WO2010133536A1 - Verfahren zum vereinzeln von silizium-solarzellen - Google Patents

Verfahren zum vereinzeln von silizium-solarzellen Download PDF

Info

Publication number
WO2010133536A1
WO2010133536A1 PCT/EP2010/056708 EP2010056708W WO2010133536A1 WO 2010133536 A1 WO2010133536 A1 WO 2010133536A1 EP 2010056708 W EP2010056708 W EP 2010056708W WO 2010133536 A1 WO2010133536 A1 WO 2010133536A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon wafer
laser beam
solar cells
cutting
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2010/056708
Other languages
German (de)
English (en)
French (fr)
Inventor
Roland Mayerhofer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rofin Baasel Lasertech GmbH and Co KG
Original Assignee
Rofin Baasel Lasertech GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rofin Baasel Lasertech GmbH and Co KG filed Critical Rofin Baasel Lasertech GmbH and Co KG
Priority to EP10719944A priority Critical patent/EP2291867B1/de
Priority to JP2012511246A priority patent/JP5462936B2/ja
Publication of WO2010133536A1 publication Critical patent/WO2010133536A1/de
Priority to US13/020,972 priority patent/US20110124147A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F71/00Manufacture or treatment of devices covered by this subclass
    • H10F71/121The active layers comprising only Group IV materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for separating silicon solar cells.
  • silicon solar cells In the production of silicon solar cells, a large number of individual silicon solar cells are usually produced in a silicon wafer, which must be separated in a final manufacturing step, ie, separated from one another. In the prior art, this is done either with a mechanical sawing method or with a known example from WO 2008/084206 Al laser cutting method. If these methods are carried out in one stage, ie if a separation takes place in a single process step, then it may happen that the individual silicon solar cells are short-circuited, in particular during laser cutting. The reason for this is that a fusion zone is created in the kerf, which can be enriched with doping elements.
  • the invention is therefore based on the object to provide a method for separating silicon solar cells, with which the above-mentioned disadvantages are avoided.
  • This object is achieved according to the invention with a method having the features of claim 1.
  • a method having the features of claim 1.
  • a first step in a silicon solar cell containing silicon wafer with a first laser beam along a separation line in a pn junction in the silicon wafer adjacent
  • a groove is introduced which has a depth reaching at least to the pn junction and extends to a lateral edge of the silicon wafer.
  • the silicon wafer is placed on the groove directed second laser beam cut along the dividing line, wherein the melting material formed during cutting is expelled with a cutting gas flowing at least approximately in the direction of the second laser beam from the cutting groove formed during cutting.
  • the groove extends at least as far as a depth of the silicon wafer in which the pn junction is located, at least laser melting in the melting zone results in a melt containing p-dopant. Since this is expelled towards the back of the silicon wafer, this can not attach to the n-doped side wall of the groove. As a result, a short-circuiting of the silicon solar cell arising at the edge can be avoided.
  • first and second laser beams are pulsed, wherein the pulse duration of the first laser beam is shorter than the pulse duration of the second laser beam.
  • First and second laser beam can be generated by two different lasers as well as by a laser, which can work in correspondingly different modes.
  • FIG. 1 shows a silicon wafer containing a plurality of silicon solar cells in a schematic plan view onto one of its flat sides
  • FIGS. 2, 4 and 6 each show a silicon wafer containing silicon solar cells at one of its edges in a longitudinal section along a dividing line during the execution of the first working step, at the beginning of the second working step or during the execution of the second working step,
  • Fig. 3, 5 and 7 to the Figs. 1, 3 and 5 respectively corresponding step in a plan view in the direction of the dividing line on a narrow side of the silicon wafer.
  • a silicon wafer 2 a plurality of fully processed silicon solar cells 4 are arranged, which in a subsequent, subsequently explained production step are separated from one another at predetermined separation lines 5, i. to be isolated.
  • the silicon wafer 2 is constructed from a p-doped silicon substrate 6 serving as a base, which is provided on a rear side 8 with a metallic base contact 10.
  • an n-doped emitter layer 12 has been produced by adding an n-type dopant on the front side 8 opposite the rear side 8, which is only a few microns thick, so that in a depth of only a few microns T is a dashed line pn junction 16 is located.
  • the front side 14 of the silicon wafer 2 is also provided with an antireflection coating 18 and with a plurality of emitter contacts 20.
  • a groove 22 is introduced in a first step with a first laser beam L 1 along one of the parting lines 5 by a laser ablation or laser ablation process into the front side 14 of the silicon wafer 2 adjacent to the pn junction 16 (incised) ) whose depth t extends at least to the depth T of the pn junction 16, which is typically about 1 ⁇ m.
  • the ablation begins at a lateral edge 24 of the silicon wafer 2. In principle, however, the ablation can also begin at a point spaced from the edge of the silicon wafer 2. It is essential, however, that the finished groove 22 extends to the lateral edges 24 of the silicon wafer 2.
  • the first laser beam L1 is pulsed, wherein the pulse durations are preferably in the nanosecond range and wavelengths in the range between 200 nm and 2000 nm are used. In principle, shorter pulse durations are also suitable, which are below the nanosecond range.
  • the depth t of the groove 22 in this case preferably exceeds the depth t of the pn junction by several micrometers, for example by more than 10 ⁇ m. In practice, a depth of the groove 22 of about 12- 15 microns has been found to be suitable
  • the substrate 2 is cut in a second step with a directed into the groove 22 second, preferably also pulsed laser beam L2 beginning at the lateral edge 24 along the dividing line 5 as shown in FIG.
  • the meltable material M produced during the laser cutting process is blown with a cutting gas G flowing at high speed approximately in the direction of the second laser beam L2 from a cutting joint 28 formed at the beginning of the laser cutting and not yet reaching the rear side 8 laterally at the edge 24, i. with one in the direction of the second laser beam L2 oriented, directed towards the rear side flow component expelled. In this way it is prevented that during melting of the
  • the p-doped region of the silicon substrate 6 forms a p-dopant enriched melt zone, which propagates to the n-doped side wall of the groove 22 and wets them.
  • the melted material M enriched with p-type dopants does not come into contact with the n-doped emitter layer 12.
  • the pulse durations of the second laser beam L2 are typically in the microsecond range, wherein the wavelength of the second laser beam L2 is preferably in the near infrared range.
  • Feed the laser beam L2 in the direction of the dividing line 5 spreading separating gap is formed, from which the melt M to the back 8 can be expelled. In this way, the pn junction on the side walls of the separation gap is maintained.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Laser Beam Processing (AREA)
PCT/EP2010/056708 2009-05-20 2010-05-17 Verfahren zum vereinzeln von silizium-solarzellen Ceased WO2010133536A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10719944A EP2291867B1 (de) 2009-05-20 2010-05-17 Verfahren zum vereinzeln von silizium-solarzellen
JP2012511246A JP5462936B2 (ja) 2009-05-20 2010-05-17 シリコン太陽電池の個別化方法
US13/020,972 US20110124147A1 (en) 2009-05-20 2011-02-04 Method for separating silicon solar cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009026410A DE102009026410A1 (de) 2009-05-20 2009-05-20 Verfahren zum Vereinzeln von Silizium-Solarzellen
DE102009026410.8 2009-05-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/020,972 Continuation US20110124147A1 (en) 2009-05-20 2011-02-04 Method for separating silicon solar cells

Publications (1)

Publication Number Publication Date
WO2010133536A1 true WO2010133536A1 (de) 2010-11-25

Family

ID=42309524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/056708 Ceased WO2010133536A1 (de) 2009-05-20 2010-05-17 Verfahren zum vereinzeln von silizium-solarzellen

Country Status (5)

Country Link
US (1) US20110124147A1 (enExample)
EP (1) EP2291867B1 (enExample)
JP (1) JP5462936B2 (enExample)
DE (1) DE102009026410A1 (enExample)
WO (1) WO2010133536A1 (enExample)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023798A3 (de) * 2012-08-10 2014-06-12 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur ablation einer schicht
JP5608828B1 (ja) * 2012-10-02 2014-10-15 株式会社カネカ 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール
CN112054096A (zh) * 2020-09-29 2020-12-08 天合光能股份有限公司 一种切片单晶硅电池的制备方法
CN113555463A (zh) * 2020-04-23 2021-10-26 苏州阿特斯阳光电力科技有限公司 太阳能电池的制备方法与太阳能电池

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011012275A1 (de) * 2011-02-24 2012-08-30 Ritek Corp. Verfahren zum Schneiden eines Solarzellenpanels und Ausrüstung dafür
DE102012217766B4 (de) * 2012-09-28 2016-06-16 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zum Dampfdruck-Abtragschneiden eines metallischen Werkstücks
JP2014194977A (ja) * 2013-03-28 2014-10-09 Kaneka Corp 結晶シリコン系太陽電池およびその製造方法
JP6181979B2 (ja) * 2013-05-29 2017-08-16 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
JP6313086B2 (ja) * 2014-03-27 2018-04-18 株式会社カネカ 結晶シリコン太陽電池およびその製造方法、太陽電池モジュールの製造方法、集光型太陽電池モジュールの製造方法
US9776906B2 (en) * 2014-03-28 2017-10-03 Electro Scientific Industries, Inc. Laser machining strengthened glass
DE102018123485B4 (de) 2018-09-24 2021-04-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Auftrennen eines Halbleiterbauelements mit einem pn-Übergang
DE102018123484A1 (de) * 2018-09-24 2020-03-26 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Vereinzeln eines Halbleiterbauelementes mit einem pn-Übergang und Halbleiterbauelement mit einem pn-Übergang
ES2997232T3 (en) * 2019-05-08 2025-02-14 Wsoptics Tech Gmbh Method and device for laser processing a workpiece
WO2020246697A1 (ko) 2019-06-04 2020-12-10 주성엔지니어링(주) 태양전지용 기판, 태양전지, 및 태양전지 제조방법
EP4059060A1 (en) 2019-11-13 2022-09-21 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Method for creating shunt free translucent flexible thin-film photovoltaic module
US11764315B2 (en) * 2020-09-16 2023-09-19 Maxeon Solar Pte. Ltd. Solar cell separation with edge coating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624677A1 (de) * 1996-06-20 1998-01-02 Siemens Ag Verfahren zur Vereinzelung von optoelektrischen Bauelementen
US6159757A (en) * 1997-12-16 2000-12-12 Sharp Kabushiki Kaisha Process for producing a solar battery and a sheet material for protective covering thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07120646B2 (ja) * 1990-05-16 1995-12-20 株式会社東芝 メサ型半導体ペレットの製造方法
US6420245B1 (en) * 1999-06-08 2002-07-16 Kulicke & Soffa Investments, Inc. Method for singulating semiconductor wafers
JP4786010B2 (ja) * 2000-03-23 2011-10-05 株式会社カネカ 集積型ハイブリッド薄膜太陽電池の製造方法
JP2003151921A (ja) * 2001-11-09 2003-05-23 Sanyo Electric Co Ltd 化合物半導体とその製造方法
ATE316691T1 (de) * 2002-04-19 2006-02-15 Xsil Technology Ltd Laser-behandlung
GB2402230B (en) * 2003-05-30 2006-05-03 Xsil Technology Ltd Focusing an optical beam to two foci
JP4369259B2 (ja) * 2004-02-19 2009-11-18 シャープ株式会社 太陽電池セルの製造方法
JP2006027025A (ja) * 2004-07-14 2006-02-02 Seiko Epson Corp 基板の切断方法、および半導体チップの製造方法
JP4439477B2 (ja) * 2005-03-29 2010-03-24 三洋電機株式会社 光起電力素子及びその製造方法
JP4717545B2 (ja) * 2005-08-01 2011-07-06 シャープ株式会社 光電変換素子の製造方法
ATE503603T1 (de) * 2007-01-08 2011-04-15 Spi Lasers Uk Ltd Verfahren zum laserschneiden eines nichtmetallischen materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19624677A1 (de) * 1996-06-20 1998-01-02 Siemens Ag Verfahren zur Vereinzelung von optoelektrischen Bauelementen
US6159757A (en) * 1997-12-16 2000-12-12 Sharp Kabushiki Kaisha Process for producing a solar battery and a sheet material for protective covering thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROLAND MAYERHOFER ET AL: "Laser Micro-Processing in Solar Cell Production", PHOTOVOLTAIC ENERGY CONVERSION, CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON, IEEE, PI, 1 May 2006 (2006-05-01), pages 1115 - 1118, XP031007505, ISBN: 978-1-4244-0016-4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014023798A3 (de) * 2012-08-10 2014-06-12 Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur ablation einer schicht
JP5608828B1 (ja) * 2012-10-02 2014-10-15 株式会社カネカ 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール
CN113555463A (zh) * 2020-04-23 2021-10-26 苏州阿特斯阳光电力科技有限公司 太阳能电池的制备方法与太阳能电池
CN112054096A (zh) * 2020-09-29 2020-12-08 天合光能股份有限公司 一种切片单晶硅电池的制备方法

Also Published As

Publication number Publication date
US20110124147A1 (en) 2011-05-26
EP2291867A1 (de) 2011-03-09
DE102009026410A1 (de) 2011-03-17
JP2012527753A (ja) 2012-11-08
JP5462936B2 (ja) 2014-04-02
EP2291867B1 (de) 2012-05-16

Similar Documents

Publication Publication Date Title
EP2291867B1 (de) Verfahren zum vereinzeln von silizium-solarzellen
DE102004024643B4 (de) Werkstückteilungsverfahren unter Verwendung eines Laserstrahls
DE602004012999T2 (de) Fokussierung eines optischen strahles auf zwei fokusse
DE102006000720B4 (de) Laserstrahlbearbeitungsmaschine
EP1924392B1 (de) Verfahren zum durchtrennen von spröden flachmaterialien mittels laser entlang einer zuvor erzeugten spur
DE102005037412A1 (de) Laserbearbeitungsverfahren
DE102015219015A1 (de) Laserbearbeitungsvorrichtung
DE102014209012A1 (de) Laserbearbeitungsverfahren
WO2015010706A1 (de) Verfahren und vorrichtung zur trennung eines flachen werkstücks in mehrere teilstücke
DE112004001527T5 (de) Verfahren und Lasersysteme zur Verbindungsbearbeitung unter Verwendung von Laserimpulsen mit speziell zugeschnittenen Leistungsprofilen
DE102013221822B4 (de) Chip mit Rückseitenmetall und Verfahren zu seiner Herstellung und Halbleiterscheibe mit Rückseitenmetall
DE3617141A1 (de) Halbleiterbaueinheit mit integrierter schaltung und schmelzsicherungsstrecke
DE102018102108B4 (de) Verfahren zum laserbasierten Erzeugen einer Struktur an einer Spanfläche eines spanenden Werkzeugs
EP2177302B1 (de) Verfahren zum Abtragen von Schichtmaterial eines Schichtaufbaus mittels Laserstrahlung mit einem Hilfsgrabenschritt und einem Abtragschritt
DE10326505B4 (de) Laserritzen von Dünnschichthalbleiterbauelementen
DE112016004420T5 (de) Laserbearbeitungsverfahren und laserbearbeitungsvorrichtung
DE102011011862A1 (de) Verfahren zur Herstellung einer Vielzahl optoelektronischer Halbleiterchips
EP3192135B1 (de) Verfahren zum herstellen eines laserchips
DE102012216740B4 (de) Silizium-Solarzelle, die durch Zerteilen einer auf einem Silizium-Wafer ausgebildeten Ausgangssolarzelle erzeugt ist, Photovoltaikmodul und Verfahren zur Herstellung einer Solarzelle
DE102009026411A1 (de) Verfahren zum Vereinzeln von Dünnschichtsolarzellen
WO2006010289A2 (de) Verfahren zur vereinzelung von auf einem halbleiterwafer angeordneten elektronischen schaltkreiseinheiten (chips)
DE112005002987T5 (de) Lasermikrobearbeitung von Halbleiterbauelementen mit mehreren Wellenlängen
DE102007049160B4 (de) Verfahren zum Vereinzeln von zu einer Gruppe zusammengefassten, einen Kunststoffvergusskörper aufweisenden Chipgehäusen
EP2626895B1 (de) Verfahren und Vorrichtung zum parallelen Trennen eines Werkstücks in mehere Teilstücke
DE102016210844A1 (de) Vorrichtung und Verfahren zum Abtragen einer Schicht

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010719944

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10719944

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012511246

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE