「JFET」)、あるいはバイポーラ接合トランジスタ(Bipolar Junction Transistor、「BJT」)などがある。
 従来のBJTの例として例えば非特許文献1に記載された構造を有するものがある。BJTは、低抵抗のn型4H-SiC(0001)面8度オフ基板上に、下側から、n型高抵抗領域、p型ベース領域、n型エミッタ領域の順序に積層されて形成される。エミッタ領域は、多数の細長い形状の領域からなっている。エミッタ領域、ベース領域、コレクタ領域には外部に電気的接続を取るための電極が形成されている。
 図7は、非特許文献1に開示されたBJTの断面構造を示している。BJT500は、n型低抵抗層であるコレクタ領域501、n型高抵抗領域502、p型領域のベース領域503、n型低抵抗のエミッタ領域504、エミッタ領域を囲むように形成されたp型低抵抗領域のベースコンタクト領域505を備えている。コレクタ領域501とベース領域503(ベースコンタクト領域505)とエミッタ領域504のそれぞれの外部には、電気的接続をとるためのコレクタ電極506、ベース電極507、エミッタ電極508が接合されている。さらにBJT500の電極以外の露出表面の全体は表面保護膜509で覆われている。
 SiC半導体装置では、SiC表面に結合の完成していない原子が高密度に存在し、表面準位が形成される。接合型SiC半導体装置の内部で生じる電子や正孔は、上記表面準位で盛んに再結合するので、当該半導体装置の電流増幅率を上げるためには電子と正孔との再結合を防止することが必要である。従って当該表面準位を事前に取り除いておけば、電子と正孔との再結合の確率を減少させることができる。
 従来の接合型SiC半導体装置に関しては、ユニポーラ型のMOSFETについて、特許文献1と特許文献2に記載されているように、酸化膜を形成することによって上記の表面準位を取り除くことが試みられている。
 上記の特許文献1は金属、酸化膜およびSiC半導体からなる積層構造体を開示する。この積層構造体は、SiC半導体の表面に酸化膜を形成し、当該酸化膜の上にさらに金属を形成したMOS構造である。特許文献1では、MOS構造の製作条件に応じて電流-電圧曲線等の電気特性に影響を与えた。このため、酸化膜の厚みを規定し、MOS構造による表面電位の影響を排除した。
 また特許文献2は、半導体装置の製造方法に関し、SiC半導体のゲート領域の界面準位密度を低減させるものである。当該半導体装置は、ゲート絶縁膜を形成したMOS半導体であり、ユニポーラ型の半導体である。特許文献2の半導体装置では、導伝帯の底の近傍に形成された界面準位密度を減少させることで、電子に対して効果があり、チャネル領域の抵抗を減少させることができる。
特許3855019号公報 特許3443589号公報
J. Zhang他著「High Power(500V-70A) and High Gain(44-47) 4H-SiC Bipolar Junction Transistors」Materials Science Forum Vols. 457-460 (2004) pp. 1149-1152.
 BJTやバイポーラモードSIT等の電流駆動型(電流制御型)のトランジスタを高効率で動作させるためには、より少ないベース電流等(SITの場合にはゲート電流)によってより多くの主電流を制御することが望ましい。そのため電流増幅率(=主電流/ベース(ゲート)電流)が重要なパラメータとなる。なお主電極間に流れる電流を「主電流」、制御電極に流れるベース電流またはゲート電流を「制御電流」という。
 上記の電流増幅率を低下させる要因に半導体表面の再結合準位がある。半導体表面には未結合手に起因する表面準位が多数存在する。シリコンでは、熱酸化することで、デバイス特性に影響を及ぼさない表面準位の少ないシリコン・酸化膜界面を形成することができる。一方、SiCでは、熱酸化やその後の熱処理などでは十分に表面準位を下げられないという現状にある。そのため、バイポーラ型SiC半導体装置では、その半導体表面での電子と正孔の再結合を抑制することができず、十分に高い電流増幅率を得ることが難しいという課題がある。
 SiC半導体装置でその表面準位を低減する従来技術に関しては、MOS型トランジスタの性能を向上する観点のものは多く存在する。これに対してBJT等のバイポーラ型トランジスタの電流増幅率を向上する観点での従来技術は少ない。MOS型トランジスタの性能向上に影響を与える表面準位(界面準位)は、図8の符号601に示すように、バンドギャップ602中の導電帯603に近いエネルギ帯に位置しており、この表面準位を低減する技術は知られている。
 一方、バイポーラ型トランジスタ(n型SiCの場合)の電流増幅率の向上に影響を及ぼす表面準位は、バンドギャップ602の中心604(「ミッドギャップ」という)の付近に位置している。そのため、例えば上記の特許文献1,2に開示されるMOS型トランジスタの性能を向上できる技術を用いても、ミッドギャップ604付近に位置する表面準位密度を低減することは難しく、バイポーラ型トランジスタの性能を向上することは難しいものであった。図8において、符号605は価電子帯を示し、符号606は絶縁体のバンドギャップを示している。
 本発明の目的は、上記の問題を鑑み、バイポーラ型トランジスタの表面準位密度を低減してその電流増幅率を高め、トランジスタ性能を向上することができるバイポーラ型半導体装置およびその製造方法を提供することにある。
 本発明の一面によるバイポーラ型半導体装置は、半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置であり、表面保護膜は、半導体素子の表面上に形成する熱酸化膜と、熱酸化膜上に形成する堆積酸化膜とからなる積層構造を有すると共に、堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1018cm-3以上含まれる。
 別の面によるバイポーラ型半導体装置は、半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置であり、表面保護膜は、半導体素子の表面上に形成する熱酸化膜と、熱酸化膜上に形成する堆積酸化膜と、堆積酸化膜上に形成する堆積窒素膜とからなる積層構造を有すると共に、堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1019cm-3以上含まれる。
 好ましくは、堆積酸化膜は膜厚が150nm以上である。
 好ましくは、前記半導体素子は、炭化珪素半導体素子であって、炭化珪素半導体結晶の一方の面に形成されたn型低抵抗層のコレクタ領域と、炭化珪素半導体結晶の他方の面に形成されたn型低抵抗層のエミッタ領域と、エミッタ領域の周囲に形成されたp型のベースコンタクト領域と、エミッタ領域とコレクタ領域の間にベース領域およびn型高抵抗層とを有し、さらに、表面保護膜は、ベース領域とエミッタ領域の間の炭化珪素半導体素子の表面上に形成されている。
 好ましくは、前記半導体素子は、炭化珪素半導体素子であって、炭化珪素半導体結晶の一方の面に形成されたn型低抵抗層のドレイン領域と、炭化珪素半導体結晶の他方の面に形成されたn型低抵抗層のソース領域と、ソース領域の周囲に形成されたp型のゲート領域と、ソース領域とドレイン領域の間にn型高抵抗層とを有し、さらに、表面保護膜は、ゲート領域とソース領域の間の炭化珪素半導体素子の表面上に形成されている。
 好ましくは、前記半導体素子は、炭化珪素半導体素子であって、炭化珪素半導体結晶の一方の面に形成されたn型抵抗層のカソード領域と、炭化珪素半導体結晶の他方の面に形成されたp型抵抗層のアノード領域とを有し、さらに、前記アノード領域にアノード電極が形成されると共に、表面保護膜は、アノード電極を除く炭化珪素半導体素子の表面上に形成されている。
 好ましくは、前記バイポーラ型半導体装置は、高抵抗層内にゲート領域に接続されるp型のチャネルドープ層が設けられている。
 本発明によるバイポーラ型半導体装置の製造方法は、炭化珪素半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置の製造方法であり、炭化珪素半導体素子の表面上に熱酸化膜を形成する工程と、熱酸化膜上に堆積酸化膜を形成する工程とを有し、表面保護膜は熱酸化膜と堆積酸化膜で形成され、かつ堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1018cm-3以上含まれる方法である。
 本発明の別の面によるバイポーラ型半導体装置の製造方法は、炭化珪素半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置の製造方法であり、炭化珪素半導体素子の表面上に熱酸化膜を形成する工程と、熱酸化膜上に堆積酸化膜を形成する工程と、堆積酸化膜上に堆積窒素膜を形成する工程とを有し、表面保護膜は熱酸化膜と堆積酸化膜と堆積窒素膜で形成され、かつ堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1019cm-3以上含まれる方法である。
 好ましくは、バイポーラ型半導体装置の製造方法は、上記の方法において、堆積酸化膜は膜厚が150nm以上である。
 本発明に係るバイポーラ型半導体装置によれば、炭化珪素(SiC)半導体素子の露出表面上に形成される表面保護膜(表面パッシベーション膜)を、熱酸化膜と堆積酸化膜から成る積層構造、または熱酸化膜と堆積酸化膜と堆積窒化膜から成る積層構造によって形成し、堆積酸化膜に所定量の水素元素と窒素元素を含有させるようにしたため、炭化珪素半導体素子に生じた表面準位(ミッドギャップ準位)を減少させることができ、電子と正孔の再結合を防止することができる。さらにこれによりバイポーラ型炭化珪素半導体装置の電流増幅率を高めることができる。またバイポーラ型炭化珪素半藤装置をダイオードに適用した場合には、リーク電流(順方向動作時の再結合電流、逆方向動作時の生成電流)を抑制することができる。
 また本発明に係るバイポーラ型半導体装置の製造方法によれば、上記の効果を発揮するバイポーラ型炭化珪素半導体装置を簡単なプロセスでかつ低コストで製造することができる。
本発明の第1実施例によるバイポーラ型半導体装置の製造方法を示すフローチャートである。 第1実施例によるバイポーラ型半導体装置の製造方法の各工程に対応するデバイス構造を示す断面図である。 第1実施形態に係るバイポーラ型半導体装置(BJT)のデバイス構造について拡大して示した部分縦断面図である。 本発明の第2実施例によるバイポーラ型半導体装置(BJT)のデバイス構造について拡大して示した図3と同様な断面図である。 本発明の第3実施例によるバイポーラ型半導体装置(pnダイオード)のデバイス構造について拡大して示した断面図である。 本発明の第4実施例によるバイポーラ型半導体装置(pnダイオード)のデバイス構造について拡大して示した断面図である。 従来のバイポーラ型半導体装置(BJT)の断面図である。 バイポーラ型半導体装置の表面準位の原因となるミッドギャップを説明するためのエネルギバンド図である。
 以下に、本発明の好ましい幾つかの実施例について、添付した図面に基づいて説明する。
 <第1実施例>
 図1~図3を参照して本発明によるバイポーラ型半導体装置の第1実施例を説明する。このバイポーラ型半導体装置はBJTの例である。図1~図3を参照してBJTの製造方法と構造を説明する。図1は製造方法の各工程を示すフローチャートである。図2の(a)~(g)は、各工程で製作されるBJT100の断面を示している。図3は、図2の(f)を拡大して示すことにより、表面保護膜の積層構造を詳細に示している。
 BJTの製造方法は、次のプロセス(1)~(11)(ステップS11~S21)から成っている。図1に示されるようにステップS11からステップS21に到る順序で各プロセスが実行される。
 (1)n型の低抵抗のSiC半導体素子の基板(結晶)の準備工程(ステップS11)
 (2)n型の高抵抗層の形成工程(ステップS12)
 (3)p型のチャネルドープ層の形成工程(ステップS13)
 (4)ベース領域の形成工程(ステップS14)
 (5)n型の低抵抗層の形成工程(ステップS15)
 (6)エミッタエッチング工程(ステップS16)
 (7)イオン注入マスク形成、ベースコンタクト用高濃度イオン注入、および活性化熱処理の工程(ステップS17)
 (8)界面不活性化処理と表面保護膜形成の工程(ステップS18)
 (9)エミッタ電極の形成工程(ステップS19)
 (10)ベース電極とコレクタ電極の形成工程(ステップS20)
 (11)層間膜と上層電極の形成工程(ステップS21)
 上記のステップS11~S15を順次に実施することによって図2(a)に示される積層構造が形成される。
 基板の準備工程(ステップS11)においては、n型の低抵抗のSiC半導体素子の基板(結晶)10が用意される。基板10には「4H-SiC(0001)8°off」が用いられている。また基板10は、BJT100の図中下部のn型低抵抗層のコレクタ領域となる。
 n型の高抵抗層の形成工程(ステップS12)では、SiC半導体素子の基板10の上に、エピタキシャル成長法により、厚さ10μmで、濃度1×1016cm-3の窒素を不純物としてドープした高抵抗層11を成長させる。
 チャネルドープ層の形成工程(ステップS13)では、高抵抗層11の上にエピタキシャル成長法により、アルミニウム(Al)を不純物として4×1017~2×1018cm-3の濃度で0.1~0.5μmのチャネルドープ領域12を成長させる。
 ベース領域形成工程(ステップS14)では、チャネルドープ層12の上に、さらに同様にしてエピタキシャル成長法によってp型のベース領域13を成長させる。
 低抵抗層形成工程(ステップS15)では、ベース領域13の上に、エピタキシャル成長法により、厚さ0.5~2.0μmで濃度1~5×1019cm-3の窒素を不純物としてドープしたn型の低抵抗層14を成長させる。この低抵抗層14は、その後のエッチング処理によってエミッタ領域を形成する部分である。
 次のエミッタエッチング工程(ステップS16)では、図2(a)に示された積層構造において、その上面にCVD法によりシリコン酸化膜21を堆積させ、その後フォトリソグラフィーを行い、さらにその後にRIEによりシリコン酸化膜21をドライエッチングする。こうしてエッチングマスクが形成される。このシリコン酸化膜21によるエッチングマスクを用いて、その後に、RIEにより低抵抗層14についてSiCエッチングを行い、低抵抗層14を利用してエミッタ領域14Aを形成する。このSiCエッチングのRIEでは、HBrガス、CL2ガス、H/Oガス等の雰囲気中で0.5~2.1μmの深さでのエッチングが行われる。その結果得られた構造を図2(b)に示す。
 イオン注入マスク形成、ベースコンタクト用高濃度イオン注入、および活性化熱処理の工程(ステップS17)では、それぞれの次の処理が行われる。
 (1)イオン注入マスク
 ベースコンタクト領域23を形成するための表面部分が露出するようにマスクが形成される。当該マスクは、CVD法によりシリコン酸化膜を堆積し、フォトリソグラフィーを行い、その後にRIEによりシリコン酸化膜をドライエッチングすることにより形成される。なお図2(c)ではマスクの図示は省略されている。図2(c)では、その結果作られたベースコンタクト領域23のみが示されている。
 (2)ベースコンタクト用高濃度イオン注入
 ベースコンタクト領域23を形成する工程では、上記のイオン注入マスクを利用して、イオン注入を行ってベースコンタクト領域23を形成する。注入されるイオンは例えばアルミニウム(Al)であり、注入の深さは例えば0.2μmである。イオン注入量は1×1018~1019cm-3であり、イオン注入に必要なエネルギは最大で約400KeVであり、さらに多段注入が行われる。
 (3)活性化熱処理
 イオン注入層を活性化する工程では、イオン注入後に、注入イオンを半導体中で電気的に活性化すると共に、イオン注入で発生した結晶欠陥を消すための熱処理を行う。この活性化の熱処理では、ベースコンタクト領域23の注入イオンと再結合抑制領域22の注入イオンの両方の活性化を同時に行っている。高周波熱処理炉などを用い、1700~1900℃程度の高温下で約10~30分程度の熱処理を行う。雰囲気ガスには例えばアルゴンガス(Ar)が用いられ、または真空が用いられる。
 次に、界面不活性化処理と表面保護膜形成の工程(ステップS18)を説明する。ステップS18の内容は図2(d)に示され、本願発明の特徴的部分である。図2の(d)において、符号30は表面保護膜を示している。当該表面保護膜30の詳細は、後述される図2(f)の拡大図である図3に示されている。界面不活性化処理と表面保護膜形成の工程(ステップS18)ではそれぞれ次の処理が行われる。
 (1)界面不活性化処理
 図2(c)に示されたBJT100の構造において、その最上部のSiC表面に対して不活性化処理が行われる。SiC表面に対して不活性化処理では、最初に犠牲酸化が行われ、その後にパイロジェニック酸化が行われる。犠牲酸化の処理では、例えば1100℃の温度環境で20時間行われ、SiC表面上に犠牲酸化膜を形成する。その後、この犠牲酸化膜を除去する。さらにその後のパイロジェニック酸化の処理では、例えば1000℃の温度環境で1時間から4時間で行われる。その後、H(水素ガス)を用いてPOA(Post Oxidation Anneal:ポストオキサイドアニール)の熱処理が例えば1000℃の温度環境で30分行われる。POAは、SiC酸化膜界面の不純物準位を低減するための熱処理で或る。こうして図3に示されるようにBJTのSiC表面に熱酸化膜31が例えば略100Åの厚みで形成される。
 (2)表面保護膜形成
 上記の熱酸化膜31の上にPSG膜(P(リン)を含むパッシベーション膜(Phospho-Silicate-Glass))を堆積し、図3に示されるように堆積酸化膜32を例えば略5000Åの厚みで形成する。その後に、NH(アンモニアガス)を用いてアニール処理(熱処理)が行われる。このNHアニール処理は、例えば、740℃の温度条件で50~100分行われ、圧力条件は1mbarである。またガス雰囲気の条件としてN(窒素ガス)とNH(アンモニアガス)の比は1:1.2である。
 上記のようにして形成された熱酸化膜31と堆積酸化膜32との積層構造に基づいて、BJT100における露出するSiC表面上に表面保護膜30(図2の(d),(e),(f),(g)に示す)が形成される。つまり、図3のエミッタ電極41を除くエミッタ領域14Aからベース電極42を除くベースコンタクト領域23までのSiC表面に熱酸化膜31および堆積酸化膜32が形成される。これらの膜によってSiC表面領域に発生する表面準位を除去することができる。
 上記において、堆積酸化膜32は、好ましくは、水素元素と窒素元素のうち少なくともいずれか一方が1018cm-3以上含まれる。より好ましくは、1018cm-3から1023cm-3の範囲である。この場合、水素元素と窒素元素の両方が1018cm-3より少ないと、発生した表面準位を除去する効果がなくなる。さらに、水素元素と窒素元素のうち少なくともいずれか一方が1023cm-3より多い場合、膜質が維持できなくなってしまう。
 堆積酸化膜32の膜厚は、150nm以上であることが好ましい。この場合、膜厚は、150nmから1000nmであることがより好ましい。膜厚が150nmより小さいと、つまり、電極の膜厚よりも小さくなるため、リフトオフ法などによる電極形成が容易でなくなる。さらにまた、高い電圧が半導体素子に印加されているときに、表面保護膜が絶縁破壊してしまうこともある。一方、1000nmより膜厚が厚いと、水素元素や窒素元素を導入する効果が減少してしまうだけでなく、プロセス時間が長くなり、製造コストが高くなる。
 NHアニール処理の代わりに、NO常圧雰囲気でのアニール、NOとNの混合雰囲気(常圧)でのアニール、H常圧雰囲気でのアニール、NH常圧雰囲気でのアニール、NHとNの混合雰囲気(常圧)でのアニールのいずれかの処理を行うことができる。
 エミッタ電極の形成工程(ステップS19)では、エミッタ領域14A(低抵抗層14)の表面にエミッタ電極41を形成する(図2(e))。エミッタ電極41は、ニッケルやチタンを用い、蒸着やスパッタリングなどで形成する。電極パターンの形成には、フォトリソグラフィー、ドライエッチング、ウェットエッチング、リフトオフ法などが利用される。またエミッタ電極41を形成した後には、金属部分と半導体部分との間の接触抵抗を低減するために熱処理を行う。
 ベース電極とコレクタ電極の形成工程(ステップS20)では、ベースコンタクト領域23、コレクタ領域10(基板10)の表面にそれぞれベース電極42、コレクタ電極43を形成する(図2(f))。コレクタ電極43にはニッケルやチタンを用い、ベース電極42にはチタンアルミニウムなどを用いる。各電極42,43は、蒸着やスパッタリングなどで形成する。電極パターンの形成には、フォトリソグラフィー、ドライエッチング、ウェットエッチング、リフトオフ法などが利用される。また電極42,43を形成した後には、金属部分と半導体部分との間の接触抵抗を低減するために熱処理を行う。
 最後に層間膜と上層電極の形成工程(ステップS21)が実行される。層間膜と上層電極の形成工程(ステップS21)では、分離されている複数のエミッタ電極41を1つの電極に取り出すための上層電極51を形成する(図2(g))。CVD法によりシリコン酸化膜などを層間膜52として形成した後、フォトリソグラフィーとエッチングによりエミッタ電極41の部分のシリコン酸化膜などを取り除く。こうしてエミッタ電極41を露出させた後に、上層電極51を堆積させる。上層電極51の材料には例えばアルミニウム(Al)を用いる。
 上記のBJT100の製造方法において、ステップS17でのベースコンタクト用高濃度イオン注入領域23がp型SiC層であるチャネルドープ層12よりも深くなるように形成し、さらにエミッタ電極41とベース電極42とコレクタ電極43をそれぞれソース電極、ゲート電極、ドレイン電極と定義することにより、第1実施形態に係る半導体装置およびその製造方法は、バイポーラ型のSIT(静電誘導トランジスタ)にも適用することができる。
 第1実施例によるBJT100では、熱酸化膜31と堆積酸化膜32から成る表面保護膜30によって、BJT100またはSITでその電流増幅率を約20%向上することができる。この場合において、堆積酸化膜32は、約2~3×1019cm-3の水素元素(水素原子)、および約1×1018~1×1019cm-3の窒素元素(窒素原子)を含有している。この時の堆積酸化膜32の膜厚が150~1000nmの範囲で、水素元素および窒素元素の含有量が先に示した数値であることが確認できた。なお上記の電流増幅率の比較効果について、本実施例の比較対象となる標準的な表面保護膜の作製では、第1実施例でのNHアニール工程を省略し、堆積酸化膜中に水素元素および/または窒素元素を導入しない技術を用いている。
 <第2実施例>
 次に、図4を参照して、本発明によるバイポーラ型半導体装置の第2実施例を説明する。第2実施例でもバイポーラ型半導体装置はBJT200である。第2実施例によるBJT200の製造工程は、第1実施例に比較して、界面不活性化処理と表面保護膜形成の工程(ステップS18)の内容が異なるだけであり、その他の工程(ステップS11~S17、S19~S21)は第1実施例のBJT製造工程と同じである。
 図4は、既にエミッタ電極41、ベース電極42、コレクタ電極43が形成された状態の断面構造を示している。第2実施例においても、ステップS18で「(1)SiC表面の不活性化処理」と「(2)表面保護膜の形成および熱処理」とが行われる点については第1実施例と同じである。第2実施例におけるステップS18では、PSG膜の堆積に基づく堆積酸化膜32の形成の後にSiNx堆積の工程が実施される。その結果、堆積酸化膜32の上に例えば1000~2000Åの厚みで堆積窒化膜33が形成される。第1実施例によるBJT100の製造工程ではPSG膜の堆積の後にはNHアニール処理等を行ったが、第2実施例でもSiNxを堆積する前に第1実施例と同様にNHアニール処理等を実施するようにしてもよい。
 第2実施例のBJT200における表面保護膜30は、熱酸化膜31と、堆積酸化膜32と、堆積窒素膜33とからなる積層構造を有する。これらの膜も、第1実施例と同様に、エミッタ電極41を除くエミッタ領域14Aからベース電極42を除くベースコンタクト領域23までのSiC表面に形成される。この場合、堆積酸化膜32は、水素元素と窒素元素のうち少なくともいずれか一方が好ましくは1018cm-3~1023cm-3の範囲である。より好ましくは1019cm-3以上含まれる。水素元素と窒素元素の両方が1018cm-3より少ないと、発生した表面準位を除去する効果がなくなる。さらに、水素元素と窒素元素のうち少なくともいずれか一方が1023cm-3より多い場合、膜質が維持できなくなってしまう。
 堆積酸化膜32の膜厚は、150nmから1000nmであることが好ましい。膜厚が150nmより小さいと、つまり、電極の膜厚よりも小さくなるため、リフトオフ法などによる電極形成が容易でなくなる。さらにまた、高い電圧が半導体素子に印加されているときに、表面保護膜が絶縁破壊してしまうこともある。一方、1000nmより膜厚が厚いと、水素元素や窒素元素を導入する効果が減少してしまうだけでなく、プロセス時間が長くなり、製造コストが高くなる。
 第2実施例によるBJT200の製造方法においても、第1実施例の説明と同様に、バイポーラ型のSIT(静電誘導トランジスタ)に適用することができる。
 第2実施例によるBJT200では、熱酸化膜31と堆積酸化膜32と堆積窒化膜33から成る表面保護膜30によって、BJT200またはSITでその電流増幅率を約20%向上することができる。この場合において、堆積酸化膜32は、約6×1019cm-3の水素元素(水素原子)、および約2×1019~6×1019cm-3の窒素元素(窒素原子)を含有している。この時の堆積酸化膜32の膜厚が150~1000nmの範囲で、水素元素および窒素元素の含有量が先に示した数値であることが確認できた。なお上記の電流増幅率の比較効果について、本実施形態の比較対象となる標準的な表面保護膜の作製では、第1の実施形態でのNHアニール工程を省略し、堆積酸化膜中に水素元素および/または窒素元素を導入しない技術を用いている。
 <第3実施例>
 次に、図5を参照して、本発明によるバイポーラ型半導体装置の第3実施例を説明する。第3実施例のバイポーラ型半導体装置はpnダイオード300である。半導体装置がpnダイオード300である場合には、その積層構造は、図2(a)に示された積層構造に比較して、カソード領域61とアノード領域62とから成る2層構造によって構成される。pnダイオード300においても、その露出したSiC表面に対して界面不活性化処理と表面保護膜形成の工程が実施される。この工程の内容は、第1の実施形態で説明したステップS18の工程と同じ内容である。その他の製造工程は、pnダイオードの製造工程に応じて決定され、変更される。カソード領域61にはカソード電極63が形成され、アノード領域62にはアノード電極64が形成され、ている。また隣り合うアノード電極64(またはアノード領域62)の間にSiC表面には、第1実施例の場合と同様に、熱酸化膜31と堆積酸化膜32の積層構造から成る表面保護膜30が、図5のアノード電極64を除くアノード領域62からカソード領域61までのSiC表面に形成されている。第3実施例においても、第1実施例と同様な効果がある。熱酸化膜31と堆積酸化膜32のそれぞれの製造方法は第1実施例の製造方法と同じである。
 第3実施例によるpnダイオード300では、熱酸化膜31と堆積酸化膜32から成る表面保護膜30によって、その表面再結合電流を約20%向上することができ、リーク電流を抑制することができる。この場合において、堆積酸化膜32は、約2~3×1019cm-3の水素元素(水素原子)、および約1×1018~1×1019cm-3の窒素元素(窒素原子)を含有している。この時の堆積酸化膜32の膜厚が150~1000nmの範囲で、水素元素および窒素元素の含有量が先に示した数値であることが確認できた。上記の電流増幅率の比較効果について、本実施例の比較対象となる標準的な表面保護膜の作製では、第3実施例でのNHアニール工程を省略し、堆積酸化膜中に水素元素および/または窒素元素を導入しない技術を用いている。
 <第4実施例>
 次に、図6を参照して、本発明によるバイポーラ型半導体装置の第4実施例を説明する。第4実施例のバイポーラ型半導体装置もpnダイオード400である。半導体装置がpnダイオード400であるので、第3実施例と同様に、積層構造は、カソード領域61とアノード領域62とから成る2層構造である。当該第4実施例は、第3実施例のpnダイオードにおいて、第2実施例と同様に、表面保護膜30を熱酸化膜31と堆積酸化膜32と堆積窒化膜33から成る積層構造で形成している。第4実施例のpnダイオード400においても、SiC表面に対して、第2実施例と同じ界面不活性化処理と表面保護膜形成の工程が実施される。この工程の内容は、第2実施例におけるステップS18に相当する工程と同じ内容である。その他の製造工程の内容は、pnダイオードの製造工程に応じて決定される。図6において、その他の構造は図5で示した構造と同じである。隣り合うアノード電極64(またはアノード領域62)の間のSiC表面には、第2実施例と同様に、熱酸化膜31と堆積酸化膜32と堆積窒化膜33の積層構造から成る表面保護膜30が、図6のアノード電極64を除くアノード領域62からカソード領域61までのSiC表面に形成されている。熱酸化膜31と堆積酸化膜32と堆積窒化膜33のそれぞれの製造方法は、第2実施例で説明した製造方法と同じである。
 第4実施例によるpnダイオード400では、熱酸化膜31と堆積酸化膜32と堆積窒化膜33から成る表面保護膜30によって、表面再結合電流を約20%向上することができ、リーク電流を抑制することができる。上記堆積酸化膜32は、約6×1019cm-3の水素元素(水素原子)、および約2×1019~6×1019cm-3の窒素元素(窒素原子)を含有している。この時の堆積酸化膜32の膜厚が150~1000nmの範囲で、水素元素および窒素元素の含有量が先に示した数値であることが確認できた。なお上記の電流増幅率の比較効果について、本実施例の比較対象となる標準的な表面保護膜の作製では、第4実施例での堆積窒化膜の形成工程を省略し、堆積酸化膜中に水素元素および/または窒素元素を導入しない技術を用いている。
 以上の各実施例で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、数値および各構成の組成(材質)等については例示にすぎない。従って本発明は、説明された実施例に限定されるものではなく、請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。
 本発明は、バイポーラ型のSiC半導体デバイスの表面に生じてしまう表面準位を水素元素と窒素元素を所定濃度で含有した表面保護膜を形成することにより取り除き、電流増幅率を高めることに利用される。
 10 基板
 11 高抵抗層
 12 チャネルドープ層
 13 ベース領域
 14 低抵抗層
 14A エミッタ領域
 21 シリコン酸化膜
 23 ベースコンタクト領域
 30 表面保護膜
 31 熱酸化膜
 32 堆積酸化膜
 33 堆積窒化膜
 41 エミッタ電極
 42 ベース電極
 43 コレクタ電極
 51 上層電極
 52 層間膜
 61 カソード領域
 62 アノード領域
 100 バイポーラ型半導体装置(BJT)
 200 BJT
 300 pnダイオード
 400 pnダイオード

Claims (16)

  1.  半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置において、
     前記表面保護膜は、前記半導体素子の前記表面上に形成する熱酸化膜と、前記熱酸化膜上に形成する堆積酸化膜とからなる積層構造を有すると共に、前記堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1018cm-3以上含まれることを特徴とするバイポーラ型半導体装置。
  2.  前記堆積酸化膜は膜厚が150nm以上であることを特徴とする請求項1に記載のバイポーラ型半導体装置。
  3.  前記半導体素子は、炭化珪素半導体素子であって、
     炭化珪素半導体結晶の一方の面に形成されたn型低抵抗層のコレクタ領域と、
     前記炭化珪素半導体結晶の他方の面に形成されたn型低抵抗層のエミッタ領域と、
     前記エミッタ領域の周囲に形成されたp型のベースコンタクト領域と、
     前記エミッタ領域と前記コレクタ領域の間にベース領域およびn型高抵抗層とを有し、
     さらに、前記表面保護膜は、前記ベース領域と前記エミッタ領域の間の前記炭化珪素半導体素子の表面上に形成されたことを特徴とする請求項1に記載のバイポーラ型半導体装置。
  4.  前記半導体素子は、炭化珪素半導体素子であって、
     炭化珪素半導体結晶の一方の面に形成されたn型低抵抗層のドレイン領域と、
     前記炭化珪素半導体結晶の他方の面に形成されたn型低抵抗層のソース領域と、
     前記ソース領域の周囲に形成されたp型のゲート領域と、
     前記ソース領域と前記ドレイン領域の間にn型高抵抗層とを有し、
     さらに、前記表面保護膜は、前記ゲート領域と前記ソース領域の間の前記炭化珪素半導体素子の表面上に形成されたことを特徴とする請求項1に記載のバイポーラ型半導体装置。
  5.  前記半導体素子は、炭化珪素半導体素子であって、
     炭化珪素半導体結晶の一方の面に形成されたn型抵抗層のカソード領域と、
     前記炭化珪素半導体結晶の他方の面に形成されたp型抵抗層のアノード領域とを有し、
     さらに、前記アノード領域にアノード電極が形成されると共に、前記表面保護膜は、前記アノード電極を除く前記炭化珪素半導体素子の表面上に形成されたことを特徴とする請求項1に記載のバイポーラ型半導体装置。
  6.  前記高抵抗層内に前記ベースコンタクト領域に接続されるp型のチャネルドープ層を設けることを特徴とする請求項3に記載のバイポーラ型半導体装置。
  7.  半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置において、
     前記表面保護膜は、前記半導体素子の前記表面上に形成する熱酸化膜と、前記熱酸化膜上に形成する堆積酸化膜と、前記堆積酸化膜上に形成する堆積窒化膜とからなる積層構造を有すると共に、前記堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1019cm-3以上含まれることを特徴とするバイポーラ型半導体装置。
  8.  前記堆積酸化膜は膜厚が150nm以上であることを特徴とする請求項7に記載のバイポーラ型半導体装置。
  9.  前記半導体素子は、炭化珪素半導体素子であって、
     炭化珪素半導体結晶の一方の面に形成されたn型低抵抗層のコレクタ領域と、
     前記炭化珪素半導体結晶の他方の面に形成されたn型低抵抗層のエミッタ領域と、
     前記エミッタ領域の周囲に形成されたp型のベースコンタクト領域と、
     前記エミッタ領域と前記コレクタ領域の間にベース領域およびn型高抵抗層とを有し、
     さらに、前記表面保護膜は、前記ベース領域と前記エミッタ領域の間の前記炭化珪素半導体素子の表面上に形成されたことを特徴とする請求項7に記載のバイポーラ型半導体装置。
  10.  前記半導体素子は、炭化珪素半導体素子であって、
     炭化珪素半導体結晶の一方の面に形成されたn型低抵抗層のドレイン領域と、
     前記炭化珪素半導体結晶の他方の面に形成されたn型低抵抗層のソース領域と、
     前記ソース領域の周囲に形成されたp型のゲート領域と、
     前記ソース領域と前記ドレイン領域の間にn型高抵抗層とを有し、
     さらに、前記表面保護膜は、前記ゲート領域と前記ソース領域の間の前記炭化珪素半導体素子の表面上に形成されたことを特徴とする請求項7に記載のバイポーラ型半導体装置。
  11.  前記半導体素子は、炭化珪素半導体素子であって、
     炭化珪素半導体結晶の一方の面に形成されたn型抵抗層のカソード領域と、
     前記炭化珪素半導体結晶の他方の面に形成されたp型抵抗層のアノード領域とを有し、
     さらに、前記アノード領域にアノード電極が形成されると共に、前記表面保護膜は、前記アノード電極を除く前記炭化珪素半導体素子の表面上に形成されたことを特徴とする請求項7に記載のバイポーラ型半導体装置。
  12.  前記高抵抗層内に前記ベースコンタクト領域に接続されるp型のチャネルドープ層を設けることを特徴とする請求項9に記載のバイポーラ型半導体装置。
  13.  炭化珪素半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置の製造方法であって、
     前記炭化珪素半導体素子の前記表面上に熱酸化膜を形成する工程と、
     前記熱酸化膜上に堆積酸化膜を形成する工程と、
    を含み、
     前記表面保護膜は、前記熱酸化膜と前記堆積酸化膜で形成され、かつ前記堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1018cm-3以上含まれることを特徴とするバイポーラ型半導体装置の製造方法。
  14.  前記堆積酸化膜は膜厚が150nm以上であることを特徴とする請求項13に記載のバイポーラ型半導体装置の製造方法。
  15.  炭化珪素半導体素子の表面上に表面保護膜を有するバイポーラ型半導体装置の製造方法であって、
     前記炭化珪素半導体素子の前記表面上に熱酸化膜を形成する工程と、
     前記熱酸化膜上に堆積酸化膜を形成する工程と、
     前記堆積酸化膜上に堆積窒化膜を形成する工程と、
    を含み、
     前記表面保護膜は、前記熱酸化膜と前記堆積酸化膜と前記堆積窒化膜で形成され、かつ前記堆積酸化膜は水素元素と窒素元素のうち少なくともいずれか一方が1019cm-3以上含まれることを特徴とするバイポーラ型半導体装置の製造方法。
  16.  前記堆積酸化膜は膜厚が150nm以上であることを特徴とする請求項15に記載のバイポーラ型半導体装置の製造方法。
PCT/JP2009/064776 2008-08-26 2009-08-25 バイポーラ型半導体装置およびその製造方法 WO2010024243A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010526714A JPWO2010024243A1 (ja) 2008-08-26 2009-08-25 バイポーラ型半導体装置およびその製造方法
EP09809894.0A EP2325872A4 (en) 2008-08-26 2009-08-25 BIPOLAR SEMICONDUCTOR ELEMENT AND MANUFACTURING METHOD THEREFOR
CN2009801332463A CN102132388A (zh) 2008-08-26 2009-08-25 双极型半导体装置及其制造方法
US13/060,697 US20110169015A1 (en) 2008-08-26 2009-08-25 Bipolar semiconductor device and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-217391 2008-08-26
JP2008217391 2008-08-26

Publications (1)

Publication Number Publication Date
WO2010024243A1 true WO2010024243A1 (ja) 2010-03-04

Family

ID=41721411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064776 WO2010024243A1 (ja) 2008-08-26 2009-08-25 バイポーラ型半導体装置およびその製造方法

Country Status (5)

Country Link
US (1) US20110169015A1 (ja)
EP (1) EP2325872A4 (ja)
JP (1) JPWO2010024243A1 (ja)
CN (1) CN102132388A (ja)
WO (1) WO2010024243A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2761660B1 (en) 2012-01-18 2017-09-27 Fairchild Semiconductor Corporation Bipolar junction transistor with spacer layer and method of manufacturing the same
JP6107430B2 (ja) * 2012-06-08 2017-04-05 豊田合成株式会社 半導体装置
EP2905806B1 (en) * 2013-10-08 2016-08-24 Shindengen Electric Manufacturing Co., Ltd. Method for manufacturing a silicon carbide semiconductor device.
CN104201197B (zh) * 2014-08-26 2016-10-05 电子科技大学 一种碳化硅双极性晶体管
US9589953B2 (en) * 2015-03-31 2017-03-07 Ixys Corporation Reverse bipolar junction transistor integrated circuit
EP3516682A1 (en) 2016-09-26 2019-07-31 ZF Friedrichshafen AG Method of manufacturing an insulation layer on silicon carbide and semiconductor device
CN106684132B (zh) * 2016-12-29 2019-10-01 西安电子科技大学 基于有源区沟槽结构的碳化硅双极型晶体管及其制作方法
US10861694B2 (en) 2017-01-17 2020-12-08 Zf Friedrichshafen Ag Method of manufacturing an insulation layer on silicon carbide

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002093742A (ja) * 2000-09-18 2002-03-29 National Institute Of Advanced Industrial & Technology オーミック電極構造体、その製造方法、半導体装置及び半導体装置の製造方法
JP2003115487A (ja) * 2001-07-17 2003-04-18 Watanabe Shoko:Kk 半導体装置及びその作製方法並びに半導体装置応用システム
JP3443589B2 (ja) 1999-03-01 2003-09-02 独立行政法人産業技術総合研究所 半導体装置の製造方法
JP2004158603A (ja) * 2002-11-06 2004-06-03 Toyota Central Res & Dev Lab Inc 半導体素子とその製造方法
JP2005260177A (ja) * 2004-03-15 2005-09-22 Toshiba Corp 半導体装置の製造方法
JP2006269641A (ja) * 2005-03-23 2006-10-05 National Institute Of Advanced Industrial & Technology 半導体装置及びその製造方法
JP2006269681A (ja) * 2005-03-23 2006-10-05 Honda Motor Co Ltd 接合型半導体装置および接合型半導体装置の製造方法
JP2006269679A (ja) * 2005-03-23 2006-10-05 Honda Motor Co Ltd 接合型半導体装置の製造方法
JP2006303469A (ja) * 2005-03-25 2006-11-02 Shindengen Electric Mfg Co Ltd SiC半導体装置
JP3855019B2 (ja) 1998-02-10 2006-12-06 独立行政法人 日本原子力研究開発機構 金属、酸化膜及び炭化珪素半導体からなる積層構造体
JP2006351621A (ja) * 2005-06-13 2006-12-28 Honda Motor Co Ltd バイポーラ型半導体装置およびその製造方法
JP2008177274A (ja) * 2007-01-17 2008-07-31 Kansai Electric Power Co Inc:The バイポーラ型半導体素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791119B2 (en) * 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US7304334B2 (en) * 2005-09-16 2007-12-04 Cree, Inc. Silicon carbide bipolar junction transistors having epitaxial base regions and multilayer emitters and methods of fabricating the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3855019B2 (ja) 1998-02-10 2006-12-06 独立行政法人 日本原子力研究開発機構 金属、酸化膜及び炭化珪素半導体からなる積層構造体
JP3443589B2 (ja) 1999-03-01 2003-09-02 独立行政法人産業技術総合研究所 半導体装置の製造方法
JP2002093742A (ja) * 2000-09-18 2002-03-29 National Institute Of Advanced Industrial & Technology オーミック電極構造体、その製造方法、半導体装置及び半導体装置の製造方法
JP2003115487A (ja) * 2001-07-17 2003-04-18 Watanabe Shoko:Kk 半導体装置及びその作製方法並びに半導体装置応用システム
JP2004158603A (ja) * 2002-11-06 2004-06-03 Toyota Central Res & Dev Lab Inc 半導体素子とその製造方法
JP2005260177A (ja) * 2004-03-15 2005-09-22 Toshiba Corp 半導体装置の製造方法
JP2006269641A (ja) * 2005-03-23 2006-10-05 National Institute Of Advanced Industrial & Technology 半導体装置及びその製造方法
JP2006269681A (ja) * 2005-03-23 2006-10-05 Honda Motor Co Ltd 接合型半導体装置および接合型半導体装置の製造方法
JP2006269679A (ja) * 2005-03-23 2006-10-05 Honda Motor Co Ltd 接合型半導体装置の製造方法
JP2006303469A (ja) * 2005-03-25 2006-11-02 Shindengen Electric Mfg Co Ltd SiC半導体装置
JP2006351621A (ja) * 2005-06-13 2006-12-28 Honda Motor Co Ltd バイポーラ型半導体装置およびその製造方法
JP2008177274A (ja) * 2007-01-17 2008-07-31 Kansai Electric Power Co Inc:The バイポーラ型半導体素子

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J. ZHANG ET AL.: "High Power (500V-70A) and High Gain (44-47) 4H-SiC Bipolar Junction Transistors", MATERIALS SCIENCE FORUM, vol. 457-460, 2004, pages 1149 - 1152
See also references of EP2325872A4 *

Also Published As

Publication number Publication date
EP2325872A1 (en) 2011-05-25
EP2325872A4 (en) 2013-11-20
CN102132388A (zh) 2011-07-20
US20110169015A1 (en) 2011-07-14
JPWO2010024243A1 (ja) 2012-01-26

Similar Documents

Publication Publication Date Title
JP4777699B2 (ja) バイポーラ型半導体装置およびその製造方法
WO2010024243A1 (ja) バイポーラ型半導体装置およびその製造方法
JP6222771B2 (ja) 炭化珪素半導体装置の製造方法
JP5584823B2 (ja) 炭化珪素半導体装置
JP5408248B2 (ja) 炭化珪素半導体装置およびその製造方法
JP4140648B2 (ja) SiC半導体用オーミック電極、SiC半導体用オーミック電極の製造方法、半導体装置および半導体装置の製造方法
WO2009099182A1 (ja) 半導体装置
KR20100100585A (ko) 반도체 장치의 제조 방법 및 반도체 장치
JP2008103636A (ja) 縦型トランジスタ、および縦型トランジスタを作製する方法
JP4996828B2 (ja) 接合型半導体装置の製造方法
JP2009158528A (ja) 半導体装置
WO2013145022A1 (ja) 炭化珪素半導体装置の製造方法
WO2017138221A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2012160485A (ja) 半導体装置とその製造方法
JP2010034481A (ja) 半導体装置の製造方法および半導体装置
JP5646569B2 (ja) 半導体装置
JP2009043880A (ja) 炭化珪素半導体装置の製造方法および炭化珪素半導体装置
AU2017332300A1 (en) Method of manufacturing an insulation layer on silicon carbide and semiconductor device
JP5470254B2 (ja) 接合型半導体装置およびその製造方法
JP5469068B2 (ja) バイポーラ型炭化珪素半導体装置およびその製造方法
JP5514726B2 (ja) 接合型半導体装置およびその製造方法
JP2007234942A (ja) 半導体装置の製造方法
JP2006128586A (ja) 窒化物半導体装置及びその製造方法
JP2017168679A (ja) 炭化珪素半導体素子および炭化珪素半導体素子の製造方法
JP6155553B2 (ja) 炭化珪素半導体装置の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133246.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809894

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010526714

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009809894

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13060697

Country of ref document: US