WO2010119578A1 - ガスバリア性薄膜コーティングプラスチック容器の製造方法 - Google Patents

ガスバリア性薄膜コーティングプラスチック容器の製造方法 Download PDF

Info

Publication number
WO2010119578A1
WO2010119578A1 PCT/JP2009/061582 JP2009061582W WO2010119578A1 WO 2010119578 A1 WO2010119578 A1 WO 2010119578A1 JP 2009061582 W JP2009061582 W JP 2009061582W WO 2010119578 A1 WO2010119578 A1 WO 2010119578A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic container
external electrode
film
gas
thin film
Prior art date
Application number
PCT/JP2009/061582
Other languages
English (en)
French (fr)
Inventor
中谷 正樹
真里 清水
Original Assignee
麒麟麦酒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 麒麟麦酒株式会社 filed Critical 麒麟麦酒株式会社
Priority to CN2009801586671A priority Critical patent/CN102395706B/zh
Priority to BRPI0924233A priority patent/BRPI0924233A2/pt
Priority to SG2011074614A priority patent/SG175202A1/en
Priority to KR1020117026912A priority patent/KR101357325B1/ko
Priority to US13/264,079 priority patent/US8883257B2/en
Priority to AU2009344573A priority patent/AU2009344573B2/en
Priority to EP09843356.8A priority patent/EP2420592B1/en
Publication of WO2010119578A1 publication Critical patent/WO2010119578A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D23/00Details of bottles or jars not otherwise provided for
    • B65D23/02Linings or internal coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32541Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/32568Relative arrangement or disposition of electrodes; moving means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/332Coating

Definitions

  • the present invention relates to a method for producing a gas barrier thin film coated plastic container in which a thin film having a gas barrier property is formed on the inner wall surface of a plastic container by a plasma CVD (chemical vapor deposition) method.
  • the container is filled with, for example, a beverage / food, but the storage performance of the beverage / food is improved.
  • Plastic containers are easy to absorb odors and have poor gas barrier properties compared to coffee bottles and cans, so it was difficult to use them for oxygen-sensitive beverages such as beer and sparkling liquor. Therefore, a method and apparatus for coating a hard carbon film (diamond-like carbon (DLC)) or the like has been disclosed in order to solve the problems of sorption and gas barrier properties in plastic containers. For example, by using an external electrode having an internal space substantially similar to the outer shape of the target container and an internal electrode inserted into the container through the mouth of the container and also serving as a source gas introduction pipe, Discloses an apparatus for coating a hard carbon film (see, for example, Patent Document 1 or 2).
  • DLC diamond-like carbon
  • high-frequency power is applied to the external electrode in a state where a carbon source gas such as aliphatic hydrocarbons or aromatic hydrocarbon carbon is supplied as a source gas in the container.
  • a carbon source gas such as aliphatic hydrocarbons or aromatic hydrocarbon carbon
  • the source gas is turned into plasma between both electrodes, and the ions in the generated plasma are attracted by a high-frequency potential difference (self-bias) generated between the external electrode and the internal electrode, and collide with the inner wall of the container. Is formed.
  • a power source for generating plasma a power source having an industrial frequency of 13.56 MHz which is easy to use and obtain is used in a conventional mass production apparatus.
  • the inner wall surface of the external electrode and the outer wall surface of the plastic container A technique is disclosed in which a spacer made of a dielectric material is arranged in a gap space between the electrodes, the combined electrostatic capacity of the device is adjusted, and low frequency power having a frequency of 400 kHz to 4 MHz is supplied to an external electrode (for example, In addition, use a vacuum chamber in which the upper part of the external electrode is replaced with a dielectric, adjust the combined capacitance of the device, and apply low frequency power with a frequency of 400 kHz to 4 MHz to the external electrode.
  • a technique for supplying is disclosed (for example, see Patent Document 4).
  • the sheath length of the discharge plasma and the radius of the mouth of the container are maintained in a predetermined relationship, and a low frequency power source of 0.1 to 5 MHz is used.
  • the technique to do is disclosed (for example, refer to Patent Document 5).
  • Japanese Patent No. 2788412 Japanese Patent No. 3072269 JP 2008-088471 A JP 2008-088472 A JP 2005-281844 A
  • the performance of the container mainly requires gas barrier properties, coloration of the film, and adhesion of the film, and in terms of production efficiency, the short process time and operation stability are mainly required. Desired.
  • the frequency of the power source for plasma generation is as high as 13.56 MHz, which is generally used, accumulation of foreign matters such as carbon powder in the exhaust system is promoted as described in Patent Documents 3 and 4. In order to suppress this, a power source having a frequency lower than 13.56 MHz is used.
  • an object of the present invention is to suppress the accumulation of foreign substances such as carbon powder without using a specially shaped external electrode, and to reduce gas barrier properties and film coloration (difference in the color concentration of the film depending on the part of the container). It is to produce a plastic container coated with a thin film with good film adhesion (that is, performance viewed from the viewpoint that color unevenness is small) and color density is low.
  • the foreign matter deposited in the exhaust chamber or the like is carbon powder or carbon dust (also simply referred to as dust).
  • the present inventors have set the frequency of the power source for plasma generation within the range of 5.5 to 6.5 MHz, so that the accumulation of foreign matters can be specifically performed.
  • the present invention has been completed by finding that a thin film can be coated with less gas barrier properties, film coloration and film adhesion. That is, in the method for producing a gas barrier thin film-coated plastic container according to the present invention, the step of housing the plastic container in the external electrode serving as the film forming unit and the internal electrode serving as the source gas supply pipe are disposed inside the plastic container.
  • the plastic container is accommodated in a state in which the mouth of the container faces downward in the process of accommodating the plastic container in the external electrode. Foreign matter mixed in the internal space of the container before film formation is easily removed, and as a result, the occurrence of film formation defects in the film is prevented. Furthermore, the reattachment of the thin film source gas-derived substance to the bottle is prevented at the end of film formation.
  • the height of the container is h, and the bottom of the container is a reference point.
  • the source gas supply pipe is inserted from the mouth of the container so that the tip of the source gas supply pipe is at a position in the range of 1/2 ⁇ h to 2/3 ⁇ h. preferable.
  • the method for producing a gas barrier thin film-coated plastic container according to the present invention includes a form in which an external electrode whose inner space has a bottomed cylindrical shape is used.
  • the method for producing a gas barrier thin film-coated plastic container according to the present invention includes a form in which a carbon film, a silicon-containing carbon film, or a metal oxide film is formed as the gas barrier thin film.
  • the plastic container includes a form having a capacity of 500 ml or more.
  • the method for producing a gas barrier thin film coated plastic container according to the present invention includes a form in which the plastic container is a polyethylene terephthalate container.
  • the present invention manufactures a plastic container coated with a thin film that suppresses the accumulation of foreign matters such as carbon powder and has good gas barrier properties, film coloration, and film adhesion without using a specially shaped external electrode. can do.
  • External electrodes provided with an internal space (hereinafter referred to as an internal space) having an inner surface shape that is substantially the same as or similar to the outer surface shape of the container, except for the plasma generation power source, as a film forming apparatus to be used
  • an internal space having an inner surface shape that is substantially the same as or similar to the outer surface shape of the container, except for the plasma generation power source
  • a film forming apparatus having the same type as a film forming apparatus having a so-called similar external electrode for example, a film forming apparatus disclosed in Patent Document 1 or 2 or the like) can be used.
  • a film forming apparatus having a so-called cylindrical external electrode in which the shape of the internal space provided in the external electrode is a bottomed cylindrical shape other than the power source for generating plasma for example, Patent Document 3 or 4
  • a film forming apparatus having a cylindrical external electrode a gap is formed between the outer surface of the shoulder portion of the container and the inner surface of the internal space of the external electrode.
  • a spacer such as a dielectric is inserted in the gap. It may or may not be included.
  • an electrode having an inner space larger than that of the bottle can be used.
  • a spacer such as a dielectric may be inserted in the gap between the periphery of the bottle and the inner surface of the inner space of the outer electrode, or You don't have to put it in.
  • a film forming apparatus to be used except for the plasma generating power source, a film forming apparatus (the gap between the outer surface of the shoulder portion of the container and the inner surface of the internal space of the external electrode is set to have a predetermined relationship (for example, a film forming apparatus of the same type as in Patent Document 6) can be used.
  • Japanese Patent No. 4188315 Japanese Patent No. 4188315
  • FIG. 1 is a schematic view of a film forming apparatus having a similar external electrode.
  • FIG. 1 is a longitudinal sectional view, and this manufacturing apparatus has a rotationally symmetric shape around the main axis of the plastic container 8.
  • the main axis of the container substantially coincides with the main axis of the internal electrode.
  • the film forming apparatus 100 includes an external electrode 3 serving as a film forming unit that accommodates the plastic container 8, an internal electrode 9 serving as a source gas supply pipe that is detachably disposed inside the plastic container 8, and the external electrode 3.
  • An insulating member 4 that electrically insulates the external electrode 3 from the exhaust chamber 5 is provided.
  • the external electrode 3 is formed in a hollow with a conductive material such as metal to form a film forming unit (vacuum chamber), and has an internal space 30 for accommodating a plastic container 8 to be coated, for example, a PET bottle which is a container made of polyethylene terephthalate resin.
  • the external electrode 3 includes an upper external electrode 2 and a lower external electrode 1, and is configured such that the upper portion of the lower external electrode 1 is detachably attached to the lower portion of the upper external electrode 2 via an O-ring 10.
  • the plastic container 8 can be mounted by detaching the lower external electrode 1 from the upper external electrode 2.
  • the external electrode 3 is sealed from the outside by an O-ring 37 disposed between the insulating member 4 and the external electrode 3 and an O-ring 10 disposed between the upper external electrode 2 and the lower external electrode 1.
  • the external electrode 3 is divided into two parts, ie, the upper external electrode 2 and the lower external electrode 1, but it is divided into three or more parts for the sake of manufacturing and sealed with an O-ring. You may do it.
  • the plastic container 8 generally has a shape in which the diameter of the mouth part is reduced with respect to the body part, but the details are not necessarily unified, and may be appropriately changed depending on the design of the container. Therefore, the shoulder shape, neck shape, or mouth shape of the container differs depending on the contents.
  • the inner space 30 formed in the external electrode 3 has an inner surface shape substantially the same as the outer surface shape of the plastic container 8, and when the plastic container 8 is accommodated in the inner space 30, there is almost no gap. However, a gap of about several centimeters may be allowed. The gap is preferably filled with a derivative spacer.
  • the insulating member 4 has an opening 32 a at a position corresponding to the position above the mouth of the plastic container 8.
  • the opening 32a allows the external electrode 3 and the exhaust chamber 5 to be in air communication.
  • the insulating member 4 is preferably formed of an inorganic material such as glass or ceramics, or a heat resistant resin.
  • the exhaust chamber 5 is formed hollow with a conductive material such as metal and has an internal space 31.
  • the exhaust chamber 5 and the insulating member 4 are sealed with an O-ring 38. Then, in order to make the internal space 31 and the internal space 30 communicate with each other in air, an opening 32b having substantially the same shape is provided in the lower portion of the exhaust chamber 5 corresponding to the opening 32a.
  • the exhaust chamber 5 is connected to a vacuum pump 23 via an exhaust path including a pipe 21, a pressure gauge 20, a vacuum valve 22, and the like, and the internal space 31 is exhausted.
  • the lid 6 is formed, the external electrode 3 is sealed, and the film forming unit 7 that can be sealed is assembled.
  • the plastic container according to the present invention is, for example, a plastic bottle, cup or tray. It includes a container that is used in the open state without using a lid, a stopper, a seal, or a container. The size of the opening is determined according to the contents.
  • the plastic container 8 has a predetermined thickness having moderate rigidity and does not include a soft packaging material formed of a sheet material having no rigidity.
  • the filling material of the plastic container according to the present invention is, for example, a beverage such as beer, sparkling liquor, carbonated beverage, fruit juice beverage, or soft drink, a pharmaceutical product, an agrochemical product, or a dry food product that dislikes moisture absorption.
  • Resin used when molding the plastic container 8 is, for example, polyethylene terephthalate resin (PET), polyethylene terephthalate-based copolyester resin (copolymer using cyclohexane dimethanol instead of ethylene glycol as the alcohol component of polyester is PETG) Called Eastman Chemical), polybutylene terephthalate resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin (PP), cycloolefin copolymer resin (COC, cyclic olefin copolymer), ionomer resin, poly-4-methyl Pentene-1 resin, polymethyl methacrylate resin, polystyrene resin, ethylene-vinyl alcohol copolymer resin, acrylonitrile resin, polyvinyl chloride resin, polyvinyl chloride Styrene resins - Den resins, polyamide resins, polyamide-imide resins, polyacetal resins, polycarbonate resins, polysulfone resins, te
  • the internal electrode 9 also serves as a raw material gas supply pipe, and a gas flow path is provided therein, through which the raw material gas passes.
  • a gas outlet 9a that is, an opening of a gas flow path is provided.
  • One end of the internal electrode 9 is fixed by a wall of the internal space 31 of the exhaust chamber 5, and the internal electrode 9 is disposed in the film forming unit 7.
  • the internal electrode 9 is disposed in the external electrode 3 and disposed inside the plastic container 8 from the mouth. That is, the internal electrode 9 is inserted into the internal space 30 of the external electrode 3 through the internal space 31 and the openings 32a and 32b with the upper part of the inner wall of the exhaust chamber 5 as the base end.
  • the internal electrode 9 is preferably grounded.
  • the tip (9a) of the internal electrode 9 is disposed inside the plastic container 8. The detailed position of the tip (9a) of the internal electrode 9 will be described later.
  • the raw material gas supply means 16 introduces the raw material gas supplied from the raw material gas generation source 15 into the plastic container 8. That is, one side of the pipe 11 is connected to the base end of the internal electrode 9, and the other side of the pipe 11 is connected to one side of the mass flow controller 13 via the vacuum valve 12. The other side of the mass flow controller 13 is connected to a source gas generation source 15 via a pipe 14.
  • the source gas generation source 15 generates a hydrocarbon gas source gas such as acetylene.
  • the thin film having gas barrier properties refers to a thin film that suppresses oxygen permeation, such as a carbon film including a DLC (diamond-like carbon) film, a Si-containing carbon film, or a metal oxide film such as a SiOx film.
  • a volatile gas containing the constituent elements of the thin film is selected.
  • a publicly known volatile raw material gas is used as a raw material gas when forming a thin film having gas barrier properties.
  • gaseous or liquid aliphatic hydrocarbons for example, when forming a DLC film, gaseous or liquid aliphatic hydrocarbons, aromatic hydrocarbons, oxygen-containing hydrocarbons, nitrogen-containing hydrocarbons, etc. at room temperature are used.
  • benzene, toluene, o-xylene, m-xylene, p-xylene, cyclohexane and the like having 6 or more carbon atoms are desirable.
  • aliphatic hydrocarbons especially ethylene hydrocarbons such as ethylene, propylene or butylene, or acetylene hydrocarbons such as acetylene, arylene or 1-butyne from the viewpoint of hygiene Is preferred.
  • These raw materials may be used alone, or may be used as a mixed gas of two or more. Further, these gases may be diluted with a rare gas such as argon or helium.
  • a silicon-containing DLC film is formed, a Si-containing hydrocarbon gas is used.
  • Si-containing unit cost hydrogen gas and oxygen are supplied to a gas introduction pipe. The same applies to other metal oxide films, and a source gas containing the metal and oxygen are used.
  • the DLC film referred to in the present invention is a film called i-carbon film or hydrogenated amorphous carbon film (aC: H), and includes a hard carbon film.
  • the DLC film is an amorphous carbon film and also has SP 3 bonds.
  • a hydrocarbon gas such as acetylene gas is used as a source gas for forming the DLC film
  • a Si-containing hydrocarbon gas is used as a source gas for forming the Si-containing DLC film.
  • a Si-containing hydrocarbon gas is used.
  • silicified hydrocarbon gas or silicic acid gas include silicon tetrachloride, silane (SiH 4 ), hexamethyldisilane, vinyltrimethylsilane, methylsilane, dimethylsilane, trimethylsilane, diethylsilane, propylsilane, phenylsilane, and methyltriethoxysilane.
  • AlOx film aluminum oxide thin film
  • trialkylaluminum, trimethylaluminum, and triethylaluminum are dialkylaluminum, triisopropylaluminum, tri-n-butylaluminum, dimethylisopropylaluminum. Is used.
  • the vacuum pump 23 exhausts the gas inside the film forming unit 7. That is, one end of the pipe 21 is connected to the exhaust chamber 5, the other end of the pipe 21 is connected to the vacuum valve 22, and the vacuum valve 22 is connected to the vacuum pump 23 via the pipe. This vacuum pump 23 is further connected to an exhaust duct 24.
  • a pressure gauge 20 is connected to the pipe 21 to detect the pressure in the exhaust path.
  • the film forming unit 7 is connected to a leak pipe 17, and the pipe 17 communicates with a leak source 19 (open to the atmosphere) via a vacuum valve 18.
  • the plasma generation power supply means 35 includes a plasma generation power source 27 and an automatic matching unit 26 connected to the plasma generation power source 27, and the plasma generation power source 27 is connected to the external electrode 3 via the automatic matching unit 26. Connected. When the output of the plasma generating power supply 27 is applied to the external electrode 3 and a potential difference is generated between the internal electrode 9 and the external electrode 3, the raw material gas supplied into the plastic container 8 is turned into plasma.
  • the frequency of the plasma generating power supply 27 is in the range of 5.5 to 6.5 MHz. In this range, a fixed frequency power supply is used. Further, a frequency variable power source may be used in this range.
  • the film forming unit 7 is formed so that the mouth of the plastic container 8 faces upward, but the film forming unit 7 may be formed so that the mouth of the plastic container 8 faces downward. Foreign matter mixed in the internal space of the container before film formation is easily removed, and as a result, the occurrence of film formation defects in the film is prevented. Furthermore, the reattachment of the thin film source gas-derived substance to the bottle is prevented at the end of film formation.
  • the manufacturing method of the gas barrier thin film coated plastic container according to the present embodiment includes (1) a step of accommodating the plastic container 8 in the external electrode 3 serving as the film forming unit 7, and (2) a raw material gas supply pipe inside the plastic container 8. A step of disposing the internal electrode 9 to become, (3) a step of evacuating the gas inside the external electrode 3 by operating the vacuum pump 23, and (4) blowing the raw material gas into the plastic container 8 under reduced pressure.
  • the power source frequency of the plasma generating power source 27 that supplies power to the external electrode 3 is set to 5.5 to 6.5 MHz, the source gas is turned into plasma, and a gas barrier is formed on the inner wall surface of the plastic container 8. A step of forming a thin film having properties.
  • the inside of the plastic container 8 is replaced with a raw material gas and adjusted to a predetermined film forming pressure. That is, as shown in FIG. 1, after the vacuum valve 18 is closed, the vacuum valve 22 is opened, the vacuum pump 23 is operated, and the gas inside the external electrode 3 is electrically connected to the external electrode 3 by the insulating member 4. It exhausts via the insulated exhaust chamber 5. Thereby, the inside of the film forming unit 7 including the inside of the plastic container 8 is exhausted through the pipe 21, and the inside of the film forming unit 7 is evacuated. At this time, the pressure in the film forming unit 7 is, for example, 0.1 to 50 Pa.
  • the automatic matching unit 26 matches the impedance by the inductance L and the capacitance C so that the reflected wave from the entire electrode supplying the output is minimized.
  • the locations of the “shoulder” and “body” of the plastic container 8 are shown.
  • the “shoulder” is the lower part of the neck that is reduced in diameter along the upper part of the container main shaft, and the “torso” is the center height of the small torso below the shoulder. It was a place.
  • the power supply frequency By setting the power supply frequency to a narrow frequency range of 5.5 to 6.5 MHz, specifically, (1) the gas barrier property is maximized, and (2) the color derived from carbon contained in the DLC film is increased. High quality of the container that is thin and has less color unevenness between the shoulder part and the body part, so that the design of the container is high, and (3) there is little adhesion of dust from the source gas in the exhaust chamber 5 And increased production efficiency (less frequent cleaning of equipment). If the power supply frequency is out of the frequency range of 5.5 to 6.5 MHz, the advantages (1) to (3) cannot be obtained at the same time.
  • the color derived from the carbon in the DLC film appears darker than the shoulder side on the trunk side, and the average color appears. The color is also dark. This tendency becomes remarkable when the bottle size is 500 ml or more.
  • the adhesion of the film decreases.
  • the power supply frequency exceeds 6.5 MHz
  • the coloration derived from carbon in the DLC film appears darker than the body side on the shoulder side, and when the frequency reaches 13.56 MHz, the average coloration is also apparent. It ’s dark.
  • the adhesion of the dust derived from the source gas in the exhaust chamber 5 increases. Further, the vicinity of the opening 32b of the exhaust chamber 5 is etched by plasma, and the surface of the exhaust chamber 5 is shaved.
  • the power supply frequency When the power supply frequency is shifted to the high frequency side, the position of the center of the plasma (the part with the highest concentration) moves to the mouth side of the container.
  • a power supply frequency of 5.5 to 6.5 MHz it is considered that the plasma distribution satisfies all of the gas barrier properties, coloration properties, and minimization of dust accumulation in the exhaust chamber.
  • the power output (W) without depending on the capacity of the container, for example, the capacity of 250 ml to 2 liters, For example, it does not depend on the output of 400 to 2000 W).
  • a suitable power supply frequency that can simultaneously obtain the merits (1) to (3) is substantially affected by the width and length of the shape if the film forming unit 7 has a substantially bottomed cylindrical shape. It is thought that there is nothing. Therefore, by setting the power supply frequency to 5.5 to 6.5 MHz, a conventional type film forming apparatus can be used without adding a complicated structure to the manufacturing apparatus or adding another structure. If the power supply frequency is 5.5 to 6.5 MHz, the quality can be maximized and the production efficiency can be improved.
  • the tip (9a) of the internal electrode 9 is disposed inside the plastic container 8.
  • the tip of the internal electrode (raw material gas supply pipe) 9 is 1/2 ⁇ h or more 2 as shown in FIG. It is preferably inserted so as to be in a position within a range of / 3 ⁇ h or less. If the tip of the internal electrode (source gas supply pipe) 9 is less than 1 / 2h, a film is likely to be attached to the bottom of the container and the lower part of the body more than necessary, and coloration may be conspicuous. Accumulation of carbon dust on the outer surface of the tube becomes significant. On the other hand, if it is at a position exceeding 2/3 ⁇ h, plasma ignition may be poor.
  • the output of the plasma generating power supply 27 is stopped, the plasma is extinguished, and the DLC film formation is completed.
  • the vacuum valve 12 is closed to stop the supply of the raw material gas.
  • the vacuum pump 23 exhausts the hydrocarbon gas remaining in the film forming unit 7 and the plastic container 8. Thereafter, the vacuum valve 22 is closed, and the exhaust is finished.
  • the pressure in the film forming unit 7 at this time is 1 to 100 Pa.
  • the vacuum valve 18 is opened. Thereby, the film forming unit 7 is opened to the atmosphere.
  • the DLC film is formed to have a thickness of 5 to 100 nm.
  • a DLC film was formed on the inner surface of a 500 ml PET bottle (resin amount 29 g, height 204 mm) and a 280 ml PET bottle (resin amount 26 g, height 132 mm).
  • the source gas was acetylene, the gas flow rate was 80 sccm (500 ml PET bottle), 90 sccm (280 ml PET bottle), and the film formation time was 2 seconds.
  • a power source for generating plasma a frequency variable power source in the range of 2.50 to 13.56 MHz (2.5 MHz to 7 MHz: Noda RF Technologies, model number NR1.5F5-7M-01) (13.56 MHz: Japan Radio) Model No. NAH-1013-2Y) was used. Film formation was performed at various frequencies in the range of 2.50 MHz to 13.56 MHz. In all samples, the film thickness of the DLC film was approximately 20 nm.
  • Table 1 shows oxygen barrier properties when a DLC film is formed on a 500 ml PET bottle.
  • the oxygen permeability of this container was measured under the conditions of 23 ° C. and 90% RH using an Otran 2/20 manufactured by Modern Control, and measured values 72 hours after the start of nitrogen gas replacement (OTR in Table 1). Value).
  • the film thickness of the DLC film was measured using Alpha-step iQ manufactured by KLA tencor, and Table 2 shows the oxygen barrier properties when the DLC film was formed on a 280 ml PET bottle.
  • the BIF value is a value indicating how many times the oxygen barrier property is improved with reference to the uncoated bottle.
  • the results of Tables 1 and 2 are plotted in FIG.
  • the color of the plastic container was evaluated using the coloring degree b * value as an index.
  • the b * value is the color difference of JISK 7105-1981, and is obtained from the tristimulus values X, Y, and Z according to Equation 1.
  • a Hitachi U-3500 self-recording spectrophotometer equipped with a 60 ⁇ integrating sphere accessory device (for infrared, visible and near infrared) was used.
  • an ultrasensitive photomultiplier tube R928: for ultraviolet and visible
  • a cooled PbS for near infrared region
  • the b * value of this example is the same as that calculated in the form including the absorptivity of the PET container. Show.
  • the b * and visual correlation in the present invention is roughly as shown in Table 3.
  • the b * value of the untreated PET container is in the range of 0.6 to 1.0. Moreover, it can be said that a b * value of 2 or less is colorless and transparent.
  • Table 4 shows the results of evaluating the color developability when a DLC film was formed on a 500 ml PET bottle.
  • Table 5 shows the results of evaluating the color developability when a DLC film was formed on a 280 ml PET bottle. The results of Table 4 are plotted in FIG. The results of Table 5 are plotted in FIG.
  • the “variation” of the 500 ml PET bottle was as follows.
  • the “average” of the 500 ml PET bottle is the average coloring degree, and is as follows.
  • the “variation” of 280 ml PET bottles was as follows.
  • the “average” of 280 ml PET bottles is the average coloring degree, and is as follows.
  • Table 6 shows the results of evaluating the adhesion when a DLC film is formed on a 500 ml PET bottle. Evaluation is carried out by maintaining a sodium hydroxide aqueous solution (0.01% by mass) at pH 9 at 65 ° C., immersing the container, before immersion (0 day), 1 day immersion (1 day), 2 day immersion (2 Day) The film was peeled when immersed for 3 days (3rd day) and for 4 days (4th day).
  • No peeling
  • There is a peeling piece less than 5 mm in length
  • There is a peeling piece of 5 mm or more in length
  • Table 7 shows the results of evaluating the adhesion when a DLC film was formed on a 280 ml PET bottle. Evaluation is carried out by maintaining a sodium hydroxide aqueous solution (0.01% by mass) at pH 9 at 80 ° C., immersing the container, before immersion (0 day), 1 day immersion (1 day), 2 day immersion (2 Day) The film was peeled when immersed for 3 days (3rd day) and for 4 days (4th day).
  • No peeling
  • There is a peeling piece less than 5 mm in length
  • There is a peeling piece of 5 mm or more in length
  • Table 8 evaluated the deposition of carbon dust when a DLC film was formed on a 500 ml PET bottle. A silicon wafer was placed on the outer surface of the source gas introduction pipe, which is substantially in the center of the exhaust chamber, and film formation was performed 10 times. The amount of dust deposited (nm) in F in the exhaust chamber was determined in FIG. The larger the deposition amount, the shorter the cleaning interval of the film forming apparatus. FIG. 6 shows the relationship between the power supply frequency and the amount of carbon dust deposited.
  • Table 9 shows the change in mass of the source gas introduction tube when a DLC film was formed on a 500 ml PET bottle.
  • a removable stainless steel cylindrical member is installed on the outer surface of the raw material gas introduction pipe located immediately downstream of the bottle, film formation is performed 100 times, and the mass change of the member at the location E in FIG. Evaluated.
  • the larger the mass increase the greater the amount of dust accumulation.
  • Considering error factors at the time of desorption it is considered that there is no significant difference between 2.5 MHz and 7 MHz.
  • the mass was significantly reduced. This is probably because the center of the plasma was present near the mouth of the bottle, and the member was etched.
  • FIG. 7 shows the relationship between the power frequency when a DLC film is formed on a 500 ml PET bottle and the change in mass of the member installed near the bottle mouth.
  • Table 10 shows the mass change of the source gas introduction pipe when the DLC film was formed on the 280 ml PET bottle.
  • a removable cylindrical member made of stainless steel is installed on the outer surface of the raw material gas introduction pipe located immediately downstream of the bottle, film formation is performed 100 times, and the mass change of the member at the location E in FIG. Evaluated. The larger the mass increase, the greater the amount of dust accumulation. Considering error factors at the time of desorption, it is considered that there is no significant difference between 2.5 MHz and 7 MHz. On the other hand, the mass decreased significantly at 13.56 MHz, which is considered to be because the center of the plasma was present near the mouth of the bottle and the member was etched.
  • FIG. 8 shows the relationship between the power supply frequency when a DLC film is formed on a 280 ml PET bottle and the change in mass of the member installed near the bottle mouth.
  • Table 11 shows the received light intensity of the optical sensor installed at the position D in FIG. 1 when a DLC film was formed on a 500 ml PET bottle.
  • D is a viewing window on the outer surface of the exhaust chamber 10 cm away from the center of the gas introduction pipe.
  • the received light intensity is related to the emission intensity of the plasma. The higher the received light intensity, the closer the plasma is to the exhaust chamber or the plasma is generated in the exhaust chamber. As a result, the higher the received light intensity, the wider the plasma distribution range in the exhaust chamber and the higher the plasma concentration, which means that the total dust accumulation amount in the exhaust chamber is large.
  • Table 12 shows the received light intensity of the photosensor installed at the position D in FIG. 1 when a DLC film was formed on a 280 ml PET bottle. Further, FIG. 8 shows the relationship between the power supply frequency and the emission intensity in the exhaust chamber.
  • FIG. 8 shows that the emission intensity increases as the power frequency increases. That is, it can be seen that the plasma moves upward along the container main axis direction. From FIG. 7, it can be seen that when the power source frequency is 13.56 MHz, the vicinity of the bottle mouth is etched, which is consistent with the result of FIG. According to the results of FIG. 6, the amount of dust accumulated in the exhaust chamber tends to increase as the power frequency increases.
  • FIG. 3 it can be seen that the oxygen barrier property does not change with a tendency even when the power supply frequency is increased, and that it is specifically high at 5.5 to 6.5 MHz. It can be seen that even if the capacity of the container is different, it is specifically high at 5.5 to 6.5 MHz. Furthermore, according to FIG. 4, the variation of * b value is reduced from 5.5 to 6.5 MHz, and the average value of * b value is minimized, and the coloration property of the container is particularly good. It turns out that it becomes.
  • FIG. 5 also has the same tendency, and it can be seen that the coloration property of the container is particularly good at 5.5 to 6.5 MHz even if the capacity of the container is different.
  • the adhesiveness is improved by setting the electrode frequency to 5.5 MHz or more. Further, when the frequency is lower than 5.5 MHz, it can be seen from Tables 6 and 7 that the adhesion strength of the film decreases. This is thought to be a result of significant damage to the PET polymer chain due to increased ion bombardment on the inner surface of the PET bottle as the frequency decreases. On the other hand, when the frequency exceeds 6.5 MHz, the center position of the plasma is significantly biased toward the mouth side of the bottle, resulting in a decrease in the barrier property from the optimum level and variations in coloration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の目的は、特別な形状の外部電極を用いることなく、炭素粉等の異物の堆積を抑制し、ガスバリア性、膜の呈色性及び膜の密着性が良好な薄膜をコーティングしたプラスチック容器を製造することである。本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法は、成膜ユニットとなる外部電極にプラスチック容器を収容する工程と、前記プラスチック容器の内部に原料ガス供給管となる内部電極を配置する工程と、真空ポンプを作動させて前記外部電極の内部のガスを排気する工程と、前記プラスチック容器の内部に原料ガスを減圧下で吹き出させる工程と、前記外部電極に電力を供給するプラズマ発生用電源の電源周波数を5.5~6.5MHzに設定し、前記原料ガスをプラズマ化して、前記プラスチック容器の内壁面にガスバリア性を有する薄膜を成膜する工程と、を有する。

Description

ガスバリア性薄膜コーティングプラスチック容器の製造方法
 本発明は、プラズマCVD(chemical vapor deposition)法によってガスバリア性を有する薄膜をプラスチック容器の内壁面に成膜するガスバリア性薄膜コーティングプラスチック容器の製造方法に関する。当該容器は、例えば、飲料・食品が充填されるが、飲料・食品の保存性能が向上されている。
 プラスチック容器は、臭いが収着しやすく、またガスバリア性が壜や缶と比較して劣るため、ビールや発泡酒等の酸素に鋭敏な飲料には用いることが難しかった。そこで、プラスチック容器における収着性やガスバリア性の問題点を解決すべく、硬質炭素膜(ダイヤモンドライクカーボン(DLC))等をコーティングする方法と装置が開示されている。例えば、対象とする容器の外形とほぼ相似形の内部空間を有する外部電極と、容器の内側に容器の口部から挿入され、原料ガス導入管を兼ねた内部電極を用いて、容器の内壁面に硬質炭素膜をコーティングする装置が開示されている(例えば特許文献1又は2を参照。)。このような装置では、容器内に原料ガスとして脂肪族炭化水素類,芳香族炭化水素類炭素等の炭素源ガスを供給した状態で、外部電極に高周波電力を印加する。このとき、原料ガスが両電極間においてプラズマ化し、発生したプラズマ中のイオンは外部電極と内部電極との間で発生する高周波由来の電位差(自己バイアス)に誘引され、容器内壁に衝突し、膜が形成される。ここで、プラズマ発生用電源としては、使用・入手が容易な工業用周波数13.56MHzの電源が従来の量産装置において用いられている。
 一方、装置の排気室又はそれより後流の排気経路でのプラズマの発生を抑制することで炭素系異物の発生の防止を図ることを目的として、外部電極の内壁面とプラスチック容器の外壁面とに挟まれた隙間空間に誘電体からなるスペーサーを配置し、装置の合成静電容量を調整し、かつ、周波数400kHz~4MHzの低周波電力を外部電極に供給する技術が開示されている(例えば、特許文献3を参照。)また、外部電極の上部を誘電体に置き換えた真空チャンバを使用し、装置の合成静電容量を調整し、かつ、周波数400kHz~4MHzの低周波電力を外部電極に供給する技術が開示されている(例えば、特許文献4を参照。)
 また、容器の口部への過剰薄膜形成の抑制を目的として、放電プラズマのシース長と容器の口部の半径とを、所定の関係に保持し、0.1~5MHzの低周波電源を使用する技術が開示されている(例えば、特許文献5を参照。)。
特許第2788412号公報 特許第3072269号公報 特開2008‐088471号公報 特開2008‐088472号公報 特開2005‐281844号公報
 ガスバリア性を有する薄膜を容器に成膜するに際して、容器の性能面では主としてガスバリア性、膜の呈色性及び膜の密着性が求められ、製造の効率面では主として短プロセス時間・稼動安定性が求められる。
 プラズマ発生用電源の周波数が、一般的に使用される13.56MHzと高めであると、特許文献3及び4で記載されているように、排気系への炭素粉等の異物の堆積が促進される傾向にあり、それを抑制するために、13.56MHzよりも低周波の電源が用いられる。
 しかし、本発明者らの検討によれば、特許文献1又は2に記載されている標準タイプの成膜装置において、プラズマ発生用電源の周波数を1~3MHzと低めに設定すると、ガスバリア性が低下し、かつ、呈色の濃化が問題となることがわかった。また、特許文献5の発明では、容器の口部の形状(特に口部径)について設計制限が生じる。
 そこで本発明の目的は、特別な形状の外部電極を用いることなく、炭素粉等の異物の堆積を抑制し、ガスバリア性、膜の呈色性(容器の部位による膜の着色濃度の差が小さく(すなわち色ムラが少ない)、かつ、着色濃度も小さいという観点から見た性能)及び膜の密着性が良好な薄膜をコーティングしたプラスチック容器を製造することである。なお、排気室等に堆積する異物は炭素粉やカーボンダスト(単にダストともいう)である。
 本発明者らは、上記の課題を解決するために鋭意検討した結果、プラズマ発生用電源の周波数を5.5~6.5MHzという範囲内に設定することで、特異的に、異物の堆積が少なく、かつ、ガスバリア性、膜の呈色性及び膜の密着性がいずれも良好な薄膜がコーティングできることを見出し、本発明を完成させた。すなわち、本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法は、成膜ユニットとなる外部電極にプラスチック容器を収容する工程と、前記プラスチック容器の内部に原料ガス供給管となる内部電極を配置する工程と、真空ポンプを作動させて前記外部電極の内部のガスを排気する工程と、前記プラスチック容器の内部に原料ガスを減圧下で吹き出させる工程と、前記外部電極に電力を供給するプラズマ発生用電源の電源周波数を5.5~6.5MHzに設定し、前記原料ガスをプラズマ化して、前記プラスチック容器の内壁面にガスバリア性を有する薄膜を成膜する工程と、を有することを特徴とする。
 本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法では、前記プラスチック容器を前記外部電極に収容する工程において、容器の口部を下方に向けた状態で収容することが好ましい。成膜前に容器の内部空間内に混入した異物が取り除かれやすく、その結果、膜の成膜欠陥部分の発生が予防される。さらに、成膜終了時に薄膜原料ガス由来物質のボトルへの再付着が防止される。
 本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法では、前記プラスチック容器の内部に原料ガス供給管となる内部電極を配置する工程において、容器の高さをhとし、容器の底を基準点としたとき、前記原料ガス供給管の先端が、1/2・h以上2/3・h以下の範囲の位置にあるように、前記原料ガス供給管が容器の口部から挿入されていることが好ましい。
 本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法では、内部空間が有底円筒形である外部電極を使用する形態が含まれる。
 本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法では、ガスバリア性薄膜として、炭素膜、珪素含有炭素膜又は金属酸化物膜を成膜する形態が含まれる。
 本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法では、前記プラスチック容器は、容量が500ml以上の容器である形態が含まれる。
 本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法では、前記プラスチック容器がポリエチレンテレフタレート製容器である形態が含まれる。
 本発明は、特別な形状の外部電極を用いることなく、炭素粉等の異物の堆積を抑制し、ガスバリア性、膜の呈色性及び膜の密着性が良好な薄膜をコーティングしたプラスチック容器を製造することができる。
相似型の外部電極を有する成膜装置の概略図である。 プラスチック容器の「肩部」及び「胴部」の箇所を示した概略図である。 電源周波数と酸素バリア性との関係を示すグラフである。 500mlPETボトルにDLC膜を成膜したときの電源周波数と呈色性との関係を示すグラフである。 280mlPETボトルにDLC膜を成膜したときの電源周波数と呈色性との関係を示すグラフである。 電源周波数とカーボンダストの堆積量との関係を示した。 電源周波数とボトル口部近傍に設置した部材の質量変化との関係を示した。 電源周波数と排気室における発光強度との関係を示した。
 以下本発明について実施形態を示して詳細に説明するが本発明はこれらの記載に限定して解釈されない。本発明の効果を奏する限り、実施形態は種々の変形をしてもよい。
 先ず、本実施形態に係るガスバリア性薄膜コーティングプラスチック容器の製造方法において使用する成膜装置について説明する。使用する成膜装置として、プラズマ発生用電源以外は、容器の外面形状とほぼ同一形状若しくは相似形状の内面形状の内部空間(容器の収容空間となる、以下、内部空間という)を設けた外部電極、いわゆる相似型の外部電極を有する成膜装置(例えば特許文献1又は2等が開示する成膜装置)と同型の成膜装置を使用することができる。また、使用する成膜装置として、プラズマ発生用電源以外は、外部電極に設けた内部空間の形状が、有底円筒形状のいわゆる円筒型の外部電極を有する成膜装置(例えば特許文献3又は4等が開示する成膜装置)と同型の成膜装置を使用することができる。なお、円筒型の外部電極を有する成膜装置の場合、容器の肩部の外表面と外部電極の内部空間の内表面との間に隙間が生じるが、その隙間に誘電体等のスペーサーを入れても良く、又は、入れなくても良い。同様に、内部空間がボトルよりも大きい電極も使用できるが、この場合にボトルの周囲と外部電極の内部空間の内表面との間の隙間に誘電体等のスペーサーを入れても良く、又は、入れなくても良い。さらに使用する成膜装置として、プラズマ発生用電源以外は、容器の肩部の外表面と外部電極の内部空間の内表面との間の隙間が所定の関係を有するように設定した成膜装置(例えば、特許文献6)と同型の成膜装置を使用することができる。
特許第4188315号公報
 三つのタイプの成膜装置を例に挙げたが、このうち相似型の外部電極を有する成膜装置を代表例として、本実施形態において使用する成膜装置について説明する。図1は、相似型の外部電極を有する成膜装置の概略図である。図1は縦断面図であり、この製造装置はプラスチック容器8の主軸を中心として、回転対称の形状を有している。ここで容器の主軸は内部電極の主軸とほぼ一致している。
 成膜装置100は、プラスチック容器8を収容する成膜ユニットとなる外部電極3と、プラスチック容器8の内部に挿脱自在に配置される原料ガス供給管となる内部電極9と、外部電極3の内部のガスを排気する真空ポンプ23と、外部電極3に接続されたプラズマ発生用電源27と、外部電極3の内部空間30とプラスチック容器8の口部の上方にて連通する排気室5と、外部電極3と排気室5とを電気的に絶縁させる絶縁部材4とを有する。
 外部電極3は、金属等の導電材で中空に形成されて成膜ユニット(真空チャンバ)となり、コーティング対象のプラスチック容器8、例えばポリエチレンテレフタレート樹脂製の容器であるPETボトルを収容する内部空間30を有する。外部電極3は、上部外部電極2と下部外部電極1からなり、上部外部電極2の下部に下部外部電極1の上部がO-リング10を介して着脱自在に取り付けられるよう構成されている。上部外部電極2から下部外部電極1を脱着することでプラスチック容器8を装着することができる。外部電極3は、絶縁部材4と外部電極3との間に配置されたO-リング37並びに上部外部電極2と下部外部電極1の間に配置されたO-リング10によって外部から密閉されている。なお、外部電極3は、図1では上部外部電極2と下部外部電極1の2分割の場合を示したが、製作の都合上3個以上に分割して、それぞれの間をO-リングでシールしても良い。
 プラスチック容器8は、一般的に、胴部に対して口部が縮径した形状を有しているが、その細部は必ずしも統一されず、容器のデザインによって適宜変更される。したがって、内容物によって容器の肩形状、首形状又は口形状が異なる。外部電極3に形成されている内部空間30は、その内面形状がプラスチック容器8の外面形状とほぼ同形状であり、プラスチック容器8を内部空間30に収容すると、隙間がほぼ無い状態となる。ただし、数cm程度の隙間は許容される場合がある。また、当該隙間は誘導体のスペーサーで埋めることが好ましい。
 外部電極3の内部空間30とプラスチック容器8の口部の上方にて連通する排気室5を設ける。また、外部電極3と排気室5とを電気的に絶縁させる絶縁部材4を外部電極3と排気室5との間に配置する。
 絶縁部材4は、プラスチック容器8の口部の上方の位置に相当する箇所に開口部32aが形成されている。開口部32aは、外部電極3と排気室5とを空気的に連通させる。絶縁部材4は、ガラスやセラミックス等の無機材料、或いは耐熱性樹脂で形成されていることが好ましい。
 排気室5は、金属等の導電材で中空に形成されており、内部空間31を有する。排気室5と絶縁部材4との間はO-リング38によってシールされている。そして、内部空間31と内部空間30とを空気的に連通させるために、開口部32aに対応してほぼ同形状の開口部32bが排気室5の下部に設けられている。排気室5は、配管21、圧力ゲージ20、真空バルブ22等からなる排気経路を介して真空ポンプ23に接続されており、その内部空間31が排気される。
 絶縁部材4の上に排気室5が配置されることによって蓋6を形成して、外部電極3を密封し、密閉可能な成膜ユニット7が組み上がることとなる。
 本発明に係るプラスチック容器とは、例えば、プラスチック製のボトル、カップ又はトレーである。蓋若しくは栓若しくはシールして使用する容器、またはそれらを使用せず開口状態で使用する容器を含む。開口部の大きさは内容物に応じて決める。プラスチック容器8は、剛性を適度に有する所定の肉厚を有し、剛性を有さないシート材により形成された軟包装材は含まない。本発明に係るプラスチック容器の充填物は、例えば、ビール、発泡酒、炭酸飲料、果汁飲料若しくは清涼飲料等の飲料、医薬品、農薬品、又は吸湿を嫌う乾燥食品である。
 プラスチック容器8を成形する際に使用する樹脂は、例えば、ポリエチレンテレフタレート樹脂(PET)、ポリエチレンテレフタレート系コポリエステル樹脂(ポリエステルのアルコール成分にエチレングリコールの代わりに、シクロヘキサンディメタノールを使用したコポリマーをPETGと呼んでいる、イーストマンケミカル製)、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂(PP)、シクロオレフィンコポリマー樹脂(COC、環状オレフィン共重合)、アイオノマ樹脂、ポリ‐4‐メチルペンテン‐1樹脂、ポリメタクリル酸メチル樹脂、ポリスチレン樹脂、エチレン-ビニルアルコール共重合樹脂、アクリロニトリル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリスルホン樹脂、4弗化エチレン樹脂、アクリロニトリル‐スチレン樹脂又はアクリロニトリル‐ブタジエン‐スチレン樹脂である。この中で、PETが特に好ましい。
 内部電極9は原料ガス供給管を兼ねており、その内部にガス流路が設けられており、この中を原料ガスが通過する。内部電極9の先端にはガス吹き出し口9a、すなわちガス流路の開口部が設けられている。内部電極9の一端は、排気室5の内部空間31の壁で固定され、内部電極9は成膜ユニット7内に配置されている。外部電極3内にプラスチック容器8がセットされたとき、内部電極9は、外部電極3内に配置され且つプラスチック容器8の口部からその内部に配置される。すなわち、排気室5の内壁上部を基端として、内部空間31、開口部32a、32bを通して、外部電極3の内部空間30まで内部電極9が差し込まれる。内部電極9は、接地されていることが好ましい。内部電極9の先端(9a)はプラスチック容器8の内部に配置される。内部電極9の先端(9a)の詳細な位置については後述する。
 原料ガス供給手段16は、プラスチック容器8の内部に原料ガス発生源15から供給される原料ガスを導入する。すなわち、内部電極9の基端には、配管11の一方側が接続されており、この配管11の他方側は真空バルブ12を介してマスフローコントローラー13の一方側に接続されている。マスフローコントローラー13の他方側は配管14を介して原料ガス発生源15に接続されている。この原料ガス発生源15はアセチレンなどの炭化水素ガス系原料ガスを発生させるものである。
 本発明におけるガスバリア性を有する薄膜とは、DLC(ダイヤモンドライクカーボン)膜を含む炭素膜、Si含有炭素膜、又は、SiOx膜等の金属酸化物膜等の酸素透過を抑制する薄膜をいう。原料ガス発生源15から発生させる原料ガスは、上記薄膜の構成元素を含む揮発性ガスが選択される。ガスバリア性を有する薄膜を形成する際の原料ガスは公知公用の揮発性原料ガスが使用される。
 原料ガスとしては、例えば、DLC膜を成膜する場合、常温で気体又は液体の脂肪族炭化水素類、芳香族炭化水素類、含酸素炭化水素類、含窒素炭化水素類などが使用される。特に炭素数が6以上のベンゼン、トルエン、o‐キシレン、m‐キシレン、p‐キシレン、シクロヘキサン等が望ましい。食品等の容器に使用する場合には、衛生上の観点から脂肪族炭化水素類、特にエチレン、プロピレン又はブチレン等のエチレン系炭化水素、又は、アセチレン、アリレン又は1‐ブチン等のアセチレン系炭化水素が好ましい。これらの原料は、単独で用いても良いが、2種以上の混合ガスとして使用するようにしても良い。さらにこれらのガスをアルゴンやヘリウムの様な希ガスで希釈して用いる様にしても良い。また、ケイ素含有DLC膜を成膜する場合には、Si含有炭化水素系ガスを使用する。SiOx膜を成膜する場合は、Si含有単価水素ガスと酸素とをガス導入管に供給して使用する。他の金属酸化膜も同様であり、当該金属を含有する原料ガスと酸素を使用する。
 本発明でいうDLC膜とは、iカーボン膜又は水素化アモルファスカーボン膜(a‐C:H)と呼ばれる膜のことであり、硬質炭素膜も含まれる。またDLC膜はアモルファス状の炭素膜であり、SP結合も有する。このDLC膜を成膜する原料ガスとしては炭化水素系ガス、例えばアセチレンガスを用い、Si含有DLC膜を成膜する原料ガスとしてはSi含有炭化水素系ガスを用いる。このようなDLC膜をプラスチック容器の内壁面に形成することにより、ビール、発泡酒、炭酸飲料や発泡飲料等の容器としてワンウェイ、リターナブルに使用可能な容器を得る。
 また、ケイ素含有DLC膜を成膜する場合には、Si含有炭化水素系ガスを使用する。珪化炭化水素ガス又は珪化水素ガスとしては、四塩化ケイ素、シラン(SiH4 )、ヘキサメチルジシラン、ビニルトリメチルシラン、メチルシラン、ジメチルシラン、トリメチルシラン、ジエチルシラン、プロピルシラン、フェニルシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、テトラメトキシシラン、テトラエトキシシラン、フェニルトリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン等の有機シラン化合物、オクタメチルシクロテトラシロキサン、1,1,3,3-テトラメチルジシロキサン、ヘキサメチルジシロキサン(HMDSO)等の有機シロキサン化合物等が使用される。また、これらの材料以外にも、アミノシラン、シラザンなども用いられる。金属酸化物薄膜として酸化アルミニウム薄膜(AlOx膜)を成膜する場合には、例えば、トリアルキルアルミニウム、トリメチルアルミニウム、トリエチルアルミニウムは、ジアルキルアルミニウム、トリイソプロピルアルミニウム、トリ‐n‐ブチルアルミニウム、ジメチルイソプロピルアルミニウムを用いる。
 真空ポンプ23は、成膜ユニット7の内部のガスを排気する。すなわち、排気室5に配管21の一端が接続され、配管21の他端は真空バルブ22に接続され、真空バルブ22は配管を介して真空ポンプ23に接続されている。この真空ポンプ23はさらに排気ダクト24に接続されている。なお、配管21には圧力ゲージ20が接続され、排気経路での圧力を検出する。真空ポンプ23を作動させることによって、プラスチック容器8の内部ガス並びに外部電極3の内部空間30のガスが開口部32a,32bを介して排気室5の内部空間31に移動し、内部空間31のガスは配管21を含む排気経路を通して真空ポンプ23に送られる。
 成膜ユニット7は、リーク用の配管17が接続されていて、配管17は真空バルブ18を介して、リーク源19(大気開放)と連通されている。
 プラズマ発生用電力供給手段35は、プラズマ発生用電源27と、プラズマ発生用電源27に接続された自動整合器26とを備え、プラズマ発生用電源27は自動整合器26を介して外部電極3に接続される。プラズマ発生用電源27の出力を外部電極3に印加し、内部電極9と外部電極3との間に電位差が生ずることによってプラスチック容器8の内部に供給された原料ガスがプラズマ化する。プラズマ発生用電源27の周波数は、5.5~6.5MHzの範囲とする。この範囲において、固定周波数の電源を用いる。また、この範囲において周波数可変の電源を用いても良い。
 図1では、プラスチック容器8の口部が上方に向うように成膜ユニット7が形成されているが、プラスチック容器8の口部が下方に向うように成膜ユニット7を形成しても良い。成膜前に容器の内部空間内に混入した異物が取り除かれやすく、その結果、膜の成膜欠陥部分の発生が予防される。さらに、成膜終了時に薄膜原料ガス由来物質のボトルへの再付着が防止される。
 次に、本実施形態に係るガスバリア性薄膜コーティングプラスチック容器の製造方法を、DLC膜を成膜する場合で説明する。本発明に係るガスバリア性薄膜コーティングプラスチック容器の製造方法は、(1)成膜ユニット7となる外部電極3にプラスチック容器8を収容する工程と、(2)プラスチック容器8の内部に原料ガス供給管となる内部電極9を配置する工程と、(3)真空ポンプ23を作動させて外部電極3の内部のガスを排気する工程と、(4)プラスチック容器8の内部に原料ガスを減圧下で吹き出させる工程と、(5)外部電極3に電力を供給するプラズマ発生用電源27の電源周波数を5.5~6.5MHzに設定し、原料ガスをプラズマ化して、プラスチック容器8の内壁面にガスバリア性を有する薄膜を成膜する工程を有する。
(プラスチック容器の収容工程及び内部電極の配置工程)
 成膜ユニット7内は、真空バルブ18を開いて大気開放されており、外部電極3の下部外部電極1が上部外部電極2から取り外された状態となっている。次に上部外部電極2の下側から上部外部電極2内の空間にプラスチック容器8を差し込み、外部電極3の内部空間30内に設置する。この際、内部電極9はプラスチック容器8内に挿入された状態になる。次に、下部外部電極1を上部外部電極2の下部に装着し、外部電極3はO-リング10によって密閉される。以上の操作により、外部電極3の内部空間30にプラスチック容器8が収容され、かつ、プラスチック容器8の内部に内部電極9が配置される。
(外部電極の内部のガスの排気工程)
 次に、プラスチック容器8の内部を原料ガスに置き換えするとともに所定の成膜圧力に調整する。すなわち、図1に示すように、真空バルブ18を閉じた後、真空バルブ22を開き、真空ポンプ23を作動させ、外部電極3の内部のガスを、絶縁部材4によって外部電極3と電気的に絶縁されている排気室5を経由して排気する。これにより、プラスチック容器8内を含む成膜ユニット7内が配管21を通して排気され、成膜ユニット7内が真空となる。このときの成膜ユニット7内の圧力は、例えば0.1~50Paである。
(原料ガスを吹き出させる工程)
 次に、真空バルブ12を開き、原料ガス発生源15においてアセチレンガス等の炭化水素ガスを発生させ、この炭化水素ガスを配管14内に導入し、マスフローコントローラー13によって流量制御された炭化水素ガスを配管11及びアース電位の内部電極(原料ガス供給管)9を通してガス吹き出し口9aから吹き出させる。これにより、炭化水素ガスがプラスチック容器8内に導入される。そして、成膜ユニット7内とプラスチック容器8内は、制御されたガス流量と排気能力のバランスによって、DLC膜の成膜に適した圧力(例えば1~100Pa程度)に保たれ、安定化させる。
(ガスバリア性を有する薄膜の成膜工程)
 次に、プラスチック容器8の内部に原料ガスを減圧された所定圧力下で吹き出させているときに、外部電極3に電源周波数5.5~6.5MHzの電力(例えば、6.0MHz)を供給する。この電力をエネルギー源として、プラスチック容器8内の原料ガスがプラズマ化される。これによって、プラスチック容器8の内壁面にDLC膜が成膜される。すなわち外部電極3に電源周波数5.5~6.5MHzの電力が供給されることによって、外部電極3と内部電極9との間でバイアス電圧が生ずると共にプラスチック容器8内の原料ガスがプラズマ化されて炭化水素系プラズマが発生し、DLC膜がプラスチック容器8の内壁面に成膜される。このとき、自動整合器26は、出力供給している電極全体からの反射波が最小になるように、インダクタンスL、キャパシタンスCによってインピーダンスを合わせている。
 ここで図2において、プラスチック容器8の「肩部」及び「胴部」の箇所について示した。「肩部」は、容器主軸の上方に沿って縮径している首部のうち口部のネジ部よりも下方部分とし、「胴部」は、肩部の下方の寸胴部分のうちの中央高さ箇所とした。
 電源周波数5.5~6.5MHzという狭い範囲の周波数に設定することで、特異的に、(1)ガスバリア性が最大限に高められ、(2)DLC膜に含まれる炭素由来の呈色が薄くかつ肩部と胴部との間の色ムラが少なくなるので容器の意匠性が高く、かつ、(3)排気室5内における原料ガス由来のダストの付着が少ない、という容器の高品質化と高生産効率化(装置の清掃頻度が少なくてすむ)という効果が見出された。電源周波数5.5~6.5MHzの範囲の周波数から外れると、前記(1)~(3)のメリットが同時に得られない。電源周波数が5.5MHz未満であると、DLC膜中の炭素由来の呈色(濃い場合には茶色~黒色を呈する)が胴部側において、肩部側よりも濃く現れ、また、平均の呈色も濃い。この傾向は500ml以上のボトルサイズで顕著となる。また、膜の密着性が低下する。一方、電源周波数が6.5MHzを超えると、DLC膜中の炭素由来の呈色が肩部側において、胴部側よりも濃く現れ、また、13.56MHzに至ると明らかに平均の呈色も濃い。さらに排気室5内における原料ガス由来のダストの付着が多くなる。また、排気室5の開口部32b近傍がプラズマによってエッチングされ、排気室5の表面が削られている。
 電源周波数を高周波側にシフトさせると、プラズマの中心(最も濃度が高い部分)位置が容器の口部側に移り、反対に低周波側にシフトさせると、容器の底側に移る。電源周波数5.5~6.5MHzにおいて、ガスバリア性、呈色性及び排気室におけるダスト堆積の最少化のいずれも満足させるプラズマの分布になると考えられる。なお、外部電極3、絶縁部材4及び排気室5を有する成膜ユニット7の構成をとる限り、容器の容量、例えば250ml~2リットルの容量に依存することなく、また、電源出力(W)、例えば400~2000W)の出力に依存することはない。前記(1)~(3)のメリットが同時に得られる好適な電源周波数は、前記成膜ユニット7が略有底円筒形状をしていれば、形状の幅や長さには、ほとんど影響を受けないものと考えられる。したがって、電源周波数を5.5~6.5MHzに設定することによって、製造装置を複雑な構成としたり、また他の構成を付加したりすることなく、従来のタイプの成膜装置であっても、電源周波数5.5~6.5MHzとすれば、最も品質を高くでき、生産効率も良好とすることができる。
 内部電極9の先端(9a)はプラスチック容器8の内部に配置される。ここで、プラスチック容器8の高さをhとし、容器の底を基準点としたとき、内部電極(原料ガス供給管)9の先端が、図1に示すように、1/2・h以上2/3・h以下の範囲の位置にあるように、挿入されていることが好ましい。内部電極(原料ガス供給管)9の先端が1/2・h未満の位置にあると容器の底及び胴部下部分に膜が必要以上に付きやすく、呈色が目立つ場合があり、さらにガス導入管外表面へのカーボンダストの堆積が顕著になる。一方、2/3・hを超える位置にあると、プラズマの着火が不良となる場合がある。
 次に、プラズマ発生用電源27の出力を停止し、プラズマを消滅させてDLC膜の成膜を終了させる。ほぼ同時に真空バルブ12を閉じて原料ガスの供給を停止する。
 次に、成膜ユニット7内及びプラスチック容器8内に残存した炭化水素ガスを除くために真空ポンプ23によって排気する。その後、真空バルブ22を閉じ、排気を終了させる。このときの成膜ユニット7内の圧力は1~100Paである。この後、真空バルブ18を開く。これにより、成膜ユニット7が大気開放される。
 いずれも成膜時間は数秒程度と短いものとなる。DLC膜の膜厚は5~100nmとなるように形成する。
 以下、実施例を示しながら本発明についてさらに詳細に説明するが、本発明は実施例に限定して解釈されない。
 図1の成膜装置を使用して、500mlPETボトル(樹脂量29g、高さ204mm)及び280mlPETボトル(樹脂量26g、高さ132mm)の内面にDLC膜を成膜した。原料ガスはアセチレンとし、ガス流量は80sccm(500mlPETボトル)、90sccm(280mlPETボトル)、成膜時間は2秒とした。プラズマ発生用電源としては、2.50~13.56MHzの範囲で周波数可変の電源(2.5MHz~7MHz:ノダRFテクノロジーズ社製、型番NR1.5F5-7M-01)(13.56MHz:日本無線社製、型番NAH-1013-2Y)を用いた。2.50MHz~13.56MHzまでの範囲で各種周波数にて成膜を行なった。いずれのサンプルもDLC膜の膜厚は、ほぼ20nmであった。
(酸素バリア性)
 表1に500mlPETボトルにDLC膜を成膜したときの酸素バリア性を示した。この容器の酸素透過度は、Modern Control社製 Oxtran 2/20を用いて、23℃、90%RHの条件にて測定し、窒素ガス置換開始から72時間後の測定値(表1中、OTR値)を記載した。DLC膜の膜厚は、KLA tencor社製、Alpha-step iQを用いて測定したが、また、表2に280mlPETボトルにDLC膜を成膜したときの酸素バリア性を示した。表1及び表2において、BIF値とは、未コートボトルを基準として、酸素バリア性が何倍向上したかを示す値である。また、図3に表1と表2の結果をプロットした。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(呈色性)
 プラスチック容器の色の評価は着色度b*値を指標とした。b*値は、JISK 7105-1981の色差であり、三刺激値X,Y,Zから式1で求まる。
Figure JPOXMLDOC01-appb-M000003
 日立製U-3500形自記分光光度計に同社製60Φ積分球付属装置(赤外可視近赤外用)を取り付けたものを用いた。検知器としては、超高感度光電子増倍管(R928:紫外可視用)と冷却型PbS(近赤外域用)を用いている。測定波長は、240nmから840nmの範囲で透過率を測定した。PET容器の透過率を測定することにより、DLC膜のみの透過率測定を算出することができるが、本実施例のb*値は、PET容器の吸収率も含めた形で算出したものをそのまま示している。なお、本発明におけるb*と目視による相関はおおよそ表3に示す通りである。未処理のPET容器のb*値は0.6~1.0の範囲内にある。また、b*値が2以下は無色透明であると言える。
Figure JPOXMLDOC01-appb-T000004
 表4に500mlPETボトルにDLC膜を成膜したときの呈色性について評価した結果を示した。表5に280mlPETボトルにDLC膜を成膜したときの呈色性について評価した結果を示した。図4に表4の結果をプロットした。図5に表5の結果をプロットした。
 表4において500mlPETボトルの「ばらつき」は、次のとおりとした。肩部*b値と胴部*b値との差の絶対値をxとしたとき、
評価(ばらつき)×:x≧3
評価(ばらつき)△:0.5≦x<3
評価(ばらつき)○:x<0.5
表4において500mlPETボトルの「平均」は、平均着色度であり、次のとおりとした。肩部*b値と胴部*b値との平均値をxとしたとき、
評価(平均)×:x≧3
評価(平均)△:2.5≦x<3
評価(平均)○:x<2.5
 表5において280mlPETボトルの「ばらつき」は、次のとおりとした。肩部*b値と胴部*b値との差の絶対値をxとしたとき、
評価(ばらつき)×:x≧1
評価(ばらつき)△:0.5≦x<1
評価(ばらつき)○:x<0.5
表5において280mlPETボトルの「平均」は、平均着色度であり、次のとおりとした。肩部*b値と胴部*b値との平均値をxとしたとき、
評価(平均)×:x≧4
評価(平均)△:3.5≦x<4
評価(平均)○:x<3.5
 ばらつきと+平均の各評価について、次のとおりの組み合わせの基準(各評価は順不同)に従って、総合評価を下した。
総合評価×:×+×、×+△(外観上問題あり)
総合評価△:×+○(従来品レベルである)
総合評価○:○+△(従来品の改良レベルである)
総合評価◎:○+○(呈色性が特に優れる)
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(密着性)
 表6に500mlPETボトルにDLC膜を成膜したときの密着性について評価した結果を示した。評価は、pH9の水酸化ナトリウム水溶液(0.01質量%)を65℃に保持し、容器を浸漬し、浸漬前(0日目)、1日浸漬(1日目)、2日浸漬(2日目)、3日浸漬(3日目)、4日浸漬(4日目)したときの膜の剥離を調べた。
○:剥離なし
△:長さ5mm未満の剥離片があり
×:長さ5mm以上の剥離片があり
 表7に280mlPETボトルにDLC膜を成膜したときの密着性について評価した結果を示した。評価は、pH9の水酸化ナトリウム水溶液(0.01質量%)を80℃に保持し、容器を浸漬し、浸漬前(0日目)、1日浸漬(1日目)、2日浸漬(2日目)、3日浸漬(3日目)、4日浸漬(4日目)したときの膜の剥離を調べた。
○:剥離なし
△:長さ5mm未満の剥離片があり
×:長さ5mm以上の剥離片があり
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
(ダストの発生の評価)
 表8に500mlPETボトルにDLC膜を成膜したときのカーボンダストの堆積について評価した。排気室内のほぼ中央部にあたる原料ガス導入管の外表面にシリコンウェハを設置し、成膜を10回行い、図1中、排気室内のFにおけるダストの堆積量(nm)を求めた。堆積量が多いほど、成膜装置の清掃間隔が短くなる。図6に電源周波数とカーボンダストの堆積量との関係を示した。
Figure JPOXMLDOC01-appb-T000009
(原料ガス導入管の質量変化の評価)
 表9に500mlPETボトルにDLC膜を成膜したときの原料ガス導入管の質量変化を示した。ボトルのすぐ下流に位置する原料ガス導入管の外表面に着脱可能なステンレス製の筒状部材を設置し、成膜を100回行い、図1中の場所Eにおける当該部材の質量変化を調べ、評価をした。質量増加が大きいほど、ダスト堆積量が多いことを意味する。脱着時の誤差要因を考慮すると、2.5MHz~7MHzでは、有意な差はないと考えられる。一方、13.56MHzにおいては、有意に質量減少しており、これはプラズマの中心がボトルの口部近傍に存在したため、当該部材をエッチングしたためと考えられる。図7に500mlPETボトルにDLC膜を成膜したときの電源周波数とボトル口部近傍に設置した部材の質量変化との関係を示した。
Figure JPOXMLDOC01-appb-T000010
 表10に280mlPETボトルにDLC膜を成膜したときの原料ガス導入管の質量変化を示した。ボトルのすぐ下流に位置する原料ガス導入管の外表面に着脱可能なステンレス製の筒状部材を設置し、成膜を100回行い、図1中の場所Eにおける当該部材の質量変化を調べ、評価をした。質量増加が大きいほど、ダスト堆積量が多いことを意味する。脱着時の誤差要因を考慮すると、2.5MHz~7MHzでは、有意な差はないと考えられる。一方、13.56MHzにおいては、有意に質量減少しており、これはプラズマの中心がボトルの口部近傍に存在したため、当該部材をエッチングしたためと考えられる。図8に280mlPETボトルにDLC膜を成膜したときの電源周波数とボトル口部近傍に設置した部材の質量変化との関係を示した。
Figure JPOXMLDOC01-appb-T000011
(排気室における成膜時の発光強度の評価)
 表11に500mlPETボトルにDLC膜を成膜したときの、図1中、Dの箇所に設置した光センサの受光強度を示した。なお、当該Dは、ガス導入管中心から10cm離れた排気室外表面ののぞき窓である。受光強度はプラズマの発光強度と関係があり、受光強度が大きいほど、排気室にプラズマが近づいている若しくは排気室にてプラズマが発生している。結果的に受光強度が大きいほど、排気室内のプラズマ分布範囲が広く、かつプラズマ濃度が高いことになるため、排気室内の総ダスト堆積量が大きいことも意味する。同様に、表12に280mlPETボトルにDLC膜を成膜したときの、図1中、Dの箇所に設置した光センサの受光強度を示した。更に、図8に電源周波数と排気室における発光強度との関係を示した。
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
 図8から、電源周波数が大きくなるほど、発光強度が高くなっていることがわかる。つまり、プラズマが容器主軸方向に沿って上方に移動することがわかる。図7から、電源周波数13.56MHzであればボトル口部近傍部分がエッチングされることがわかり、図8の結果と整合性がとれている。図6の結果によれば、排気室におけるダストの堆積量は、電源周波数が大きくなるほど、多くなる傾向が見られる。
 一方、図3によれば、電源周波数が大きくなっても酸素バリア性が傾向を持って変化せずに、5.5~6.5MHzにおいて、特異的に高くなっていることがわかる。これは、容器の容量が異なっても5.5~6.5MHzにおいて、特異的に高くなっていることがわかる。さらに、図4によれば、5.5~6.5MHzにおいて、*b値のばらつきが少なくなり、かつ、*b値の平均値も最少化しており、容器の呈色性が特異的に良好となることがわかる。図5も同様の傾向が有り、容器の容量が異なっても5.5~6.5MHzにおいて、容器の呈色性が特異的に良好となることがわかる。さらに、表6及び表7によれば、電極周波数5.5MHz以上とすることで密着性が良好となる。さらに5.5MHzを下回ると、表6と表7から膜の密着強度が低下することがわかる。これは、周波数の低下に伴いPETボトルの内表面に対するイオン衝撃が高まり、PET高分子鎖に有意なダメージを与える結果と考えられる。一方6.5MHzを上回ると、プラズマの中心位置がボトルの口部側に有意に偏り、バリア性の最適レベルからの低下と呈色のばらつきが生じる。
1 下部外部電極
2 上部外部電極
3 外部電極(成膜ユニット)
4 絶縁部材
5 排気室
6 蓋
7 成膜ユニット
8 プラスチック容器(PETボトル)
9 内部電極(原料ガス供給管)
9a ガス吹き出し口
10,37,38 O-リング
11,14,17,21 配管 
12,18,22,真空バルブ
13 マスフローコントローラー
15 原料ガス発生源
16 原料ガス供給手段
19 リーク源
20 圧力ゲージ
23 真空ポンプ
24 排気ダクト
26 自動整合器(マッチングボックス,M.BOX)
27 プラズマ発生用電源
30 外部電極(成膜ユニット)の内部空間
31 排気室の内部空間
32,32a,32b 開口部
35 プラズマ発生用電力供給手段
100 成膜装置

Claims (7)

  1.  成膜ユニットとなる外部電極にプラスチック容器を収容する工程と、
     前記プラスチック容器の内部に原料ガス供給管となる内部電極を配置する工程と、
     真空ポンプを作動させて前記外部電極の内部のガスを排気する工程と、
     前記プラスチック容器の内部に原料ガスを減圧下で吹き出させる工程と、
     前記外部電極に電力を供給するプラズマ発生用電源の電源周波数を5.5~6.5MHzに設定し、前記原料ガスをプラズマ化して、前記プラスチック容器の内壁面にガスバリア性を有する薄膜を成膜する工程と、
     を有することを特徴とするガスバリア性薄膜コーティングプラスチック容器の製造方法。
  2.  前記プラスチック容器を前記外部電極に収容する工程において、容器の口部を下方に向けた状態で収容することを特徴とする請求項1に記載のガスバリア性薄膜コーティングプラスチック容器の製造方法。
  3.  前記プラスチック容器の内部に原料ガス供給管となる内部電極を配置する工程において、容器の高さをhとし、容器の底を基準点としたとき、前記原料ガス供給管の先端が、1/2・h以上2/3・h以下の範囲の位置にあるように、前記原料ガス供給管が容器の口部から挿入されていることを特徴とする請求項1又は2に記載のガスバリア性薄膜コーティングプラスチック容器の製造方法。
  4.  内部空間が有底円筒形である外部電極を使用することを特徴とする請求項1、2又は3に記載のガスバリア性薄膜コーティングプラスチック容器の製造方法。
  5.  ガスバリア性薄膜として、炭素膜、珪素含有炭素膜又は金属酸化物膜を成膜することを特徴とする請求項1、2、3又は4に記載のガスバリア性薄膜コーティングプラスチック容器の製造方法。
  6.  前記プラスチック容器は、容量が500ml以上の容器であることを特徴とする請求項1、2、3、4又は5に記載のガスバリア性薄膜コーティングプラスチック容器の製造方法。
  7.  前記プラスチック容器がポリエチレンテレフタレート製容器であることを特徴とする請求項1、2、3、4、5又は6に記載のガスバリア性薄膜コーティングプラスチック容器の製造方法。
     
PCT/JP2009/061582 2009-04-13 2009-06-25 ガスバリア性薄膜コーティングプラスチック容器の製造方法 WO2010119578A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2009801586671A CN102395706B (zh) 2009-04-13 2009-06-25 阻气性薄膜涂层塑料容器的制造方法
BRPI0924233A BRPI0924233A2 (pt) 2009-04-13 2009-06-25 método para produzir um recipiente plástico revestido por filme fino de barreira aos gases
SG2011074614A SG175202A1 (en) 2009-04-13 2009-06-25 Method for manufacturing gas barrier thin film-coated plastic container
KR1020117026912A KR101357325B1 (ko) 2009-04-13 2009-06-25 가스 배리어성 박막 코팅 플라스틱 용기의 제조 방법
US13/264,079 US8883257B2 (en) 2009-04-13 2009-06-25 Method for manufacturing gas barrier thin film-coated plastic container
AU2009344573A AU2009344573B2 (en) 2009-04-13 2009-06-25 Method for manufacturing gas barrier thin film-coated plastic container
EP09843356.8A EP2420592B1 (en) 2009-04-13 2009-06-25 Method for manufacturing gas barrier thin film-coated plastic container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009097494A JP4372833B1 (ja) 2009-04-13 2009-04-13 ガスバリア性薄膜コーティングプラスチック容器の製造方法
JP2009-097494 2009-04-13

Publications (1)

Publication Number Publication Date
WO2010119578A1 true WO2010119578A1 (ja) 2010-10-21

Family

ID=41443847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061582 WO2010119578A1 (ja) 2009-04-13 2009-06-25 ガスバリア性薄膜コーティングプラスチック容器の製造方法

Country Status (9)

Country Link
US (1) US8883257B2 (ja)
EP (1) EP2420592B1 (ja)
JP (1) JP4372833B1 (ja)
KR (1) KR101357325B1 (ja)
CN (1) CN102395706B (ja)
BR (1) BRPI0924233A2 (ja)
MY (1) MY153131A (ja)
SG (1) SG175202A1 (ja)
WO (1) WO2010119578A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010000983A1 (de) * 2010-01-18 2011-07-21 Joanneum Research Forschungsges. M.B.H. Plasma- bzw. ionengestützes System zur Herstellung haftfester Beschichtungen auf Fluorpolymeren
JPWO2011152182A1 (ja) * 2010-05-31 2013-07-25 株式会社ジェイテクト 被覆部材の製造方法
JP5643605B2 (ja) * 2010-10-27 2014-12-17 サントリーホールディングス株式会社 測定装置および測定方法
US9404334B2 (en) 2012-08-31 2016-08-02 Baker Hughes Incorporated Downhole elastomeric components including barrier coatings
TWI551712B (zh) 2015-09-02 2016-10-01 財團法人工業技術研究院 容器內部鍍膜裝置及其方法
US10337105B2 (en) * 2016-01-13 2019-07-02 Mks Instruments, Inc. Method and apparatus for valve deposition cleaning and prevention by plasma discharge

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372269B2 (ja) 1988-02-16 1991-11-18 Misuzu Tofu Kk
JP2788412B2 (ja) 1994-08-11 1998-08-20 麒麟麦酒株式会社 炭素膜コーティングプラスチック容器の製造装置および製造方法
JP3072269B2 (ja) * 1997-02-19 2000-07-31 麒麟麦酒株式会社 炭素膜コーティングプラスチック容器の製造装置および製造方法
JP2005281844A (ja) 2004-03-31 2005-10-13 Mitsubishi Heavy Ind Ltd 成膜装置及び方法
JP2008088471A (ja) 2006-09-29 2008-04-17 Mitsubishi Shoji Plast Kk ガスバリア性プラスチック容器の製造装置及びその製造方法
JP2008088472A (ja) 2006-09-29 2008-04-17 Mitsubishi Shoji Plast Kk ガスバリア性プラスチック容器の製造装置及びその製造方法
JP4188315B2 (ja) 2002-05-28 2008-11-26 麒麟麦酒株式会社 Dlc膜コーティングプラスチック容器及びその製造装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995022413A1 (en) * 1994-02-16 1995-08-24 The Coca-Cola Company Hollow containers with inert or impermeable inner surface through plasma-assisted surface reaction or on-surface polymerization
EP1010773A4 (en) 1997-02-19 2004-08-25 Kirin Brewery METHOD AND DEVICE FOR PRODUCING PLASTIC CONTAINER COATED WITH CARBON FILM
JP4420052B2 (ja) * 2007-04-06 2010-02-24 東洋製罐株式会社 蒸着膜を備えたプラスチック成形品の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0372269B2 (ja) 1988-02-16 1991-11-18 Misuzu Tofu Kk
JP2788412B2 (ja) 1994-08-11 1998-08-20 麒麟麦酒株式会社 炭素膜コーティングプラスチック容器の製造装置および製造方法
JP3072269B2 (ja) * 1997-02-19 2000-07-31 麒麟麦酒株式会社 炭素膜コーティングプラスチック容器の製造装置および製造方法
JP4188315B2 (ja) 2002-05-28 2008-11-26 麒麟麦酒株式会社 Dlc膜コーティングプラスチック容器及びその製造装置
JP2005281844A (ja) 2004-03-31 2005-10-13 Mitsubishi Heavy Ind Ltd 成膜装置及び方法
JP2008088471A (ja) 2006-09-29 2008-04-17 Mitsubishi Shoji Plast Kk ガスバリア性プラスチック容器の製造装置及びその製造方法
JP2008088472A (ja) 2006-09-29 2008-04-17 Mitsubishi Shoji Plast Kk ガスバリア性プラスチック容器の製造装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2420592A4 *

Also Published As

Publication number Publication date
SG175202A1 (en) 2011-11-28
EP2420592A4 (en) 2013-09-25
US20120052215A1 (en) 2012-03-01
BRPI0924233A2 (pt) 2016-01-26
KR101357325B1 (ko) 2014-02-03
AU2009344573A1 (en) 2011-11-03
US8883257B2 (en) 2014-11-11
JP4372833B1 (ja) 2009-11-25
CN102395706B (zh) 2013-07-24
EP2420592B1 (en) 2014-10-15
MY153131A (en) 2014-12-31
JP2010248549A (ja) 2010-11-04
CN102395706A (zh) 2012-03-28
EP2420592A1 (en) 2012-02-22
KR20120012467A (ko) 2012-02-09

Similar Documents

Publication Publication Date Title
US7906217B2 (en) Vapor deposited film by plasma CVD method
JP4188315B2 (ja) Dlc膜コーティングプラスチック容器及びその製造装置
JP4515280B2 (ja) ガスバリア薄膜が成膜されたプラスチック容器の製造装置及びその製造方法
JP4566719B2 (ja) 炭素膜コーティングプラスチック容器の製造方法、プラズマcvd成膜装置及びそのプラスチック容器
JP4372833B1 (ja) ガスバリア性薄膜コーティングプラスチック容器の製造方法
JP2006233234A (ja) プラズマcvd法による蒸着膜
JP2008088472A (ja) ガスバリア性プラスチック容器の製造装置及びその製造方法
JP2005089859A (ja) プラズマcvd法による蒸着膜
JP4854983B2 (ja) プラズマcvd成膜装置及びガスバリア性を有するプラスチック容器の製造方法
JP4664658B2 (ja) プラズマcvd成膜装置及びガスバリア性を有するプラスチック容器の製造方法
JP4722667B2 (ja) 反応室外でのプラズマ発生の抑制方法並びにガスバリア性プラスチック容器の製造方法及びその製造装置
JP4593357B2 (ja) 口部着色が低減されたガスバリア性プラスチック容器の製造方法及びその容器
JP4722674B2 (ja) プラズマcvd成膜装置及びガスバリア性プラスチック容器の製造方法
JP5032080B2 (ja) ガスバリア性プラスチック容器の製造装置及びその製造方法
JP2005105294A (ja) Cvd成膜装置及びcvd膜コーティングプラスチック容器の製造方法
JP5610345B2 (ja) ガスバリア性を有するプラスチック容器の製造方法、小型容器用アダプター及び薄膜成膜装置
JP6888455B2 (ja) ガスバリア性プラスチック容器の製造方法
JP4945398B2 (ja) 口部極薄炭素膜コーティングプラスチック容器の製造方法
JP2004218079A (ja) ガスバリア性薄膜コーティングプラスチック容器の製造装置及びその製造方法
JP3979031B2 (ja) ケイ素酸化物被膜
JP4595487B2 (ja) Cvd法によるガスバリア性酸化珪素薄膜の成膜方法
JP2006299332A (ja) プラズマcvd成膜装置及びバリア性プラスチック容器の製造方法
JP2005264175A (ja) 立体容器の製造方法及びプラズマ処理装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158667.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13264079

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009344573

Country of ref document: AU

Date of ref document: 20090625

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117026912

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009843356

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924233

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924233

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111007