WO2012001969A1 - 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012001969A1
WO2012001969A1 PCT/JP2011/003721 JP2011003721W WO2012001969A1 WO 2012001969 A1 WO2012001969 A1 WO 2012001969A1 JP 2011003721 W JP2011003721 W JP 2011003721W WO 2012001969 A1 WO2012001969 A1 WO 2012001969A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
ring
unsubstituted
Prior art date
Application number
PCT/JP2011/003721
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
光則 伊藤
井上 哲也
俊成 荻原
茎子 日比野
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2011548441A priority Critical patent/JPWO2012001969A1/ja
Priority to CN201180002653.8A priority patent/CN102510858A/zh
Priority to EP11800439.9A priority patent/EP2589596A4/en
Publication of WO2012001969A1 publication Critical patent/WO2012001969A1/ja

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present invention relates to an aromatic amine derivative and an organic electroluminescence device using the same.
  • Organic electroluminescence (EL) elements are promising for use as solid-state, inexpensive, large-area full-color display elements, and many developments have been made.
  • an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. When an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side. Further, the electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Document 1 discloses a triarylamine derivative that can be used as a hole transport material and a light emitting material. This triarylamine derivative has an action of confining electrons.
  • Patent Document 2 discloses a compound having a specific structure in which a diarylamine or a nitrogen-containing heterocyclic group is bonded by a biphenylene linking group.
  • Patent Document 3 attempts to improve device performance by using a compound in which a heterocyclic group (pyrimidine, triazine, etc.) containing at least two nitrogen atoms at a specific position is introduced.
  • Patent Document 4 discloses a compound having a pyrimidine skeleton as an electrophotographic photoreceptor.
  • JP 11-222590 A Japanese Patent Laying-Open No. 2005-085658 JP 2009-246097 A Japanese Patent Laid-Open No. 02-052360
  • An object of the present invention is to provide an aromatic amine derivative useful for making an organic EL device have high luminous efficiency and long life.
  • An aromatic amine derivative represented by the following formula (1) At least one of Ar 1 to Ar 3 is represented by the following formula (2).
  • (X 1 to X 3 each independently represents a nitrogen atom or CR 2. However, two of X 1 to X 3 are nitrogen atoms, and X 1 and X 3 are not simultaneously nitrogen atoms.
  • R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, a substituted or unsubstituted silyl group, an aryl group having 6 to 50 ring carbon atoms, a ring A heteroaryl group having 5 to 50 atoms, a halogen atom or a cyano group;
  • R 2 is a hydrogen atom or a group represented by R 1 .
  • a is an integer of 1 to 2.
  • n is an integer of 0 to 3.
  • L 1 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • L 2 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • the group that is not formula (2) is independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • the substituents are each independently a linear or branched alkyl group having 1 to 10 carbon atoms or a ring-forming carbon.
  • the plurality of formulas (2) may be the same or different.
  • a 2, a plurality of R 1 may be the same or different.
  • n is 2 or more, the plurality of L 2 may be the same or different. ]] 2.
  • the aromatic amine derivative according to 1 wherein L 1 is any one of a substituted or unsubstituted phenylene group, biphenylene group, and fluorenylene group.
  • [At least one of Ar 4 to Ar 7 is represented by the following formula (2).
  • At least one of Ar 8 to Ar 12 is represented by the following formula (2).
  • At least one of Ar 13 to Ar 18 is represented by the following formula (2).
  • At least one of Ar 19 to Ar 24 is represented by the following formula (2).
  • (X 1 to X 3 each independently represents a nitrogen atom or CR 2. However, two of X 1 to X 3 are nitrogen atoms, and X 1 and X 3 are not simultaneously nitrogen atoms.
  • R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, a substituted or unsubstituted silyl group, an aryl group having 6 to 50 ring carbon atoms, a ring A heteroaryl group having 5 to 50 atoms, a halogen atom or a cyano group;
  • R 2 is a hydrogen atom or a group represented by R 1 .
  • a is an integer of 1 to 2.
  • n is an integer of 0 to 3.
  • L 1 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • L 2 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • the substituents of L 1 and L 2 are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, a substituted or unsubstituted silyl group, or a ring forming carbon atom. It is an aryl group, a halogen atom or a cyano group of formula 6-14.
  • the group that is not formula (2) is each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • L 11 to L 19 are each independently a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • a group that is not represented by formula (2) among Ar 4 to Ar 24 and a substituent when L 11 to L 19 are substituted are each independently a linear or branched alkyl group having 1 to 10 carbon atoms, a ring A cycloalkyl group having 3 to 10 carbon atoms, a substituted or unsubstituted silyl group, an aryl group having 6 to 14 ring carbon atoms, a heteroaryl group having 5 to 20 ring atoms, a halogen atom, or a cyano group.
  • the plurality of formulas (2) may be the same or different.
  • At least one of the organic thin film layers is a hole transport layer and / or a hole injection layer, and the aromatic amine derivative is contained in at least one layer of the hole transport layer and / or the hole injection layer.
  • the organic electroluminescence device according to 10. 12 12.
  • the organic electroluminescence device according to 11 or 12 wherein the layer in contact with the anode among the hole injection layer and / or the hole transport layer contains an acceptor material. 14 14.
  • the organic electroluminescence device according to any one of 10 to 13, wherein the aromatic amine derivative and a metal complex are contained in the light emitting layer, and the light emitting layer emits phosphorescence. 15. 15. The organic electroluminescence device according to 14, wherein the metal complex is an iridium complex.
  • an aromatic amine derivative useful for making an organic EL device have high luminous efficiency and long life.
  • the aromatic amine derivative of the present invention is represented by the following formula (1).
  • At least one (preferably one) of Ar 1 to Ar 3 is represented by the following formula (2).
  • X 1 to X 3 each independently represents a nitrogen atom or CR 2 .
  • two of X 1 to X 3 are nitrogen atoms.
  • X 1 and X 3 do not simultaneously become nitrogen atoms.
  • R 1 is a linear or branched alkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 10 ring carbon atoms, a substituted or unsubstituted silyl group, an aryl group having 6 to 50 ring carbon atoms, a ring A heteroaryl group having 5 to 50 atoms, a halogen atom or a cyano group;
  • R 2 is a hydrogen atom or a group represented by R 1 .
  • a is an integer of 1 to 2.
  • a is preferably 2, and when it is a pyridazine skeleton, a is preferably 1.
  • n is an integer of 0 to 3.
  • n is preferably 0 to 1, more preferably 0.
  • L 1 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms.
  • L 2 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • the group that is not formula (2) is each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • they are each independently a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group or a 9,9-dimethylfluorenyl group.
  • the substituents are each independently a linear or branched alkyl group having 1 to 10 carbon atoms or a ring-forming carbon.
  • the plurality of formulas (2) may be the same or different.
  • a 2
  • n is 2 or more
  • the plurality of L 2 may be the same or different.
  • L 1 is preferably a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms, more preferably a substituted or unsubstituted arylene group having 6 to 20 ring carbon atoms, particularly preferably a substituted or unsubstituted phenylene group.
  • Specific examples of L 1 include the following, but are not limited thereto.
  • L 2 is preferably a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 30 ring atoms, more preferably a substituted or unsubstituted ring forming group.
  • Specific examples of L 2 include the same specific examples as L 1 described above, but are not limited thereto.
  • the 6-membered ring containing X 1 to X 3 in the formula (2) functions as an electron transport site, and the triarylamine portion functions as a hole transport site.
  • the aromatic amine derivative (1) can transport both holes and electrons. Since two nitrogen atoms are present in the 6-membered ring of the formula (2), the electron withdrawing effect is high, the electron withdrawing effect is not too weak, and the electron withdrawing effect is not too weak.
  • Examples of the 6-membered ring of formula (2) include the following compounds (from the left, pyridazine and pyrimidine).
  • the 6-membered ring containing X 1 to X 3 preferably has a substituent.
  • R 1 and R 2 are preferably electrochemically stable substituents such as an aryl group having 6 to 50 ring carbon atoms, a heteroaryl group having 5 to 50 ring atoms, a fluorine atom, or a cyano group. It is a group. These preferred substituents tend to increase the electrochemical stability of the amine compound, increase charge resistance, and prolong life.
  • a 6-membered ring containing X 1 to X 3 is considered to determine the LUMO level of the compound of formula (1) and the electron distribution region in LUMO.
  • the material of the present invention has a deep LUMO level compared to a compound having no electron transport site such as conventional NPD, and the electron distribution region in each of HOMO and LUMO of the compound is clearly divided, that is, an energy gap (Eg ) Becomes larger. If the electron distribution region in each of HOMO and LUMO is clearly separated, when the compound is reduced, electrons are preferentially introduced into LUMO, so that the stability of the compound is improved. If the electron distribution region is clearly separated, it is considered that the electrons are stable without entering the HOMO.
  • the aromatic amine derivative of the present invention has charge resistance, when used in a hole transport layer or a hole injection layer, it is possible to prevent deterioration of these layers and to improve the lifetime of the device. It is done. In addition, since it becomes a wide gap, it is considered that the efficiency is improved by confining the triplet excitons in the light emitting layer and generating singlet excitons by the collision of the triplet excitons to emit light (TTF effect).
  • the aromatic amine derivative of the present invention can transport both holes and electrons, it can be used as a charge barrier layer of a white organic EL device. Since the charge transporting property is high, low voltage driving is possible and a wide gap is achieved, so that carrier balance can be adjusted, light emission efficiency is high, and a long life is achieved.
  • the aromatic amine derivative of the present invention can be used as a phosphorescent host or the like. Excellent carrier balance increases recombination probability and increases efficiency. In addition, since the light emitting region is not biased toward the hole transport layer, the hole transport layer can be prevented from being deteriorated and the life is improved.
  • the aromatic amine derivative of the present invention is preferably represented by the following formula.
  • Ar 1 , Ar 2 , L 1 , L 2 , n, X 1 to X 3 , and R 1 are the same as the above formulas (1) and (2).
  • Ar 1 , Ar 2 , L 1 , L 2 , n, and R 1 are the same as the above formulas (1) and (2).
  • aromatic amine derivative of the present invention can be represented by any of the following formulas (6) to (9).
  • At least one of Ar 4 to Ar 7 , at least one of Ar 8 to Ar 12 , at least one of Ar 13 to Ar 18 , and at least one of Ar 19 to Ar 24 are represented by the above formula (2) It is represented by Preferably one or two.
  • the group that is not formula (2) is each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. Preferably, they are each independently a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group or a 9,9-dimethylfluorenyl group.
  • L 11 to L 19 each independently represents a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms. Preferably, they are each independently a substituted or unsubstituted phenylene group, biphenylene group, or fluorenylene group. Can be exemplified the same groups as L 1 in formula (1). Since there is no heterocycle (heteroarylene group) between two nitrogen atoms, the hole mobility does not decrease and the driving voltage does not become too high, which is preferable.
  • a group not represented by the formula (2) and a substituent when L 11 to L 19 are substituted independently represent the number of carbon atoms. 1 to 10 linear or branched alkyl group, cycloalkyl group having 3 to 10 ring carbon atoms, substituted or unsubstituted silyl group, aryl group having 6 to 14 ring carbon atoms, 5 to 20 ring atoms A heteroaryl group, a halogen atom or a cyano group.
  • ring-forming carbon means a carbon atom constituting a saturated ring, an unsaturated ring, or an aromatic ring.
  • Ring-forming atom means a carbon atom and a hetero atom constituting a ring (including a saturated ring, an unsaturated ring, and an aromatic ring).
  • Unsubstituted means that a hydrogen atom is substituted, and the hydrogen atom of the present invention includes light hydrogen, deuterium, and tritium.
  • alkyl group examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group, An n-octyl group and the like can be mentioned.
  • the carbon number is preferably from 1 to 10, and more preferably from 1 to 6. Of these, methyl, ethyl, propyl, isopropyl, n-butyl, s-butyl, isobutyl, t-butyl, n-pentyl and n-hexyl are preferred.
  • cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, an adamantyl group, and a norbornyl group.
  • the ring-forming carbon number is preferably 3 to 10, and more preferably 3 to 8.
  • substituted silyl group examples include an alkylsilyl group having 3 to 30 carbon atoms (for example, a trialkylsilyl group having 3 to 10 carbon atoms) and an arylsilyl group having 8 to 30 ring carbon atoms (for example, 18 to 30 ring carbon atoms).
  • Triarylsilyl group an alkylarylsilyl group having 8 to 15 carbon atoms (the ring portion having 6 to 14 carbon atoms in the aryl moiety), and the like, for example, trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, Examples thereof include a vinyldimethylsilyl group, a propyldimethylsilyl group, a triisopropylsilyl group, and a triphenylsilyl group.
  • aryl group for example, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthryl group, 2-anthryl group, 9-anthryl group, 1-phenanthryl group, 2-phenanthryl group, 3-phenanthryl group, 4-phenanthryl group, 9-phenanthryl group, naphthacenyl group, pyrenyl group, chrysenyl group, benzo [c] phenanthryl group, benzo [g] chrycenyl group, triphenylenyl group, 1-fluorenyl group, 2-fluorenyl group, 3-fluorenyl group 4-fluorenyl group, 9-fluorenyl group, benzofluorenyl group, dibenzofluorenyl group, 2-biphenylyl group, 3-biphenylyl group, 4-biphenylyl group, terphenyl group, fluoranthenyl group, etc.
  • the aryl group preferably has 6 to 20 ring carbon atoms, more preferably 6 to 12, and among the aryl groups described above, a phenyl group, a biphenyl group, a tolyl group, a xylyl group, and a 1-naphthyl group. Is particularly preferred.
  • heteroaryl group examples include pyrrolyl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group, imidazolyl group, furyl group, benzofuranyl group, isobenzofuranyl group, 1-dibenzofuranyl group, and 2-dibenzofuranyl group.
  • the number of ring-forming atoms of the heteroaryl group is preferably 5-20, and more preferably 5-14.
  • halogen atom examples include fluorine, chlorine, bromine, iodine, and the like, preferably a fluorine atom.
  • the aromatic amine derivatives of the above formulas (6) to (9) have an electron transport site and a hole transport site, and preferably have charge resistance. Have the same effect.
  • the above-mentioned aromatic amine derivative of the present invention can be used as a material for an organic electroluminescent device, for example, a hole transport material, a phosphorescent host material or a charge barrier layer of a white device.
  • an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, and at least one of the organic thin film layers contains the above aromatic amine derivative. contains.
  • the organic EL device of the present invention is not particularly limited as long as the anode, the light emitting layer, and the cathode are laminated in this order, and may further include one or more other organic layers or inorganic layers.
  • the organic thin film layer includes a hole transport layer and / or a hole injection layer, and the aromatic amine derivative is provided in at least one layer of the hole transport layer and the hole injection layer.
  • the hole transport layer and / or the hole injection layer may be configured to be substantially composed of an aromatic amine derivative (containing the aromatic amine derivative as a main component), or may be configured only from the aromatic amine derivative. May be.
  • the above-mentioned aromatic amine derivative may be contained in the light emitting layer to form a phosphorescent light emitting device.
  • the light emitting layer preferably contains a phosphorescent dopant (metal complex) described later in addition to the aromatic amine derivative, and more preferably contains an iridium complex.
  • the element configuration of the organic EL element examples include the following first to third embodiments.
  • the light emitting layer may be a laminate of a plurality of light emitting layers.
  • the organic EL element of this embodiment has an element structure having at least one light emitting layer.
  • a specific configuration example is shown below. (1) Anode / light emitting layer / electron injection / transport layer / cathode (2) Anode / hole injection layer / light emitting layer / electron injection / transport layer / cathode (3) Anode / hole injection layer / hole transport layer / Light emitting layer / electron injection / transport layer / cathode
  • the organic EL element of this embodiment has a tandem element configuration having at least two light emitting layers (units including a light emitting layer).
  • a charge generation layer also referred to as CGL
  • an electron transport band can be provided for each unit.
  • An example of a specific configuration of the tandem element configuration is shown below.
  • Anode / hole injection / transport layer / fluorescence emission layer / charge generation layer / fluorescence emission layer / electron injection / transport layer / cathode (5) Anode / hole injection / transport layer / fluorescence emission layer / electron injection / Transport layer / charge generation layer / fluorescence emission layer / cathode (6) Anode / hole injection / transport layer / fluorescence emission layer / electron injection / transport layer / charge generation layer / fluorescence emission layer / barrier layer / cathode (7) Anode / Hole injection / transport layer / phosphorescent layer / charge generation layer / fluorescence emission layer / electron injection / transport layer / cathode (8) Anode / hole injection / transport layer / fluorescence emission layer / electron injection / transport layer / charge Generation layer / phosphorescent layer / cathode
  • the organic EL element of this embodiment includes a plurality of light emitting layers, and has a charge barrier layer between any two light emitting layers of the plurality of light emitting layers.
  • an anode and a first light emitting layer A structure having an electron transport band having a barrier layer for preventing diffusion of triplet excitons between the second light emitting layer and the cathode in the structure in which the charge barrier layer, the second light emitting layer and the cathode are laminated in this order. Is mentioned.
  • the charge barrier layer is provided with HOMO level and LUMO level energy barriers between the adjacent light emitting layers, thereby adjusting the carrier injection into the light emitting layer and injecting electrons and holes injected into the light emitting layer.
  • This layer has the purpose of adjusting the carrier balance.
  • Anode / hole injection / transport layer / first light emitting layer / charge barrier layer / second light emitting layer / electron injection / transport layer / cathode (10) Anode / hole injection / transport layer / first light emitting layer / Charge barrier layer / second light emitting layer / third light emitting layer / electron injection / transport layer / cathode
  • hole injection / transport layer refers to “hole injection layer and hole transport layer”. "At least one of them” means "electron injection / transport layer” means "at least one of electron injection layer and electron transport layer”.
  • the layer in contact with the anode preferably contains an acceptor material.
  • acceptor materials include hexaazatriphenylene derivatives described in Patent Publication Nos. 3614405, 3571977, or US Pat. No. 4,780,536, inorganic compounds such as p-type Si and p-type SiC, molybdenum oxide, and the like.
  • Electron-accepting organic compounds such as electron-accepting inorganic oxides and TCNQ derivatives can also be suitably used.
  • acceptor material those represented by the following general formula (10) or (11) are preferably used.
  • R 7 to R 12 are each independently a cyano group, —CONH 2 , a carboxyl group, or —COOR 13 (R 13 is an alkyl group having 1 to 20 carbon atoms).
  • R 7 and R 8 , R 9 and R 10 , or R 11 and R 12 are bonded to each other to represent a group represented by —CO—O—CO—.
  • alkyl group examples include straight-chain, branched or cyclic groups, preferably those having 1 to 12 carbon atoms, more preferably those having 1 to 8 carbon atoms, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, t-butyl group, n-hexyl group, n-octyl group, n-decyl group, n-hexadecyl group, cyclopropyl group, cyclopentyl group, A cyclohexyl group etc. are mentioned.
  • Ar is a condensed ring having 6 to 24 ring carbon atoms or a heterocyclic ring having 6 to 24 ring atoms.
  • ar 1 and ar 2 may be the same as or different from each other, and are represented by the following formula (i) or (ii).
  • X 11 and X 12 may be the same as or different from each other, and are any of divalent groups represented by the following formulas (a) to (g).
  • each of R 61 to R 64 may be the same as or different from each other, and is a hydrogen atom, a substituted or unsubstituted fluoroalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • a substituted or unsubstituted aryl group having 6 to 50 carbon atoms or a substituted or unsubstituted heterocyclic group having 3 to 50 ring atoms, and R 62 and R 63 are bonded to each other to form a ring. Also good.
  • R 51 to R 54 in the general formula (11) may be the same or different from each other, and are a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted carbon number 6 to 50 aryl groups having 6 to 50 carbon atoms, substituted or unsubstituted heterocyclic groups having 3 to 50 ring atoms, halogen atoms, substituted or unsubstituted fluoroalkyl groups having 1 to 20 carbon atoms, substituted or unsubstituted An alkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted fluoroalkoxy group having 1 to 20 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 carbon atoms, or a cyano group.
  • R 51 to R 54 that are adjacent to each other may be bonded to each other to form a ring.
  • Y 1 to Y 4 may be the same as or different from each other, and are —N ⁇ , —CH ⁇ , or C (R 55 ) ⁇ , and R 55 is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms.
  • the organic EL device of the present invention is preferably an anthracene derivative represented by the following formula (5-1) or pyrene represented by the following formula (5-2) in at least one of the organic thin film layers, preferably the light emitting layer. Contains at least one derivative.
  • the light emitting layer contains an anthracene derivative represented by the following formula (5-1) or a pyrene derivative represented by the following formula (5-2) as a host.
  • the anthracene derivative represented by the formula (5-1) is the following compound.
  • Ar 101 and Ar 102 are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, or a condensed or unsubstituted ring atom having 8 to 50 ring atoms.
  • R 101 to R 108 each independently represents a hydrogen atom, a substituted or unsubstituted single ring having 5 to 50 ring atoms, or a group composed of a combination of a monocyclic group and a condensed ring group.
  • the monocyclic group is a group composed only of a ring structure having no condensed structure.
  • monocyclic groups having 5 to 50 ring atoms include phenyl, biphenyl, terphenyl, and quarter
  • An aromatic group such as a phenyl group and a heterocyclic group such as a pyridyl group, pyrazyl group, pyrimidyl group, triazinyl group, furyl group, and thienyl group are preferable.
  • a phenyl group, a biphenyl group, and a terphenyl group are preferable.
  • the condensed ring group is a group in which two or more ring structures are condensed.
  • Specific examples of the condensed ring group having 8 to 50 ring atoms include naphthyl group, phenanthryl group, anthryl group, chrysenyl group.
  • benzoanthryl group benzophenanthryl group, triphenylenyl group, benzocrisenyl group, indenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, benzofluorenyl group, dibenzofluorenyl group, fluoranthenyl Groups, condensed aromatic ring groups such as benzofluoranthenyl group, benzofuranyl group, benzothiophenyl group, indolyl group, dibenzofuranyl group, dibenzothiophenyl group, carbazolyl group, quinolyl group, phenanthrolinyl group, etc.
  • a fused heterocyclic group is preferred.
  • naphthyl group phenanthryl group, anthryl group, 9,9-dimethylfluorenyl group, fluoranthenyl group, benzoanthryl group, dibenzothiophenyl group, dibenzofuranyl group, and carbazolyl group are preferable.
  • alkyl group, the silyl group, the cycloalkyl group, and the halogen atom in the formula (5-1) include R 1 , R 2 in the above formulas (1), (2), and (6) to (9), Specific examples of each group represented by L 1 , L 2 , L 11 to L 19 , Ar 1 to Ar 24 and their substituents are the same.
  • the alkoxy group is represented as —OY, and examples of Y include the above alkyl examples.
  • the alkoxy group is, for example, a methoxy group or an ethoxy group.
  • the aryloxy group is represented by —OZ, and examples of Z include the above aryl groups, and examples of monocyclic groups and condensed ring groups described later.
  • the aryloxy group is, for example, a phenoxy group.
  • the aralkyl group is represented by —Y—Z.
  • Y include alkylene examples corresponding to the above alkyl examples
  • Z include the above aryl examples.
  • the aralkyl group is an aralkyl group having 7 to 50 carbon atoms (the aryl moiety is 6 to 49 carbon atoms (preferably 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12), and the alkyl moiety is 1 to carbon atoms. 44 (preferably 1-30, more preferably 1-20, still more preferably 1-10, particularly preferably 1-6)), for example, benzyl group, phenylethyl group, 2-phenylpropane-2 -An yl group.
  • the anthracene derivative represented by the formula (5-1) is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected according to the configuration of the organic EL element to be applied and the required characteristics. Is done.
  • Ar 101 and Ar 102 in Formula (5-1) are each independently a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms.
  • the anthracene derivative can be divided into a case where Ar 101 and Ar 102 are the same substituted or unsubstituted condensed ring group and a case where they are different substituted or unsubstituted condensed ring groups.
  • Anthracene derivatives which are substituted or unsubstituted condensed ring groups in which Ar 101 and Ar 102 in formula (5-1) are different (including differences in substitution position) are particularly preferred, and preferred specific examples of the condensed ring are as described above. .
  • naphthyl group, phenanthryl group, benzanthryl group, 9,9-dimethylfluorenyl group, and dibenzofuranyl group are preferable.
  • Ar 101 and Ar 102 in Formula (5-1) are a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, and the other is a substituted or unsubstituted number of ring atoms. 8 to 50 condensed ring groups.
  • Ar 102 is a naphthyl group, phenanthryl group, benzoanthryl group, 9,9-dimethylfluorenyl group, dibenzofuranyl group
  • Ar 101 is a phenyl group substituted with a monocyclic group or a condensed ring group. It is a group.
  • Ar 102 is a condensed ring group
  • Ar 101 is an unsubstituted phenyl group.
  • the condensed ring group is particularly preferably a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group, or a benzoanthryl group.
  • Ar 101 and Ar 102 in formula (5-1) are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms.
  • both Ar 101 and Ar 102 are substituted or unsubstituted phenyl groups.
  • Ar 101 is an unsubstituted phenyl group
  • Ar 102 is a monocyclic group
  • Ar 101 and Ar 102 are each independently a monocyclic group. In some cases, it may be a phenyl group having a condensed ring group as a substituent.
  • a monocyclic group as a substituent is a phenyl group, a biphenyl group, and a condensed ring group is a naphthyl group, a phenanthryl group, a 9,9-dimethylfluorenyl group, a dibenzofuranyl group, or a benzoanthryl group.
  • the pyrene derivative represented by the following formula (5-2) is the following compound.
  • Ar 111 and Ar 222 are each independently a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms.
  • L 21 and L 22 each independently represent a substituted or unsubstituted divalent aryl group or heterocyclic group having 6 to 30 ring carbon atoms.
  • m is an integer from 0 to 1
  • n is an integer from 1 to 4
  • s is an integer from 0 to 1
  • t is an integer from 0 to 3.
  • L 21 or Ar 111 is bonded to any one of the 1 to 5 positions of pyrene
  • L 22 or Ar 222 is bonded to any of the 6 to 10 positions of pyrene.
  • L 21 and L 22 in formula (5-2) are preferably a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted terphenylene group, and A divalent aryl group composed of a substituted or unsubstituted fluorenylene group and a combination of these substituents. Further, this substituent is the same as the substituent in the above-mentioned “substituted or unsubstituted...
  • the substituent of L 21 and L 22 is preferably an alkyl group having 1 to 20 carbon atoms.
  • M in the general formula (5-2) is preferably an integer of 0 to 1.
  • N in the general formula (5-2) is preferably an integer of 1 to 2.
  • s is preferably an integer of 0 to 1.
  • T in the general formula (5-2) is preferably an integer of 0 to 2.
  • the aryl groups of Ar 111 and Ar 222 are the same as the above groups.
  • a substituted or unsubstituted aryl group having 6 to 20 ring carbon atoms more preferably a substituted or unsubstituted aryl group having 6 to 16 ring carbon atoms, and preferred specific examples of the aryl group include a phenyl group. Naphthyl group, phenanthryl group, fluorenyl group, biphenyl group, anthryl group, pyrenyl group.
  • the light emitting layer may contain a light emitting dopant (phosphorescent dopant and / or fluorescent dopant) in addition to the light emitting material.
  • a light emitting dopant phosphorescent dopant and / or fluorescent dopant
  • Fluorescent dopant is a compound that can emit light from singlet excitons. Fluorescent dopants are required from amine compounds, aromatic compounds, chelate complexes such as tris (8-quinolinolato) aluminum complex, coumarin derivatives, tetraphenylbutadiene derivatives, bisstyrylarylene derivatives, oxadiazole derivatives, etc. A compound selected in accordance with the emission color is preferable, a styrylamine compound, a styryldiamine compound, an arylamine compound, and an aryldiamine compound are more preferable, and a condensed polycyclic amine derivative is more preferable. These fluorescent dopants may be used alone or in combination.
  • Y represents a substituted or unsubstituted condensed aryl group having 10 to 50 ring carbon atoms.
  • Ar 201 and Ar 202 each represent a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heterocyclic group having 5 to 50 ring atoms.
  • the condensed aryl group is a group in which two or more ring structures are condensed in the aryl group.
  • the condensed aryl group is a condensed aryl group having 10 to 50 ring carbon atoms (preferably 10 to 30 ring carbon atoms, more preferably 10 to 20 ring carbon atoms).
  • a naphthyl group, anthryl group, pyrenyl group, phenanthryl group, fluorenyl group, fluoranthenyl group, naphthacenyl group and the like can be mentioned.
  • Y include the above-mentioned condensed aryl groups, preferably a substituted or unsubstituted anthryl group, a substituted or unsubstituted pyrenyl group, or a substituted or unsubstituted chrysenyl group.
  • Ar 201 and Ar 202 include a substituted or unsubstituted phenyl group and a substituted or unsubstituted dibenzofuranyl group.
  • n is an integer of 1 to 4.
  • n is preferably an integer of 1 to 2.
  • styrylamine compound and styryldiamine compound those represented by the following formulas (17) and (18) are preferable.
  • Ar 301 is a k-valent group, and is a k-valent group corresponding to a phenyl group, a naphthyl group, a biphenyl group, a terphenyl group, a stilbene group, a styrylaryl group, or a distyrylaryl group
  • Ar 302 and Ar 303 are each an aryl group having 6 to 20 ring carbon atoms, and Ar 301 , Ar 302 and Ar 303 may be substituted.
  • k is an integer of 1 to 4, and k is preferably an integer of 1 to 2. Any one of Ar 301 to Ar 303 is a group containing a styryl group.
  • At least one of Ar 302 and Ar 303 is substituted with a styryl group.
  • the aryl group having 6 to 20 ring carbon atoms include the aryl groups described above, and preferably include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, a terphenyl group, and the like. .
  • Ar 304 to Ar 306 are v-valent substituted or unsubstituted aryl groups having 6 to 40 ring carbon atoms.
  • v is an integer of 1 to 4, and among them, v is preferably an integer of 1 to 2.
  • specific examples of the aryl group having 6 to 40 ring carbon atoms in the formula (18) include the aryl groups described above, and an aryl represented by a naphthyl group, an anthranyl group, a chrysenyl group, or a pyrenyl group. Groups are preferred.
  • Preferred substituents substituted on the aryl group include alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, aryl groups having 6 to 40 ring carbon atoms, and 6 to 40 ring carbon atoms.
  • a phosphorescent dopant is a compound that can deactivate optical energy from the lowest excited triplet state at room temperature.
  • the phosphorescent dopant preferably contains a metal complex, and the metal complex preferably has a metal atom selected from Ir, Pt, Os, Au, Cu, Re, and Ru, and a ligand.
  • the ligand preferably has an ortho metal bond.
  • a compound containing a metal atom selected from Ir, Os and Pt is preferable in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, platinum Metal complexes such as complexes are more preferred, with iridium complexes and platinum complexes being more preferred, and orthometalated iridium complexes being most preferred. Specific examples of preferable metal complexes are shown below.
  • an electron injection / transport material there is a compound having an ability to transport electrons, an electron injection effect from a cathode, an excellent electron injection effect for a light emitting layer or a light emitting material, and an excellent thin film forming ability. preferable.
  • more effective electron injection materials are metal complex compounds and nitrogen-containing heterocyclic derivatives.
  • the metal complex compound include 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinato) zinc, tris (8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, and bis.
  • (10-Hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, and the like are exemplified, but not limited thereto.
  • these electron injection materials further contain a dopant, and more preferably, a dopant typified by an alkali metal is doped in the vicinity of the cathode interface of the second organic layer in order to facilitate the reception of electrons from the cathode.
  • the dopant include a donor metal, a donor metal compound, and a donor metal complex. These reducing dopants may be used singly or in combination of two or more.
  • members such as a substrate, an anode, and a cathode of the organic EL element are appropriately selected from known materials described in WO2009 / 107596A1, WO2009 / 081857A1, US2009 / 0243473A1, US2008 / 0014464A1, US2009 / 0021160A1, and the like. be able to.
  • Synthesis Example 3 (Synthesis of Intermediate 3) The reaction was conducted in the same manner as in Synthesis Example 1 except that 23.0 g of 1-acetylnaphthalene was used instead of acetophenone, to obtain 34.1 g (yield 75%) of white powder. The powder was identified as Intermediate 3 by FD-MS analysis.
  • Synthesis Example 4 (Synthesis of Intermediate 4) A reaction was conducted in the same manner as in Synthesis Example 2 except that 23.5 g of Intermediate 3 was used instead of Intermediate 1, and 10.7 g (yield 35%) of white powder was obtained. The powder was identified as Intermediate 4 by FD-MS analysis.
  • Synthesis Example 5 (Synthesis of Intermediate 5) A reaction was conducted in the same manner as in Synthesis Example 1 except that 31.9 g of 2-acetyl-9,9-dimethylfluorene was used instead of acetophenone. As a result, 39.2 g (yield 72%) of white powder was obtained. . The powder was identified as Intermediate 5 by FD-MS analysis.
  • Synthesis Example 6 (Synthesis of Intermediate 6) A reaction was conducted in the same manner as in Synthesis Example 2 except that 28.2 g of Intermediate 5 was used instead of Intermediate 1, and 14.4 g (yield 41%) of white powder was obtained. The powder was identified as Intermediate 6 by FD-MS analysis.
  • Synthesis Example 8 (Synthesis of Intermediate 8) The reaction was conducted in the same manner as in Synthesis Example 7 except that 8.6 g of diphenylamine was used instead of N-phenyl-1-naphthylamine, to obtain 6.6 g of white powder.
  • Synthesis Example 9 (Synthesis of Intermediate 9) The reaction was conducted in the same manner as in Synthesis Example 7 except that 16.3 g of N, N-bisbiphenylamine was used instead of N-phenyl-1-naphthylamine, whereby 10.0 g of white powder was obtained.
  • Synthesis Example 11 (Synthesis of Intermediate 11) In a 300 mL three-necked flask, 17.5 g of Intermediate 10 was suspended in 500 mL of ethylene glycol and 5 mL of water, and 21 g of 85% aqueous potassium hydroxide solution was added, followed by reaction at 120 ° C. for 8 hours. After completion of the reaction, the reaction solution was poured into 1 L of water, and the precipitated crystals were collected by filtration and washed with water and methanol. The obtained crystals were dissolved by heating in 300 mL of tetrahydrofuran, treated with activated carbon and concentrated, and acetone was added to precipitate crystals. This was collected by filtration to obtain 14.5 g of white powder. The powder was identified as Intermediate 11 by FD-MS analysis.
  • Acetone 300 mL was added thereto, and 17.5 g of precipitated crystals were collected by filtration. This was charged with 12 g of 4,4′-diiodobiphenyl, 16.3 g of potassium carbonate, 0.4 g of copper powder and 60 mL of decalin, and reacted at 190 ° C. for 4 days. After the reaction, the reaction mixture was cooled, 60 mL of toluene was added, and insoluble matters were collected by filtration. The filtered product was dissolved in 140 mL of chloroform, and after removing insolubles, the resultant was treated with activated carbon and concentrated. To this was added 100 mL of acetone, and 38.2 g of precipitated crystals were collected by filtration.
  • Example 1 (Production of aromatic amine derivative (H1)) Under an argon atmosphere, Intermediate 8 (2.9 g, 10.0 mmol), Intermediate 2 (3.9 g, 10.0 mmol), Pd (PPh 3 ) 4 (0.21 g, 0.2 mmol), Toluene (30 mL) 2M sodium carbonate aqueous solution (15 mL) was added and stirred at 80 ° C. for 7 hours. Water was added to the reaction solution to precipitate a solid, and the solid was washed with methanol. The obtained solid was filtered, washed with hot toluene and dried to obtain 3.8 g of a pale yellow powder. The pale yellow powder was identified as an aromatic amine derivative (H1) by FD-MS analysis.
  • Example 2 (Production of aromatic amine derivative (H2)) The reaction was conducted in the same manner as in Example 1 except that 3.4 g of the intermediate 7 was used instead of the intermediate 8. As a result, 4.3 g of a pale yellow powder was obtained. The pale yellow powder was identified as an aromatic amine derivative (H2) by FD-MS analysis.
  • Example 3 (Production of aromatic amine derivative (H3)) The reaction was conducted in the same manner as in Example 1 except that 4.4 g of the intermediate 9 was used instead of the intermediate 8, whereby 4.8 g of a pale yellow powder was obtained. The pale yellow powder was identified as an aromatic amine derivative (H3) by FD-MS analysis.
  • Example 4 (Production of aromatic amine derivative (H4)) Under an argon atmosphere, 3.2 g of di-4-biphenylylamine, 3.9 g of intermediate 2, 1.3 g of sodium t-butoxy, 46 mg of tris (dibenzylideneacetone) dipalladium, 21 mg of tri-t-butylphosphine and 50 mL of dehydrated toluene was added and reacted at 80 ° C. for 2 hours. After cooling, 500 mL of water was added, the mixture was filtered through Celite, and the filtrate was extracted with toluene and dried over anhydrous magnesium sulfate.
  • H4 aromatic amine derivative
  • Example 5 (Production of aromatic amine derivative (H5)) The reaction was conducted in the same manner as in Example 1 except that 4.4 g of the intermediate 4 was used instead of the intermediate 2, whereby 4.0 g of a pale yellow powder was obtained. The pale yellow powder was identified as an aromatic amine derivative (H5) by FD-MS analysis.
  • Example 6 (Production of aromatic amine derivative (H6)) The reaction was conducted in the same manner as in Example 1 except that 5.0 g of the intermediate 6 was used instead of the intermediate 2 to obtain 4.3 g of a pale yellow powder. The pale yellow powder was identified as an aromatic amine derivative (H6) by FD-MS analysis.
  • Example 7 (Production of aromatic amine derivative (H7))
  • the reaction was performed in the same manner except that 5.0 g of the intermediate 6 was used instead of the intermediate 2 and 3.4 g of the intermediate 7 was used instead of the intermediate 8, and 4.6 g of light product was obtained. A yellow powder was obtained. The pale yellow powder was identified as an aromatic amine derivative (H7) by FD-MS analysis.
  • Example 8 (Production of aromatic amine derivative (H8)) A reaction was conducted in the same manner as in Example 4 except that 7.7 g of Intermediate 2 was used and 3.4 g of N, N′-diphenylbenzidine was used instead of di-4-biphenylylamine. Of a pale yellow powder was obtained. The pale yellow powder was identified as an aromatic amine derivative (H8) by FD-MS analysis.
  • Example 9 (Production of aromatic amine derivative (H9))
  • the reaction was carried out in the same manner except that 8.0 g of intermediate 13 was used instead of intermediate 2 and 3.2 g of intermediate 11 was used instead of di-4-biphenylylamine. 0.0 g of a pale yellow powder was obtained. The pale yellow powder was identified as an aromatic amine derivative (H9) by FD-MS analysis.
  • Example 10 (Production of aromatic amine derivative (H10)) A reaction was conducted in the same manner as in Example 4 except that 7.7 g of intermediate 2 was used and 6.7 g of intermediate 14 was used instead of di-4-biphenylylamine. 7.2 g of pale yellow powder Got. The pale yellow powder was identified as an aromatic amine derivative (H8) by FD-MS analysis.
  • Example 1-1 (Production of Organic EL Device) A glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the electron-accepting compound (C-) is first covered so that the transparent electrode is covered on the surface where the transparent electrode line is formed. 1) was vapor-deposited to form a C-1 film having a thickness of 10 nm.
  • the aromatic amine derivative (H1) obtained in Example 1 was deposited as a hole transport material to form a hole transport layer having a thickness of 70 nm. Furthermore, the following compound (EM1) was vapor-deposited to form a light emitting layer having a thickness of 40 nm. At the same time, the following styrylamine derivative (D1) was deposited as a luminescent molecule so that the weight ratio of EM1 to D1 (EM1: D1) was 40: 2.
  • Alq organometallic complex
  • the luminescent color of the obtained organic EL device was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 1.
  • Example 1-2 (Production of organic EL device) An organic EL device was produced in the same manner as in Example 1-1 except that the following arylamine derivative (D2) was used instead of the styrylamine derivative (D1). The luminescent color of the obtained organic EL device was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 1.
  • Example 1-3 production of organic EL device
  • An organic EL device was produced in the same manner as in Example 1-1 except that the following benzimidazole derivative (ET1) was used instead of the organometallic complex (Alq) as the electron transport material.
  • the luminescent color of the obtained organic EL device was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 1.
  • Example 1-1 an organic EL device was prepared in the same manner except that any of the following comparative compounds 1 to 3 was used as the hole transport material instead of the aromatic amine derivative (H1) as shown in Table 1. did. The luminescent color of the obtained organic EL device was observed, and the results of measuring the initial luminance of 5000 cd / m 2 , the light emission efficiency at room temperature and DC constant current drive, the drive voltage, and the half life of light emission are shown in Table 1.
  • the organic EL device using the aromatic amine derivative of the present invention can obtain high luminous efficiency at a low driving voltage as compared with the organic EL device using a known aromatic amine derivative, and further the device lifetime. It can be seen that is extended.
  • Example 2-1 (Production of organic EL device) A glass substrate with an ITO transparent electrode of 25 mm ⁇ 75 mm ⁇ thickness 1.1 mm (manufactured by Geomatic Co., Ltd.) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes and then UV ozone cleaning for 30 minutes. The glass substrate with the transparent electrode line after washing is attached to the substrate holder of the vacuum deposition apparatus, and the electron-accepting compound (C-) is first covered so that the transparent electrode is covered on the surface where the transparent electrode line is formed. 1) was vapor-deposited to form a C-1 film having a thickness of 5 nm.
  • the following aromatic amine derivative (X1) was vapor-deposited as a first hole transport material to form a first hole transport layer having a thickness of 50 nm.
  • the following aromatic amine derivative (X2) was deposited as a second hole transport material to form a second hole transport layer having a thickness of 60 nm.
  • the aromatic amine derivative (H1) obtained in Example 1 was vapor-deposited on the second hole transport layer to form a light emitting layer having a film thickness of 45 nm.
  • the following compound (D3) was co-deposited as a phosphorescent material.
  • the concentration of Compound D3 was 8.0% by mass.
  • This co-deposited film functions as a light emitting layer.
  • the following compound (ET2) was formed to a thickness of 30 nm. This ET1 film functions as an electron transport layer.
  • LiF was used as an electron injecting electrode (cathode), and the film thickness was 1 nm at a film forming rate of 0.1 angstrom / min.
  • Metal Al was vapor-deposited on this LiF film, and a metal cathode was formed with a film thickness of 80 nm to produce an organic EL device.
  • Table 2 shows the results of measuring the light emission efficiency of the obtained organic EL element at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving. Further, Table 2 shows the results of measuring the half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 2-1 an organic EL device was prepared in the same manner as in Example 2-1, except that aromatic amine derivatives (H2 to H4) were used instead of the aromatic amine derivative (H1) as the light emitting layer material. Produced.
  • Table 2 shows the results of measuring the light emission efficiency of the obtained organic EL element at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving. Further, Table 2 shows the results of measuring the half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature, and DC constant current driving.
  • Example 2-1 an organic EL device was produced in the same manner as in Example 2-1, except that the comparative compound 1 and comparative compound 2 were used instead of the aromatic amine derivative (H1) as the light emitting layer material. did.
  • Table 2 shows the results of measuring the light emission efficiency of the obtained organic EL element at an initial luminance of 2000 cd / m 2 , room temperature, and DC constant current driving. Further, Table 2 shows the results of measuring the half life of light emission at an initial luminance of 5000 cd / m 2 , room temperature, and DC constant current driving.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

下記式(1)で表される芳香族アミン誘導体。式中、Ar~Arのうち少なくとも1つは下記式(2)で表される。X~Xはそれぞれ独立に、窒素原子又はCRを示す。但し、X~Xのうち2つが窒素原子であり、X及びXが同時に窒素原子になることはない。

Description

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は、芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機EL素子は、発光層及び該層をはさんだ一対の対向電極から構成されている。両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する。
 初期の有機EL素子は、駆動電圧、発光効率及び耐久性が不十分であり、これら問題に対して様々な技術的改良がなされてきた。
 有機EL素子の発光効率の向上及び長寿命化はディスプレイの消費電力の低下、耐久性の向上につながる重要な課題であり、さらなる改良が求められている。
 これら問題を解決すべく、特許文献1は、正孔輸送材料及び発光材料として用いることができるトリアリールアミン誘導体を開示している。このトリアリールアミン誘導体は電子を閉じ込める作用を有する。特許文献2は、ジアリールアミン又は含窒素複素環基がビフェニレン連結基によって結合した特定構造の化合物を開示している。
 特許文献3は、少なくとも2つの窒素原子を特定位置に含む複素環(ピリミジン、トリアジン等)の基を導入した化合物により、素子性能の向上を図っている。また、特許文献4は電子写真感光体として、ピリミジン骨格を有する化合物を開示している。
特開平11-222590号公報 特開2005-085658号公報 特開2009-246097号公報 特開平02-052360号公報
 本発明の目的は、有機EL素子を高発光効率且つ長寿命とするために有用な芳香族アミン誘導体を提供することである。
 本発明によれば、以下の芳香族アミン誘導体等が提供される。
1.下記式(1)で表される芳香族アミン誘導体。
Figure JPOXMLDOC01-appb-C000001
[Ar~Arのうち少なくとも1つは下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000002
(X~Xはそれぞれ独立に、窒素原子又はCRを示す。但し、X~Xのうち2つが窒素原子であり、X及びXが同時に窒素原子になることはない。
 Rは、炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~50のアリール基、環形成原子数5~50のヘテロアリール基、ハロゲン原子又はシアノ基である。
 Rは、水素原子、又はRで表わされる基である。
 aは1~2の整数である。nは0~3の整数である。
 Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
 Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 Ar~Arのうち式(2)でない基は、それぞれ独立に置換もしくは無置換の環形成炭素数6~50のアリール基である。
 L、L、及びAr~Arのうち式(2)でない基が置換される場合の置換基は、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、環形成原子数5~20のヘテロアリール基、ハロゲン原子又はシアノ基である。
 Ar~Arのうち2つ以上が式(2)である場合、複数の式(2)は同じでも異なってもよい。
 aが2のとき複数のRは同じでも異なってもよい。
 nが2以上のとき複数のLは同じでも異なってもよい。)]
2.前記Lが、置換もしくは無置換のフェニレン基、ビフェニレン基、フルオレニレン基のいずれかである1に記載の芳香族アミン誘導体。
3.前記Ar~Arのうち式(2)でない基が、それぞれ独立に、フェニル基、ナフチル基、ビフェニル基、ターフェニル基又は9,9-ジメチルフルオレニル基のいずれかである1又は2に記載の芳香族アミン誘導体。
4.下記式(6)~(9)のいずれかで表される芳香族アミン誘導体。
Figure JPOXMLDOC01-appb-C000003
[Ar~Arのうち少なくとも1つは下記式(2)で表される。
 Ar~Ar12のうち少なくとも1つは下記式(2)で表される。
 Ar13~Ar18のうち少なくとも1つは下記式(2)で表される。
 Ar19~Ar24のうち少なくとも1つは下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000004
(X~Xはそれぞれ独立に、窒素原子又はCRを示す。但し、X~Xのうち2つが窒素原子であり、X及びXが同時に窒素原子になることはない。
 Rは、炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~50のアリール基、環形成原子数5~50のヘテロアリール基、ハロゲン原子又はシアノ基である。
 Rは、水素原子、又はRで表わされる基である。
 aは1~2の整数である。nは0~3の整数である。
 Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
 Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基、置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 L、Lの置換基は、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、ハロゲン原子又はシアノ基である。
 Ar~Ar24のうち式(2)でない基は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
 L11~L19は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
 Ar~Ar24のうち式(2)でない基及びL11~L19が置換される場合の置換基はそれぞれ独立に、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、環形成原子数5~20のヘテロアリール基、ハロゲン原子又はシアノ基である。
 Ar~Ar、Ar~Ar12、Ar13~Ar18、Ar19~Ar24のそれぞれのうち2つ以上が式(2)である場合、複数の式(2)は同じでも異なってもよい。
 aが2のとき複数のRは同じでも異なってもよい。
 nが2以上のとき複数のLは同じでも異なってもよい。)]
5.前記L11~L19がそれぞれ独立に置換もしくは無置換のフェニレン基、ビフェニレン基、フルオレニレン基のいずれかである4に記載の芳香族アミン誘導体。
6.前記Ar~Ar24のうち式(2)でない基が、それぞれ独立に、フェニル基、ナフチル基、ビフェニル基、ターフェニル基又は9,9-ジメチルフルオレニル基のいずれかである4又は5に記載の芳香族アミン誘導体。
7.有機エレクトロルミネッセンス素子用材料である1~6のいずれかに記載の芳香族アミン誘導体。
8.有機エレクトロルミネッセンス素子用正孔輸送材料である1~6のいずれかに記載の芳香族アミン誘導体。
9.有機エレクトロルミネッセンス素子用燐光ホスト材料である1~6のいずれかに記載の芳香族アミン誘導体。
10.陰極と陽極間に発光層を含む1以上の層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも1層が、1~6のいずれかに記載の芳香族アミン誘導体を含有する有機エレクトロルミネッセンス素子。
11.前記有機薄膜層のうち少なくとも1つの層が正孔輸送層及び/又は正孔注入層であり、前記芳香族アミン誘導体が前記正孔輸送層及び/又は正孔注入層の少なくとも1層に含有されている10に記載の有機エレクトロルミネッセンス素子。
12.前記芳香族アミン誘導体が主成分として正孔輸送層及び/又は正孔注入層の少なくとも1層に含有されている11に記載の有機エレクトロルミネッセンス素子。
13.前記正孔注入層及び/又は正孔輸送層のうち陽極に接する層が、アクセプター材料を含有する11又は12に記載の有機エレクトロルミネッセンス素子。
14.前記芳香族アミン誘導体及び金属錯体が前記発光層に含有され、前記発光層は燐光を発光する10~13のいずれかに記載の有機エレクトロルミネッセンス素子。
15.前記金属錯体がイリジウム錯体である14に記載の有機エレクトロルミネッセンス素子。
 本発明によれば、有機EL素子を高発光効率且つ長寿命とするために有用な芳香族アミン誘導体が提供できる。
 本発明の芳香族アミン誘導体は下記式(1)で表わされる。
Figure JPOXMLDOC01-appb-C000005
 Ar~Arのうち少なくとも1つ(好ましくは1つ)は下記式(2)で表される。
Figure JPOXMLDOC01-appb-C000006
 X~Xはそれぞれ独立に、窒素原子又はCRを示す。但し、X~Xのうち2つが窒素原子である。ここで、X及びXが同時に窒素原子になることはない。
 Rは、炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~50のアリール基、環形成原子数5~50のヘテロアリール基、ハロゲン原子又はシアノ基である。
 Rは、水素原子、又はRで表わされる基である。
 (R-と-L-(L-は、それぞれ6員環においてX~X以外の炭素に結合する。
 aは1~2の整数である。式(2)の6員環がピリミジン骨格の場合、aは好ましくは2であり、ピリダジン骨格の場合、aは好ましくは1である。
 nは0~3の整数である。nは好ましくは0~1であり、より好ましくは0である。
 Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
 Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 Ar~Arのうち式(2)でない基は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。好ましくはそれぞれ独立に、フェニル基、ナフチル基、ビフェニル基、ターフェニル基又は9,9-ジメチルフルオレニル基のいずれかである。
 L、L、及びAr~Arのうち式(2)でない基が置換される場合の置換基は、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、環形成原子数5~20のヘテロアリール基、ハロゲン原子又はシアノ基である。
 Ar~Arのうち2つ以上が式(2)である場合、複数の式(2)は同じでも異なってもよい。
 aが2のとき複数のRは同じでも異なってもよい。
 nが2以上のとき複数のLは同じでも異なってもよい。
 Lは好ましくは置換もしくは無置換の環形成炭素数6~30のアリーレン基、より好ましくは置換もしくは無置換の環形成炭素数6~20のアリーレン基、特に好ましくは置換もしくは無置換のフェニレン基、ビフェニレン基、フルオレニレン基のいずれかである。
 Lの具体例としては以下が挙げられるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
 Lは好ましくは置換もしくは無置換の環形成炭素数6~30のアリーレン基又は置換もしくは無置換の環形成原子数5~30のヘテロアリーレン基であり、より好ましくは置換もしくは無置換の環形成炭素数6~20のアリーレン基又は置換もしくは無置換の環形成原子数5~20のヘテロアリーレン基であり、特に好ましくは置換もしくは無置換のフェニレン基、ビフェニレン基、フルオレニレン基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基のいずれかである。Lの具体例としては上記Lと同様の具体例が挙げられるが、これに限定されるものではない。
 本発明の芳香族アミン誘導体(1)のうち、式(2)のX~Xを含む6員環が電子輸送部位、トリアリールアミン部分が正孔輸送部位として機能する。このような構造を有することで、芳香族アミン誘導体(1)は正孔と電子の両方を輸送することができる。
 式(2)の6員環中に窒素原子が2つ存在するので、電子求引効果が高く、電子を引き込みすぎることなく、また電子求引効果が弱すぎることがないため好ましい。
 式(2)の6員環として以下の化合物(左からピリダジン、ピリミジン)を挙げることができる。
Figure JPOXMLDOC01-appb-C000008
 一般的に、化合物を有機EL材料として用いる場合、電荷耐性が要求される。そのためには、本発明の化合物においてX~Xを含む6員環が置換基を有することが好ましい。
 例えば、式(2)の6員環が上記に例示するピリダジンの場合3,6位の少なくとも1つ;ピリミジンの場合、2,4,6位の少なくとも1つに置換基を有すると好ましい。
 従って、R及びRは、好ましくは電気化学的に安定な置換基であり、例えば環形成炭素数6~50のアリール基、環形成原子数5~50のヘテロアリール基、フッ素原子又はシアノ基である。
 これらの好ましい置換基は、アミン化合物の電気化学的な安定性を高め、電荷耐性が強くなり、寿命が長くなる傾向がある。
 また、X~Xを含む6員環は、式(1)の化合物のLUMO準位、及びLUMOにおける電子分布領域を決定すると考えられる。本発明の材料は、従来のNPD等、電子輸送部位を有さない化合物と比較すると、LUMO準位が深く、かつ化合物のHOMOとLUMOそれぞれにおける電子分布領域を明確に分け、即ちエネルギーギャップ(Eg)が大きくなる。
 HOMOとLUMOそれぞれにおける電子分布領域が明確に分かれていると、化合物が還元された場合に、優先的にLUMOに電子が入るため化合物の安定性が向上する。電子分布領域が明確に分かれていると、HOMOに電子が入ることなく安定であると考えられる。
 一般的に、正孔輸送部位(正孔耐性大)となるためには、正孔が発生する酸化条件下において耐性が大きいことが求められる。
 アミンにアルキルやヘテロアリールが直結すると、電子密度が高くなり、酸化に対して耐性が出ないと考えられる。耐性を大きくするためには、アミンには電子密度が中性的なアリール基を直結させる必要があると考えられる。従って、上記芳香族アミン誘導体のトリアリールアミン部分は正孔輸送部位となり得ると考えられる。
 尚、アミンに直結するアリール基に、アルキルやヘテロアリールが置換する場合は、電子密度が高くなることがないため耐性を有すると考えられる。
 上述したように、本発明の芳香族アミン誘導体は電荷耐性があるため、正孔輸送層又は正孔注入層に用いたときこれらの層の劣化を防ぐことができ、素子の寿命が向上すると考えられる。またワイドギャップとなるため、三重項励起子を発光層に閉じ込め三重項励起子同士の衝突により一重項励起子を生成し発光させること(TTF効果)により効率が向上すると考えられる。
 また、本発明の芳香族アミン誘導体は、正孔と電子の両方を輸送できるので、白色有機EL素子の電荷障壁層として用いることができる。電荷輸送性が高いため、低電圧駆動が可能となり、ワイドギャップとなるため、キャリアバランスを調整することが可能であり、発光効率が高く、長寿命となる。
 さらに、本発明の芳香族アミン誘導体は燐光ホスト等に用いることができる。キャリアバランスに優れるため、再結合確率が増し、効率が上昇する。また、発光領域が正孔輸送層側に偏らないため、正孔輸送層の劣化を防ぐことができ寿命が向上する。
 本発明の芳香族アミン誘導体が燐光発光有機EL素子の発光層に用いられる場合、芳香族アミン誘導体は好ましくは下記式で表わされる。
Figure JPOXMLDOC01-appb-C000009
 式中、Ar、Ar、L、L、n、X~X、Rは上記式(1),(2)と同じである。
 より好ましくは下記式で表わされる。
Figure JPOXMLDOC01-appb-C000010
 式中、Ar、Ar、L、L、n、Rは上記式(1),(2)と同じである。
 さらに、本発明の芳香族アミン誘導体は下記式(6)~(9)のいずれかで表すことができる。
Figure JPOXMLDOC01-appb-C000011
 Ar~Arのうち少なくとも1つ、Ar~Ar12のうち少なくとも1つ、Ar13~Ar18のうち少なくとも1つ、及びAr19~Ar24のうち少なくとも1つは上記式(2)で表される。好ましくは1つ又は2つである。
 Ar~Ar24のうち式(2)でない基は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。好ましくはそれぞれ独立に、フェニル基、ナフチル基、ビフェニル基、ターフェニル基又は9,9-ジメチルフルオレニル基のいずれかである。
 L11~L19は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリーレン基を表す。好ましくはそれぞれ独立に置換もしくは無置換のフェニレン基、ビフェニレン基、フルオレニレン基のいずれかである。式(1)のLと同様の基を例示できる。2つの窒素原子の間にヘテロ環(ヘテロアリーレン基)を有さないので正孔移動度が低下することなく、駆動電圧が高くなりすぎないため、好ましい。
 Ar~Ar24のうち式(2)でない基及びL11~L19が置換される場合の置換基(前記「置換もしくは無置換」の置換基を意味する。)は、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、環形成原子数5~20のヘテロアリール基、ハロゲン原子又はシアノ基である。
 本明細書において、「環形成炭素」とは飽和環、不飽和環、又は芳香環を構成する炭素原子を意味する。「環形成原子」とは環(飽和環、不飽和環、及び芳香環を含む)を構成する炭素原子及びヘテロ原子を意味する。
 「無置換」とは、水素原子が置換したことを意味し、本発明の水素原子には、軽水素、重水素、三重水素が含まれる。
 上記式(1)、(2)、(6)~(9)におけるR、R、L、L、L11~L19、Ar~Ar24で示される各基及びこれらの置換基について、以下に詳細に述べる。
 アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等が挙げられる。
 上記炭素数は、1~10が好ましく、1~6がさらに好ましい。中でもメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基が好ましい。
 シクロアルキル基として、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基、ノルボルニル基等が挙げられる。環形成炭素数は、3~10が好ましく、3~8がさらに好ましい。
 置換のシリル基としては、炭素数3~30のアルキルシリル基(例えば炭素数3~10のトリアルキルシリル基)、環形成炭素数8~30のアリールシリル基(例えば環形成炭素数18~30のトリアリールシリル基)、炭素数8~15のアルキルアリールシリル基(アリール部分の環形成炭素数は6~14)等が挙げられ、例えばトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基等が挙げられる。
 アリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基、ナフタセニル基、ピレニル基、クリセニル基、ベンゾ[c]フェナントリル基、ベンゾ[g]クリセニル基、トリフェニレニル基、1-フルオレニル基、2-フルオレニル基、3-フルオレニル基、4-フルオレニル基、9-フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、2-ビフェニルイル基、3-ビフェニルイル基、4-ビフェニルイル基、ターフェニル基、フルオランテニル基等が挙げられる。
 アリーレン基としては、上記のアリール基に対応する2価の基が挙げられる。
 上記アリール基は、環形成炭素数が6~20であることが好ましく、より好ましくは6~12であり、上述したアリール基の中でもフェニル基、ビフェニル基、トリル基、キシリル基、1-ナフチル基が特に好ましい。
 ヘテロアリール基としては、例えば、ピロリル基、ピラジニル基、ピリジニル基、インドリル基、イソインドリル基、イミダゾリル基、フリル基、ベンゾフラニル基、イソベンゾフラニル基、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、キノリル基、イソキノリル基、キノキサリニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、チエニル基、ベンゾチオフェニル基等が挙げられる。
 上記ヘテロアリール基の環形成原子数は、5~20が好ましく、5~14がさらに好ましい。
 好ましくは、1-ジベンゾフラニル基、2-ジベンゾフラニル基、3-ジベンゾフラニル基、4-ジベンゾフラニル基、1-ジベンゾチオフェニル基、2-ジベンゾチオフェニル基、3-ジベンゾチオフェニル基、4-ジベンゾチオフェニル基、1-カルバゾリル基、2-カルバゾリル基、3-カルバゾリル基、4-カルバゾリル基、9-カルバゾリル基である。
 ハロゲン原子として、フッ素、塩素、臭素、ヨウ素等が挙げられ、好ましくはフッ素原子である。
 上記の式(6)~(9)の芳香族アミン誘導体も、式(1)の芳香族アミン誘導体と同様に、電子輸送部位と正孔輸送部位を有し、また好ましくは電荷耐性を有し、同様の効果を奏する。
 本発明の芳香族アミン誘導体(1),(6)~(9)の例を以下に示す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 上記の本発明の芳香族アミン誘導体は、有機エレクトロルミネッセンス素子用材料、例えば、正孔輸送材料、燐光ホスト材料や白色素子の電荷障壁層として使用できる。
 本発明の有機EL素子は、陰極と陽極間に、少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されていて、この有機薄膜層の少なくとも1層が上記の芳香族アミン誘導体を含有する。
 本発明の有機EL素子は、陽極、発光層及び陰極がこの順に積層していれば特に限定されず、その他の1以上の有機層又は無機層をさらに有してもよい。
 本発明の有機EL素子は、好ましくは、上記有機薄膜層が正孔輸送層及び/又は正孔注入層を含み、上記の芳香族アミン誘導体が正孔輸送層及び正孔注入層の少なくとも一層に含有される。正孔輸送層及び/又は正孔注入層は、芳香族アミン誘導体から実質的になる(芳香族アミン誘導体を主成分として含有する)ように構成してもよいし、芳香族アミン誘導体のみから構成してもよい。
 また、本発明の有機EL素子において、上記芳香族アミン誘導体を発光層に含有させて、燐光発光素子としてよい。
 このとき、発光層は上記芳香族アミン誘導体に加えて、後述する燐光性ドーパント(金属錯体)を含有すると好ましく、イリジウム錯体を含有するとより好ましい。
 有機EL素子の素子構成として、例えば下記の第1~3の実施形態が挙げられる。これら実施形態において、発光層は、複数の発光層の積層体であってもよい。また、陽極と発光層の間には正孔輸送帯域を設けることが好ましい。
<第1の実施形態>
 本実施形態の有機EL素子は、発光層を少なくとも1つ有する素子構成を有する。具体的な構成例を以下に示す。
 (1)陽極/発光層/電子注入・輸送層/陰極
 (2)陽極/正孔注入層/発光層/電子注入・輸送層/陰極
 (3)陽極/正孔注入層/正孔輸送層/発光層/電子注入・輸送層/陰極
<第2の実施形態>
 本実施形態の有機EL素子は、発光層(発光層を含むユニット)を少なくとも2つ有するタンデム素子構成を有する。
 2つの発光層の間に電荷発生層(CGLとも呼ぶ)を介在させ、ユニット毎に電子輸送帯域を設けることができる。
 タンデム素子構成の具体的な構成の例を以下に示す。
 (4)陽極/正孔注入・輸送層/蛍光発光層/電荷発生層/蛍光発光層/電子注入・輸送層/陰極
 (5)陽極/正孔注入・輸送層/蛍光発光層/電子注入・輸送層/電荷発生層/蛍光発光層/陰極
 (6)陽極/正孔注入・輸送層/蛍光発光層/電子注入・輸送層/電荷発生層/蛍光発光層/障壁層/陰極
 (7)陽極/正孔注入・輸送層/燐光発光層/電荷発生層/蛍光発光層/電子注入・輸送層/陰極
 (8)陽極/正孔注入・輸送層/蛍光発光層/電子注入・輸送層/電荷発生層/燐光発光層/陰極
<第3の実施形態>
 本実施形態の有機EL素子は、複数の発光層を備え、複数の発光層のいずれか2つの発光層の間に電荷障壁層を有する。
 第3の実施形態にかかる好適な有機EL素子の構成として、特許第4134280号公報、米国公開特許公報US2007/0273270A1、国際公開公報WO2008/023623A1に記載されているような、陽極、第1発光層、電荷障壁層、第2発光層及び陰極がこの順に積層された構成において、第2発光層と陰極の間に三重項励起子の拡散を防止するための障壁層を有する電子輸送帯域を有する構成が挙げられる。ここで電荷障壁層とは隣接する発光層との間でHOMO準位、LUMO準位のエネルギー障壁を設けることにより、発光層へのキャリア注入を調整し、発光層の注入される電子と正孔のキャリアバランスを調整する目的を有する層である。
 このような構成の具体的な例を以下に示す。
 (9)陽極/正孔注入・輸送層/第1発光層/電荷障壁層/第2発光層/電子注入・輸送層/陰極
 (10)陽極/正孔注入・輸送層/第1発光層/電荷障壁層/第2発光層/第3発光層/電子注入・輸送層/陰極
 また、本明細書中で「正孔注入・輸送層」は「正孔注入層及び正孔輸送層のうちの少なくともいずれか一方」を意味し、「電子注入・輸送層」は「電子注入層及び電子輸送層のうちの少なくともいずれか一方」を意味する。
 正孔注入層及び/又は正孔輸送層のうち陽極に接する層が、アクセプター材料を含有することが好ましい。
 このような構成によれば、後述の特許に記載された効果により低電圧駆動及び高効率発光が実現する。
 アクセプター材料としては、特許公報第3614405号、3571977号又は米国特許4,780,536に記載されているヘキサアザトリフェニレン誘導体等の他、p型Si、p型SiC等の無機化合物、酸化モリブデン等の電子受容性無機酸化物、TCNQ誘導体等の電子受容性有機化合物等も好適に使用することができる。
 アクセプター材料としては、下記一般式(10)又は(11)で表されるものが好ましく用いられる。
Figure JPOXMLDOC01-appb-C000027
 上記一般式(10)中、R~R12は、それぞれ独立にシアノ基、-CONH、カルボキシル基、もしくは-COOR13(R13は、炭素数1~20のアルキル基である。)を表すか、又は、R及びR、R及びR10、もしくはR11及びR12が、互いに結合して-CO-O-CO-で示される基を表す。
 上記アルキル基としては、直鎖、分岐又は環状のものが挙げられ、好ましくは炭素数1~12、より好ましくは炭素数1~8のものであり、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、n-ヘキシル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
Figure JPOXMLDOC01-appb-C000028
 上記式(11)中、Arは、環形成炭素数6~24の縮合環、又は環形成原子数6~24の複素環である。ar及びarは、それぞれ互いに同一でも異なっていてもよく、下記式(i)もしくは(ii)である。
Figure JPOXMLDOC01-appb-C000029
{式中、X11及びX12は互いに同一でも異なっていてもよく、下記式(a)~(g)で表わされる二価の基のいずれかである。
Figure JPOXMLDOC01-appb-C000030
 式中、R61~R64は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数3~50の複素環基であり、R62とR63は互いに結合して環を形成してもよい。
 一般式(11)中のR51~R54は、それぞれ互いに同一でも異なっていてもよく、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数3~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリールオキシ基、又はシアノ基である。R51~R54のうち互いに隣接するものは互いに結合して環を形成してもよい。Y~Yは互いに同一でも異なっていてもよく、-N=、-CH=、又はC(R55)=であり、R55は、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数6~50のアリール基、置換もしくは無置換の環形成原子数3~50の複素環基、ハロゲン原子、置換もしくは無置換の炭素数1~20のフルオロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のフルオロアルコキシ基、置換もしくは無置換の炭素数6~50の炭素数6~50のアリールオキシ基、又はシアノ基である。
 また本発明の有機EL素子は好ましくは、有機薄膜層の少なくとも一層、好ましくは発光層に、下記式(5-1)で表されるアントラセン誘導体又は下記式(5-2)で表されるピレン誘導体の少なくとも1種を含有する。好ましくは、発光層が、下記式(5-1)で表されるアントラセン誘導体又は下記式(5-2)で表されるピレン誘導体をホストとして含有する。
(アントラセン誘導体)
 式(5-1)で表されるアントラセン誘導体は、下記化合物である。
Figure JPOXMLDOC01-appb-C000031
 式(5-1)中、Ar101及びAr102は、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基、置換若しくは無置換の環形成原子数8~50の縮合環基、又は単環基と縮合環基との組合せから構成される基であり、R101~R108は、それぞれ独立に、水素原子、置換若しくは無置換の環形成原子数5~50の単環基、置換若しくは無置換の環形成原子数8~50の縮合環基、単環基と縮合環基との組合せから構成される基、置換若しくは無置換の炭素数1~50のアルキル基、置換若しくは無置換の環形成炭素数3~50のシクロアルキル基、置換若しくは無置換の炭素数1~50のアルコキシ基、置換若しくは無置換の炭素数7~50のアラルキル基、置換若しくは無置換の環形成炭素数6~50のアリールオキシ基、置換若しくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。
 式(5-1)における、単環基とは、縮合構造を有さない環構造のみで構成される基である。
 環形成原子数5~50の単環基(好ましくは環形成原子数5~30、より好ましくは環形成原子数5~20)として具体的には、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基等の芳香族基と、ピリジル基、ピラジル基、ピリミジル基、トリアジニル基、フリル基、チエニル基等の複素環基が好ましい。
 中でも、フェニル基、ビフェニル基、ターフェニル基が好ましい。
 式(5-1)における、縮合環基とは、2環以上の環構造が縮環した基である。
 前記環形成原子数8~50の縮合環基(好ましくは環形成原子数8~30、より好ましくは環形成原子数8~20)として具体的には、ナフチル基、フェナントリル基、アントリル基、クリセニル基、ベンゾアントリル基、ベンゾフェナントリル基、トリフェニレニル基、ベンゾクリセニル基、インデニル基、フルオレニル基、9,9-ジメチルフルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ベンゾフルオランテニル基等の縮合芳香族環基や、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、キノリル基、フェナントロリニル基等の縮合複素環基が好ましい。
 中でも、ナフチル基、フェナントリル基、アントリル基、9,9-ジメチルフルオレニル基、フルオランテニル基、ベンゾアントリル基、ジベンゾチオフェニル基、ジベンゾフラニル基、カルバゾリル基が好ましい。
 式(5-1)における、アルキル基、シリル基、シクロアルキル基、ハロゲン原子の具体例は、上述の式(1)、(2)、(6)~(9)におけるR、R、L、L、L11~L19、Ar~Ar24で示される各基及びこれらの置換基の具体例と同様である。
 アルコキシ基は、-OYと表され、Yの例として上記のアルキルの例が挙げられる。アルコキシ基は、例えばメトキシ基、エトキシ基である。
 アリールオキシ基は、-OZと表され、Zの例として上記のアリール基又は、後述する単環基及び縮合環基の例が挙げられる。アリールオキシ基は、例えばフェノキシ基である。
 アラルキル基は、-Y-Zと表され、Yの例として上記のアルキルの例に対応するアルキレンの例が挙げられ、Zの例として上記のアリールの例が挙げられる。アラルキル基は、炭素数7~50のアラルキル基(アリール部分は炭素数6~49(好ましくは6~30、より好ましくは6~20、特に好ましくは6~12)、アルキル部分は炭素数1~44(好ましくは1~30、より好ましくは1~20、さらに好ましくは1~10、特に好ましくは1~6))であることが好ましく、例えばベンジル基、フェニルエチル基、2-フェニルプロパン-2-イル基である。
 以下に、式(5-1)における好ましい具体例のみを挙げる。
 Ar101、Ar102、R101~R108の「置換若しくは無置換」の好ましい置換基として、単環基、縮合環基、アルキル基、シクロアルキル基、シリル基、アルコキシ基、シアノ基、ハロゲン原子(特にフッ素)が好ましく、特に好ましくは、単環基、縮合環基であり、好ましい具体例は上述の式(5-1)及び式(1),(2),(6)~(9)について記載した通りである。
 式(5-1)で表されるアントラセン誘導体は、下記アントラセン誘導体(A)、(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。
(アントラセン誘導体(A))
 当該アントラセン誘導体は、式(5-1)におけるAr101及びAr102が、それぞれ独立に、置換若しくは無置換の環形成原子数8~50の縮合環基である。当該アントラセン誘導体としては、Ar101及びAr102が同一の置換若しくは無置換の縮合環基である場合、及び異なる置換若しくは無置換の縮合環基である場合に分けることができる。
 式(5-1)におけるAr101及びAr102が異なる(置換位置の違いを含む)置換若しくは無置換の縮合環基であるアントラセン誘導体が特に好ましく、縮合環の好ましい具体例は上述した通りである。中でもナフチル基、フェナントリル基、ベンズアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基が好ましい。
(アントラセン誘導体(B))
 当該アントラセン誘導体は、式(5-1)におけるAr101及びAr102の一方が置換若しくは無置換の環形成原子数5~50の単環基であり、他方が置換若しくは無置換の環形成原子数8~50の縮合環基である。
 好ましい形態として、Ar102がナフチル基、フェナントリル基、ベンゾアントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基であり、Ar101が単環基又は縮合環基が置換されたフェニル基である。
 好ましい単環基、縮合環基の具体的な基は上述した通りである。
 別の好ましい形態として、Ar102が縮合環基であり、Ar101が無置換のフェニル基である。この場合、縮合環基として、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基が特に好ましい。
(アントラセン誘導体(C))
 当該アントラセン誘導体は、式(5-1)におけるAr101及びAr102が、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基である。
 好ましい形態として、Ar101、Ar102ともに置換若しくは無置換のフェニル基である。
 さらに好ましい形態として、Ar101が無置換のフェニル基であり、Ar102が単環基、縮合環基を置換基として有するフェニル基である場合と、Ar101、Ar102がそれぞれ独立に単環基、縮合環基を置換基として有するフェニル基である場合がある。
 前記置換基としての好ましい単環基、縮合環基の具体例は上述した通りである。さらに好ましくは、置換基としての単環基としてフェニル基、ビフェニル基、縮合環基として、ナフチル基、フェナントリル基、9,9-ジメチルフルオレニル基、ジベンゾフラニル基、ベンゾアントリル基である。
 下記式(5-2)で表されるピレン誘導体は以下の化合物である。
Figure JPOXMLDOC01-appb-C000032
 式(5-2)中、Ar111及びAr222は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30のアリール基である。
 L21及びL22は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~30の2価のアリール基又は複素環基を示す。
 mは0~1の整数、nは1~4の整数、sは0~1の整数、tは0~3の整数である。
 また、L21又はAr111はピレンの1~5位のいずれかに結合し、L22又はAr222はピレンの6~10位のいずれかに結合する。
 一般式(5-2)におけるL21及びL22は、好ましくは置換もしくは無置換のフェニレン基、置換もしくは無置換のビフェニレン基、置換もしくは無置換のナフチレン基、置換もしくは無置換のターフェニレン基及び置換もしくは無置換のフルオレニレン基及びこれら置換基の組合せからなる2価のアリール基である。
 また、この置換基としては、上記の「置換もしくは無置換の・・・」における置換基と同様である。L21及びL22の置換基は、好ましくは、炭素数1~20のアルキル基である。
 一般式(5-2)におけるmは、好ましくは0~1の整数である。一般式(5-2)におけるnは、好ましくは1~2の整数である。一般式(5-2)におけるsは、好ましくは0~1の整数である。一般式(5-2)におけるtは、好ましくは0~2の整数である。
 Ar111及びAr222のアリール基は、上記の各基と同様である。
 好ましくは、置換もしくは無置換の環形成炭素数6~20のアリール基、より好ましくは、置換もしくは無置換の環形成炭素数6~16のアリール基、アリール基の好ましい具体例としては、フェニル基、ナフチル基、フェナントリル基、フルオレニル基、ビフェニル基、アントリル基、ピレニル基である。
 発光層は、発光材料の他に、発光性ドーパント(燐光性ドーパント及び/又は蛍光性ドーパント)を含有してもよい。
 蛍光性ドーパントは一重項励起子から発光することのできる化合物である。蛍光性ドーパントとしては、アミン系化合物、芳香族化合物、トリス(8-キノリノラト)アルミニウム錯体等のキレート錯体、クマリン誘導体、テトラフェニルブタジエン誘導体、ビススチリルアリーレン誘導体、オキサジアゾール誘導体等から、要求される発光色に合わせて選ばれる化合物であることが好ましく、スチリルアミン化合物、スチリルジアミン化合物、アリールアミン化合物、アリールジアミン化合物がより好ましく、縮合多環アミン誘導体がさらに好ましい。これらの蛍光性ドーパントは単独でもまた複数組み合わせて使用してもよい。
 縮合多環アミン誘導体としては、下記式(12)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(12)中、Yは環形成炭素数10~50の置換もしくは無置換の縮合アリール基を示す。
 Ar201、Ar202は、それぞれ置換もしくは無置換の環形成炭素数6~50のアリール基、又は置換もしくは無置換の環形成原子数5~50の複素環基を示す。
 縮合アリール基とは、上記アリール基の中で2環以上の環構造が縮環した基である。
 縮合アリール基としては、環形成炭素数10~50(好ましくは環形成炭素数10~30、より好ましくは環形成炭素数10~20)の縮合アリール基であり、上記アリール基の具体例中、好ましくは、ナフチル基、アントリル基、ピレニル基、フェナントリル基、フルオレニル基、フルオランテニル基、ナフタセニル基等が挙げられる。
 Yの具体例としては、上記の縮合アリール基が挙げられ、好ましくは置換もしくは無置換のアントリル基、置換もしくは無置換のピレニル基、置換もしくは無置換のクリセニル基である。
 Ar201、Ar202の好ましい例としては、置換もしくは無置換のフェニル基、置換もしくは無置換のジベンゾフラニル基等である。Ar201、Ar202の置換基の好ましい例としては、アルキル基、シアノ基、置換もしくは無置換のシリル基である。
 nは1~4の整数である。nは1~2の整数であることが好ましい。
 スチリルアミン化合物及びスチリルジアミン化合物としては、下記式(17)及び(18)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(17)中、Ar301はk価の基であり、フェニル基、ナフチル基、ビフェニル基、ターフェニル基、スチルベン基、スチリルアリール基、ジスチリルアリール基に対応するk価の基であり、Ar302及びAr303はそれぞれ環形成炭素数が6~20のアリール基であり、Ar301、Ar302及びAr303は置換されていてもよい。
 kは1~4の整数であり、そのなかでもkは1~2の整数であるのが好ましい。Ar301~Ar303のいずれか一つはスチリル基を含有する基である。さらに好ましくはAr302又はAr303の少なくとも一方はスチリル基で置換されている。
 ここで、環形成炭素数が6~20のアリール基としては、具体的には上述したアリール基が挙げられ、好ましくはフェニル基、ナフチル基、アントラニル基、フェナンスリル基、ターフェニル基等が挙げられる。
 式(18)中、Ar304~Ar306は、v価の置換もしくは無置換の環形成炭素数6~40のアリール基である。vは1~4の整数であり、そのなかでもvは1~2の整数であるのが好ましい。
 ここで、式(18)中の環形成炭素数が6~40のアリール基としては、具体的には上述したアリール基が挙げられ、ナフチル基、アントラニル基、クリセニル基又はピレニル基で示されるアリール基が好ましい。
 尚、前記アリール基に置換する好ましい置換基としては、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、環形成炭素数6~40のアリール基、環形成炭素数6~40のアリール基で置換されたアミノ基、環形成炭素数5~40のアリール基を有するエステル基、炭素数1~6のアルキル基を有するエステル基、シアノ基、ニトロ基、ハロゲン原子等が挙げられる。
 燐光性ドーパントは、常温において最低励起三重項状態から光学的エネルギー失活をすることのできる化合物である。
 前記燐光性ドーパントは、金属錯体を含有し、前記金属錯体は、Ir,Pt,Os,Au,Cu,Re及びRuから選択される金属原子と、配位子と、を有することが好ましい。特に、前記配位子は、オルトメタル結合を有することが好ましい。
 燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する化合物であると好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体であるとさらに好ましく、中でもイリジウム錯体及び白金錯体がより好ましく、オルトメタル化イリジウム錯体が最も好ましい。
 好ましい金属錯体の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 電子注入・輸送材料としては、電子を輸送する能力を有し、陰極からの電子注入効果、発光層又は発光材料に対して優れた電子注入効果を有し、かつ薄膜形成能力の優れた化合物が好ましい。
 本発明の有機EL素子において、さらに効果的な電子注入材料は、金属錯体化合物及び含窒素複素環誘導体である。
 前記金属錯体化合物としては、例えば、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛等が挙げられるが、これらに限定されるものではない。
 前記含窒素複素環誘導体としては、例えば、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール、ピリジン、ピリミジン、トリアジン、フェナントロリン、ベンズイミダゾール、イミダゾピリジン等が好ましく、中でもベンズイミダゾール誘導体、フェナントロリン誘導体、イミダゾピリジン誘導体が好ましい。
 好ましい形態として、これらの電子注入材料にさらにドーパントを含有し、陰極からの電子の受け取りを容易にするため、より好ましくは第2有機層の陰極界面近傍にアルカリ金属で代表されるドーパントをドープする。
 ドーパントとしては、ドナー性金属、ドナー性金属化合物及びドナー性金属錯体が挙げられ、これら還元性ドーパントは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 上記の他、有機EL素子の基板、陽極、陰極等の部材は、WO2009/107596A1、WO2009/081857A1、US2009/0243473A1、US2008/0014464A1、US2009/0021160A1等に記載の公知のものを適宜選択して用いることができる。
 合成例1~14において製造した中間体の構造は以下の通りである。
Figure JPOXMLDOC01-appb-C000039
合成例1(中間体1の合成)
 4-ブロモベンズアルデヒド(25g,135mmol)、アセトフェノン(16.2g,135mmol)をエタノール(200mL)に加え、さらに3M水酸化カリウム水溶液(60mL)を加えて室温で7時間攪拌した。析出した固体をろ過、メタノールで洗浄し、白色固体(28.3g、収率73%)を得た。FD-MS(フィールドディソープションマススペクトル)の分析により、中間体1と同定した。
合成例2(中間体2の合成)
 中間体1(20g,69.7mmol)、ベンズアミジン塩酸塩(10.8g,69.7mmol)をエタノール(300mL)に加え、さらに水酸化ナトリウム(5.6g,140mmol)を加えて8時間加熱還流した。析出した固体をろ過し、ヘキサンで洗浄し、白色固体(10.3g、収率38%)を得た。FD-MSの分析により、中間体2と同定した。
合成例3(中間体3の合成)
 合成例1において、アセトフェノンの代わりに1-アセチルナフタレンを23.0g用いた以外は同様に反応を行ったところ、34.1g(収率75%)の白色粉末を得た。FD-MSの分析により、中間体3と同定した。
合成例4(中間体4の合成)
 合成例2において、中間体1の代わりに中間体3を23.5g用いた以外は同様に反応を行ったところ、10.7g(収率35%)の白色粉末を得た。FD-MSの分析により、中間体4と同定した。
合成例5(中間体5の合成)
 合成例1において、アセトフェノンの代わりに2-アセチル-9,9-ジメチルフルオレンを31.9g用いた以外は同様に反応を行ったところ、39.2g(収率72%)の白色粉末を得た。FD-MSの分析により、中間体5と同定した。
合成例6(中間体6の合成)
 合成例2において、中間体1の代わりに中間体5を28.2g用いた以外は同様に反応を行ったところ、14.4g(収率41%)の白色粉末を得た。FD-MSの分析により、中間体6と同定した。
合成例7(中間体7の合成)
 アルゴン気流下、300mLの三つ口フラスコにN-フェニル-1-ナフチルアミンを11.1g、4-ヨードブロモベンゼンを15.6g、ヨウ化銅(I)1.9g、N,N’-ジメチルエチレンジアミン2.0g、t-ブトキシナトリウム8.6g及び脱水トルエン100mLを入れ、110℃にて8時間反応した。反応終了後、トルエンで抽出し、硫酸マグネシウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製した。トルエンで再結晶し、それを濾取した後、乾燥したところ、16.8gの白色粉末を得た。
 アルゴン気流下、300mLの三つ口フラスコに上記白色粉末16.8g、脱水キシレン100mLを加え、-30℃に冷却した。n-ブチルリチウム(1.6Mヘキサン溶液)を30mL入れ1時間反応した。-70℃に冷却した後、ホウ酸トリイソプロピルを28mL入れた。ゆっくり昇温し、室温で1時間撹拌した。10%塩酸溶液32mLを加え撹拌した。酢酸エチルと水で抽出し、有機層を水で洗浄した。無水硫酸ナトリウムで乾燥し、溶媒を留去した。ヘキサンで洗浄することにより白色粉末を7.5g得た。
合成例8(中間体8の合成)
 合成例7において、N-フェニル-1-ナフチルアミンの代わりにジフェニルアミンを8.6g用いた以外は同様に反応を行ったところ、6.6gの白色粉末を得た。
合成例9(中間体9の合成)
 合成例7において、N-フェニル-1-ナフチルアミンの代わりにN,N-ビスビフェニルアミンを16.3g用いた以外は同様に反応を行ったところ、10.0gの白色粉末を得た。
合成例10(中間体10の合成)
 アルゴン雰囲気下、1-アセトアミド18.5g、中間体2を38.7g、炭酸カリウム54.4g、銅粉1.3g、及びデカリン200mLを仕込み、190℃にて4日間反応した。反応後冷却し、トルエン200mLを添加し、不溶分を濾取した。濾取物をクロロホルム450mLに溶解し、不溶分を除去後、活性炭処理し、濃縮した。これにアセトン300mLを加え、結晶を析出させた。これを濾取し、17.5gの白色結晶を得た。FD-MSの分析により、中間体10と同定した。
合成例11(中間体11の合成)
 300mLの三つ口フラスコに、中間体10を17.5g、エチレングリコール500mL、水5mLに懸濁し、85%水酸化カリウム水溶液21gを添加後、120℃で8時間反応した。反応終了後、水1L中に反応液を注加し、析出晶を濾取し、水、メタノールで洗浄した。得られた結晶をテトラヒドロフラン300mLに加熱溶解し、活性炭処理後濃縮し、アセトンを加えて結晶を析出させた。これを濾取し、14.5gの白色粉末を得た。FD-MSの分析により、中間体11と同定した。
合成例12(中間体12の合成)
 アルゴン気流下、1000mLの三つ口フラスコに4-ブロモビフェニルを47g、ヨウ素を23g、過ヨウ素酸2水和物を9.4g、水を42mL、酢酸を360mL、硫酸を11mL入れ65℃で30分撹拌後、90℃で6時間反応した。反応物を氷水に注入し、ろ過した。水で洗浄後、メタノールで洗浄することにより67gの白色粉末を得た。FD-MSの分析により、中間体12と同定した。
合成例13(中間体13の合成)
 アルゴン気流下、ジフェニルアミンを5.1g、中間体12を10.8g、t-ブトキシナトリウム3g(広島和光社製)、ビス(トリフェニルホスフィン)塩化パラジウム(II)0.5g(東京化成社製)及びキシレン500mLを入れ、130℃にて24時間反応した。
 冷却後、水1000mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、3.4gの淡黄色粉末を得た。FD-MSの分析により、中間体13と同定した。
合成例14(中間体14の合成)
 アルゴン気流下、300mLの三つ口フラスコにジフェニルアミンを25.8g、4-ヨードブロモベンゼンを46.8g、ヨウ化銅(I)5.7g、N,N’-ジメチルエチレンジアミン6.0g、t-ブトキシナトリウム25.8g及び脱水トルエン300mLを入れ、110℃にて8時間反応した。反応終了後、トルエンで抽出し、硫酸マグネシウムで乾燥した。これを減圧下で濃縮し、得られた粗生成物をカラム精製した。トルエンで再結晶し、それを濾取した後、乾燥したところ、43.8gの白色粉末を得た。
 アルゴン雰囲気下、上記白色固体を32.4g、1-アセトアミド18.5g、炭酸カリウム54.4g、銅粉1.3g及びデカリン200mLを仕込み、190℃にて4日間反応した。反応後冷却し、トルエン200mLを添加し、不溶分を濾取した。濾取物をクロロホルム450mLに溶解し、不溶分を除去後、活性炭処理し、濃縮した。これにアセトン300mLを加え、析出晶を17.5g濾取した。
 これに4,4’-ジヨードビフェニル12g、炭酸カリウム16.3g、銅粉0.4g及びデカリン60mLを仕込み、190℃にて4日間反応した。
反応後冷却し、トルエン60mLを添加し、不溶分を濾取した。濾取物をクロロホルム140mLに溶解し、不溶分を除去後、活性炭処理し、濃縮した。これにアセトン100mLを加え、析出晶を38.2g濾取した。
 これをエチレングリコール150mL、水1.5mLに懸濁し、85%水酸化カリウム水溶液4.4gを添加後、120℃で8時間反応した。反応後、水1L中に反応液を注加し、析出晶を濾取し、水、メタノールで洗浄した。得られた結晶をテトラヒドロフラン100mLに加熱溶解し、活性炭処理後濃縮し、アセトンを加えて結晶を析出させた。これを濾取し、13gの白色粉末を得た。FD-MSの分析により、中間体14と同定した。
 実施例1~10において製造した本発明の芳香族アミン誘導体の構造は以下の通りである。
Figure JPOXMLDOC01-appb-C000040
実施例1(芳香族アミン誘導体(H1)の製造)
 アルゴン雰囲気下、中間体8(2.9g、10.0mmol)、中間体2(3.9g、10.0mmol)、Pd(PPh(0.21g,0.2mmol)、トルエン(30mL)、2M炭酸ナトリウム水溶液(15mL)を加えて80℃で7時間攪拌した。反応液に水を加えて固体を析出させ、固体をメタノールで洗浄した。得られた固体を濾過、熱トルエンで洗浄し、乾燥したところ、3.8gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H1)と同定した。
実施例2(芳香族アミン誘導体(H2)の製造)
 実施例1において、中間体8の代わりに中間体7を3.4g用いた以外は同様に反応を行ったところ、4.3gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H2)と同定した。
実施例3(芳香族アミン誘導体(H3)の製造)
 実施例1において、中間体8の代わりに中間体9を4.4g用いた以外は同様に反応を行ったところ、4.8gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H3)と同定した。
実施例4(芳香族アミン誘導体(H4)の製造)
 アルゴン雰囲気下、ジ-4-ビフェニリルアミンを3.2g、中間体2を3.9g、t-ブトキシナトリウム1.3g、トリス(ジベンジリデンアセトン)ジパラジウム46mg、トリ-t-ブチルホスフィン21mg及び脱水トルエン50mLを入れ、80℃にて2時間反応させた。
 冷却後、水500mLを加え、混合物をセライト濾過し、濾液をトルエンで抽出し、無水硫酸マグネシウムで乾燥させた。これを減圧下で濃縮し、得られた粗生成物をカラム精製し、トルエンで再結晶し、それを濾取した後、乾燥したところ、4.2gの淡黄色粉末を得た。FD-MSの分析により、該淡黄色粉末を芳香族アミン誘導体(H4)と同定した。
実施例5(芳香族アミン誘導体(H5)の製造)
 実施例1において、中間体2の代わりに中間体4を4.4g用いた以外は同様に反応を行ったところ、4.0gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H5)と同定した。
実施例6(芳香族アミン誘導体(H6)の製造)
 実施例1において、中間体2の代わりに中間体6を5.0g用いた以外は同様に反応を行ったところ、4.3gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H6)と同定した。
実施例7(芳香族アミン誘導体(H7)の製造)
 実施例1において、中間体2の代わりに中間体6を5.0g用い、中間体8の代わりに中間体7を3.4g用いた以外は同様に反応を行ったところ、4.6gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H7)と同定した。
実施例8(芳香族アミン誘導体(H8)の製造)
 実施例4において、中間体2を7.7g用い、ジ-4-ビフェニリルアミンの代わりにN,N’-ジフェニルベンジジンを3.4g用いた以外は同様に反応を行ったところ、6.2gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H8)と同定した。
実施例9(芳香族アミン誘導体(H9)の製造)
 実施例4において、中間体2の代わりに中間体13を8.0g用い、ジ-4-ビフェニリルアミンの代わりに中間体11を3.2g用いた以外は同様に反応を行ったところ、6.0gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H9)と同定した。
実施例10(芳香族アミン誘導体(H10)の製造)
 実施例4において、中間体2を7.7g用い、ジ-4-ビフェニリルアミンの代わりに中間体14を6.7g用いた以外は同様に反応を行ったところ、7.2gの淡黄色粉末を得た。FD-MSの分析により、前記淡黄色粉末を芳香族アミン誘導体(H8)と同定した。
実施例1-1(有機EL素子の製造)
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記電子受容性化合物(C-1)を蒸着し、膜厚10nmのC-1膜を成膜した。このC-1膜上に、正孔輸送材料として前記実施例1で得た芳香族アミン誘導体(H1)を蒸着し、膜厚70nmの正孔輸送層を成膜した。さらに下記化合物(EM1)を蒸着し、膜厚40nmの発光層を成膜した。同時に発光分子として、下記のスチリルアミン誘導体(D1)を、EM1とD1の重量比(EM1:D1)が40:2になるように蒸着した。
 この膜上に、下記有機金属錯体(Alq)を膜厚10nmとなるよう成膜した。この層は、電子注入層として機能する。この後、還元性ドーパントであるLi(Li源:サエスゲッター社製)とAlqを二元蒸着させ、電子注入層(陰極)としてAlq:Li膜(膜厚10nm)を形成した。このAlq:Li膜上に金属Alを蒸着させ金属陰極を形成し有機EL素子を形成した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000041
実施例1-2(有機EL素子の製造)
 実施例1-1において、スチリルアミン誘導体(D1)の代わりに下記アリールアミン誘導体(D2)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000042
実施例1-3(有機EL素子の製造)
 実施例1-1において、電子輸送材料として有機金属錯体(Alq)の代わりに下記ベンゾイミダゾール誘導体(ET1)を用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000043
比較例1-1~1-3
 実施例1-1において、正孔輸送材料として芳香族アミン誘導体(H1)の代わりに表1に示す様に下記比較化合物1~3のいずれかを用いた以外は同様にして有機EL素子を作製した。
 得られた有機EL素子の発光色を観察し、さらに、初期輝度5000cd/m、室温及びDC定電流駆動での発光効率、駆動電圧及び発光の半減寿命を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の芳香族アミン誘導体を用いた有機EL素子は、公知の芳香族アミン誘導体を用いた有機EL素子に比べ、低駆動電圧で高発光効率を得ることができ、さらに素子寿命が延びていることがわかる。
実施例2-1(有機EL素子の製造)
 25mm×75mm×厚さ1.1mmのITO透明電極付きガラス基板(ジオマティック株式会社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして下記電子受容性化合物(C-1)を蒸着し、膜厚5nmのC-1膜を成膜した。このC-1膜上に、第1正孔輸送材料として下記芳香族アミン誘導体(X1)を蒸着し、膜厚50nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として下記芳香族アミン誘導体(X2)を蒸着し、膜厚60nmの第2正孔輸送層を成膜した。
 さらに、この第2正孔輸送層上に、前記実施例1で得た芳香族アミン誘導体(H1)を蒸着し、膜厚45nmの発光層を成膜した。同時に燐光発光材料として下記化合物(D3)を共蒸着した。化合物D3の濃度は8.0質量%であった。この共蒸着膜は発光層として機能する。
 そして、この発光層成膜に続けて下記化合物(ET2)を膜厚30nmで成膜した。このET1膜は電子輸送層として機能する。
 次に、LiFを電子注入性電極(陰極)として成膜速度0.1オングストレーム/minで膜厚を1nmとした。このLiF膜上に金属Alを蒸着させ、金属陰極を膜厚80nmで形成し有機EL素子を作製した。
 得られた有機EL素子の初期輝度2000cd/m、室温及びDC定電流駆動での発光効率を測定した結果を表2に示す。さらに初期輝度5000cd/m、室温及びDC定電流駆動での発光の半減寿命を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-C000045
実施例2-2~2-4(有機EL素子の製造)
 実施例2-1において、発光層材料として芳香族アミン誘導体(H1)の代わりに、芳香族アミン誘導体(H2~H4)を用いた以外は、実施例2-1と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m、室温及びDC定電流駆動での発光効率を測定した結果を表2に示す。さらに初期輝度5000cd/m、室温及びDC定電流駆動での発光の半減寿命を測定した結果を表2に示す。
比較例2-1、2-2(有機EL素子の製造)
 実施例2-1において、発光層材料として芳香族アミン誘導体(H1)の代わりに、上記比較化合物1及び比較化合物2を用いた以外は、実施例2-1と同様にして有機EL素子を作製した。得られた有機EL素子の初期輝度2000cd/m、室温及びDC定電流駆動での発光効率を測定した結果を表2に示す。さらに初期輝度5000cd/m、室温及びDC定電流駆動での発光の半減寿命を測定した結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明の芳香族アミン誘導体を発光層に用いた有機EL素子は、比較化合物に比べ、高い発光効率が得られ、長寿命化することがわかる。
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (15)

  1.  下記式(1)で表される芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000046
    [Ar~Arのうち少なくとも1つは下記式(2)で表される。
    Figure JPOXMLDOC01-appb-C000047
    (X~Xはそれぞれ独立に、窒素原子又はCRを示す。但し、X~Xのうち2つが窒素原子であり、X及びXが同時に窒素原子になることはない。
     Rは、炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~50のアリール基、環形成原子数5~50のヘテロアリール基、ハロゲン原子又はシアノ基である。
     Rは、水素原子、又はRで表わされる基である。
     aは1~2の整数である。nは0~3の整数である。
     Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
     Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
     Ar~Arのうち式(2)でない基は、それぞれ独立に置換もしくは無置換の環形成炭素数6~50のアリール基である。
     L、L、及びAr~Arのうち式(2)でない基が置換される場合の置換基は、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、環形成原子数5~20のヘテロアリール基、ハロゲン原子又はシアノ基である。
     Ar~Arのうち2つ以上が式(2)である場合、複数の式(2)は同じでも異なってもよい。
     aが2のとき複数のRは同じでも異なってもよい。
     nが2以上のとき複数のLは同じでも異なってもよい。)]
  2.  前記Lが、置換もしくは無置換のフェニレン基、ビフェニレン基、フルオレニレン基のいずれかである請求項1に記載の芳香族アミン誘導体。
  3.  前記Ar~Arのうち式(2)でない基が、それぞれ独立に、フェニル基、ナフチル基、ビフェニル基、ターフェニル基又は9,9-ジメチルフルオレニル基のいずれかである請求項1又は2に記載の芳香族アミン誘導体。
  4.  下記式(6)~(9)のいずれかで表される芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000048
    [Ar~Arのうち少なくとも1つは下記式(2)で表される。
     Ar~Ar12のうち少なくとも1つは下記式(2)で表される。
     Ar13~Ar18のうち少なくとも1つは下記式(2)で表される。
     Ar19~Ar24のうち少なくとも1つは下記式(2)で表される。
    Figure JPOXMLDOC01-appb-C000049
    (X~Xはそれぞれ独立に、窒素原子又はCRを示す。但し、X~Xのうち2つが窒素原子であり、X及びXが同時に窒素原子になることはない。
     Rは、炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~50のアリール基、環形成原子数5~50のヘテロアリール基、ハロゲン原子又はシアノ基である。
     Rは、水素原子、又はRで表わされる基である。
     aは1~2の整数である。nは0~3の整数である。
     Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
     Lは、置換もしくは無置換の環形成炭素数6~50のアリーレン基、置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
     L、Lの置換基は、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、ハロゲン原子又はシアノ基である。
     Ar~Ar24のうち式(2)でない基は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基である。
     L11~L19は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリーレン基である。
     Ar~Ar24のうち式(2)でない基及びL11~L19が置換される場合の置換基はそれぞれ独立に、それぞれ独立に炭素数1~10の直鎖もしくは分岐のアルキル基、環形成炭素数3~10のシクロアルキル基、置換もしくは無置換のシリル基、環形成炭素数6~14のアリール基、環形成原子数5~20のヘテロアリール基、ハロゲン原子又はシアノ基である。
     Ar~Ar、Ar~Ar12、Ar13~Ar18、Ar19~Ar24のそれぞれのうち2つ以上が式(2)である場合、複数の式(2)は同じでも異なってもよい。
     aが2のとき複数のRは同じでも異なってもよい。
     nが2以上のとき複数のLは同じでも異なってもよい。)]
  5.  前記L11~L19がそれぞれ独立に置換もしくは無置換のフェニレン基、ビフェニレン基、フルオレニレン基のいずれかである請求項4に記載の芳香族アミン誘導体。
  6.  前記Ar~Ar24のうち式(2)でない基が、それぞれ独立に、フェニル基、ナフチル基、ビフェニル基、ターフェニル基又は9,9-ジメチルフルオレニル基のいずれかである請求項4又は5に記載の芳香族アミン誘導体。
  7.  有機エレクトロルミネッセンス素子用材料である請求項1~6のいずれかに記載の芳香族アミン誘導体。
  8.  有機エレクトロルミネッセンス素子用正孔輸送材料である請求項1~6のいずれかに記載の芳香族アミン誘導体。
  9.  有機エレクトロルミネッセンス素子用燐光ホスト材料である請求項1~6のいずれかに記載の芳香族アミン誘導体。
  10.  陰極と陽極間に発光層を含む1以上の層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、前記有機薄膜層の少なくとも1層が、請求項1~6のいずれかに記載の芳香族アミン誘導体を含有する有機エレクトロルミネッセンス素子。
  11.  前記有機薄膜層のうち少なくとも1つの層が正孔輸送層及び/又は正孔注入層であり、前記芳香族アミン誘導体が前記正孔輸送層及び/又は正孔注入層の少なくとも1層に含有されている請求項10に記載の有機エレクトロルミネッセンス素子。
  12.  前記芳香族アミン誘導体が主成分として正孔輸送層及び/又は正孔注入層の少なくとも1層に含有されている請求項11に記載の有機エレクトロルミネッセンス素子。
  13.  前記正孔注入層及び/又は正孔輸送層のうち陽極に接する層が、アクセプター材料を含有する請求項11又は12に記載の有機エレクトロルミネッセンス素子。
  14.  前記芳香族アミン誘導体及び金属錯体が前記発光層に含有され、前記発光層は燐光を発光する請求項10~13のいずれかに記載の有機エレクトロルミネッセンス素子。
  15.  前記金属錯体がイリジウム錯体である請求項14に記載の有機エレクトロルミネッセンス素子。
PCT/JP2011/003721 2010-06-30 2011-06-29 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2012001969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011548441A JPWO2012001969A1 (ja) 2010-06-30 2011-06-29 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
CN201180002653.8A CN102510858A (zh) 2010-06-30 2011-06-29 芳香族胺衍生物及使用该衍生物的有机电致发光元件
EP11800439.9A EP2589596A4 (en) 2010-06-30 2011-06-29 AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT THEREWITH

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010150091 2010-06-30
JP2010-150091 2010-06-30
US12/923,008 US8586206B2 (en) 2010-06-30 2010-08-27 Aromatic amine derivative and organic electroluminescence device using the same
US12/923,008 2010-08-27

Publications (1)

Publication Number Publication Date
WO2012001969A1 true WO2012001969A1 (ja) 2012-01-05

Family

ID=45399013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/003721 WO2012001969A1 (ja) 2010-06-30 2011-06-29 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (2) US8586206B2 (ja)
EP (1) EP2589596A4 (ja)
JP (1) JPWO2012001969A1 (ja)
KR (1) KR20120096876A (ja)
CN (1) CN102510858A (ja)
TW (1) TW201209042A (ja)
WO (1) WO2012001969A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150092145A (ko) 2012-12-07 2015-08-12 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 유기 전계발광소자
WO2016009823A1 (ja) * 2014-07-16 2016-01-21 東レ株式会社 モノアミン誘導体、それを用いた発光素子材料および発光素子
JP2018088521A (ja) * 2016-11-17 2018-06-07 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
US10128454B2 (en) 2016-10-26 2018-11-13 Japan Display Inc. Display device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012108878A1 (en) * 2011-02-11 2012-08-16 Universal Display Corporation Organic light emitting device and materials for use in same
CN107556298B (zh) 2011-11-22 2021-12-21 出光兴产株式会社 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件
JP6307687B2 (ja) * 2012-12-05 2018-04-11 三星ディスプレイ株式會社Samsung Display Co.,Ltd. アミン誘導体、有機発光材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6634028B2 (ja) * 2014-12-24 2020-01-22 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
US10164194B2 (en) * 2015-01-26 2018-12-25 Luminescence Technology Corporation Compound for organic electroluminescent device
WO2016125706A1 (ja) * 2015-02-03 2016-08-11 保土谷化学工業株式会社 有機エレクトロルミネッセンス素子
TWI582081B (zh) * 2016-03-25 2017-05-11 昱鐳光電科技股份有限公司 用於有機電激發光元件之化合物及使用該化合物之有機電激發光元件
KR102635062B1 (ko) * 2016-09-30 2024-02-07 엘지디스플레이 주식회사 유기 화합물과 이를 이용한 발광다이오드 및 유기발광다이오드 표시장치
KR102085033B1 (ko) * 2017-06-16 2020-03-05 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780536A (en) 1986-09-05 1988-10-25 The Ohio State University Research Foundation Hexaazatriphenylene hexanitrile and its derivatives and their preparations
JPH0252360A (ja) 1988-08-15 1990-02-21 Fujitsu Ltd 電子写真感光体
JPH04134280A (ja) 1990-09-27 1992-05-08 Yuasa Corp 鉛蓄電池の開路電圧測定法
JPH04304465A (ja) * 1991-04-02 1992-10-27 Fuji Electric Co Ltd 電子写真用感光体
JPH0711246A (ja) * 1993-06-28 1995-01-13 Fuji Electric Co Ltd 有機薄膜発光素子
JPH11222590A (ja) 1997-12-01 1999-08-17 Chisso Corp トリアリールアミン誘導体を用いた有機電界発光素子
JP3571977B2 (ja) 1999-11-12 2004-09-29 キヤノン株式会社 有機発光素子
JP3614405B2 (ja) 1999-12-31 2005-01-26 エルジー・ケミカル・カンパニー・リミテッド p−型半導体性質を有する有機化合物を含む電子素子
JP2005085658A (ja) 2003-09-10 2005-03-31 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
US20080014464A1 (en) 2006-06-22 2008-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
WO2008023623A1 (fr) 2006-08-22 2008-02-28 Idemitsu Kosan Co., Ltd. Dispositif électroluminescent organique
US20090021160A1 (en) 2006-02-23 2009-01-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, method for producing same and organic electroluminescent device
WO2009081857A1 (ja) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2009107596A1 (ja) 2008-02-25 2009-09-03 出光興産株式会社 有機発光媒体及び有機el素子
US20090243473A1 (en) 2006-08-04 2009-10-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP2009246097A (ja) 2008-03-31 2009-10-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
KR20100075079A (ko) * 2008-12-24 2010-07-02 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010110553A2 (en) * 2009-03-23 2010-09-30 Dow Advanced Display Materials, Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010131930A2 (ko) * 2009-05-15 2010-11-18 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010151083A2 (ko) * 2009-06-25 2010-12-29 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011055912A1 (en) * 2009-11-04 2011-05-12 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6361885B1 (en) * 1998-04-10 2002-03-26 Organic Display Technology Organic electroluminescent materials and device made from such materials
EP1029909A4 (en) * 1998-09-09 2007-01-10 Idemitsu Kosan Co ORGANIC ELECTROLUMINESCENT DEVICE AND PHENYLENE DERIVATIVES
KR100527194B1 (ko) * 2003-06-24 2005-11-08 삼성에스디아이 주식회사 도핑된 정공수송층 및/또는 정공주입층을 갖는유기전계발광소자
KR100573137B1 (ko) * 2004-04-02 2006-04-24 삼성에스디아이 주식회사 플루오렌계 화합물 및 이를 이용한 유기 전계 발광 소자

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780536A (en) 1986-09-05 1988-10-25 The Ohio State University Research Foundation Hexaazatriphenylene hexanitrile and its derivatives and their preparations
JPH0252360A (ja) 1988-08-15 1990-02-21 Fujitsu Ltd 電子写真感光体
JPH04134280A (ja) 1990-09-27 1992-05-08 Yuasa Corp 鉛蓄電池の開路電圧測定法
JPH04304465A (ja) * 1991-04-02 1992-10-27 Fuji Electric Co Ltd 電子写真用感光体
JPH0711246A (ja) * 1993-06-28 1995-01-13 Fuji Electric Co Ltd 有機薄膜発光素子
JPH11222590A (ja) 1997-12-01 1999-08-17 Chisso Corp トリアリールアミン誘導体を用いた有機電界発光素子
JP3571977B2 (ja) 1999-11-12 2004-09-29 キヤノン株式会社 有機発光素子
JP3614405B2 (ja) 1999-12-31 2005-01-26 エルジー・ケミカル・カンパニー・リミテッド p−型半導体性質を有する有機化合物を含む電子素子
JP2005085658A (ja) 2003-09-10 2005-03-31 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子
US20090021160A1 (en) 2006-02-23 2009-01-22 Idemitsu Kosan Co., Ltd. Material for organic electroluminescent device, method for producing same and organic electroluminescent device
US20080014464A1 (en) 2006-06-22 2008-01-17 Idemitsu Kosan Co., Ltd. Organic electroluminescent device using aryl amine derivative containing heterocycle
US20090243473A1 (en) 2006-08-04 2009-10-01 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
WO2008023623A1 (fr) 2006-08-22 2008-02-28 Idemitsu Kosan Co., Ltd. Dispositif électroluminescent organique
WO2009081857A1 (ja) 2007-12-21 2009-07-02 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2009107596A1 (ja) 2008-02-25 2009-09-03 出光興産株式会社 有機発光媒体及び有機el素子
JP2009246097A (ja) 2008-03-31 2009-10-22 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置、及び照明装置
KR20100075079A (ko) * 2008-12-24 2010-07-02 제일모직주식회사 신규한 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010110553A2 (en) * 2009-03-23 2010-09-30 Dow Advanced Display Materials, Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same
WO2010131930A2 (ko) * 2009-05-15 2010-11-18 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2010151083A2 (ko) * 2009-06-25 2010-12-29 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
WO2011055912A1 (en) * 2009-11-04 2011-05-12 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
BRANDL STEFAN ET AL.: "An efficient new pyrimidine synthesis. A pathway to octupoles", JOURNAL FUER PRAKTISCHE CHEMIE/CHEMIKER-ZEITUNG, vol. 338, no. 5, 1996, pages 451 - 459, XP000946292 *
BUSHBY RICHARD J. ET AL.: "Ferromagnetic spin- coupling 4,4 " -through metaterphenyl: models for high-spin polymers", JOURNAL OF MATERIALS CHEMISTRY, vol. 17, no. 10, 2007, pages 955 - 964, XP008150972 *
HUANG PING-HSIN ET AL.: "Synthesis and characterization of new fluorescent two-photon absorption chromophores", JOURNAL OF MATERIALS CHEMISTRY, vol. 16, no. 9, 2006, pages 850 - 857, XP008150984 *
See also references of EP2589596A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150092145A (ko) 2012-12-07 2015-08-12 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 유기 전계발광소자
US9954178B2 (en) 2012-12-07 2018-04-24 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element
WO2016009823A1 (ja) * 2014-07-16 2016-01-21 東レ株式会社 モノアミン誘導体、それを用いた発光素子材料および発光素子
US10128454B2 (en) 2016-10-26 2018-11-13 Japan Display Inc. Display device
JP2018088521A (ja) * 2016-11-17 2018-06-07 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、及び照明装置
JP7112839B2 (ja) 2016-11-17 2022-08-04 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、照明装置および有機化合物

Also Published As

Publication number Publication date
US20120001154A1 (en) 2012-01-05
JPWO2012001969A1 (ja) 2013-08-22
EP2589596A4 (en) 2013-12-04
US8586206B2 (en) 2013-11-19
CN102510858A (zh) 2012-06-20
KR20120096876A (ko) 2012-08-31
US20140018536A1 (en) 2014-01-16
TW201209042A (en) 2012-03-01
EP2589596A1 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
US11024806B2 (en) Aromatic amine derivative, and organic electroluminescent element comprising the same
JP6338630B2 (ja) 新規な化合物
US9382206B2 (en) Nitrogen-containing aromatic heterocyclic derivative and organic electroluminescence device using the same
KR101588941B1 (ko) 비스카바졸 유도체 및 그것을 이용한 유기 전기발광 소자
JP5617398B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
WO2012049828A1 (ja) 芳香族複素環誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2012001969A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2019240251A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
KR20140031213A (ko) 피렌 유도체, 유기 발광 매체, 및 이들을 포함하는 유기 전계 발광 소자
JP5834442B2 (ja) ベンゾフルオレン化合物、該化合物を用いた発光層用材料および有機電界発光素子
JP5690283B2 (ja) ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2020188121A (ja) 有機エレクトロルミネッセンス素子及び電子機器
WO2020115933A1 (ja) 有機エレクトロルミネッセンス素子及びそれを用いた電子機器
WO2013077385A1 (ja) 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP2021172603A (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
KR20140009260A (ko) 유기 발광 디바이스 및 이것에 사용되는 재료

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002653.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011548441

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117031471

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011800439

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE