WO2010119670A1 - ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 - Google Patents

ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 Download PDF

Info

Publication number
WO2010119670A1
WO2010119670A1 PCT/JP2010/002681 JP2010002681W WO2010119670A1 WO 2010119670 A1 WO2010119670 A1 WO 2010119670A1 JP 2010002681 W JP2010002681 W JP 2010002681W WO 2010119670 A1 WO2010119670 A1 WO 2010119670A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin resin
expanded particles
weight
parts
resin pre
Prior art date
Application number
PCT/JP2010/002681
Other languages
English (en)
French (fr)
Inventor
糸井章裕
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP10764257.1A priority Critical patent/EP2420533B1/en
Priority to US13/264,041 priority patent/US20120037837A1/en
Priority to JP2011509213A priority patent/JP5690265B2/ja
Priority to CN2010800161944A priority patent/CN102388093B/zh
Publication of WO2010119670A1 publication Critical patent/WO2010119670A1/ja
Priority to US14/608,492 priority patent/US10072128B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0028Use of organic additives containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/122Hydrogen, oxygen, CO2, nitrogen or noble gases
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/18Making expandable particles by impregnating polymer particles with the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34926Triazines also containing heterocyclic groups other than triazine groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • C08K5/523Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment

Definitions

  • the present invention relates to a polyolefin resin pre-expanded particle having flame retardancy particularly used in the manufacture of electrical and electronic product parts such as a heat insulating material, a shock-absorbing packaging material, a box, a car bumper core material, and an electrical and electronic product part, and the like
  • the present invention relates to a polyolefin resin in-mold foam molded article obtained by in-mold foam molding of polyolefin resin pre-expanded particles.
  • the in-mold foamed molded product has characteristics such as arbitrary shape, lightness, and heat insulation.
  • in-mold foam molded products made of polyolefin resin pre-expanded particles have chemical resistance, heat resistance, and strain recovery after compression compared to in-mold foam molded products obtained using polystyrene resin pre-expanded particles. Due to these features, in-mold foam molded products obtained using polyolefin resin pre-expanded particles can be used in various applications such as automotive interior parts, automotive bumper core materials, thermal insulation materials, and cushioning packaging materials. It is used.
  • foamed molded products generally made of polyolefin resin have the above-mentioned excellent characteristics, but have the drawback of being easily combusted.
  • the foamed molded article has a drawback that it has high combustibility compared to a non-foamed molded article and easily burns.
  • Patent Document 1 as a non-halogen type flame retardant, by adding a sterically hindered amine ether type flame retardant to a polyolefin resin pre-expanded particle, a problem such as deterioration of in-mold foam moldability does not occur.
  • An in-mold foam molding conforming to HF-1 in the horizontal test of the foam is described in the examples.
  • Patent Document 2 also describes an in-mold foam molded article that is self-extinguishing in a combustion test based on FMVSS302 using the same flame retardant.
  • polyolefin resin-in-mold foam molded products are more flammable when the density is higher or the thickness is thicker, and even when this sterically hindered amine ether type flame retardant is used, further improvement in flame retardant performance is achieved. Is desired.
  • Patent Document 3 discloses a flame retardant polypropylene fiber and film containing 0.5% by weight or more of a phosphate ester flame retardant and 0.4% by weight or more of a NOR-type hindered amine stabilizer
  • Patent Document 4 includes a metal.
  • a flame retardant in which a hindered amine compound having a piperidine skeleton and a phosphate ester are used in combination with a hydroxide is disclosed.
  • processes such as impregnation with foaming agent, heating, rapid pressure release, heating with steam, etc., reaction by decomposition of flame retardant and mixing of flame retardant There are concerns.
  • polyolefin resin pre-expanded particles are filled in a mold, heated and fused with steam or the like to form an in-mold expanded molded product.
  • moldability deteriorates due to the properties of the pre-expanded particles, industrial value is obtained. It drops significantly.
  • Additives blended with polyolefin resins affect cell shape, cell size, open cell foam, fusing properties, etc., and these changes may cause in-mold foaming and mechanical strength to decrease. There is sex.
  • Patent Document 5 describes flame-retardant polyolefin resin pre-expanded particles containing a halogen-containing pentavalent phosphate compound, but the use of halogen-containing materials may be limited in recent years.
  • halogenated phosphate esters and non-halogen phosphate esters differ in degradability, compatibility with resins, etc., and although combined use with flame retardant aids is described, about mixing with other flame retardants, It is not described at all.
  • the object of the present invention is to exhibit excellent flame retardancy even in a sample having a higher density and thickness than before without using a halogen-based flame retardant, while having good in-mold foam moldability, and at the time of combustion
  • An object of the present invention is to provide pre-expanded particles of flame retardant polyolefin resin that do not generate harmful gas.
  • the present invention provides a polyolefin resin composition containing a sterically hindered amine ether-based flame retardant and a phosphate ester as a polyolefin resin pre-expanded particle.
  • a polyolefin resin composition containing a sterically hindered amine ether-based flame retardant and a phosphate ester as a polyolefin resin pre-expanded particle.
  • foam moldability it exhibits superior flame retardancy compared to conventional products.Specifically, it exhibits excellent flame retardancy even in high-density in-mold foam moldings and thick in-mold foam moldings. I found.
  • R 3 and R 4 represented by the formula (2) is a hydrogen atom
  • R 5 is an alkyl group having 1 to 12 carbon atoms
  • R 6 is a methyl group, a cyclohexyl group Or a polyolefin resin pre-expanded particle comprising a polyolefin resin composition containing a sterically hindered amine ether flame retardant represented by octyl group) and a phosphate ester.
  • the foaming agent is at least one selected from the group consisting of isobutane and normal butane.
  • the polyolefin resin composition comprises 0.01 parts by weight or more and 20 parts by weight or less of a sterically hindered amine ether flame retardant represented by the general formula (1) with respect to 100 parts by weight of the polyolefin resin.
  • the polyolefin resin pre-expanded particles of the present invention have excellent in-mold foam moldability and surface appearance equivalent to conventional ones, and excellent flame retardancy even in samples having a higher density or larger thickness than conventional ones.
  • the shown in-mold foam molding can be obtained.
  • DSC differential scanning calorimeter
  • the low-temperature side melting peak, the low-temperature side melting peak calorie, which is the amount of heat surrounded by the tangent to the melting start baseline from the maximum point between the low-temperature side peak and the high-temperature side peak, is Ql
  • the melting peak on the high-temperature side of the DSC curve Qh is the high-temperature side melting peak calorie, which is the amount of heat surrounded by the tangent line from the local maximum point between the low-temperature side peak and the high-temperature side peak to the melting end baseline.
  • the polyolefin resin used in the present invention is a polymer comprising 75% by weight or more of an olefin monomer.
  • the content of the olefin monomer is preferably 80% by weight or more.
  • Other monomers having copolymerizability with the olefin monomer may be contained in an amount of 25% by weight or less, preferably 20% by weight or less.
  • olefin monomer examples include, for example, ethylene, propylene, butene-1, isobutene, pentene-1, 3-methyl-butene-1, hexene-1, 4-methyl-pentene-1, 3,4 And ⁇ -olefins having 2 to 12 carbon atoms such as dimethyl-butene-1, heptene-1, 3-methyl-hexene-1, octene-1, and decene-1. These may be used alone or in combination of two or more.
  • olefinic monomer examples include cyclopentene, norbornene, 1,4,5,8-dimethano-1,2,3,4, Cyclic olefins such as 4a, 8,8a, 6-octahydronaphthalene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl- And dienes such as 1,6-octadiene. These may be used alone or in combination of two or more.
  • polystyrene-based resins used in the present invention include, for example, polyethylene-based resins mainly composed of ethylene, such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, and linear low-density polyethylene, and propylene-based components. And a polypropylene-based resin. These polyolefin resins may be used alone or in combination of two or more. Among these, it is preferable to use a polypropylene resin as the polyolefin resin from the viewpoint of mechanical strength, heat resistance, and the like.
  • the polypropylene resin is not particularly limited as long as it contains propylene as a main component of the monomer.
  • a polypropylene resin containing ethylene as a comonomer component, in which the ⁇ -olefin is ethylene is preferable because it is easily available and has excellent processability.
  • the preferable ethylene content in the polypropylene resin is 1% by weight to 10% by weight, more preferably 2% by weight to 7% by weight, further 3.5% by weight to 6% by weight, and particularly 3.5% by weight.
  • the content is 5% by weight or less.
  • the ethylene content of the comonomer component in the polypropylene resin can be measured using 13 C-NMR.
  • the melting point of the polypropylene resin used in the present invention is preferably 130 ° C. or higher and 165 ° C. or lower, and more preferably 135 ° C. or higher and 155 ° C. or lower.
  • the melting point is determined by heating 1 to 10 mg of polypropylene resin from 40 ° C. to 220 ° C.
  • the melt flow rate (hereinafter referred to as “MFR value”) of the polypropylene resin used in the present invention is preferably 0.5 g / 10 min to 30 g / 10 min, and more preferably 2 g / 10 min to 20 g / min.
  • the thing of 10 minutes or less is preferable.
  • the MFR value is less than 0.5 g / 10 minutes, it may be difficult to obtain high expansion ratio polypropylene resin pre-expanded particles, and when it exceeds 30 g / 10 minutes, bubbles in the polypropylene resin pre-expanded particles may break. This tends to increase the open cell ratio of the polypropylene resin pre-expanded particles.
  • the MFR value of the polypropylene resin is a value measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
  • the ratio (Mw / Mn) of the weight average molecular weight (hereinafter sometimes referred to as “Mw”) and the number average molecular weight (hereinafter sometimes referred to as “Mn”) of the polypropylene resin used in the present invention is as follows. Although not particularly limited, 3.0 or more is preferable, and 3.0 or more and 6.0 or less is particularly preferable.
  • Mn and Mw of polypropylene resin are measured on condition of the following.
  • Measuring instrument Alliance GPC 2000 type gel permeation chromatography (GPC) manufactured by Waters Column: 2 TSKgel GMH6-HT, Two TSKgel GMH6-HTL (each inner diameter 7.5mm x length 300mm, manufactured by Tosoh Corporation)
  • Mobile phase o-dichlorobenzene (containing 0.025% BHT)
  • Flow rate 1.0 mL / min
  • Sample concentration 0.15% (W / V) -o-dichlorobenzene injection amount: 500 ⁇ L
  • Molecular weight calibration Polystyrene conversion (calibration with standard polystyrene).
  • Examples of the polyethylene resin used in the present invention include ethylene homopolymer, ethylene- ⁇ -olefin random copolymer, ethylene- ⁇ -olefin block copolymer, low density polyethylene, high density polyethylene, and linear low density polyethylene. Is mentioned.
  • Examples of the ⁇ -olefin used herein include ⁇ -olefins having 3 to 15 carbon atoms, and these may be used alone or in combination of two or more.
  • good foaming properties are obtained when the ethylene- ⁇ -olefin block copolymer has a comonomer content other than ethylene of 1 to 10% by weight or is a linear low density polyethylene. And can be suitably used.
  • the melting point of the polyethylene resin used in the present invention is preferably 110 ° C. or more and 140 ° C. or less, and further 120 ° C. or more and 130 ° C. or less is excellent in foamability and moldability, and within the polyolefin resin mold. This is preferable because pre-expanded particles having excellent mechanical strength and heat resistance when formed into a foamed molded product can be obtained.
  • the melting point is determined by heating 1 to 10 mg of polyethylene resin from 40 ° C. to 200 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter, and then decreasing the temperature to 40 ° C. by 10 ° C./min. It refers to the peak temperature of the endothermic peak in the DSC curve obtained when cooling at a rate and again raising the temperature to 200 ° C. at a rate of 10 ° C./min.
  • the melt flow rate (hereinafter referred to as “MFR value”) of the polyethylene resin used in the present invention is preferably 0.5 g / 10 min or more and 30 g / 10 min or less, more preferably 1 g / 10 min or more and 5 g / min. It is 10 minutes or less, and most preferably 1.5 g / 10 minutes or more and 2.5 g / 10 minutes or less.
  • MFR value of polyethylene is less than 0.5 g / 10 min, it becomes difficult to obtain pre-expanded particles having a high expansion ratio, and bubbles tend to be non-uniform.
  • the MFR value of the polyethylene resin is a value measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg in accordance with JIS K7210.
  • the polyolefin-based resin used in the present invention may be used by mixing a plurality of types of polyolefin-based resins as necessary, or other thermoplastic resins that can be used by mixing with polyolefin-based resins, such as polystyrene. , Ionomers and the like may be used in combination as long as the properties of the polyolefin resin are not lost.
  • the polyolefin resin used in the present invention can be obtained using a catalyst such as a Ziegler catalyst, a metallocene catalyst, a post metallocene catalyst.
  • a catalyst such as a Ziegler catalyst, a metallocene catalyst, a post metallocene catalyst.
  • a Ziegler catalyst is used, a polymer having a large Mw / Mn tends to be obtained.
  • the polymer obtained using these catalysts is oxidatively decomposed with an organic peroxide, characteristics such as molecular weight and melt flow rate can be adjusted.
  • organic peroxide examples include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butylperoxylaurate, and 2,5-dimethyl-2. , 5-di (benzoylperoxy) hexane, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, t-butylperoxyisopropyl monocarbonate, etc. .
  • the amount used is preferably 0.001 part by weight or more and 0.1 part by weight or less with respect to 100 parts by weight of the polyolefin resin.
  • a polyolefin resin to which an organic peroxide is added can be heated and melted in an extruder.
  • the polyolefin resin used in the present invention is preferably in an uncrosslinked state, but may be crosslinked by treatment with an organic peroxide or radiation.
  • the sterically hindered amine ether flame retardant used in the present invention has the general formula (1): R 1 NHCH 2 CH 2 CH 2 NR 2 CH 2 CH 2 NR 3 CH 2 CH 2 CH 2 NHR 4 (1)
  • R 1 and R 2 and R 3 and R 4 is the s-triazine moiety T represented by the general formula (2), the other of R 3 and R 4 is a hydrogen atom
  • R 5 is, for example, methyl, ethyl, propyl, butyl, n-pentyl, n-hexyl, n-heptyl, nonyl, decyl, undecyl, dodecyl, isopropyl, Isobutyl group, second butyl group, third butyl group, 2-ethylbutyl group, isopentyl group, 1-methylpentyl group, 1,3-dimethylbutyl group, 1-methylhexyl group, isoheptyl group, 1,
  • s-triazine moiety T represented by the general formula (2) include, for example, 2,4-bis [(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl) n -Butylamino] -s-triazine, 2,4-bis [(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylamino] -s-triazine, 2,4 -Bis [(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylamino] -s-triazine and the like.
  • sterically hindered amine ether flame retardant represented by the general formula (1) include, for example, N, N ′, N ′ ′′-tris ⁇ 2,4-bis [(1-cyclohexyloxy-2 , 2,6,6-Tetramethylpiperidin-4-yl) n-butylamino] -s-triazin-6-yl ⁇ -3,3′-ethylenediiminopropylamine; N, N ′, N ′′ — Tris ⁇ 2,4-bis [(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylamino] -s-triazine-6yl ⁇ -3,3′-ethylene Diiminodipropylamine; N, N ′, N ′ ′′-tris ⁇ 2,4-bis [(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-but
  • the amount of the sterically hindered amine ether flame retardant used in the present invention is preferably 0.01 parts by weight or more and 20 parts by weight or less, more preferably 0.02 parts by weight or more and 10 parts by weight with respect to 100 parts by weight of the polyolefin resin. If the amount of the sterically hindered amine ether flame retardant used is 0.05 part by weight or less, more preferably 0.05 part by weight or more and 5 parts by weight or less, sufficient flame retardancy cannot be obtained. If the amount exceeds 20 parts by weight, not only does the mechanical strength decrease, the cell diameter tends to become finer, and the in-mold foam moldability, particularly the surface appearance, tends to deteriorate, and the cost increases. Tend to be economically disadvantageous.
  • the method of adding a sterically hindered amine ether-based flame retardant to a polyolefin resin includes a sterically hindered amine ether-based flame retardant, for example, from 5% by weight to 50% by weight, even if it is a direct addition method.
  • a method may be used in which a polyolefin-based resin masterbatch is prepared and the polyolefin-based resin masterbatch is added to the polyolefin-based resin, but the latter method is preferable from the viewpoint of ease of addition.
  • phosphate ester used in the present invention examples include trimethyl phosphate, triethyl phosphate, triisopropyl phosphate, trineopentyl phosphate, tri-t-butyl phosphate, tributoxyethyl phosphate, triisobutyl phosphate, tri (2-ethylhexyl) Aliphatic phosphate esters such as phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, t-butylphenyl diphenyl phosphate), bis- (t-butylphenyl) phenyl phosphate, tris- ( t-butylphenyl) phosphate, isopropylphenyldiphenylphosphate, bis- (isopropylphenyl) diphenylphosphate, Aromatic hydrocarbon groups and aliphatic carbonization in one molecule
  • aromatic phosphate ester and a phosphate ester having an aromatic hydrocarbon group and an aliphatic hydrocarbon group in one molecule may be collectively referred to as “aromatic phosphate ester”. These may be used alone or in combination of two or more.
  • the phosphate ester used in the present invention is not particularly limited as long as it can withstand extrusion and kneading and decomposition in an aqueous dispersion medium.
  • the molecular weight is preferably 300 or more.
  • aromatic phosphate esters are preferable, aromatic phosphate esters are more preferable, and phosphorus of the aromatic phosphate ester is preferable.
  • a condensed phosphate ester in which two or more acid ester sites are present in one molecule is more preferable.
  • condensed phosphate ester used in the present invention include, for example, structures represented by chemical formulas (3) and (4), and these can be suitably used.
  • aromatic hydrocarbon group benzene ring of the aromatic phosphate ester for example, methyl group, ethyl group, propyl group, butyl group, n-pentyl group, n-hexyl group, n-heptyl group, nonyl group, decyl group, undecyl group, dodecyl group, isopropyl group, isobutyl group, second butyl group, third butyl group, 2-ethylbutyl group, isopentyl group, 1-methylpentyl Group, 1,3-dimethylbutyl group, 1-methylhexyl group, isoheptyl group, 1,1,3,3-tetramethylpentyl group, 1-methylundecyl group, 1,1,3,3,5,5 -Those having an alkyl group such as a hexamethylhexyl group are more preferred.
  • a phosphoric acid ester that is easily hydrolyzed is used as a flame retardant.
  • a phosphate ester it is required to remove moisture as much as possible in order to suppress a decrease in flame retardance due to hydrolysis.
  • stable flame retardancy can be achieved even when the polyolefin resin particles containing a phosphoric acid ester that is easily hydrolyzed are placed in an environment where they are heated under pressure in an aqueous dispersion medium. Is expressed.
  • the decompression foaming which is the foaming method of the present invention, enables the foaming temperature to be kept low.
  • the phosphoric acid ester is hardly hydrolyzed even under pressure and heating in an aqueous dispersion medium because foaming is possible at a temperature of about 100 to 160 ° C.
  • the amount of the phosphate ester used in the present invention is preferably 0.01 to 10 parts by weight, more preferably 0.02 to 5 parts by weight, and still more preferably 100 parts by weight of the polyolefin resin. Is used in an amount of 0.03 to 3 parts by weight. If the amount is less than 0.01 parts by weight, sufficient flame retardancy may not be obtained. If the amount exceeds 10 parts by weight, the mechanical strength decreases and the cell diameter tends to become finer, and in-mold foam molding is performed. Not only tend to deteriorate the properties, especially the surface appearance, increase dimensional shrinkage, but also tend to be costly and economically disadvantageous.
  • the method of adding the phosphoric acid ester to the polyolefin-based resin is a direct addition method
  • a polyolefin-based resin master batch containing, for example, 5% by weight or more and 50% by weight or less of the phosphoric acid ester is prepared.
  • the method of adding a resin-based resin masterbatch to a polyolefin-based resin may be used, the latter method is preferable from the viewpoint of ease of addition.
  • flame retardants and flame retardant aids include red phosphorus, phosphorus oxides, phosphate compounds, phosphates, phosphazenes, phosphate amines, phosphate amides, trivalent aliphatic phosphorus compounds, trivalent Phosphorus-containing compounds having a phosphorus atom in the molecule, such as aromatic phosphorus compounds of the above; salts containing cyanuric acid or isocyanuric acid and derivatives thereof, cyanuric acid or isocyanuric acid and derivatives thereof, triazine skeleton-containing compounds, azo compounds, tetrazoleamine salts , Tetrazole metal salts, nitrogen-containing compounds having a nitrogen atom in the molecule such as tetrazole compound; derivatives such as boric acid compounds, borates and hydrates of these compounds, boron atoms in the
  • a halogen compound having a halogen atom a compound containing two or more types of phosphorus, nitrogen, boron, halogen atoms in a molecule in which the above flame retardant is combined, an inorganic flame retardant such as a metal hydroxide, a metal oxide, Examples include antimony oxide, carbon black, polyhydric alcohol, glycols and the like.
  • cell nucleating agents such as talc, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, etc.
  • An additive such as an antistatic agent may be added to the polyolefin resin within a range not impairing the effects of the present invention to obtain a polyolefin resin composition.
  • the polyolefin resin composition of the present invention is usually prepared by using an extruder, a kneader, a Banbury mixer, a roll or the like in advance so that it can be easily used for pre-foaming, and a sterically hindered amine ether flame retardant, phosphoric acid.
  • the mixture is melt-mixed with an ester and, if necessary, the additive, and molded into polyolefin resin particles having a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, and the like.
  • the average particle weight of the polyolefin resin particles is preferably 0.5 mg or more and 3.0 mg or less, more preferably 0.5 mg or more and 2.0 mg or less.
  • the method for producing the polyolefin resin pre-foamed particles of the present invention is not particularly limited, but the polyolefin resin particles are dispersed in a dispersion medium together with a dispersant in the presence of a foaming agent in a hermetic container, and under pressure.
  • the heating temperature in the sealed container is preferably the melting point of the polyolefin resin particles ⁇ 25 ° C. or higher and the melting point of the polyolefin resin particles + 25 ° C. or lower, more preferably the melting point of the polyolefin resin particles ⁇ 15 ° C. or higher and the melting point of the polyolefin resin particles +15.
  • the temperature is in the range of °C or less.
  • the sealed container in which the polyolefin resin particles are dispersed, and any container that can withstand the pressure and temperature in the container at the time of producing the polyolefin resin pre-foamed particles may be used.
  • an autoclave container may be mentioned. .
  • dispersion medium methanol, ethanol, ethylene glycol, glycerin, water, or the like can be used, and it is preferable to use water among them.
  • a dispersant In order to prevent coalescence of polyolefin resin particles in the dispersion medium, it is preferable to use a dispersant.
  • the dispersant include inorganic dispersants such as tricalcium phosphate, magnesium phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay.
  • the amount of dispersant and dispersion aid used varies depending on the type and type and amount of polyolefin resin used, but usually 0.2 parts by weight or more and 3 parts by weight or less of the dispersant with respect to 100 parts by weight of the dispersion medium. It is preferable to add 0.001 part by weight or more and 0.1 part by weight or less of a dispersion aid to ensure dispersion stability, and it is difficult for the dispersant to adhere to the surface of the pre-foamed particles obtained. This is preferable because it does not hinder the fusion of the pre-expanded particles during the inner foam molding.
  • the polyolefin resin particles are usually preferably used in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the dispersion medium.
  • the amount of dispersant adhering to the expanded particles can be reduced as compared with the prior art.
  • a washing step of the foamed particles is required to reduce the amount of the adhering dispersant. If the amount of adhering dispersant can be proposed as in the present invention, the cleaning time can be reduced. It leads to shortening and use of chemicals / solvents, and environmental load and cost can be reduced.
  • the blowing agent is not particularly limited.
  • aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, and normal pentane; inorganic gases such as air, nitrogen, and carbon dioxide; Water or the like and a mixture thereof can be used.
  • the amount of foaming agent used varies depending on the resin used, the foaming agent, and the desired expansion ratio, but it can be used appropriately according to the desired expansion ratio of the polyolefin resin pre-expanded particles.
  • the amount is preferably 1 part by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the polyolefin resin particles.
  • blowing agent used in the present invention it is particularly desirable to use aliphatic hydrocarbons such as isobutane and normal butane, and carbon dioxide.
  • aliphatic hydrocarbons such as isobutane and normal butane, and carbon dioxide.
  • these foaming agents are used, the plasticization of the polyolefin resin is promoted. Therefore, it is possible to foam at a lower pressure and lower temperature than when only water, air or nitrogen is used as the foaming agent. As a result, the hydrolysis of the phosphoric acid ester is further suppressed, and the obtained flame retardancy becomes more stable.
  • polyolefin resin pre-expanded particles having a high expansion ratio When water is used as a foaming agent, in order to obtain polyolefin resin pre-expanded particles having a high expansion ratio, one or more compounds among the compounds having a hydrophilic polymer, a polyhydric alcohol, and a triazine skeleton are added to the polyolefin resin particles. It is preferable to add.
  • hydrophilic polymers include ethylene-acrylic acid-maleic anhydride terpolymers, ethylene- (meth) acrylic acid copolymers, and ionomer resins obtained by crosslinking ethylene- (meth) acrylic acid copolymers with metal ions. And a carboxyl group-containing polymer, polyethylene glycol and the like. These may be used alone or in combination of two or more.
  • the amount of the hydrophilic polymer used is not particularly limited depending on the kind of the hydrophilic polymer, but is usually preferably 0.01 parts by weight or more and 20 parts by weight or less, based on 100 parts by weight of the polyolefin-based resin particles, and 0.1% by weight. More preferred is 5 parts by weight or more. If the amount of the hydrophilic polymer used is less than 0.01 parts by weight, polyolefin resin pre-expanded particles having a high expansion ratio tend to be difficult to obtain, and if it exceeds 20 parts by weight, the heat resistance and mechanical strength are greatly reduced. There is a case.
  • polyhydric alcohol examples include ethylene glycol, glycerin, erythritol, pentaerythritol and the like. These may be used alone or in combination of two or more.
  • the amount of polyhydric alcohol used is not particularly limited depending on the type of polyhydric alcohol, but is usually preferably 0.01 parts by weight or more and 10 parts by weight or less, based on 100 parts by weight of the polyolefin-based resin particles. More preferred is at least 2 parts by weight.
  • the amount of polyhydric alcohol used is less than 0.01 parts by weight, polyolefin resin pre-expanded particles having a high expansion ratio tend to be difficult to obtain, and when it exceeds 10 parts by weight, the heat resistance and mechanical strength are greatly reduced. There is a case.
  • the compound having a triazine skeleton preferably has a molecular weight of 300 or less per unit triazine skeleton.
  • the molecular weight per triazine skeleton is a value obtained by dividing the molecular weight by the number of triazine skeletons contained in one molecule.
  • the molecular weight per unit triazine skeleton exceeds 300, variation in foaming ratio and variation in cell diameter may be noticeable.
  • Examples of the compound having a molecular weight per unit triazine skeleton of 300 or less include melamine (chemical name 1,3,5-triazine-2,4,6-triamine) and ammelin (chemical name 1,3,5-triazine-2).
  • melamine isocyanuric acid
  • melamine / isocyanuric acid condensate it is preferable to use melamine, isocyanuric acid, melamine / isocyanuric acid condensate in order to obtain high expansion ratio polyolefin resin pre-expanded particles with less variation in expansion ratio and less variation in cell diameter.
  • the amount of the compound having a triazine skeleton is not particularly limited depending on the type of the compound having a triazine skeleton, but is usually preferably 0.01 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the polyolefin resin particles. More preferred is 0.1 to 3 parts by weight.
  • the amount of the compound having a triazine skeleton is less than 0.01 parts by weight, it is difficult to obtain pre-expanded polyolefin resin particles having a high expansion ratio.
  • the amount exceeds 15 parts by weight heat resistance and mechanical strength are lowered. May become larger.
  • the addition of low molecular weight hydrophilic substances such as borax, zinc borate, glycerin, and polyethylene glycol having a molecular weight of 300 or less to the polyolefin-based resin results in uniform cell diameter with high expansion ratio.
  • the polyolefin resin pre-expanded particles can be obtained.
  • the expansion ratio of the polyolefin resin pre-expanded particles obtained by the above production method is preferably 5 to 50 times, more preferably 7 to 45 times.
  • polyolefin resin pre-expanded particles once manufactured 5 times or more and 35 times or less by pressure treatment in which the polyolefin resin pre-expanded particles are put in a sealed container and impregnated with nitrogen, air, etc. After making the pressure in the particles higher than normal pressure, the polyolefin resin pre-expanded particles are heated with steam or the like to further expand the polyolefin resin pre-expanded particles having a higher expansion ratio by a method such as a two-stage expansion method. You may get.
  • the polyolefin resin pre-expanded particles of the present invention preferably have an average cell diameter of 50 ⁇ m or more and 800 ⁇ m or less, and more preferably 100 ⁇ m or more and 600 ⁇ m or less.
  • the average cell diameter is obtained by arbitrarily taking 30 pre-expanded particles from the polyolefin resin pre-expanded particles, measuring the cell diameter according to JIS K6402, and taking the average value.
  • the polyolefin resin pre-expanded particles of the present invention preferably have a closed cell ratio of 88% or more, and more preferably 93% or more.
  • the closed cell ratio is calculated by calculating the closed cell volume of the polyolefin resin pre-expanded particles using an air comparison hydrometer, and dividing the closed cell volume by the apparent volume separately obtained by the ethanol immersion method. .
  • the polyolefin resin pre-expanded particles of the present invention when measured by differential scanning calorimetry, when 5-6 mg of polyolefin resin pre-expanded particles are heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min.
  • the resulting DSC curve preferably has two melting peaks.
  • the polyolefin resin pre-expanded particles of the present invention preferably have a DSC ratio of 13% to 50%, more preferably 18% to 40%.
  • the DSC ratio refers to the DSC curve from which the endotherm is the smallest between the two melting peaks of the DSC curve, and draws a tangent line to the DSC curve, and the low temperature side portion surrounded by the tangent line and the DSC curve is melted on the low temperature side.
  • the peak heat quantity is Ql and the high temperature side portion is the high temperature side melting peak heat quantity Qh
  • the ratio of the melting peak on the high temperature side calculated from these [Qh / (Ql + Qh) ⁇ 100].
  • the polyolefin resin pre-expanded particles of the present invention can be made into a polyolefin resin in-mold foam molding by in-mold foam molding.
  • the polyolefin resin pre-foamed particles of the present invention are used for in-mold foam molding, a) a method of using as it is, b) a method of previously injecting an inorganic gas such as air into the pre-foamed particles and imparting foaming ability C) A conventionally known method such as a method in which pre-expanded particles are filled in a mold in a compressed state and molded may be used.
  • the polyolefin resin pre-foamed particles are preliminarily air-pressurized in a pressure-resistant container, Foaming ability is imparted by press-fitting air into the pre-expanded particles, and this is filled in a molding space that can be closed but cannot be sealed by two molds. Molding is performed at a heating steam pressure of about 0.4 MPa (G) for a heating time of about 3 to 30 seconds, the polyolefin resin pre-foamed particles are fused together, and then the mold is cooled by water cooling. And a method for obtaining a foamed molded product in a polyolefin resin mold.
  • the density of the polyolefin resin in-mold foam molded product obtained using the polyolefin resin pre-expanded particles of the present invention is preferably 10 kg / m 3 or more and 300 kg / m 3 or less, more preferably 15 kg / m 3 or more. 250 kg / m 3 or less, more preferably 15 kg / m 3 or more and 150 kg / m 3 or less.
  • the polyolefin resin-in-mold foam-molded product of the present invention has an HF-2 in a wider range of thickness and density than before. It can be adapted.
  • DSC ratio (DSC ratio)
  • a DSC curve (illustrated in FIG. 1) obtained by heating a polyolefin resin pre-expanded particle 5 to 6 mg from 40 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter, Two melting peaks were calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side of the melting peak by the following equation.
  • DSC ratio Qh / (Ql + Qh) ⁇ 100
  • the polyolefin-based resin pre-foamed particles are washed with running water for 30 seconds, dried in an oven at 60 ° C. for 24 hours, and then taken out of the oven and immediately placed in a constant temperature and humidity chamber set at a temperature of 23 ° C. and a relative humidity of 50%. Leave for 72 hours. Next, about 100 g of the pre-expanded particles are accurately weighed to the third decimal place in the same temperature and humidity chamber to obtain the weight of the pre-expanded particles to which the dispersant is attached: F (g).
  • the total amount of the pre-expanded particles obtained by weighing was immersed in 5 L of 1N aqueous hydrochloric acid for 10 minutes, then immersed in 5 L of ion-exchanged water for 1 minute to wash away the aqueous hydrochloric acid, and then 5 L of 1N aqueous sodium hydroxide solution Soak in for 10 minutes.
  • the entire amount of the pre-expanded particles was dried in an oven at 60 ° C. for 24 hours, and then taken out from the oven, immediately followed by a constant temperature and humidity chamber set at a temperature of 23 ° C. and a relative humidity of 50%. Leave for 72 hours.
  • Molded body density w / v (g / cm 3 )
  • a test based on UL94HF is performed on a sample for a combustion test having the above dimensions (thickness is 3.5 mm, 7 mm, and 13 mm), and evaluated according to the following criteria.
  • Residual flame time This is the time from when the flame of the gas burner disappears until the flame of the sample piece disappears, and the average value when five tests are performed was calculated. The shorter the time, the higher the flame retardant performance.
  • Phosphate ester (molecular weight: 687, P%: 9.0%, PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) and chemical formula (5): RNHCH 2 CH 2 CH 2 NRCH 2 CH 2 NHCH 2 CH 2 CH 2 NHR (5) Wherein R is an s-triazine moiety T represented by the chemical formula (6) (FLAMESTTAB NOR116, manufactured by Ciba Japan),
  • Carbon black (40% masterbatch) was added and mixed, kneaded with a 50 mm ⁇ single screw extruder, and then granulated to produce polyolefin resin particles (1.2 mg / grain).
  • [Preparation of pre-expanded particles] 100 parts by weight of the obtained resin particles and 10 parts by weight of isobutane were mixed with 300 parts by weight of water, 1.6 parts by weight of powdered basic tribasic calcium phosphate and 0.03 parts by weight of sodium n-paraffin sulfonate in a 10 L sealed container. The container was heated to the foaming temperature shown in Table 1. Next, the pressure inside the container was adjusted to the predetermined foaming pressure shown in Table 1 by injecting isobutane.
  • the mold was filled in a ⁇ 22 mm mold, and the pre-foamed particles were heated and fused with water vapor having a pressure of 0.28 MPa (G) for 10 seconds to obtain a polyolefin resin in-mold foam molded product.
  • G water vapor having a pressure of 0.28 MPa
  • Examples 1 to 5 in which a sterically hindered amine ether flame retardant and a phosphate ester are used in combination are Comparative Examples 1 to 2 in which a sterically hindered amine ether flame retardant is used alone, and a comparison in which a phosphate ester is used alone. Compared to Example 5, good flame retardancy was exhibited. Further, in Comparative Examples 3 to 4 in which a sterically hindered amine ether flame retardant and magnesium hydroxide or ammonium polyphosphate were used in combination, a good in-mold foam molded article could not be obtained, and the flame retardant performance was not improved.
  • Examples 1 to 5 in which the sterically hindered amine ether flame retardant and the phosphate ester were used in combination had a smaller amount of the adhering dispersant and the washing process compared to Comparative Examples 1 and 2 in which the phosphate ester was not used in combination. And shortening the amount of drug used can be expected.
  • the polyolefin resin pre-expanded particles of the present invention has excellent in-mold foam moldability and surface appearance equivalent to the conventional ones, but also has excellent difficulty even in samples having a higher density or larger thickness than the conventional ones.
  • An in-mold foam molded article exhibiting flammability can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

ポリオレフィン系樹脂と、一般式(1): RNHCHCHCHNRCHCHNRCHCHCHNHR (1) で表わされる立体障害性アミンエーテル系難燃剤、およびリン酸エステルを含有するポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂予備発泡粒子とすることにより、良好な型内発泡成形性を有しつつ、ハロゲン系難燃剤を使用することなく、従来よりも高密度、厚みのあるサンプルにおいても優れた難燃性を示し、燃焼時に有害なガスを発生しない難燃性ポリオレフィン系樹脂予備発泡粒子を提供することができる。

Description

ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体
 本発明は、断熱材、緩衝包材、通箱、車のバンパー用芯材、電気電子製品部品など、特に電気電子製品部品の製造に用いられる難燃性を有するポリオレフィン系樹脂予備発泡粒子および該ポリオレフィン系樹脂予備発泡粒子を型内発泡成形して得られるポリオレフィン系樹脂型内発泡成形体に関する。
 型内発泡成形体は、形状の任意性、軽量性、断熱性などの特徴をもっている。中でもポリオレフィン系樹脂予備発泡粒子からなる型内発泡成形体は、ポリスチレン系樹脂予備発泡粒子を用いて得られる型内発泡成形体と比較すると、耐薬品性、耐熱性、圧縮後の歪回復率に優れており、これらの特徴により、ポリオレフィン系樹脂予備発泡粒子を用いて得られる型内発泡成形体は、自動車内装部材、自動車バンパー用芯材をはじめ、断熱材、緩衝包装材など様々な用途に用いられている。
 しかしながら、一般的にポリオレフィン系樹脂からなる発泡成形体は、前記のような優れた特性を有する反面、燃焼しやすいという欠点を有する。特に、発泡成形体は非発泡成形体と比較して燃焼性が高く、容易に燃焼してしまうという欠点を有する。
 近年、自動車部材、建築材料および電気電子製品部品に、難燃性や自己消火性を有することが要望されており、これらの要望にこたえるべく難燃性を付与した発泡成形体を得る研究が広く行なわれている。
 本来易燃性であるポリオレフィン系樹脂の難燃化の方法としては、種々検討されており、難燃剤を添加する方法が一般的である。ハロゲン含有化合物、水和金属酸化物、リン酸エステル類、含窒素化合物などさまざまな難燃剤がポリオレフィン系樹脂の難燃剤として使用されている。
 特許文献1には、非ハロゲン型難燃剤として、ポリオレフィン系樹脂予備発泡粒子に立体障害アミンエーテル型の難燃剤を添加することにより、型内発泡成形性の低下などの問題を生じることなく、UL94発泡体の水平試験でHF-1に適合する型内発泡成形体が実施例に記載されている。また、特許文献2には、同難燃剤を用いてFMVSS302に基づいた燃焼試験において自己消火性となる型内発泡成形体も記載されている。一般的に、ポリオレフィン系樹脂型内発泡成形体は、密度が高い、または、厚みが厚い方が、燃えやすく、この立体障害アミンエーテル型の難燃剤を用いた場合でも、さらなる難燃性能の向上が望まれている。
 特許文献3には、リン酸エステル系難燃剤0.5重量%以上とNOR型ヒンダードアミン系安定剤0.4重量%以上とを含有する難燃性ポリプロピレン繊維およびフィルム、特許文献4には、金属水酸化物に、ピペリジン骨格を有するヒンダードアミン系化合物とリン酸エステルを併用した難燃剤が開示されている。しかしながら、ポリオレフィン系樹脂予備発泡粒子およびその型内発泡成形体の製造過程では発泡剤の含浸、加熱、急激な圧開放、蒸気による加熱などの工程があり、難燃剤の分解や難燃剤混合による反応の懸念がある。また、ポリオレフィン系樹脂予備発泡粒子を金型内に充填し、蒸気などで加熱、融着することにより型内発泡成形体とするが、予備発泡粒子の性質により成形性が悪化すると工業的価値が著しく低下する。ポリオレフィン系樹脂に配合されている添加剤は、セル形状やセルサイズ、連泡化、融着性などに影響を及ぼし、これらが変わることで型内発泡成形性や機械的強度の低下を引き起こす可能性がある。
 特許文献5では、ハロゲンを含有する5価のホスフェート化合物を含有する難燃性ポリオレフィン系樹脂予備発泡粒子が記載されているが、ハロゲン含有物は近年、使用が制限される可能性があるのに加え、ハロゲン化リン酸エステルとノンハロゲンリン酸エステルでは分解性、樹脂へのなじみ性などが異なる上、難燃助剤との併用は記載されているものの、その他の難燃剤との混合については、なんら記載されていない。
WO2003/048239号公報 特開2004-263033号公報 特開2001-348724号公報 特開2006-316168号公報 特開平9-227711号公報
 本発明の目的は、良好な型内発泡成形性を有しつつ、ハロゲン系難燃剤を使用することなく、従来よりも高密度、厚みのあるサンプルにおいても優れた難燃性を示し、燃焼時に有害なガスを発生しない難燃性ポリオレフィン系樹脂予備発泡粒子を提供することにある。
 本発明は、上記課題に鑑みて鋭意研究した結果、立体障害性アミンエーテル系難燃剤およびリン酸エステルを添加したポリオレフィン系樹脂組成物をポリオレフィン系樹脂予備発泡粒子とすることにより、良好な型内発泡成形性を有しつつ、従来よりも優れた難燃性、具体的には、高密度の型内発泡成形体や、厚みのある型内発泡成形体においても優れた難燃性を示すことを見出した。
 すなわち、本発明は、以下の構成よりなる。
[1] ポリオレフィン系樹脂と、一般式(1):
NHCHCHCHNRCHCHNRCHCHCHNHR  (1)
(式(1)中、RおよびRと、RおよびRの一方は一般式(2)
Figure JPOXMLDOC01-appb-C000001
で表わされるs-トリアジン部分T、RおよびRの他方は水素原子、一般式(2)中、Rは1~12個の炭素原子を有するアルキル基、Rはメチル基、シクロヘキシル基またはオクチル基)で表わされる立体障害性アミンエーテル系難燃剤、リン酸エステルを含有するポリオレフィン系樹脂組成物からなる、ポリオレフィン系樹脂予備発泡粒子。
[2] 前記ポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を、発泡剤存在下、水系分散媒中に分散させ、加圧下で加熱した後、分散物を低圧域に放出して得られる、[1]記載のポリオレフィン系予備発泡粒子。
[3] 前記リン酸エステルが、芳香族系リン酸エステルである、[1]あるいは[2]記載のポリオレフィン系樹脂予備発泡粒子。
[4] 発泡剤が、イソブタン、ノルマルブタンよりなる群から選ばれる少なくとも一種である、[1]~[3]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[5] 発泡剤が、二酸化炭素である、[1]~[4]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[6] ポリオレフィン系樹脂組成物が、ポリオレフィン系樹脂100重量部に対し、前記一般式(1)で表される立体障害性アミンエーテル系難燃剤0.01重量部以上20重量部以下およびリン酸エステル0.01重量部以上10重量部以下を含有する、[1]~[5]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[7] 前記ポリオレフィン系樹脂が、ポリプロピレン系樹脂である、[1]~[6]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[8] [1]~[7]の何れかに記載のポリオレフィン系樹脂予備発泡粒子を、型内発泡成形してなる、ポリオレフィン系樹脂型内発泡成形体。
 本発明のポリオレフィン系樹脂予備発泡粒子により、従来と同等の良好な型内発泡成形性、表面外観を有しつつ、従来よりも高密度、或いは、厚みの大きいサンプルにおいても優れた難燃性を示す型内発泡成形体を得ることができる。
本発明のポリオレフィン系樹脂予備発泡粒子を示差走査熱量計(DSC)にて、40℃~220℃まで10℃/分の速度で昇温したときに得られるDSC曲線の一例である。低温側の融解ピークと低温側ピークと高温側ピークの間の極大点からの融解開始ベースラインへの接線で囲まれる熱量である低温側の融解ピーク熱量がQl、DSC曲線の高温側の融解ピークと低温側ピークと高温側ピークの間の極大点からの融解終了ベースラインへの接線で囲まれる熱量である高温側融解ピーク熱量がQhである。
 本発明において用いられるポリオレフィン系樹脂は、オレフィン系単量体75重量%以上含んでなる重合体である。オレフィン系単量体の含有率は、好ましくは80重量%以上である。オレフィン系単量体と共重合性を有する、その他の単量体を25重量%以下、好ましくは20重量%以下を含んでもよい。
 オレフィン系単量体の具体例としては、例えば、エチレン、プロピレン、ブテン-1、イソブテン、ペンテン-1、3-メチル-ブテン-1、ヘキセン-1、4-メチル-ペンテン-1、3,4-ジメチル-ブテン-1、へプテン-1、3-メチル-ヘキセン-1、オクテン-1、デセン-1などの炭素数2~12のα-オレフィンなどがあげられる。これらは単独で用いてもよく2種以上を組み合わせて用いてもよい。
 また、前記オレフィン系単量体と共重合性を有するその他の単量体の具体例としては、礼えば、シクロペンテン、ノルボルネン、1,4,5,8-ジメタノ-1,2,3,4,4a,8,8a,6-オクタヒドロナフタレンなどの環状オレフィン、5-メチレン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、1,4-ヘキサジエン、メチル-1,4-ヘキサジエン、7-メチル-1,6-オクタジエンなどのジエンなどがあげられる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明において用いられるポリオレフィン系樹脂の具体例としては、例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレンなどのエチレンを主成分とするポリエチレン系樹脂、プロピレンを主成分とするポリプロピレン系樹脂が挙げられる。これらのポリオレフィン系樹脂は単独で用いてもよく、2種以上を組み合わせて用いてもよい。これらのなかでも、ポリオレフィン系樹脂として、ポリプロピレン系樹脂を使用することが、機械的強度、耐熱性などの点から、好ましい。
 ポリプロピレン系樹脂としては、単量体の主成分としてプロピレンを含んでいれば、特に限定はなく、例えば、プロピレンホモポリマー、α-オレフィン-プロピレンランダム共重合体、α-オレフィン-プロピレンブロック共重合体などが挙げられる。これらは、単独で用いてもよく、2種以上併用してもよい。
特に、α-オレフィンがエチレンである、エチレンを共重合単量体成分として含有するポリプロピレン系樹脂が、入手が容易であり、加工成形性に優れていることから、好ましい。
ポリプロピレン系樹脂中、好ましいエチレン含量は、1重量%以上10重量%以下、さらには2重量%以上7重量%以下、さらには3.5重量%以上6重量%以下、特には3.5重量%以上5重量%以下である。
なお、ポリプロピレン系樹脂中の共重合単量体成分のエチレン含有量は、13C-NMRを用いて測定することができる。
 本発明において用いられるポリプロピレン系樹脂の融点は、130℃以上165℃以下であることが好ましく、135℃以上155℃以下であることがより好ましい。ポリプロピレン系樹脂の融点が130℃未満の場合、耐熱性、機械的強度が十分でない傾向がある。また、融点が165℃を超える場合、ビーズ法型内発泡成形時の融着を確保することが難しくなる傾向がある。
なお、前記融点は、示差走査熱量計を用いて、ポリプロピレン系樹脂1~10mgを40℃から220℃まで10℃/分の昇温速度で昇温し、その後40℃まで10℃/分の降温速度で冷却し、再度220℃まで10℃/分の昇温速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。
 本発明にて用いられるポリプロピレン系樹脂のメルトフローレート(以下、「MFR値」)は、0.5g/10分以上30g/10分以下であることが好ましく、更には2g/10分以上20g/10分以下のものが好ましい。MFR値が0.5g/10分未満の場合、高発泡倍率のポリプロピレン系樹脂予備発泡粒子が得られにくい場合があり、30g/10分を超える場合、ポリプロピレン系樹脂予備発泡粒子の気泡が破泡し易く、ポリプロピレン系樹脂予備発泡粒子の連泡率が高くなる傾向にある。
なお、ポリプロピレン系樹脂のMFR値は、JIS K7210に準拠し、温度230℃、荷重2.16kgの条件にて測定した値である。
 本発明において用いられるポリプロピレン系樹脂の重量平均分子量(以下、「Mw」と表記する場合がある)と数平均分子量(以下、「Mn」と表記する場合がある)の比(Mw/Mn)は特に限定されないが、3.0以上が好ましく、3.0以上6.0以下が特に好ましい。
 なお、ポリプロピレン系樹脂のMn及びMwは、以下の条件にて測定される。
測定機器 :Waters社製Alliance GPC 2000型 ゲルパーミエーションクロマトグラフィー(GPC)
カラム  :TSKgel GMH6-HT 2本、
      TSKgel GMH6-HTL 2本(それぞれ、内径7.5mm×長さ300mm、東ソー社製)
移動相  :o-ジクロロベンゼン(0.025%BHT含有)
カラム温度:140℃
流速   :1.0mL/min
試料濃度 :0.15%(W/V)-o-ジクロロベンゼン
注入量  :500μL
分子量較正:ポリスチレン換算(標準ポリスチレンによる較正)。
 本発明において用いられるポリエチレン系樹脂としては、エチレンホモポリマー、エチレン-α-オレフィンランダム共重合体、エチレン-α-オレフィンブロック共重合体、低密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレンなどが挙げられる。ここで言う、α-オレフィンとしては、炭素数3~15のα-オレフィンなどが挙げられ、これらは、単独で用いてもよく、2種以上併用してもよい。これらのポリエチレン系樹脂の中でも、エチレン-α-オレフィンブロック共重合体であってエチレン以外のコモノマー含量が1~10重量%である場合、あるいは直鎖状低密度ポリエチレンである場合に良好な発泡性を示し、好適に使用し得る。
 本発明において用いられるポリエチレン系樹脂の融点は、110℃以上140℃以下であることが好ましく、更には120℃以上130℃以下であることが、発泡性、成形性に優れ、ポリオレフィン系樹脂型内発泡成形体とした際の機械的強度、耐熱性に優れた予備発泡粒子を得ることができるため、好ましい。
なお、前記融点は、示差走査熱量計を用いて、ポリエチレン系樹脂1~10mgを40℃から200℃まで10℃/分の昇温速度で昇温し、その後40℃まで10℃/分の降温速度で冷却し、再度200℃まで10℃/分の昇温速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。
 本発明において用いられるポリエチレン系樹脂のメルトフローレート(以下、「MFR値」)は、0.5g/10分以上30g/10分以下であることが好ましく、より好ましくは1g/10分以上5g/10分以下であり、最も好ましくは1.5g/10分以上2.5g/10分以下である。ポリエチレンのMFR値が0.5g/10分未満では、高発泡倍率の予備発泡粒子が得られにくくなると共に、気泡も不均一になる傾向がある。また、MFR値が30g/10分を超えた場合、発泡しやすいものの、気泡が破泡し易く、予備発泡粒子の連泡率が高くなる傾向にあると共に、気泡も不均一になる傾向がある。
なお、ポリエチレン系樹脂のMFR値は、JIS K7210に準拠し、温度190℃、荷重2.16kgの条件にて測定した値である。
 本発明において用いられるポリオレフィン系樹脂は、必要に応じて複数種のポリオレフィン系樹脂を混合して用いてもよいし、ポリオレフィン系樹脂と混合して使用することができる他の熱可塑性樹脂、たとえばポリスチレン、アイオノマーなどをポリオレフィン系樹脂の性質が失われない範囲で組み合わせて使用してもよい。
 本発明において用いられるポリオレフィン系樹脂は、チーグラー触媒、メタロセン触媒、ポストメタロセン触媒等の触媒を用いて得ることができる。チーグラー触媒を使用するとMw/Mnが大きい重合体が得られる傾向にある。また、これらの触媒を使用して得られた重合体を有機過酸化物で酸化分解すると、分子量やメルトフローレート等の特性を調整することができる。
 本発明において使用しうる有機過酸化物としては、例えば、1,1-ビス(t-ブチルパーオキシ)3,3,5-トリメチルシクロヘキサン、t-ブチルパーオキシラウレート、2,5-ジメチル2,5-ジ(ベンゾイルパーオキシ)ヘキサン、t-ブチルパーオキシベンゾエート、ジクミルパーオキサイド、1,3-ビス(t-ブチルパーオキシイソプロピル)ベンゼン、t-ブチルパーオキシイソプロピルモノカーボネート等が挙げられる。
 有機過酸化物を使用する場合その使用量は、ポリオレフィン系樹脂100重量部に対して、0.001重量部以上0.1重量部以下であることが好ましい。ポリオレフィン系樹脂を酸化分解するには、例えば、有機過酸化物を添加したポリオレフィン系樹脂を押出機内で加熱溶融により行うことができる。
 本発明にて用いられるポリオレフィン系樹脂は、無架橋の状態が好ましいが、有機過酸化物や放射線等で処理することにより架橋を行っても良い。
 本発明で用いる立体障害性アミンエーテル系難燃剤は、一般式(1):
NHCHCHCHNRCHCHNRCHCHCHNHR  (1)
(式(1)中、RおよびRと、RおよびRの一方は一般式(2)で表わされるs-トリアジン部分T、RおよびRの他方は水素原子、式(2)中、Rは、例えばメチル基、エチル基、プロピル基、ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、イソブチル基、第2ブチル基、第3ブチル基、2-エチルブチル基、イソペンチル基、1-メチルペンチル基、1,3-ジメチルブチル基、1-メチルヘキシル基、イソヘプチル基、1,1,3,3-テトラメチルペンチル基、1-メチルウンデシル基、1,1,3,3,5,5-ヘキサメチルヘキシル基などの1~12個の炭素原子を有するアルキル基、Rはメチル基、シクロヘキシル基またはオクチル基)で表わされる化合物である。
Figure JPOXMLDOC01-appb-C000002
 前記一般式(2)で表わされるs-トリアジン部分Tの具体例としては、例えば、2,4-ビス[(1-メトキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン、2,4-ビス[(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン、2,4-ビス[(1-オクチルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジンなどがあげられる。
 前記一般式(1)で表わされる立体障害性アミンエーテル系難燃剤の具体例としては、例えば、N,N’,N’’’-トリス{2,4-ビス[(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン-6-イル}-3,3’-エチレンジイミノプロピルアミン;N,N’,N’’-トリス{2,4-ビス[(1-シクロヘキシルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン-6イル}-3,3’-エチレンジイミノジプロピルアミン;N,N’,N’’’-トリス{2,4-ビス[(1-オクチルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン-6イル}-3,3’-エチレンジイミノジプロピルアミン;N,N’,N’’-トリス{2,4-ビス[(1-オクチルオキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン-6イル}-3,3’-エチレンジイミノプロピルアミン;N,N’,N’’’-トリス{2,4-ビス[(1-メトキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン-6イル}-3,3’-エチレンジイミノプロピルアミン;N,N’,N’’-トリス{2,4-ビス[(1-メトキシ-2,2,6,6-テトラメチルピペリジン-4-イル)n-ブチルアミノ]-s-トリアジン-6イル}-3,3’-エチレンジイミノプロピルアミンなどがあげられる。
これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本発明における立体障害性アミンエーテル系難燃剤の使用量は、ポリオレフィン系樹脂100重量部に対して、好ましくは0.01重量部以上20重量部以下、より好ましくは0.02重量部以上10重量部以下、さらに好ましくは0.05重量部以上5重量部以下である
立体障害性アミンエーテル系難燃剤の使用量が、0.01重量部未満の場合には十分な難燃性が得られない可能性があり、20重量部をこえる場合には、機械的強度の低下、セル径が微細化傾向となり型内発泡成形性、特に表面外観が悪化するなどの傾向があるだけでなく、コスト高になり、経済的に不利になる傾向がある。
 本発明において、立体障害性アミンエーテル系難燃剤をポリオレフィン系樹脂に添加する方法は、直接添加する方法であっても、立体障害性アミンエーテル系難燃剤を例えば5重量%以上50重量%以下含んでなるポリオレフィン系樹脂マスターバッチを作製し、該ポリオレフィン系樹脂マスターバッチをポリオレフィン系樹脂に添加する方法であっても良いが、添加の容易性などの点から後者の方法が好ましい。
 本発明において、立体障害性アミンエーテル系難燃剤およびリン酸エステルを併用することにより、従来よりも高い密度の型内発泡成形体や厚みのある型内発泡性形態でも、優れた難燃性能を発揮させることができる。
 本発明において用いられるリン酸エステルとしては、例えば、トリメチルホスフェート、トリエチルフォスフェート、トリイソプロピルホスフェート、トリネオペンチルホスフェート、トリt-ブチルホスフェート、トリブトキシエチルホスフェート、トリイソブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート等の脂肪族リン酸エステル、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、クレジルジフェニルホスフェート、t-ブチルフェニルジフェニルホスフェート)、ビス-(t-ブチルフェニル)フェニルホスフェート、トリス-(t-ブチルフェニル)ホスフェート、イソプロピルフェニルジフェニルホスフェート、ビス-(イソプロピルフェニル)ジフェニルホスフェート、トリス-(イソプロピルフェニル)ホスフェート、クレジルジフェニルホスフェート、クレジルジ2,6-ジキシレニルホスフェート等の芳香族リン酸エステル、2-エチルヘキシルジフェニルホスフェート等の1分子中に芳香族炭化水素基と脂肪族炭化水素基とを有するリン酸エステルなどが挙げられる。
なお、芳香族リン酸エステルと、1分子中に芳香族炭化水素基と脂肪族炭化水素基とを有するリン酸エステルを併せて、「芳香族系リン酸エステル」と呼ぶ場合がある。
これらは、単独で用いても良く、2種類以上を組み合わせて用いてもよい。
 本発明において用いられるリン酸エステルは、押出混練、水系分散媒中での分解に耐えうるものであれば、特に限定はされないが、揮発性などの点からは、分子量300以上であることが望ましい。
また、ポリオレフィン系樹脂への分散性、高温安定性、揮発性などの点から、芳香族系リン酸エステルが好ましく、芳香族リン酸エステルであることがより好ましく、前記芳香族リン酸エステルのリン酸エステル部位が1分子中に2箇所以上存在する縮合リン酸エステルがさらに好ましい。
 本発明において用いられる縮合リン酸エステルの具体例としては、例えば、化学式(3)、(4)で示される構造が挙げられ、これらを好適に使用することができる。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
さらには、揮発性、耐加水分解性などの点から、芳香族リン酸エステルの芳香族炭化水素基ベンゼン環上に、例えば、メチル基、エチル基、プロピル基、ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、イソブチル基、第2ブチル基、第3ブチル基、2-エチルブチル基、イソペンチル基、1-メチルペンチル基、1,3-ジメチルブチル基、1-メチルヘキシル基、イソヘプチル基、1,1,3,3-テトラメチルペンチル基、1-メチルウンデシル基、1,1,3,3,5,5-ヘキサメチルヘキシル基などのアルキル基を有するものがより好ましい。
 本発明においては、加水分解しやすいリン酸エステルを難燃剤として用いている。通常、リン酸エステルを用いる系では、加水分解による難燃性低下を抑制するため、できるだけ水分を排除することが要求される。
しかし、驚くべきことに、本発明では、加水分解しやすいリン酸エステルを含んだポリオレフィン系樹脂粒子を、水系分散媒中で加圧加熱する環境においた場合であっても、安定した難燃性が発現する。これは、水系分散媒中で加圧加熱された場合でも、本発明の発泡方法である除圧発泡によれば、発泡温度を低く抑えることが可能なためであり、用いるポリプロピレン系樹脂の融点にも依存するが、概ね100~160℃程度の温度にて発泡が可能なため、水系分散媒中の加圧加熱下においてもリン酸エステルが加水分解しにくいことによると考えている。
 本発明におけるリン酸エステルの使用量は、ポリオレフィン系樹脂100重量部に対して、好ましくは0.01重量部以上10重量部以下、より好ましくは0.02重量部以上5重量部以下、さらに好ましくは0.03重量部以上3重量部以下用いられる。0.01重量部未満の場合には十分な難燃性が得られない可能性があり、10重量部をこえる場合には、機械的強度の低下、セル径が微細化傾向となり型内発泡成形性、とくに表面外観が悪化、寸法収縮の増大などの傾向があるだけでなく、コスト高になり、経済的に不利になる傾向がある。
 前記リン酸エステルをポリオレフィン系樹脂に添加する方法は、直接添加する方法であっても、リン酸エステルを例えば5重量%以上50重量%以下含んでなるポリオレフィン系樹脂マスターバッチを作製し、該ポリオレフィン系樹脂マスターバッチをポリオレフィン系樹脂に添加する方法であっても良いが、添加の容易性などの点から後者の方法が好ましい。
 本発明では、前記難燃剤の他に、必要に応じて、さらに難燃剤、難燃助剤を添加しても良い。
難燃剤、難燃助剤の例としては、赤リン、リン酸化物、リン酸化合物、リン酸塩類、ホスファゼン類、リン酸アミン類、リン酸アミド類、3価の脂肪族リン化合物、3価の芳香族リン化合物などの分子中にリン原子を有する含リン化合物;シアヌル酸あるいはイソシアヌル酸およびその誘導体、シアヌル酸あるいはイソシアヌル酸およびその誘導体からなる塩、トリアジン骨格含有化合物、アゾ化合物、テトラゾールアミン塩類、テトラゾール金属塩類、テトラゾール化合物などの分子中に窒素原子を有する含窒素化合物;ホウ酸化合物、ホウ酸塩類およびこれらの化合物の水和物などの誘導体、酸化ホウ素類などの分子中にホウ素原子を有するホウ素化合物;ハロゲン化脂肪族化合物およびその誘導体、ハロゲン化芳香族化合物およびその誘導体、ハロゲン化ビスフェノール類およびその誘導体、ハロゲン化ビスフェノール類誘導体オリゴマー、ハロゲン化アクリル樹脂、ハロゲン化エポキシ樹脂、ハロゲン化ポリスチレン樹脂、塩素化パラフィン、ポリテトラフルオロエチレンなどの分子中に塩素、臭素、フッ素のようなハロゲン原子を有するハロゲン化合物、上記難燃剤を組み合わせた分子中にリン、窒素、ホウ素、ハロゲン原子を2種類以上含む化合物、金属水酸化物、金属酸化物などの無機系難燃剤、三酸化アンチモン、カーボンブラック、多価アルコール、グリコール類などが挙げられる。
 本発明では、さらに必要に応じて、タルク等のセル造核剤をはじめ酸化防止剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸などの安定剤または架橋剤、連鎖移動剤、滑剤、可塑剤、充填剤、強化剤、無機系顔料、有機系顔料、導電性改良剤、難燃性改良剤、界面活性剤型もしくは高分子型の帯電防止剤等の添加剤を本発明の効果を損なわない範囲でポリオレフィン系樹脂に添加してポリオレフィン系樹脂組成物としてもよい。
 本発明のポリオレフィン系樹脂組成物は、通常、予備発泡に利用されやすいようにあらかじめ押出機、ニーダー、バンバリミキサー、ロール等を用いてポリオレフィン系樹脂を、立体障害性アミンエーテル系難燃剤、リン酸エステル、必要に応じて前記添加剤とともに溶融混合し、円柱状、楕円状、球状、立方体状、直方体状等のような所望の粒子形状のポリオレフィン系樹脂粒子に成形加工される。ポリオレフィン系樹脂粒子の平均粒重量は、好ましくは0.5mg以上3.0mg以下、より好ましくは0.5mg以上2.0mg以下である。
 本発明のポリオレフィン系樹脂予備発泡粒子を製造する方法には、特に限定はないが、密閉容器内にポリオレフィン系樹脂粒子を発泡剤存在下、分散剤等と共に分散媒中に分散させ、加圧下で所定の発泡温度まで加熱すると共に、発泡剤を樹脂粒子に含浸させた後、容器内の温度、圧力を一定に保持しながら、密閉容器内の分散物を低圧域に放出・発泡させる方法、いわゆる除圧発泡が好ましい。
 密閉容器内の加熱温度は、好ましくはポリオレフィン系樹脂粒子の融点-25℃以上ポリオレフィン系樹脂粒子の融点+25℃以下、更に好ましくはポリオレフィン系樹脂粒子の融点-15℃以上ポリオレフィン系樹脂粒子の融点+15℃以下の範囲の温度である。当該温度に加熱し、加圧して、ポリオレフィン系樹脂粒子内に発泡剤を含浸させたのち、密閉容器の一端を開放してポリオレフィン系樹脂粒子を密閉容器内よりも低圧の雰囲気中に放出することによりポリオレフィン系樹脂予備発泡粒子を製造することが出来る。
 ポリオレフィン系樹脂粒子を分散させる密閉容器には特に制限はなく、ポリオレフィン系樹脂予備発泡粒子製造時における容器内圧力、容器内温度に耐えられるものであればよいが、例えばオートクレーブ型の容器があげられる。
 前記分散媒としては、メタノール、エタノール、エチレングリコール、グリセリン、水等が使用できるが、中でも水を使用することが好ましい。
 分散媒中、ポリオレフィン系樹脂粒子同士の合着を防止するために、分散剤を使用することが好ましい。分散剤として、例えば、第三リン酸カルシウム、リン酸マグネシウム、塩基性炭酸マグネシウム、炭酸カルシウム、硫酸バリウム、カオリン、タルク、クレー等の無機系分散剤が挙げられる。
 必要に応じて、例えば、ドデシルベンゼンスルホン酸ソーダ、n-パラフィンスルホン酸ソーダ、α-オレフィンスルホン酸ソーダ、硫酸マグネシウム、硝酸マグネシウム、塩化マグネシウム、硫酸アルミニウム、硝酸アルミニウム、塩化アルミニウム、硫酸鉄、硝酸鉄、塩化鉄等の分散助剤を併用することが好ましい。
これらの中でも、第三リン酸カルシウムとn-パラフィンスルホン酸ソーダの併用が更に好ましい。
 分散剤や分散助剤の使用量は、その種類や、用いるポリオレフィン系樹脂の種類と使用量によって異なるが、通常、分散媒100重量部に対して分散剤0.2重量部以上3重量部以下を配合することが好ましく、分散助剤0.001重量部以上0.1重量部以下を配合することが、分散安定性を確保し、得られる予備発泡粒子表面に分散剤が付着しにくく、型内発泡成形時に予備発泡粒子同士の融着を阻害させない傾向があるため、好ましい。
 また、ポリオレフィン系樹脂粒子は、分散媒中での分散性を良好なものにするために、通常、分散媒100重量部に対して、20重量部以上100重量部以下使用するのが好ましい。
 本発明においては、立体障害性アミンエーテル系難燃剤および燐酸エステルを併用することにより、従来よりも発泡粒子に付着する分散剤量を低減することができる。分散剤が多量に付着した場合、型内発泡成形時に発泡粒子同士の融着を阻害する起これがある。一般的な発泡粒子の製造においては、付着分散剤量を低減するために、発泡粒子の洗浄工程が必要となるが、本発明のように付着分散剤量を提言することができれば、洗浄時間の短縮、薬剤・溶剤の使用削減にも繋がり、環境負荷、コストを低減することができる。
 ポリオレフィン系樹脂予備発泡粒子を製造するに当たり、発泡剤に特に制限はなく、例えば、プロパン、イソブタン、ノルマルブタン、イソペンタン、ノルマルペンタン等の脂肪族炭化水素;空気、窒素、二酸化炭素等の無機ガス;水等およびこれらの混合物を用いることができる。発泡剤の使用量は、使用する樹脂、発泡剤、所望の発泡倍率によって変わるが、ポリオレフィン系樹脂予備発泡粒子の所望の発泡倍率に応じて適宣使用すれば良く、通常発泡剤の使用量は、ポリオレフィン系樹脂粒子100重量部に対して、1重量部以上60重量部以下であることが好ましい。
 本発明において用いられる発泡剤としては、特にイソブタン、ノルマルブタン等の脂肪族炭化水素、二酸化炭素を用いることが望ましい。これらの発泡剤を用いた場合、ポリオレフィン系樹脂の可塑化を促進することから、発泡剤として水、あるいは、空気や窒素のみを用いる場合に比べて、より低圧、低温で発泡することが可能となり、その結果、一層リン酸エステルの加水分解は抑制され、得られる難燃性もより安定したものとなる。
 発泡剤として水を使用する場合、高い発泡倍率のポリオレフィン系樹脂予備発泡粒子を得るために、ポリオレフィン系樹脂粒子に親水性ポリマー、多価アルコール、トリアジン骨格を有する化合物のうち1種以上の化合物を添加することが好ましい。
 親水性ポリマーとしては、エチレン-アクリル酸-無水マレイン酸三元共重合体、エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸共重合体を金属イオンで架橋したアイオノマー樹脂などのカルボキシル基含有ポリマー、ポリエチレングリコール等があげられる。これらは単独で用いてもよく、2種以上を併用しても良い。
 親水性ポリマーの使用量は、親水性ポリマーの種類により、特に限定されないが、通常、ポリオレフィン系樹脂粒子100重量部に対して、0.01重量部以上20重量部以下が好ましく、0.1重量部以上5重量部以下がより好ましい。親水性ポリマーの使用量が0.01重量部未満では、高発泡倍率のポリオレフィン系樹脂予備発泡粒子が得られにくい傾向があり、20重量部を超えては、耐熱性、機械強度の低下が大きくなる場合がある。
 多価アルコールとしては、エチレングリコール、グリセリン、エリスリトール、ペンタエリスリトール等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
 多価アルコールの使用量は、多価アルコールの種類により、特に限定されないが、通常、ポリオレフィン系樹脂粒子100重量部に対して、0.01重量部以上10重量部以下が好ましく、0.1重量部以上2重量部以下がより好ましい。多価アルコールの使用量が0.01重量部未満では、高発泡倍率のポリオレフィン系樹脂予備発泡粒子が得られにくい傾向があり、10重量部を超えては、耐熱性、機械強度の低下が大きくなる場合がある。
 トリアジン骨格を有する化合物としては、単位トリアジン骨格あたりの分子量が300以下のものが好ましい。ここで、トリアジン骨格あたりの分子量とは、1分子中に含まれるトリアジン骨格数で分子量を除した値である。単位トリアジン骨格あたりの分子量が300を超えると発泡倍率ばらつき、セル径ばらつきが目立つ場合がある。単位トリアジン骨格あたりの分子量が300以下の化合物としては、例えば、メラミン(化学名1,3,5-トリアジン-2,4,6-トリアミン)、アンメリン(化学名1,3,5-トリアジン-2-ヒドロキシ-4,6-ジアミン)、アンメリド(化学名1,3,5-トリアジン-2,4-ヒドロキシ-6-アミン)、シアヌル酸(化学名1,3,5-トリアジン-2,4,6-トリオール)、トリス(メチル)シアヌレート、トリス(エチル)シアヌレート、トリス(ブチル)シアヌレート、トリス(2-ヒドロキシエチル)シアヌレート、メラミン・イソシアヌル酸縮合物などがあげられる。これらは単独で用いてもよく、2種以上併用しても良い。
これらのうち、高発泡倍率のポリオレフィン系樹脂予備発泡粒子を発泡倍率ばらつき、セル径ばらつきが少なく得るためには、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物を使用することが好ましい。
 トリアジン骨格を有する化合物の使用量は、トリアジン骨格を有する化合物の種類により、特に限定されないが、通常、ポリオレフィン系樹脂粒子100重量部に対して、0.01重量部以上15重量部以下が好ましく、0.1重量部以上3重量部以下がより好ましい。トリアジン骨格を有する化合物の使用量が0.01重量部未満では、高発泡倍率のポリオレフィン系樹脂予備発泡粒子が得られにくい傾向があり、15重量部を超えては、耐熱性、機械強度の低下が大きくなる場合がある。
 また、二酸化炭素を発泡剤として使用する場合、ポリオレフィン系樹脂に、ホウ砂、ホウ酸亜鉛、グリセリン、分子量300以下のポリエチレングリコールなどの低分子量親水性物質を添加すると高い発泡倍率で気泡径が均一のポリオレフィン系樹脂予備発泡粒子を得ることができる。
 以上の製造方法により得られるポリオレフィン系樹脂予備発泡粒子の発泡倍率は、好ましくは5倍以上50倍以下であり、さらに好ましくは7倍以上45倍以下である。
 また、一旦5倍以上35倍以下のポリオレフィン系樹脂予備発泡粒子を製造し、該ポリオレフィン系樹脂予備発泡粒子を密閉容器内に入れて窒素、空気などを含浸させる加圧処理によりポリオレフィン系樹脂予備発泡粒子内の圧力を常圧よりも高くした後、該ポリオレフィン系樹脂予備発泡粒子をスチーム等で加熱して更に発泡させる二段発泡法等の方法でより高発泡倍率のポリオレフィン系樹脂予備発泡粒子を得ても良い。
 なお、発泡倍率とは、ポリオレフィン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm)を求め、発泡前のポリオレフィン系樹脂粒子の密度d(g/cm)から次式により求めたものである。
    発泡倍率=d×v/w
 本発明のポリオレフィン系樹脂予備発泡粒子は、平均セル径が50μm以上800μm以下であることが好ましく100μm以上600μm以下であることがより好ましい。
なお、平均セル径は、ポリオレフィン系樹脂予備発泡粒子の中から任意に30個の予備発泡粒子を取り出し、JIS K6402に準拠してセル径を測定し、その平均値をとったものである。
 本発明のポリオレフィン系樹脂予備発泡粒子は、独立気泡率が88%以上であることが好ましく、93%以上であることがより好ましい。なお、独立気泡率は、空気比較式比重計を用いて、ポリオレフィン系樹脂予備発泡粒子の独立気泡体積を求め、かかる独立気泡体積を別途エタノール浸漬法で求めた見かけ体積で除することにより算出する。
 本発明のポリオレフィン系樹脂予備発泡粒子は、示差走査熱量計法による測定において、ポリオレフィン系樹脂予備発泡粒子5~6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られるDSC曲線において2つの融解ピークを有していることが好ましい。
 本発明のポリオレフィン系樹脂予備発泡粒子は、DSC比が13%以上50%以下であることが好ましく、18%以上40%以下であることがより好ましい。DSC比が当該範囲であると、表面美麗性の高いポリオレフィン系樹脂型内発泡成形体が得られやすい。
なお、DSC比とは、DSC曲線の2つの融解ピーク間で最も吸熱量が小さくなる点からDSC曲線に対しそれぞれ接線を引き、該接線とDSC曲線に囲まれた低温側部分を低温側の融解ピーク熱量Qlとし、高温側部分を高温側の融解ピーク熱量Qhとしたときに、これらから算出した、高温側の融解ピークの比率[Qh/(Ql+Qh)×100]である。
 本発明のポリオレフィン系樹脂予備発泡粒子は、型内発泡成形することによってポリオレフィン系樹脂型内発泡成形体とすることができる。
 本発明のポリオレフィン系樹脂予備発泡粒子を型内発泡成形に用いる場合には、イ)そのまま用いる方法、ロ)予め予備発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)予備発泡粒子を圧縮状態で金型内に充填し成形する方法、など従来既知の方法が使用しうる。
 本発明のポリオレフィン系樹脂予備発泡粒子からポリオレフィン系樹脂型内発泡成形体を型内発泡成形する具体的方法としては、たとえばあらかじめポリオレフィン系樹脂予備発泡粒子を耐圧容器内で空気加圧し、ポリオレフィン系樹脂予備発泡粒子中に空気を圧入することにより発泡能を付与し、これを2つの金型よりなる閉鎖しうるが密閉し得ない成形空間内に充填し、水蒸気などを加熱媒体として0.10~0.4MPa(G)程度の加熱水蒸気圧で3~30秒程度の加熱時間で成形し、ポリオレフィン系樹脂予備発泡粒子同士を融着させ、このあと金型を水冷により冷却した後、金型を開き、ポリオレフィン系樹脂型内発泡成形体を得る方法などが挙げられる。
 本発明のポリオレフィン系樹脂予備発泡粒子を用いて得られるポリオレフィン系樹脂型内発泡成形体の密度は、10kg/m以上300kg/m以下であることが好ましく、より好ましくは15kg/m以上250kg/m以下、さらに好ましくは15kg/m以上150kg/m以下である。
 本発明のポリオレフィン系樹脂型内発泡成形体は、UL94発泡材料の水平燃焼性試験(UL94HF)に準じた試験方法を行った場合には、従来よりも広い厚み、密度の範囲でHF-2に適合可能である。
 次に、本発明を実施例及び比較例に基づき説明するが、本発明はこれらの実施例のみに限定されるものではない。
 実施例および比較例において、使用した物質は、以下のとおりであるが、特に精製等は行わずに使用した。
・ポリオレフィン系樹脂:エチレン-プロピレンランダム共重合体[エチレン含量2.8%、MFR=6.0g/10min、融点145℃]
・立体障害性アミンエーテル系難燃剤[チバ・ジャパン社製、FLAMESTAB NOR116;化学式(5)]
・リン酸エステル[大八化学工業(株)製、PX-200(分子量:687、P%:9.0%;化学式(3))
・ポリリン酸アンモニウム[鈴裕化学社製]
・水酸化マグネシウム[協和化学工業(株)製]
・カーボンブラック[住化カラー(株)製]
・パウダー状塩基性第3リン酸カルシウム[太平化学産業(株)製]
・n-パラフィンスルホン酸ソーダ[花王(株)製、ラムテルPS]
 実施例および比較例における評価は、以下のように行った。
 (DSC比)
 示差走査熱量計を用いて、ポリオレフィン系樹脂予備発泡粒子5~6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られるDSC曲線(図1に例示)において、2つのピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから次式により算出した。
    DSC比=Qh/(Ql+Qh)×100
 (発泡倍率)
 ポリオレフィン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm)を求め、発泡前のポリオレフィン系樹脂粒子の密度d(g/cm)から次式により求めたものである。
    発泡倍率=d×v/w
 (平均セル径)
 得られたポリオレフィン系樹脂予備発泡粒子の中から任意に30個の予備発泡粒子を取り出し、JIS K6402に準拠してセル径を測定し、平均セル径を算出した。
 (独立気泡率)
 空気比較式比重計(BECKMAN社製930型)を用いて、得られたポリオレフィン系樹脂予備発泡粒子の独立気泡体積を求め、かかる独立気泡体積を別途エタノール浸漬法で求めた見かけ体積で除することにより独立気泡率を算出した。
 (付着分散剤量)
 ポリオレフィン系樹脂予備発泡粒子を30秒間流水にて水洗後、60℃のオーブン中で24時間乾燥させ、次いでオーブンから取り出して、直ちに温度23℃、相対湿度50%に設定された恒温恒湿室内にて72時間放置する。次に、同恒温恒湿室内にて、該予備発泡粒子約100gを、小数点以下第3位まで正確に秤量して、分散剤が付着した該予備発泡粒子の重量:F(g)とする。
その後、秤量して得られた該予備発泡粒子全量を、1N塩酸水溶液5L中に10分間浸漬した後、イオン交換水5Lに1分間浸漬して塩酸水溶液を洗い落とし、次いで、1N水酸化ナトリウム水溶液5L中に10分間浸漬する。一連の作業を2回繰り返した後、該予備発泡粒子全量を60℃のオーブン中で24時間乾燥させ、次いでオーブンから取り出して、直ちに温度23℃、相対湿度50%に設定された恒温恒湿室内にて72時間放置する。次に、同恒温恒湿室内にて、小数点以下第3位まで正確に秤量して、酸アルカリ洗浄後の該予備発泡粒子の重量:S(g)とする。
水洗後の重量F(g)と酸アルカリ洗浄後の重量S(g)との差を、該予備発泡粒子の表面に付着していた分散剤量として、下記の式により算出した。
    付着分散剤量(ppm)=(F-S)/F×10
 (表面外観)
 得られた型内発泡成形体表面を目視で観察し、下記の基準で評価する。
○:表面に凹凸がなく、各粒子間隙もほとんどない。
×:表面に凹凸があり、各粒子間隙がきわめて大きい。
 (融着)
 得られた型内発泡成形体を破断させ、その断面を観察し、断面の粒子の全個数に対する破断粒子数の割合を求め、以下の基準で評価する。
○:破断粒子の割合が60%以上。
×:破断粒子の割合が60%未満。
 (成形体密度)
 得られた型内発泡成形体を燃焼試験用サンプルとして縦150mm、幅50mm、厚みを目的の値に切削し、重量w(g)、縦、横、厚みの長さから体積v(cm)を求め、次式により求めたものである。
     成形体密度=w/v(g/cm
上記寸法(厚みは、3.5mm、7mm、13mm)の燃焼試験用サンプルに対して、UL94HFに準拠した試験を行い、下記の基準で評価する。
残炎時間:ガスバーナーの炎が消えてからサンプル片の炎が消えるまでの時間であり、5回試験を行った際の平均値を算出した。時間が短いほど難燃性能は高い。
 (実施例1~5)
[樹脂粒子の作製]
 ポリオレフィン系樹脂(エチレン-プロピレンランダム共重合体、エチレン含量2.8%、MFR=6.0g/10min、融点145℃)100重量部に対し、造核剤としてタルクを0.01重量部、表1に示す配合比率にて、
化学式(3)
Figure JPOXMLDOC01-appb-C000005
のリン酸エステル(分子量:687、P%:9.0%、大八化学工業社製PX-200)および化学式(5):
RNHCHCHCHNRCHCHNHCHCHCHNHR   (5)
(式中、Rは化学式(6)で表されるs-トリアジン部分T)の化合物(FLAMESTAB NOR116、チバ・ジャパン社製)、
Figure JPOXMLDOC01-appb-C000006
カーボンブラック(40%マスターバッチ)を添加・混合し、50mmφ単軸押出機で混練した後、造粒し、ポリオレフィン系樹脂粒子(1.2mg/粒)を製造した。
[予備発泡粒子の作製]
 得られた樹脂粒子100重量部およびイソブタン10重量部を、水300重量部、パウダー状塩基性第3リン酸カルシウム1.6重量部およびn-パラフィンスルホン酸ソーダ0.03重量部と共に、10L密閉容器に仕込み、該容器内部を表1記載の発泡温度に加熱した。
次いで、容器内圧力を、イソブタンを圧入して、表1記載の所定発泡圧力に調整した。その後、容器内圧力を窒素で保持しつつ、密閉容器下部のバルブを開いて、水分散物を開孔径4.0mmφのオリフィス板を通して大気圧下に放出することにより、ポリオレフィン系樹脂予備発泡粒子を得た。
得られたポリオレフィン系樹脂予備発泡粒子について、上記の評価を行なった。その結果を、表2に示す。
[型内発泡体の作製]
 次に、得られたポリオレフィン系樹脂予備発泡粒子を0.1N塩酸水溶液にて洗浄し、さらに、耐圧容器内で空気加圧して0.18~0.23MPaの内圧を付与した後、400mm×300mm×22mmの金型に充填し、該予備発泡粒子同士を圧力0.28MPa(G)の水蒸気で10秒間加熱、融着させ、ポリオレフィン系樹脂型内発泡成形体を得た。
得られた型内発泡成形体に関して、表面外観、融着率、成形体倍率、燃焼試験の評価を行った。その結果を、表2に示す。
 (比較例1~5)
[樹脂粒子の作製]
表1に示す比率にて、実施例で用いた化学式(3)および(5)の化合物、各種難燃剤(水酸化マグネシウム、ポリリン酸アンモニウム)、カーボンブラックを添加し、実施例と同様の方法にて、樹脂粒子を得た。
[予備発泡粒子の作製]
発泡温度および発泡圧力を表2に示す条件に変更した以外は、実施例と同様の方法により、ポリオレフィン系樹脂予備発泡粒子を得た。
得られたポリオレフィン系樹脂予備発泡粒子について、上記の評価を行なった。その結果を、表2に示す。
[型内発泡体の作製]
 実施例と同様の方法により、ポリオレフィン系樹脂型内発泡成形体を得た。
得られた型内発泡成形体に関して、表面外観、融着率、成形体倍率、燃焼試験の評価を行った。その結果を、表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 立体障害性アミンエーテル系難燃剤およびリン酸エステルを併用した実施例1~5は、立体障害性アミンエーテル系難燃剤を単独で使用した比較例1~2、リン酸エステルを単独で使用した比較例5に比較して、良好な難燃性能を示した。また、立体障害性アミンエーテル系難燃剤および、水酸化マグネシウムまたはポリリン酸アンモニウムを併用した比較例3~4では、良好な型内発泡成形体が得られず、難燃性能も改善しなかった。
 また、立体障害性アミンエーテル系難燃剤およびリン酸エステルを併用した実施例1~5は、リン酸エステルを併用していない比較例1~2に比べて、付着分散剤量が少なく、洗浄工程の短縮、使用薬剤量の低減が期待できる。
本発明のポリオレフィン系樹脂予備発泡粒子を用いることにより、従来と同等の良好な型内発泡成形性、表面外観を有しつつ、従来よりも高密度、或いは、厚みの大きいサンプルにおいても優れた難燃性を示す型内発泡成形体を得ることができる。

Claims (8)

  1.  ポリオレフィン系樹脂と、一般式(1):
    NHCHCHCHNRCHCHNRCHCHCHNHR  (1)
    (式(1)中、RおよびRと、RおよびRの一方は一般式(2)
    Figure JPOXMLDOC01-appb-C000007
    で表わされるs-トリアジン部分T、RおよびRの他方は水素原子、一般式(2)中、Rは1~12個の炭素原子を有するアルキル基、Rはメチル基、シクロヘキシル基またはオクチル基)で表わされる立体障害性アミンエーテル系難燃剤、リン酸エステルを含有するポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂予備発泡粒子。
  2.  前記ポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を発泡剤存在下、水系分散媒中に分散させ、加圧下で加熱した後、分散物を低圧域に放出して得られる請求項1記載のポリオレフィン系樹脂予備発泡粒子。
  3.  前記リン酸エステルが、芳香族系リン酸エステルである、請求項1あるいは2記載のポリオレフィン系樹脂予備発泡粒子。
  4.  発泡剤が、イソブタン、ノルマルブタンよりなる群から選ばれる少なくとも一種である、請求項1~3の何れか一項に記載のポリオレフィン系樹脂予備発泡粒子。
  5. 発泡剤が二酸化炭素である、請求項1~4の何れか一項記載のポリオレフィン系樹脂予備発泡粒子。
  6.  ポリオレフィン系樹脂組成物が、ポリオレフィン系樹脂100重量部に対し、前記一般式(1)で表される立体障害性アミンエーテル系難燃剤0.01重量部以上20重量部以下およびリン酸エステル0.01重量部以上10重量部以下を含有する、請求項1~5の何れか一項に記載のポリオレフィン系樹脂予備発泡粒子。
  7.  前記ポリオレフィン系樹脂が、ポリプロピレン系樹脂である、請求項1~6の何れか一項に記載のポリオレフィン系樹脂予備発泡粒子。
  8.  請求項1~7何れか一項に記載のポリオレフィン系樹脂予備発泡粒子を、型内発泡成形してなる、ポリオレフィン系樹脂型内発泡成形体。
     
PCT/JP2010/002681 2009-04-15 2010-04-14 ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 WO2010119670A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP10764257.1A EP2420533B1 (en) 2009-04-15 2010-04-14 Polyolefin resin pre-expanded particles and polyolefin resin in-mold expansion-molded article comprising polyolefin resin pre-expanded particles
US13/264,041 US20120037837A1 (en) 2009-04-15 2010-04-14 Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre-expanded particles
JP2011509213A JP5690265B2 (ja) 2009-04-15 2010-04-14 ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体
CN2010800161944A CN102388093B (zh) 2009-04-15 2010-04-14 聚烯烃系树脂预发泡粒子及由聚烯烃系树脂预发泡粒子形成的聚烯烃系树脂模内发泡成形体
US14/608,492 US10072128B2 (en) 2009-04-15 2015-01-29 Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre- expanded particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-099196 2009-04-15
JP2009099196 2009-04-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/264,041 A-371-Of-International US20120037837A1 (en) 2009-04-15 2010-04-14 Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre-expanded particles
US14/608,492 Division US10072128B2 (en) 2009-04-15 2015-01-29 Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre- expanded particles

Publications (1)

Publication Number Publication Date
WO2010119670A1 true WO2010119670A1 (ja) 2010-10-21

Family

ID=42982344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002681 WO2010119670A1 (ja) 2009-04-15 2010-04-14 ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体

Country Status (5)

Country Link
US (2) US20120037837A1 (ja)
EP (1) EP2420533B1 (ja)
JP (1) JP5690265B2 (ja)
CN (1) CN102388093B (ja)
WO (1) WO2010119670A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022049A1 (ja) * 2011-08-09 2013-02-14 株式会社カネカ ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体
JPWO2016052739A1 (ja) * 2014-10-03 2017-07-20 カネカ ベルギー ナムローゼ フェンノートシャップKaneka Belgium N.V. ポリオレフィン系樹脂予備発泡粒子および型内発泡成形体、並びにそれらの製造方法
JP2020093562A (ja) * 2018-12-10 2020-06-18 株式会社ジェイエスピー 車両用空調ダクト
JP2020105340A (ja) * 2018-12-27 2020-07-09 積水化成品工業株式会社 難燃性発泡複合樹脂粒子、その製造方法及び発泡成形体
WO2022039076A1 (ja) * 2020-08-19 2022-02-24 株式会社カネカ ポリオレフィン系樹脂発泡粒子及びそのポリオレフィン系樹脂発泡成形体
JPWO2022190565A1 (ja) * 2021-03-12 2022-09-15
JPWO2022190564A1 (ja) * 2021-03-12 2022-09-15
WO2022203035A1 (ja) * 2021-03-26 2022-09-29 株式会社カネカ ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法
WO2023181879A1 (ja) * 2022-03-25 2023-09-28 株式会社カネカ ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法
WO2024053584A1 (ja) * 2022-09-06 2024-03-14 株式会社カネカ ポリオレフィン系発泡粒子、および、ポリオレフィン系発泡成形体、並びにそれらの製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2666626B1 (en) * 2012-05-23 2014-12-31 Sekisui Alveo AG Flame-retardant polyolefin foam and its production
JP6170765B2 (ja) 2013-07-08 2017-07-26 株式会社ジェイエスピー 表皮付きポリオレフィン系樹脂発泡成形体の製造方法
EP2927302B1 (de) 2014-04-03 2019-03-06 Basf Se Flammschutzmittel auf basis von substituierten di-, tri- und tetra-arylethanverbindungen
PL2947115T3 (pl) 2014-05-22 2019-11-29 Basf Se Wolne od fluorowców mieszaniny środków ogniochronnych dla poliolefinowych tworzyw piankowych
EP3613801B1 (en) * 2017-04-21 2023-03-01 Kaneka Corporation Polypropylene resin foamed particles and method for producing same
WO2018212183A1 (ja) * 2017-05-18 2018-11-22 株式会社ジェイエスピー オレフィン系熱可塑性エラストマー架橋発泡粒子
CN110551339B (zh) * 2018-06-04 2022-08-02 钟化(苏州)缓冲材料有限公司 聚丙烯系树脂颗粒、聚丙烯系树脂发泡颗粒及其制备方法和成型体
JP2023024310A (ja) * 2021-08-06 2023-02-16 株式会社ジェイエスピー ポリプロピレン系樹脂発泡粒子及びポリプロピレン系樹脂発泡粒子成形体

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227711A (ja) 1996-02-22 1997-09-02 Mitsubishi Chem Basf Co Ltd 難燃性ポリオレフィン系樹脂発泡粒子及びそれを用いた型内発泡成形体
JP2001348724A (ja) 2000-04-06 2001-12-21 Mitsubishi Rayon Co Ltd 難燃性ポリプロピレン繊維及びその製造方法並びに難燃性ポリプロピレンフィルム
JP2002507238A (ja) * 1997-06-30 2002-03-05 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 難燃剤組成物
WO2003048239A1 (fr) 2001-12-03 2003-06-12 Kaneka Corporation Billes pre-expansees de resine polyolefinique ignifuge et objet moule a partir de ces billes par moussage dans le moule
JP2004263033A (ja) 2003-02-28 2004-09-24 Jsp Corp ポリオレフィン系樹脂型内発泡成形体
JP2006316168A (ja) 2005-05-12 2006-11-24 Marubishi Oil Chem Co Ltd 難燃剤及びそれを含む合成樹脂組成物
JP2007056150A (ja) * 2005-08-25 2007-03-08 Calp Corp 難燃性樹脂組成物及びそれからなる成形体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI980366A1 (it) 1998-02-25 1999-08-25 Ciba Spec Chem Spa Preparazione di eteri amminici stericamente impediti
JP4009117B2 (ja) * 2002-03-06 2007-11-14 大和紡績株式会社 オレフィン複合シートおよび強化複合不織布
US7138448B2 (en) * 2002-11-04 2006-11-21 Ciba Specialty Chemicals Corporation Flame retardant compositions
JP5161663B2 (ja) * 2008-06-12 2013-03-13 株式会社カネカ 難燃性ポリオレフィン系樹脂予備発泡粒子およびその型内発泡成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09227711A (ja) 1996-02-22 1997-09-02 Mitsubishi Chem Basf Co Ltd 難燃性ポリオレフィン系樹脂発泡粒子及びそれを用いた型内発泡成形体
JP2002507238A (ja) * 1997-06-30 2002-03-05 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド 難燃剤組成物
JP2001348724A (ja) 2000-04-06 2001-12-21 Mitsubishi Rayon Co Ltd 難燃性ポリプロピレン繊維及びその製造方法並びに難燃性ポリプロピレンフィルム
WO2003048239A1 (fr) 2001-12-03 2003-06-12 Kaneka Corporation Billes pre-expansees de resine polyolefinique ignifuge et objet moule a partir de ces billes par moussage dans le moule
JP2004263033A (ja) 2003-02-28 2004-09-24 Jsp Corp ポリオレフィン系樹脂型内発泡成形体
JP2006316168A (ja) 2005-05-12 2006-11-24 Marubishi Oil Chem Co Ltd 難燃剤及びそれを含む合成樹脂組成物
JP2007056150A (ja) * 2005-08-25 2007-03-08 Calp Corp 難燃性樹脂組成物及びそれからなる成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2420533A4 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013022049A1 (ja) * 2011-08-09 2013-02-14 株式会社カネカ ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体
CN103748148A (zh) * 2011-08-09 2014-04-23 株式会社钟化 聚烯烃系树脂发泡颗粒及其模内成形体
EP2743295A1 (en) * 2011-08-09 2014-06-18 Kaneka Corporation Polyolefin resin foam particles and in-mold foaming molded body of same
EP2743295A4 (en) * 2011-08-09 2015-01-14 Kaneka Corp POLYOLEFIN RESIN FOAM PARTICLES AND MOLDED MOLD FOAM BODY BASED THEREOF
JPWO2013022049A1 (ja) * 2011-08-09 2015-03-05 株式会社カネカ ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体
US9249281B2 (en) 2011-08-09 2016-02-02 Kaneka Corporation Polyolefin resin foam particles and in-mold foaming molded body of same
JPWO2016052739A1 (ja) * 2014-10-03 2017-07-20 カネカ ベルギー ナムローゼ フェンノートシャップKaneka Belgium N.V. ポリオレフィン系樹脂予備発泡粒子および型内発泡成形体、並びにそれらの製造方法
US10344137B2 (en) 2014-10-03 2019-07-09 Kaneka Belgium N.V. Polyolefin-based resin pre-expanded particle, in-mold foamed article, process for producing the polyolefin-based resin pre-expanded particle, and process for producing the in-mold foamed article
JP2020093562A (ja) * 2018-12-10 2020-06-18 株式会社ジェイエスピー 車両用空調ダクト
JP2020105340A (ja) * 2018-12-27 2020-07-09 積水化成品工業株式会社 難燃性発泡複合樹脂粒子、その製造方法及び発泡成形体
WO2022039076A1 (ja) * 2020-08-19 2022-02-24 株式会社カネカ ポリオレフィン系樹脂発泡粒子及びそのポリオレフィン系樹脂発泡成形体
JPWO2022190565A1 (ja) * 2021-03-12 2022-09-15
JPWO2022190564A1 (ja) * 2021-03-12 2022-09-15
JP7314437B2 (ja) 2021-03-12 2023-07-25 株式会社ジェイエスピー ポリプロピレン系樹脂発泡粒子及びポリプロピレン系樹脂発泡粒子の製造方法
JP7314436B2 (ja) 2021-03-12 2023-07-25 株式会社ジェイエスピー ポリプロピレン系樹脂発泡粒子の製造方法及びポリプロピレン系樹脂発泡粒子
WO2022203035A1 (ja) * 2021-03-26 2022-09-29 株式会社カネカ ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法
WO2023181879A1 (ja) * 2022-03-25 2023-09-28 株式会社カネカ ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法
WO2024053584A1 (ja) * 2022-09-06 2024-03-14 株式会社カネカ ポリオレフィン系発泡粒子、および、ポリオレフィン系発泡成形体、並びにそれらの製造方法

Also Published As

Publication number Publication date
CN102388093B (zh) 2013-10-23
CN102388093A (zh) 2012-03-21
EP2420533A1 (en) 2012-02-22
JP5690265B2 (ja) 2015-03-25
EP2420533A4 (en) 2013-09-25
JPWO2010119670A1 (ja) 2012-10-22
EP2420533B1 (en) 2014-12-31
US20150210815A1 (en) 2015-07-30
US20120037837A1 (en) 2012-02-16
US10072128B2 (en) 2018-09-11

Similar Documents

Publication Publication Date Title
JP5690265B2 (ja) ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体
JP5927192B2 (ja) ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体
JP5914484B2 (ja) 粉状活性炭含有発泡ポリオレフィン
JP5161416B2 (ja) 難燃性ポリオレフィン系樹脂予備発泡粒子およびその型内発泡成形体
JP5518349B2 (ja) 難燃性ポリプロピレン系樹脂発泡粒子
JP5161663B2 (ja) 難燃性ポリオレフィン系樹脂予備発泡粒子およびその型内発泡成形体
KR20150022844A (ko) 난연성 폴리올레핀 발포체 및 그의 제조
US20160009888A1 (en) Method for producing cross-linked polyethylene- based resin expanded beads
JP5814687B2 (ja) ポリオレフィン系樹脂発泡粒子とその型内発泡成形体
JP2011173941A (ja) ポリオレフィン系樹脂架橋発泡体
WO2022039076A1 (ja) ポリオレフィン系樹脂発泡粒子及びそのポリオレフィン系樹脂発泡成形体
JP2018162370A (ja) ポリプロピレン系樹脂黒色発泡粒子の製造方法
JP5334452B2 (ja) 難燃性ポリオレフィン系樹脂予備発泡粒子、その製造方法、および、難燃性ポリオレフィン系樹脂型内発泡成形体
WO2023181879A1 (ja) ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法
JP2010070644A (ja) ポリオレフィン系樹脂予備発泡粒子、および、その型内発泡成形体
WO2024053584A1 (ja) ポリオレフィン系発泡粒子、および、ポリオレフィン系発泡成形体、並びにそれらの製造方法
EP2963080A1 (en) Polyolefin-type resin foam

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016194.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10764257

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011509213

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13264041

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 7569/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010764257

Country of ref document: EP