WO2010128575A1 - 自動分析装置、及び分析方法 - Google Patents

自動分析装置、及び分析方法 Download PDF

Info

Publication number
WO2010128575A1
WO2010128575A1 PCT/JP2010/002631 JP2010002631W WO2010128575A1 WO 2010128575 A1 WO2010128575 A1 WO 2010128575A1 JP 2010002631 W JP2010002631 W JP 2010002631W WO 2010128575 A1 WO2010128575 A1 WO 2010128575A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
expression
abnormality
value
automatic analyzer
Prior art date
Application number
PCT/JP2010/002631
Other languages
English (en)
French (fr)
Inventor
神原久美子
光山訓
三村智憲
万里千裕
Original Assignee
株式会社 日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立ハイテクノロジーズ filed Critical 株式会社 日立ハイテクノロジーズ
Priority to US13/318,535 priority Critical patent/US9310388B2/en
Priority to CN201080020330.7A priority patent/CN102422162B/zh
Priority to EP10772102.9A priority patent/EP2428802B1/en
Publication of WO2010128575A1 publication Critical patent/WO2010128575A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/00594Quality control, including calibration or testing of components of the analyser
    • G01N35/00603Reinspection of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)

Definitions

  • the present invention relates to an automatic analyzer for performing qualitative / quantitative analysis of biological samples such as blood and urine, and an analysis method, and more particularly, to an automatic analyzer and a method for analysis having a mechanism for measuring temporal changes in measured values.
  • An automatic analyzer for clinical testing dispenses a certain amount of sample and reagent and causes them to stir and react.
  • the absorbance of the reaction solution is measured over a certain period of time, and the concentration and activity value of the substance to be measured are determined based on the measurement result.
  • reagents for each analysis item for analysis for clinical tests, in addition to the analyzer, reagents for each analysis item, standard solutions for calibrating the reagents, devices under analysis, and quality control samples to be measured to check the status of the reagents are required. It is. Other than these devices are combined to obtain the final analytical performance.
  • the factors inside the apparatus that directly affect the analysis performance include, for example, a sampling mechanism, a reagent dispensing mechanism, a stirring mechanism, an optical system, a reaction vessel, and a thermostatic chamber. Further, factors other than the apparatus such as an automatic analyzer include the liquidity of reagents, samples, and control specimens.
  • a conventional method for detecting anomalies in data at the time of measurement by the endpoint method includes a pro zone check.
  • the protein may precipitate as a precipitate due to the influence of the salt concentration of the reagent composition. This precipitation may cause the reaction process to fluctuate, and in fact, it often appears in the latter half of the reaction time.
  • This fluctuation occurs in the photometry point portion used for density calculation, it is impossible to obtain a measured value accurately.
  • Patent Document 1 a method for determining the presence or absence of abnormality using reaction process data (absorbance time-series data)
  • methods disclosed in Patent Document 1 and Patent Document 2 are known.
  • a chemical reaction model is used in advance to generate and store reference time series data, and the reaction process data of the sample is compared with the reference time series data. judge.
  • the change in absorbance is approximated by a function stored in advance, and abnormality is determined from the absorbance change calculated by the approximated function and the magnitude of the difference between the actually measured absorbances.
  • An automatic analyzer for clinical examination measures the absorbance of a solution obtained by reacting a sample and a reagent at regular intervals, and measures the absorbance change rate and the final absorbance from the time-series absorbance. From these data, the concentration of the substance to be measured and the activity value of the enzyme are calculated.
  • the automatic analyzer performs sampling, reagent dispensing, and agitation, and these processes include a plurality of error factors. Especially until now, the presence or level of agitation could not be quantitatively evaluated, and there was no judgment standard, so there was a certain defect such as good reproducibility and POKA (discontinuous measurement values). It was an ambiguous situation such as the presence or absence of clear measured values).
  • the automatic analyzer detects abnormalities for the user from factors that directly affect the reaction, such as reagent dilution with reagent probe wash water or if the user accidentally mixes another solution with the reagent. Therefore, it is necessary to encourage re-inspection and equipment maintenance.
  • Patent Document 1 discloses the following formula as a chemical reaction model. However, t represents time, x represents absorbance, and A0, A1, and k are parameters.
  • Patent Document 2 discloses the following equation in addition to (Equation 1) as a function approximating the change in absorbance.
  • t represents time
  • x represents absorbance
  • A, B, and k are parameters.
  • FIG. 3 shows an example of the reaction process data (absorbance time-series data) for a certain item (TG; neutral fat) in biochemical examination and the result obtained by approximating the reaction process data by (Equation 1).
  • the horizontal axis 110 represents the passage of time
  • the vertical axis 120 represents the absorbance.
  • Symbol 140 represents the absorbance actually measured at each time point
  • curve 150 represents the result of approximating the reaction process data by (Equation 1).
  • the actual reaction process data is approximated with high accuracy by (Equation 1).
  • FIG. 4 shows an example of a result obtained by approximating the reaction process data of another test item (TP: total protein) by (Equation 1).
  • FIG. 6 shows an error when using (Equation 1) and an error when using (Equation 3).
  • the vertical axis 220 represents the error.
  • An alternate long and short dash line 230 represents an approximation error at each time point when (Equation 1) is used, and a broken line 240 represents an error when (Equation 3) is used.
  • the TP shown as an example that is difficult to approximate is a simple reaction in which the protein in the sample and the biuret reagent react to generate a blue color, but depending on the type of protein contained in the TP (mainly occupied by albumin and globulin) It is known that the reaction rate with the biuret reagent is different, and the reactivity with the reagent varies depending on the contents of albumin and globulin in the sample even if the sample has the same TP concentration. Therefore, when trying to evaluate the reaction based on the reactivity of the sample and the reagent, Patent Document 1 having only one reactivity parameter cannot be approximated accurately, and as an evaluation factor for detecting a reaction abnormality It was insufficient.
  • Patent Document 1 and Patent Document 2 compare photometric data at each time with a value calculated by an approximate function, obtain a square error over the entire photometric time, and determine an abnormality based on this value. Therefore, although the magnitude of the divergence between the measured data and the approximate data is known, it is difficult to know the divergence pattern (where the divergence occurs during the measurement time, whether it is larger or smaller than the approximate value), and therefore the divergence occurs. It was also difficult to estimate the cause.
  • the configuration of the present invention for solving the above problems is as follows.
  • a storage mechanism that stores an approximate expression of a time change of a measurement value that is associated with each measurement item or each sample, and a parameter of the approximate expression that is stored in the storage mechanism so as to correspond to an actual measurement value
  • An automatic analyzer comprising: a parameter optimization mechanism; and a determination mechanism that determines whether there is an abnormality based on the parameter optimized by the parameter optimization mechanism.
  • the storage mechanism is a mechanism for storing information, and any mechanism that can store information, such as a semiconductor memory, a hard disk storage device, a floppy (registered trademark) disk storage device, a magneto-optical storage device, etc. It may be. Usually, it is often provided inside the housing of the control computer, but may be an independent mechanism.
  • the parameter optimization mechanism is a mechanism that determines each parameter of an approximate expression having a plurality of parameters so as to best match actual data by using a parameter fitting algorithm such as a least square method. Usually, it is comprised from the software incorporated in the computer for control, a dedicated computer, etc., and the hardware which operates the software. The mechanism is not limited to this, and any mechanism may be used as long as it can perform parameter fitting and determine parameters.
  • the determination mechanism is a determination of whether there is an abnormality in the reaction based on the parameter determined by the parameter optimization mechanism by comparison with a threshold value or multivariate analysis, for example, a method such as Mahalanobis Taguchi method, neural network, or the like, or It is a mechanism for obtaining proof that the reaction has been completed normally. Usually, it is comprised from the software incorporated in the computer for control, a dedicated computer, etc., and the hardware which operates the software. However, the present invention is not limited to this, and any mechanism may be used as long as it is capable of obtaining the presence / absence of an abnormality or a proof that the reaction has been normally completed based on parameters.
  • a plurality of approximate expressions that accurately fit the curved curve of the endpoint method are prepared from the reaction process data, and an accurate approximate expression is selected in advance for each item or sample. Calculates parameters that closely match the measured data for the selected approximate expression (coefficients, intercepts, etc. of the approximate expression), and whether or not the reaction was properly performed from the numerical values of the multiple parameters obtained from it Is determined from the deviation from the original value. For example, device abnormalities, reagent deterioration, and accuracy control can be determined for each continuous and single inspection.
  • the multiple approximate expressions are, for example, the following expressions.
  • the parameters a0, a1, a2, ai, k1, k2, ki, bi, ci, di in the above formula are reduced so that the difference between the measured value of the absorbance at the measurement time and the time series data obtained by the approximate formula becomes small.
  • Pi, qi, ri can be calculated and the presence or absence of an abnormality can be determined based on the parameter values.
  • the measurement time of the absorbance is t
  • the absorbance is x
  • the symbol representing multiplication is *
  • ⁇ ⁇ is changed from 1 to n in the expression in ⁇
  • the symbol representing the sum, ⁇ [n ] Change the i in the expression in ⁇ from 1 to n and add the symbol ⁇ [m] ⁇ to change the i in the expression in ⁇ from 1 to m and add
  • the symbol representing the sum, ⁇ [l] ⁇ is changed from i to 1 in the expression in ⁇
  • the sum representing the sum, n, m, and l are integers of 1 or more.
  • the automatic analysis apparatus and the automatic analysis method of the present invention it is possible to check the abnormality of the apparatus from the daily inspection data for more inspection items than before, which can contribute to maintaining the performance of the apparatus.
  • the reaction rate changes compared to the normal case.
  • monitoring the parameters related to the reaction rate among the parameters of the approximate function will check the performance of the stirring mechanism over time.
  • the need for replacement can be positively notified from the automatic analyzer side to the device user. It is possible to quantify the presence / absence and level of agitation where the evaluation is ambiguous, and it is possible to verify and determine the abnormality parameters of the agitation mechanism and the optimum parameters for each reagent.
  • the reaction rate is affected.
  • the degree of slowness of the reaction can be quantified, it is possible to detect a reaction abnormality. Reagent performance can be evaluated, reagent deterioration due to human error in daily inspection can be detected, and erroneous data output can be prevented from being overlooked.
  • reaction process data makes it possible to evaluate individual measured specimens, and therefore it becomes a new evaluation standard that gives reliability to the measurement results of each specimen, which was not possible with previous evaluation methods. Can do.
  • dividing the parameter distribution into an abnormal distribution and a normal distribution in advance it is possible to guarantee the measurement with a quantitative evaluation criterion for the measurement result of the general specimen showing the parameters belonging to the normal distribution. If the measurement result can be guaranteed, it can be expected that there is no need to re-inspect the inspection result that did not match the previous value or the inspection result of the panic value.
  • the figure showing the processing flow of a 1st Example The figure which shows the outline of a structure of the automatic analyzer to which this invention is applied.
  • FIG. 2 is a diagram showing a schematic configuration of a biochemical automatic analyzer to which the present invention is applied.
  • 1 is a sample disk
  • 2 is a reagent disk
  • 3 is a reaction disk
  • 4 is a reaction tank
  • 5 is a sampling mechanism
  • 6 is a pipetting mechanism
  • 7 is a stirring mechanism
  • 8 is a photometric mechanism
  • 9 is a cleaning mechanism
  • 10 is a display unit
  • 11 is an input unit
  • 12 is a storage unit
  • 13 is a control unit
  • 14 is a piezoelectric element driver
  • 15 is a stirring mechanism controller
  • 16 is a sample container
  • 17 and 19 are circular disks
  • 18 is a reagent bottle
  • 20 is a cool box
  • 21 is a reaction vessel
  • 22 is a reaction vessel holder
  • 23 is a drive mechanism
  • 24 and 27 are probes
  • 25 and 28 are support shafts
  • 26 and 29 are arms
  • 31 is a fixing portion
  • 32 is an
  • the storage unit stores analysis parameters, the number of times each reagent bottle can be analyzed, the maximum number of times that analysis can be performed, a calibration result, an analysis result, and the like.
  • Sample analysis is performed in the order of data processing such as sampling, reagent dispensing, stirring, photometry, washing of the reaction vessel, and concentration conversion as described below.
  • the sample disk 1 is controlled by the control unit 13 via the display unit 10.
  • a plurality of sample containers 16 are arranged side by side on the circumference, and move below the sampling probe 24 in accordance with the order of samples to be analyzed.
  • a predetermined amount of the sample in the sample container 16 is dispensed into the reaction container 21 by a sample pump connected to the sample sampling mechanism 5.
  • the reaction vessel 21 into which the sample has been dispensed moves through the reaction tank 4 to the first reagent addition position.
  • a predetermined amount of reagent sucked from the reagent container 18 by a reagent pump (not shown) connected to the reagent dispensing probe 6 is added to the moved reaction container 16.
  • the reaction vessel 21 after the addition of the first reagent moves to the position of the stirring mechanism 7 and the first stirring is performed. Such reagent addition and stirring is performed for the first to fourth reagents.
  • the reaction vessel 21 in which the contents are agitated passes through the light beam emitted from the light source, and the absorbance at this time is detected by the photometric mechanism 8 of the multi-wavelength photometer.
  • the detected absorbance signal enters the control unit 13 and is converted into the concentration of the specimen. Further, the control unit 13 simultaneously determines abnormality based on the absorbance.
  • the data after concentration conversion is stored in the storage unit 12 and displayed on the display unit. After completion of photometry, the reaction vessel 21 is moved to the position of the cleaning mechanism 9 and cleaned, and used for the next analysis.
  • FIG. 1 is a diagram illustrating processing steps of a part related to abnormality determination in the control unit 13.
  • an approximate expression corresponding to the test item is selected from a plurality of approximate expressions representing changes in absorbance over time.
  • an approximate expression for example, the functions shown in (Expression 1) to (Expression 6) are stored, and the approximate expression most suitable for each inspection item is stored as a table, and the table is used to correspond to the inspection item. Select the approximate expression.
  • step S10 absorbance data of one measurement or a plurality of measurement averages is input from the photometry mechanism 8.
  • the photometry mechanism 8 In a measurement method that uses two-wavelength light of a wavelength (primary wavelength) where the absorbance largely changes due to a change in color tone due to the reaction between the reagent and the specimen, and a wavelength (subwavelength) light whose absorbance hardly changes, the dominant wavelength
  • the difference between the light absorbance and the sub-wavelength light absorbance is input as absorbance data.
  • step S15 the inputted absorbance data is stored.
  • step S20 it is determined whether or not the absorbance data necessary for the following processing is stored. If not stored, the processing returns to S10, and the absorbance data is input until the necessary number of data is stored. Repeat the memory. If the necessary number of data has been accumulated, the process proceeds to step S25.
  • step S25 the value of the parameter in the equation is calculated so that the time change of the absorbance represented by the approximate expression selected in step S5 and the time change of the actual absorbance are as small as possible.
  • the parameters in the equation are set so that the square error between the measured and stored absorbance data and the absorbance at the same time as the time at which the absorbance is measured is calculated as much as possible. Determine the value.
  • An existing least square calculation method can be used to calculate the parameter value. As a method that can handle various types of mathematical expressions, for example, a parameter value that minimizes the square error is calculated by the steepest descent method.
  • step S25 the difference between the absorbance calculated by the approximate expression and the absorbance actually measured needs to be sufficiently small.
  • parameters are set so that the difference between the absorbance calculated by the approximate expression with respect to normal data is sufficiently small as shown in FIGS. Was difficult.
  • FIG. 7 shows the result approximated by (Equation 4) using the same data as the absorbance data shown in FIGS.
  • a solid line 250 in FIG. 6 represents an approximation error according to (Equation 4). It can be seen that the error can be greatly reduced as compared with the case of using (Equation 1) and (Equation 3) according to the prior art.
  • step S30 the presence or absence of abnormality is determined based on the parameter value of the approximate expression calculated in step S25.
  • a distribution of parameter values of normal data is obtained in advance, and when a parameter value deviating from this distribution is obtained, it is determined that there is an abnormality.
  • FIG. 8 shows the distribution of the parameters k1 and k2 when the data measured normally and the data measured in the state where the stirring condition is abnormal are approximated by (Equation 4).
  • the horizontal axis 310 represents the value of k1
  • the vertical axis 320 represents the value of k2.
  • Symbol 330 represents a parameter value obtained from absorbance data under normal stirring conditions
  • symbol 340 represents a parameter value obtained from absorbance data under abnormal stirring conditions.
  • An ellipse 360 schematically shows an approximate distribution range of parameter values obtained from absorbance data under normal stirring conditions. When the parameter value obtained from the measured absorbance deviates from this distribution, it can be determined that the stirring is abnormal.
  • the Mahalanobis distance between the parameter calculated in step S25 and the parameter value distribution of normally measured data is calculated.
  • the distance is a certain value or more, it can be determined as abnormal.
  • the determination method in step S30 according to the present invention is not limited to this method.
  • a condition such as a threshold value for determining an abnormality in each parameter value may be defined, and an abnormality may be determined when the condition is satisfied with several parameter values.
  • a neural network that determines the presence or absence of abnormality from the parameter value may be constructed and used.
  • the abnormality may be determined using both the approximate parameter distribution for the data measured as normal data and the parameter distribution for abnormal data.
  • normal data and abnormal data collected in advance are used to obtain the parameter distribution of normal data and the parameter distribution of abnormal data, and to identify the parameters of normal data and abnormal data in the parameter space.
  • the identification boundary is formed. In the distribution shown in FIG. 8, for example, a broken line 350 is set as an identification boundary. Whether the parameter calculated in step S25 is on the identification boundary or not is determined as abnormal or normal.
  • Various existing pattern recognition techniques such as multivariate analysis and neural network can be applied as a method for determining the discrimination boundary.
  • the cause of an abnormality by collecting in advance anomaly data whose cause is known. For example, the parameter distribution of normal data, the parameter distribution of abnormal stirring data, and the parameter distribution of data at the time of reagent deterioration are obtained in advance, and the distribution closest to the parameter calculated in step S25 is examined.
  • it is closest to the parameter distribution of the stirring abnormality data it can be estimated that stirring is abnormal
  • it is closest to the parameter distribution of the data at the time of reagent deterioration it can be estimated that the reagent is deteriorated.
  • reagent deterioration and stirring abnormality are given as examples, but various abnormal causes can be similarly estimated.
  • various existing pattern recognition techniques such as multivariate analysis and neural network can be applied.
  • step S35 the normal / abnormal determination result in step S30 is output.
  • the determination result output method various methods can be used depending on the type of abnormality to be detected.
  • FIG. 9 shows the result of examining the parameter distribution by approximating the same data as the absorbance data under normal stirring conditions and the absorbance data under abnormal stirring conditions used in FIG.
  • the horizontal axis 410 represents the value of A1
  • the vertical axis 420 represents the value of k.
  • Symbol 430 represents a parameter value obtained from the absorbance data under normal stirring conditions
  • symbol 440 represents a parameter value obtained from the absorbance data under abnormal stirring conditions.
  • the first embodiment of the present invention described above can be used as follows in the daily operation of the automatic analyzer.
  • Performance evaluation of agitation mechanism based on daily inspection data The parameter value of the approximate expression is calculated from the reaction process of daily inspection data, quality control sample data, and patient specimen data. The parameter value is stored and the daily parameter value is monitored. If an abnormality is detected based on the parameter value, it is possible to indicate the possibility of a failure of the stirring mechanism or the like.
  • performance management of a stirring mechanism and the like can be performed based on changes in parameter values over time, which can contribute to maintaining the performance of the apparatus.
  • the reactivity of the reagent can be evaluated by monitoring the approximate expression parameter from the result of the quality control sample and the patient specimen data in the daily examination. it can. If the user accidentally mixes another reagent or the reagent in the reagent bottle is diluted, the reaction becomes slow, and the present invention can detect the slow reaction as reagent deterioration. It becomes possible. Approximate formula calculation parameters for each item are recorded in the device every day, and when deviating from the approximate formula calculation parameter values determined in advance in a test, reagent deterioration is detected and an alarm is issued to inform the user of the device. Can do.
  • the threshold value may be automatically determined from approximate formula calculation parameters for each item for several days instead of a predetermined numerical value.
  • the device user managed reagent lot change information in a list outside the device, but since the device detects a reagent lot change by installing the function of the present invention, the reagent is based on that record. It is possible to recognize the usage frequency of the reagent and assist in ordering the reagent order and the inventory status.
  • (4) Evaluation of reagent reactivity According to the present invention, when examining a reagent to be purchased, an approximate expression parameter is calculated from a plurality of types of reagents in the same item, and the reactivity evaluation based on the parameter value becomes possible. Also, in reagent development, it is possible to evaluate the reactivity of the reagent by the approximate equation parameter, and the reaction is good and a stable reagent standard can be determined.
  • Index of quality control an approximate expression parameter is calculated from the reaction process of the standard solution and the control in each measurement item, and it can be used as an index of the quality control sample by monitoring it.
  • Evaluation method of characteristics and stirring level of each reagent According to the evaluation method of the present invention, an optimal stirring level can be examined for the characteristics of each reagent of each measurement item.
  • Detection of reagent dilution by washing water of reagent probe It is difficult to notice that the measured value is high because the slow reaction caused by the reagent dilution cannot be checked with the measured value alone.
  • the slowness of the reaction can be evaluated by the numerical value of the approximate expression calculation parameter obtained from the reaction process. By displaying the evaluation value of the degree of slowness together with the measured value, the reaction situation can be grasped, so that an accurate result can be reported.
  • the ability to detect slow reactions is to enable the following functions: -Quantitative evaluation function for reagent deterioration-Function for detecting that the reagent has been diluted with wash water-Function for detecting that the user has mixed another reagent by mistake (8) Reliability of test data Guarantee Since the approximate expression calculation parameters are evaluated using the reaction process of each test data, it can be an evaluation value of the certainty of normal reaction for the measurement result of the analyzed patient specimen. For example, if the previous value of a certain item differs from the current measured value in the measurement of a patient sample by a biochemical automatic analyzer, the laboratory technician will look at other related items and the reaction process of that item to determine whether to retest to decide. If the value of the approximate expression calculation parameter exists within the normal reaction distribution as one of the indices in that case, the result of reporting that the reactivity between the sample and the sample is not problematic without re-examination. it can.
  • FIG. 2 The outline of the configuration of the biochemical automatic analyzer according to the second embodiment of the present invention is shown in FIG. 2 as in the first embodiment. Since the operation other than the control unit 13 is the same as that of the first embodiment, detailed description thereof is omitted.
  • FIG. 1 Details of the process for determining the presence or absence of an abnormality from the absorbance in the second embodiment will be described with reference to FIG. 1 is the same as the process indicated by the same reference numeral as in FIG. 1, and detailed description thereof will be omitted below.
  • step S110 the parameter value of the approximate expression calculated in step S25 is stored.
  • measurement is performed a plurality of times on a specific sample such as a quality control sample.
  • step S120 it is determined whether or not a plurality of measurements on the same specific sample have been completed. For example, the number of measurements to be performed may be determined in advance, and it may be determined whether or not the predetermined number of measurements have been completed. If the measurement is completed, the process proceeds to step S140. If not completed, the process waits for the start of the next measurement in step S130. When the measurement is started, the process proceeds to step S10, and input of absorbance data in the next measurement is started.
  • step S140 the distribution of the parameter values stored in step S110 is obtained. Specifically, an average value, variance, covariance, etc. are obtained. A histogram may be calculated.
  • step S150 the presence / absence of an abnormality is determined based on the numerical value obtained in step S140.
  • the same sample is measured a plurality of times in advance while the apparatus is in a normal state, parameter values of approximate expressions are obtained, and parameter value distributions are stored.
  • the parameter value distribution obtained in step S140 is compared with the stored parameter value distribution. When the distribution is the same, it is determined that the distribution is normal, and when the distribution is different, it is determined that the distribution is abnormal.
  • a statistical test method can be used to determine whether the distributions are different. Further, a threshold value may be provided for the average value or variance of the parameters, and it may be determined whether the distribution is different depending on whether it is larger than the threshold value.
  • the parameter value distribution for the same sample in a state where the apparatus is abnormal is obtained and stored in advance, and the normal distribution depends on whether the parameter value distribution obtained in step S140 is close to the normal distribution or the abnormal distribution.
  • An abnormality may be determined. It is also possible to store a plurality of parameter distributions at the time of an abnormal condition whose cause of abnormality is known, and investigate which distribution the parameter value distribution obtained in step S140 is closest to. When the closest distribution is a distribution in an abnormal state, the cause of the abnormality causing the distribution is set as an estimated abnormality cause.
  • the stirring mechanism at the time of shipment can be inspected quantitatively.
  • a predetermined sample is measured to obtain a reaction process.
  • the approximate expression in the obtained reaction process is calculated, and the calculation parameters are calculated. Measure multiple times using similar reagents and samples to check the numerical values and variations of the calculation parameters.
  • the performance of the stirring mechanism can be confirmed by comparing with a set reference value. Not only variations in measured values, but also variations and magnitudes of approximate expression calculation parameters are criteria for evaluating whether normal stirring is being performed. Until now, the presence or absence of agitation could not be evaluated, and there was no criteria for judgment, so the evaluation of reproducibility was unclear. According to the present invention, it is possible to quantitatively evaluate the presence or absence of stirring, the difference in stirring level, and the like.
  • the apparatus configuration shown in FIG. 2 and the processing steps shown in FIG. 1 are the same as those in the first embodiment. Since only the approximate expression parameter calculation method in step S25 is different from the approximate expression selected in step S5 in FIG. 1, these two types of processing steps will be described in detail.
  • a mathematical expression expressing the absorbance x as a function of time t is used as a mathematical expression that can be selected in step S5.
  • a differential equation is used as the mathematical expression.
  • a differential equation is often used, but in this embodiment, the theoretical equation can be used as it is.
  • time is t
  • absorbance is x
  • ⁇ ⁇ is changed from i in the expression in ⁇ from 0 to n
  • a sum representing the sum n is an integer of 1 or more
  • fi (t, x) is t
  • a function including a time derivative of x or any order of x and fi (t, x) includes a case where it is a constant
  • qi is a parameter
  • a differential equation of the form expressed by the following expression is Is available.
  • step S25 the value of the parameter included in (Expression 7) is determined using the stored absorbance data. Since the absorbance is stored as time series data, it is possible to approximately calculate the time derivative by calculating the difference. Therefore, since values corresponding to fi (t, x) in (Expression 7) at time t at which the absorbance was measured are obtained, if these values are obtained at a plurality of time points, (Equation 7) becomes fi (t, Since it is expressed in the form of a linear combination of x), the value of the parameter qi can be easily obtained by the least square method.
  • the change in absorbance x with time is expressed by the mathematical formula shown in (Formula 8).
  • (Formula 8) can be transformed into the form of (Formula 9) by setting x (t) as the left side and the remaining term as the right side.
  • the differential equation derived from the chemical reaction kinetics can be used as it is by making the equation representing the change in absorbance with time into a differential equation, Compared to the case where the absorbance is expressed as a function of time t, the least square method for determining the parameters can be easily calculated.
  • the automatic analyzer to which the present invention is applied can check the abnormality of the apparatus from the daily inspection data in more inspection items than before, and the apparatus Can contribute to the maintenance of performance.
  • Axis 330 representing symbol 340 representing the values of approximate equation parameters k1, k2 under normal stirring conditions
  • Symbol 350 representing values of approximate equation parameters k1, k2 under abnormal stirring conditions Approximate parameters and parameters under normal stirring conditions
  • Example of straight line for identifying approximate expression parameter in condition 360 Distribution range 410 of approximate expression parameter in normal stirring condition
  • Axis 420 representing the value of parameter A1 of
  • Axis 430 representing the value of parameter k in Equation 1
  • Symbol 440 representing the value of approximate expression parameter A1, k under normal stirring conditions Approximate expression parameter A1, under abnormal stirring conditions

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

 反応過程データを関数により近似し、異常を検出する自動分析装置において、検査項目によっては近似精度が悪く、反応異常の検出精度が低下することがあった。 データ処理手段が、前記吸光度と前記吸光度が計測された時刻を時系列データとして記憶し、吸光度をx、時間をtと、乗算を表す記号を*とする時、関数x=a0+a1*exp(-k1*t)+a2*exp(-k2*t)により算出される前記測定時刻における前記吸光度と、前記時系列データとの差が小さくなるように前記式中のパラメータa0,a1,a2,ai,k1,k2の値を算出し、前記パラメータの値に基づき異常の有無を判定する。

Description

自動分析装置、及び分析方法
 本発明は、血液,尿などの生体サンプルの定性・定量分析を行う自動分析装置、及び分析方法に係り、特に測定値の時間変化を測定する機構を備えた自動分析装置、及び分析方法に関する。
 臨床検査用の自動分析装置は、試料と試薬を一定量分注して、攪拌反応させる。一定時間にわたり反応液の吸光度を測定し、測定結果に基づき測定対象物質の濃度や活性値などを求める。
 臨床検査用の分析では、分析装置以外に、分析項目ごとの試薬,試薬を校正するための標準液,分析中の装置、および、試薬の状態をチェックするために測定する精度管理試料などが必要である。これら装置以外のものが、組み合わされて最終的な分析性能が得られる。
 分析性能を直接左右する装置内部の因子としては例えばサンプリング機構,試薬分注機構,攪拌機構,光学系,反応容器,恒温槽、などが挙げられる。また、自動分析装置等の装置以外の因子としては試薬,試料,コントロール検体の液性、などが挙げられる。
 自動分析装置を日常使用する場合には、これら因子を確認して、正常に臨床検査が可能かどうかを判断する必要がある。因子の確認は例えば下記のように実施される。
(1)標準液を使用したキャリブレーション
 各項目の試薬ボトルごとに校正を実施する。ブランク液と標準液を測定して、原点の決定,単位濃度あたりの吸光度を算出し、換算係数(Kファクターと以下は略す。)を算出する。一般的には、吸光度の大きさ,Kファクターの経時的な変動を臨床検査技師が確認して、キャリブレーション結果の良否を判断する。
(2)精度管理
 キャリブレーション後に濃度既知の精度管理試料を測定し、基準値との差を確認する。また、患者検体を測定中は、一定時間ごとに定期的に精度管理試料を測定して、許容値とのずれを確認する。許容値を超えたときに、試薬,装置、いずれかに問題が発生しているとして点検する。
 日常検査におけるデータの確認は反応過程データを用いた確認が行われている。エンドポイント法における測定時の従来のデータ異常の検知方法には、プロゾーンチェックがある。IgA(免疫グロブリンA)やCRP(C反応性蛋白)などの免疫比濁法を用いた試薬では、試薬組成分の塩濃度の影響により蛋白質が沈殿物として析出してしまう場合がある。この沈殿物によって反応過程が揺らぐ場合があり、実際には反応時間の後半部分に現れる場合が多い。濃度演算に用いる測光ポイント部にこの揺らぎが起きた場合に正確に測定値を得ることができない。これをチェックする方法として抗体再添加法と反応速度比法があり、いずれもパラメータで指定した限界値を超えるとアラームで知らせる。
 また、反応過程データ(吸光度の時系列データ)を利用して異常の有無を判定する方法としては、例えば特許文献1,特許文献2に開示される方法が公知である。特許文献1による方法では、予め化学反応モデルを使用し、基準時系列データを生成して記憶しておき、試料の反応過程データを基準時系列データと比較し、乖離が大きかった場合に異常と判定する。特許文献2による方法では、吸光度変化を、予め記憶してある関数により近似し、近似された関数により計算される吸光度変化と、実際に測定された吸光度の乖離の大きさから異常を判定する。
特開2004-347385号公報 特開2006-337125号公報
 近年、自動分析装置の性能の向上により、微量な試料,試薬を用いても様々な項目で高精度に分析することが可能となっている。その反面、装置各部のわずかな異常や、検体や試薬の微妙な品質の変化などにより精確に分析できない場合がある。臨床検査用の自動分析装置は、試料と試薬を反応させた溶液の吸光度を一定間隔で測定し、その時系列吸光度より、吸光度変化率,最終吸光度を測定する。これらのデータから測定対象物質の濃度や酵素の活性値を算出する。反応過程のモニタリング中には、自動分析装置がサンプリング,試薬分注,攪拌を実施しており、これらの過程の中に複数の誤差要因を含んでいる。特にこれまでは、攪拌の有無やレベルを定量的に評価できず、判断基準がないために、再現性の良し悪しやポカ(測定値が不連続となるなど、明らかに何らかの不具合があったことが明らかな測定値のこと)の有無などといった評価が曖昧な状況であった。また、試薬プローブの洗浄水による試薬の希釈や使用者が誤って試薬に別の溶液を混入してしまった場合など反応に直接影響を及ぼす要因に対し自動分析装置から使用者に対し異常を検知し、再検査や装置のメンテナンスを促す必要がある。
 自動分析装置の使用者である検査技師は、日常の検査業務の中で全反応過程を目視でチェックすることは困難であり、その中でも特に測定値が正常値範囲内にある場合は、反応異常を見落としがちであり、精確性の低い結果を出してしまう可能性がある。
 特許文献1には化学反応モデルとして下記の式が開示されている。ただしtは時刻、xは吸光度を表し、A0,A1,kはパラメータである。
  x(t)=A0+A1exp(-kt)           …(数1)
 また、特許文献2には吸光度変化を近似する関数として(数1)以外に下記の式が開示されている。ただしtは時刻、xは吸光度を表し、A,B,kはパラメータである。
  x=-kt+B                    …(数2)
  x=A/(1+kt)+B                …(数3)
 しかしながら、測定項目と試薬の組み合わせによっては、測定される吸光度の時間変化が上記(数1)~(数3)の関数では精度良く近似できない場合があり、正確に異常が検出できない、という課題があった。
 生化学検査のある項目(TG;中性脂肪)での反応過程データ(吸光度時系列データ)と、反応過程データを(数1)により近似した結果を例として図3に示す。横軸110は時間の経過を表し、縦軸120は吸光度を表す。記号140は各時点において実際に計測された吸光度を表し、曲線150は(数1)により反応過程データを近似した結果を表す。この例においては、(数1)により実際の反応過程データが精度良く近似されている。しかし、別の検査項目(TP:総蛋白)の反応過程データを、(数1)により近似した結果を例として図4に示す。時刻5~10では近似式により算出される吸光度が実際の吸光度よりも低く、時刻10~27では高く、時刻27以上では低くなっており、近似精度が悪いことがわかる。また、同じデータを(数3)により近似した結果を図5に示す。(数3)では(数1)よりも良好に近似できてはいるが、まだ近似開始点で誤差が大きく、また時刻7~15で近似式により算出される吸光度が実際の吸光度よりも低い値となっている。この様子は近似式から算出される吸光度と、実際の吸光度の誤差をプロットするとより顕著に観察することができる。(数1)を用いた場合の誤差と(数3)を用いた場合の誤差を図6に示す。縦軸220が誤差を表す。一点鎖線230が(数1)を用いた場合の各時点における近似の誤差を表し、破線240が(数3)を用いた場合の誤差を表す。
 これらの原因は、エンドポイント法による分析であっても、反応容器中で起こっている化学反応の性質にある。2種類以上の化学反応が逐次的に起き、かつそれぞれの反応速度が近い項目の反応過程である場合には1種類の化学反応式では近似が難しい。近似が難しい例として示したTPでは試料中の蛋白質とビウレット試薬が反応して青色を発生するという単純な反応でありながら、TP中に含まれる蛋白質の種類(大きくはアルブミンとグロブリンで占める)によってこのビウレット試薬との反応の速度が異なることは公知であり、試料中のアルブミンとグロブリンの含有率によって同じTP濃度の試料であっても試薬との反応性が異なる。したがって、試料と試薬の反応性によってその反応を評価しようとする場合、反応性のパラメータを1つしか持たない特許文献1では正確に近似ができず、反応異常を検出するための評価ファクターとしては不十分であった。
 また、特許文献1,特許文献2に開示された方法は、各時刻における測光データを、近似関数により計算される値と比較し、全測光時間にわたり二乗誤差を求め、この値により異常を判定するため、測定データと近似データの乖離の大きさはわかるものの、乖離のパターン(測定時間中のどこで乖離しているか、近似値より大きいか、小さいか)を知ることは難しく、そのため、乖離を生じた原因を推定するのも困難であった。
 上記課題を解決するための本発明の構成は以下の通りである。
 測定項目毎、または検体毎に対応付けられた、測定値の時間変化の近似式を記憶する記憶機構と、実測値に対応するように前記記憶機構に記憶された近似式のパラメータを最適化するパラメータ最適化機構と、前記パラメータ最適化機構で最適化されたパラメータに基づき異常の有無を判定する判定機構と、を備えた自動分析装置。
 記憶機構とは、情報を記憶するための機構であって、半導体メモリー,ハードディスク記憶装置,フロッピー(登録商標)ディスク記憶装置,光磁気記憶装置など、情報が記憶できる機構であればどのようなものであっても良い。通常は制御用コンピュータの筺体内部に設けられていることが多いが、独立した機構であっても良い。パラメータ最適化機構とは、複数のパラメータを有する近似式の、それぞれのパラメータを最小二乗法のようなパラメータフィッティングアルゴリズムを用いて、実データに最も合致するように決定する機構である。通常は、制御用コンピュータまたは専用コンピュータなどに組み込まれたソフトウェア、及びそのソフトウェアを動作させるハードウェアから構成される。これに限らず、パラメータフィッティングを行い、パラメータを決定することができる機構であれば、どのような態様の機構であっても良い。
 判定機構とは、閾値との比較、または多変量解析、例えばマハラノビスタグチメソッド,ニューラルネットワークなどの手法により、パラメータ最適化機構により決定されたパラメータに基づいて、反応に異常があったかどうかの判断、あるいは反応が正常に終了したことの証明、を得るための機構である。通常は、制御用コンピュータまたは専用コンピュータなどに組み込まれたソフトウェア、及びそのソフトウェアを動作させるハードウェアから構成される。これに限らず、パラメータに基づき異状の有無、または反応が正常に終了したことの証明を得ることができる機構であれば、どのような態様の機構であっても良い。
 以下、本発明の好ましい実施態様を説明する。
 本発明は、反応過程データからエンドポイント法の曲線的なカーブに精度良くフィットする近似式を複数用意しておき、項目ごとあるいは検体ごとに精度の高い近似式を予め選択しておく。選択された近似式に対し測定されたデータが良く一致するようなパラメータ(近似式の係数,切片等)を算出し、そこから得られる複数のパラメータの数値から適正に反応が行われたか否かを、本来あるべき値との乖離から判断する。例えば装置異常,試薬劣化,精度管理を連続的および単独の検査毎に判断できる。
 複数の近似式とは、例えば下記のような式である。
  x=a0+a1*exp(-k1*t)+a2*exp(-k2*t)
                             …(数4)
  x=a0+Σ{ai*exp(-ki*t)}        …(数5)
  x=a0+Σ[n]{ai*exp(-ki*t)}
      +Σ[m]{bi/(ci+di*t)}
      +Σ[l]{(pi/(exp(qi*t)+ri))   …(数6)
 測定時刻における吸光度の実測値と、近似式により求められた時系列データとの差が小さくなるように前記式中のパラメータa0,a1,a2,ai,k1,k2,ki,bi,ci,di,pi,qi,riの値を算出し、前記パラメータの値に基づき、異常の有無を判定することにより解決できる。ただし前記吸光度の測定時刻をt、前記吸光度をx、乗算を表す記号を*、Σ{ }を{ }内の式のiを1からnまで変化させ、加算した和を表す記号、Σ[n]{ }を{ }内の式のiを1からnまで変化させ、加算した和を表す記号、Σ[m]{ }を{ }内の式のiを1からmまで変化させ、加算した和を表す記号、Σ[l]{ }を{ }内の式のiを1からlまで変化させ、加算した和を表す記号、n,m,lを1以上の整数とする。
 本構成による自動分析装置では、従来関数による正確な近似が困難であった検査項目においても、正確な近似が可能となり、より正確な異常の判定が可能となる。また、近似の結果得られた吸光度と実際の吸光度の差ではなく、近似式に含まれるパラメータの値に基づいて異常を判定するため、正常なデータに対してどのようにずれているのかを容易に把握できる。また、反応速度論による理論式と対比させることにより、異常の原因の推定が容易となる。
 本発明の自動分析装置および自動分析方法によれば、従来よりも多くの検査項目における日常の検査データから装置の異常をチェックすることが可能になり、装置の性能維持に貢献することができる。
 攪拌機構に異常が生じた場合、正常な場合に比べ反応速度が変化する。コントロール検体,標準液などの濃度既知の検体において、近似関数のパラメータのうち、反応速度に関係するパラメータをモニターすることは経時的な攪拌機構の性能をチェックすることになり、攪拌機構のメンテナンス,交換の必要性を自動分析装置側から、積極的に装置使用者に知らせることが可能になる。評価が曖昧であった攪拌の有無やレベルを定量化することができ、攪拌機構の異常検知や試薬ごとの最適パラメータを検証・決定することが可能になる。
 例えば試薬が劣化した、試薬プローブ内で洗浄水により希釈されたなどの場合、反応速度に影響する。本発明によれば、反応の緩慢度を数値化できるため、反応異常を検知することが可能となる。試薬性能の評価が可能になり、日常の検査における人為的ミスによる試薬劣化の検知を行うことができ、誤ったデータ出力の見落としを防止することができる。
 また、反応過程データを用いることにより、測定した検体個々の評価が可能となるため、これまでの評価方法では不可能であった、検体ごとの測定結果に信頼性を与える新しい評価基準となることができる。さらに、パラメータの分布をあらかじめ異常と正常の分布に分けるなどすることによって、正常分布に属するパラメータを示した一般検体の測定結果について定量的な評価基準をもって測定の保証を与えることができる。測定結果が保証できれば、前回値と一致しなかった検査結果やパニック値の検査結果について再検を行う必要がなくなることが期待できる。
第1の実施例の処理フローを表す図。 本発明を適用した自動分析装置の構成の概略を示す図。 測定された吸光度と近似式により算出される吸光度の時間変化の例を示す図。 測定された吸光度と近似式により算出される吸光度の時間変化の例を示す図。 測定された吸光度と近似式により算出される吸光度の時間変化の例を示す図。 測定された吸光度と近似式により算出される吸光度の誤差の例を示す図。 測定された吸光度と近似式により算出される吸光度の時間変化の例を示す図。 本発明により算出した近似式のパラメータ分布を示す図。 従来技術により算出した近似式のパラメータ分布を示す図。 第2の実施例の処理フローを表す図。
 以下、図面を用いて本発明の実施の形態について説明する。
 本発明を適用した自動分析装置の第1の実施例について詳細に説明する。図2は本発明を適用した生化学自動分析装置の構成の概略を示す図である。1はサンプルディスク、2は試薬ディスク、3は反応ディスク、4は反応槽、5はサンプリング機構、6はピペッティング機構、7は攪拌機構、8は測光機構、9は洗浄機構、10は表示部、11は入力部、12は記憶部、13は制御部、14は圧電素子ドライバ、15は攪拌機構コントローラ、16は試料容器、17,19は円形ディスク、18は試薬ボトル、20は保冷庫、21は反応容器、22は反応容器ホルダ、23は駆動機構、24,27はプローブ、25,28は支承軸、26,29はアーム、31は固定部、32は電極、33はノズル、34は上下駆動機構である。記憶部では分析パラメータ,各試薬ボトルの分析可能回数,最大分析可能回数,キャリブレーション結果,分析結果等を記憶している。試料の分析は下記のようにサンプリング,試薬分注,撹拌,測光,反応容器の洗浄,濃度換算等のデータ処理の順番に実施される。
 サンプルディスク1は、制御部13により表示部10を介して制御される。サンプルディスク1上には、複数の試料容器16が円周上に並んで設置されており、分析される試料の順番に従ってサンプリングプローブ24の下まで移動する。試料容器16中の検体は、検体サンプリング機構5に連結された試料用ポンプにより反応容器21の中に所定量分注される。
 試料を分注された反応容器21は、反応槽4の中を第1試薬添加位置まで移動する。移動した反応容器16には、試薬分注プローブ6に連結された試薬用ポンプ(図示せず)により試薬容器18から吸引された試薬が所定量加えられる。第一試薬添加後の反応容器21は、撹拌機構7の位置まで移動し、最初の撹拌が行われる。このような試薬の添加-撹拌が、第一~第四試薬について行われる。
 内容物が撹拌された反応容器21は光源から発した光束中を通過し、この時の吸光度は多波長光度計の測光機構8により検知される。検知された前記吸光度信号は制御部13に入り、検体の濃度に変換される。また、制御部13では同時に吸光度に基づいた異常の判定を行う。
 濃度変換されたデータは、記憶部12にて記憶され、表示部に表示される。測光の終了した前記反応容器21は、洗浄機構9の位置まで移動し洗浄され、次の分析に供される。
 次に、制御部13において吸光度に基づき異常を判定する処理の詳細を図1を参照して説明する。図1は制御部13内の、異常判定に関わる部分の処理ステップを示す図である。まず、ある検体に対し、ある検査項目の測定が開始されると同時に、ステップS5において、吸光度の時間変化を表す複数の近似式の中から、検査項目に対応した近似式を選択する。近似式としては例えば(数1)~(数6)に示す関数を記憶しておくと共に、検査項目ごとに最も適した近似式をテーブルとして記憶しておき、テーブルを利用して検査項目に対応した近似式を選択する。
 吸光度は、時間の経過と共に複数回測定されるが、ステップS10では、1回の測定または複数回の測定平均の吸光度データを、測光機構8より入力する。試薬と検体との反応に伴う色調変化に吸光度が大きく変化する波長(主波長)の光と、吸光度が殆ど変化しない波長(副波長)の光の2波長光を用いる測定方式においては、主波長光の吸光度と、副波長光の吸光度との差を、吸光度データとして入力する。ステップS15では入力された吸光度データを記憶する。ステップS20では、以下の処理に必要なだけの吸光度データ
が記憶されたかどうかを判定し、記憶されていない場合には処理をS10に戻し、必要なデータ数が記憶されるまで、吸光度データの入力,記憶を繰り返す。必要なデータ数が蓄積された場合には処理をステップS25に移す。
 ステップS25ではステップS5において選択した近似式によって表される吸光度の時間変化と、実際の吸光度の時間変化がなるべく小さくなるように数式中のパラメータの値を算出する。具体的には、ステップS20では、計測し記憶された吸光度データと、近似式により算出される、吸光度が計測された時点と同じ時点における吸光度との二乗誤差がなるべく小さくなるように数式中のパラメータ値を定める。パラメータ値の算出には既存の最小二乗計算方法が使用可能であるが、様々な形式の数式に対応可能な方法としては、例えば最急降下法により、二乗誤差が最小となるパラメータ値を算出する。複数の試薬を用いる反応では、主たる吸光度変化をもたらす試薬(通常は最終の試薬)を添加した後、吸光度の大きな変化が開始する。この場合には、主たる吸光度変化をもたらす試薬が添加された後のデータのみを、パラメータ値算出に用いる。
 本発明により異常検出を行う上では、ステップS25で正常なデータに対しては、近似式により算出される吸光度と、実際に計測される吸光度との差が十分に小さくなることが必要である。しかしながら従来、公知の技術において使用されていた近似式では、図4,図5に示すように正常なデータに対して近似式による算出される吸光度との差が十分小さくなるようにパラメータを定めることは困難であった。しかし、本発明により、ステップS5において(数1)~(数6)に示す様々な形式の関数を選択可能としたことにより、従来は正確な近似が困難であった図4,図5に示すようなデータに対しても、良好な近似結果を得ることが可能となった。例えば図4,図5に示す吸光度データと同じデータを用い、(数4)により近似した結果を図7に示す。また、図6の実線250は(数4)による近似の誤差を表す。従来技術による(数1),(数3)を用いた場合に比較し、誤差を大幅に小さくすることが可能になったことが分かる。
 ステップS30では、ステップS25で算出された近似式のパラメータ値に基づき、異常の有無を判定する。異常の有無を判定するためには、一例としては、予め正常なデータのパラメータ値の分布を求めておき、この分布から外れるパラメータ値が得られた場合に、異常と判定する。例えば正常に計測されたデータと、攪拌条件に異常を生じた状態で計測したデータを用い、(数4)により近似した場合のパラメータk1とk2の分布を図8に示す。横軸310はk1の値を表し、縦軸320はk2の値を表す。記号330は正常な攪拌条件における吸光度データから求めたパラメータ値を表し、記号340は異常な攪拌条件における吸光度データから求めたパラメータ値を表す。楕円360は正常な攪拌条件での吸光度データから求めたパラメータ値のおおよその分布範囲を模式的に示している。測定された吸光度から求めたパラメータ値が、この分布から外れている場合には攪拌異常と判定することができる。
 吸光度から得られたパラメータ値が正常な分布からはずれているかどうかを判定するためには、例えばステップS25で算出されたパラメータと、正常に計測されたデータのパラメータ値分布とのマハラノビス距離を計算し、距離が一定値以上である場合に異常と判定することができる。ただし、本発明によりステップS30での判定方法はこの方法に限定されない。例えば各パラメータ値に異常を判定するための閾値などの条件を定め、いくつかのパラメータ値で条件が満たされた場合に異常と判定しても良い。また、パラメータの値から異常の有無を判定するニューラルネットワークなどを構築し、用いても良い。
 更に、ステップS30では、正常データに計測されたデータに対する近似値のパラメータ分布と、異常なデータに対するパラメータ分布の両方を用いて異常を判定しても良い。この場合には、例えば予め収集した正常データと異常データとを用い、正常データのパラメータ分布と、異常データのパラメータ分布を求め、パラメータ空間中で正常データのパラメータと異常データのパラメータを識別するための識別境界を形成しておく。図8に示す分布では例えば破線350を識別境界とする。ステップS25で算出されたパラメータが識別境界のどちらかにあるかで、異常か正常かを判定する。識別境界を定める方法としては多変量解析,ニューラルネットワークなど既存の様々なパターン認識技術が応用可能である。
 また、異常の原因がわかっている異常データを予め収集しておくことにより、異常原因の推定を行うことも可能である。例えば正常データのパラメータ分布,攪拌異常のデータのパラメータ分布,試薬劣化時のデータのパラメータ分布、を予め求めておき、ステップS25で算出されたパラメータがどの分布に一番近いかを調べる。攪拌異常データのパラメータ分布に最も近い場合には攪拌異常と推定でき、試薬劣化時のデータのパラメータ分布に最も近い場合には試薬劣化と推定できる。ここでは試薬劣化と攪拌異常を例として挙げたが、同様に様々な異常原因の推定が可能である。また、どのパラメータ分布に最も近いかを判定する方法としては、多変量解析,ニューラルネットワークなど既存の様々なパターン認識技術が応用可能である。
 ステップS35では、ステップS30での正常,異常の判定結果を出力する。判定結果の出力方法は、測定に関わるどのような異常を検出するかにより、様々な方法を用いることが可能である。
 図8で用いた正常攪拌条件における吸光度データ,異常攪拌条件における吸光度データと同じデータを、従来技術の(数1)により近似し、パラメータの分布を調べた結果を図9に示す。横軸410はA1の値を表し、縦軸420はkの値を表す。記号430は正常な攪拌条件における吸光度データから求めたパラメータ値を表し、記号440は異常な攪拌条件における吸光度データから求めたパラメータ値を表す。図7と比較して明らかなように、本発明を適用することにより、異常データのパラメータ値と正常データのパラメータ値との分離がより明確となり、従来よりも高精度で異常の検出が可能となった。
 以上説明した本発明の第1の実施例は、自動分析装置の日常運用において以下のように活用可能である。
(1)日常の検査データで攪拌機構の性能評価
 日常の検査データ,精度管理試料データ,患者検体データの反応過程から近似式のパラメータ値を算出する。パラメータ値は記憶され日々のパラメータ値をモニタリングする。パラメータ値に基づき異常が検出された場合には、攪拌機構などの不良の可能性を指し示すことができる。本発明によれば、パラメータ値の経時変化から攪拌機構などの性能管理が可能になり装置の性能維持に貢献することができる。
(2)試薬劣化の検知
 本発明によれば、試薬の反応性を精度管理試料の結果や日常の検査における患者検体データから近似式パラメータをモニタリングすることによって、試薬の反応性を評価することができる。装置使用者が誤って、別の試薬を混入させてしまった場合や試薬ボトル中の試薬が希釈されてしまった場合、反応が緩慢になり本発明によってその緩慢反応を試薬劣化として検知することが可能になる。装置には日々の各項目の近似式計算パラメータが記録されており、あるテストにおいてあらかじめ定められた近似式計算パラメータの数値から逸脱した場合、試薬劣化を検知しアラームを発し装置使用者に知らせることができる。あらかじめ定められた数値ではなく、数日間分の各項目における近似式計算パラメータからその閾値を自動的に定めるようにしてもよい。
(3)試薬ロット変更の記録
 本発明によれば、装置使用者が前回と異なるロットの試薬を補充すると試薬の反応性が異なり、近似式パラメータによって検知することができる。試薬のロットが変わるときキャリブレーションを行わないと間違った測定値が算出されてしまう危険性がある。本発明を搭載した装置では、試薬ロットの変更を自動検知しキャリブレーションが行われなかった場合にアラームを発し、キャリブレーションを行うように促し間違った測定値の算出を防ぐことが可能になる。試薬ロット変更およびキャリブレーションの実施は装置の記憶部に記録される。これまでは装置使用者が試薬のロット変更情報を装置外のリストで管理していたが、本発明の機能を搭載することによって装置が試薬ロット変更を検知するため、その記録をもとに試薬の使用頻度を認識し試薬発注や在庫状況の把握を支援することが可能になる。
(4)試薬反応性の評価
 本発明によれば、購入する試薬を検討する際に同一項目において複数種類の試薬から近似式パラメータを算出し、パラメータ値に基づいた反応性評価が可能になる。また、試薬開発においても近似式パラメータにより試薬の反応性を評価することが可能になり反応が良く、安定的な試薬の基準を定めることができる。
(5)精度管理の指標
 本発明によれば、各測定項目において標準液とコントロールの反応過程から近似式パラメータを算出し、それをモニタリングすることにより精度管理試料の指標とすることができる。
(6)各試薬の特性と攪拌レベルの評価方法
 本発明の評価方法によれば、各測定項目の各試薬の特性に対して最適な攪拌レベルを検討することができる。
(7)試薬プローブの洗浄水による試薬希釈検知
 測定値だけでは試薬が希釈されたことにより生じた緩慢反応をチェックできず測定値が高値になってしまっていることに気付き難い。日常業務において臨床検査技師が全テストの反応過程を目視チェックすることは困難であり、特に緩慢反応は測定値が正常値の範囲以内であれば見落とされ、精確性の低い結果を出してしまう可能性がある。本発明によれば、試薬プローブの洗浄水によって試薬が希釈されてしまった場合、反応過程から得られた近似式計算パラメータの数値で反応の緩慢度を数値で評価することができる。測定値と一緒に緩慢度の評価値を表示させることにより反応状況を把握することができるため精確な結果を報告することができる。緩慢反応を検知できることは、下記の機能を可能にすることである。
  ・試薬劣化の定量的評価機能
  ・洗浄水で試薬が希釈されたことを検知する機能
  ・装置使用者が、誤って別の試薬を混入させたことを検知する機能
(8)検査データの信頼性保証
 近似式計算パラメータは、各検査データの反応過程を用いて各々を評価するため、分析した患者検体の測定結果について正常反応の確信度の評価値と成り得る。例えば生化学自動分析装置による患者検体の測定においてある項目の前回値と今回の測定値が異なった場合、検査技師はその他の関連する項目やその項目の反応過程を見て、再検するかどうかを判断する。その場合の指標の1つとして近似式計算パラメータの値が正常反応の分布内に存在する場合にはわざわざ再検することなく、試料と検体との反応性に問題はないという結果を報告することができる。
 本発明の第2の実施例による生化学自動分析装置も、第1の実施例と同じく構成の概略は図2により示される。制御部13以外の動作は第1の実施例と同じであるので、詳細な説明は省略する。
 第2の実施例における、吸光度から異常の有無を判定する処理の詳細を、図10を参照して説明する。なお、図1と同じ符合を付した処理は、図1との同符合で示される処理と同一であるため、以下では詳細な説明を省略する。
 ステップS5~ステップS25までの処理は実施例1と同一である。ステップS110では、ステップS25で算出した近似式のパラメータ値を記憶する。本実施例では、精度管理用試料など、特定の試料に対して複数回の測定を行う。ステップS120では、同一の特定試料に対する複数の測定が終了したか否かを判定する。例えば実施する測定回数を予め定めておき、定められた回数の測定が終了したか否かを判断すれば良い。もし測定が終了した場合には処理をステップS140に移す。終了していない場合には、ステップS130で次の測定開始を待機し、測定が開始されると処理をステップS10に移し、次の測定における吸光度データの入力を開始する。
 ステップS140では、ステップS110で記憶されたパラメータ値の分布を求める。具体的には平均値,分散,共分散などを求める。また、ヒストグラムを計算しても良い。
 ステップS150では、ステップS140で求めた数値に基づき、異常の有無を判定する。異常の有無を判定するために、例えば予め装置が正常な状態で、同じ試料に対して複数回測定し近似式のパラメータ値を求め、パラメータ値の分布を記憶しておく。ステップS140で求めたパラメータ値の分布と、記憶されているパラメータ値の分布を比較し、分布が同じ場合には正常であると判定し、分布が異なっている場合には異常と判定する。分布が異なっているか否かの判定には、統計における検定の手法が利用可能である。また、パラメータの平均値や分散に閾値を設け、閾値より大きいか否かにより分布が異なっているか否かを判定してもよい。
 更に、予め装置が異常な状態における、同じ試料に対するパラメータ値分布を求め、記憶しておき、ステップS140で求めたパラメータ値の分布が正常の分布と異常時の分布のどちらに近いかにより、正常,異常の判定を行っても良い。また、異常原因がわかっている複数の異常状態時のパラメータ分布を記憶しておき、ステップS140で求めたパラメータ値の分布がどの分布に最も近いかを調べても良い。最も近い分布が異常状態時の分布であった場合には、その分布を生じた異常原因を、推定される異常原因とする。
 本発明によれば、例えば出荷時の攪拌機構の検査を定量的に実施することができる。複数の検査項目について、定められた試料を測定し反応過程を取得する。取得した反応過程における近似式を計算し、計算パラメータを算出する。同様の試薬,サンプルを用いて複数回測定し計算パラメータの数値とばらつきを確認する。定められた基準値と比較し攪拌機構の性能確認を行うことができる。測定値のばらつきだけでなく、近似式計算パラメータのばらつきや大きさが、正常な攪拌が行われているかを評価するための基準となる。これまでは、攪拌の有無を評価できず、判断基準がないため、再現性の良し悪しなどの評価が曖昧な状況であった。本発明により攪拌の有無,攪拌レベルの違いなどを定量的に評価することが可能となる。
 また、日常の装置の運用において、同一の精度管理試料等を複数回測定することにより、異常の有無を高精度に検出することが可能となる。
 第3の実施例は、図2に示す装置構成、図1に示す処理ステップともに第1の実施例と共通である。図1のステップS5において選択される近似式と、ステップS25の近似式パラメータ算出方法のみが異なるため、この2種類の処理ステップについて詳細に説明する。
 第1の実施例では、ステップS5において選択可能な数式として、吸光度xを時間tの関数として表した数式を用いたが、本実施例では、数式として微分方程式を用いる。吸光度の時間変化を理論的に説明するためには、微分方程式が用いられることが多いが、本実施例では理論式をそのまま活用することが可能である。例えば時間をt、吸光度をx、Σ{ }を{ }内の式のiを0からnまで変化させ、加算した和を表す記号、nを1以上の整数、fi(t,x)をtまたはxまたはxの任意の次数の時間微分を含む関数であり、fi(t,x)は定数である場合も含むとし、qiをパラメータとする時、次式で表現される形式の微分方程式が利用可能である。
  Σ{qi*fi(t,x)}=0              …(数7)
 ステップS25では(数7)に含まれるパラメータの値を、記憶された吸光度データを用いて決定する。吸光度は時系列データとして記憶されるため、差分を計算することにより、近似的に時間微分を計算することが可能である。そのため、吸光度が測定された時刻tにおける(数7)のfi(t,x)に相当する値が求まるため、複数の時点においてこれらの値が求まれば(数7)はそれぞれfi(t,x)の線形結合の形式で表されるため、最小二乗法により容易にパラメータqiの値を求めることができる。ここでは一例として、吸光度xの時間変化が(数8)に示す数式で表された場合について説明する。(数8)は(数7)においてf0(t,x)=1,f1(t,x)=x(t),f2(t,x)=x[1](t),f3(t,x)=x[2](t)とおいた場合に相当する。ただしx[1](t),x[2](t)はそれぞれx(t)の一次時間微分,二次時間微分を表すものとする。
  q0+q1*x(t)+q2*x[1](t)
    +q3*x[2](t)=0              …(数8)
 (数8)はx(t)を左辺、残りの項を右辺とすることにより(数9)の形に変形できる。
  x(t)=r0+r1*x[1](t)+r2*x[2](t)   …(数9)
 以下では吸光度がm+1回測定され、x0~xmの吸光度が得られたとする。この場合、一次の時間微分に相当する量として、例えばx′1=(x2-x0)/(2*h),x′2=(x3-x1)/(2*h)という演算によりx′~x′(m-1)までm-1個の差分値が求まる。また、二次の時間微分に相当する量として、例えばx″1=(x2-2*x1+x0)/h^2,x″2=(x3-2*x2+x1)/h^2、という演算によりx″1~x″(m-1)までm-1個の差分値が求まる。ただしhは吸光度の測定時間間隔、^はべき乗を表す。(数9)においてx(t),x[1](t),x[2](t)の代わりにxi,x′i,x″iを代入すると(数9)は(数10)で表される。ただしi=1~m-1とする。
  xi=r0+r1*x′i+r2*x″i      …(数10)
 実際は(数10)で表される関係と、観測される吸光度は完全には一致しないため、(数10)の右辺と左辺の値は一致しない。そこで、右辺と左辺の差がなるべく小さくなるように最小二乗法によりパラメータをr0,r1,r2を定める。ここでxiを縦に並べたベクトルをX,Aを以下に示すm-1行3列の行列、R=(r0,r1,r2)′とすると、(数10)の関係は(数11)で表される。ただし記号′は転置を表す。
  1  x′1     x″1
  1  x′2     x″2
  1  x′3     x″3
  :    :       :
  1  x′(m-1)  x″(m-1)
  X=AR                     …(数11)
 (数11)の特性方程式を解けば、最小二乗解が(数12)により求まる。ただしinv( )は( )内の行列の逆行列を表す。
  R={inv(A′A)}A′X            …(数12)
 以上述べたように、第3の実施例においては、吸光度の時間変化を表す数式を微分方程式とすることにより、化学反応速度論から導かれる微分方程式をそのまま利用することが可能であり、また、吸光度を時間tの関数として表す場合に比べ、パラメータを決定する最小二乗法の計算も容易になる、という効果が得られる。
 第1~第3の実施例で説明したように、本発明を適用した自動分析装置では、従来よりも多くの検査項目における日常の検査データから装置の異常をチェックすることが可能になり、装置の性能維持に貢献することができる。
1 サンプルディスク
2 試薬ディスク
3 反応ディスク
4 反応槽
5 サンプリング機構
6 ピペッティング機構
7 攪拌機構
8 測光機構
9 洗浄機構
10 表示部
11 入力部
12 記憶部
13 制御部
14 圧電素子ドライバ
15 攪拌機構コントローラ
16 試料容器
17,19 円形ディスク
18 試薬ボトル
20 保冷庫
21 反応容器
22 反応容器ホルダ
23 駆動機構
24,27 プローブ
25,28 支承軸
26,29 アーム
31 固定部
32 電極
33 ノズル
34 上下駆動機構
110 時間の経過を表す軸
120 吸光度を表す軸
140 各時点において計測された吸光度を表す記号
150 近似式による算出された吸光度を表す曲線
220 計測された吸光度と近似式により算出された吸光度の誤差を表す軸
230 (数1)を近似式として用いた場合の計測された吸光度と近似式により算出された吸光度の誤差を表す曲線
240 (数2)を近似式として用いた場合の計測された吸光度と近似式により算出された吸光度の誤差を表す曲線
250 (数4)を近似式として用いた場合の計測された吸光度と近似式により算出された吸光度の誤差を表す曲線
310 (数4)のパラメータk1の値を表す軸
320 (数4)のパラメータk2の値を表す軸
330 正常な攪拌条件における近似式パラメータk1,k2の値を表す記号
340 異常な攪拌条件における近似式パラメータk1,k2の値を表す記号
350 正常な攪拌条件における近似式パラメータと、異常な攪拌条件における近似式パラメータとを識別するための直線の例
360 正常な攪拌条件における近似式パラメータの分布範囲
410 (数1)のパラメータA1の値を表す軸
420 (数1)のパラメータkの値を表す軸
430 正常な攪拌条件における近似式パラメータA1,kの値を表す記号
440 異常な攪拌条件における近似式パラメータA1,kの値を表す記号

Claims (11)

  1.  測定項目毎、または検体毎に対応付けられた、測定値の時間変化の近似式を記憶する記憶機構と、
     実測値に対応するように前記記憶機構に記憶された近似式のパラメータを最適化するパラメータ最適化機構と、
     前記パラメータ最適化機構で最適化されたパラメータに基づき異常の有無を判定する判定機構と、
    を備えたことを特徴とする自動分析装置。
  2.  請求項1記載の自動分析装置において、
     前記近似式の1つが、測定時刻をt、計算値をx、乗算を表す記号を*とする時、式
      x=a0+a1*exp(-k1*t)
          +a2*exp(-k2*t)
    であり、測定時刻における実測値と、上記近似式で求められる計算値との差が小さくなるように該式中のパラメータa0,a1,a2,k1,k2の値を算出し、該パラメータの値に基づき、前記判定機構で異常の有無を判定することを特徴とする自動分析装置。
  3.  請求項1記載の自動分析装置において、
     前記近似式の1つが、測定時刻をt、計算値をxとし、Σ{ }を{ }内の式のiを1からnまで変化させ、加算した和を表す記号とし、nを1以上の整数とし、乗算を表す記号を*とする時、式
      x=a0+Σ{ai*exp(-ki*t)}
    であり、測定時刻における実測値と、上記近似式で求められる計算値との差が小さくなるように前記式中のパラメータa0,ai,kiの値を算出し、該パラメータの値に基づき、前記判定機構で異常の有無を判定することを特徴とする自動分析装置。
  4.  請求項1記載の自動分析装置において、
     前記近似式の1つが、測定時刻をt、計算値をxとし、Σ[n]{ }を{ }内の式のiを1からnまで変化させ、加算した和を表す記号とし、Σ[m]{ }を{ }内の式のiを1からmまで変化させ、加算した和を表す記号とし、Σ[l]{ }を{ }内の式のiを1からlまで変化させ、加算した和を表す記号とし、n,m,lを1以上の整数とし、乗算を表す記号を*とする時、式
      x=a0+Σ[n]{ai*exp(-ki*t)}
          +Σ[m]{bi/(ci+di*t))
          +Σ[l]{(pi/(exp(qi*t)+ri))
    であり、測定時刻における実測値と、上記近似式で求められる計算値との差が小さくなるように前記式中のパラメータa0,ai,ki,bi,ci,di,pi,qi,riの値を算出し、該パラメータの値に基づき、前記判定機構で異常の有無を判定することを特徴とする自動分析装置。
  5.  請求項1記載の自動分析装置において、
     前記近似式の一次または二次以上の時間微分を計算し、測定時刻をt、計算値をxとし、該計算値の時刻tにおけるn次時間微分をx[n](t)、Σ{ }を{ }内の式のiを0からnまで変化させ、加算した和を表す記号、nを整数、乗算を表す記号を*とする時、式
      p+Σ{pi*x[n](t)}=0
    となるようなパラメータp,piの値を算出し、前記パラメータの値に基づき異常の有無を判定することを特徴とする自動分析装置。
  6.  請求項1記載の自動分析装置において、
     前記近似式の一次または二次以上の時間微分を計算し、測定時刻をt、計算値をxとし、Σ{ }を{ }内の式のiを0からnまで変化させ、加算した和を表す記号、nを1以上の整数、fi(t,x)をtまたはxまたはxの任意の次数の時間微分を含む関数,
    乗算を表す記号を*とし、fi(t,x)は定数である場合も含む時、式
      Σ{qi*fi(t,x)}=0
    となるようパラメータqiの値を算出し、前記パラメータの値に基づき異常の有無を判定することを特徴とする自動分析装置。
  7.  請求項1記載の自動分析装置において、
     前記判定機構は、前記パラメータ最適化機構で最適化されたパラメータを、正常な状態において得られたパラメータの分布と比較し、異常の有無を判定することを特徴とする自動分析装置。
  8.  請求項1記載の自動分析装置において、
     前記判定機構は、前記パラメータ最適化機構で最適化されたパラメータを、正常な状態において得られたパラメータ値の分布と、異常な状態において得られたパラメータ値の分布の双方と比較し、異常の有無を判定することを特徴とする自動分析装置。
  9.  請求項1記載の自動分析装置において、
     前記判定機構は、前記パラメータ最適化機構で最適化されたパラメータを、異常原因がわかっている異常な状態において得られたパラメータ値の分布と比較し、異常の原因を推定する異常原因推定機構を備えたことを特徴とする自動分析装置。
  10.  測定項目毎、または検体毎に記憶された測定値の時間変化の近似式に基づき、実測値に対応するように前記記憶機構に記憶された近似式のパラメータを最適化するパラメータ最適化ステップと、
     前記パラメータ最適化ステップで最適化されたパラメータに基づき異常の有無を判定する判定ステップと、
    を備えたことを特徴とする分析方法。
  11.  請求項10記載の分析方法において、
     前記判定ステップは更に、前記パラメータ最適化ステップで得られたパラメータ値を、異常原因がわかっている異常な状態において得られたパラメータ値の分布と比較し、異常原因を推定する異常原因推定ステップを有することを特徴とする分析方法。
PCT/JP2010/002631 2009-05-08 2010-04-12 自動分析装置、及び分析方法 WO2010128575A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/318,535 US9310388B2 (en) 2009-05-08 2010-04-12 Automatic analyzer and analysis method
CN201080020330.7A CN102422162B (zh) 2009-05-08 2010-04-12 自动分析装置及分析方法
EP10772102.9A EP2428802B1 (en) 2009-05-08 2010-04-12 Automatic analysis device and analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009113138A JP5193937B2 (ja) 2009-05-08 2009-05-08 自動分析装置、及び分析方法
JP2009-113138 2009-05-08

Publications (1)

Publication Number Publication Date
WO2010128575A1 true WO2010128575A1 (ja) 2010-11-11

Family

ID=43050086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002631 WO2010128575A1 (ja) 2009-05-08 2010-04-12 自動分析装置、及び分析方法

Country Status (5)

Country Link
US (1) US9310388B2 (ja)
EP (1) EP2428802B1 (ja)
JP (1) JP5193937B2 (ja)
CN (1) CN102422162B (ja)
WO (1) WO2010128575A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103091287A (zh) * 2011-10-31 2013-05-08 深圳迈瑞生物医疗电子股份有限公司 一种血液分析仪测量结果的自诊断方法和装置
CN103534596A (zh) * 2011-05-16 2014-01-22 株式会社日立高新技术 自动分析装置以及自动分析程序
JPWO2020195783A1 (ja) * 2019-03-26 2020-10-01

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5193940B2 (ja) * 2009-05-11 2013-05-08 株式会社日立ハイテクノロジーズ 自動分析装置
JP5520519B2 (ja) 2009-05-20 2014-06-11 株式会社日立ハイテクノロジーズ 自動分析装置及び分析方法
JP5953089B2 (ja) * 2012-03-30 2016-07-13 株式会社Lsiメディエンス 測定データの異常を検出する方法、及び、測定データの異常検出装置
JP5953164B2 (ja) * 2012-07-30 2016-07-20 株式会社日立ハイテクノロジーズ データ処理装置及びそれを用いた自動分析装置
JP2014202608A (ja) * 2013-04-04 2014-10-27 日本光電工業株式会社 外部精度管理の評価用データの表示方法
WO2015137074A1 (ja) * 2014-03-14 2015-09-17 テルモ株式会社 成分測定装置、方法及びプログラム
US10678543B2 (en) * 2014-11-07 2020-06-09 Bl Technologies, Inc. Analytic engine for use with remote monitoring data and imperfect asset models
JP5891288B2 (ja) * 2014-12-08 2016-03-22 株式会社日立ハイテクノロジーズ 自動分析装置及び自動分析プログラム
CN108318436B (zh) * 2018-02-06 2021-05-04 迈克医疗电子有限公司 反应曲线生成方法、装置及光学检测系统
EP3869203A4 (en) * 2018-10-17 2022-07-13 Hitachi High-Tech Corporation METHOD OF DETERMINING ANOMALIES AND AUTOMATED ANALYZER
CN111381055A (zh) * 2018-12-29 2020-07-07 深圳迈瑞生物医疗电子股份有限公司 一种校准数据显示方法和样本分析装置
CN118647874A (zh) * 2022-02-09 2024-09-13 株式会社日立高新技术 数据解析方法、数据解析系统以及计算机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194313A (ja) * 1992-12-24 1994-07-15 Jeol Ltd 反応測定方法
JPH08219984A (ja) * 1995-02-13 1996-08-30 Jeol Ltd 生化学分析装置
JP2003057248A (ja) * 2001-08-21 2003-02-26 Hitachi Ltd 自動分析装置及び化学分析方法の精度管理方法
JP2004347385A (ja) 2003-05-21 2004-12-09 Hitachi Ltd 異常検出システム及び異常検出方法
JP2006337125A (ja) 2005-06-01 2006-12-14 Hitachi High-Technologies Corp 自動分析装置,自動分析装置を用いた分析方法
JP2009047638A (ja) * 2007-08-22 2009-03-05 Toshiba Corp 自動分析装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147039A (en) * 1981-03-09 1982-09-10 Hitachi Ltd Data discriminating device for photometer
JPH0627743B2 (ja) * 1985-03-25 1994-04-13 株式会社日立製作所 自動分析装置
JPH0359461A (ja) * 1989-07-27 1991-03-14 Shimadzu Corp 生化学自動分析装置
JP2934653B2 (ja) * 1990-06-20 1999-08-16 株式会社ニッテク 自動分析装置
JPH06249856A (ja) * 1993-02-26 1994-09-09 Shimadzu Corp 生化学自動分析装置における測定方法
JP2001083081A (ja) * 1999-09-17 2001-03-30 Hitachi Ltd 自動化学分析装置における非直線検量線作成方法
JP4287753B2 (ja) * 2004-01-19 2009-07-01 株式会社日立ハイテクノロジーズ 分析装置
WO2006024099A1 (en) * 2004-09-02 2006-03-09 Polymers Australia Pty Limited Photochromic compounds comprising polymeric substituents and methods for preparation and use thereof
JP5160447B2 (ja) * 2005-12-22 2013-03-13 アボット・ラボラトリーズ 肺がんへの傾向についてのスクリーニングのための方法およびマーカー組合せ
US20080133141A1 (en) * 2005-12-22 2008-06-05 Frost Stephen J Weighted Scoring Methods and Use Thereof in Screening
JP2009002864A (ja) * 2007-06-22 2009-01-08 Olympus Corp 分析装置および分析方法
WO2009021178A1 (en) * 2007-08-08 2009-02-12 Chemimage Corporation Raman difference spectra based disease classification
CA2703736A1 (en) * 2007-10-25 2009-04-30 The Scripps Research Institute Genetic incorporation of 3-aminotyrosine into reductases
JP4654256B2 (ja) * 2008-02-28 2011-03-16 株式会社日立ハイテクノロジーズ 自動分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06194313A (ja) * 1992-12-24 1994-07-15 Jeol Ltd 反応測定方法
JPH08219984A (ja) * 1995-02-13 1996-08-30 Jeol Ltd 生化学分析装置
JP2003057248A (ja) * 2001-08-21 2003-02-26 Hitachi Ltd 自動分析装置及び化学分析方法の精度管理方法
JP2004347385A (ja) 2003-05-21 2004-12-09 Hitachi Ltd 異常検出システム及び異常検出方法
JP2006337125A (ja) 2005-06-01 2006-12-14 Hitachi High-Technologies Corp 自動分析装置,自動分析装置を用いた分析方法
JP2009047638A (ja) * 2007-08-22 2009-03-05 Toshiba Corp 自動分析装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOSHIKAZU YAMAMOTO: "Jido Bunseki Sochi Joho o Mochiita Kensa Data no Hosho Hanno Katei o Mochiita Hannokei ni Kiin suru Ijo no Kenshutsu", JAPANESE JOURNAL OF CLINICAL LABORATORY AUTOMATION, vol. 34, no. 2, 1 April 2009 (2009-04-01), pages 163 - 169, XP008168318 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103534596A (zh) * 2011-05-16 2014-01-22 株式会社日立高新技术 自动分析装置以及自动分析程序
EP2711713A1 (en) * 2011-05-16 2014-03-26 Hitachi High-Technologies Corporation Automatic analysis device and automatic analysis program
EP2711713A4 (en) * 2011-05-16 2015-04-22 Hitachi High Tech Corp AUTOMATIC ANALYSIS DEVICE AND AUTOMATIC ANALYSIS PROGRAM
US9562917B2 (en) 2011-05-16 2017-02-07 Hitachi High-Technologies Corporation Automatic analysis device and automatic analysis program
CN103091287A (zh) * 2011-10-31 2013-05-08 深圳迈瑞生物医疗电子股份有限公司 一种血液分析仪测量结果的自诊断方法和装置
CN103091287B (zh) * 2011-10-31 2015-04-01 深圳迈瑞生物医疗电子股份有限公司 一种血液分析仪测量结果的自诊断方法和装置
US10114006B2 (en) 2011-10-31 2018-10-30 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Self-diagnosis method and apparatus for measuring results from blood analyzers
JPWO2020195783A1 (ja) * 2019-03-26 2020-10-01
WO2020195783A1 (ja) * 2019-03-26 2020-10-01 株式会社日立ハイテク データ解析方法、データ解析システム、および計算機
JP7448521B2 (ja) 2019-03-26 2024-03-12 株式会社日立ハイテク データ解析方法、データ解析システム、および計算機

Also Published As

Publication number Publication date
CN102422162A (zh) 2012-04-18
JP5193937B2 (ja) 2013-05-08
EP2428802B1 (en) 2019-01-30
CN102422162B (zh) 2014-05-07
EP2428802A4 (en) 2017-10-18
US9310388B2 (en) 2016-04-12
JP2010261822A (ja) 2010-11-18
EP2428802A1 (en) 2012-03-14
US20120109534A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
JP5193937B2 (ja) 自動分析装置、及び分析方法
JP4654256B2 (ja) 自動分析装置
JP5520519B2 (ja) 自動分析装置及び分析方法
JP5562421B2 (ja) 自動分析装置、分析方法及び情報処理装置
US9383376B2 (en) Automatic analyzer
JP5193940B2 (ja) 自動分析装置
JP4276894B2 (ja) 異常検出システム及び異常検出方法
JP5932540B2 (ja) 自動分析装置
JP2006023214A (ja) 測定反応過程の異常の有無判定方法,該方法を実行可能な自動分析装置及び該方法のプログラムを記憶した記憶媒体
WO2020195783A1 (ja) データ解析方法、データ解析システム、および計算機
JP2006292698A (ja) 臨床検査用自動分析装置の精度管理方法、及び自動分析装置
JP2005127757A (ja) 自動分析装置
WO2022019064A1 (ja) 自動分析装置および自動分析方法
JP7299914B2 (ja) 異常判定方法、および自動分析装置
JP2021117191A (ja) 自動分析装置及び反応異常判定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080020330.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10772102

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8580/DELNP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010772102

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13318535

Country of ref document: US