WO2010122890A1 - 光学機能層用微粒子、ディスプレイ用光学部材及び防眩機能層 - Google Patents

光学機能層用微粒子、ディスプレイ用光学部材及び防眩機能層 Download PDF

Info

Publication number
WO2010122890A1
WO2010122890A1 PCT/JP2010/056019 JP2010056019W WO2010122890A1 WO 2010122890 A1 WO2010122890 A1 WO 2010122890A1 JP 2010056019 W JP2010056019 W JP 2010056019W WO 2010122890 A1 WO2010122890 A1 WO 2010122890A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional layer
fine particles
optical functional
optical
shell
Prior art date
Application number
PCT/JP2010/056019
Other languages
English (en)
French (fr)
Inventor
本田誠
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to CN201080017393.7A priority Critical patent/CN102405425B/zh
Priority to US13/264,697 priority patent/US20120064297A1/en
Publication of WO2010122890A1 publication Critical patent/WO2010122890A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter
    • Y10T428/2438Coated

Definitions

  • the present invention mainly relates to fine particles used for optical members installed in various displays used for image display such as word processors, computers, and televisions.
  • an optical film for preventing reflection is generally provided on the outermost surface. Yes.
  • Such an antireflection optical film suppresses reflection of an image or reduces reflectance due to light scattering or interference.
  • an antiglare film in which an antiglare layer having an uneven shape is formed on the surface of a transparent substrate is known.
  • Such an antiglare film can prevent external light from being scattered due to the uneven shape of the surface, thereby preventing a decrease in visibility due to reflection of external light or image reflection.
  • grains conventionally is known (for example, patent document 1).
  • an image display device such as a liquid crystal display device has been required to have a very high level of image quality, and in particular, it is particularly required to have excellent black reproducibility in addition to anti-glare properties.
  • a method for improving the black reproducibility in addition to the antiglare property for example, a light diffusion layer containing at least two kinds of translucent resin particles having different average particle diameters and controlled particle diameters within a predetermined range
  • an optical film provided with (for example, Patent Document 2).
  • Patent Document 2 such a conventional method has not been able to satisfy both the antiglare property and the black color reproducibility at a very high level in recent years.
  • optical members made into diffusion sheets by kneading fine particles having a refractive index different from that of a substrate into a thermoplastic resin or dispersing them in a thermosetting resin are used for transmission screens, etc.
  • the backscatter occurs and the contrast is low.
  • fine particles having an antireflection layer using interference on the fine particle surface as shown in Patent Document 3 or refractive index as shown in Patent Document 4 are stepwise or continuous. Microparticles that can be changed dynamically have been proposed.
  • the fine particles having such an antireflection layer are likely to be colored due to interference, and it is difficult to increase the diffusion of the fine particles that change the refractive index.
  • Japanese Patent Laid-Open No. 6-18706 JP 2007-041547 A Japanese Patent Laid-Open No. 2005-17920 Japanese Patent Laid-Open No. 2-120702
  • the present invention can achieve anti-glare properties, diffusibility, and black color reproducibility at an extremely high level, and can have excellent color reproducibility, and a high-definition display.
  • An optical functional layer that can be suitably applied to the optical functional layer, an optical functional layer fine particle, an optical member for display, an antiglare film, and a diffusion film using the optical functional layer fine particle The purpose is to provide.
  • the present invention is an optical functional layer fine particle having a core and a shell covering the core, which is added to a transparent substrate and used for forming an optical functional layer, and has an average particle size R of the optical functional layer And the ratio of the average particle diameter R to the average diameter r of the core (r / R) is 0.50 or more, and the shell is made of the transparent substrate.
  • the fine particles for an optical functional layer are characterized by having a refractive index different from that of the optical functional layer and light absorption performance.
  • the ratio (n2 / n1) between the refractive index n1 of the transparent substrate and the refractive index n2 of the shell is ⁇ n
  • ⁇ n and (r / R) are expressed by the following formulas: It is preferable to satisfy (1) to (4).
  • the core and the shell are made of an organic material, and the shell is selected from the group consisting of an ultraviolet light region, a visible light region and an infrared light region as the organic material constituting the core. It is preferable that an additive having light absorption performance is included in at least one kind of region. Further, the fine particles for an optical functional layer of the present invention have the maximum absorption wavelength of the above-mentioned additive in the particles in which the luminance at the regular transmission of the diffuse luminance distribution is p and the additive having the light absorption performance is not added to the shell. It is preferable that (p / P) is 0.6 or more, where P is the luminance at regular transmission of the diffuse luminance distribution. Moreover, it is preferable that the said additive has a substantially equal absorption factor in a visible wavelength region.
  • the present invention is an optical member for a display comprising an optical functional layer formed using a transparent substrate and the fine particles for an optical functional layer of the present invention, for the optical functional layer in the optical functional layer.
  • the ratio (mass%) of the fine particles is not less than the value calculated from the formula represented by the following formula (8) and not more than the value calculated from the formula represented by the following formula (9). It is the optical member for displays characterized. 0.34 ⁇ R 3 / T (8) 121 x R / T (9)
  • T represents the average thickness ( ⁇ m) of the optical function layer
  • R represents the average particle diameter ( ⁇ m) of the fine particles for the optical function layer
  • R ⁇ T the average thickness of the optical function layer
  • this invention is an anti-glare film characterized by having the uneven
  • the present invention has an optical functional layer for display formed using a transparent base material and the fine particles for optical members of the present invention, and the transparent base material is a thermoplastic resin and / or thermosetting.
  • a diffusion film comprising a resin.
  • FIG. 2 is a schematic diagram showing the state of light travel when the ratio (n2 / n1) of the refractive index n1 of the transparent substrate and the refractive index n2 of the fine particle shell is less than 1
  • FIG. 5 is a schematic diagram showing a light traveling state when the ratio (n2 / n1) between the refractive index n1 of the transparent substrate and the refractive index n2 of the fine particle shell exceeds 1.
  • the fine particles 20 and 30 have the same refractive index of the core and the shell, and the light reflected from the surfaces of the fine particles 20 and 30 is omitted.
  • the present inventors have found that the generation of stray light can be suitably prevented by providing light absorption performance in a region through which the internally reflected light in the fine particles is unevenly distributed.
  • the present invention has been completed. That is, in the present invention, the light that passes through the fine particles (necessary light) is only absorbed by the thickness of the region having the light absorption performance, so that the transmittance is not lowered, but the internal reflection that becomes stray light is small. The light is extremely longer than the light that passes through the region that has the light absorption performance, so that the light is more strongly absorbed in the region and the generation of stray light is suppressed.
  • the Rukoto is the light that passes through the region that has the light absorption performance, so that the light is more strongly absorbed in the region and the generation of stray light is suppressed.
  • the fine particles for an optical functional layer of the present invention are added to a transparent substrate and used for forming an optical functional layer.
  • the optical functional layer is not particularly limited, and examples thereof include conventionally known surface films and screens that are installed on the surface of a high-definition image display. Examples thereof include an antiglare layer, a hard coat layer, an antireflection layer, and an antistatic layer. And a diffusion layer. Of these, it is suitably used as an antiglare layer and a diffusion layer.
  • the fine particles for an optical functional layer of the present invention can be used for, for example, remote control switching and position detection by a pointer, in addition to display applications, by providing the shell light absorption characteristics described later outside the visible range. It can also be used to prevent the generation of stray light from outside light and increase detection accuracy, or can be used to prevent harmful reflection of ultraviolet light by using it as a diffusion plate of an ultraviolet irradiation device. Furthermore, as an additive to be included in the shell described later, it is possible to limit the wavelength of light to be backscattered by using an additive having a window with respect to the wavelength of light, and the wavelength conversion material is used as the additive. Thus, it is also possible to change the wavelength of the backscattered light.
  • FIG. 1 is a cross-sectional view schematically showing an example of the fine particles for an optical functional layer of the present invention.
  • the fine particle 10 for an optical function layer of the present invention has a core 11 and a shell 12 that covers the core 11.
  • the core is made of a transparent material, and those made of an organic material are preferably used.
  • the material constituting such a core is not particularly limited.
  • styrene resin reffractive index; 1.60
  • melamine resin reffractive index; 1.57
  • acrylic resin reffractive index; 1.49
  • Acrylic-styrene copolymer resin reffractive index; 1.49 to 1.60
  • polycarbonate resin reffractive index; 1.59
  • polyethylene reffractive index; 1.53
  • polyvinyl chloride polyvinyl chloride
  • styrene resins and acrylic-styrene resins are preferably used, and acrylic-styrene copolymer resins are particularly preferred because the refractive index can be easily changed by changing the ratio of acrylic and styrene.
  • the shell has a refractive index different from that of the transparent base material and has light absorption performance.
  • the refractive index of the shell is the same as the refractive index of the transparent substrate, sufficient optical characteristics (glare) for display optical members such as an antiglare film and a diffusion film using the fine particles for an optical functional layer of the present invention are used. Prevention and diffusion) cannot be obtained.
  • Examples of such a shell include those obtained by adding an additive that exhibits light absorption performance to the organic material constituting the core described above.
  • the additive has light absorption performance in at least 1 sort (s) of area selected from the group which consists of an ultraviolet-light area
  • the fine particles for an optical functional layer of the present invention can be suitably used as the above-mentioned optical functional layer application.
  • the absorptance in the visible wavelength region is substantially equal.
  • the display optical member using the fine particles for an optical functional layer of the present invention is not colored and is reflective. This is because light is not colored.
  • the absorptance is substantially equal” means that the ratio of the absorptance of each wavelength in the visible light region is ⁇ 10% or less by being visually neutral black or neutral gray.
  • Such additives are not particularly limited, and may be added as fine particles or dissolved in a shell material. Moreover, the said additive may have permeability
  • the internal reflection light is suitably absorbed, and the optical film functional layer of the present invention
  • the light incident on the fine particles for use is appropriately adjusted so that the light is sufficiently transmitted.
  • the shell preferably has a refractive index intermediate between the core and the transparent substrate.
  • the refractive index of the shell satisfies the above conditions, the surface reflection can be suitably suppressed.
  • the average particle diameter R is not less than the wavelength of light (incident light) incident on the optical functional layer. If the average particle size R is less than the wavelength of incident light, the optical path of light irradiated to the optical functional layer fine particles of the present invention cannot be specified, and the amount of transmitted light and stray light absorption cannot be adjusted.
  • the average particle diameter R is preferably 0.4 to 20 ⁇ m. If it is less than 0.4 ⁇ m, it tends to be less than the wavelength of the incident light, and the range of light selection applicable to the optical function layer using the optical function layer fine particles of the present invention is limited.
  • an optical functional layer excellent in sufficient antiglare property and black reproducibility cannot be obtained. If it exceeds 20 ⁇ m, glare is likely to occur, and the quality of the display to which the optical film using the fine particles for an optical functional layer of the present invention is applied may be lowered.
  • the more preferable lower limit of the particle diameter R is 0.8 ⁇ m, and the more preferable upper limit is 10 ⁇ m.
  • the ratio (r / R) of the average particle diameter R to the average diameter r of the core is 0.50 or more. If it is less than 0.50, the stray light absorption of the fine particles for an optical functional layer of the present invention will be excessive, and the intensity of transmitted light will be reduced, and the transmittance will be poor when an optical functional layer is produced. Become.
  • the (r / R) is preferably 0.70 or more, and more preferably 0.85 or more. This is because the stray light absorption efficiency is higher than the intensity reduction of the transmitted light by the shell.
  • the average particle diameter R and the average diameter r of the core can be measured by observing a cross section of the fine particles for an optical functional layer of the present invention by a known microscope observation.
  • the ratio (n2 / n1) between the refractive index n1 of the transparent substrate and the refractive index n2 of the shell of the fine particles for optical functional layer is ⁇ n (hereinafter also referred to as a specific refractive index). ), It is preferable that ⁇ n and (r / R) satisfy the above formulas (1) to (4). When the above (r / R) satisfies the formulas (1) to (4), the fine particles for an optical functional layer of the present invention have excellent transmission performance for incident light and absorption performance for internally reflected light. It will be a thing.
  • the ⁇ n and (r / R) satisfy the above formulas (5) and (6).
  • the fine particles for an optical functional layer of the present invention are more excellent in incident light transmission performance and internal reflection light absorption performance.
  • the above ⁇ n and (r / R) satisfy the above formula (7).
  • the fine particles for an optical functional layer of the present invention have a brightness at the regular transmission of the diffuse luminance distribution as p, and the particles having no additive having light absorption performance added to the shell at the absorption maximum wavelength of the additive. It is preferable that (p / P) is 0.6 or more, where P is the luminance at the regular transmission of the diffuse luminance distribution.
  • the above (p / P) is a parameter indicating the degree of light absorption of the shell of the fine particle for optical function layer of the present invention, and when it is less than 0.6, the fine particle for optical function layer of the present invention is transmitted. The transmittance of light is low, and it is not suitable for use as an optical functional layer.
  • the more preferable lower limit of the (p / P) is 0.7, and the more preferable lower limit is 0.8.
  • the value of (p / P) is preferably measured for the fine particles for the optical functional layer. However, when the fine particles are small and difficult to measure, the value is calculated by the following method, for example (p ′ / P ′).
  • a plate having a thickness of 1 mm formed by press treatment using the fine particles not dyed is prepared.
  • the transmittance (P ′) in the visible light region of the produced plate is measured.
  • the plate is dyed under the same conditions as those for forming the fine particle shell for the optical function layer of the present invention, and a treated plate having a dyed layer having the same thickness as the shell thickness is produced.
  • the transmittance (p ′) in the visible light region of the prepared treatment plate is measured.
  • a 1 mm-thick plate in which the fine particle core material is formed by pressing is prepared.
  • the transmittance (P ′) in the visible light region of the produced plate is measured.
  • Measure the thickness A of the shell is measured.
  • a core plate having a thickness of 1-2 ⁇ A (mm) formed by pressing the fine particle core material is prepared.
  • the material for forming the shell of the fine particles for the optical function layer of the present invention is made into a paint, and coated on the core plate so as to have a total thickness of 1 mm to produce a treated plate.
  • the transmittance (p ′) in the visible light region of the prepared treatment plate is measured.
  • the fine particles for an optical functional layer of the present invention are composed of a core and a shell having the above-described structure, when light is transmitted in a state of being dispersed in a transparent substrate, which will be described later, internal reflection inside the fine particles Light is hardly generated, and generation of stray light can be effectively suppressed. For this reason, the anti-glare property and the black reproducibility can be achieved at an extremely high level, and an optical functional layer that can be suitably applied to a high-definition display can be obtained.
  • the fine particles for an optical functional layer of the present invention having such a structure comprising a core and a shell can be obtained by, for example, immersing the fine particles formed in advance in a dye bath having permeability to the fine particle material. Method of impregnating near the surface; Method of polymerizing at the interface of the core material using a reactive liquid in which the dye or pigment is dissolved or dispersed; Adding the core material to the polymer solution in which the dye or pigment is dissolved or dispersed and dispersing A method of making fine droplets in a medium and then solidifying by blowing off the solvent; a method in which a core substance is poured into a liquid in which a shell substance in which a dye or pigment is dissolved or dispersed is poured and sprayed into hot air, etc. Can do.
  • the transparent substrate to which the fine particles for an optical functional layer of the present invention are added functions as a binder component of the fine particles for an optical functional layer.
  • a transparent substrate is not particularly limited as long as it is transparent.
  • Any resin having a function of dispersing fine particles, such as a functional resin may be used.
  • the ionizing radiation curable resin is a transmission screen using the fine particles for an optical functional layer of the present invention.
  • thermoplastic resin and / or the thermosetting resin are respectively UV-cured, extruded, and silk. It can be used in a form suitable for each process such as printing. However, when manufacturing the said surface film, a transmissive screen, a diffusion film, etc., as a transparent base material used, it is not limited to what was mentioned above.
  • resin is a concept including resin components such as monomers, oligomers, and polymers.
  • Examples of the ionizing radiation curable resin include compounds having one or more unsaturated bonds such as a compound having a (meth) acrylate functional group.
  • Examples of the compound having one unsaturated bond include ethyl (meth) acrylate, ethylhexyl (meth) acrylate, styrene, methylstyrene, N-vinylpyrrolidone and the like.
  • Examples of the compound having two or more unsaturated bonds include polymethylolpropane tri (meth) acrylate, hexanediol (meth) acrylate, tripropylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, pentaerythritol tri ( Reaction products such as (meth) allyllate and polyfunctional compounds such as (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate And poly (meth) acrylate esters of polyhydric alcohols).
  • (meth) acrylate refers to methacrylate and acrylate.
  • polyester resins having unsaturated double bonds polyether resins, acrylic resins, epoxy resins, urethane resins, alkyd resins, spiroacetal resins, polybutadiene resins, polythiol polyene resins, etc. It can be used as an ionizing radiation curable resin.
  • the transparent substrate is preferably made of an ultraviolet curable resin.
  • the ionizing radiation curable resin is used as the ultraviolet curable resin, it is preferable to contain a photopolymerization initiator in the composition for forming the optical functional layer.
  • the photopolymerization initiator include acetophenones, benzophenones, Michler benzoylbenzoate, ⁇ -amyloxime esters, thioxanthones, propiophenones, benzyls, benzoins, and acylphosphine oxides. It is done. Further, it is preferable to use a mixture of photosensitizers, and specific examples thereof include n-butylamine, triethylamine, poly-n-butylphosphine and the like.
  • the photopolymerization initiator when the ionizing radiation curable resin is a resin system having a radical polymerizable unsaturated group, acetophenones, benzophenones, thioxanthones, benzoin, benzoin methyl ether, etc. may be used alone or in combination. It is preferable to use it.
  • the photopolymerization initiator may be an aromatic diazonium salt, aromatic sulfonium salt, aromatic iodonium salt, metallocene compound, benzoin sulfone. It is preferable to use acid esters alone or as a mixture.
  • the addition amount of the photopolymerization initiator is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the ionizing radiation curable resin.
  • the ionizing radiation curable resin can be used in combination with a solvent-drying resin.
  • the solvent-drying resin include thermoplastic resins.
  • the thermoplastic resin those generally exemplified are used. By adding the solvent-drying resin, coating film defects on the coated surface can be effectively prevented.
  • preferable thermoplastic resins include, for example, styrene resins, (meth) acrylic resins, vinyl acetate resins, vinyl ether resins, halogen-containing resins, alicyclic olefin resins, polycarbonate resins, and polyester resins. , Polyamide resins, cellulose derivatives, silicone resins, and rubbers or elastomers.
  • thermoplastic resin it is usually preferable to use a resin that is non-crystalline and soluble in an organic solvent (particularly a common solvent capable of dissolving a plurality of polymers and curable compounds).
  • resins with high moldability or film formability, transparency and weather resistance such as styrene resins, (meth) acrylic resins, alicyclic olefin resins, polyester resins, cellulose derivatives (cellulose esters, etc.) Etc. are preferred.
  • the material of the light-transmitting substrate on which the optical functional layer is laminated is a cellulose resin such as triacetyl cellulose “TAC”
  • a preferred example of the thermoplastic resin is a cellulose resin. Examples thereof include nitrocellulose, acetylcellulose, cellulose acetate propionate, and ethylhydroxyethylcellulose.
  • thermosetting resin examples include phenol resin, urea resin, diallyl phthalate resin, melanin resin, guanamine resin, unsaturated polyester resin, polyurethane resin, epoxy resin, aminoalkyd resin, melamine-urea cocondensation resin, silicon resin. And polysiloxane resin.
  • it can also be used in combination with hardening agents, such as a crosslinking agent and a polymerization initiator, a polymerization accelerator, a solvent, a viscosity modifier, etc. as needed.
  • an optical member for a display having an optical functional layer can be formed.
  • Such an optical member for display is also one aspect of the present invention. That is, the optical member for display of the present invention is an optical member for display comprising an optical functional layer formed using a transparent substrate and the fine particles for an optical functional layer of the present invention.
  • the ratio (mass%) of the fine particles for functional layer is not less than the value calculated from the formula represented by the following formula (8) and not more than the value calculated from the formula represented by the following formula (9). It is characterized by being.
  • T represents the average thickness ( ⁇ m) of the optical function layer
  • R represents the average particle diameter ( ⁇ m) of the fine particles for the optical function layer
  • R ⁇ T the average thickness of the optical function layer
  • the display optical member of the present invention includes an optical functional layer formed using the transparent substrate and the fine particles for an optical functional layer of the present invention.
  • Examples of the transparent substrate in the optical functional layer include those described in the fine particles for an optical functional layer of the present invention.
  • the optical functional layer has an average thickness of T ( ⁇ m) and an average particle diameter of the optical functional layer fine particles of R ( ⁇ m), and R ⁇ T.
  • the ratio (%) of the fine particles for the functional layer is not less than the value calculated from the formula represented by the above formula (8) and not more than the value calculated from the formula represented by the above formula (9).
  • the above formula (8) means that the optical functional layer fine particle spacing in the optical functional layer is below the limit of the visual resolution of 35 ⁇ m at a visual acuity 2 and a clear visual distance of 25 cm.
  • the ratio of the fine particles for the optical functional layer is smaller than the numerical value calculated by the above formula (8), the fine particles for the optical functional layer contained in the optical functional layer are observed with the naked eye, and the fine particles are separated to form a foreign matter. It will look like a shape.
  • the above formula (9) means that the fine particles for the optical functional layer in the optical functional layer are in the closest packing. Therefore, when the ratio of the fine particles for the optical functional layer is larger than the numerical value calculated by the above formula (9), the fine particles for the optical functional layer protruding from the optical functional layer exist, and the density is uneven. It will be recognized as a black foreign body.
  • the “ratio of fine particles for optical function layer” is the weight percentage of fine particles to the weight of the transparent substrate and fine particles in the optical function layer.
  • the transparent base material As a method for forming such an optical functional layer, the transparent base material, the fine particles for the optical functional layer, and other additives such as a leveling agent, an antistatic agent, and an antifouling agent, as necessary,
  • the method of using the coating liquid obtained by mixing with a solvent is mentioned. That is, the said optical function layer can be formed by apply
  • the solvent is not particularly limited.
  • alcohols such as isopropyl alcohol, methanol, and ethanol
  • ketones such as methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone
  • esters such as methyl acetate, ethyl acetate, and butyl acetate
  • halogenated carbonization Hydrogen aromatic hydrocarbon such as toluene and xylene
  • PGME propylene glycol monomethyl ether
  • said base film does not specifically limit as said base film, For example, it selects from the material which is more excellent in transparency than a normal plastic. For example, stretching made of polyethylene terephthalate, polybutylene terephthalate, polyamide (nylon 6, nylon 66), triacetyl cellulose, polystyrene, polyarylate, polycarbonate, polyvinyl chloride, polymethylpentene, polyethersulfone, polymethyl methacrylate, etc. Or it is an unstretched film. Moreover, these films can also be used as a single layer or a multilayer film of two or more layers.
  • the thickness of the base film is preferably about 10 to 200 ⁇ m. When the thickness is less than 10 ⁇ m, the strength is insufficient and the optical layer may not be sufficiently supported. When the thickness exceeds 200 ⁇ m, not only is the resource wasted, but it may be difficult to operate during processing.
  • the method for forming the coating film by applying the coating liquid is not particularly limited.
  • the coating liquid may be 3 to 15 g / m 2 (by a normal reverse roll coating, roll coating, Miya bar coating, gravure coating, etc. In terms of solid content, the same applies hereinafter.)
  • a method of coating may be mentioned.
  • a method of curing the coating film a method of irradiating an electromagnetic wave such as an electron beam, an ultraviolet ray or a visible ray can be mentioned. Curing with ultraviolet rays can use electromagnetic waves emitted from ultra-high pressure mercury lamps, high pressure mercury lamps, carbon arcs, xenon arcs, metal halide lamps, and the like.
  • These curing reactions by ionizing radiation are preferably performed in an atmosphere with as little oxygen as possible. Under a low oxygen atmosphere, the curing reaction can be completed without any inhibition of curing by oxygen or coloring or decomposition due to side reactions other than the desired polymerization reaction. Therefore, the optical functional layer can maintain wearability with excellent retention capability of the added optical functional layer fine particles. On the other hand, when the oxygen concentration is high, the curing reaction is not completed, and the optical functional layer is inferior in wear and fine particles may fall off.
  • a preferable oxygen concentration is 1000 ppm or less.
  • the optical functional layer thus formed has surface irregularities formed by the fine particles for an optical functional layer of the present invention (hereinafter also referred to as an antiglare layer). It can be used as an antiglare film. Such an antiglare film is also one aspect of the present invention.
  • the surface of the antiglare layer has irregularities formed by the above-described fine particles for an optical function layer of the present invention, and therefore, stray light caused by internal reflection of light transmitted through the fine particles is generated. Almost no occurrence and extremely excellent antiglare and black reproducibility. That is, the antiglare film of the present invention can have excellent transmitted image clarity and anti-reflection properties.
  • the coated surface of the base film is subjected to surface treatment with corona discharge or ozone gas, It is preferable to provide a primer layer made of a material having affinity with both the material film and the antiglare layer and having strong adhesiveness.
  • the primer layer can be formed by applying a reactive varnish composed of polyester polyol, polyether polyol, and polyisocyanate.
  • the fine particles for an optical functional layer of the present invention have the above-described configuration, they can suitably absorb the internally reflected light transmitted through the inside when added to the transparent substrate. Therefore, the optical functional layer using the fine particles for the optical functional layer of the present invention can achieve both antiglare property and black reproducibility at an extremely high level, and is preferably applied to a high definition display. Can do.
  • 6 is a graph showing the relationship between (r / R) and ⁇ n of the fine particles for an optical functional layer of the present invention when internal reflection light having an internal reflection ratio of up to 0.1% is absorbed.
  • 6 is a graph showing the relationship between (r / R) and ⁇ n of the fine particles for an optical functional layer of the present invention when internal reflection light having an internal reflection ratio of up to 1% is absorbed.
  • 6 is a graph showing the relationship between (r / R) and ⁇ n of the fine particles for an optical functional layer of the present invention when internal reflection light having an internal reflection ratio of up to 10% is absorbed.
  • Example 1 First, styrene-acrylic copolymer monodisperse particles were obtained by emulsion copolymerization using 90 parts of styrene and 10 parts of methyl methacrylate. These monodisperse particles had an average particle diameter R of 3.5 ⁇ m and a refractive index of 1.58. Next, 5 g of the obtained monodisperse particles were added at 60 ° C. to a dyeing solution obtained by diluting 20 g of resin dye SDN black made by Sawada Platec Co., Ltd. with 1000 g of water, and the resulting mixture was stirred for 1 minute to dye the shell. After forming, washing with water and drying, fine particles for an optical functional layer were obtained.
  • the transmittance ratio in the visible region of a plate obtained by pressing the obtained monodisperse particles on a 1 mm plate treated with the above-described staining solution under the same conditions and an untreated plate is 0.85. there were.
  • the absorption coefficient of the said microparticle for optical function layers was set to 0.15.
  • a transparent substrate (refractive index of 1.50 after curing) comprising 45 parts of pentaerythritol triacrylate, 2 parts of Irgacure 184 (trade name), 35 parts of toluene, and 15 parts of cyclohexane.
  • a coating solution for forming an antiglare layer was prepared by adding 6 parts of fine particles for layer. The obtained antiglare layer-forming coating solution was applied to one side of a 80 ⁇ m-thick triacetyl cellulose film with a bar coater, dried at 50 ° C. for 1 minute, and the oxygen concentration was reduced to 0.1% or less.
  • the film was cured with an integrated light quantity of 100 mj using a UV irradiation device [Fusion UV System Japan, Inc .: H bulb (trade name)] to form an antiglare layer having a film thickness of about 5 ⁇ m, thereby producing an antiglare film. .
  • Example 2 Fine particles for an optical functional layer were produced in the same manner as in Example 1 except that the dye of the staining solution was 10 g and the staining conditions were 65 ° C. and 2 minutes.
  • the fine particles for optical function layer had an r / R of 0.75 (shell thickness: 0.44 ⁇ m), and the refractive index of the shell was 1.58.
  • the absorption coefficient was 0.28.
  • An antiglare film was obtained in the same manner as in Example 1 using the obtained fine particles for an optical functional layer.
  • Example 3 Fine particles for an optical functional layer were prepared in the same manner as in Example 1 except that the dye of the dyeing solution was 5 g and the single dyeing conditions were 68 ° C. and 3 minutes.
  • the fine particles for optical function layer had an r / R of 0.61 (shell thickness 0.68 ⁇ m), and the refractive index of the shell was 1.58.
  • the absorption coefficient was 0.39.
  • An antiglare film was obtained in the same manner as in Example 1 using the obtained fine particles for an optical functional layer.
  • Comparative Example 2 Monodisperse particles of styrene-acrylic copolymer were obtained by emulsion copolymerization of 10 parts of styrene and 90 parts of methyl methacrylate. These monodisperse particles had an average particle size of 3.5 ⁇ m and a refractive index of 1.50. An antiglare film was obtained in the same manner as in Example 1 except that the monodispersed particles were used.
  • Comparative Example 3 90 parts of styrene and 10 parts of methyl methacrylate were blended, and monodisperse particles of a styrene-acrylic copolymer were obtained by emulsion copolymerization under the same conditions as in Example 1.
  • the average particle diameter of the monodisperse particles according to Comparative Example 3 was 0.38 ⁇ m, and the refractive index was 1.58.
  • An antiglare film was obtained in the same manner as in Example 1 except that the monodispersed particles were used.
  • Example 4 Fine particles for an optical functional layer were produced in the same manner as in Example 1 except that the monodispersed particles of Comparative Example 2 were used, the dye of the dyeing solution was 10 g, and the dyeing conditions were 65 ° C. and 2 minutes.
  • the fine particles for optical function layer had an r / R of 0.75 (shell thickness: 0.44 ⁇ m), and the refractive index of the shell was 1.50. The absorption coefficient was 0.28.
  • An antiglare film was obtained in the same manner as in Example 1 except that the fine particles for the optical function layer were used.
  • Fine particles for an optical functional layer were produced in the same manner as in Example 1 except that the monodispersed particles of Example 1 were used, the dye of the dyeing solution was 10 g, and the dyeing conditions were 62 ° C. and 5 minutes.
  • the fine particles for optical function layer had an r / R of 0.43 (shell thickness of 1.00 ⁇ m), and the refractive index of the shell was 1.58.
  • the absorption coefficient was 0.37.
  • An antiglare film was obtained in the same manner as in Example 1 except that the fine particles for the optical function layer were used.
  • the antiglare films according to the examples showed favorable results in all evaluations.
  • the anti-glare film which concerns on the comparative example 1 which does not have a shell was inferior to a black level and contrast.
  • the antiglare film according to Comparative Example 2 that does not have a shell and uses the fine particles for an optical functional layer in which the refractive index of the transparent substrate and the refractive index of the fine particle shell are the same is inferior in glare and diffusibility.
  • the antiglare film according to Comparative Example 3 having no shell and having an average particle size smaller than the wavelength of light incident on the antiglare layer (400 to 800 nm) is 3 It was inferior in each evaluation of contrast and anti-glare property.
  • the antiglare film according to Comparative Example 4 having a shell but having the same refractive index of the transparent substrate and the same refractive index of the shell of the fine particle is inferior in evaluation of glare and diffusibility.
  • the antiglare film according to Comparative Example 5 using a fine particle for an optical function layer having a shell but having an r / R smaller than 0.5 was inferior in white level and contrast.
  • the fine particles for an optical functional layer of the present invention are used in displays such as a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), and an electroluminescence display (ELD), particularly an anti-glare functional layer of a high definition display. Can be suitably used.
  • displays such as a cathode ray tube display (CRT), a liquid crystal display (LCD), a plasma display (PDP), and an electroluminescence display (ELD), particularly an anti-glare functional layer of a high definition display.
  • CTR cathode ray tube display
  • LCD liquid crystal display
  • PDP plasma display
  • ELD electroluminescence display

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

防眩性と黒色再現性とを極めて高いレベルで両立することができ、高精細化ディスプレイに対して好適に適用することができる光学機能層を得ることができる、光学機能層用微粒子を提供する。 コアと該コアを被覆するシェルとを有し、透明基材に添加されて光学機能層の形成に用いられる光学機能層用微粒子であって、平均粒径Rが上記光学機能層に入射する光の波長以上であり、かつ、上記平均粒径Rと上記コアの平均径rとの比(r/R)が0.50以上であり、更に、上記シェルは、上記透明基材と異なる屈折率を有するとともに、光吸収性能を有することを特徴とする光学機能層用微粒子。

Description

光学機能層用微粒子、ディスプレイ用光学部材及び防眩機能層
本発明は、主に、ワープロ、コンピュータ、テレビジョンなどの画像表示に用いる各種ディスプレイに設置する光学部材に用いる微粒子に関する。
陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)等の画像表示装置においては、一般に最表面には反射防止のための光学フィルムが設けられている。このような反射防止用光学フィルムは、光の散乱や干渉によって、像の映り込みを抑制したり反射率を低減したりするものである。
反射防止用光学フィルムの一つとして、透明性基材の表面に凹凸形状を有する防眩層を形成した防眩フィルムが知られている。このような防眩フィルムは、表面の凹凸形状によって外光を散乱させて外光の反射や像の写り込みによる視認性の低下を防止することができる。
このような防眩フィルムとしては、従来、粒子によって凹凸を形成したものが知られている(例えば、特許文献1)。
ところが、近年、液晶表示装置等の画像表示装置は、極めて高いレベルの画質が要求されるようになってきており、特に防眩性に加えて黒色再現性に優れることが特に求められている。
防眩性に加えて黒色再現性を向上させる方法としては、例えば、平均粒径が異なり、粒径を所定の範囲内に制御された、少なくとも二種の透光性樹脂粒子を含む光拡散層を備えた光学フィルムが知られている(例えば、特許文献2)。
しかしながら、このような従来の方法では、近年の極めて高いレベルでの防眩性及び黒色再現性の両立を満足させることはできていないのが現状であった。
また、基材と屈折率の異なる微粒子を熱可塑性樹脂に練り込んだり、熱硬化樹脂に分散させることにより拡散シートとした光学部材が透過型スクリーン等に用いられているが、上記微粒子により外光のバックスキャッタが生じるためコントラストが低い欠点があった。
このような微粒子によるコントラスト低下を防止するために、例えば、特許文献3に示すような微粒子表面に干渉を用いた反射防止層を持つ微粒子や特許文献4に示すような屈折率を段階的又は連続的に変化させる微粒子が提案されている。しかしながら、このような反射防止層を持つ微粒子は、干渉に起因する着色が生じやすく、また、屈折率を変化させる微粒子では拡散を大きくすることが困難であった。
特開平6-18706号公報 特開2007-041547号公報 特開2005-17920号公報 特開平2-120702号公報
本発明は、上記現状に鑑み、防眩性や拡散性と黒色再現性とを極めて高いレベルで両立することができるとともに、色の再現性を優れたものとすることができ、高精細化ディスプレイに対して好適に適用することができる光学機能層を得ることができる、光学機能層用微粒子、該光学機能層用微粒子を用いてなる、ディスプレイ用光学部材、防眩フィルム、及び、拡散フィルムを提供することを目的とする。
本発明は、コアと該コアを被覆するシェルとを有し、透明基材に添加されて光学機能層の形成に用いられる光学機能層用微粒子であって、平均粒径Rが上記光学機能層に入射する光の波長以上であり、かつ、上記平均粒径Rと上記コアの平均径rとの比(r/R)が0.50以上であり、更に、上記シェルは、上記透明基材と異なる屈折率を有するとともに、光吸収性能を有することを特徴とする光学機能層用微粒子である。
また、本発明の光学機能層用微粒子は、透明基材の屈折率n1とシェルの屈折率n2との比(n2/n1)をΔnとしたとき、Δnと(r/R)とが下記式(1)~(4)を満たすことが好ましい。
 Δn<0.94のとき、(r/R)>0.53   (1)
 0.94≦Δn<1.0のとき、(r/R)>7.2×Δn-6.1   (2)
 1.0<Δn≦1.067のとき、(r/R)>7.8-6.8×Δn   (3)
 1.067<Δnのとき、(r/R)>0.53   (4)
更に、上記Δnと(r/R)とが下記式(5)、(6)を満たすことが好ましい。
 Δn<1.0のとき、(r/R)>1.5×Δn-0.5   (5)
 1.0<Δnのとき、(r/R)>3.2-2.2×Δn   (6)
更に、上記Δnと(r/R)とが下記式(7)を満たすことが好ましい。
 1.0<Δnのとき、α>1.9-0.9×Δn   (7)
また、本発明の光学機能層用微粒子は、コア及びシェルは有機材料からなり、上記シェルは、上記コアを構成する有機材料に紫外光領域、可視光領域及び赤外光領域からなる群より選択される少なくとも1種の領域に光吸収性能を有する添加剤を含ませてなるものであるものであることが好ましい。
また、本発明の光学機能層用微粒子は、拡散輝度分布の正透過での輝度をpとし、シェルに光吸収性能を有する添加剤を添加していない粒子における、上記添加剤の吸収最大波長での拡散輝度分布の正透過での輝度をPとしたときに、(p/P)が0.6以上であることが好ましい。
また、上記添加剤は、可視波長領域での吸収率が略等しいことが好ましい。
また、本発明は、透明基材と、上記本発明の光学機能層用微粒子とを用いて形成された光学機能層を備えたディスプレイ用光学部材であって、上記光学機能層における光学機能層用微粒子の割合(質量%)が、下記式(8)で表される式より算出される数値以上であり、かつ、下記式(9)で表される式より算出される数値以下であることを特徴とするディスプレイ用光学部材である。
 0.34×R/T   (8)
 121×R/T   (9)
ここで、上記式(8)及び(9)中、Tは、上記光学機能層の平均厚み (μm)を表し、Rは、上記光学機能層用微粒子の平均粒径 (μm)を表し、R<Tである。
また、本発明は、上記本発明の光学機能層用微粒子により形成された凹凸面を有することを特徴とする防眩フィルムである。
また、本発明は、透明基材と、上記本発明の光学部材用微粒子とを用いて形成されたディスプレイ用光学機能層を有し、上記透明基材は、熱可塑性樹脂及び/又は熱硬化性樹脂からなることを特徴とする拡散フィルムである。
以下、本発明を詳細に説明する。
本発明者らは、微粒子が基材(バインダー成分)に添加された光学機能層について鋭意検討した結果、光学機能層を通過する光が微粒子を透過した際に迷光、バックスキャッタが生じ、この迷光、バックスキャッタがディスプレイの黒色再現性向上を妨げていたことを見出した。
このような知見に基づき、更に検討した結果、図2及び図3に示すように、透明基材(図示せず)中に添加された状態で微粒子20(30)内に入射した光(以下、入射光21(31)ともいう)は、透明基材に透過光23(33)として出射する際に、微粒子20(30)と透明基材との界面で微粒子20(30)の内部方向への反射光(以下、内部反射光22(32)ともいう)を生じ、この内部反射光22(32)が微粒子20(30)内の所定の領域に偏在していることを見出した。なお、図2は、透明基材の屈折率n1と微粒子のシェルの屈折率n2との比(n2/n1)が1未満である場合の光の進行状態を示す模式図であり、図3は、透明基材の屈折率n1と微粒子のシェルの屈折率n2との比(n2/n1)が1を超える場合の光の進行状態を示す模式図である。また、図2、3において、微粒子20、30は、コアとシェルの屈折率が等しいものであり、微粒子20、30の表面で反射する光については省略している。
そして、本発明者らは、更に鋭意検討した結果、微粒子内の内部反射光が偏在して通過する領域に光吸収性能を持たせることで、迷光の発生を好適に防止することができることを見出し、本発明を完成するに至った。
すなわち、本発明では、微粒子を透過する光(必要な光)は、光吸収性能を持たせた領域の厚みによる吸収だけであるため、透過率の低下は少ないのに対し、迷光となる内部反射光は、光吸収性能を持たせた領域の中を通過する距離が透過する光に比較して極度に長くなるため、該領域での吸収をより強く受けることになり、迷光の発生が抑制されることとなる。
本発明の光学機能層用微粒子は、透明基材に添加されて光学機能層の形成に用いられるものである。
上記光学機能層としては特に限定されず、高精細画像用ディスプレイの表面に設置する従来公知の表面フィルムやスクリーン等が挙げられ、例えば、防眩層、ハードコート層、反射防止層、帯電防止層、拡散層等が挙げられる。なかでも、防眩層、拡散層として好適に用いられる。
なお、本発明の光学機能層用微粒子は、後述するシェルの光吸収特性を可視域以外に持たせることによっては、ディスプレイ用途以外にも、例えば、リモートコントロールのスイッチングやポインターによる位置検出に用いる赤外光の迷光発生を防止して検出精度を高めるのに用いたり、紫外線照射装置の拡散板に用いて有害な紫外光の反射を防止するのに用いたりすることもできる。更には、後述するシェルに含ませる添加剤として、光の波長に対するウインドウを有するものを用いることで、バックスキャッタする光の波長を限定させることが可能であり、波長変換材料を上記添加剤として用いることで、バックスキャッタする光の波長を変えることも可能である。
図1は、本発明の光学機能層用微粒子の一例を模式的に示す断面図である。
図1に示すように、本発明の光学機能層用微粒子10は、コア11と該コア11を被覆するシェル12とを有する。
本発明の光学機能層用微粒子において、上記コアは、透明な材料からなるものであり、有機材料からなるものが好適に用いられる。このようなコアを構成する材料としては特に限定されず、例えば、スチレン樹脂(屈折率;1.60)、メラミン樹脂(屈折率;1.57)、アクリル樹脂(屈折率;1.49)、アクリル-スチレン共重合体樹脂(屈折率;1.49~1.60)、ポリカーボネート樹脂(屈折率;1.59)、ポリエチレン(屈折率;1.53)、ポリ塩化ビニル(屈折率;1.54)等が挙げられる。なかでも、スチレン樹脂、アクリル-スチレン樹脂が好適に用いられ、特にアクリル-スチレン共重合樹脂がアクリルとスチレンの比率を変えることで容易に屈折率を変えることができるのでより好ましく用いられる。
また、上記シェルは、上記透明基材と異なる屈折率を有するとともに、光吸収性能を有するものである。上記シェルの屈折率が透明基材の屈折率と同じであると、本発明の光学機能層用微粒子を用いてなる防眩フィルムや拡散フィルム等のディスプレイ用光学部材に充分な光学的特性(ギラツキ防止性、拡散性)が得られなくなる。
このようなシェルとしては、例えば、上述したコアを構成する有機材料中に、光吸収性能を発揮する添加剤を含ませてなるものが挙げられる。
上記添加剤としては限定されないが、例えば、紫外光領域、可視光領域及び赤外光領域からなる群より選択される少なくとも1種の領域に光吸収性能を有するものが特に好適に用いられる。上記添加剤がこのような光吸収性能を有することで、本発明の光学機能層用微粒子を上述の光学機能層用途として好適に用いることができる。なかでも、コントラストを向上させるための上記添加剤としては、可視波長領域での吸収率が略等しいものであることが好ましい。可視光領域での各波長における吸収率が略等しい添加剤であると、本発明の光学機能層用微粒子を用いてなるディスプレイ用光学部材等は、映像光が着色することがなく、かつ、反射光も着色されないからである。なお、上記「吸収率が略等しい」とは、目視にてニュートラルブラック又はニュートラルグレーとなることで、可視光領域における各波長の吸収率の比が±10%以下となっていることである。
このような添加剤としては特に限定されず、微粒子として添加されていてもよく、シェル材料に溶解されていてもよい。また、上記添加剤は、透過性を有してもよいし、逆に透過性を有していなくともよい。具体的には、上記添加剤としては、公知の染料や顔料を本発明の光学機能層用微粒子の製造法に応じて、単体又は複合して用いればよい。
上記添加剤の添加量としては、上記シェル及びコアを構成する材料、並びに、透明基材を構成する材料等を考慮して、上記内部反射光を好適に吸収し、本発明の光学フィルム機能層用微粒子に入射した光は充分に透過させる程度に適宜調整される。
ここで、微粒子を含有する透明基材からなる光学機能層の拡散性能を大きくするために、上記透明基材と微粒子の屈折率差を大きくすると、微粒子表面反射が大きくなる弊害が生じてしまう。よって、本発明の光学機能層用微粒子において、上記シェルは、コアと透明基材の中間の屈折率を有するものであることが好ましい。上記シェルの屈折率が上記条件を満たすことで、上記表面反射を好適に抑えることができる。
また、本発明の光学機能層用微粒子は、平均粒径Rが上記光学機能層に入射する光(入射光)の波長以上である。上記平均粒径Rが入射光の波長未満であると、本発明の光学機能層用微粒子に照射された光の光路の特定ができず、透過光量と迷光吸収量の調整ができない。
また、上記平均粒径Rとしては、具体的には、0.4~20μmであることが好ましい。0.4μm未満であると、上記入射光の波長未満となりやすく、本発明の光学機能層用微粒子を用いてなる光学機能層に適用可能な光の選択の幅が限られる。また、充分な防眩性及び黒色再現性に優れる光学機能層を得ることができない場合がある。20μmを超えると、ギラツキが生じやすくなり本発明の光学機能層用微粒子を用いてなる光学フィルムを適用したディスプレイの品位を低下させることがある。
コントラスト向上を図るに上記粒径Rのより好ましい下限は0.8μm、より好ましい上限は10μmである。
また、本発明の光学機能層用微粒子は、上記平均粒径Rと上記コアの平均径rとの比(r/R)が0.50以上である。0.50未満であると、本発明の光学機能層用微粒子の迷光の吸収が過剰になり逆に透過光の強度が低下することとなり、光学機能層を作製した場合に透過率が劣ることとなる。
本発明において、上記(r/R)は、0.70以上であることが好ましく、0.85以上であることがより好ましい。シェルによる透過光の強度低下に比べ迷光の吸収効率がより高いからである。
なお、上記平均粒径R及びコアの平均径rは、公知の顕微鏡観察による本発明の光学機能層用微粒子の断面観察により測定することができる。
また、本発明の光学機能層用微粒子において、上記透明基材の屈折率n1と光学機能層用微粒子のシェルの屈折率n2との比(n2/n1)をΔn(以下、比屈折率ともいう)としたとき、Δnと(r/R)とが上記式(1)~(4)を満たすことが好ましい。上記(r/R)が式(1)~(4)を満たすことで、本発明の光学機能層用微粒子は、好適に入射した光の透過性能と、内部反射光の吸収性能とが優れたものとなる。
本発明の光学機能層用微粒子において、上記Δnと(r/R)とが上記式(5)、(6)を満たすことがより好ましい。上記式(5)、(6)を満たすことで、本発明の光学機能層用微粒子は、入射した光の透過性能と内部反射光の吸収性能とがより優れたものとなる。
更に、本発明の光学機能層用微粒子は、上記Δnと(r/R)とが上記式(7)を満たすことが好ましい。上記式(7)を満たすことで、本発明の光学機能層用微粒子の光の透過性能と内部反射光の吸収性能とのバランスがもっとも好適なものとなる。
図4、5及び6は、本発明の光学機能層用微粒子のコア径(%)[(r/R)×100]と比屈折率との関係を、内部反射光を吸収する割合別に示したグラフである。これらのグラフに示すように、微粒子内部での反射は比屈折率に依存する。微粒子界面で反射率0.1%の内部反射光をシェルに導くために要求されるコア径を示すのが式(1)~(4)で示されるグラフであり(図4)、同様に1%の場合が式(5)、(6)で示されるグラフであり(図5)、10%の場合が式(7)で示されるグラフである(図6)。
すなわち、透過光の低下に対する吸収効果は、式(1)~(4)<式(5)、(6)<式(7)となる。
本発明の光学機能層用微粒子は、拡散輝度分布の正透過での輝度をpとし、上記シェルに光吸収性能を有する添加剤を添加していない粒子における、上記添加剤の吸収最大波長での拡散輝度分布の正透過での輝度をPとしたときに、(p/P)が0.6以上であることが好ましい。
ここで、上記(p/P)は、本発明の光学機能層用微粒子のシェルの有する吸光の度合いを示すパラメータであり、0.6未満であると、本発明の光学機能層用微粒子を透過する光の透過率が低くなり、光学機能層用途として不適となる。上記(p/P)のより好ましい下限は0.7であり、更に好ましい下限は0.8である。
なお、上記(p/P)の値は、光学機能層用微粒子を測定することが好ましいが、微粒子が小さく測定が困難な場合には、例えば、以下のような方法で算出した(p’/P’)として測定することができる。
<光学機能層用微粒子のシェルを後染色で設けた場合>
(1)染色していない上記微粒子を用いてプレス処理により形成した厚さ1mmの板を作製する。
(2)作製した板の可視光域における透過率(P’)を測定する。
(3)本発明の光学機能層用微粒子のシェルを形成する場合と同条件で、上記板を染色し、シェル厚みと同じ厚みに染色層を有する処理板を作製する。
(4)作製した処理板の可視光域の透過率(p’)を測定する。
(5)(p’/P’)を算出する。
<光学機能層用微粒子のシェルの周囲を染料又は顔料で覆った場合>
(1)上記微粒子のコア材料をプレス処理により形成した厚さ1mmの板を作製する。
(2)作製した板の可視光域における透過率(P’)を測定する。
(3)シェルの厚みAを測定する。
(4)上記微粒子のコア材料をプレス処理により形成した厚さ1-2×A(mm)のコア板を作製する。
(5)本発明の光学機能層用微粒子のシェルを形成する材料を塗料化して前記コア板に総厚みが1mmとなるように塗装して処理板を作製する。
(6)作製した処理板の可視光域の透過率(p’)を測定する。
(7)(p’/P’)を算出する。
本発明の光学機能層用微粒子は、上述した構成のコアとシェルとからなるものであるため、後述する透明基材中に分散させた状態で光が透過した場合に、微粒子内部での内部反射光が殆ど生じることがなく、迷光の発生を効果的に抑制できる。このため、防眩性と黒色再現性とを極めて高いレベルで両立することができ、高精細化ディスプレイに対して好適に適用することができる光学機能層を得ることができる。
このようなコアとシェルとからなる構造の本発明の光学機能層用微粒子は、例えば、微粒子材料に浸透性を有する染料浴に、予め形成しておいた微粒子を浸漬することにより、染料を微粒子表面近傍に含浸させる方法;染料や顔料を溶解又は分散させた反応性液体を用いてコア物質の界面で重合させる方法;染料や顔料を溶解又は分散させたポリマー溶液にコア物質を添加し、分散媒中で微小滴とし、溶剤を飛ばし固化する方法;コア物質を、染料や顔料を溶解又は分散させたシェル物質を溶かした液体に投入し噴霧状にして熱風中に吹き出す方法等により製造することができる。
本発明の光学機能層用微粒子が添加される透明基材は、該光学機能層用微粒子のバインダー成分として機能するものである。
このような透明基材としては、透明性のものであれば特に限定されず、例えば、紫外線又は電子線により硬化する樹脂である電離放射線硬化型樹脂、溶剤乾燥型樹脂、熱可塑性樹脂、熱硬化性樹脂等、微粒子が分散できる機能を有するものであればよい。
例えば、本発明の光学機能層用微粒子を用いて防眩フィルムやハードコートフィルム等の表面フィルムを製造する場合、電離放射線硬化型樹脂が、本発明の光学機能層用微粒子を用いて透過型スクリーン等を製造する場合、熱可塑性樹脂が、本発明の光学機能層用微粒子を用いて拡散フィルム等を製造する場合、熱可塑性樹脂及び/又は熱硬化性樹脂が、各々紫外線硬化、押出成型、シルク印刷等の各々のプロセスに適した形で用いることが可能である。ただし、上記表面フィルム、透過型スクリーン及び拡散フィルム等を製造する場合、用いられる透明基材としては、上述したものに限定されるものではない。なお、本明細書において、「樹脂」は、モノマー、オリゴマー、ポリマー等の樹脂成分も包含する概念である。
上記電離放射線硬化型樹脂としては、例えば、(メタ)アクリレート系の官能基を有する化合物等の1又は2以上の不飽和結合を有する化合物が挙げられる。
1の不飽和結合を有する化合物としては、例えば、エチル(メタ)アクリレート、エチルヘキシル(メタ)アクリレート、スチレン、メチルスチレン、N-ビニルピロリドン等が挙げられる。2以上の不飽和結合を有する化合物としては、例えば、ポリメチロールプロパントリ(メタ)アクリレート、ヘキサンジオール(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の多官能化合物と(メタ)アルリレート等の反応生成物(例えば、多価アルコールのポリ(メタ)アクリレートエステル)等が挙げられる。なお、本明細書において「(メタ)アクリレート」とは、メタクリレート及びアクリレートを指すものである。
上記化合物のほかに、不飽和二重結合を有する比較的低分子量のポリエステル樹脂、ポリエーテル樹脂、アクリル樹脂、エポキシ樹脂、ウレタン樹脂、アルキッド樹脂、スピロアセタール樹脂、ポリブタジエン樹脂、ポリチオールポリエン樹脂等も上記電離放射線硬化型樹脂として使用することができる。
本発明の光学機能層用微粒子を表面フィルムに使用する場合においては、上記透明基材は、紫外線硬化樹脂からなることが好ましい。
上記電離放射線硬化型樹脂を上記紫外線硬化樹脂として使用する場合には、上記光学機能層を形成する際の組成物中に、光重合開始剤を含有することが好ましい。
上記光重合開始剤としては、具体例には、アセトフェノン類、ベンゾフェノン類、ミヒラーベンゾイルベンゾエート、α-アミロキシムエステル、チオキサントン類、プロピオフェノン類、ベンジル類、ベンゾイン類、アシルホスフィンオキシド類が挙げられる。また、光増感剤を混合して用いることが好ましく、その具体例としては、例えば、n-ブチルアミン、トリエチルアミン、ポリ-n-ブチルホスフィン等が挙げられる。
上記光重合開始剤としては、上記電離放射線硬化型樹脂がラジカル重合性不飽和基を有する樹脂系の場合は、アセトフェノン類、ベンゾフェノン類、チオキサントン類、ベンゾイン、ベンゾインメチルエーテル等を単独又は混合して用いることが好ましい。また、上記電離放射線硬化型樹脂がカチオン重合性官能基を有する樹脂系の場合は、上記光重合開始剤としては、芳香族ジアゾニウム塩、芳香族スルホニウム塩、芳香族ヨードニウム塩、メタロセン化合物、ベンゾインスルホン酸エステル等を単独又は混合物として用いることが好ましい。
上記光重合開始剤の添加量は、電離放射線硬化型樹脂100質量部に対して、0.1~10質量部であることが好ましい。
上記電離放射線硬化型樹脂は、溶剤乾燥型樹脂と併用して使用することもできる。
上記溶剤乾燥型樹脂としては、主として熱可塑性樹脂が挙げられる。上記熱可塑性樹脂としては、一般的に例示されるものが利用される。上記溶剤乾燥型樹脂の添加により、塗布面の塗膜欠陥を有効に防止することができる。
好ましい熱可塑性樹脂の具体例としては、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、酢酸ビニル系樹脂、ビニルエーテル系樹脂、ハロゲン含有樹脂、脂環式オレフィン系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、セルロース誘導体、シリコーン系樹脂、及びゴム又はエラストマー等が挙げられる。
上記熱可塑性樹脂としては、通常、非結晶性であり、かつ有機溶剤(特に複数のポリマーや硬化性化合物を溶解可能な共通溶剤)に可溶な樹脂を使用することが好ましい。特に、成形性又は製膜性、透明性や耐候性の高い樹脂、例えば、スチレン系樹脂、(メタ)アクリル系樹脂、脂環式オレフィン系樹脂、ポリエステル系樹脂、セルロース誘導体(セルロースエステル類等)等が好ましい。
本発明の好ましい態様によれば、上記光学機能層を積層する光透過性基材の材料がトリアセチルセルロース「TAC」等のセルロース系樹脂の場合、熱可塑性樹脂の好ましい具体例として、セルロース系樹脂、例えば、ニトロセルロース、アセチルセルロース、セルロースアセテートプロピオネート、エチルヒドロキシエチルセルロース等が挙げられる。上記セルロース系樹脂を用いることにより、上記光透過性基材との密着性及び透明性を向上させることができる。
上記熱硬化性樹脂としては、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラニン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン-尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等を挙げることができる。
上記熱硬化性樹脂を用いる場合、必要に応じて、架橋剤、重合開始剤等の硬化剤、重合促進剤、溶剤、粘度調整剤等を併用して使用することもできる。
上記透明基材と、本発明の光学機能層用微粒子とを用いることで、光学機能層を備えたディスプレイ用光学部材を形成することができる。
このようなディスプレイ用光学部材もまた、本発明の一つである。
すなわち、本発明のディスプレイ用光学部材は、透明基材と、本発明の光学機能層用微粒子とを用いて形成した光学機能層を備えたディスプレイ用光学部材であって、上記光学機能層における光学機能層用微粒子の割合(質量%)が、下記式(8)で表される式より算出される数値以上であり、かつ、下記式(9)で表される式より算出される数値以下であることを特徴とする。
 0.34×R/T   (8)
 121×R/T   (9)
ここで、上記式(8)及び(9)中、Tは、上記光学機能層の平均厚み (μm)を表し、Rは、上記光学機能層用微粒子の平均粒径 (μm)を表し、R<Tである。
本発明のディスプレイ用光学部材は、上記透明基材及び本発明の光学機能層用微粒子とを用いて形成した光学機能層を備える。
上記光学機能層における透明基材としては、本発明の光学機能層用微粒子において説明したものが挙げられる。
上記光学機能層は、平均厚みをT(μm)とし、上記光学機能層用微粒子の平均粒径をR(μm)としたときに、R<Tであり、また、上記光学機能層における上記光学機能層用微粒子の割合(%)が、上記式(8)で表される式より算出される数値以上であり、かつ、上記式(9)で表される式より算出される数値以下である。
ここで、上記式(8)は、上記光学機能層における光学機能層用微粒子間隔が、視力2で明視距離25cmでの肉眼の解像度35μmの限界以下にあることを意味している。従って、上記光学機能層用微粒子の割合が、上記式(8)により算出される数値よりも小さい場合、上記光学機能層に含まれる光学機能層用微粒子が肉眼で観察され微粒子が分離して異物状に見えることとなる。
一方、上記式(9)は、上記光学機能層における光学機能層用微粒子が、最密充填にあることを意味している。従って、上記光学機能層用微粒子の割合が、上記式(9)により算出される数値よりも大きい場合、上記光学機能層から突出した光学機能層用微粒子が存在することとなり、濃度に斑が生じ黒異物として認知されてしまう。
また、上記「光学機能層用微粒子の割合」とは、上記光学機能層における透明基材と微粒子の重量に対する微粒子の重量%である。
このような光学機能層を形成する方法としては、上述した透明基材、光学機能層用微粒子、及び、その他必要に応じて、レベリング剤、帯電防止剤、防汚染剤等の各種添加剤と、溶剤とを混合して得た塗工液を用いる方法が挙げられる。すなわち、上記塗工液を所定の基材フィルム上に塗布して塗膜を形成し、該塗膜を硬化させることで上記光学機能層を形成することができる。
上記溶剤としては特に限定されず、例えば、イソプロピルアルコール、メタノール、エタノール等のアルコール類;メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類;ハロゲン化炭化水素;トルエン、キシレン等の芳香族炭化水素;プロピレングリコールモノメチルエーテル(PGME);又はこれらの混合物が挙げられ、好ましくは、ケトン類、エステル類が挙げられる。
上記基材フィルムとしては特に限定されず、例えば、通常のプラスチックより透明性に優れる材料から選定される。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリアミド(ナイロン6、ナイロン66)、トリアセチルセルロース、ポリスチレン、ポリアリレート、ポリカーボネート、ポリ塩化ビニル、ポリメチルペンテン、ポリエーテルスルフオン、ポリメタクリル酸メチルなどからなる延伸又は未延伸フィルムである。また、これらのフィルムを単層若しくは2層以上の多層フィルムとして使用することもできる。
上記基材フィルムの厚さとしては、10~200μm程度であるが好ましい。10μm未満であると、強度が不充分となり、上記光学層を充分に支えることができないことがあり、200μmを超えると、資源の浪費となるばかりでなく、加工時に操作し難いことがある。
上記塗工液を塗布して塗膜を形成する方法としては特に限定されず、例えば、通常のリバースロールコート、ロールコート、ミヤバーコート、グラビアコートなどの方法で、3~15g/m(固形分換算、以下同様に記載する。)塗工する方法が挙げられる。
更に、塗膜を硬化する方法としては、電子線又は紫外線、可視光線等の電磁波を照射する方法が挙げられる。上記紫外線による硬化は、超高圧水銀灯、高圧水銀灯、カーボンアーク、キセノンアーク、メタルハライドランプなどから発する電磁波が利用できる。
これらの電離放射線による硬化反応は、極力酸素が少ない雰囲気で行うことが好ましい。低酸素雰囲気下では、酸素による硬化阻害や、所望の重合反応以外の副反応による着色や分解がなく硬化反応を完結できる。したがって、上記光学機能層は、添加した光学機能層用微粒子の保持能力に優れた摩耗性を保つことができる。これに反して酸素濃度が高い場合は、硬化反応が完結せず、光学機能層は、摩耗性に劣り微粒子が脱落することがある。そして、好ましい酸素濃度は1000ppm以下である。
このようにして形成される光学機能層を、本発明の光学機能層用微粒子により形成された表面凹凸を有するものとする(以下、防眩層ともいう)ことで、上記ディスプレイ用光学部材は、防眩フィルムとして用いることができる。
このような防眩フィルムもまた、本発明の一つである。
本発明の防眩フィルムは、上記防眩層の表面に、上述した本発明の光学機能層用微粒子による凹凸が形成されているため、該微粒子内を透過する光が内部反射することによる迷光が殆ど生じることがなく、極めて防眩性及び黒色再現性に優れたものとなる。
すなわち、本発明の防眩フィルムは、優れた透過画像鮮明度及び写り込み防止性を備えたものとするこができる。
本発明の防眩フィルムにおいて、上記基材フィルムと防眩層との間の接着を強固に且つ安定とするために、基材フィルムの塗工面にコロナ放電やオゾンガスによる表面処理をしたり、基材フィルムと防眩層との双方の面と親和性があり接着性の強い材料よりなるプライマー層を設けることが好ましい。プライマー層は、ポリエステル・ポリオールやポリエーテル・ポリオールと、ポリイソシアネートとよりなる反応型のワニスを塗工して形成することができる。
本発明の光学機能層用微粒子は、上述した構成からなるため、透明基材中に添加した状態で、その内部を透過する光の内部反射光を好適に吸収することができる。よって、本発明の光学機能層用微粒子を用いてなる光学機能層は、防眩性と黒色再現性とを極めて高いレベルで両立することができ、高精細化ディスプレイに対して好適に適用することができる。
本発明の光学機能層用微粒子の一例を模式的に示す断面図である。 透明基材の屈折率n1と微粒子の屈折率n2との比(n2/n1)が1未満である場合の光の進行状態を示す模式図である。 透明基材の屈折率n1と微粒子の屈折率n2との比(n2/n1)が1を超える場合の光の進行状態を示す模式図である。 本発明の光学機能層用微粒子の(r/R)とΔnとの関係を、内部反射割合が0.1%までの内部反射光を吸収する場合を示したグラフである。 本発明の光学機能層用微粒子の(r/R)とΔnとの関係を、内部反射割合が1%までの内部反射光を吸収する場合を示したグラフである。 本発明の光学機能層用微粒子の(r/R)とΔnとの関係を、内部反射割合が10%までの内部反射光を吸収する場合を示したグラフである。
本発明の内容を下記の実施例により説明するが、本発明の内容はこれらの実施態様に限定して解釈されるものではない。また、特別に断りの無い限り、「部」及び「%」は質量基準である。
(実施例1)
まず、スチレン90部、メタクリル酸メチル10部を用いて乳化共重合することによりスチレン-アクリル共重合体の単分散粒子を得た。この単分散粒子の平均粒径Rは3.5μm、屈折率は1.58であった。
次に、サワダプラテック社製の樹脂用染料SDN黒20gを1000gの水で希釈した染色液に、得られた単分散粒子5gを60℃にて添加、攪拌し1分間の染色を行ってシェルを形成し、水洗、乾燥して光学機能層用微粒子を得た。
得られた光学機能層用微粒子は、断面の顕微鏡観察により平均粒径R、コアの平均径rの比(r/R)=0.91(シェル厚み0.16μm)であり、シェルの屈折率は1.58であった。
また、得られた単分散粒子をプレスすることにより得た1mmの板を上記染色液にて同条件で処理した板と、未処理の板との可視域における透過率の比は0.85であった。なお、上記板の着色層の厚みは上記シェルの厚みと同じであったので、上記光学機能層用微粒子の吸収係数を0.15とした。
次いで、ペンタエリスリトールトリアクリレート45部、イルガキュアー184(商品名)2部、トルエン35部、シクロヘキサン15部の組成からなる透明基材の前駆体(硬化後屈折率1.50)に、上記光学機能層用微粒子6部を添加して防眩層形成塗布液を調製した。
得られた防眩層形成塗布液を、厚さ80μmのトリアセチルセルロースフィルムの一方の面にバーコータ-で塗布し、50℃・1分間の条件で乾燥後、酸素濃度を0.1%以下に保って、UV照射装置〔フュージョンUVシステムジャパン社製:Hバルブ(商品名)〕を用いて積算光量100mjにて硬化し、膜厚約5μmの防眩層を形成し、防眩フィルムを作製した。
(実施例2)
染色液の染料を10gとし、染色条件を65℃、2分間とした以外は、実施例1と同様にして光学機能層用微粒子を作製した。この光学機能層用微粒子のr/Rは0.75(シェル厚み 0.44μm)であり、シェルの屈折率は1.58であった。また、吸収係数は0.28であった。
得られた光学機能層用微粒子を用いて実施例1と同様に防眩フィルムを得た。
(実施例3)
染色液の染料を5gとし、単分染色条件を68℃、3分間とした以外は、実施例1と同様にして光学機能層用微粒子を作製した。この光学機能層用微粒子のr/Rは0.61(シェル厚み0.68μm)であり、シェルの屈折率は1.58であった。また、吸収係数は0.39であった。
得られた光学機能層用微粒子を用いて実施例1と同様に防眩フィルムを得た。
(比較例1)
染色しなかった以外は、実施例1と同様にして得られた単分散粒子を用いて、実施例1と同様にして防眩フィルムを得た。
(比較例2)
スチレン10部、メタクリル酸メチル90部を乳化共重合することによりスチレン-アクリル共重合体の単分散粒子を得た。この単分散粒子の平均粒子径は3.5μm、屈折率は1.50であった。
この単分散粒子を用いた以外は、実施例1と同様にして防眩フィルムを得た。
(比較例3)
スチレン90部、メタクリル酸メチル10部を配合し、実施例1とは条件を変えて乳化共重合することによりスチレン-アクリル共重合体の単分散粒子を得た。
比較例3に係る単分散粒子の平均粒子径は0.38μm、屈折率は1.58であった。
この単分散粒子を用いた以外は、実施例1と同様にして防眩フィルムを得た。
(比較例4)
比較例2の単分散粒子を用い、染色液の染料を10g、染色条件を65℃、2分間とした以外は実施例1と同様にして、光学機能層用微粒子を作製した。この光学機能層用微粒子のr/Rは0.75(シェル厚み0.44μm)であり、シェルの屈折率は1.50であった。また、吸収係数は0.28であった。
この光学機能層用微粒子を用いた以外は、実施例1と同様にして防眩フィルムを得た。
(比較例5)
実施例1の単分散粒子を用い、染色液の染料を10g、染色条件を62℃、5分間とした以外は実施例1と同様にして、光学機能層用微粒子を作製した。この光学機能層用微粒子のr/Rは0.43(シェル厚み1.00μm)であり、シェルの屈折率は1.58であった。また、吸収係数は0.37であった。
この光学機能層用微粒子を用いた以外は、実施例1と同様にして防眩フィルムを得た。
(評価)
実施例及び比較例で得られた防眩フィルムについて、以下の評価を行った。結果を表1に示した。
<黒レベル、白レベル、コントラスト、ギラツキ、防眩性>
ソニー社製液晶テレビKDL-40X2500の最表面の偏光板を剥離し、表面塗布のない偏光板を添付した。次いで、その上に実施例及び比較例の防眩フィルムを光学機能層が観察者側になるように、透明粘着フィルムで添付した。
1000Lxの室内において、メディアファクトリー社のDVD「オペラ座の怪人」を表示して、被験者15人にて鑑賞し、黒レベル、白レベル、コントラスト、ギラツキ及び防眩性が良好と答えたものが10名以上のときを「○」、5~9名のときを「△」、4名以下のときを「×」と評価した。
<拡散性>
左右にわずかに移動したときの画質の変化の有無を、黒レベル等の評価と同様の方法で行い、画質の変化の有無を評価し、変化が苦にならないと答えたものが10名以上のときを「○」、5~9名のときを「△」、4名以下のときを「×」とした。
Figure JPOXMLDOC01-appb-T000001
表1に示したように、実施例に係る防眩フィルムは、全ての評価で好適な結果を示した。
これに対して、シェルを有さない比較例1に係る防眩フィルムは、黒レベル及びコントラストに劣るものであった。
また、シェルを有さないで、透明基材の屈折率と微粒子のシェルの屈折率とが同じ光学機能層用微粒子を用いた比較例2に係る防眩フィルムは、ギラツキ及び拡散性で劣るものであった。
また、シェルを有さず、平均粒径が防眩層に入射させた光の波長(400~800nm)より小さい光学機能層用微粒子を用いた比較例3に係る防眩フィルムは、黒レベル、コントラスト及び防眩性の各評価で劣るものであった。
また、シェルを有するが、透明基材の屈折率と微粒子のシェルの屈折率とが同じ光学機能層用微粒子を用いた比較例4に係る防眩フィルムは、ギラツキ及び拡散性の評価で劣るものであった。
更に、シェルを有するが、r/Rが0.5より小さい光学機能層用微粒子を用いた比較例5に係る防眩フィルムは、白レベル及びコントラストで劣るものであった。
本発明の光学機能層用微粒子は、陰極線管表示装置(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、エレクトロルミネッセンスディスプレイ(ELD)等のディスプレイ、特に高精細化ディスプレイの防眩機能層として好適に使用することができる。
10 光学機能層用微粒子
11 コア
12 シェル
20、30 微粒子
21、31 入射光
22、32 内部反射光
23、33 透過光

Claims (11)

  1. コアと該コアを被覆するシェルとを有し、透明基材に添加されて光学機能層の形成に用いられる光学機能層用微粒子であって、
    平均粒径Rが前記光学機能層に入射する光の波長以上であり、かつ、前記平均粒径Rと前記コアの平均径rとの比(r/R)が0.50以上であり、更に、
    前記シェルは、前記透明基材と異なる屈折率を有するとともに、光吸収性能を有する
    ことを特徴とする光学機能層用微粒子。
  2. 透明基材の屈折率n1とシェルの屈折率n2との比(n2/n1)をΔnとしたとき、Δnと(r/R)とが下記式(1)~(4)を満たす請求項1記載の光学機能層用微粒子。
     Δn<0.94のとき、(r/R)>0.53   (1)
     0.94≦Δn<1.0のとき、(r/R)>7.2×Δn-6.1   (2)
     1.0<Δn≦1.067のとき、(r/R)>7.8-6.8×Δn   (3)
     1.067<Δnのとき、(r/R)>0.53   (4)
  3. 更に、Δnと(r/R)とが下記式(5)、(6)を満たす請求項2記載の光学機能層用微粒子。
     Δn<1.0のとき、(r/R)>1.5×Δn-0.5   (5)
     1.0<Δnのとき、(r/R)>3.2-2.2×Δn   (6)
  4. 更に、Δnと(r/R)とが下記式(7)を満たす請求項2又は3記載の光学機能層用微粒子。
     1.0<Δnのとき、(r/R)>1.9-0.9×Δn   (7)
  5. コア及びシェルは有機材料からなり、前記シェルは、有機材料に紫外光領域、可視光領域及び赤外光領域からなる群より選択される少なくとも1種の領域に光吸収性能を有する添加剤を含ませてなるものである請求項1、2、3又は4記載の光学機能層用微粒子。
  6. 拡散輝度分布の正透過での輝度をpとし、
    シェルに光吸収性能を有する添加剤を添加していない粒子における、前記添加剤の吸収最大波長での拡散輝度分布の正透過での輝度をPとしたときに、
    (p/P)が0.6以上である請求項5記載の光学機能層用微粒子。
  7. 添加剤は、可視波長領域での各波長における吸収率が略等しいものである請求項5又は6記載の光学機能層用微粒子。
  8. 透明基材は、紫外線硬化樹脂からなる請求項1、2、3、4、5、6又は7記載の光学機能層用微粒子。
  9. 透明基材と、請求項1、2、3、4、5、6、7又は8記載の光学機能層用微粒子とを用いて形成された光学機能層を備えたディスプレイ用光学部材であって、
    前記光学機能層における光学機能層用微粒子の割合(質量%)が、下記式(8)で表される式より算出される数値以上であり、かつ、下記式(9)で表される式より算出される数値以下であることを特徴とするディスプレイ用光学部材。
     0.34×R/T   (8)
     121×R/T   (9)
    ここで、前記式(8)及び(9)中、Tは、前記光学機能層の平均厚み (μm)を表し、Rは、前記光学機能層用微粒子の平均粒径 (μm)を表し、R<Tである。
  10. 請求項1、2、3、4、5、6、7又は8記載の光学機能層用微粒子により形成された凹凸面を有することを特徴とする防眩フィルム。
  11. 透明基材と、請求項1、2、3、4、5、6、7又は8記載の光学機能層用微粒子とを用いて形成されたディスプレイ用光学機能層を有し、
    前記透明基材は、熱可塑性樹脂及び/又は熱硬化性樹脂からなる
    ことを特徴とする拡散フィルム。
PCT/JP2010/056019 2009-04-20 2010-04-01 光学機能層用微粒子、ディスプレイ用光学部材及び防眩機能層 WO2010122890A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080017393.7A CN102405425B (zh) 2009-04-20 2010-04-01 光学功能层用微粒、显示器用光学部件和防眩功能层
US13/264,697 US20120064297A1 (en) 2009-04-20 2010-04-01 Fine particle for optical function layer, optical member for display, and glare shield function layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009101766A JP5326767B2 (ja) 2009-04-20 2009-04-20 光学機能層用微粒子、ディスプレイ用光学部材及び防眩機能層
JP2009-101766 2009-04-20

Publications (1)

Publication Number Publication Date
WO2010122890A1 true WO2010122890A1 (ja) 2010-10-28

Family

ID=43011012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056019 WO2010122890A1 (ja) 2009-04-20 2010-04-01 光学機能層用微粒子、ディスプレイ用光学部材及び防眩機能層

Country Status (6)

Country Link
US (1) US20120064297A1 (ja)
JP (1) JP5326767B2 (ja)
KR (1) KR101537839B1 (ja)
CN (1) CN102405425B (ja)
TW (1) TWI485423B (ja)
WO (1) WO2010122890A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527045A (ja) * 2007-05-16 2010-08-05 エルジー・ケム・リミテッド アンチグレアフィルム用組成物およびそれを用いて製造したアンチグレアフィルム

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI583733B (zh) * 2012-08-10 2017-05-21 羅門哈斯公司 光擴散聚合物組成物、其製造方法,及由其製得之物件
CN102977663A (zh) * 2012-11-01 2013-03-20 合肥乐凯科技产业有限公司 一种硬涂层用固化树脂组成物及硬涂膜
KR102346679B1 (ko) * 2014-09-16 2022-01-05 삼성디스플레이 주식회사 디스플레이 장치
CN105572774A (zh) * 2014-10-13 2016-05-11 鸿富锦精密工业(深圳)有限公司 扩散膜及其制备方法、及背光模组、显示装置和电子装置
CN106147357B (zh) * 2015-06-02 2019-05-21 湖北航天化学技术研究所 一种吸光性防眩硬涂膜及其制备方法和应用
CN108803155A (zh) * 2018-06-29 2018-11-13 深圳市华星光电技术有限公司 光扩散微球、封装框胶和显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107217A (ja) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd 光拡散板及びその製造方法
JP2005338439A (ja) * 2004-05-27 2005-12-08 Toppan Printing Co Ltd 光拡散性シート、その光拡散性シートを具備するレンズアレイシートおよび透過型スクリーン
JP2006227279A (ja) * 2005-02-17 2006-08-31 Dainippon Printing Co Ltd 光拡散シート及び透過型スクリーン
JP2006236968A (ja) * 2005-02-23 2006-09-07 Cheil Industries Inc 表示装置用低反射率の輝度向上多層光学フィルムおよびこれを用いた有機発光ダイオード表示装置
JP2008046497A (ja) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd 光学積層体、その製造方法、偏光板及び画像表示装置
JP2008209855A (ja) * 2007-02-28 2008-09-11 Jsr Corp アンチグレアフィルム用粒子、及びアンチグレアフィルム用粒子組成物

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2657536B2 (ja) * 1988-10-29 1997-09-24 大日本印刷株式会社 光拡散シート
DE10227071A1 (de) * 2002-06-17 2003-12-24 Merck Patent Gmbh Verbundmaterial enthaltend Kern-Mantel-Partikel
EP1547153A4 (en) * 2002-08-02 2010-12-01 Ultradots Inc QUANTIC POINTS, QUANTIC POINT NANOCOMPOSITE MATERIALS, QUANTUM POINT OPTICAL DEVICES, AND METHODS OF MANUFACTURING THE SAME
JP4804708B2 (ja) * 2003-06-27 2011-11-02 大日本印刷株式会社 光拡散剤、光拡散シートおよびノングレアーシート
JP2007041547A (ja) * 2005-06-29 2007-02-15 Fujifilm Corp 光学フィルム、反射防止フィルム、偏光板、および画像表示装置
US8372505B2 (en) * 2006-08-09 2013-02-12 Kimoto Co., Ltd. Anti-glare member, display and screen using the same
CN100492060C (zh) * 2007-07-23 2009-05-27 长兴光学材料(苏州)有限公司 具有包含窄粒径分布有机颗粒树脂涂层的光学薄膜

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107217A (ja) * 2001-09-28 2003-04-09 Fuji Photo Film Co Ltd 光拡散板及びその製造方法
JP2005338439A (ja) * 2004-05-27 2005-12-08 Toppan Printing Co Ltd 光拡散性シート、その光拡散性シートを具備するレンズアレイシートおよび透過型スクリーン
JP2006227279A (ja) * 2005-02-17 2006-08-31 Dainippon Printing Co Ltd 光拡散シート及び透過型スクリーン
JP2006236968A (ja) * 2005-02-23 2006-09-07 Cheil Industries Inc 表示装置用低反射率の輝度向上多層光学フィルムおよびこれを用いた有機発光ダイオード表示装置
JP2008046497A (ja) * 2006-08-18 2008-02-28 Dainippon Printing Co Ltd 光学積層体、その製造方法、偏光板及び画像表示装置
JP2008209855A (ja) * 2007-02-28 2008-09-11 Jsr Corp アンチグレアフィルム用粒子、及びアンチグレアフィルム用粒子組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527045A (ja) * 2007-05-16 2010-08-05 エルジー・ケム・リミテッド アンチグレアフィルム用組成物およびそれを用いて製造したアンチグレアフィルム
JP2013174888A (ja) * 2007-05-16 2013-09-05 Lg Chem Ltd アンチグレアフィルム用組成物およびそれを用いて製造したアンチグレアフィルム

Also Published As

Publication number Publication date
CN102405425B (zh) 2014-04-16
KR20120022796A (ko) 2012-03-12
US20120064297A1 (en) 2012-03-15
KR101537839B1 (ko) 2015-07-17
TWI485423B (zh) 2015-05-21
TW201040572A (en) 2010-11-16
JP5326767B2 (ja) 2013-10-30
JP2010250209A (ja) 2010-11-04
CN102405425A (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
US8215780B2 (en) Hard-coated antiglare film, and polarizing plate and image display including the same
KR102084997B1 (ko) 방현성 필름, 편광판 및 화상 표시 장치
US7354163B2 (en) Antiglare film and image display apparatus
JP5326767B2 (ja) 光学機能層用微粒子、ディスプレイ用光学部材及び防眩機能層
US7589897B2 (en) Antiglare film
KR101934607B1 (ko) 화상 표시 장치용 방현 시트
JP5008734B2 (ja) 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置
WO2013054804A1 (ja) 画像表示装置用防眩シート
JP4788830B1 (ja) 防眩性フィルム、防眩性フィルムの製造方法、偏光板及び画像表示装置
US20110080643A1 (en) Hard-coated antiglare film, polarizing plate and image display including the same, and method for evaluating the same
US20090268301A1 (en) Flat panel display and antiglare film for flat panel display
JP5991322B2 (ja) 画像表示装置用防眩シートとその製造方法、及び、これを用いた動画像と静止画像との共用に適した画像表示装置の黒彩感及び画像の切れの改善方法
JP2009037046A (ja) 液晶ディスプレイ用防眩性フィルム及びそれを備える液晶ディスプレイ
JP2009104076A (ja) 光学積層体、偏光板及び画像表示装置
KR20130117785A (ko) 방현성 필름, 방현성 필름의 제조 방법, 편광판 및 화상 표시 장치
JP4651705B2 (ja) 防眩フィルム、偏光板及び透過型表示装置
JP4215458B2 (ja) 防眩フィルム
JP2009086677A (ja) 防眩フィルム、偏光板及び透過型表示装置
JP4001320B2 (ja) 防眩フィルム、偏光フィルム及び透過型表示装置
JP2012063504A (ja) 防眩性フィルム
JP2007256962A (ja) 防眩フィルム、偏光フィルム及び透過型表示装置
KR101828115B1 (ko) 방현성 필름, 방현성 필름의 제조 방법, 편광판 및 화상 표시 장치
KR20120038701A (ko) 광학적층체, 편광판 및 표시장치
KR101788358B1 (ko) 방현성 필름, 방현성 필름의 제조 방법, 편광판 및 화상 표시 장치
JP2009086329A (ja) 光学積層体、その製造方法、偏光板及び画像表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017393.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117024758

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13264697

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10766949

Country of ref document: EP

Kind code of ref document: A1