WO2010131930A2 - 유기광전소자용 화합물 및 이를 포함하는 유기광전소자 - Google Patents

유기광전소자용 화합물 및 이를 포함하는 유기광전소자 Download PDF

Info

Publication number
WO2010131930A2
WO2010131930A2 PCT/KR2010/003071 KR2010003071W WO2010131930A2 WO 2010131930 A2 WO2010131930 A2 WO 2010131930A2 KR 2010003071 W KR2010003071 W KR 2010003071W WO 2010131930 A2 WO2010131930 A2 WO 2010131930A2
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
carbon atoms
compound
photoelectric device
Prior art date
Application number
PCT/KR2010/003071
Other languages
English (en)
French (fr)
Other versions
WO2010131930A3 (ko
Inventor
김형선
이호재
강의수
이남헌
박영성
유은선
채미영
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Priority to JP2012510757A priority Critical patent/JP5711220B2/ja
Priority to KR1020117003505A priority patent/KR101297161B1/ko
Priority to CN201080020308.2A priority patent/CN102421868B/zh
Priority to EP10775132.3A priority patent/EP2431445B1/en
Publication of WO2010131930A2 publication Critical patent/WO2010131930A2/ko
Publication of WO2010131930A3 publication Critical patent/WO2010131930A3/ko
Priority to US13/295,572 priority patent/US8815418B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D253/00Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00
    • C07D253/02Heterocyclic compounds containing six-membered rings having three nitrogen atoms as the only ring hetero atoms, not provided for by group C07D251/00 not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms

Definitions

  • the present invention relates to a compound for an organic photoelectric device and an organic photoelectric device including the same.
  • a photoelectric device is a device that converts light energy into electrical energy or converts electrical energy into light energy in a broad sense.
  • the optoelectronic device may include organic light emitting diodes (OLEDs), solar cells, and transistors.
  • OLEDs organic light emitting diodes
  • solar cells solar cells
  • transistors transistors.
  • the organic light emitting device is attracting attention as the demand for flat panel displays increases.
  • the light-excited excitons thus formed emit light while transitioning to ground states.
  • the light may be divided into fluorescence using singlet excitons and phosphorescence using triplet excitons according to a light emitting mechanism, and the fluorescence and phosphorescence may be used as light emitting sources of organic light emitting diodes (DFO'Brien et al., Appl. Phys. Lett., 74 (3), 442, 1999; MA Baldo et al., Appl. Phys. Lett., 75 (1), 4, 1999).
  • the singlet excitons are non-luminescent transition to triplet excitons through intersystem crossing, and the triplet excitons are transferred to the ground state to emit light.
  • the generated light is called phosphorescence.
  • the triplet excitons cannot spin directly to the ground state (spin forbidden) and must undergo a flipping step of electron spin. Therefore, phosphorescence has a characteristic that the half life (luminescence time, lifetime) is longer than that of fluorescence.
  • a host material and a dopant may be added together to the light emitting layer.
  • 4,4-N, N-dicarbazolebiphenyl (CBP) was mainly used as the host material.
  • CBP has a very high structural symmetry and is easy to crystallize, and has low thermal stability, the short-circuit and pixel defects are generated as a result of heat resistance test of the device.
  • most host materials such as CBP do not effectively recombine in the light emitting layer because the movement speed of the holes is faster than the movement speed of the electrons, thereby reducing the luminous efficiency of the device.
  • the low molecular weight host material is generally manufactured by vacuum deposition, there is a disadvantage in that the manufacturing cost is higher than that of the wet process.
  • most of the low molecular weight host materials have low solubility in organic solvents, it is difficult to form organic thin film layers having excellent film characteristics by being applied to a wet process.
  • a host material and a charge transporting material of phosphorescence having bipolar characteristics which have excellent electrical and thermal stability, and can transfer both holes and electrons well, are developed. There is a need to develop a host material that can mix and use materials that can transfer holes or electrons well.
  • an organic photoelectric device having excellent efficiency and driving voltage characteristics, including the compound for an organic photoelectric device.
  • a display device including the organic photoelectric device may be provided.
  • X 1 to X 3 are the same as or different from each other, and each independently N or CR, provided that at least any one selected from X 1 to X 3 is N, and R is hydrogen or a lower alkyl group having 1 to 10 carbon atoms ego,
  • Ar 1 and Ar 2 are the same as or different from each other, each independently represent a substituted or unsubstituted arylene group having 6 to 18 carbon atoms,
  • Ar 3 and Ar 4 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylene group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon group having 6 to 30 carbon atoms
  • An aryl group, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 2 to 30 carbon atoms, or a combination thereof, Ar 3 and Ar 4 may be fused to each other to form a fusion ring,
  • Ar 5 and Ar 6 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group, or a combination thereof,
  • R 1 and R 2 are the same as or different from each other, and are each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms.
  • X 1 to X 3 of Formula 1 may be all N.
  • the arylene groups of Ar 1 and Ar 2 of Formula 1 may be a phenylene group, naphthylene group, anthracenylene group, or a combination thereof
  • the aryl group of Ar 3 to Ar 6 is a phenyl group, naphthyl group, anthracene group , A phenanthrene group, a tetracene group, a pyrene group, a fluorene group, or a combination thereof
  • an aryl group of Ar 3 to Ar 6 may be a substituent represented by the following Chemical Formulas 2a to 2c or a combination thereof. .
  • R 'and R are the same as or different from each other, and are each independently hydrogen, a lower alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a combination thereof.
  • heteroaryl groups of Ar 5 and Ar 6 of Formula 1 are furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, thiadiazole, triazole, triazine, pyridine, pyrimidine, pyridazine, It may be pyrazine, quinoline, isoquinoline or a combination thereof.
  • the compound for an organic photoelectric device may be represented by the formula (3a) or 3b.
  • Ar 4 to Ar 6 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group, or a combination thereof,
  • R 1 and R 2 are the same as or different from each other, and each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • R 3 and R 4 are the same as or different from each other, and are each independently hydrogen, a lower alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a combination thereof;
  • a and b are the same as or different from each other, and each independently 1 or 2.
  • the compound for an organic photoelectric device may be represented by the following formula 4 to 35 and ad-1 to ad-4.
  • X 1 to X 3 are the same as or different from each other, and independently from each other N or CR, provided that at least one selected from X 1 to X 3 is N, wherein R is hydrogen or an alkyl group having 1 to 10 carbon atoms,
  • Ar 1 is a single bond or a substituted or unsubstituted arylene group having 6 to 18 carbon atoms
  • Ar 2 to Ar 4 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group or a combination thereof,
  • R 1 to R 3 are the same as or different from each other, and each independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
  • R 4 and R 5 are the same as or different from each other, and each hydrogen, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group or a combination thereof; Or fused with each other to form a fused ring with an adjacent ring.
  • X 1 to X 3 of Formula A-1 may all be N.
  • the arylene group of Ar 1 of Formula A-1 may be a phenylene group, a naphthylene group, anthracenylene group, or a combination thereof.
  • An aryl group of Ar 2 to Ar 4 of Formula A-1 may be a substituent represented by the following Formulas 2a to 2c or a combination thereof.
  • R 'and R are the same as or different from each other, and are each independently hydrogen, a lower alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a combination thereof.
  • heteroaryl groups of Ar 2 and Ar 3 of Formula A-1 are furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, thiadiazole, triazole, triazine, pyridine, pyrimidine, pyridazine, It may be pyrazine, quinoline, isoquinoline or a combination thereof.
  • the compound for an organic photoelectric device may be represented by any one selected from the group consisting of the following formulas ad-5 to ad-24.
  • the compound for an organic photoelectric device may be used as a charge transport material or a host material, and the compound for an organic photoelectric device may have a glass transition temperature (T g ) of 110 ° C. or more and a thermal decomposition temperature (T d ) of 400 ° C. or more. have.
  • T g glass transition temperature
  • T d thermal decomposition temperature
  • an organic photoelectric device comprising an anode, a cathode, and an organic thin film layer interposed between the anode and the cathode, the organic thin film layer comprising a compound for an organic photoelectric device according to an aspect of the present invention
  • the organic thin film layer may be a light emitting layer, a hole transport layer, a hole injection layer, a hole blocking layer, an electron transport layer, an electron injection layer, an electron blocking layer or a combination thereof, and the organic thin film layer may further include a dopant, the dopant May be a red, green, blue or white phosphorescent dopant.
  • a display device including the organic photoelectric device is provided.
  • the compound for an organic photoelectric device according to an aspect of the present invention has excellent thermal stability, is suitable for application to a wet process, and is particularly used for an organic thin film layer of an organic photoelectric device, and has a high luminous efficiency even at a low driving voltage.
  • This improved organic photoelectric device and display device can be provided.
  • 1 to 5 are cross-sectional views illustrating various embodiments of an organic photoelectric device that may be manufactured including a compound for an organic photoelectric device according to an embodiment of the present invention.
  • Figure 6 shows a graph of the DSC analysis of the compound for an organic photoelectric device synthesized in Examples 1 to 3.
  • organic photoelectric device 110 cathode
  • hole injection layer 230 light emitting layer + electron transport layer
  • hetero means one to three heteroatoms selected from the group consisting of N, O, S, and P in one compound or substituent, and the remainder is carbon unless otherwise defined.
  • an "alkyl group” means a “saturated alkyl group” that does not include any alkene or alkyne group; Or “unsaturated alkyl group” including at least one alkene group or alkyne group.
  • the "alkene group” means a substituent having at least two carbon atoms composed of at least one carbon-carbon double bond
  • the "alkyne group” means a substituent having at least two carbon atoms composed of at least one carbon-carbon triple bond.
  • the alkyl group may be branched, straight chain or cyclic.
  • the alkyl group may be an alkyl group of C1 to C20, more specifically, a lower alkyl group of C1 to C6, a middle alkyl group of C7 to C10, and a higher alkyl group of C11 to C20.
  • a C1 to C4 alkyl group means that there are 1 to 4 carbon atoms in the alkyl chain, which is methyl, ethyl, propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl and t-butyl Selected from the group consisting of:
  • Typical alkyl groups include methyl, ethyl, propyl, isopropyl, butyl, isobutyl, t-butyl, pentyl, hexyl, ethenyl, propenyl, butenyl, cyclopropyl, cyclobutyl and cyclo Pentyl group, cyclohexyl group, and the like.
  • Aromatic group means a substituent in which all elements of the cyclic substituent have p-orbitals, and these p-orbitals form a conjugate. Specific examples include an aryl group and a heteroaryl group.
  • aryl group includes a monocyclic or fused ring (ie, a plurality of rings sharing adjacent pairs of carbon atoms) substituents.
  • Heteroaryl group means one to three hetero atoms selected from the group consisting of N, O, S and P in the aryl group, and the rest is carbon. When the aryl group is a fused ring, each ring may include 1 to 3 heteroatoms.
  • Spiro structure means a plurality of ring structures having one carbon as a contact point.
  • the spiro structure may also be used as a compound containing a spiro structure or a substituent including a spiro structure.
  • a compound for an organic photoelectric device represented by the following Formula 1 or Formula A-1 is provided.
  • X 1 to X 3 are the same as or different from each other, and each independently N or CR, provided that at least any one selected from X 1 to X 3 is N, and R is hydrogen or a lower alkyl group having 1 to 10 carbon atoms ego,
  • Ar 1 and Ar 2 are the same as or different from each other, each independently represent a substituted or unsubstituted arylene group having 6 to 18 carbon atoms,
  • Ar 3 and Ar 4 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted alkylene group having 1 to 30 carbon atoms, a substituted or unsubstituted carbon group having 6 to 30 carbon atoms
  • An aryl group, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group having 2 to 30 carbon atoms, a substituted or unsubstituted heteroarylene group having 2 to 30 carbon atoms, or a combination thereof, Ar 3 and Ar 4 may be fused to each other to form a fusion ring,
  • Ar 5 and Ar 6 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group, or a combination thereof,
  • R 1 and R 2 are the same as or different from each other, and are each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms.
  • X 1 to X 3 are the same as or different from each other, and independently from each other N or CR, provided that at least one selected from X 1 to X 3 is N, wherein R is hydrogen or an alkyl group having 1 to 10 carbon atoms,
  • Ar 1 is a single bond or a substituted or unsubstituted arylene group having 6 to 18 carbon atoms
  • Ar 2 to Ar 4 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group or a combination thereof,
  • R 1 to R 3 are the same as or different from each other, and each independently hydrogen or an alkyl group having 1 to 10 carbon atoms,
  • R 4 and R 5 are the same as or different from each other, and each hydrogen, a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group or a combination thereof; Or fused with each other to form a fused ring with an adjacent ring.
  • the compound for an organic photoelectric device represented by Formula 1 or Formula A-1 may include the following Formula 1a or a carbazolyl group; And a substituent represented by 1b at the same time may have a bipolar (bipolar) characteristic that can transfer both holes and electrons well.
  • the substituent or carbazolyl group represented by Formula 1a performs a function as a hole injection and transport group
  • the substituent represented by Formula 1b performs a function as an electron injection and transport group
  • the function of the hole injection and transport group means a function of having conductivity characteristics along the HOMO level and having a property of facilitating injection of holes formed at the anode into the light emitting layer and movement in the light emitting layer.
  • the function as the electron injector and transport group means a function capable of having a conductive property along the LUMO level to facilitate the injection and movement in the light emitting layer of the electrons formed in the cathode.
  • the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may have a bipolar characteristic. That is, the compound for an organic photoelectric device may have an amphoteric property, and thus may exhibit excellent interfacial properties and charge transport capability in the light emitting layer of the organic photoelectric device in which holes and electrons are bonded.
  • a substituent or a carbazolyl group represented by Formula 1a Since the substituents represented by Formula 1b are not conjugated to each other in a conjugated structure, even the substituents bonded to one compound do not affect the characteristics of the hole injection and transport groups and the electron injection and transport groups. In general, in the case of a compound connected in a long conjugated structure, the energy level of the compound may change due to the conjugated structure to change the injection and transport characteristics of holes and electrons.
  • the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may include a substituent or a carbazolyl group represented by Formula 1a; And since the substituents represented by the formula (1b) are not bonded to each other conjugated structure has excellent bipolar properties.
  • a substituent or a carbazolyl group represented by Formula 1a a substituent or a carbazolyl group represented by Formula 1a;
  • a structure including a substituent represented by the formula (1b) at the same time gives an asymmetry to the overall structure of the compound for an organic photoelectric device according to an embodiment of the present invention, it can be prevented to be easily crystallized. That is, the compound for an organic photoelectric device according to one embodiment of the present invention may be usefully applied as a host material, a hole transport material, or an electron transport material having excellent thermal stability.
  • X 1 to X 3 are the same as or different from each other, and each independently N or CR, provided that at least any one selected from X 1 to X 3 is N, and R is Hydrogen or a lower alkyl group having 1 to 10 carbon atoms. In this case, when all of X 1 to X 3 are N, the function as an electron transporter can be performed better.
  • arylene of Ar 1 in the formula A-1, and Ar 1 and Ar 2 in the general formula (1) groups may be selected from a phenylene group, a naphthylene group, an anthracenyl group, or a combination thereof.
  • the arylene group is not limited to the above examples.
  • Ar 3 to Ar 6 of Formula 1 and Ar 2 to Ar 4 of Formula A-1 are each independently an aryl group, a lower alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or these as a substituent
  • the aryl groups of Ar 3 to Ar 6 of Formula 1 and Ar 2 to Ar 4 of Formula A-1 are phenyl group, naphthyl group, anthracene group, phenanthrene group, tetracene group, pyrene group, fluorene group or May be a combination.
  • the aryl group is not limited to the examples described above.
  • aryl group of Ar 3 to Ar 6 of Formula 1 and Ar 2 to Ar 4 of Formula A-1 may be a substituent represented by the following Formulas 2a to 2c or a combination thereof.
  • R 'and R are the same as or different from each other, and are each independently hydrogen, a lower alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a combination thereof.
  • substituent R ′ in Formula 2a may be bonded to a para position.
  • heteroaryl group of Ar 5 and Ar 6 of Formula 1 and the heteroaryl group of Ar 2 and Ar 3 of Formula A-1 are each composed of N, O, S, P or a combination thereof in one ring group. It contains 1 to 3 hetero atoms, the remainder is carbon, and is not particularly limited, but the hetero aryl group must include N so that the substituent represented by the formula (1b) can perform the function as an electron transporter better can do.
  • heteroaryl group of Ar 5 and Ar 6 of Formula 1 include furan, pyrrole, imidazole, thiazole, oxazole, oxadiazole, thiadiazole, triazole, triazine, pyridine, pyrimidine, It may be pyridazine, pyrazine, quinoline, isoquinoline or a combination thereof.
  • the heteroaryl group is not limited to the examples described above.
  • the compound for an organic photoelectric device may be represented by the formula (3a) or 3b.
  • Ar 4 to Ar 6 are the same as or different from each other, each independently represent a substituted or unsubstituted alkyl group having 1 to 30 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted carbon group having 2 to 30 carbon atoms Heteroaryl group, or a combination thereof,
  • R 1 and R 2 are the same as or different from each other, and each independently hydrogen or a lower alkyl group having 1 to 10 carbon atoms,
  • R 3 and R 4 are the same as or different from each other, and are each independently hydrogen, a lower alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a combination thereof;
  • a and b are the same as or different from each other, and each independently 1 or 2.
  • the compound for an organic photoelectric device may be represented by any one selected from the group consisting of Formulas 4 to 35 and Formulas ad-1 to ad-4.
  • the present invention is not limited to the compound.
  • the compound for an organic photoelectric device may be represented by any one selected from the group consisting of the above formulas ad-5 to ad-24.
  • the present invention is not limited to the compound.
  • the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may be used in an organic thin film layer to generate phosphorescence in a wide wavelength region, thereby improving efficiency characteristics of the organic photoelectric device and lowering a driving voltage. In addition, the life characteristics can be improved.
  • the compound for an organic photoelectric device may be used as a charge transport material having excellent transport ability of holes and electrons.
  • the compound for an organic photoelectric device may be used alone, but may be used as a host material together with a dopant.
  • the dopant is a compound having high luminous ability per se, and is also referred to as a guest because a small amount of the dopant is mixed with the host. That is, a dopant is a material that emits light by doping the host material, and generally, a material such as a metal complex that emits light by multiplet excitation that excites above a triplet state is used. .
  • the dopant may be any of red (R), green (G), blue (B), and white (W) fluorescent or phosphorescent dopants, which are generally used in the art, but in particular, red, green, blue or white. It is recommended to use phosphorescent dopant. In addition, it is possible to use those having high luminous efficiency, poor aggregation, and uniform distribution in the host material.
  • the phosphorescent dopant examples include an organometallic compound including an element which is Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, or a combination thereof. Can be. More specifically, as the red phosphorescent dopant, platinum-octaethylporphyrin complex (PtOEP), Ir (Piq) 2 (acac), Ir (Piq) 3 , RD61 manufactured by UDC, etc. may be used. PPy) 2 (acac), Ir (PPy) 3 , Ir (mppy) 3 , GD48 of UDC, etc.
  • PtOEP platinum-octaethylporphyrin complex
  • Ir (Piq) 3 RD61 manufactured by UDC, etc.
  • Piq means 1-phenylisoquinoline (1-phenylisoquinoline), acac means acetylacetonate, PPy means 2-phenylpyridine, pic is picolinate PPy means 2-phenylpyridine and mppy means 2- (4-methylphenyl) pyridine.
  • the compound for an organic photoelectric device according to the embodiment of the present invention has a glass transition temperature (T g ) of 110 ° C. or more, a thermal decomposition temperature (T d ) of 400 ° C. or more, and more specifically, a glass transition temperature of 110 ° C. It can be used in the range of 200 to 200 °C, pyrolysis temperature in the range of 400 to 600 °C.
  • T g glass transition temperature
  • T d thermal decomposition temperature
  • the compound for an organic photoelectric device according to the exemplary embodiment of the present invention may be used as a host material or a charge transport material having excellent thermal stability.
  • an organic photoelectric device comprising the compound for an organic photoelectric device.
  • the organic photoelectric device means an organic light emitting device, an organic solar cell, an organic transistor, an organic photosensitive drum, or an organic memory device.
  • a compound for an organic photoelectric device according to an embodiment of the present invention is included in an electrode or an electrode buffer layer to increase quantum efficiency, and in the case of an organic transistor, it may be used as an electrode material in a gate, a source-drain electrode, or the like. have.
  • an anode, a cathode, and at least one organic thin film layer disposed between the anode and the cathode, the organic thin film layer is an organic photoelectric device compound according to an embodiment of the present invention It provides an organic photoelectric device comprising a.
  • the organic thin film layer which may include the compound for an organic photoelectric device may include a light emitting layer, a hole transport layer, a hole injection layer, a hole blocking layer, an electron transport layer, an electron injection layer, an electron blocking layer, or a combination thereof. At least one of these layers includes a compound for an organic photoelectric device according to one embodiment of the present invention. More specifically, the compound for an organic photoelectric device according to an embodiment of the present invention may be included in a light emitting layer, a hole transport layer, a hole injection layer, an electron transport layer, an electron injection layer, or a combination thereof.
  • 1 to 5 are cross-sectional views of an organic photoelectric device including the compound for an organic photoelectric device.
  • the organic photoelectric device 100, 200, 300, 400, and 500 includes an anode 120, a cathode 110, and at least one organic thin film layer interposed between the anode and the cathode. It has a structure that includes (105).
  • the substrate used in the organic photoelectric device is not particularly limited to those commonly used in the art, but more specifically, substrates such as glass substrates and transparent plastic substrates having excellent transparency, surface smoothness, ease of handling, and water resistance may be used. have.
  • the anode 120 may include a material having a large work function to smoothly inject holes into the organic thin film layer.
  • the positive electrode include metals such as nickel, platinum, vanadium, chromium, copper, zinc, gold, or alloys of these metals; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and the like; Combinations of metal oxides and metals such as ZnO / Al, SnO 2 / Sb, and the like; Poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (poly [3,4- (ehtylene-1,2-dioxy) thiophene]: PEDOT or PEDT ), Polypyrrole, polyaniline, and other conductive polymers.
  • the anode is not limited to the above materials. More specifically, the anode may use a transparent electrode including ITO.
  • the cathode 110 may include a material having a small work function to smoothly inject electrons into the organic thin film layer.
  • the negative electrode include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, lead, cesium, barium, or alloys thereof; Multilayer structure materials such as LiF / Al, LiO 2 / Al, LiF / Ca, LiF / Al, BaF 2 / Ca and the like.
  • the negative electrode is not limited to the above materials. More specifically, the cathode may use a metal electrode such as aluminum.
  • FIG. 1 illustrates an organic photoelectric device 100 in which only the light emitting layer 130 exists as the organic thin film layer 105, and the organic thin film layer 105 may exist only as the light emitting layer 130.
  • FIG. 2 illustrates a two-layered organic photoelectric device 200 in which an emission layer 230 including an electron transport layer and a hole transport layer 140 exist as an organic thin film layer 105, and the organic thin film layer 105 includes an emission layer 230 and
  • the hole transport layer 140 may include a two-layer type.
  • the light emitting layer 130 functions as an electron transporting layer
  • the hole transporting layer 140 functions to improve bonding and hole transporting properties with a transparent electrode such as ITO.
  • the hole transport layer 140 is generally used in the art and is not particularly limited in kind.
  • Thiophene) (PEDOT), PEDOT: PSS, N, N'-bis (3-methylphenyl) -N, N-diphenyl- [1,1'-biphenyl] -4,4'-diamine (TPD), N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine (NPB) may be used together with the compound for an organic photoelectric device according to one embodiment of the present invention.
  • FIG. 3 illustrates a three-layered organic photoelectric device 300 having an electron transport layer 150, a light emitting layer 130, and a hole transport layer 140 as an organic thin film layer 105.
  • 130 is in an independent form, and has a form in which layers (electron transport layer 150 and hole transport layer 140) having excellent electron transport properties and hole transport properties are stacked in separate layers.
  • the electron transport layer 150 is generally used in the art, and is not particularly limited.
  • aluminum tris (8-hydroxyquinoline) (Alq 3 ); 1,3,4-oxadiazole derivatives such as 2- (4-biphenyl-5-phenyl-1,3,4-oxadiazole (PBD); 1,3,4-tris [(3-phenyl- Quinoxaline derivatives such as 6-trifluoromethyl) quinoxalin-2-yl] benzene (TPQ), and triazole derivatives can be used together with the compound for an organic photoelectric device according to an embodiment of the present invention. .
  • FIG. 4 illustrates a four-layered organic photoelectric device 400 having an electron injection layer 160, an emission layer 130, a hole transport layer 140, and a hole injection layer 170 as the organic thin film layer 105.
  • the hole injection layer 170 may improve adhesion to ITO used as an anode.
  • FIG. 5 illustrates five layers having different functions as the organic thin film layer 105, such as the electron injection layer 160, the electron transport layer 150, the light emitting layer 130, the hole transport layer 140, and the hole injection layer 170.
  • This 5-layered organic photoelectric device 500 is present, and the organic photoelectric device 500 is effective for lowering the voltage by forming the electron injection layer 160 separately.
  • the light emitting layers 130 and 230 may have a thickness in a range of 5 to 1000 nm, and the thicknesses of the hole transport layer 140 and the electron transport layer 150 may be independently 10 to 10,000 ⁇ . However, it is not limited to the thickness range.
  • Combination may include a compound for an organic photoelectric device according to an embodiment of the present invention.
  • the compound for an organic photoelectric device may be used in the electron transport layer 150 including the electron transport layer 150 or the electron injection layer 160, and in particular, when included in the electron transport layer, a hole blocking layer needs to be formed separately.
  • the present invention can provide an organic photoelectric device having a simplified structure.
  • the compound for an organic photoelectric device when included in the light emitting layers 130 and 230, the compound for the organic photoelectric device may be used as a phosphorescent host, and the light emitting layers 130 and 230 may further include a dopant.
  • the dopant may be a phosphorescent dopant of red, green, blue, or white.
  • the above-described organic photoelectric device may include a dry film method such as an evaporation, sputtering, plasma plating, ion plating, etc. after forming an anode on a substrate;
  • the organic thin film layer may be formed by a wet film method such as spin coating, dipping, flow coating, or the like, followed by forming a cathode thereon.
  • a display device including the organic photoelectric device is provided.
  • the obtained compound of Chemical Formula 4 was analyzed by elemental analysis.
  • the obtained compound of Chemical Formula 23 was analyzed by elemental analysis.
  • the obtained compound of Chemical Formula 29 was analyzed by elemental analysis.
  • the glass transition temperature and pyrolysis temperature of the compounds synthesized in Examples 1 to 3 were measured by differential scanning calorimetry (DSC) and thermogravimetry (TGA), respectively. The results are shown in Table 1 and FIG. 6.
  • the compounds of Examples 1 to 3 did not show melting point peaks as a result of DSC analysis. From this, it could be confirmed that the compounds of Examples 1 to 3 exist in a stable amorphous state. Therefore, the organic photoelectric device including the compound for an organic photoelectric device according to the embodiment of the present invention was prevented from crystallization by Joule heat during driving, it was predicted to exhibit improved life characteristics compared to the conventional organic photoelectric device.
  • An organic light emitting diode was manufactured by using the compound synthesized in Example 1 as a host and using Ir (PPy) 3 as a dopant.
  • ITO was used as the cathode at a thickness of 1000 kPa
  • aluminum (Al) was used as the cathode at a thickness of 1000 kPa.
  • the anode is cut into a size of 50 mm ⁇ 50 mm ⁇ 0.7 mm ITO glass substrate having a sheet resistance value of 15 ⁇ / cm 2 to acetone, isopropyl alcohol and pure water inside Ultrasonic cleaning was performed for 15 minutes each, followed by UV ozone cleaning for 30 minutes.
  • N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine (NPB) 70 nm
  • NPB N, N'-di (1-naphthyl) -N, N'-diphenylbenzidine
  • TCTA 4,4 ', 4 "-tri (N-carbazolyl) triphenylamine
  • Example 2 a light emitting layer having a film thickness of 300 ⁇ was formed, and at this time, a phosphorescent dopant Ir (PPy) 3 was simultaneously deposited. At this time, by adjusting the deposition rate of the phosphorescent dopant, when the total amount of the light emitting layer is 100% by weight, the deposition rate of the phosphorescent dopant was deposited so as to be 7% by weight.
  • Bis (8-hydroxy-2-methylquinolinato) -aluminum biphenoxide (BAlq) was deposited on the light emitting layer using the same vacuum deposition conditions to form a hole blocking layer having a thickness of 50 kHz.
  • Alq 3 was deposited under the same vacuum deposition conditions to form an electron transport layer having a film thickness of 200 GPa.
  • the organic light emitting device was manufactured by sequentially depositing LiF and Al as a cathode on the electron transport layer.
  • the structure of the organic light emitting device is ITO / NPB (70 nm) / TCTA (10 nm) / EML (compound of Example 1 (93% by weight) + Ir (PPy) 3 (7% by weight), 30 nm) / Balq (5 nm) / Alq (20 nm) / LiF (1 nm) / Al (100 nm).
  • Example 4 The same procedure as in Example 4 was performed except that the BAlq was deposited to not form a hole blocking layer having a film thickness of 50 GPa.
  • the structure of the organic light emitting device is ITO / NPB (70 nm) / TCTA (10 nm) / EML (compound of Example 1 (93% by weight) + Ir (PPy) 3 (7% by weight), 30 nm) ) / Alq3 (20 nm) / LiF (1 nm) / Al (100 nm).
  • An ITO substrate was used as the anode, and poly (3,4-ethylenedioxy-thiophene) (PEDOT) was formed by spin-coating on the substrate.
  • PEDOT poly (3,4-ethylenedioxy-thiophene)
  • the light emitting layer was formed by spin-coating on the PEDOT. More specifically, the light emitting layer was used as a host by dissolving the compound synthesized in Example 1 in toluene, Ir (mppy) 3 was used as a dopant. At this time, the Ir (mppy) 3 dopant was mixed to include 13% by weight when the total amount of the light emitting layer is 100% by weight to form a light emitting layer.
  • BAlq was vacuum deposited on the light emitting layer to form a hole blocking layer having a thickness of 50 kHz.
  • Alq 3 was vacuum-deposited on the hole blocking layer to form an electron transport layer having a thickness of 200.
  • An organic light emitting device was manufactured by forming a cathode by sequentially vacuum depositing LiF 10 ⁇ s (1 nm) and Al 1000 ⁇ s on the electron transport layer.
  • the organic light emitting device was ITO / PEDOT (40 nm) / EML (Compound (87 wt%) of Example 1 + Ir (PPy) 3 (13 wt%), 50 nm) / BAlq (5 nm) / Alq3 (20 nm) / LiF (1 nm) / Al (100 nm).
  • Example 4 Except for using the compound synthesized in Example 1 as a host of the light emitting layer, the same as in Example 4 except that 4,4-N, N-dicarbazole biphenyl (CBP) was used as the host of the light emitting layer An organic light emitting device was manufactured by the method.
  • CBP 4,4-N, N-dicarbazole biphenyl
  • Example 2 instead of using the compound synthesized in Example 1 as a host of the light emitting layer, 50% by weight of TCTA and 50% by weight of 1,3,5-tris (N-phenylbenzimidazol-2-yl) benzene (TPBI) An organic light emitting diode was manufactured according to the same method as Example 6 except for using the mixture.
  • the structure of the organic light emitting device is ITO / PEDOT (40 nm) / TCTA: TPBI (50:50 weight ratio, 87% by weight): Ir (mppy) 3 (13% by weight) (50 nm) / BAlq (5 nm) / It was produced in the structure of Alq 3 (20 nm) / LiF (1 nm) / Al (100 nm).
  • the current value flowing through the unit device was measured using a current-voltmeter (Keithley 2400) while increasing the voltage from 0 V to 10 V, and the measured current value was divided by the area to obtain a result.
  • the resulting organic light emitting device was measured using a luminance meter (Minolta Cs-1000A) while increasing the voltage from 0 V to 10 V to obtain a result.
  • the organic light emitting diodes manufactured in Examples 4 and 5 have a driving voltage of about 2 V or lower and a current efficiency similar to those of the organic light emitting diode of Comparative Example 1. Although measured, the power efficiency due to the reduction of the driving voltage shows a very improved device performance. In particular, in the case of Example 5, even though BAlq, a hole blocking layer, was not used, it was confirmed that exhibits a very high luminous efficiency. This means that the compound according to the embodiment of the present invention is a material having a great advantage in shortening the process cost and processing time due to the reduction of the organic thin film layer.
  • the organic light emitting device manufactured in Example 6 exhibited about two times increased luminous efficiency compared to the organic light emitting device manufactured in Comparative Example 2.
  • TCTA is a host having excellent hole transfer characteristics
  • TPBI is a host having excellent electron transfer characteristics
  • the light emitting device was confirmed to be a host having excellent bipolar characteristics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

유기광전소자용 화합물 및 이를 포함하는 유기광전소자가 제공된다. 상기 유기광전소자용 화합물은 우수한 열적안정성을 갖고, 습식공정에 적용하기에 적합하고, 특히, 유기광전소자의 유기박막층에 사용되어 낮은 구동전압에서도 높은 발광효율을 갖고, 수명이 향상된 유기광전소자 및 표시장치를 제공할 수 있다.

Description

유기광전소자용 화합물 및 이를 포함하는 유기광전소자
유기광전소자용 화합물 및 이를 포함하는 유기광전소자에 관한 것이다.
광전소자(photoelectric device)는 넓은 의미로 빛에너지를 전기에너지로 변환하거나, 전기에너지를 빛에너지로 변환하는 소자이다. 상기 광전소자는 유기발광소자(OLED: Organic Light Emitting Diodes), 태양전지, 트랜지스터 등을 예로 들 수 있다. 특히, 유기발광소자는 최근 평판디스플레이(flat panel display)의 수요가 증가함에 따라 주목받고 있다.
유기발광소자에 전류를 가하면 양극과 음극으로부터 각각 정공과 전자가 주입되고, 주입된 정공과 전자는 각각의 정공수송층과 전자수송층을 거쳐 발광층에서 재결합(recombination)하여 발광여기자(exciton)를 형성한다. 이와 같이 형성된 발광여기자는 바닥상태(ground states)로 전이하면서 빛을 방출한다. 상기 빛은 발광 메카니즘에 따라 단일항 여기자를 이용하는 형광과 삼중항 여기자를 이용하는 인광으로 나뉠 수 있고, 상기 형광 및 인광은 유기발광소자의 발광원로 사용될 수 있다(D. F.O'Brien 등, Appl. Phys. Lett., 74(3), 442, 1999; M. A. Baldo 등, Appl. Phys. lett., 75(1), 4, 1999).
전자가 바닥상태에서 여기상태로 전이하면, 계간전이(intersystem crossing)를 통해 단일항 여기자가 삼중항 여기자로 비발광 전이되고, 상기 삼중항 여기자는 다시 바닥상태로 전이하여 발광이 이루어진다. 이 때, 발생하는 빛을 인광이라고 한다. 상기 삼중항 여기자는 바닥상태로 직접 전이할 수 없고(spin forbidden), 반드시 전자 스핀의 뒤바뀜(flipping) 단계를 거쳐야 한다. 따라서, 인광은 형광보다 반감기(발광시간, lifetime)가 길다는 특성을 가진다.
또한, 정공과 전자가 재결합하여 발광여기자를 형성하는 경우, 삼중항 여기자는 단일항 여기자 보다 약 3 배 정도 많이 생성된다. 따라서 단일항 여기자만을 사용하는 형광은 단일항 여기자의 발생 확률이 25 %로서 발광 효율에 한계가 존재한다. 그러나 인광은 삼중항 여기자의 발생 확률 75 %뿐만 아니라, 단일항 여기자의 발생 확률인 25 %까지 사용할 수 있어, 이론적으로 발광 효율은 100 %까지 가능하게 된다. 즉, 인광은 형광과 비교하여 약 4 배 정도 높은 발광효율을 달성할 수 있다는 장점이 있다.
한편, 유기발광소자의 효율과 안정성을 증가시키기 위하여 발광층에 호스트 재료와 도펀트를 함께 첨가할 수 있다. 상기 호스트 재료로는 4,4-N,N-다이카바졸바이페닐(CBP)이 주로 사용되었다. 그러나 CBP는 구조적 대칭성이 매우 높아 결정화되기 쉽고, 열적 안정성 낮기 때문에, 소자의 내열 시험결과, 단락이나 화소 결함이 발생하는 단점이 있었다. 또한, CBP와 같은 대부분의 호스트 재료들은 정공의 이동 속도가 전자의 이동 속도보다 빠르기 때문에 발광층에서 효과적으로 재결합되지 못하여, 소자의 발광 효율이 감소하는 단점이 있었다.
또한, 저분자 호스트 재료는 일반적으로 진공증착법에 의하여 제작되기 때문에 습식공정에 비해 제조원가가 높은 단점이 있었다. 또한, 대부분의 저분자 호스트재료는 유기용매에 대한 용해도가 낮기 때문에 습식공정에 적용하여 우수한 막특성을 가지는 유기박막층을 형성하기 어려웠다.
따라서, 효율 및 수명이 우수한 유기광전소자를 구현하기 위해서는 전기적, 열적 안정성이 우수하고, 정공과 전자를 모두 잘 전달할 수 있는 바이폴라(bipolar) 특성을 가지는 인광의 호스트 재료 및 전하수송재료를 개발하고, 정공이나 전자를 잘 전달할 수 있는 물질들을 혼합하여 사용할 수 있는 호스트 재료의 개발이 필요한 실정이다.
열적 안정성이 우수하고, 정공과 전자를 모두 잘 전달할 수 있는유기광전소자용 화합물을 제공할 수 있다.
또한, 상기 유기광전소자용 화합물을 포함하여 효율, 및 구동전압 특성이 우수한 유기광전소자를 제공할 수 있다.
또한, 상기 유기광전소자를 포함하는 표시장치를 제공할 수 있다.
본 발명의 일 측면에서는, 하기 화학식 1로 표시되는 유기광전소자용 화합물을 제공한다.
[화학식 1]
Figure PCTKR2010003071-appb-I000001
상기 화학식 1에서
X1 내지 X3는 서로 같거나 다른 것으로, 각각 독립적으로 N 또는 CR이고, 단, 상기 X1 내지 X3 중에서 선택된 적어도 어느 하나 이상은 N이고, 상기 R은 수소 또는 탄소수 1 내지 10의 저급알킬기이고,
Ar1 및 Ar2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 18의 아릴렌기이고,
Ar3 및 Ar4는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기, 또는 이들의 조합이고, 상기 Ar3 및 Ar4는 서로 융합되어 융합링을 형성할 수 있고,
Ar5 및 Ar6는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 또는 이들의 조합이고,
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급알킬기이다.
또한, 상기 화학식 1의 X1 내지 X3는 모두 N인 것일 수 있다.
또한, 상기 화학식 1의 Ar1 및 Ar2의 아릴렌기는 페닐렌기, 나프틸렌기, 안트라세닐렌기, 또는 이들의 조합인 것일 수 있고, Ar3 내지 Ar6의 아릴기는 페닐기, 나프틸기, 안트라센기, 페난트렌기, 테트라센기, 피렌기, 플루오렌기 또는 이들의 조합인 것일 수 있고, 특히, Ar3 내지 Ar6의 아릴기는 하기 화학식 2a 내지 2c로 표시되는 치환기 또는 이들의 조합인 것일 수 있다.
[화학식 2a] [화학식 2b] [화학식 2c]
Figure PCTKR2010003071-appb-I000002
상기 화학식 2a 내지 2c에서
R' 및 R"은 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합이다.
또한, 상기 화학식 1의 Ar5 및 Ar6의 헤테로아릴기는 퓨란, 피롤, 이미다졸, 티아졸, 옥사졸, 옥사디아졸, 티아디아졸, 트리아졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 퀴놀린, 이소퀴놀린 또는 이들의 조합인 것일 수 있다.
또한, 상기 유기광전소자용 화합물은 하기 화학식 3a 또는 3b로 표시되는 것일 수 있다.
[화학식 3a]
Figure PCTKR2010003071-appb-I000003
[화학식 3b]
Figure PCTKR2010003071-appb-I000004
상기 화학식 3a 및 3b에서
Ar4 내지 Ar6는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 또는 이들의 조합이고,
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급알킬기이고,
R3 및 R4는 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합이고,
a 및 b는 서로 같거나 다른 것으로, 각각 독립적으로 1 또는 2이다.
또한, 상기 유기광전소자용 화합물은 하기 화학식 4 내지 35 및 ad-1 내지 ad-4로 표시되는 것일 수 있다.
[화학식 4] [화학식 5]
Figure PCTKR2010003071-appb-I000005
[화학식 6] [화학식 7]
Figure PCTKR2010003071-appb-I000006
[화학식 8] [화학식 9]
Figure PCTKR2010003071-appb-I000007
[화학식 10] [화학식 11]
Figure PCTKR2010003071-appb-I000008
[화학식 12] [화학식 13]
Figure PCTKR2010003071-appb-I000009
[화학식 14] [화학식 15]
[화학식 16] [화학식 17]
Figure PCTKR2010003071-appb-I000011
[화학식 18] [화학식 19]
Figure PCTKR2010003071-appb-I000012
[화학식 20] [화학식 21]
Figure PCTKR2010003071-appb-I000013
[화학식 22] [화학식 23]
Figure PCTKR2010003071-appb-I000014
[화학식 24] [화학식 25]
Figure PCTKR2010003071-appb-I000015
[화학식 26] [화학식 27]
Figure PCTKR2010003071-appb-I000016
[화학식 28] [화학식 29]
Figure PCTKR2010003071-appb-I000017
[화학식 30] [화학식 31]
Figure PCTKR2010003071-appb-I000018
[화학식 32] [화학식 33]
Figure PCTKR2010003071-appb-I000019
[화학식 34] [화학식 35]
Figure PCTKR2010003071-appb-I000020
[화학식 ad-1] [화학식 ad-2]
Figure PCTKR2010003071-appb-I000021
[화학식 ad-3] [화학식 ad-4]
Figure PCTKR2010003071-appb-I000022
본 발명의 다른 일 측면에서는, 하기 화학식 A-1로 표시되는 유기광전소자용 화합물을 제공한다.
[화학식 A-1]
Figure PCTKR2010003071-appb-I000023
상기 화학식 A-1에서,
X1 내지 X3는 서로 같거나 다른 것으로, 서로 독립적으로 N 또는 CR이고, 단, 상기 X1 내지 X3 중에서 선택된 적어도 어느 하나는 N이고, 상기 R은 수소 또는 탄소수 1 내지 10의 알킬기이고,
Ar1은 단일결합 또는 치환 또는 비치환된 탄소수 6 내지 18의 아릴렌기이고,
Ar2 내지 Ar4는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이고,
R1 내지 R3는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고,
R4 및 R5는 서로 같거나 다른 것으로, 각각 수소, 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이거나; 또는 서로 융합되어 인접한 링과 융합링을 형성한다.
상기 화학식 A-1의 X1 내지 X3는 모두 N인 것일 수 있다.
상기 화학식 A-1의 Ar1 의 아릴렌기는 페닐렌기, 나프틸렌기, 안트라세닐렌기, 또는 이들의 조합인 것일 수 있다.
상기 화학식 A-1의 Ar2 내지 Ar4의 아릴기는 하기 화학식 2a 내지 2c로 표시되는 치환기 또는 이들의 조합인 것일 수 있다.
[화학식 2a] [화학식 2b] [화학식 2c]
Figure PCTKR2010003071-appb-I000024
상기 화학식 2a 내지 2c에서
R' 및 R"은 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합임.
상기 화학식 A-1의 Ar2 및 Ar3의 헤테로아릴기는 퓨란, 피롤, 이미다졸, 티아졸, 옥사졸, 옥사디아졸, 티아디아졸, 트리아졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 퀴놀린, 이소퀴놀린 또는 이들의 조합인 것일 수 있다.
상기 유기광전소자용 화합물은 하기 화학식 ad-5 내지 ad-24로 이루어진 군에서 선택된 어느 하나로 표시되는 것일 수 있다.
[화학식 ad-5] [화학식 ad-6]
Figure PCTKR2010003071-appb-I000025
[화학식 ad-7] [화학식 ad-8]
Figure PCTKR2010003071-appb-I000026
[화학식 ad-9] [화학식 ad-10]
Figure PCTKR2010003071-appb-I000027
[화학식 ad-11] [화학식 ad-12]
Figure PCTKR2010003071-appb-I000028
[화학식 ad-13] [화학식 ad-14]
Figure PCTKR2010003071-appb-I000029
[화학식 ad-15] [화학식 ad-16]
Figure PCTKR2010003071-appb-I000030
[화학식 ad-17] [화학식 ad-18]
Figure PCTKR2010003071-appb-I000031
[화학식 ad-19] [화학식 ad-20]
Figure PCTKR2010003071-appb-I000032
[화학식 ad-21] [화학식 ad-22]
Figure PCTKR2010003071-appb-I000033
[화학식 ad-23] [화학식 ad-24]
Figure PCTKR2010003071-appb-I000034
상기 유기광전소자용 화합물은 전하수송 재료 또는 호스트 재료로 사용될 수 있고, 상기 유기광전소자용 화합물은 유리전이온도(Tg)가 110 ℃ 이상이고, 열분해온도(Td)가 400 ℃ 이상인 것일 수 있다.
본 발명의 또 다른 일 측면에서는, 양극, 음극, 및 상기 양극과 음극 사이에 개재되는 유기박막층을 포함하고, 상기 유기박막층은 본 발명의 일 측면에 따른 유기광전소자용 화합물을 포함하는유기광전소자를 제공한다.
상기 유기 박막층은 발광층, 정공수송층, 정공주입층, 정공저지층, 전자수송층, 전자주입층, 전자저지층 또는 이들의 조합인 것일 수 있고, 상기 유기박막층은 도펀트를 더 포함할 수 있고, 상기 도펀트는 적색, 녹색, 청색 또는 백색의 인광도펀트일 수 있다.
본 발명의 또 다른 일 측면에서는, 상기 유기광전소자를 포함하는 표시장치를 제공한다.
기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.
본 발명의 일 측면에 따른 유기광전소자용 화합물은 우수한 열적안정성을 갖고, 습식공정에 적용하기에 적합하고, 특히, 유기광전소자의 유기박막층에 사용되어 낮은 구동전압에서도 높은 발광효율을 갖고, 수명이 향상된 유기광전소자 및 표시장치를 제공할 수 있다.
도 1 내지 도 5는 본 발명의 일 구현예에 따른 유기광전소자용 화합물을 포함하여 제조될 수 있는 유기광전소자에 대한 다양한 구현예들을 나타내는 단면도이다.
도 6은 실시예 1 내지 3에서 합성된 유기광전소자용 화합물의 DSC 분석 결과 그래프를 나타낸 것이다.
<도면의 주요 부분에 대한 부호의 설명>
100 : 유기광전소자 110 : 음극
120 : 양극 105 : 유기 박막층
130 : 발광층 140 : 정공 수송층
150 : 전자수송층 160 : 전자주입층
170 : 정공주입층 230 : 발광층 + 전자수송층
이하, 본 발명의 구현예를 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정의될 뿐이다.
본 명세서에서 "치환"이란 별도의 정의가 없는 한, C1 내지 C30 알킬기; C1 내지 C10 알킬실릴기; C3 내지 C30 시클로알킬기; C6 내지 C30 아릴기; C1 내지 C10 알콕시기; 플루오로기, 트리플루오로메틸기 등의 C1 내지 C10 트리플루오로알킬기; 또는 시아노기로 치환된 것을 의미한다.
본 명세서에서 "헤테로"란 별도의 정의가 없는 한, 하나의 화합물 또는 치환기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3 포함하고, 나머지는 탄소인 것을 의미한다.
본 명세서에서 "이들의 조합"이란 별도의 정의가 없는 한, 둘 이상의 치환기가 연결기로 결합되어 있거나, 둘 이상의 치환기가 축합하여 결합되어 있는 것을 의미한다.
본 명세서에서 "알킬(alkyl)기"이란 별도의 정의가 없는 한, 어떠한 알켄기나 알킨기를 포함하고 있지 않은 "포화 알킬(saturated alkyl)기"; 또는 적어도 하나의 알켄(alkene)기 또는 알킨(alkyne)기를 포함하고 있는 "불포화 알킬(unsaturated alkyl)기"를 모두 포함하는 것을 의미한다. 상기 "알켄기"는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 이중 결합으로 이루어진 치환기를 의미하며, "알킨기" 는 적어도 두 개의 탄소원자가 적어도 하나의 탄소-탄소 삼중 결합으로 이루어진 치환기를 의미한다. 상기 알킬기는 분지형, 직쇄형 또는 환형일 수 있다.
상기 알킬기는 C1 내지 C20의 알킬기 일 수 있으며, 보다 구체적으로 C1 내지 C6인 저급 알킬기, C7 내지 C10인 중급 알킬기, C11 내지 C20의 고급 알킬기일 수 있다.
예를 들어, C1 내지 C4 알킬기는 알킬쇄에 1 내지 4 개의 탄소원자가 존재하는 것을 의미하며 이는 메틸, 에틸, 프로필, 이소-프로필, n-부틸, 이소-부틸, sec-부틸 및 t-부틸로 이루어진 군에서 선택됨을 나타낸다.
전형적인 알킬기에는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, t-부틸기, 펜틸기, 헥실기, 에테닐기, 프로페닐기, 부테닐기, 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기 등이 있다.
"방향족기"는 환형인 치환기의 모든 원소가 p-오비탈을 가지고 있으며, 이들 p-오비탈이 공액(conjugation)을 형성하고 있는 치환기를 의미한다. 구체적인 예로 아릴기와 헤테로아릴기가 있다.
"아릴(aryl)기"는 단일고리 또는 융합고리(즉, 탄소원자들의 인접한 쌍들을 나눠 가지는 복수의 고리) 치환기를 포함한다.
"헤테로아릴(heteroaryl)기"는 아릴기 내에 N, O, S 및 P로 이루어진 군에서 선택되는 헤테로 원자를 1 내지 3개 포함하고, 나머지는 탄소인 것을 의미한다. 상기 아릴기가 융합고리인 경우, 각각의 고리마다 상기 헤테로 원자를 1 내지 3개 포함할 수 있다.
"스피로(spiro) 구조"는 하나의 탄소를 접점으로 가지고 있는 복수의 고리 구조를 의미한다. 또한, 스피로 구조는 스피로 구조를 포함하는 화합물 또는 스피로 구조를 포함하는 치환기로도 쓰일 수 있다.
본 발명의 일 구현예에 따르면, 하기 화학식 1 또는 화학식 A-1로 표시되는 유기광전소자용 화합물을 제공한다.
[화학식 1]
Figure PCTKR2010003071-appb-I000035
상기 화학식 1에서
X1 내지 X3는 서로 같거나 다른 것으로, 각각 독립적으로 N 또는 CR이고, 단, 상기 X1 내지 X3 중에서 선택된 적어도 어느 하나 이상은 N이고, 상기 R은 수소 또는 탄소수 1 내지 10의 저급알킬기이고,
Ar1 및 Ar2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 18의 아릴렌기이고,
Ar3 및 Ar4는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기, 또는 이들의 조합이고, 상기 Ar3 및 Ar4는 서로 융합되어 융합링을 형성할 수 있고,
Ar5 및 Ar6는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 또는 이들의 조합이고,
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급알킬기이다.
[화학식 A-1]
Figure PCTKR2010003071-appb-I000036
상기 화학식 A-1에서,
X1 내지 X3는 서로 같거나 다른 것으로, 서로 독립적으로 N 또는 CR이고, 단, 상기 X1 내지 X3 중에서 선택된 적어도 어느 하나는 N이고, 상기 R은 수소 또는 탄소수 1 내지 10의 알킬기이고,
Ar1은 단일결합 또는 치환 또는 비치환된 탄소수 6 내지 18의 아릴렌기이고,
Ar2 내지 Ar4는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이고,
R1 내지 R3는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고,
R4 및 R5는 서로 같거나 다른 것으로, 각각 수소, 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이거나; 또는 서로 융합되어 인접한 링과 융합링을 형성한다.
상기 화학식 1 또는 화학식 A-1로 표시되는 유기광전소자용 화합물은 하기 화학식 1a 또는 카바졸릴기; 및 1b로 표시되는 치환기를 동시에 포함하여 정공과 전자를 모두 잘 전달할 수 있는 바이폴라(bipolar) 특성을 가질 수 있다.
[화학식 1a]
Figure PCTKR2010003071-appb-I000037
[화학식 1b]
Figure PCTKR2010003071-appb-I000038
상기 화학식 1a 및 1b에서 X1 내지 X3, 및 Ar3 내지 Ar6의 정의는 상기 화학식 1에서 정의한 바와 같다.
특히, 상기 화학식 1a로 표시되는 치환기 또는 카바졸릴기는 정공의 주입 및 수송기로서의 기능을 수행하고, 상기 화학식 1b로 표시되는 치환기는 전자의 주입 및 수송기로서의 기능을 수행한다. 상기 정공의 주입 및 수송기로서의 기능이란, HOMO 준위를 따라 전도 특성을 가져 양극에서 형성된 정공의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 가질 수 있는 기능을 의미한다. 또한 상기 전자의 주입 및 수송기로서의 기능이란, LUMO 준위를 따라 전도 특성을 가져 음극에서 형성된 전자의 발광층으로의 주입 및 발광층에서의 이동을 용이하게 하는 특성을 가질 수 있는 기능을 의미한다.
따라서, 본 발명의 일 구현예에 따른 유기광전소자용 화합물은 바이폴라(bipolar) 특성을 가질 수 있는 것이다. 즉, 상기 유기광전소자용 화합물은 양쪽성의 성질을 가질 수 있으므로, 정공과 전자가 결합하는 유기광전소자의 발광층에서 우수한 계면 특성 및 전하수송 능력을 나타낼 수 있는 것이다.
또한, 상기 화학식 1a로 표시되는 치환기 또는 카바졸릴기; 및 화학식 1b로 표시되는 치환기는 서로 공액 구조로 결합되지 않기 때문에 하나의 화합물에 결합되어 있는 치환기라 할지라도 정공의 주입 및 수송기의 특성과 전자의 주입 및 수송기의 특성에 서로 영향을 주지 않는다. 일반적으로 공액구조로 길게 연결된 화합물의 경우에는 상기 공액구조로 인해 화합물의 에너지 준위가 변화하여 정공 및 전자의 주입/수송특성을 변하게 할 수 있다. 그러나 본 발명의 일 구현예에 따른 유기광전소자용 화합물은 상기 화학식 1a로 표시되는 치환기 또는 카바졸릴기; 및 화학식 1b로 표시되는 치환기들이 서로 공액구조로 결합되어 있지 않기 때문에 우수한 바이폴라 특성을 보유하게 된 것이다.
또한, 상기 화학식 1a로 표시되는 치환기 또는 카바졸릴기; 및 화학식 1b로 표시되는 치환기를 동시에 포함하는 구조는 본 발명의 일구현예에 따른 유기광전소자용 화합물의 전체적인 구조에 비대칭성을 부여하여, 용이하게 결정화되는 것을 방지할 수 있다. 즉, 본 발명의 일구현예에 따른 유기광전소자용 화합물은 우수한 열적 안정성을 가지는 호스트 재료, 정공전달 재료, 또는 전자전달 재료로 유용하게 적용될 수 있다.
상기 화학식 1 및 화학식 A-1에서 X1 내지 X3는 서로 같거나 다른 것으로, 각각 독립적으로N 또는 CR이고, 단, 상기 X1 내지 X3 중에서 선택된 적어도 어느 하나 이상은 N이고, 상기 R은 수소 또는 탄소수 1 내지 10의 저급알킬기이다. 이 때, 상기 X1 내지 X3는 모두 N인 경우에는 전자수송기로서의 기능을 보다 우수하게 수행할 수 있다.
또한, 상기 화학식 1의 Ar1 및 Ar2와 상기 화학식 A-1의 Ar1의 아릴렌기는 페닐렌기, 나프틸렌기, 안트라세닐렌기, 또는 이들의 조합인 것을 사용할 수 있다. 그러나 상기 아릴렌기가 상기한 예들에 한정되는 것은 아니다.
또한, 상기 화학식 1의 Ar3 내지 Ar6과 상기 화학식 A-1의 Ar2 내지 Ar4가 각각 독립적으로 아릴기인 경우에는 치환기로서 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합인 것을 가짐으로써, 용매에 대한 용해성 및 바이폴라 특성의 안정성을 유지할 수 있다.
특히, 상기 화학식 1의 Ar3 내지 Ar6과 상기 화학식 A-1의 Ar2 내지 Ar4의 아릴기는 페닐기, 나프틸기, 안트라센기, 페난트렌기, 테트라센기, 피렌기, 플루오렌기 또는 이들의 조합인 것일 수 있다. 그러나 상기 아릴기가 상기한 예들에 한정되는 것은 아니다.
또한, 상기 화학식 1의 Ar3 내지 Ar6과 상기 화학식 A-1의 Ar2 내지 Ar4의 아릴기는 하기 화학식 2a 내지 2c로 표시되는 치환기 또는 이들의 조합인 것일 수 있다.
[화학식 2a] [화학식 2b] [화학식 2c]
Figure PCTKR2010003071-appb-I000039
상기 화학식 2a 내지 2c에서
R' 및 R"은 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합이다.
또한, 상기 화학식 2a에서 치환기 R'은 파라(para) 위치에 결합되는 것이 좋다.
또한, 상기 화학식 1의 Ar5 및 Ar6의 헤테로아릴기 및 상기 화학식 A-1의 Ar2 및 Ar3의 헤테로아릴기는 각각 하나의 고리기 내에 N, O, S, P 또는 이들의 조합으로 이루어진 헤테로 원자를 1 내지 3 개 함유하고, 나머지는 탄소인 것으로, 특별히 한정하지 않으나, 상기 헤테로 아릴기는 N을 반드시 포함하여 상기 화학식 1b로 표시되는 치환기가 전자수송기로서의 기능을 보다 우수하게 수행할 수 있도록 할 수 있다. 상기 화학식 1의 Ar5 및 Ar6의 헤테로아릴기의 보다 구체적인 예로는 퓨란, 피롤, 이미다졸, 티아졸, 옥사졸, 옥사디아졸, 티아디아졸, 트리아졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 퀴놀린, 이소퀴놀린 또는 이들의 조합인 것일 수 있다. 그러나 상기 헤테로아릴기가 상기한 예들에 한정되는 것은 아니다.
또한, 상기 유기광전소자용 화합물은 하기 화학식 3a 또는 3b로 표시되는 것일 수 있다.
[화학식 3a]
Figure PCTKR2010003071-appb-I000040
[화학식 3b]
Figure PCTKR2010003071-appb-I000041
상기 화학식 3a 및 3b에서
Ar4 내지 Ar6는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 또는 이들의 조합이고,
R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급알킬기이고,
R3 및 R4는 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합이고,
a 및 b는 서로 같거나 다른 것으로, 각각 독립적으로 1 또는 2이다.
또한, 본 발명의 일 구현예에 따른 상기 유기광전소자용 화합물은 상기 화학식 4 내지 35 및 화학식 ad-1 내지 ad-4로 이루어진 군에서 선택된 어느 하나로 표시되는 것일 수 있다. 다만, 본 발명은 상기 화합물에 한정되지 아니한다.
또한, 본 발명의 일 구현예에 따른 상기 유기광전소자용 화합물은 상기 화학식 ad-5 내지 ad-24로 이루어진 군에서 선택된 어느 하나로 표시되는 것일 수 있다. 다만, 본 발명은 상기 화합물에 한정되지 아니한다.
본 발명의 일 구현예에 따른 유기광전소자용 화합물은 유기박막층에 사용되어 넓은 파장영역에서 인광을 발생시켜 유기광전소자의 효율 특성을 향상시키고, 구동전압을 낮출 수 있다. 또한, 수명특성을 향상시킬 수 있다.
상기 유기광전소자용 화합물은 정공 및 전자의 수송능력이 뛰어난 전하수송 재료로 사용될 수 있다. 또한, 상기 유기광전소자용 화합물은 그 단독으로 사용하는 것도 가능하나, 도펀트와 함께 호스트 재료로 사용될 수 있다.
상기 도펀트란 그 자체로서 발광능력이 높은 화합물로, 호스트에 미량 혼합하여 사용하기 때문에 이를 게스트(guest)라고도 한다. 즉, 도펀트는 호스트 재료에 도핑(doping)되어 발광을 일으키는 물질로서, 일반적으로 삼중항 상태 이상으로 여기시키는 다중항 여기(multiplet excitation)에 의해 발광하는 금속 착체(metal complex)와 같은 물질이 사용된다. 이러한 도펀트로는 당분야에서 일반적으로 사용되는 적색(R), 녹색(G), 청색(B), 백색(W)의 형광 또는 인광 도펀트가 모두 사용 가능하나, 특히, 적색, 녹색, 청색 또는 백색의 인광도펀트를 사용하는 것이 좋다. 또한, 발광 효율이 높고, 잘 응집되지 않으며, 호스트 재료속에 균일하게 분포되는 것을 사용할 수 있다.
상기 인광 도펀트의 예로는 Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Pd, 또는 이들의 조합인 원소를 포함하는 유기 금속화합물을 들 수 있다. 보다 구체적으로, 적색 인광 도펀트로는 백금-옥타에틸포르피린착체(PtOEP), Ir(Piq)2(acac), Ir(Piq)3, UDC사의 RD61 등을 사용할 수 있고, 녹색 인광 도펀트로는 Ir(PPy)2(acac), Ir(PPy)3, Ir(mppy)3, UDC사의 GD48 등을 사용할 수 있으며, 청색 인광 펀트로는(4,6-F2PPy)2Irpic(참조문헌: Appl. Phys. Lett.,79, 2082-2084, 2001) 등을 사용할 수 있다. 이 때, 상기 Piq는 1-페닐이소퀴놀린(1-phenylisoquinoline)을 의미하고, acac는 아세틸아세토네이트를 의미하며, PPy는 2-페닐피리딘(2-phenylpyridine)을 의미한고, pic는 피콜리네이트를 의미하며, PPy는 2-페닐피리딘(2-phenylpyridine)을, mppy는 2-(4-methylphenyl)pyridine 의미하는 것이다.
또한, 본 발명의 일 구현예에 따른 유기광전소자용 화합물은 유리전이온도(Tg)가 110 ℃ 이상이고, 열분해온도(Td)가 400 ℃ 이상인 것으로, 보다 구체적으로는 유리전이온도가 110 내지 200 ℃의 범위이고, 열분해온도가 400 내지 600 ℃의 범위인 것을 사용할 수 있다. 이로써, 본 발명의 일 구현예에 따른 유기광전소자용 화합물은 열적안정성이 우수한 호스트 재료 또는 전하수송 재료로 사용될 수 있는 것이다.
본 발명의 다른 일 구현예에 따르면 상기 유기광전소자용 화합물을 포함하는 유기광전소자를 제공한다. 이 때, 상기 유기광전소자라 함은 유기발광소자, 유기 태양 전지, 유기 트랜지스터, 유기 감광체 드럼, 유기 메모리 소자 등을 의미한다. 유기 태양 전지의 경우에는 본 발명의 일 구현예에 따른 유기광전소자용 화합물이 전극이나 전극 버퍼층에 포함되어 양자 효율을 증가시키며, 유기 트랜지스터의 경우에는 게이트, 소스-드레인 전극 등에서 전극 물질로 사용될 수 있다.
이하에서는 유기광전소자에 대하여 구체적으로 설명한다.
본 발명의 다른 일 구현예에 따르면, 양극, 음극, 및 상기 양극과 음극 사이에 배치되는 적어도 1층의 유기박막층을 포함하고, 상기 유기박막층은 본 발명의 일 구현예에 따른 유기광전소자용 화합물을 포함하는 것인 유기광전소자를 제공한다.
상기 유기광전소자용 화합물을 포함할 수 있는 유기박막층으로는 발광층, 정공수송층, 정공주입층, 정공저지층, 전자수송층, 전자주입층, 전자저지층 또는 이들의 조합인층을 포함할 수 있는 바, 이 중에서 적어도 어느 하나의 층은 본 발명의 일구현예에 따른 유기광전소자용 화합물을 포함한다. 보다 구체적으로 발광층, 정공수송층, 정공주입층, 전자수송층, 전자주입층또는 이들의 조합인층에 본 발명의 일구현예에 따른 유기광전소자용 화합물을 포함할 수 있다.
도 1 내지 도 5는 상기 유기광전소자용 화합물을 포함하는 유기광전소자의 단면도이다.
도 1 내지 도 5를 참조하면, 유기광전소자(100, 200, 300, 400, 및 500)는 양극(120), 음극(110), 및 이 양극과 음극 사이에 개재된 적어도 1 층의 유기박막층(105)을 포함하는 구조를 갖는다.
유기광전소자에서 사용되는 기판으로는 당분야에서 통상적으로 사용되는 것으로 특별히 한정하지 않으나, 보다 구체적으로, 투명성, 표면 평활성, 취급용이성,및 방수성이 우수한 유리기판, 투명 플라스틱 기판 등의 기판을 사용할 수 있다.
상기 양극(120)은 유기박막층으로 정공 주입이 원활하게 일어날 수 있도록 일함수가 큰 물질을 포함하는 것이 좋다. 상기 양극의 구체적인 예로는 니켈, 백금, 바나듐, 크롬, 구리, 아연, 금 등과 같은 금속 또는 이들 금속의 합금; 아연산화물, 인듐산화물, 인듐주석산화물(indium tin oxide, ITO), 인듐아연산화물(IZO) 등과 같은 금속 산화물; ZnO/Al, SnO2/Sb 등과 같은 금속 산화물과 금속의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](poly[3,4-(ehtylene-1,2-dioxy)thiophene]: PEDOT 또는 PEDT), 폴리피롤, 폴리아닐린 등과 같은 전도성 고분자 등을 들 수 있다. 다만, 양극이 상기한 물질에 한정되는 것은 아니다. 상기 양극은 보다 구체적으로 ITO를 포함하는 투명전극을 사용할 수 있다.
상기 음극(110)은 유기박막층으로 전자 주입이 원활하게 일어날 수 있도록 일함수가 작은 물질을 포함하는 것이 좋다. 상기 음극의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 타이타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석, 납, 세슘, 바륨 등과 같은 금속 또는 이들의 합금; LiF/Al, LiO2/Al, LiF/Ca, LiF/Al, BaF2/Ca 등과 같은 다층 구조 물질 등을 들 수 있다. 다만, 음극이 상기한 물질에 한정되는 것은 아니다. 상기 음극은 보다 구체적으로 알루미늄 등과 같은 금속전극을 사용할 수 있다.
먼저, 도 1은 유기 박막층(105)으로서 발광층(130)만이 존재하는 유기광전소자(100)를 나타낸 것으로, 상기 유기박막층(105)은 발광층(130)만으로 존재할 수 있다.
도 2는 유기박막층(105)으로서 전자수송층을 포함하는 발광층(230)과 정공수송층(140)이 존재하는 2 층형 유기광전소자(200)를 나타낸 것으로서, 유기박막층(105)은 발광층(230) 및 정공 수송층(140)을 포함하는 2 층형일 수 있다. 이 경우 발광층(130)은 전자 수송층의 기능을 하며, 정공 수송층(140)은 ITO와 같은 투명전극과의 접합성 및 정공수송성을 향상시키는 기능을 한다.
상기 정공수송층(140)은 당분야에서 일반적으로 사용되는 것으로 그 종류를 특별히 한정하지 않으나, 예를들면, 폴리(스티렌설포네이트)(PSS)층으로 도핑된 폴리(3,4-에틸렌디옥시-티오펜)(PEDOT)인 PEDOT:PSS, N,N'-비스(3-메틸페닐)-N,N-디페닐-[1,1'-비페닐]-4,4'-디아민(TPD), N,N'-디(1-나프틸)-N,N'-디페닐벤지딘 (NPB) 등을 본 발명의 일 구현예에 따른 유기광전소자용 화합물과 함께 사용할 수 있다.
도 3은 유기박막층(105)으로서 전자수송층(150), 발광층(130), 및 정공수송층(140)이 존재하는 3 층형 유기광전소자(300)를 나타낸 것으로서, 상기 유기박막층(105)에서 발광층(130)은 독립된 형태로 되어 있고, 전자수송성이나 정공수송성이 우수한 막(전자수송층(150) 및 정공수송층(140))을 별도의 층으로 쌓은 형태를 나타내고 있다.
상기 전자수송층(150)은 당분야에서 일반적으로 사용되는 것으로 특별히 한정하지 않으나, 예를들면, 알루미늄트리스(8-히드록시퀴놀린)(Alq3); 2-(4-비페닐-5-페닐-1,3,4-옥사디아졸(PBD)과 같은 1,3,4-옥사디아졸 유도체; 1,3,4-트리스[(3-페닐-6-트리플루오로메틸)퀴녹사린-2-일]벤젠(TPQ)과 같은 퀴녹사린 유도체; 및 트리아졸 유도체 등을 본 발명의 일 구현예에 따른 유기광전소자용 화합물과 함께 사용할 수 있다.
도 4는 유기박막층(105)으로서 전자주입층(160), 발광층(130), 정공수송층(140), 및 정공주입층(170)이 존재하는 4 층형 유기광전소자(400)를 나타낸 것으로서, 상기 정공주입층(170)은 양극으로 사용되는 ITO와의 접합성을 향상시킬 수 있다.
도 5는 유기박막층(105)으로서 전자주입층(160), 전자수송층(150), 발광층(130), 정공수송층(140), 및 정공주입층(170)과 같은 각기 다른 기능을 하는 5 개의 층이 존재하는 5 층형 유기광전소자(500)를 나타낸 것으로서, 상기 유기광전소자(500)는 전자주입층(160)을 별도로 형성하여 저전압화에 효과적이다.
상기 발광층(130, 230)의 두께는 5 내지 1000 nm 범위일 수 있고, 상기 정공수송층(140),및 전자수송층(150)의 두께는 각각 독립적으로, 10 내지 10,000 Å일 수 있다. 그러나 두께 범위로 한정되는 것은 아니다.
상기 도 1 내지 도 5에서 상기 유기박막층(105)을 이루는 전자수송층(150), 전자주입층(160), 발광층(130, 230), 정공수송층(140), 정공주입층(170) 또는 이들의 조합에는 본 발명의 일 구현예에 따른 유기광전소자용 화합물이 포함될 수 있다. 이 때, 상기 유기광전소자용 화합물은 전자수송층(150) 또는 전자주입층(160)을 포함하는 전자수송층(150)에 사용될 수 있으며, 그 중에서도 전자수송층에 포함될 경우 정공저지층을 별도로 형성할 필요가 없어 보다 단순화된 구조의 유기광전소자를 제공할 수 있다.
또한, 상기 유기광전소자용 화합물이 발광층(130, 230) 내에 포함되는 경우 상기 유기광전소자용 화합물은 인광 호스트로서 사용될 수 있고, 상기 발광층(130, 230)은 도펀트를 더 포함할 수 있다. 이 때, 상기 도펀트는 적색, 녹색, 청색, 또는 백색의 인광 도펀트일 수 있다.
상기에서 설명한 유기광전소자는, 기판에 양극을 형성한 후, 진공증착법(evaporation), 스퍼터링(sputtering), 플라즈마 도금, 이온도금 등과 같은 건식성막법; 스핀코팅(spin coating), 침지법(dipping), 유동코팅법(flow coating) 등과 같은 습식성막법 등으로 유기박막층을 형성한 후, 그 위에 음극을 형성하여 제조할 수 있다.
본 발명의 또 다른 일 구현예에 따르면, 상기 유기광전소자를 포함하는 표시장치를 제공한다.
이하에서는 본 발명의 구체적인 실시예들을 제시한다. 다만, 하기에 기재된실시예들은 본 발명을 구체적으로 예시하거나 설명하기 위한 것에 불과하며, 이로서 본 발명이 제한되어서는 아니된다.
유기광전소자용 화합물의 합성
실시예 1: 화학식 4로 표시되는화합물의 합성
본 발명의 유기광전소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 4로 표시되는 화합물은 아래의 반응식 1과 같은 방법을 통하여 합성되었다.
[반응식 1]
[규칙 제26조에 의한 보정 30.07.2010] 
Figure WO-DOC-CHEMICAL-1
제 1 단계 : 화합물 B의 합성
질소분위기의 교반기가 부착된 250 mL 둥근바닥 플라스크에서 화합물 A 5 g(8.86 mmol) 및 테트라하이드로퓨란 150 mL을 혼합한 후, 드라이아이스와 아세톤을 이용하여 반응기를 냉각하였다. 상기 반응기에 1.6 M의 n-부틸리튬(n-BuLi) 6.64 mL(10.6 mmol)을 서서히 주입한 후, 냉각용 드라이아이스를 제거하고, 30 분간 교반하였다. 다시 상기 반응기를 냉각한 다음, 2.47 g(13.3 mmol)의 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-다이옥사보레인을 서서히 주입하고, 상기 반응기를 상온에서 8 시간 동안 교반하였다. 반응물을 물에 부어 반응을 종결한 후, 에틸아세테이트로 추출하고, 무수황산마그네슘으로 수분 및 용매를 제거하였다. 그 잔류물을 실리카겔 크로마토그래피로 정제하여 화합물 B로 표시되는 중간체 생성물 4.11 g(수율: 76 %)을 수득하였다.
제 2 단계 : 화학식 4의 합성
250 mL의 둥근 플라스크에서 화합물 B로 표시되는 중간체 생성물 4 g(6.5 mmol), 화합물 C 2.1 g(7.85 mmol), 및 테트라하이드로퓨란 100 mL를 혼합하였다. 상기 혼합물에 2M-탄산칼륨 수용액 80 mL, 및 테트라키스트리페닐포스핀 팔라듐(0) 0.15 g(0.13 mmol)을 넣은 다음 질소기류하에서 12 시간 동안 가열 환류하였다.
반응 유체를 2 층으로 분리한 후, 유기층을 염화나트륨 포화수용액으로 세정하고, 무수 황산나트륨으로 건조하였다. 유기용매를 감압하에서 증류하여 제거한 후,그 잔류물을 실리카겔 크로마토그래피로 정제하여 화학식 4로 표시되는 화합물 3.38 g(수율: 72%)을 수득하였다.
상기 수득된 화학식 4의 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C52H36N4: C, 87.12; H, 5.06; N, 7.82; found: C, 87.02; H, 5.11; N, 7.32.
실시예 2: 화학식 23으로 표시되는화합물의 합성
본 발명의 유기광전소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 23으로 표시되는 화합물은 아래의 반응식 2와 같은 방법을 통하여 합성되었다.
[반응식 2]
[규칙 제26조에 의한 보정 30.07.2010] 
Figure WO-DOC-CHEMICAL-2
제 1 단계 : 화합물 F의 합성
250 mL의 둥근 플라스크에서 화합물 E 5 g(12.3 mmol), 화합물 D 4.34 g(12.3 mmol), 및 테트라하이드로퓨란 100 mL를 혼합하였다. 상기 혼합물에 2M-탄산칼륨 수용액 80 mL, 및 테트라키스트리페닐포스핀 팔라듐(0) 0.28 g(0.2 mmol)을 넣은 다음 질소기류하에서 12 시간 동안 가열 환류하였다.
반응 유체를 2 층으로 분리한 후, 유기층을 무수 황산나트륨으로 건조하였다. 유기용매를 감압하에서 증류하여 제거한 후,그 잔류물을 실리카겔 크로마토그래피로 정제하여 화학식 F 3 g(수율: 40%)을 수득하였다.
제 2 단계 : 화학식 23의 합성
250 mL의 둥근 플라스크에서 상기 제1단계에서 합성된 화합물 F 3 g(4.7 mmol), 화합물 G 2.1 g(5.7 mmol) 및 테트라하이드로퓨란 80 mL를 혼합하였다. 상기 혼합물에 2M-탄산칼륨 수용액 60 mL, 및 테트라키스트리페닐포스핀 팔라듐(0) 0.11 g(0.1 mmol)을 넣은 다음 질소기류하에서 12 시간 동안 가열 환류하였다.
유기층을 분리한 후 무수 황산나트륨으로 건조하고, 유기용매를 감압하에서 증류하여 제거하였다. 실리카겔 크로마토그래피로 정제하여 화학식 23으로 표시되는 화합물 3.1 g(수율: 70%)을 수득하였다.
상기 수득된 화학식 23의 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C52H36N4: C, 88.67; H, 5.25; N, 6.08; found: C, 88.52; H, 5.01; N, 6.03.
실시예 3: 화학식 29로 표시되는화합물의 합성
본 발명의 유기광전소자용 화합물의 보다 구체적인 예로서 제시된 상기 화학식 29로 표시되는 화합물은 아래의 반응식 3과 같은 방법을 통하여 합성되었다.
[반응식 3]
[규칙 제26조에 의한 보정 30.07.2010] 
Figure WO-DOC-CHEMICAL-3
제 1 단계 : 화합물 J의 합성
250 mL의 둥근 플라스크에서 화합물 I 6.36 g(13.4 mmol), 화합물 H 4 g(13.4 mmol), 염화구리 0.66 g(6.7 mmol), 및 탄산칼륨 5.5 g(40.1 mmol)을 넣고, 디메틸술폭사이드(DMSO) 100 mL를 혼합하였다. 반응용기를 질소 기류하에서 180 ℃로 24 시간 동안 가열 교반하였다. 반응 종결 후 반응 용매를 진공증류로 제거한 다음, 그 잔류물을 실리카겔 크로마토그래피로 정제하여 화학식 J 5.9 g(수율: 64%)을 수득하였다.
제 2 단계 : 화합물 K의 합성
질소분위기의 교반기가 부착된 250 mL 둥근바닥 플라스크에서 화합물 J 5 g(7.2 mmol) 및 테트라하이드로퓨란 150 mL을 혼합한 후, 드라이아이스와 아세톤을 이용하여 반응기를 냉각하였다. 상기 반응기에 1.6 M의 n-부틸리튬(n-BuLi) 5.4 mL(8.64 mmol)을 서서히 주입한 후, 냉각용 드라이아이스를 제거하고, 30 분간 교반하였다. 다시 상기 반응기를 냉각한 다음, 2 g(10.8 mmol)의 2-이소프로폭시-4,4,5,5-테트라메틸-1,3,2-다이옥사보레인을 서서히 주입하고, 상기 반응기를 상온에서 8 시간 동안 교반하였다. 반응물을 물에 부어 반응을 종결한 후, 에틸아세테이트로 추출하고, 무수황산마그네슘으로 수분 및 용매를 제거하였다. 그 잔류물을 실리카겔 크로마토그래피로 정제하여 화합물 B로 표시되는 중간체 생성물 4 g(수율: 75 %)을 수득하였다.
제 3 단계 : 화학식 29의 합성
250 mL의 둥근 플라스크에서 상기 제2단계에서 합성된 화합물 K 4 g(5.39 mmol), 화합물 C 1.73 g(6.5 mmol) 및 테트라하이드로퓨란 80 mL를 혼합하였다. 상기 혼합물에 2M-탄산칼륨 수용액 60 mL, 및 테트라키스트리페닐포스핀 팔라듐(0) 0.12 g(0.1 mmol)을 넣은 다음 질소 기류하에서 12 시간 동안 가열 환류하였다.
유기층을 분리한 후 무수 황산나트륨으로 건조하고, 유기용매를 감압하에서 증류하여 제거하였다. 실리카겔 크로마토그래피로 정제하여 화학식 29로 표시되는 화합물 3.21 g(수율: 70%)을 수득하였다.
상기 수득된 화학식 29의 화합물을 원소분석으로 분석한 결과는 다음과 같았다.
calcd. C52H36N4: C, 87.91; H, 5.47; N, 6.61; found: C, 87.52; H, 5.04; , 6.32.
실험예 1: 열적 특성 평가
상기 실시예 1 내지 3에서 합성된 화합물들의 유리전이온도와 열분해 온도는 각각 시차주사열량계(Differential Scanning Calorimetry: DSC) 및 열중량분석기(Thermogravimetry: TGA)로 측정하였다. 이 결과는 하기 표 1 및 도 6에 나타내었다.
표 1
Figure PCTKR2010003071-appb-T000001
상기 표 1 및 도 6을 참조하면, 실시예 1 내지 3의 화합물들은 DSC 분석 결과, 모두 용융점 피크가 나타나지 않았다. 이로부터 실시예 1 내지 3의 화합물들이 안정한 비정질 상태로 존재함을 확인할 수 있었다. 따라서 본 발명의 일구현예에 따른 유기광전소자용 화합물을 포함하는 유기광전소자는 구동시에 줄열에 의한 결정화를 방지하여, 기존의 유기광전소자에 비하여 향상된 수명 특성을 나타낼 것을 예측할 수 있었다.
유기발광소자의 제조
실시예 4
상기 실시예 1에서 합성된 화합물을 호스트로 사용하고, Ir(PPy)3를 도펀트로 사용하여 유기발광소자를 제작하였다. 양극으로는 ITO를 1000 Å의 두께로 사용하였고, 음극으로는 알루미늄(Al) 을 1000 Å의 두께로 사용하였다.
구체적으로, 유기발광소자의 제조방법을 설명하면, 양극은 15 Ω/cm2의 면저항값을 가진 ITO 유리 기판을 50 mm × 50 mm × 0.7 mm의 크기로 잘라서 아세톤과 이소프로필알코올과 순수물 속에서 각 15 분 동안 초음파 세정한 후, 30 분 동안 UV 오존 세정하여 사용하였다.
상기 기판 상부에 진공도 650×10-7 Pa, 증착속도 0.1 내지 0.3 nm/s의 조건으로 N,N'-디(1-나프틸)-N,N'-디페닐벤지딘 (NPB) (70 nm) 및 4,4',4"-트리(N-카바졸일)트리페닐아민 (TCTA) (10 nm)를 증착하여 800 Å의 정공수송층을 형성하였다.
이어서, 동일한 진공 증착조건에서 상기 실시예 1에서 합성된 화합물을 이용하여 막 두께 300 Å의 발광층을 형성하였고, 이 때, 인광 도펀트인 Ir(PPy)3을 동시에 증착하였다. 이 때, 인광 도펀트의 증착속도를 조절하여, 발광층의 전체량을 100 중량%로 하였을 때, 인광 도펀트의 배합량이 7 중량%가 되도록 증착하였다.
상기 발광층 상부에 동일한 진공 증착조건을 이용하여 비스(8-하이드록시-2-메틸퀴놀리나토)-알루미늄비페녹시드(BAlq)를 증착하여 막 두께 50 Å의 정공저지층을 형성하였다.
이어서, 동일한 진공 증착조건에서 Alq3를 증착하여, 막 두께 200 Å의 전자수송층을 형성하였다.
상기 전자수송층 상부에 음극으로서 LiF와 Al을 순차적으로 증착하여 유기발광소자를 제작하였다.
상기 유기발광소자의 구조는 ITO/ NPB (70 nm)/ TCTA (10 nm)/ EML (실시예 1의 화합물(93 중량%) + Ir(PPy)3(7 중량%), 30 nm)/ Balq (5 nm)/ Alq (20 nm)/ LiF (1 nm) / Al (100 nm)의 구조로 제작하였다.
실시예 5
상기 BAlq를 증착하여, 막 두께 50 Å의 정공저지층을 형성하는 공정을 수행하지 않은 것을 제외하고는 상기 실시예 4와 동일한 방법으로 제작하였다.
보다 구체적으로, 상기 유기발광소자의 구조는 ITO/ NPB(70 nm)/ TCTA(10nm)/ EML(실시예 1의 화합물(93 중량%) + Ir(PPy)3(7 중량%), 30 nm)/ Alq3(20 nm)/ LiF(1 nm) / Al(100 nm)의 구조로 제작하였다.
실시예 6
양극으로는 ITO 기판을 사용하였고, 상기 기판 상부에 스핀-코팅하여 폴리(3,4-에틸렌디옥시-티오펜)(PEDOT)을 형성하였다.
발광층은 상기 PEDOT 상부에 스핀-코팅하여 형성하였다. 보다 구체적으로, 상기 발광층은 실시예 1에서 합성된 화합물을 톨루엔에 녹여 호스트로 사용하였고, Ir(mppy)3를 도판트로 사용하였다. 이 때, 상기 Ir(mppy)3 도판트는 발광층의 전체량을 100 중량%로 하였을 때, 13 중량%가 포함되도록 혼합하여 발광층을 형성하였다.
상기 발광층의 상부에 BAlq를 진공증착하여 50 Å 두께의 정공저지층을 형성하였다. 또한, 상기 정공저지층의 상부에 Alq3를 진공증착하여 200 두께의 전자수송층을 형성하였다.
상기 전자수송층 상부에 LiF 10 Å(1 nm)과 Al 1000 Å을 순차적으로 진공증착하여 음극을 형성함으로써 유기발광소자를 제작하였다.
상기 유기발광소자는 ITO / PEDOT (40 nm) / EML(실시예 1의 화합물(87 중량%) + Ir(PPy)3(13 중량%),50 nm) / BAlq (5 nm) / Alq3 (20 nm) / LiF (1 nm) / Al(100 nm)의 구조로 제작하였다.
비교예 1
상기 실시예 1에서 합성된 화합물을 발광층의 호스트로 사용한 것을 대신하여, 4,4-N,N-다이카바졸바이페닐(CBP)를 발광층의 호스트로 사용한 것을 제외하고는 상기 실시예 4와 동일한 방법으로 유기발광소자를 제작하였다.
비교예 2
상기 실시예 1에서 합성된 화합물을 발광층의 호스트로 사용한 것을 대신하여, TCTA 50 중량% 및 1,3,5-트리스(N-페닐벤즈이미다졸-2-일)벤젠(TPBI) 50 중량%의 혼합물을 사용한 것을 제외하고는 상기 실시예 6과 동일한 방법으로 유기발광소자를 제작하였다.
상기 유기발광소자의 구조는 ITO / PEDOT (40 nm) / TCTA:TPBI(50:50 중량비, 87 중량%):Ir(mppy)3(13중량%) (50 nm) / BAlq (5 nm) / Alq3(20 nm) / LiF(1 nm) / Al(100 nm)의 구조로 제작하였다.
실험예 2: 유기발광소자의 성능 평가
상기 실시예 4 내지 6 및 비교예 1 내지 2에서 제조된 각각의 유기발광소자에 대하여 전압에 따른 전류밀도 변화, 휘도 변화 및 발광효율을 측정하였다. 구체적인 측정방법은 다음과 같고, 그 결과는 하기 표 2 및 표 3에 나타내었다
(1) 전압변화에 따른 전류밀도의 변화 측정
제조된 유기발광소자에 대해, 전압을 0 V 부터 10 V 까지 상승시키면서 전류-전압계(Keithley 2400)를 이용하여 단위소자에 흐르는 전류값을 측정하고, 측정된 전류값을 면적으로 나누어 결과를 얻었다.
(2) 전압변화에 따른 휘도변화 측정
제조된 유기발광소자에 대해, 전압을 0 V 부터 10 V 까지 상승시키면서 휘도계(Minolta Cs-1000A)를 이용하여 그 때의 휘도를 측정하여 결과를 얻었다.
(3) 발광효율 측정
상기(1) 및 (2)로부터 측정된 휘도와 전류밀도 및 전압을 이용하여 동일 밝기(1000 cd/m2)의 전류 효율(cd/A) 및 전력 효율(lm/W)을 계산하였다. 그 결과를 하기 표 2 및 3에 나타내었다.
(4) 색좌표는 휘도계(Minolta Cs-100A)를 이용하여 측정하였고, 그 결과를 하기 표 2 및 3에 나타내었다.
표 2
Figure PCTKR2010003071-appb-T000002
상기 표 2를 참고하면, 유기발광소자의 특성 평가결과, 실시예 4 및 5에서 제조된 유기발광소자는 비교예 1의 유기발광소자와 비교하여 구동전압은 약 2 V 이상 낮고, 전류효율은 유사하게 측정되나 구동전압의 감소로 인한 전력효율은 매우 개선된 소자 성능을 나타내는 것을 확인할 수 있었다. 특히 실시예 5의 경우 정공저지층인 BAlq를 사용하지 않았음에도 불구하고, 매우 높은 발광효율을 나타내는 것을 확인할 수 있었다. 이는 본 발명의 일 구현예에 따른 화합물이 유기박막층의 감소로 인한 공정 단가 및 공정 시간의 단축에도 큰 이점이 있는 재료라는 것을 의미한다.
표 3
Figure PCTKR2010003071-appb-T000003
상기 표 3을 참고하면, 실시예 6에서 제조된 유기발광소자는 비교예 2에서 제조된 유기발광소자에 비해 약 2 배 증가한 발광효율을 나타내었다. TCTA는 정공전달특성이 우수한 호스트이고, TPBI는 전자전달특성이 우수한 호스트인 것으로, 상기 두 호스트를 혼합 사용한 비교예 2에 따른 유기발광소자와 비교한 결과, 상기 실시예 1에 따른 화합물을 사용한 유기발광소자는 우수한 바이폴라 특성을 가지는 호스트라는 것을 확인할 수 있었다.
본 발명은 상기 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 제조될 수 있으며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.

Claims (20)

  1. 하기 화학식 1로 표시되는 유기광전소자용 화합물:
    [화학식 1]
    Figure PCTKR2010003071-appb-I000045
    상기 화학식 1에서
    X1 내지 X3는 서로 같거나 다른 것으로, 각각 독립적으로 N 또는 CR이고, 단, 상기 X1 내지 X3 중에서 선택된 적어도 어느 하나 이상은 N이고, 상기 R은 수소 또는 탄소수 1 내지 10의 저급알킬기이고,
    Ar1 및 Ar2는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 18의 아릴렌기이고,
    Ar3 및 Ar4는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 1 내지 30의 알킬렌기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴렌기, 또는 이들의 조합이고, 상기 Ar3 및 Ar4는 서로 융합되어 융합링을 형성할 수 있고,
    Ar5 및 Ar6는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 또는 이들의 조합이고,
    R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급알킬기임.
  2. 제1항에 있어서,
    상기 화학식 1의 X1 내지 X3는 모두 N인 것인 유기광전소자용 화합물.
  3. 제1항에 있어서,
    상기 화학식 1의 Ar1 및 Ar2의 아릴렌기는 페닐렌기, 나프틸렌기, 안트라세닐렌기, 또는 이들의 조합인 것인 유기광전소자용 화합물.
  4. 제1항에 있어서,
    상기 화학식 1의 Ar3 내지 Ar6의 아릴기는 페닐기, 나프틸기, 안트라센기, 페난트렌기, 테트라센기, 피렌기, 플루오렌기 또는 이들의 조합인 것인 유기광전소자용 화합물.
  5. 제1항에 있어서,
    상기 화학식 1의 Ar3 내지 Ar6의 아릴기는 하기 화학식 2a 내지 2c로 표시되는 치환기 또는 이들의 조합인 것인 유기광전소자용 화합물:
    [화학식 2a] [화학식 2b] [화학식 2c]
    Figure PCTKR2010003071-appb-I000046
    상기 화학식 2a 내지 2c에서
    R' 및 R"은 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합임.
  6. 제1항에 있어서,
    상기 화학식 1의 Ar5 및 Ar6의 헤테로아릴기는 퓨란, 피롤, 이미다졸, 티아졸, 옥사졸, 옥사디아졸, 티아디아졸, 트리아졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 퀴놀린, 이소퀴놀린 또는 이들의 조합인 것인 유기광전소자용 화합물.
  7. 제1항에 있어서,
    상기 유기광전소자용 화합물은 하기 화학식 3a 또는 3b로 표시되는 것인 유기광전소자용 화합물:
    [화학식 3a]
    Figure PCTKR2010003071-appb-I000047
    [화학식 3b]
    Figure PCTKR2010003071-appb-I000048
    상기 화학식 3a 및 3b에서
    Ar4 내지 Ar6는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기, 또는 이들의 조합이고,
    R1 및 R2는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 저급알킬기이고,
    R3 및 R4는 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합이고,
    a 및 b는 서로 같거나 다른 것으로, 각각 독립적으로 1 또는 2임.
  8. 제1항에 있어서,
    상기 유기광전소자용 화합물은 하기 화학식 4 내지 35 및 ad-1 내지 ad-4로 이루어진 군에서 선택된 어느 하나로 표시되는 것인 유기광전소자용 화합물:
    [화학식 4] [화학식 5]
    Figure PCTKR2010003071-appb-I000049
    [화학식 6] [화학식 7]
    Figure PCTKR2010003071-appb-I000050
    [화학식 8] [화학식 9]
    Figure PCTKR2010003071-appb-I000051
    [화학식 10] [화학식 11]
    Figure PCTKR2010003071-appb-I000052
    [화학식 12] [화학식 13]
    Figure PCTKR2010003071-appb-I000053
    [화학식 14] [화학식 15]
    Figure PCTKR2010003071-appb-I000054
    [화학식 16] [화학식 17]
    Figure PCTKR2010003071-appb-I000055
    [화학식 18] [화학식 19]
    Figure PCTKR2010003071-appb-I000056
    [화학식 20] [화학식 21]
    Figure PCTKR2010003071-appb-I000057
    [화학식 22] [화학식 23]
    Figure PCTKR2010003071-appb-I000058
    [화학식 24] [화학식 25]
    Figure PCTKR2010003071-appb-I000059
    [화학식 26] [화학식 27]
    Figure PCTKR2010003071-appb-I000060
    [화학식 28] [화학식 29]
    Figure PCTKR2010003071-appb-I000061
    [화학식 30] [화학식 31]
    Figure PCTKR2010003071-appb-I000062
    [화학식 32] [화학식 33]
    Figure PCTKR2010003071-appb-I000063
    [화학식 34] [화학식 35]
    Figure PCTKR2010003071-appb-I000064
    [화학식 ad-1] [화학식 ad-2]
    Figure PCTKR2010003071-appb-I000065
    [화학식 ad-3] [화학식 ad-4]
    Figure PCTKR2010003071-appb-I000066
  9. 하기 화학식 A-1로 표시되는 유기광전소자용 화합물:
    [화학식 A-1]
    Figure PCTKR2010003071-appb-I000067
    상기 화학식 A-1에서,
    X1 내지 X3는 서로 같거나 다른 것으로, 서로 독립적으로 N 또는 CR이고, 단, 상기 X1 내지 X3 중에서 선택된 적어도 어느 하나는 N이고, 상기 R은 수소 또는 탄소수 1 내지 10의 알킬기이고,
    Ar1은 단일결합 또는 치환 또는 비치환된 탄소수 6 내지 18의 아릴렌기이고,
    Ar2 내지 Ar4는 서로 같거나 다른 것으로, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이고,
    R1 내지 R3는 서로 같거나 다른 것으로, 각각 독립적으로 수소 또는 탄소수 1 내지 10의 알킬기이고,
    R4 및 R5는 서로 같거나 다른 것으로, 각각 수소, 치환 또는 비치환된 탄소수 1 내지 30의 알킬기, 치환 또는 비치환된 탄소수 6 내지 30의 아릴기, 치환 또는 비치환된 탄소수 2 내지 30의 헤테로아릴기 또는 이들의 조합이거나; 또는 서로 융합되어 인접한 링과 융합링을 형성한다.
  10. 제9항에 있어서,
    상기 화학식 A-1의 X1 내지 X3는 모두 N인 것인 유기광전소자용 화합물.
  11. 제9항에 있어서,
    상기 화학식 A-1의 Ar1 의 아릴렌기는 페닐렌기, 나프틸렌기, 안트라세닐렌기, 또는 이들의 조합인 것인 유기광전소자용 화합물.
  12. 제9항에 있어서,
    상기 화학식 A-1의 Ar2 내지 Ar4의 아릴기는 하기 화학식 2a 내지 2c로 표시되는 치환기 또는 이들의 조합인 것인 유기광전소자용 화합물:
    [화학식 2a] [화학식 2b] [화학식 2c]
    Figure PCTKR2010003071-appb-I000068
    상기 화학식 2a 내지 2c에서
    R' 및 R"은 서로 같거나 다른 것으로, 각각 독립적으로 수소, 탄소수 1 내지 10의 저급알킬기, 탄소수 6 내지 18의 아릴기 또는 이들의 조합임.
  13. 제9항에 있어서,
    상기 화학식 A-1의 Ar2 및 Ar3의 헤테로아릴기는 퓨란, 피롤, 이미다졸, 티아졸, 옥사졸, 옥사디아졸, 티아디아졸, 트리아졸, 트리아진, 피리딘, 피리미딘, 피리다진, 피라진, 퀴놀린, 이소퀴놀린 또는 이들의 조합인 것인 유기광전소자용 화합물.
  14. 제9항에 있어서,
    상기 유기광전소자용 화합물은 하기 화학식 ad-5 내지 ad-24로 이루어진 군에서 선택된 어느 하나로 표시되는 것인 유기광전소자용 화합물:
    [화학식 ad-5] [화학식 ad-6]
    Figure PCTKR2010003071-appb-I000069
    [화학식 ad-7] [화학식 ad-8]
    Figure PCTKR2010003071-appb-I000070
    [화학식 ad-9] [화학식 ad-10]
    Figure PCTKR2010003071-appb-I000071
    [화학식 ad-11] [화학식 ad-12]
    Figure PCTKR2010003071-appb-I000072
    [화학식 ad-13] [화학식 ad-14]
    Figure PCTKR2010003071-appb-I000073
    [화학식 ad-15] [화학식 ad-16]
    Figure PCTKR2010003071-appb-I000074
    [화학식 ad-17] [화학식 ad-18]
    Figure PCTKR2010003071-appb-I000075
    [화학식 ad-19] [화학식 ad-20]
    Figure PCTKR2010003071-appb-I000076
    [화학식 ad-21] [화학식 ad-22]
    Figure PCTKR2010003071-appb-I000077
    [화학식 ad-23] [화학식 ad-24]
    Figure PCTKR2010003071-appb-I000078
  15. 제1항에 있어서,
    상기 유기광전소자용 화합물은 전하수송 재료 또는 호스트 재료로 사용될 수 있는 것인 유기광전소자용 화합물.
  16. 제1항에 있어서,
    상기 유기광전소자용 화합물은 유리전이온도(Tg)가 110 ℃ 이상이고, 열분해온도(Td)가 400 ℃ 이상인 유기광전소자용 화합물.
  17. 양극; 음극; 및 상기 양극과 음극 사이에 개재되는 유기박막층을 포함하고,
    상기 유기박막층은 제1항 내지 제16항 중 어느 한 항에 따른 유기광전소자용 화합물을 포함하는 것인 유기광전소자.
  18. 제17항에 있어서,
    상기 유기 박막층은 발광층, 정공수송층, 정공주입층, 정공저지층, 전자수송층, 전자주입층, 전자저지층 또는 이들의 조합인 것인 유기광전소자.
  19. 제17항에 있어서,
    상기 유기박막층은 도펀트를 더 포함하는 것인 유기광전소자.
  20. 제17항에 따른 유기광전소자를 포함하는 것인 표시장치.
PCT/KR2010/003071 2009-05-15 2010-05-14 유기광전소자용 화합물 및 이를 포함하는 유기광전소자 WO2010131930A2 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012510757A JP5711220B2 (ja) 2009-05-15 2010-05-14 有機光電素子用化合物およびこれを含む有機光電素子
KR1020117003505A KR101297161B1 (ko) 2009-05-15 2010-05-14 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
CN201080020308.2A CN102421868B (zh) 2009-05-15 2010-05-14 有机光电装置用化合物和包括该化合物的有机光电装置
EP10775132.3A EP2431445B1 (en) 2009-05-15 2010-05-14 Compound for organic photoelectric device and organic photoelectric device comprising same
US13/295,572 US8815418B2 (en) 2009-05-15 2011-11-14 Compound including fluorenyl group for organic photoelectric device and organic photoelectric device including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20090042706 2009-05-15
KR10-2009-0042706 2009-05-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/295,572 Continuation US8815418B2 (en) 2009-05-15 2011-11-14 Compound including fluorenyl group for organic photoelectric device and organic photoelectric device including the same

Publications (2)

Publication Number Publication Date
WO2010131930A2 true WO2010131930A2 (ko) 2010-11-18
WO2010131930A3 WO2010131930A3 (ko) 2011-02-24

Family

ID=43085478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/003071 WO2010131930A2 (ko) 2009-05-15 2010-05-14 유기광전소자용 화합물 및 이를 포함하는 유기광전소자

Country Status (6)

Country Link
US (1) US8815418B2 (ko)
EP (1) EP2431445B1 (ko)
JP (1) JP5711220B2 (ko)
KR (1) KR101297161B1 (ko)
CN (1) CN102421868B (ko)
WO (1) WO2010131930A2 (ko)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060859A1 (de) * 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
WO2011125020A1 (en) * 2010-04-06 2011-10-13 Basf Se Substituted carbazole derivatives and use thereof in organic electronics
WO2011126063A1 (ja) * 2010-04-05 2011-10-13 住友化学株式会社 金属複合体及びその調製に有用な化合物
WO2012001969A1 (ja) * 2010-06-30 2012-01-05 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20120049768A1 (en) * 2010-08-27 2012-03-01 Semiconductor Energy Laboratory Co., Ltd. Fluorene Derivative, Organic Compound, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Compound
US20130306961A1 (en) * 2011-02-11 2013-11-21 Idemitsu Kosen Co. Ltd Organic light emitting device and materials for use in same
WO2013191177A1 (ja) * 2012-06-18 2013-12-27 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
WO2014015931A1 (de) * 2012-07-23 2014-01-30 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
JP2015006995A (ja) * 2012-06-18 2015-01-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009053645A1 (de) * 2009-11-17 2011-05-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtung
EP2428512B1 (en) 2010-09-08 2014-10-22 Semiconductor Energy Laboratory Co., Ltd. Fluorene compound, light-emitting element, light-emitting device, electronic device and lighting device
KR101540053B1 (ko) * 2012-07-05 2015-07-29 주식회사 엠비케이 신규한 유기발광화합물 및 이를 포함하는 유기전기발광소자
EP3017016B1 (de) 2013-07-02 2020-04-15 Merck Patent GmbH Materialien für elektronische vorrichtungen
EP3027708B1 (de) * 2013-07-30 2020-05-13 Merck Patent GmbH Materialien für elektronische vorrichtungen
KR102184893B1 (ko) * 2013-12-04 2020-12-01 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102411748B1 (ko) * 2014-03-17 2022-06-23 롬엔드하스전자재료코리아유한회사 전자 버퍼 재료 및 유기 전계 발광 소자
KR102427918B1 (ko) 2014-04-29 2022-08-03 롬엔드하스전자재료코리아유한회사 전자전달재료 및 이를 포함하는 유기 전계 발광 소자
KR101931250B1 (ko) 2014-05-13 2018-12-20 제일모직 주식회사 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
JP6597605B2 (ja) * 2014-05-23 2019-10-30 ソニー株式会社 光電変換素子、固体撮像装置及び有機光吸収材料
KR101829749B1 (ko) 2014-10-31 2018-02-19 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
JP6576631B2 (ja) * 2014-12-15 2019-09-18 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アミン化合物、および有機電界発光素子
WO2016109274A1 (en) 2014-12-30 2016-07-07 Dow Global Technologies Llc Fluorene derivatives as light emitting elements for electroluminescent devices
US11495749B2 (en) 2015-04-06 2022-11-08 Universal Display Corporation Organic electroluminescent materials and devices
US11818949B2 (en) 2015-04-06 2023-11-14 Universal Display Corporation Organic electroluminescent materials and devices
US10593890B2 (en) 2015-04-06 2020-03-17 Universal Display Corporation Organic electroluminescent materials and devices
WO2016184540A1 (en) * 2015-05-18 2016-11-24 Merck Patent Gmbh Materials for organic electroluminescent devices
KR101984244B1 (ko) 2015-09-09 2019-05-30 삼성에스디아이 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
WO2017171376A1 (ko) * 2016-03-28 2017-10-05 주식회사 엘지화학 화합물 및 이를 포함하는 유기 전자 소자
CN107778220A (zh) * 2016-08-31 2018-03-09 江苏三月光电科技有限公司 以芴和含氮六元杂环为核心的化合物及在有机发光器件中的应用
KR102360108B1 (ko) * 2017-05-23 2022-02-09 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102078463B1 (ko) * 2017-07-28 2020-02-17 주식회사 엘지화학 플루오렌 유도체 및 이를 포함하는 유기 발광 소자
EP3483154A1 (en) * 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine, fluorene and aryl groups and their use in organic electronic devices
EP3483153A1 (en) * 2017-11-09 2019-05-15 Novaled GmbH Compounds comprising triazine group, fluorene-group and aryl group and their use in organic electronic devices
EP3483157B1 (en) * 2017-11-09 2024-09-04 Novaled GmbH Compounds comprising triazine group, fluorene-group and hetero-fluorene group
US11834459B2 (en) 2018-12-12 2023-12-05 Universal Display Corporation Host materials for electroluminescent devices
CN111233674A (zh) * 2019-09-26 2020-06-05 吉林奥来德光电材料股份有限公司 芴类化合物及其制备方法和有机电致发光器件

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5698740A (en) * 1993-10-01 1997-12-16 Toyo Ink Manufacturing Co., Ltd. Hole-transport material
JP3079909B2 (ja) * 1993-10-01 2000-08-21 東洋インキ製造株式会社 正孔輸送材料およびその用途
US6229012B1 (en) 1998-10-01 2001-05-08 Xerox Corporation Triazine compositions
US6586120B2 (en) * 2001-05-01 2003-07-01 Academia Sinica Electro luminescent device comprising fluorene compounds
JP4506113B2 (ja) 2002-09-20 2010-07-21 東ソー株式会社 フルオレン骨格を有する新規アリールアミン誘導体、その合成中間体及びこれらの製造方法並びに有機el素子
JP2005000085A (ja) 2003-06-12 2005-01-06 Yakult Honsha Co Ltd 乳成分含有飲料及びその製造方法
JP4085905B2 (ja) 2003-07-18 2008-05-14 東ソー株式会社 フルオレン骨格を有する新規アリールビニル化合物、及びその製造方法並びに有機el素子
JP4581355B2 (ja) * 2003-09-09 2010-11-17 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子
DE10356099A1 (de) * 2003-11-27 2005-07-07 Covion Organic Semiconductors Gmbh Organisches Elektrolumineszenzelement
JP4491666B2 (ja) 2003-12-02 2010-06-30 東ソー株式会社 フルオレン骨格を有するアリールアミン誘導体の製造方法とその合成中間体
TW200533634A (en) * 2004-01-15 2005-10-16 Tosoh Corp Amine compound having fluorine group as framework, process for producing the amine compound, and use of the amine compound
JP2005239703A (ja) 2004-01-30 2005-09-08 Koei Chem Co Ltd 2,7−ビス(カルバゾール−9−イル)フルオレン類。
US20080036365A1 (en) * 2004-03-26 2008-02-14 Hodogaya Chemical Co., Ltd. Carbazole Derivative Containing Fluorene Group and Organic Electroluminescent Element
US20060186797A1 (en) * 2005-02-15 2006-08-24 Tosoh Corporation Pi-conjugated compound having cardo structure, process for preparing same and use of same
KR20070017733A (ko) 2005-08-08 2007-02-13 에스케이 주식회사 플루오렌 유도체, 이로부터 제조된 유기 전기발광고분자 및유기 전기발광소자
JP2007049055A (ja) 2005-08-12 2007-02-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
KR20080052589A (ko) 2005-09-15 2008-06-11 이데미쓰 고산 가부시키가이샤 비대칭 플루오렌 유도체 및 그것을 이용한 유기 전기발광소자
US20090261711A1 (en) 2005-09-15 2009-10-22 Idemitsu Kosan Co., Ltd. Asymmetric fluorene derivative and organic electroluminescent element containing the same
US7638206B2 (en) * 2005-12-21 2009-12-29 Lg Display Co., Ltd. Bifunctional compounds and OLED using the same
WO2007108327A1 (ja) * 2006-03-17 2007-09-27 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR100970836B1 (ko) * 2006-08-02 2010-07-16 주식회사 엘지화학 신규한 플루오렌 유도체 및 이를 이용한 유기전자소자
TWI395358B (zh) * 2007-05-28 2013-05-01 Cheil Ind Inc 用於有機電光元件之具有茀衍生化合物的材料以及包含此之有機電光元件
JP4675413B2 (ja) 2008-02-14 2011-04-20 財団法人山形県産業技術振興機構 有機発光素子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 79, 2001, pages 2082 - 2084
D. F.O'BRIEN, APPL. PHYS. LETT., vol. 74 3, 1999, pages 442
M. A. BALDO, APPL. PHYS. LETT., vol. 75 1, 1999, pages 4
See also references of EP2431445A4

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011060859A1 (de) * 2009-11-17 2011-05-26 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US10233159B2 (en) 2009-11-17 2019-03-19 Merck Patent Gmbh Materials for organic electroluminescent devices
US10981880B2 (en) 2009-11-17 2021-04-20 Merck Patent Gmbh Materials for organic electroluminescent devices
US9187456B2 (en) 2009-11-17 2015-11-17 Merck Patent Gmbh Materials for organic electroluminescent devices
US11760734B2 (en) 2009-11-17 2023-09-19 Merck Patent Gmbh Materials for organic electroluminescent devices
JP2011219517A (ja) * 2010-04-05 2011-11-04 Sumitomo Chemical Co Ltd 金属複合体及びそれに有用な化合物
WO2011126063A1 (ja) * 2010-04-05 2011-10-13 住友化学株式会社 金属複合体及びその調製に有用な化合物
EP2556075A1 (en) * 2010-04-06 2013-02-13 Basf Se Substituted carbazole derivatives and use thereof in organic electronics
CN102933582A (zh) * 2010-04-06 2013-02-13 巴斯夫欧洲公司 取代的咔唑衍生物及其在有机电子器件中的用途
EP2556075A4 (en) * 2010-04-06 2013-10-02 Basf Se SUBSTITUTED CARBAZOLE DERIVATIVES AND THEIR USE IN ORGANIC ELECTRONICS
WO2011125020A1 (en) * 2010-04-06 2011-10-13 Basf Se Substituted carbazole derivatives and use thereof in organic electronics
WO2012001969A1 (ja) * 2010-06-30 2012-01-05 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8586206B2 (en) 2010-06-30 2013-11-19 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescence device using the same
US20120049768A1 (en) * 2010-08-27 2012-03-01 Semiconductor Energy Laboratory Co., Ltd. Fluorene Derivative, Organic Compound, and Light-Emitting Element, Light-Emitting Device, and Electronic Device Using the Compound
US8771843B2 (en) * 2010-08-27 2014-07-08 Semiconductor Energy Laboratory Co., Ltd. Fluorene derivative, organic compound, and light-emitting element, light-emitting device, and electronic device using the compound
JP2012067093A (ja) * 2010-08-27 2012-04-05 Semiconductor Energy Lab Co Ltd フルオレン誘導体、有機化合物、および該化合物を用いた発光素子、発光装置並びに電子機器
JP2014511026A (ja) * 2011-02-11 2014-05-01 ユニバーサル ディスプレイ コーポレイション 有機発光素子及び該有機発光素子に使用されるための材料
US20130306961A1 (en) * 2011-02-11 2013-11-21 Idemitsu Kosen Co. Ltd Organic light emitting device and materials for use in same
JP2015006995A (ja) * 2012-06-18 2015-01-15 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
WO2013191177A1 (ja) * 2012-06-18 2013-12-27 東ソー株式会社 環状アジン化合物、その製造方法、及びそれを含有する有機電界発光素子
WO2014015931A1 (de) * 2012-07-23 2014-01-30 Merck Patent Gmbh Materialien für organische elektrolumineszenzvorrichtungen
US10991892B2 (en) 2012-07-23 2021-04-27 Merck Patent Gmbh Materials for organic electroluminescent devices
US12022732B2 (en) 2012-07-23 2024-06-25 Merck Patent Gmbh Materials for organic electroluminescent devices

Also Published As

Publication number Publication date
JP2012526804A (ja) 2012-11-01
US20120056171A1 (en) 2012-03-08
EP2431445A2 (en) 2012-03-21
WO2010131930A3 (ko) 2011-02-24
EP2431445B1 (en) 2016-11-23
CN102421868B (zh) 2015-05-20
JP5711220B2 (ja) 2015-04-30
EP2431445A4 (en) 2013-08-21
KR20110043667A (ko) 2011-04-27
US8815418B2 (en) 2014-08-26
KR101297161B1 (ko) 2013-08-21
CN102421868A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
WO2010131930A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011074770A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012074210A2 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2012091225A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014010823A1 (ko) 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
WO2011055933A2 (ko) 유기광전소자용 조성물, 이를 이용한 유기광전소자 및 이를 포함하는 표시장치
WO2014081168A1 (ko) 플루오란텐 화합물 및 이를 포함하는 유기 전자 소자
WO2010074422A1 (en) Novel compound for organic photoelectric device and organic photoelectric device including the same
WO2013002509A2 (ko) 새로운 화합물 및 이를 이용한 유기 발광 소자
WO2011055934A9 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010151083A2 (ko) 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2012099376A2 (ko) 신규한 화합물 및 이를 포함하는 유기 발광 소자
WO2012074195A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014123392A1 (ko) 헤테로환 화합물 및 이를 이용한 유기 발광 소자
WO2015152650A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2011059271A2 (ko) 신규한 축합고리 화합물 및 이를 이용한 유기전자소자
WO2010076991A2 (ko) 신규한 유기 광전 소자용 화합물 및 이를 포함하는 유기 광전 소자
WO2013095039A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2014123369A1 (ko) 신규한 화합물 및 이를 이용한 유기 전자 소자
WO2017061779A1 (ko) 아민 화합물 및 이를 포함하는 유기 발광 소자
WO2013022145A1 (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2013027906A9 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2011139129A2 (ko) 방향족 아민을 포함하는 트리페닐렌계 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2013027902A1 (ko) 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
WO2020149666A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020308.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10775132

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 20117003505

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012510757

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010775132

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010775132

Country of ref document: EP