WO2010133536A1 - Verfahren zum vereinzeln von silizium-solarzellen - Google Patents
Verfahren zum vereinzeln von silizium-solarzellen Download PDFInfo
- Publication number
- WO2010133536A1 WO2010133536A1 PCT/EP2010/056708 EP2010056708W WO2010133536A1 WO 2010133536 A1 WO2010133536 A1 WO 2010133536A1 EP 2010056708 W EP2010056708 W EP 2010056708W WO 2010133536 A1 WO2010133536 A1 WO 2010133536A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon wafer
- laser beam
- solar cells
- cutting
- groove
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F71/00—Manufacture or treatment of devices covered by this subclass
- H10F71/121—The active layers comprising only Group IV materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0622—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/362—Laser etching
- B23K26/364—Laser etching for making a groove or trench, e.g. for scribing a break initiation groove
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/50—Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the invention relates to a method for separating silicon solar cells.
- silicon solar cells In the production of silicon solar cells, a large number of individual silicon solar cells are usually produced in a silicon wafer, which must be separated in a final manufacturing step, ie, separated from one another. In the prior art, this is done either with a mechanical sawing method or with a known example from WO 2008/084206 Al laser cutting method. If these methods are carried out in one stage, ie if a separation takes place in a single process step, then it may happen that the individual silicon solar cells are short-circuited, in particular during laser cutting. The reason for this is that a fusion zone is created in the kerf, which can be enriched with doping elements.
- the invention is therefore based on the object to provide a method for separating silicon solar cells, with which the above-mentioned disadvantages are avoided.
- This object is achieved according to the invention with a method having the features of claim 1.
- a method having the features of claim 1.
- a first step in a silicon solar cell containing silicon wafer with a first laser beam along a separation line in a pn junction in the silicon wafer adjacent
- a groove is introduced which has a depth reaching at least to the pn junction and extends to a lateral edge of the silicon wafer.
- the silicon wafer is placed on the groove directed second laser beam cut along the dividing line, wherein the melting material formed during cutting is expelled with a cutting gas flowing at least approximately in the direction of the second laser beam from the cutting groove formed during cutting.
- the groove extends at least as far as a depth of the silicon wafer in which the pn junction is located, at least laser melting in the melting zone results in a melt containing p-dopant. Since this is expelled towards the back of the silicon wafer, this can not attach to the n-doped side wall of the groove. As a result, a short-circuiting of the silicon solar cell arising at the edge can be avoided.
- first and second laser beams are pulsed, wherein the pulse duration of the first laser beam is shorter than the pulse duration of the second laser beam.
- First and second laser beam can be generated by two different lasers as well as by a laser, which can work in correspondingly different modes.
- FIG. 1 shows a silicon wafer containing a plurality of silicon solar cells in a schematic plan view onto one of its flat sides
- FIGS. 2, 4 and 6 each show a silicon wafer containing silicon solar cells at one of its edges in a longitudinal section along a dividing line during the execution of the first working step, at the beginning of the second working step or during the execution of the second working step,
- Fig. 3, 5 and 7 to the Figs. 1, 3 and 5 respectively corresponding step in a plan view in the direction of the dividing line on a narrow side of the silicon wafer.
- a silicon wafer 2 a plurality of fully processed silicon solar cells 4 are arranged, which in a subsequent, subsequently explained production step are separated from one another at predetermined separation lines 5, i. to be isolated.
- the silicon wafer 2 is constructed from a p-doped silicon substrate 6 serving as a base, which is provided on a rear side 8 with a metallic base contact 10.
- an n-doped emitter layer 12 has been produced by adding an n-type dopant on the front side 8 opposite the rear side 8, which is only a few microns thick, so that in a depth of only a few microns T is a dashed line pn junction 16 is located.
- the front side 14 of the silicon wafer 2 is also provided with an antireflection coating 18 and with a plurality of emitter contacts 20.
- a groove 22 is introduced in a first step with a first laser beam L 1 along one of the parting lines 5 by a laser ablation or laser ablation process into the front side 14 of the silicon wafer 2 adjacent to the pn junction 16 (incised) ) whose depth t extends at least to the depth T of the pn junction 16, which is typically about 1 ⁇ m.
- the ablation begins at a lateral edge 24 of the silicon wafer 2. In principle, however, the ablation can also begin at a point spaced from the edge of the silicon wafer 2. It is essential, however, that the finished groove 22 extends to the lateral edges 24 of the silicon wafer 2.
- the first laser beam L1 is pulsed, wherein the pulse durations are preferably in the nanosecond range and wavelengths in the range between 200 nm and 2000 nm are used. In principle, shorter pulse durations are also suitable, which are below the nanosecond range.
- the depth t of the groove 22 in this case preferably exceeds the depth t of the pn junction by several micrometers, for example by more than 10 ⁇ m. In practice, a depth of the groove 22 of about 12- 15 microns has been found to be suitable
- the substrate 2 is cut in a second step with a directed into the groove 22 second, preferably also pulsed laser beam L2 beginning at the lateral edge 24 along the dividing line 5 as shown in FIG.
- the meltable material M produced during the laser cutting process is blown with a cutting gas G flowing at high speed approximately in the direction of the second laser beam L2 from a cutting joint 28 formed at the beginning of the laser cutting and not yet reaching the rear side 8 laterally at the edge 24, i. with one in the direction of the second laser beam L2 oriented, directed towards the rear side flow component expelled. In this way it is prevented that during melting of the
- the p-doped region of the silicon substrate 6 forms a p-dopant enriched melt zone, which propagates to the n-doped side wall of the groove 22 and wets them.
- the melted material M enriched with p-type dopants does not come into contact with the n-doped emitter layer 12.
- the pulse durations of the second laser beam L2 are typically in the microsecond range, wherein the wavelength of the second laser beam L2 is preferably in the near infrared range.
- Feed the laser beam L2 in the direction of the dividing line 5 spreading separating gap is formed, from which the melt M to the back 8 can be expelled. In this way, the pn junction on the side walls of the separation gap is maintained.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Photovoltaic Devices (AREA)
- Laser Beam Processing (AREA)
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP10719944A EP2291867B1 (de) | 2009-05-20 | 2010-05-17 | Verfahren zum vereinzeln von silizium-solarzellen |
| JP2012511246A JP5462936B2 (ja) | 2009-05-20 | 2010-05-17 | シリコン太陽電池の個別化方法 |
| US13/020,972 US20110124147A1 (en) | 2009-05-20 | 2011-02-04 | Method for separating silicon solar cells |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102009026410A DE102009026410A1 (de) | 2009-05-20 | 2009-05-20 | Verfahren zum Vereinzeln von Silizium-Solarzellen |
| DE102009026410.8 | 2009-05-20 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US13/020,972 Continuation US20110124147A1 (en) | 2009-05-20 | 2011-02-04 | Method for separating silicon solar cells |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2010133536A1 true WO2010133536A1 (de) | 2010-11-25 |
Family
ID=42309524
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2010/056708 Ceased WO2010133536A1 (de) | 2009-05-20 | 2010-05-17 | Verfahren zum vereinzeln von silizium-solarzellen |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20110124147A1 (enExample) |
| EP (1) | EP2291867B1 (enExample) |
| JP (1) | JP5462936B2 (enExample) |
| DE (1) | DE102009026410A1 (enExample) |
| WO (1) | WO2010133536A1 (enExample) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014023798A3 (de) * | 2012-08-10 | 2014-06-12 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur ablation einer schicht |
| JP5608828B1 (ja) * | 2012-10-02 | 2014-10-15 | 株式会社カネカ | 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール |
| CN112054096A (zh) * | 2020-09-29 | 2020-12-08 | 天合光能股份有限公司 | 一种切片单晶硅电池的制备方法 |
| CN113555463A (zh) * | 2020-04-23 | 2021-10-26 | 苏州阿特斯阳光电力科技有限公司 | 太阳能电池的制备方法与太阳能电池 |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102011012275A1 (de) * | 2011-02-24 | 2012-08-30 | Ritek Corp. | Verfahren zum Schneiden eines Solarzellenpanels und Ausrüstung dafür |
| DE102012217766B4 (de) * | 2012-09-28 | 2016-06-16 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Verfahren und Vorrichtung zum Dampfdruck-Abtragschneiden eines metallischen Werkstücks |
| JP2014194977A (ja) * | 2013-03-28 | 2014-10-09 | Kaneka Corp | 結晶シリコン系太陽電池およびその製造方法 |
| JP6181979B2 (ja) * | 2013-05-29 | 2017-08-16 | 株式会社カネカ | 太陽電池およびその製造方法、ならびに太陽電池モジュール |
| JP6313086B2 (ja) * | 2014-03-27 | 2018-04-18 | 株式会社カネカ | 結晶シリコン太陽電池およびその製造方法、太陽電池モジュールの製造方法、集光型太陽電池モジュールの製造方法 |
| US9776906B2 (en) * | 2014-03-28 | 2017-10-03 | Electro Scientific Industries, Inc. | Laser machining strengthened glass |
| DE102018123485B4 (de) | 2018-09-24 | 2021-04-08 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Auftrennen eines Halbleiterbauelements mit einem pn-Übergang |
| DE102018123484A1 (de) * | 2018-09-24 | 2020-03-26 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zum Vereinzeln eines Halbleiterbauelementes mit einem pn-Übergang und Halbleiterbauelement mit einem pn-Übergang |
| ES2997232T3 (en) * | 2019-05-08 | 2025-02-14 | Wsoptics Tech Gmbh | Method and device for laser processing a workpiece |
| WO2020246697A1 (ko) | 2019-06-04 | 2020-12-10 | 주성엔지니어링(주) | 태양전지용 기판, 태양전지, 및 태양전지 제조방법 |
| EP4059060A1 (en) | 2019-11-13 | 2022-09-21 | Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO | Method for creating shunt free translucent flexible thin-film photovoltaic module |
| US11764315B2 (en) * | 2020-09-16 | 2023-09-19 | Maxeon Solar Pte. Ltd. | Solar cell separation with edge coating |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19624677A1 (de) * | 1996-06-20 | 1998-01-02 | Siemens Ag | Verfahren zur Vereinzelung von optoelektrischen Bauelementen |
| US6159757A (en) * | 1997-12-16 | 2000-12-12 | Sharp Kabushiki Kaisha | Process for producing a solar battery and a sheet material for protective covering thereof |
Family Cites Families (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07120646B2 (ja) * | 1990-05-16 | 1995-12-20 | 株式会社東芝 | メサ型半導体ペレットの製造方法 |
| US6420245B1 (en) * | 1999-06-08 | 2002-07-16 | Kulicke & Soffa Investments, Inc. | Method for singulating semiconductor wafers |
| JP4786010B2 (ja) * | 2000-03-23 | 2011-10-05 | 株式会社カネカ | 集積型ハイブリッド薄膜太陽電池の製造方法 |
| JP2003151921A (ja) * | 2001-11-09 | 2003-05-23 | Sanyo Electric Co Ltd | 化合物半導体とその製造方法 |
| ATE316691T1 (de) * | 2002-04-19 | 2006-02-15 | Xsil Technology Ltd | Laser-behandlung |
| GB2402230B (en) * | 2003-05-30 | 2006-05-03 | Xsil Technology Ltd | Focusing an optical beam to two foci |
| JP4369259B2 (ja) * | 2004-02-19 | 2009-11-18 | シャープ株式会社 | 太陽電池セルの製造方法 |
| JP2006027025A (ja) * | 2004-07-14 | 2006-02-02 | Seiko Epson Corp | 基板の切断方法、および半導体チップの製造方法 |
| JP4439477B2 (ja) * | 2005-03-29 | 2010-03-24 | 三洋電機株式会社 | 光起電力素子及びその製造方法 |
| JP4717545B2 (ja) * | 2005-08-01 | 2011-07-06 | シャープ株式会社 | 光電変換素子の製造方法 |
| ATE503603T1 (de) * | 2007-01-08 | 2011-04-15 | Spi Lasers Uk Ltd | Verfahren zum laserschneiden eines nichtmetallischen materials |
-
2009
- 2009-05-20 DE DE102009026410A patent/DE102009026410A1/de not_active Withdrawn
-
2010
- 2010-05-17 WO PCT/EP2010/056708 patent/WO2010133536A1/de not_active Ceased
- 2010-05-17 JP JP2012511246A patent/JP5462936B2/ja active Active
- 2010-05-17 EP EP10719944A patent/EP2291867B1/de not_active Not-in-force
-
2011
- 2011-02-04 US US13/020,972 patent/US20110124147A1/en not_active Abandoned
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19624677A1 (de) * | 1996-06-20 | 1998-01-02 | Siemens Ag | Verfahren zur Vereinzelung von optoelektrischen Bauelementen |
| US6159757A (en) * | 1997-12-16 | 2000-12-12 | Sharp Kabushiki Kaisha | Process for producing a solar battery and a sheet material for protective covering thereof |
Non-Patent Citations (1)
| Title |
|---|
| ROLAND MAYERHOFER ET AL: "Laser Micro-Processing in Solar Cell Production", PHOTOVOLTAIC ENERGY CONVERSION, CONFERENCE RECORD OF THE 2006 IEEE 4TH WORLD CONFERENCE ON, IEEE, PI, 1 May 2006 (2006-05-01), pages 1115 - 1118, XP031007505, ISBN: 978-1-4244-0016-4 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014023798A3 (de) * | 2012-08-10 | 2014-06-12 | Fraunhofer Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren zur ablation einer schicht |
| JP5608828B1 (ja) * | 2012-10-02 | 2014-10-15 | 株式会社カネカ | 結晶シリコン太陽電池の製造方法、太陽電池モジュールの製造方法、結晶シリコン太陽電池並びに太陽電池モジュール |
| CN113555463A (zh) * | 2020-04-23 | 2021-10-26 | 苏州阿特斯阳光电力科技有限公司 | 太阳能电池的制备方法与太阳能电池 |
| CN112054096A (zh) * | 2020-09-29 | 2020-12-08 | 天合光能股份有限公司 | 一种切片单晶硅电池的制备方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20110124147A1 (en) | 2011-05-26 |
| EP2291867A1 (de) | 2011-03-09 |
| DE102009026410A1 (de) | 2011-03-17 |
| JP2012527753A (ja) | 2012-11-08 |
| JP5462936B2 (ja) | 2014-04-02 |
| EP2291867B1 (de) | 2012-05-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| EP2291867B1 (de) | Verfahren zum vereinzeln von silizium-solarzellen | |
| DE102004024643B4 (de) | Werkstückteilungsverfahren unter Verwendung eines Laserstrahls | |
| DE602004012999T2 (de) | Fokussierung eines optischen strahles auf zwei fokusse | |
| DE102006000720B4 (de) | Laserstrahlbearbeitungsmaschine | |
| EP1924392B1 (de) | Verfahren zum durchtrennen von spröden flachmaterialien mittels laser entlang einer zuvor erzeugten spur | |
| DE102005037412A1 (de) | Laserbearbeitungsverfahren | |
| DE102015219015A1 (de) | Laserbearbeitungsvorrichtung | |
| DE102014209012A1 (de) | Laserbearbeitungsverfahren | |
| WO2015010706A1 (de) | Verfahren und vorrichtung zur trennung eines flachen werkstücks in mehrere teilstücke | |
| DE112004001527T5 (de) | Verfahren und Lasersysteme zur Verbindungsbearbeitung unter Verwendung von Laserimpulsen mit speziell zugeschnittenen Leistungsprofilen | |
| DE102013221822B4 (de) | Chip mit Rückseitenmetall und Verfahren zu seiner Herstellung und Halbleiterscheibe mit Rückseitenmetall | |
| DE3617141A1 (de) | Halbleiterbaueinheit mit integrierter schaltung und schmelzsicherungsstrecke | |
| DE102018102108B4 (de) | Verfahren zum laserbasierten Erzeugen einer Struktur an einer Spanfläche eines spanenden Werkzeugs | |
| EP2177302B1 (de) | Verfahren zum Abtragen von Schichtmaterial eines Schichtaufbaus mittels Laserstrahlung mit einem Hilfsgrabenschritt und einem Abtragschritt | |
| DE10326505B4 (de) | Laserritzen von Dünnschichthalbleiterbauelementen | |
| DE112016004420T5 (de) | Laserbearbeitungsverfahren und laserbearbeitungsvorrichtung | |
| DE102011011862A1 (de) | Verfahren zur Herstellung einer Vielzahl optoelektronischer Halbleiterchips | |
| EP3192135B1 (de) | Verfahren zum herstellen eines laserchips | |
| DE102012216740B4 (de) | Silizium-Solarzelle, die durch Zerteilen einer auf einem Silizium-Wafer ausgebildeten Ausgangssolarzelle erzeugt ist, Photovoltaikmodul und Verfahren zur Herstellung einer Solarzelle | |
| DE102009026411A1 (de) | Verfahren zum Vereinzeln von Dünnschichtsolarzellen | |
| WO2006010289A2 (de) | Verfahren zur vereinzelung von auf einem halbleiterwafer angeordneten elektronischen schaltkreiseinheiten (chips) | |
| DE112005002987T5 (de) | Lasermikrobearbeitung von Halbleiterbauelementen mit mehreren Wellenlängen | |
| DE102007049160B4 (de) | Verfahren zum Vereinzeln von zu einer Gruppe zusammengefassten, einen Kunststoffvergusskörper aufweisenden Chipgehäusen | |
| EP2626895B1 (de) | Verfahren und Vorrichtung zum parallelen Trennen eines Werkstücks in mehere Teilstücke | |
| DE102016210844A1 (de) | Vorrichtung und Verfahren zum Abtragen einer Schicht |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| WWE | Wipo information: entry into national phase |
Ref document number: 2010719944 Country of ref document: EP |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10719944 Country of ref document: EP Kind code of ref document: A1 |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2012511246 Country of ref document: JP |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |