WO2010119670A1 - ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 - Google Patents
ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 Download PDFInfo
- Publication number
- WO2010119670A1 WO2010119670A1 PCT/JP2010/002681 JP2010002681W WO2010119670A1 WO 2010119670 A1 WO2010119670 A1 WO 2010119670A1 JP 2010002681 W JP2010002681 W JP 2010002681W WO 2010119670 A1 WO2010119670 A1 WO 2010119670A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin resin
- expanded particles
- weight
- parts
- resin pre
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0038—Use of organic additives containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/0014—Use of organic additives
- C08J9/0028—Use of organic additives containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/122—Hydrogen, oxygen, CO2, nitrogen or noble gases
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/04—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
- C08J9/12—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
- C08J9/14—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
- C08J9/141—Hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J9/00—Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
- C08J9/16—Making expandable particles
- C08J9/18—Making expandable particles by impregnating polymer particles with the blowing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34926—Triazines also containing heterocyclic groups other than triazine groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/521—Esters of phosphoric acids, e.g. of H3PO4
- C08K5/523—Esters of phosphoric acids, e.g. of H3PO4 with hydroxyaryl compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2203/00—Foams characterized by the expanding agent
- C08J2203/14—Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2323/00—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
- C08J2323/02—Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
Definitions
- the present invention relates to a polyolefin resin pre-expanded particle having flame retardancy particularly used in the manufacture of electrical and electronic product parts such as a heat insulating material, a shock-absorbing packaging material, a box, a car bumper core material, and an electrical and electronic product part, and the like
- the present invention relates to a polyolefin resin in-mold foam molded article obtained by in-mold foam molding of polyolefin resin pre-expanded particles.
- the in-mold foamed molded product has characteristics such as arbitrary shape, lightness, and heat insulation.
- in-mold foam molded products made of polyolefin resin pre-expanded particles have chemical resistance, heat resistance, and strain recovery after compression compared to in-mold foam molded products obtained using polystyrene resin pre-expanded particles. Due to these features, in-mold foam molded products obtained using polyolefin resin pre-expanded particles can be used in various applications such as automotive interior parts, automotive bumper core materials, thermal insulation materials, and cushioning packaging materials. It is used.
- foamed molded products generally made of polyolefin resin have the above-mentioned excellent characteristics, but have the drawback of being easily combusted.
- the foamed molded article has a drawback that it has high combustibility compared to a non-foamed molded article and easily burns.
- Patent Document 1 as a non-halogen type flame retardant, by adding a sterically hindered amine ether type flame retardant to a polyolefin resin pre-expanded particle, a problem such as deterioration of in-mold foam moldability does not occur.
- An in-mold foam molding conforming to HF-1 in the horizontal test of the foam is described in the examples.
- Patent Document 2 also describes an in-mold foam molded article that is self-extinguishing in a combustion test based on FMVSS302 using the same flame retardant.
- polyolefin resin-in-mold foam molded products are more flammable when the density is higher or the thickness is thicker, and even when this sterically hindered amine ether type flame retardant is used, further improvement in flame retardant performance is achieved. Is desired.
- Patent Document 3 discloses a flame retardant polypropylene fiber and film containing 0.5% by weight or more of a phosphate ester flame retardant and 0.4% by weight or more of a NOR-type hindered amine stabilizer
- Patent Document 4 includes a metal.
- a flame retardant in which a hindered amine compound having a piperidine skeleton and a phosphate ester are used in combination with a hydroxide is disclosed.
- processes such as impregnation with foaming agent, heating, rapid pressure release, heating with steam, etc., reaction by decomposition of flame retardant and mixing of flame retardant There are concerns.
- polyolefin resin pre-expanded particles are filled in a mold, heated and fused with steam or the like to form an in-mold expanded molded product.
- moldability deteriorates due to the properties of the pre-expanded particles, industrial value is obtained. It drops significantly.
- Additives blended with polyolefin resins affect cell shape, cell size, open cell foam, fusing properties, etc., and these changes may cause in-mold foaming and mechanical strength to decrease. There is sex.
- Patent Document 5 describes flame-retardant polyolefin resin pre-expanded particles containing a halogen-containing pentavalent phosphate compound, but the use of halogen-containing materials may be limited in recent years.
- halogenated phosphate esters and non-halogen phosphate esters differ in degradability, compatibility with resins, etc., and although combined use with flame retardant aids is described, about mixing with other flame retardants, It is not described at all.
- the object of the present invention is to exhibit excellent flame retardancy even in a sample having a higher density and thickness than before without using a halogen-based flame retardant, while having good in-mold foam moldability, and at the time of combustion
- An object of the present invention is to provide pre-expanded particles of flame retardant polyolefin resin that do not generate harmful gas.
- the present invention provides a polyolefin resin composition containing a sterically hindered amine ether-based flame retardant and a phosphate ester as a polyolefin resin pre-expanded particle.
- a polyolefin resin composition containing a sterically hindered amine ether-based flame retardant and a phosphate ester as a polyolefin resin pre-expanded particle.
- foam moldability it exhibits superior flame retardancy compared to conventional products.Specifically, it exhibits excellent flame retardancy even in high-density in-mold foam moldings and thick in-mold foam moldings. I found.
- R 3 and R 4 represented by the formula (2) is a hydrogen atom
- R 5 is an alkyl group having 1 to 12 carbon atoms
- R 6 is a methyl group, a cyclohexyl group Or a polyolefin resin pre-expanded particle comprising a polyolefin resin composition containing a sterically hindered amine ether flame retardant represented by octyl group) and a phosphate ester.
- the foaming agent is at least one selected from the group consisting of isobutane and normal butane.
- the polyolefin resin composition comprises 0.01 parts by weight or more and 20 parts by weight or less of a sterically hindered amine ether flame retardant represented by the general formula (1) with respect to 100 parts by weight of the polyolefin resin.
- the polyolefin resin pre-expanded particles of the present invention have excellent in-mold foam moldability and surface appearance equivalent to conventional ones, and excellent flame retardancy even in samples having a higher density or larger thickness than conventional ones.
- the shown in-mold foam molding can be obtained.
- DSC differential scanning calorimeter
- the low-temperature side melting peak, the low-temperature side melting peak calorie, which is the amount of heat surrounded by the tangent to the melting start baseline from the maximum point between the low-temperature side peak and the high-temperature side peak, is Ql
- the melting peak on the high-temperature side of the DSC curve Qh is the high-temperature side melting peak calorie, which is the amount of heat surrounded by the tangent line from the local maximum point between the low-temperature side peak and the high-temperature side peak to the melting end baseline.
- the polyolefin resin used in the present invention is a polymer comprising 75% by weight or more of an olefin monomer.
- the content of the olefin monomer is preferably 80% by weight or more.
- Other monomers having copolymerizability with the olefin monomer may be contained in an amount of 25% by weight or less, preferably 20% by weight or less.
- olefin monomer examples include, for example, ethylene, propylene, butene-1, isobutene, pentene-1, 3-methyl-butene-1, hexene-1, 4-methyl-pentene-1, 3,4 And ⁇ -olefins having 2 to 12 carbon atoms such as dimethyl-butene-1, heptene-1, 3-methyl-hexene-1, octene-1, and decene-1. These may be used alone or in combination of two or more.
- olefinic monomer examples include cyclopentene, norbornene, 1,4,5,8-dimethano-1,2,3,4, Cyclic olefins such as 4a, 8,8a, 6-octahydronaphthalene, 5-methylene-2-norbornene, 5-ethylidene-2-norbornene, 1,4-hexadiene, methyl-1,4-hexadiene, 7-methyl- And dienes such as 1,6-octadiene. These may be used alone or in combination of two or more.
- polystyrene-based resins used in the present invention include, for example, polyethylene-based resins mainly composed of ethylene, such as high-density polyethylene, medium-density polyethylene, low-density polyethylene, and linear low-density polyethylene, and propylene-based components. And a polypropylene-based resin. These polyolefin resins may be used alone or in combination of two or more. Among these, it is preferable to use a polypropylene resin as the polyolefin resin from the viewpoint of mechanical strength, heat resistance, and the like.
- the polypropylene resin is not particularly limited as long as it contains propylene as a main component of the monomer.
- a polypropylene resin containing ethylene as a comonomer component, in which the ⁇ -olefin is ethylene is preferable because it is easily available and has excellent processability.
- the preferable ethylene content in the polypropylene resin is 1% by weight to 10% by weight, more preferably 2% by weight to 7% by weight, further 3.5% by weight to 6% by weight, and particularly 3.5% by weight.
- the content is 5% by weight or less.
- the ethylene content of the comonomer component in the polypropylene resin can be measured using 13 C-NMR.
- the melting point of the polypropylene resin used in the present invention is preferably 130 ° C. or higher and 165 ° C. or lower, and more preferably 135 ° C. or higher and 155 ° C. or lower.
- the melting point is determined by heating 1 to 10 mg of polypropylene resin from 40 ° C. to 220 ° C.
- the melt flow rate (hereinafter referred to as “MFR value”) of the polypropylene resin used in the present invention is preferably 0.5 g / 10 min to 30 g / 10 min, and more preferably 2 g / 10 min to 20 g / min.
- the thing of 10 minutes or less is preferable.
- the MFR value is less than 0.5 g / 10 minutes, it may be difficult to obtain high expansion ratio polypropylene resin pre-expanded particles, and when it exceeds 30 g / 10 minutes, bubbles in the polypropylene resin pre-expanded particles may break. This tends to increase the open cell ratio of the polypropylene resin pre-expanded particles.
- the MFR value of the polypropylene resin is a value measured under conditions of a temperature of 230 ° C. and a load of 2.16 kg in accordance with JIS K7210.
- the ratio (Mw / Mn) of the weight average molecular weight (hereinafter sometimes referred to as “Mw”) and the number average molecular weight (hereinafter sometimes referred to as “Mn”) of the polypropylene resin used in the present invention is as follows. Although not particularly limited, 3.0 or more is preferable, and 3.0 or more and 6.0 or less is particularly preferable.
- Mn and Mw of polypropylene resin are measured on condition of the following.
- Measuring instrument Alliance GPC 2000 type gel permeation chromatography (GPC) manufactured by Waters Column: 2 TSKgel GMH6-HT, Two TSKgel GMH6-HTL (each inner diameter 7.5mm x length 300mm, manufactured by Tosoh Corporation)
- Mobile phase o-dichlorobenzene (containing 0.025% BHT)
- Flow rate 1.0 mL / min
- Sample concentration 0.15% (W / V) -o-dichlorobenzene injection amount: 500 ⁇ L
- Molecular weight calibration Polystyrene conversion (calibration with standard polystyrene).
- Examples of the polyethylene resin used in the present invention include ethylene homopolymer, ethylene- ⁇ -olefin random copolymer, ethylene- ⁇ -olefin block copolymer, low density polyethylene, high density polyethylene, and linear low density polyethylene. Is mentioned.
- Examples of the ⁇ -olefin used herein include ⁇ -olefins having 3 to 15 carbon atoms, and these may be used alone or in combination of two or more.
- good foaming properties are obtained when the ethylene- ⁇ -olefin block copolymer has a comonomer content other than ethylene of 1 to 10% by weight or is a linear low density polyethylene. And can be suitably used.
- the melting point of the polyethylene resin used in the present invention is preferably 110 ° C. or more and 140 ° C. or less, and further 120 ° C. or more and 130 ° C. or less is excellent in foamability and moldability, and within the polyolefin resin mold. This is preferable because pre-expanded particles having excellent mechanical strength and heat resistance when formed into a foamed molded product can be obtained.
- the melting point is determined by heating 1 to 10 mg of polyethylene resin from 40 ° C. to 200 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter, and then decreasing the temperature to 40 ° C. by 10 ° C./min. It refers to the peak temperature of the endothermic peak in the DSC curve obtained when cooling at a rate and again raising the temperature to 200 ° C. at a rate of 10 ° C./min.
- the melt flow rate (hereinafter referred to as “MFR value”) of the polyethylene resin used in the present invention is preferably 0.5 g / 10 min or more and 30 g / 10 min or less, more preferably 1 g / 10 min or more and 5 g / min. It is 10 minutes or less, and most preferably 1.5 g / 10 minutes or more and 2.5 g / 10 minutes or less.
- MFR value of polyethylene is less than 0.5 g / 10 min, it becomes difficult to obtain pre-expanded particles having a high expansion ratio, and bubbles tend to be non-uniform.
- the MFR value of the polyethylene resin is a value measured under conditions of a temperature of 190 ° C. and a load of 2.16 kg in accordance with JIS K7210.
- the polyolefin-based resin used in the present invention may be used by mixing a plurality of types of polyolefin-based resins as necessary, or other thermoplastic resins that can be used by mixing with polyolefin-based resins, such as polystyrene. , Ionomers and the like may be used in combination as long as the properties of the polyolefin resin are not lost.
- the polyolefin resin used in the present invention can be obtained using a catalyst such as a Ziegler catalyst, a metallocene catalyst, a post metallocene catalyst.
- a catalyst such as a Ziegler catalyst, a metallocene catalyst, a post metallocene catalyst.
- a Ziegler catalyst is used, a polymer having a large Mw / Mn tends to be obtained.
- the polymer obtained using these catalysts is oxidatively decomposed with an organic peroxide, characteristics such as molecular weight and melt flow rate can be adjusted.
- organic peroxide examples include 1,1-bis (t-butylperoxy) 3,3,5-trimethylcyclohexane, t-butylperoxylaurate, and 2,5-dimethyl-2. , 5-di (benzoylperoxy) hexane, t-butylperoxybenzoate, dicumyl peroxide, 1,3-bis (t-butylperoxyisopropyl) benzene, t-butylperoxyisopropyl monocarbonate, etc. .
- the amount used is preferably 0.001 part by weight or more and 0.1 part by weight or less with respect to 100 parts by weight of the polyolefin resin.
- a polyolefin resin to which an organic peroxide is added can be heated and melted in an extruder.
- the polyolefin resin used in the present invention is preferably in an uncrosslinked state, but may be crosslinked by treatment with an organic peroxide or radiation.
- the sterically hindered amine ether flame retardant used in the present invention has the general formula (1): R 1 NHCH 2 CH 2 CH 2 NR 2 CH 2 CH 2 NR 3 CH 2 CH 2 CH 2 NHR 4 (1)
- R 1 and R 2 and R 3 and R 4 is the s-triazine moiety T represented by the general formula (2), the other of R 3 and R 4 is a hydrogen atom
- R 5 is, for example, methyl, ethyl, propyl, butyl, n-pentyl, n-hexyl, n-heptyl, nonyl, decyl, undecyl, dodecyl, isopropyl, Isobutyl group, second butyl group, third butyl group, 2-ethylbutyl group, isopentyl group, 1-methylpentyl group, 1,3-dimethylbutyl group, 1-methylhexyl group, isoheptyl group, 1,
- s-triazine moiety T represented by the general formula (2) include, for example, 2,4-bis [(1-methoxy-2,2,6,6-tetramethylpiperidin-4-yl) n -Butylamino] -s-triazine, 2,4-bis [(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylamino] -s-triazine, 2,4 -Bis [(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylamino] -s-triazine and the like.
- sterically hindered amine ether flame retardant represented by the general formula (1) include, for example, N, N ′, N ′ ′′-tris ⁇ 2,4-bis [(1-cyclohexyloxy-2 , 2,6,6-Tetramethylpiperidin-4-yl) n-butylamino] -s-triazin-6-yl ⁇ -3,3′-ethylenediiminopropylamine; N, N ′, N ′′ — Tris ⁇ 2,4-bis [(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-butylamino] -s-triazine-6yl ⁇ -3,3′-ethylene Diiminodipropylamine; N, N ′, N ′ ′′-tris ⁇ 2,4-bis [(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) n-but
- the amount of the sterically hindered amine ether flame retardant used in the present invention is preferably 0.01 parts by weight or more and 20 parts by weight or less, more preferably 0.02 parts by weight or more and 10 parts by weight with respect to 100 parts by weight of the polyolefin resin. If the amount of the sterically hindered amine ether flame retardant used is 0.05 part by weight or less, more preferably 0.05 part by weight or more and 5 parts by weight or less, sufficient flame retardancy cannot be obtained. If the amount exceeds 20 parts by weight, not only does the mechanical strength decrease, the cell diameter tends to become finer, and the in-mold foam moldability, particularly the surface appearance, tends to deteriorate, and the cost increases. Tend to be economically disadvantageous.
- the method of adding a sterically hindered amine ether-based flame retardant to a polyolefin resin includes a sterically hindered amine ether-based flame retardant, for example, from 5% by weight to 50% by weight, even if it is a direct addition method.
- a method may be used in which a polyolefin-based resin masterbatch is prepared and the polyolefin-based resin masterbatch is added to the polyolefin-based resin, but the latter method is preferable from the viewpoint of ease of addition.
- phosphate ester used in the present invention examples include trimethyl phosphate, triethyl phosphate, triisopropyl phosphate, trineopentyl phosphate, tri-t-butyl phosphate, tributoxyethyl phosphate, triisobutyl phosphate, tri (2-ethylhexyl) Aliphatic phosphate esters such as phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, cresyl diphenyl phosphate, t-butylphenyl diphenyl phosphate), bis- (t-butylphenyl) phenyl phosphate, tris- ( t-butylphenyl) phosphate, isopropylphenyldiphenylphosphate, bis- (isopropylphenyl) diphenylphosphate, Aromatic hydrocarbon groups and aliphatic carbonization in one molecule
- aromatic phosphate ester and a phosphate ester having an aromatic hydrocarbon group and an aliphatic hydrocarbon group in one molecule may be collectively referred to as “aromatic phosphate ester”. These may be used alone or in combination of two or more.
- the phosphate ester used in the present invention is not particularly limited as long as it can withstand extrusion and kneading and decomposition in an aqueous dispersion medium.
- the molecular weight is preferably 300 or more.
- aromatic phosphate esters are preferable, aromatic phosphate esters are more preferable, and phosphorus of the aromatic phosphate ester is preferable.
- a condensed phosphate ester in which two or more acid ester sites are present in one molecule is more preferable.
- condensed phosphate ester used in the present invention include, for example, structures represented by chemical formulas (3) and (4), and these can be suitably used.
- aromatic hydrocarbon group benzene ring of the aromatic phosphate ester for example, methyl group, ethyl group, propyl group, butyl group, n-pentyl group, n-hexyl group, n-heptyl group, nonyl group, decyl group, undecyl group, dodecyl group, isopropyl group, isobutyl group, second butyl group, third butyl group, 2-ethylbutyl group, isopentyl group, 1-methylpentyl Group, 1,3-dimethylbutyl group, 1-methylhexyl group, isoheptyl group, 1,1,3,3-tetramethylpentyl group, 1-methylundecyl group, 1,1,3,3,5,5 -Those having an alkyl group such as a hexamethylhexyl group are more preferred.
- a phosphoric acid ester that is easily hydrolyzed is used as a flame retardant.
- a phosphate ester it is required to remove moisture as much as possible in order to suppress a decrease in flame retardance due to hydrolysis.
- stable flame retardancy can be achieved even when the polyolefin resin particles containing a phosphoric acid ester that is easily hydrolyzed are placed in an environment where they are heated under pressure in an aqueous dispersion medium. Is expressed.
- the decompression foaming which is the foaming method of the present invention, enables the foaming temperature to be kept low.
- the phosphoric acid ester is hardly hydrolyzed even under pressure and heating in an aqueous dispersion medium because foaming is possible at a temperature of about 100 to 160 ° C.
- the amount of the phosphate ester used in the present invention is preferably 0.01 to 10 parts by weight, more preferably 0.02 to 5 parts by weight, and still more preferably 100 parts by weight of the polyolefin resin. Is used in an amount of 0.03 to 3 parts by weight. If the amount is less than 0.01 parts by weight, sufficient flame retardancy may not be obtained. If the amount exceeds 10 parts by weight, the mechanical strength decreases and the cell diameter tends to become finer, and in-mold foam molding is performed. Not only tend to deteriorate the properties, especially the surface appearance, increase dimensional shrinkage, but also tend to be costly and economically disadvantageous.
- the method of adding the phosphoric acid ester to the polyolefin-based resin is a direct addition method
- a polyolefin-based resin master batch containing, for example, 5% by weight or more and 50% by weight or less of the phosphoric acid ester is prepared.
- the method of adding a resin-based resin masterbatch to a polyolefin-based resin may be used, the latter method is preferable from the viewpoint of ease of addition.
- flame retardants and flame retardant aids include red phosphorus, phosphorus oxides, phosphate compounds, phosphates, phosphazenes, phosphate amines, phosphate amides, trivalent aliphatic phosphorus compounds, trivalent Phosphorus-containing compounds having a phosphorus atom in the molecule, such as aromatic phosphorus compounds of the above; salts containing cyanuric acid or isocyanuric acid and derivatives thereof, cyanuric acid or isocyanuric acid and derivatives thereof, triazine skeleton-containing compounds, azo compounds, tetrazoleamine salts , Tetrazole metal salts, nitrogen-containing compounds having a nitrogen atom in the molecule such as tetrazole compound; derivatives such as boric acid compounds, borates and hydrates of these compounds, boron atoms in the
- a halogen compound having a halogen atom a compound containing two or more types of phosphorus, nitrogen, boron, halogen atoms in a molecule in which the above flame retardant is combined, an inorganic flame retardant such as a metal hydroxide, a metal oxide, Examples include antimony oxide, carbon black, polyhydric alcohol, glycols and the like.
- cell nucleating agents such as talc, antioxidants, metal deactivators, phosphorus processing stabilizers, UV absorbers, UV stabilizers, fluorescent brighteners, metal soaps, etc.
- An additive such as an antistatic agent may be added to the polyolefin resin within a range not impairing the effects of the present invention to obtain a polyolefin resin composition.
- the polyolefin resin composition of the present invention is usually prepared by using an extruder, a kneader, a Banbury mixer, a roll or the like in advance so that it can be easily used for pre-foaming, and a sterically hindered amine ether flame retardant, phosphoric acid.
- the mixture is melt-mixed with an ester and, if necessary, the additive, and molded into polyolefin resin particles having a desired particle shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, a rectangular parallelepiped shape, and the like.
- the average particle weight of the polyolefin resin particles is preferably 0.5 mg or more and 3.0 mg or less, more preferably 0.5 mg or more and 2.0 mg or less.
- the method for producing the polyolefin resin pre-foamed particles of the present invention is not particularly limited, but the polyolefin resin particles are dispersed in a dispersion medium together with a dispersant in the presence of a foaming agent in a hermetic container, and under pressure.
- the heating temperature in the sealed container is preferably the melting point of the polyolefin resin particles ⁇ 25 ° C. or higher and the melting point of the polyolefin resin particles + 25 ° C. or lower, more preferably the melting point of the polyolefin resin particles ⁇ 15 ° C. or higher and the melting point of the polyolefin resin particles +15.
- the temperature is in the range of °C or less.
- the sealed container in which the polyolefin resin particles are dispersed, and any container that can withstand the pressure and temperature in the container at the time of producing the polyolefin resin pre-foamed particles may be used.
- an autoclave container may be mentioned. .
- dispersion medium methanol, ethanol, ethylene glycol, glycerin, water, or the like can be used, and it is preferable to use water among them.
- a dispersant In order to prevent coalescence of polyolefin resin particles in the dispersion medium, it is preferable to use a dispersant.
- the dispersant include inorganic dispersants such as tricalcium phosphate, magnesium phosphate, basic magnesium carbonate, calcium carbonate, barium sulfate, kaolin, talc, and clay.
- the amount of dispersant and dispersion aid used varies depending on the type and type and amount of polyolefin resin used, but usually 0.2 parts by weight or more and 3 parts by weight or less of the dispersant with respect to 100 parts by weight of the dispersion medium. It is preferable to add 0.001 part by weight or more and 0.1 part by weight or less of a dispersion aid to ensure dispersion stability, and it is difficult for the dispersant to adhere to the surface of the pre-foamed particles obtained. This is preferable because it does not hinder the fusion of the pre-expanded particles during the inner foam molding.
- the polyolefin resin particles are usually preferably used in an amount of 20 to 100 parts by weight with respect to 100 parts by weight of the dispersion medium.
- the amount of dispersant adhering to the expanded particles can be reduced as compared with the prior art.
- a washing step of the foamed particles is required to reduce the amount of the adhering dispersant. If the amount of adhering dispersant can be proposed as in the present invention, the cleaning time can be reduced. It leads to shortening and use of chemicals / solvents, and environmental load and cost can be reduced.
- the blowing agent is not particularly limited.
- aliphatic hydrocarbons such as propane, isobutane, normal butane, isopentane, and normal pentane; inorganic gases such as air, nitrogen, and carbon dioxide; Water or the like and a mixture thereof can be used.
- the amount of foaming agent used varies depending on the resin used, the foaming agent, and the desired expansion ratio, but it can be used appropriately according to the desired expansion ratio of the polyolefin resin pre-expanded particles.
- the amount is preferably 1 part by weight or more and 60 parts by weight or less with respect to 100 parts by weight of the polyolefin resin particles.
- blowing agent used in the present invention it is particularly desirable to use aliphatic hydrocarbons such as isobutane and normal butane, and carbon dioxide.
- aliphatic hydrocarbons such as isobutane and normal butane, and carbon dioxide.
- these foaming agents are used, the plasticization of the polyolefin resin is promoted. Therefore, it is possible to foam at a lower pressure and lower temperature than when only water, air or nitrogen is used as the foaming agent. As a result, the hydrolysis of the phosphoric acid ester is further suppressed, and the obtained flame retardancy becomes more stable.
- polyolefin resin pre-expanded particles having a high expansion ratio When water is used as a foaming agent, in order to obtain polyolefin resin pre-expanded particles having a high expansion ratio, one or more compounds among the compounds having a hydrophilic polymer, a polyhydric alcohol, and a triazine skeleton are added to the polyolefin resin particles. It is preferable to add.
- hydrophilic polymers include ethylene-acrylic acid-maleic anhydride terpolymers, ethylene- (meth) acrylic acid copolymers, and ionomer resins obtained by crosslinking ethylene- (meth) acrylic acid copolymers with metal ions. And a carboxyl group-containing polymer, polyethylene glycol and the like. These may be used alone or in combination of two or more.
- the amount of the hydrophilic polymer used is not particularly limited depending on the kind of the hydrophilic polymer, but is usually preferably 0.01 parts by weight or more and 20 parts by weight or less, based on 100 parts by weight of the polyolefin-based resin particles, and 0.1% by weight. More preferred is 5 parts by weight or more. If the amount of the hydrophilic polymer used is less than 0.01 parts by weight, polyolefin resin pre-expanded particles having a high expansion ratio tend to be difficult to obtain, and if it exceeds 20 parts by weight, the heat resistance and mechanical strength are greatly reduced. There is a case.
- polyhydric alcohol examples include ethylene glycol, glycerin, erythritol, pentaerythritol and the like. These may be used alone or in combination of two or more.
- the amount of polyhydric alcohol used is not particularly limited depending on the type of polyhydric alcohol, but is usually preferably 0.01 parts by weight or more and 10 parts by weight or less, based on 100 parts by weight of the polyolefin-based resin particles. More preferred is at least 2 parts by weight.
- the amount of polyhydric alcohol used is less than 0.01 parts by weight, polyolefin resin pre-expanded particles having a high expansion ratio tend to be difficult to obtain, and when it exceeds 10 parts by weight, the heat resistance and mechanical strength are greatly reduced. There is a case.
- the compound having a triazine skeleton preferably has a molecular weight of 300 or less per unit triazine skeleton.
- the molecular weight per triazine skeleton is a value obtained by dividing the molecular weight by the number of triazine skeletons contained in one molecule.
- the molecular weight per unit triazine skeleton exceeds 300, variation in foaming ratio and variation in cell diameter may be noticeable.
- Examples of the compound having a molecular weight per unit triazine skeleton of 300 or less include melamine (chemical name 1,3,5-triazine-2,4,6-triamine) and ammelin (chemical name 1,3,5-triazine-2).
- melamine isocyanuric acid
- melamine / isocyanuric acid condensate it is preferable to use melamine, isocyanuric acid, melamine / isocyanuric acid condensate in order to obtain high expansion ratio polyolefin resin pre-expanded particles with less variation in expansion ratio and less variation in cell diameter.
- the amount of the compound having a triazine skeleton is not particularly limited depending on the type of the compound having a triazine skeleton, but is usually preferably 0.01 parts by weight or more and 15 parts by weight or less with respect to 100 parts by weight of the polyolefin resin particles. More preferred is 0.1 to 3 parts by weight.
- the amount of the compound having a triazine skeleton is less than 0.01 parts by weight, it is difficult to obtain pre-expanded polyolefin resin particles having a high expansion ratio.
- the amount exceeds 15 parts by weight heat resistance and mechanical strength are lowered. May become larger.
- the addition of low molecular weight hydrophilic substances such as borax, zinc borate, glycerin, and polyethylene glycol having a molecular weight of 300 or less to the polyolefin-based resin results in uniform cell diameter with high expansion ratio.
- the polyolefin resin pre-expanded particles can be obtained.
- the expansion ratio of the polyolefin resin pre-expanded particles obtained by the above production method is preferably 5 to 50 times, more preferably 7 to 45 times.
- polyolefin resin pre-expanded particles once manufactured 5 times or more and 35 times or less by pressure treatment in which the polyolefin resin pre-expanded particles are put in a sealed container and impregnated with nitrogen, air, etc. After making the pressure in the particles higher than normal pressure, the polyolefin resin pre-expanded particles are heated with steam or the like to further expand the polyolefin resin pre-expanded particles having a higher expansion ratio by a method such as a two-stage expansion method. You may get.
- the polyolefin resin pre-expanded particles of the present invention preferably have an average cell diameter of 50 ⁇ m or more and 800 ⁇ m or less, and more preferably 100 ⁇ m or more and 600 ⁇ m or less.
- the average cell diameter is obtained by arbitrarily taking 30 pre-expanded particles from the polyolefin resin pre-expanded particles, measuring the cell diameter according to JIS K6402, and taking the average value.
- the polyolefin resin pre-expanded particles of the present invention preferably have a closed cell ratio of 88% or more, and more preferably 93% or more.
- the closed cell ratio is calculated by calculating the closed cell volume of the polyolefin resin pre-expanded particles using an air comparison hydrometer, and dividing the closed cell volume by the apparent volume separately obtained by the ethanol immersion method. .
- the polyolefin resin pre-expanded particles of the present invention when measured by differential scanning calorimetry, when 5-6 mg of polyolefin resin pre-expanded particles are heated from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min.
- the resulting DSC curve preferably has two melting peaks.
- the polyolefin resin pre-expanded particles of the present invention preferably have a DSC ratio of 13% to 50%, more preferably 18% to 40%.
- the DSC ratio refers to the DSC curve from which the endotherm is the smallest between the two melting peaks of the DSC curve, and draws a tangent line to the DSC curve, and the low temperature side portion surrounded by the tangent line and the DSC curve is melted on the low temperature side.
- the peak heat quantity is Ql and the high temperature side portion is the high temperature side melting peak heat quantity Qh
- the ratio of the melting peak on the high temperature side calculated from these [Qh / (Ql + Qh) ⁇ 100].
- the polyolefin resin pre-expanded particles of the present invention can be made into a polyolefin resin in-mold foam molding by in-mold foam molding.
- the polyolefin resin pre-foamed particles of the present invention are used for in-mold foam molding, a) a method of using as it is, b) a method of previously injecting an inorganic gas such as air into the pre-foamed particles and imparting foaming ability C) A conventionally known method such as a method in which pre-expanded particles are filled in a mold in a compressed state and molded may be used.
- the polyolefin resin pre-foamed particles are preliminarily air-pressurized in a pressure-resistant container, Foaming ability is imparted by press-fitting air into the pre-expanded particles, and this is filled in a molding space that can be closed but cannot be sealed by two molds. Molding is performed at a heating steam pressure of about 0.4 MPa (G) for a heating time of about 3 to 30 seconds, the polyolefin resin pre-foamed particles are fused together, and then the mold is cooled by water cooling. And a method for obtaining a foamed molded product in a polyolefin resin mold.
- the density of the polyolefin resin in-mold foam molded product obtained using the polyolefin resin pre-expanded particles of the present invention is preferably 10 kg / m 3 or more and 300 kg / m 3 or less, more preferably 15 kg / m 3 or more. 250 kg / m 3 or less, more preferably 15 kg / m 3 or more and 150 kg / m 3 or less.
- the polyolefin resin-in-mold foam-molded product of the present invention has an HF-2 in a wider range of thickness and density than before. It can be adapted.
- DSC ratio (DSC ratio)
- a DSC curve (illustrated in FIG. 1) obtained by heating a polyolefin resin pre-expanded particle 5 to 6 mg from 40 ° C. to 220 ° C. at a rate of 10 ° C./min using a differential scanning calorimeter, Two melting peaks were calculated from the melting peak calorie Ql on the low temperature side and the melting peak calorie Qh on the high temperature side of the melting peak by the following equation.
- DSC ratio Qh / (Ql + Qh) ⁇ 100
- the polyolefin-based resin pre-foamed particles are washed with running water for 30 seconds, dried in an oven at 60 ° C. for 24 hours, and then taken out of the oven and immediately placed in a constant temperature and humidity chamber set at a temperature of 23 ° C. and a relative humidity of 50%. Leave for 72 hours. Next, about 100 g of the pre-expanded particles are accurately weighed to the third decimal place in the same temperature and humidity chamber to obtain the weight of the pre-expanded particles to which the dispersant is attached: F (g).
- the total amount of the pre-expanded particles obtained by weighing was immersed in 5 L of 1N aqueous hydrochloric acid for 10 minutes, then immersed in 5 L of ion-exchanged water for 1 minute to wash away the aqueous hydrochloric acid, and then 5 L of 1N aqueous sodium hydroxide solution Soak in for 10 minutes.
- the entire amount of the pre-expanded particles was dried in an oven at 60 ° C. for 24 hours, and then taken out from the oven, immediately followed by a constant temperature and humidity chamber set at a temperature of 23 ° C. and a relative humidity of 50%. Leave for 72 hours.
- Molded body density w / v (g / cm 3 )
- a test based on UL94HF is performed on a sample for a combustion test having the above dimensions (thickness is 3.5 mm, 7 mm, and 13 mm), and evaluated according to the following criteria.
- Residual flame time This is the time from when the flame of the gas burner disappears until the flame of the sample piece disappears, and the average value when five tests are performed was calculated. The shorter the time, the higher the flame retardant performance.
- Phosphate ester (molecular weight: 687, P%: 9.0%, PX-200 manufactured by Daihachi Chemical Industry Co., Ltd.) and chemical formula (5): RNHCH 2 CH 2 CH 2 NRCH 2 CH 2 NHCH 2 CH 2 CH 2 NHR (5) Wherein R is an s-triazine moiety T represented by the chemical formula (6) (FLAMESTTAB NOR116, manufactured by Ciba Japan),
- Carbon black (40% masterbatch) was added and mixed, kneaded with a 50 mm ⁇ single screw extruder, and then granulated to produce polyolefin resin particles (1.2 mg / grain).
- [Preparation of pre-expanded particles] 100 parts by weight of the obtained resin particles and 10 parts by weight of isobutane were mixed with 300 parts by weight of water, 1.6 parts by weight of powdered basic tribasic calcium phosphate and 0.03 parts by weight of sodium n-paraffin sulfonate in a 10 L sealed container. The container was heated to the foaming temperature shown in Table 1. Next, the pressure inside the container was adjusted to the predetermined foaming pressure shown in Table 1 by injecting isobutane.
- the mold was filled in a ⁇ 22 mm mold, and the pre-foamed particles were heated and fused with water vapor having a pressure of 0.28 MPa (G) for 10 seconds to obtain a polyolefin resin in-mold foam molded product.
- G water vapor having a pressure of 0.28 MPa
- Examples 1 to 5 in which a sterically hindered amine ether flame retardant and a phosphate ester are used in combination are Comparative Examples 1 to 2 in which a sterically hindered amine ether flame retardant is used alone, and a comparison in which a phosphate ester is used alone. Compared to Example 5, good flame retardancy was exhibited. Further, in Comparative Examples 3 to 4 in which a sterically hindered amine ether flame retardant and magnesium hydroxide or ammonium polyphosphate were used in combination, a good in-mold foam molded article could not be obtained, and the flame retardant performance was not improved.
- Examples 1 to 5 in which the sterically hindered amine ether flame retardant and the phosphate ester were used in combination had a smaller amount of the adhering dispersant and the washing process compared to Comparative Examples 1 and 2 in which the phosphate ester was not used in combination. And shortening the amount of drug used can be expected.
- the polyolefin resin pre-expanded particles of the present invention has excellent in-mold foam moldability and surface appearance equivalent to the conventional ones, but also has excellent difficulty even in samples having a higher density or larger thickness than the conventional ones.
- An in-mold foam molded article exhibiting flammability can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
Description
[1] ポリオレフィン系樹脂と、一般式(1):
R1NHCH2CH2CH2NR2CH2CH2NR3CH2CH2CH2NHR4 (1)
(式(1)中、R1およびR2と、R3およびR4の一方は一般式(2)
[2] 前記ポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を、発泡剤存在下、水系分散媒中に分散させ、加圧下で加熱した後、分散物を低圧域に放出して得られる、[1]記載のポリオレフィン系予備発泡粒子。
[3] 前記リン酸エステルが、芳香族系リン酸エステルである、[1]あるいは[2]記載のポリオレフィン系樹脂予備発泡粒子。
[4] 発泡剤が、イソブタン、ノルマルブタンよりなる群から選ばれる少なくとも一種である、[1]~[3]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[5] 発泡剤が、二酸化炭素である、[1]~[4]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[6] ポリオレフィン系樹脂組成物が、ポリオレフィン系樹脂100重量部に対し、前記一般式(1)で表される立体障害性アミンエーテル系難燃剤0.01重量部以上20重量部以下およびリン酸エステル0.01重量部以上10重量部以下を含有する、[1]~[5]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[7] 前記ポリオレフィン系樹脂が、ポリプロピレン系樹脂である、[1]~[6]の何れかに記載のポリオレフィン系樹脂予備発泡粒子。
[8] [1]~[7]の何れかに記載のポリオレフィン系樹脂予備発泡粒子を、型内発泡成形してなる、ポリオレフィン系樹脂型内発泡成形体。
特に、α-オレフィンがエチレンである、エチレンを共重合単量体成分として含有するポリプロピレン系樹脂が、入手が容易であり、加工成形性に優れていることから、好ましい。
ポリプロピレン系樹脂中、好ましいエチレン含量は、1重量%以上10重量%以下、さらには2重量%以上7重量%以下、さらには3.5重量%以上6重量%以下、特には3.5重量%以上5重量%以下である。
なお、ポリプロピレン系樹脂中の共重合単量体成分のエチレン含有量は、13C-NMRを用いて測定することができる。
なお、前記融点は、示差走査熱量計を用いて、ポリプロピレン系樹脂1~10mgを40℃から220℃まで10℃/分の昇温速度で昇温し、その後40℃まで10℃/分の降温速度で冷却し、再度220℃まで10℃/分の昇温速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。
なお、ポリプロピレン系樹脂のMFR値は、JIS K7210に準拠し、温度230℃、荷重2.16kgの条件にて測定した値である。
測定機器 :Waters社製Alliance GPC 2000型 ゲルパーミエーションクロマトグラフィー(GPC)
カラム :TSKgel GMH6-HT 2本、
TSKgel GMH6-HTL 2本(それぞれ、内径7.5mm×長さ300mm、東ソー社製)
移動相 :o-ジクロロベンゼン(0.025%BHT含有)
カラム温度:140℃
流速 :1.0mL/min
試料濃度 :0.15%(W/V)-o-ジクロロベンゼン
注入量 :500μL
分子量較正:ポリスチレン換算(標準ポリスチレンによる較正)。
なお、前記融点は、示差走査熱量計を用いて、ポリエチレン系樹脂1~10mgを40℃から200℃まで10℃/分の昇温速度で昇温し、その後40℃まで10℃/分の降温速度で冷却し、再度200℃まで10℃/分の昇温速度で昇温した時に得られるDSC曲線における吸熱ピークのピーク温度をいう。
なお、ポリエチレン系樹脂のMFR値は、JIS K7210に準拠し、温度190℃、荷重2.16kgの条件にて測定した値である。
R1NHCH2CH2CH2NR2CH2CH2NR3CH2CH2CH2NHR4 (1)
(式(1)中、R1およびR2と、R3およびR4の一方は一般式(2)で表わされるs-トリアジン部分T、R3およびR4の他方は水素原子、式(2)中、R5は、例えばメチル基、エチル基、プロピル基、ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、イソプロピル基、イソブチル基、第2ブチル基、第3ブチル基、2-エチルブチル基、イソペンチル基、1-メチルペンチル基、1,3-ジメチルブチル基、1-メチルヘキシル基、イソヘプチル基、1,1,3,3-テトラメチルペンチル基、1-メチルウンデシル基、1,1,3,3,5,5-ヘキサメチルヘキシル基などの1~12個の炭素原子を有するアルキル基、R6はメチル基、シクロヘキシル基またはオクチル基)で表わされる化合物である。
これらは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。
立体障害性アミンエーテル系難燃剤の使用量が、0.01重量部未満の場合には十分な難燃性が得られない可能性があり、20重量部をこえる場合には、機械的強度の低下、セル径が微細化傾向となり型内発泡成形性、特に表面外観が悪化するなどの傾向があるだけでなく、コスト高になり、経済的に不利になる傾向がある。
なお、芳香族リン酸エステルと、1分子中に芳香族炭化水素基と脂肪族炭化水素基とを有するリン酸エステルを併せて、「芳香族系リン酸エステル」と呼ぶ場合がある。
これらは、単独で用いても良く、2種類以上を組み合わせて用いてもよい。
また、ポリオレフィン系樹脂への分散性、高温安定性、揮発性などの点から、芳香族系リン酸エステルが好ましく、芳香族リン酸エステルであることがより好ましく、前記芳香族リン酸エステルのリン酸エステル部位が1分子中に2箇所以上存在する縮合リン酸エステルがさらに好ましい。
しかし、驚くべきことに、本発明では、加水分解しやすいリン酸エステルを含んだポリオレフィン系樹脂粒子を、水系分散媒中で加圧加熱する環境においた場合であっても、安定した難燃性が発現する。これは、水系分散媒中で加圧加熱された場合でも、本発明の発泡方法である除圧発泡によれば、発泡温度を低く抑えることが可能なためであり、用いるポリプロピレン系樹脂の融点にも依存するが、概ね100~160℃程度の温度にて発泡が可能なため、水系分散媒中の加圧加熱下においてもリン酸エステルが加水分解しにくいことによると考えている。
難燃剤、難燃助剤の例としては、赤リン、リン酸化物、リン酸化合物、リン酸塩類、ホスファゼン類、リン酸アミン類、リン酸アミド類、3価の脂肪族リン化合物、3価の芳香族リン化合物などの分子中にリン原子を有する含リン化合物;シアヌル酸あるいはイソシアヌル酸およびその誘導体、シアヌル酸あるいはイソシアヌル酸およびその誘導体からなる塩、トリアジン骨格含有化合物、アゾ化合物、テトラゾールアミン塩類、テトラゾール金属塩類、テトラゾール化合物などの分子中に窒素原子を有する含窒素化合物;ホウ酸化合物、ホウ酸塩類およびこれらの化合物の水和物などの誘導体、酸化ホウ素類などの分子中にホウ素原子を有するホウ素化合物;ハロゲン化脂肪族化合物およびその誘導体、ハロゲン化芳香族化合物およびその誘導体、ハロゲン化ビスフェノール類およびその誘導体、ハロゲン化ビスフェノール類誘導体オリゴマー、ハロゲン化アクリル樹脂、ハロゲン化エポキシ樹脂、ハロゲン化ポリスチレン樹脂、塩素化パラフィン、ポリテトラフルオロエチレンなどの分子中に塩素、臭素、フッ素のようなハロゲン原子を有するハロゲン化合物、上記難燃剤を組み合わせた分子中にリン、窒素、ホウ素、ハロゲン原子を2種類以上含む化合物、金属水酸化物、金属酸化物などの無機系難燃剤、三酸化アンチモン、カーボンブラック、多価アルコール、グリコール類などが挙げられる。
これらの中でも、第三リン酸カルシウムとn-パラフィンスルホン酸ソーダの併用が更に好ましい。
これらのうち、高発泡倍率のポリオレフィン系樹脂予備発泡粒子を発泡倍率ばらつき、セル径ばらつきが少なく得るためには、メラミン、イソシアヌル酸、メラミン・イソシアヌル酸縮合物を使用することが好ましい。
発泡倍率=d×v/w
なお、平均セル径は、ポリオレフィン系樹脂予備発泡粒子の中から任意に30個の予備発泡粒子を取り出し、JIS K6402に準拠してセル径を測定し、その平均値をとったものである。
なお、DSC比とは、DSC曲線の2つの融解ピーク間で最も吸熱量が小さくなる点からDSC曲線に対しそれぞれ接線を引き、該接線とDSC曲線に囲まれた低温側部分を低温側の融解ピーク熱量Qlとし、高温側部分を高温側の融解ピーク熱量Qhとしたときに、これらから算出した、高温側の融解ピークの比率[Qh/(Ql+Qh)×100]である。
・ポリオレフィン系樹脂:エチレン-プロピレンランダム共重合体[エチレン含量2.8%、MFR=6.0g/10min、融点145℃]
・立体障害性アミンエーテル系難燃剤[チバ・ジャパン社製、FLAMESTAB NOR116;化学式(5)]
・リン酸エステル[大八化学工業(株)製、PX-200(分子量:687、P%:9.0%;化学式(3))
・ポリリン酸アンモニウム[鈴裕化学社製]
・水酸化マグネシウム[協和化学工業(株)製]
・カーボンブラック[住化カラー(株)製]
・パウダー状塩基性第3リン酸カルシウム[太平化学産業(株)製]
・n-パラフィンスルホン酸ソーダ[花王(株)製、ラムテルPS]
示差走査熱量計を用いて、ポリオレフィン系樹脂予備発泡粒子5~6mgを10℃/minの昇温速度で40℃から220℃まで昇温する際に得られるDSC曲線(図1に例示)において、2つのピークを有し、該融解ピークのうち低温側の融解ピーク熱量Qlと、高温側の融解ピーク熱量Qhから次式により算出した。
DSC比=Qh/(Ql+Qh)×100
ポリオレフィン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前のポリオレフィン系樹脂粒子の密度d(g/cm3)から次式により求めたものである。
発泡倍率=d×v/w
得られたポリオレフィン系樹脂予備発泡粒子の中から任意に30個の予備発泡粒子を取り出し、JIS K6402に準拠してセル径を測定し、平均セル径を算出した。
空気比較式比重計(BECKMAN社製930型)を用いて、得られたポリオレフィン系樹脂予備発泡粒子の独立気泡体積を求め、かかる独立気泡体積を別途エタノール浸漬法で求めた見かけ体積で除することにより独立気泡率を算出した。
ポリオレフィン系樹脂予備発泡粒子を30秒間流水にて水洗後、60℃のオーブン中で24時間乾燥させ、次いでオーブンから取り出して、直ちに温度23℃、相対湿度50%に設定された恒温恒湿室内にて72時間放置する。次に、同恒温恒湿室内にて、該予備発泡粒子約100gを、小数点以下第3位まで正確に秤量して、分散剤が付着した該予備発泡粒子の重量:F(g)とする。
その後、秤量して得られた該予備発泡粒子全量を、1N塩酸水溶液5L中に10分間浸漬した後、イオン交換水5Lに1分間浸漬して塩酸水溶液を洗い落とし、次いで、1N水酸化ナトリウム水溶液5L中に10分間浸漬する。一連の作業を2回繰り返した後、該予備発泡粒子全量を60℃のオーブン中で24時間乾燥させ、次いでオーブンから取り出して、直ちに温度23℃、相対湿度50%に設定された恒温恒湿室内にて72時間放置する。次に、同恒温恒湿室内にて、小数点以下第3位まで正確に秤量して、酸アルカリ洗浄後の該予備発泡粒子の重量:S(g)とする。
水洗後の重量F(g)と酸アルカリ洗浄後の重量S(g)との差を、該予備発泡粒子の表面に付着していた分散剤量として、下記の式により算出した。
付着分散剤量(ppm)=(F-S)/F×106
得られた型内発泡成形体表面を目視で観察し、下記の基準で評価する。
○:表面に凹凸がなく、各粒子間隙もほとんどない。
×:表面に凹凸があり、各粒子間隙がきわめて大きい。
得られた型内発泡成形体を破断させ、その断面を観察し、断面の粒子の全個数に対する破断粒子数の割合を求め、以下の基準で評価する。
○:破断粒子の割合が60%以上。
×:破断粒子の割合が60%未満。
得られた型内発泡成形体を燃焼試験用サンプルとして縦150mm、幅50mm、厚みを目的の値に切削し、重量w(g)、縦、横、厚みの長さから体積v(cm3)を求め、次式により求めたものである。
成形体密度=w/v(g/cm3)
上記寸法(厚みは、3.5mm、7mm、13mm)の燃焼試験用サンプルに対して、UL94HFに準拠した試験を行い、下記の基準で評価する。
残炎時間:ガスバーナーの炎が消えてからサンプル片の炎が消えるまでの時間であり、5回試験を行った際の平均値を算出した。時間が短いほど難燃性能は高い。
[樹脂粒子の作製]
ポリオレフィン系樹脂(エチレン-プロピレンランダム共重合体、エチレン含量2.8%、MFR=6.0g/10min、融点145℃)100重量部に対し、造核剤としてタルクを0.01重量部、表1に示す配合比率にて、
化学式(3)
RNHCH2CH2CH2NRCH2CH2NHCH2CH2CH2NHR (5)
(式中、Rは化学式(6)で表されるs-トリアジン部分T)の化合物(FLAMESTAB NOR116、チバ・ジャパン社製)、
[予備発泡粒子の作製]
得られた樹脂粒子100重量部およびイソブタン10重量部を、水300重量部、パウダー状塩基性第3リン酸カルシウム1.6重量部およびn-パラフィンスルホン酸ソーダ0.03重量部と共に、10L密閉容器に仕込み、該容器内部を表1記載の発泡温度に加熱した。
次いで、容器内圧力を、イソブタンを圧入して、表1記載の所定発泡圧力に調整した。その後、容器内圧力を窒素で保持しつつ、密閉容器下部のバルブを開いて、水分散物を開孔径4.0mmφのオリフィス板を通して大気圧下に放出することにより、ポリオレフィン系樹脂予備発泡粒子を得た。
得られたポリオレフィン系樹脂予備発泡粒子について、上記の評価を行なった。その結果を、表2に示す。
[型内発泡体の作製]
次に、得られたポリオレフィン系樹脂予備発泡粒子を0.1N塩酸水溶液にて洗浄し、さらに、耐圧容器内で空気加圧して0.18~0.23MPaの内圧を付与した後、400mm×300mm×22mmの金型に充填し、該予備発泡粒子同士を圧力0.28MPa(G)の水蒸気で10秒間加熱、融着させ、ポリオレフィン系樹脂型内発泡成形体を得た。
得られた型内発泡成形体に関して、表面外観、融着率、成形体倍率、燃焼試験の評価を行った。その結果を、表2に示す。
[樹脂粒子の作製]
表1に示す比率にて、実施例で用いた化学式(3)および(5)の化合物、各種難燃剤(水酸化マグネシウム、ポリリン酸アンモニウム)、カーボンブラックを添加し、実施例と同様の方法にて、樹脂粒子を得た。
[予備発泡粒子の作製]
発泡温度および発泡圧力を表2に示す条件に変更した以外は、実施例と同様の方法により、ポリオレフィン系樹脂予備発泡粒子を得た。
得られたポリオレフィン系樹脂予備発泡粒子について、上記の評価を行なった。その結果を、表2に示す。
[型内発泡体の作製]
実施例と同様の方法により、ポリオレフィン系樹脂型内発泡成形体を得た。
得られた型内発泡成形体に関して、表面外観、融着率、成形体倍率、燃焼試験の評価を行った。その結果を、表2に示す。
Claims (8)
- 前記ポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を発泡剤存在下、水系分散媒中に分散させ、加圧下で加熱した後、分散物を低圧域に放出して得られる請求項1記載のポリオレフィン系樹脂予備発泡粒子。
- 前記リン酸エステルが、芳香族系リン酸エステルである、請求項1あるいは2記載のポリオレフィン系樹脂予備発泡粒子。
- 発泡剤が、イソブタン、ノルマルブタンよりなる群から選ばれる少なくとも一種である、請求項1~3の何れか一項に記載のポリオレフィン系樹脂予備発泡粒子。
- 発泡剤が二酸化炭素である、請求項1~4の何れか一項記載のポリオレフィン系樹脂予備発泡粒子。
- ポリオレフィン系樹脂組成物が、ポリオレフィン系樹脂100重量部に対し、前記一般式(1)で表される立体障害性アミンエーテル系難燃剤0.01重量部以上20重量部以下およびリン酸エステル0.01重量部以上10重量部以下を含有する、請求項1~5の何れか一項に記載のポリオレフィン系樹脂予備発泡粒子。
- 前記ポリオレフィン系樹脂が、ポリプロピレン系樹脂である、請求項1~6の何れか一項に記載のポリオレフィン系樹脂予備発泡粒子。
- 請求項1~7何れか一項に記載のポリオレフィン系樹脂予備発泡粒子を、型内発泡成形してなる、ポリオレフィン系樹脂型内発泡成形体。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10764257.1A EP2420533B1 (en) | 2009-04-15 | 2010-04-14 | Polyolefin resin pre-expanded particles and polyolefin resin in-mold expansion-molded article comprising polyolefin resin pre-expanded particles |
US13/264,041 US20120037837A1 (en) | 2009-04-15 | 2010-04-14 | Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre-expanded particles |
JP2011509213A JP5690265B2 (ja) | 2009-04-15 | 2010-04-14 | ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 |
CN2010800161944A CN102388093B (zh) | 2009-04-15 | 2010-04-14 | 聚烯烃系树脂预发泡粒子及由聚烯烃系树脂预发泡粒子形成的聚烯烃系树脂模内发泡成形体 |
US14/608,492 US10072128B2 (en) | 2009-04-15 | 2015-01-29 | Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre- expanded particles |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-099196 | 2009-04-15 | ||
JP2009099196 | 2009-04-15 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/264,041 A-371-Of-International US20120037837A1 (en) | 2009-04-15 | 2010-04-14 | Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre-expanded particles |
US14/608,492 Division US10072128B2 (en) | 2009-04-15 | 2015-01-29 | Polyolefin-based resin pre-expanded particles and polyolefin-based resin in-mold expansion molded article comprising polyolefin-based resin pre- expanded particles |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010119670A1 true WO2010119670A1 (ja) | 2010-10-21 |
Family
ID=42982344
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002681 WO2010119670A1 (ja) | 2009-04-15 | 2010-04-14 | ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 |
Country Status (5)
Country | Link |
---|---|
US (2) | US20120037837A1 (ja) |
EP (1) | EP2420533B1 (ja) |
JP (1) | JP5690265B2 (ja) |
CN (1) | CN102388093B (ja) |
WO (1) | WO2010119670A1 (ja) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013022049A1 (ja) * | 2011-08-09 | 2013-02-14 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体 |
JPWO2016052739A1 (ja) * | 2014-10-03 | 2017-07-20 | カネカ ベルギー ナムローゼ フェンノートシャップKaneka Belgium N.V. | ポリオレフィン系樹脂予備発泡粒子および型内発泡成形体、並びにそれらの製造方法 |
JP2020093562A (ja) * | 2018-12-10 | 2020-06-18 | 株式会社ジェイエスピー | 車両用空調ダクト |
JP2020105340A (ja) * | 2018-12-27 | 2020-07-09 | 積水化成品工業株式会社 | 難燃性発泡複合樹脂粒子、その製造方法及び発泡成形体 |
WO2022039076A1 (ja) * | 2020-08-19 | 2022-02-24 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子及びそのポリオレフィン系樹脂発泡成形体 |
JPWO2022190565A1 (ja) * | 2021-03-12 | 2022-09-15 | ||
JPWO2022190564A1 (ja) * | 2021-03-12 | 2022-09-15 | ||
WO2022203035A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法 |
WO2023181879A1 (ja) * | 2022-03-25 | 2023-09-28 | 株式会社カネカ | ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法 |
WO2024053584A1 (ja) * | 2022-09-06 | 2024-03-14 | 株式会社カネカ | ポリオレフィン系発泡粒子、および、ポリオレフィン系発泡成形体、並びにそれらの製造方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2666626B1 (en) * | 2012-05-23 | 2014-12-31 | Sekisui Alveo AG | Flame-retardant polyolefin foam and its production |
JP6170765B2 (ja) | 2013-07-08 | 2017-07-26 | 株式会社ジェイエスピー | 表皮付きポリオレフィン系樹脂発泡成形体の製造方法 |
EP2927302B1 (de) | 2014-04-03 | 2019-03-06 | Basf Se | Flammschutzmittel auf basis von substituierten di-, tri- und tetra-arylethanverbindungen |
PL2947115T3 (pl) | 2014-05-22 | 2019-11-29 | Basf Se | Wolne od fluorowców mieszaniny środków ogniochronnych dla poliolefinowych tworzyw piankowych |
EP3613801B1 (en) * | 2017-04-21 | 2023-03-01 | Kaneka Corporation | Polypropylene resin foamed particles and method for producing same |
WO2018212183A1 (ja) * | 2017-05-18 | 2018-11-22 | 株式会社ジェイエスピー | オレフィン系熱可塑性エラストマー架橋発泡粒子 |
CN110551339B (zh) * | 2018-06-04 | 2022-08-02 | 钟化(苏州)缓冲材料有限公司 | 聚丙烯系树脂颗粒、聚丙烯系树脂发泡颗粒及其制备方法和成型体 |
JP2023024310A (ja) * | 2021-08-06 | 2023-02-16 | 株式会社ジェイエスピー | ポリプロピレン系樹脂発泡粒子及びポリプロピレン系樹脂発泡粒子成形体 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09227711A (ja) | 1996-02-22 | 1997-09-02 | Mitsubishi Chem Basf Co Ltd | 難燃性ポリオレフィン系樹脂発泡粒子及びそれを用いた型内発泡成形体 |
JP2001348724A (ja) | 2000-04-06 | 2001-12-21 | Mitsubishi Rayon Co Ltd | 難燃性ポリプロピレン繊維及びその製造方法並びに難燃性ポリプロピレンフィルム |
JP2002507238A (ja) * | 1997-06-30 | 2002-03-05 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | 難燃剤組成物 |
WO2003048239A1 (fr) | 2001-12-03 | 2003-06-12 | Kaneka Corporation | Billes pre-expansees de resine polyolefinique ignifuge et objet moule a partir de ces billes par moussage dans le moule |
JP2004263033A (ja) | 2003-02-28 | 2004-09-24 | Jsp Corp | ポリオレフィン系樹脂型内発泡成形体 |
JP2006316168A (ja) | 2005-05-12 | 2006-11-24 | Marubishi Oil Chem Co Ltd | 難燃剤及びそれを含む合成樹脂組成物 |
JP2007056150A (ja) * | 2005-08-25 | 2007-03-08 | Calp Corp | 難燃性樹脂組成物及びそれからなる成形体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITMI980366A1 (it) | 1998-02-25 | 1999-08-25 | Ciba Spec Chem Spa | Preparazione di eteri amminici stericamente impediti |
JP4009117B2 (ja) * | 2002-03-06 | 2007-11-14 | 大和紡績株式会社 | オレフィン複合シートおよび強化複合不織布 |
US7138448B2 (en) * | 2002-11-04 | 2006-11-21 | Ciba Specialty Chemicals Corporation | Flame retardant compositions |
JP5161663B2 (ja) * | 2008-06-12 | 2013-03-13 | 株式会社カネカ | 難燃性ポリオレフィン系樹脂予備発泡粒子およびその型内発泡成形体 |
-
2010
- 2010-04-14 CN CN2010800161944A patent/CN102388093B/zh active Active
- 2010-04-14 JP JP2011509213A patent/JP5690265B2/ja active Active
- 2010-04-14 WO PCT/JP2010/002681 patent/WO2010119670A1/ja active Application Filing
- 2010-04-14 US US13/264,041 patent/US20120037837A1/en not_active Abandoned
- 2010-04-14 EP EP10764257.1A patent/EP2420533B1/en active Active
-
2015
- 2015-01-29 US US14/608,492 patent/US10072128B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09227711A (ja) | 1996-02-22 | 1997-09-02 | Mitsubishi Chem Basf Co Ltd | 難燃性ポリオレフィン系樹脂発泡粒子及びそれを用いた型内発泡成形体 |
JP2002507238A (ja) * | 1997-06-30 | 2002-03-05 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | 難燃剤組成物 |
JP2001348724A (ja) | 2000-04-06 | 2001-12-21 | Mitsubishi Rayon Co Ltd | 難燃性ポリプロピレン繊維及びその製造方法並びに難燃性ポリプロピレンフィルム |
WO2003048239A1 (fr) | 2001-12-03 | 2003-06-12 | Kaneka Corporation | Billes pre-expansees de resine polyolefinique ignifuge et objet moule a partir de ces billes par moussage dans le moule |
JP2004263033A (ja) | 2003-02-28 | 2004-09-24 | Jsp Corp | ポリオレフィン系樹脂型内発泡成形体 |
JP2006316168A (ja) | 2005-05-12 | 2006-11-24 | Marubishi Oil Chem Co Ltd | 難燃剤及びそれを含む合成樹脂組成物 |
JP2007056150A (ja) * | 2005-08-25 | 2007-03-08 | Calp Corp | 難燃性樹脂組成物及びそれからなる成形体 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2420533A4 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013022049A1 (ja) * | 2011-08-09 | 2013-02-14 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体 |
CN103748148A (zh) * | 2011-08-09 | 2014-04-23 | 株式会社钟化 | 聚烯烃系树脂发泡颗粒及其模内成形体 |
EP2743295A1 (en) * | 2011-08-09 | 2014-06-18 | Kaneka Corporation | Polyolefin resin foam particles and in-mold foaming molded body of same |
EP2743295A4 (en) * | 2011-08-09 | 2015-01-14 | Kaneka Corp | POLYOLEFIN RESIN FOAM PARTICLES AND MOLDED MOLD FOAM BODY BASED THEREOF |
JPWO2013022049A1 (ja) * | 2011-08-09 | 2015-03-05 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体 |
US9249281B2 (en) | 2011-08-09 | 2016-02-02 | Kaneka Corporation | Polyolefin resin foam particles and in-mold foaming molded body of same |
JPWO2016052739A1 (ja) * | 2014-10-03 | 2017-07-20 | カネカ ベルギー ナムローゼ フェンノートシャップKaneka Belgium N.V. | ポリオレフィン系樹脂予備発泡粒子および型内発泡成形体、並びにそれらの製造方法 |
US10344137B2 (en) | 2014-10-03 | 2019-07-09 | Kaneka Belgium N.V. | Polyolefin-based resin pre-expanded particle, in-mold foamed article, process for producing the polyolefin-based resin pre-expanded particle, and process for producing the in-mold foamed article |
JP2020093562A (ja) * | 2018-12-10 | 2020-06-18 | 株式会社ジェイエスピー | 車両用空調ダクト |
JP2020105340A (ja) * | 2018-12-27 | 2020-07-09 | 積水化成品工業株式会社 | 難燃性発泡複合樹脂粒子、その製造方法及び発泡成形体 |
WO2022039076A1 (ja) * | 2020-08-19 | 2022-02-24 | 株式会社カネカ | ポリオレフィン系樹脂発泡粒子及びそのポリオレフィン系樹脂発泡成形体 |
JPWO2022190565A1 (ja) * | 2021-03-12 | 2022-09-15 | ||
JPWO2022190564A1 (ja) * | 2021-03-12 | 2022-09-15 | ||
JP7314437B2 (ja) | 2021-03-12 | 2023-07-25 | 株式会社ジェイエスピー | ポリプロピレン系樹脂発泡粒子及びポリプロピレン系樹脂発泡粒子の製造方法 |
JP7314436B2 (ja) | 2021-03-12 | 2023-07-25 | 株式会社ジェイエスピー | ポリプロピレン系樹脂発泡粒子の製造方法及びポリプロピレン系樹脂発泡粒子 |
WO2022203035A1 (ja) * | 2021-03-26 | 2022-09-29 | 株式会社カネカ | ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法 |
WO2023181879A1 (ja) * | 2022-03-25 | 2023-09-28 | 株式会社カネカ | ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法 |
WO2024053584A1 (ja) * | 2022-09-06 | 2024-03-14 | 株式会社カネカ | ポリオレフィン系発泡粒子、および、ポリオレフィン系発泡成形体、並びにそれらの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102388093B (zh) | 2013-10-23 |
CN102388093A (zh) | 2012-03-21 |
EP2420533A1 (en) | 2012-02-22 |
JP5690265B2 (ja) | 2015-03-25 |
EP2420533A4 (en) | 2013-09-25 |
JPWO2010119670A1 (ja) | 2012-10-22 |
EP2420533B1 (en) | 2014-12-31 |
US20150210815A1 (en) | 2015-07-30 |
US20120037837A1 (en) | 2012-02-16 |
US10072128B2 (en) | 2018-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5690265B2 (ja) | ポリオレフィン系樹脂予備発泡粒子およびポリオレフィン系樹脂予備発泡粒子からなるポリオレフィン系樹脂型内発泡成形体 | |
JP5927192B2 (ja) | ポリオレフィン系樹脂発泡粒子およびその型内発泡成形体 | |
JP5914484B2 (ja) | 粉状活性炭含有発泡ポリオレフィン | |
JP5161416B2 (ja) | 難燃性ポリオレフィン系樹脂予備発泡粒子およびその型内発泡成形体 | |
JP5518349B2 (ja) | 難燃性ポリプロピレン系樹脂発泡粒子 | |
JP5161663B2 (ja) | 難燃性ポリオレフィン系樹脂予備発泡粒子およびその型内発泡成形体 | |
KR20150022844A (ko) | 난연성 폴리올레핀 발포체 및 그의 제조 | |
US20160009888A1 (en) | Method for producing cross-linked polyethylene- based resin expanded beads | |
JP5814687B2 (ja) | ポリオレフィン系樹脂発泡粒子とその型内発泡成形体 | |
JP2011173941A (ja) | ポリオレフィン系樹脂架橋発泡体 | |
WO2022039076A1 (ja) | ポリオレフィン系樹脂発泡粒子及びそのポリオレフィン系樹脂発泡成形体 | |
JP2018162370A (ja) | ポリプロピレン系樹脂黒色発泡粒子の製造方法 | |
JP5334452B2 (ja) | 難燃性ポリオレフィン系樹脂予備発泡粒子、その製造方法、および、難燃性ポリオレフィン系樹脂型内発泡成形体 | |
WO2023181879A1 (ja) | ポリプロピレン系発泡粒子、および、ポリプロピレン系発泡成形体、並びにそれらの製造方法 | |
JP2010070644A (ja) | ポリオレフィン系樹脂予備発泡粒子、および、その型内発泡成形体 | |
WO2024053584A1 (ja) | ポリオレフィン系発泡粒子、および、ポリオレフィン系発泡成形体、並びにそれらの製造方法 | |
EP2963080A1 (en) | Polyolefin-type resin foam |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080016194.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10764257 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011509213 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13264041 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 7569/CHENP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010764257 Country of ref document: EP |