WO2010116680A1 - レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手 - Google Patents

レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手 Download PDF

Info

Publication number
WO2010116680A1
WO2010116680A1 PCT/JP2010/002303 JP2010002303W WO2010116680A1 WO 2010116680 A1 WO2010116680 A1 WO 2010116680A1 JP 2010002303 W JP2010002303 W JP 2010002303W WO 2010116680 A1 WO2010116680 A1 WO 2010116680A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
rail
column
head
temperature
Prior art date
Application number
PCT/JP2010/002303
Other languages
English (en)
French (fr)
Inventor
狩峰健一
上田正治
岩野克也
杉山誠司
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to RU2011139538/02A priority Critical patent/RU2485187C2/ru
Priority to US13/138,791 priority patent/US8557064B2/en
Priority to AU2010235826A priority patent/AU2010235826B2/en
Priority to JP2010529185A priority patent/JP4819183B2/ja
Priority to CA2756855A priority patent/CA2756855C/en
Priority to CN201080015514.4A priority patent/CN102365377B/zh
Priority to BRPI1014787-0A priority patent/BRPI1014787B1/pt
Priority to EP10761386.1A priority patent/EP2415885A4/en
Publication of WO2010116680A1 publication Critical patent/WO2010116680A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B29/00Laying, rebuilding, or taking-up tracks; Tools or machines therefor
    • E01B29/42Undetachably joining or fastening track components in or on the track, e.g. by welding, by gluing; Pre-assembling track components by gluing; Sealing joints with filling components
    • E01B29/44Methods for effecting joining of rails in the track, e.g. taking account of ambient temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/04Flash butt welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K23/00Alumino-thermic welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/50Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
    • C21D9/505Cooling thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01BPERMANENT WAY; PERMANENT-WAY TOOLS; MACHINES FOR MAKING RAILWAYS OF ALL KINDS
    • E01B11/00Rail joints
    • E01B11/44Non-dismountable rail joints; Welded joints
    • E01B11/46General methods for making gapless tracks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/26Railway- or like rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D11/00Process control or regulation for heat treatments
    • C21D11/005Process control or regulation for heat treatments for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component

Definitions

  • the present invention relates to a rail welded portion cooling method, a rail welded portion cooling apparatus, and a rail welded joint that improve the fatigue strength of the welded joint as compared with the prior art.
  • the present invention relates to a cooling method and a cooling device for a rail joint immediately after welding.
  • Rail joints are most likely to be damaged among the rails and require maintenance costs.
  • the rail joint is the main source of noise and vibration generated when the train passes. Since speeding up and heavy loading of trains are being promoted in various places, the technology of making rail joints having the above-mentioned problems continuous by welding to make long rails is becoming common.
  • FIG. 1A is a side view of a long rail.
  • Long rails are manufactured by welding at least two rails. For this reason, the welded portion 7 is included in the long rail.
  • a weld bead 8 is present at the weld 7.
  • FIG. 1B is a sectional view taken along line AA shown in FIG. 1A.
  • the rail exists between the head 1 (the upper part of the rail) in contact with the wheels, the foot 3 (the lower part of the rail) provided on the sleepers, and the head 1 and the foot 3. It has a column part 2.
  • the head 1 has a top 4 and the foot has a front surface 5 and a sole 6.
  • Flash butt welding for example, Patent Document 1
  • gas pressure welding for example, Patent Document 2
  • enclosed arc welding for example, Patent Document 3
  • thermite welding for example, Patent Document 4
  • FIGS. 2A to 2C are explanatory diagrams of flash butt welding.
  • flash butt welding as shown in FIGS. 2A to 2C, a voltage is applied to the workpiece 10 placed opposite to each other through the electrode 9 to generate an arc between the end faces, and the end face of the workpiece to be welded. Melt. Then, when the workpiece is sufficiently heated, the material is pressed in the axial direction to join the workpiece.
  • 3A and 3B are explanatory views of thermite welding.
  • 3B is a cross-sectional view taken along line BB shown in FIG. 3A.
  • the material to be welded 10 is provided with a gap of 20 to 30 mm and opposed, and the gap is surrounded by a mold 14.
  • generated by the reaction of aluminum and iron oxide in the crucible 15 is inject
  • FIG. 4A to 4C are explanatory diagrams of gas pressure welding.
  • the gas pressure welding as shown in FIG. 4A, the welded material in the vicinity of the joint surface is heated from the side by the burner 17 in a state where the joint surface is pressurized, and the joint surface is pressure-welded at a high temperature.
  • FIG. 4B the vicinity of the weld is expanded and deformed by pressurization.
  • FIG. 4C the expanded portion is removed by the trimmer 18.
  • FIG. 5A and FIG. 5B are explanatory diagrams of the enclosed arc welding.
  • the workpieces are made to face each other with a clearance of 10 to 20 mm, and the backing metal 19 and the side surface plating 20 are disposed around the apparent area. Then, the welding metal is raised using the welding rod 21 in the meantime.
  • This method is a so-called manual arc welding method.
  • FIGS. 6A and 6B An example of this state is shown in FIGS. 6A and 6B.
  • FIG. 6A is a diagram showing a fatigue crack 22 generated in the horizontal direction in the column portion and a brittle crack 23 resulting therefrom.
  • FIG. 6B is a figure which shows the crack surface of the fatigue crack 22 and the brittle crack 23 which are shown to FIG. 6A.
  • the fatigue crack 22 is generated in the horizontal direction starting from a welding defect near the weld bead 8 near the neutral axis. After the brittle crack 23 caused by the fatigue crack 22 penetrates the column portion in the thickness direction, one crack progresses to the rail head portion side and the other crack progresses to the foot portion side.
  • the starting point of the fatigue crack 22 is not limited to a weld defect, and various factors can be considered.
  • FIG. 7A shows the residual stress distribution in the circumferential direction at the periphery of the rail weld. In FIG. 7A, when the residual stress is greater than 0, it indicates that a tensile residual stress exists, and when the residual stress is less than 0, it indicates that a compressive residual stress exists.
  • FIG. 7A shows that a large tensile residual stress in the rail circumferential direction (that is, the vertical direction) is generated by welding in the vicinity of the column portion of the rail welded portion. Therefore, it is considered that a fatigue crack starting from a weld defect occurs because a repeated load is applied to the vicinity of a column portion of a rail welded portion having a large tensile residual stress due to passage of a train. In order to prevent such fatigue cracks, it is desirable to prevent the weld defect as a starting point and to render it harmless even if a weld defect exists.
  • FIG. 7B shows the relationship between the distance from the welding center (rail length direction) and the residual stress existing in the vertical direction of the rail column. It can be seen from FIG. 7B that there is a large tensile residual stress in a range from the welding center to about 25 mm.
  • a track in a railway has a rail and sleepers that support the rail. When the train passes on the rail, a load distributed from the wheels of many trains is applied to the rail.
  • the cause of the above-mentioned fatigue crack is related to the load state from the wheel on the rail weld.
  • the rail load when the train passes is different between the rail portion directly above the sleepers 24 and the rail portion between the two sleepers 24.
  • a vertical load of a train is directly applied to the rail portion directly above the sleepers 24.
  • FIG. 9A shows a point in time when the wheel 25 passes immediately above the sleeper 24 (welded part) at a position where the position of the sleeper 24 coincides with the welded part.
  • the largest stress is generated in the rail pillar portion 2 having a small cross-sectional area.
  • the stress in this case is a compressive stress, but as described above, a large tensile residual stress exists in the rail column portion 2. Therefore, the rail column part 2 is substantially in a state in which repeated stress acts in a state where it receives tensile stress.
  • FIG. 9B shows a point in time when the wheel 25 passes between the two sleepers 24, 24 (welded part) at a position where the position of the sleeper 24 does not coincide with the welded part.
  • a load that pushes and bends the wheel 25 from above is applied to the rail.
  • a longitudinal compressive stress is generated in the rail head 1
  • a longitudinal tensile stress is generated in the rail foot 3.
  • the bending stress applied to the rail column 2 is neutral. Since the tensile stress of the rail foot 3 is generated every time the wheel 25 passes, the rail foot 3 needs to be considered for the occurrence of fatigue cracks.
  • FIG. 8 shows the residual stress in the longitudinal direction at the periphery of the welded portion by flash butt welding.
  • Patent Documents 5 and 6 in order to prevent damage to the rail column portion, a method of bringing the entire rail welded portion or the head portion and the column portion of the rail welded portion to a high temperature state by welding heat or heating from outside, and then performing accelerated cooling. Disclosure.
  • this technique since the residual stress of the rail welded portion is controlled, the tensile residual stress generated in the vertical direction at the column portion of the rail welded portion can be reduced or changed to a compressive residual stress. For this reason, the fatigue strength of a rail welding part can be improved. Such a technique can reduce the occurrence of fatigue cracks from the rail post.
  • a technique for improving the fatigue strength of the rail welded portion there are a method using shot peening, a method using hammer peening, a grinder process, TIG dressing, and the like as in Patent Document 7, for example.
  • patent document 8 is disclosing the cooling device of a rail welding part. In order to improve the durability of the long rail, it is necessary to suppress the occurrence of fatigue cracks from the column part and the foot part of the welded part and to make the fatigue resistance characteristics of these parts compatible.
  • Non-Patent Document 1 shows that according to this method, the residual stress in the rail longitudinal direction at the sole portion is changed to the tensile residual stress.
  • loads due to bending loads on the soles have increased. Since the foot sole is pulled in the longitudinal direction of the rail by the load due to the bending load, the fatigue strength of the rail sole has an important meaning.
  • the residual stress in the rail longitudinal direction strongly affects the fatigue strength of the rail sole.
  • the residual stress in the rail longitudinal direction of the rail sole is reduced (trying to shift to the tensile residual stress), and thus there is a concern that the fatigue strength may be reduced.
  • damage as shown to FIG. 10A and FIG. 10B may generate
  • the shot peening process which is a conventional technique for improving residual stress by mechanical post-processing (that is, for imparting compressive residual stress)
  • a steel ball having a diameter of several millimeters is hit against the material.
  • Fatigue strength can be improved by plastically deforming the surface layer to cause work hardening and increasing the residual stress.
  • the treatment requires large-scale equipment for steel ball projection, steel ball collection, dust prevention, etc., and its application is limited to large welds.
  • it is disadvantageous in cost because it is necessary to replenish the wear and damage of the projection material.
  • Non-Patent Document 2 shows that wrinkle-like grooves produced by processing are affected depending on processing conditions, and the effect of improving fatigue strength is small.
  • the grinder process can be expected to have a certain effect by reducing the stress concentration by smoothing the weld bead toe.
  • the grinder process can be expected to have a certain effect by reducing the stress concentration by smoothing the weld bead toe.
  • it cuts too much since the thickness of the welded portion is insufficient and the strength is reduced, there is a drawback that it requires skill for processing and requires a long time for work.
  • the TIG dressing can improve fatigue strength by reducing the stress concentration by remelting the toe portion of the weld bead with an arc generated from a tungsten electrode and resolidifying it into a smooth shape.
  • manual welding in high carbon materials such as rails tends to produce a hard and brittle martensite structure, and strict construction management is necessary to prevent this.
  • the rail joint portion (rail welded portion) is most likely to be damaged among the rails and requires maintenance costs.
  • the rail joint is the main source of noise and vibration generated when the train passes. Since speeding up and heavy loading of trains are being promoted in various places, the technology of making rail joints having the above-mentioned problems continuous by welding to make long rails is becoming common.
  • Flash butt welding for example, see Patent Document 1
  • gas pressure welding for example, see Patent Document 2
  • enclose arc welding for example, see Patent Document 3
  • thermite welding for example, see Patent Document 4
  • FIG. 41A shows a state in which a fatigue crack 151 generated in the horizontal direction is generated near the neutral axis of the rail welded portion 150.
  • the brittle crack 152 occurs toward the rail head portion and the rail foot portion.
  • FIG. 41B shows fracture surfaces of the fatigue crack 151 and the brittle crack 152. From FIG.
  • the fatigue crack 151 occurs starting from the vicinity of the neutral axis of the rail welded portion 150, and then the brittle crack 152 penetrates the column portion in the plate thickness direction.
  • the rail upper portion 160 that contacts the wheel is referred to as a “head”
  • the rail lower portion 162 that contacts the sleeper is referred to as a “foot”
  • a portion 161 between the head and the foot is referred to as a “post”. (See FIGS. 27A and 27B).
  • FIG. 42 shows the residual stress distribution in the circumferential direction of the rail welded portion by flash butt welding.
  • the positive direction on the vertical axis represents the tensile residual stress
  • the negative direction on the vertical axis represents the compressive residual stress.
  • FIG. 42 shows that the tensile residual stress of the column part is large.
  • Patent Documents 5 and 6 in order to prevent damage to the rail column portion, a method of bringing the entire rail welded portion or the head portion and the column portion of the rail welded portion to a high temperature state by welding heat or heating from outside, and then performing accelerated cooling. Disclosure. According to this technique, since the residual stress of the rail welded portion is controlled, the tensile residual stress generated in the vertical direction at the column portion of the rail welded portion can be reduced or changed to a compressive residual stress. For this reason, the fatigue strength of a rail welding part can be improved.
  • Patent Document 8 cools the air chamber that cools the top surface of the rail welded portion, the air chamber that cools the head side surface of the rail welded portion, and the abdomen (column portion) and bottom (foot) of the rail welded portion.
  • An apparatus for cooling a rail weld having an air chamber is disclosed.
  • Each air chamber is provided with a plurality of nozzles for discharging compressed air, and a nozzle for temperature detection is provided at the center of the nozzle group in the air chamber for cooling the top of the head.
  • the rail head is worn by contact with the wheels.
  • wear is promoted by relative slip generated between the wheel and the rail.
  • the heat-treated rail which hardened the rail head part is employ
  • the rail head is accelerated and cooled in the temperature range from the austenite temperature range to the completion of pearlite transformation after welding to obtain the same hardness as the base material to be welded.
  • the head and columns of the rail welded part are accelerated to reduce the vertical residual stress in the rail column (that is, the compressive residual stress increases)
  • Non-Patent Document 1 shows that this can suppress the occurrence of fatigue cracks in the column portion.
  • the residual stress in the column part is not greatly reduced even if the head and column part of the rail welded part are accelerated and cooled.
  • JP 56-136292 A JP-A-11-270810 JP-A-6-292968 JP-A-48-95337 JP 59-93837 A JP 59-93838 A JP-A-3-249127 JP-A-60-33313
  • a first object of the present invention is to provide a method for efficiently manufacturing a rail having a fatigue strength of a welded portion which is improved as compared with the conventional art.
  • the second object of the present invention is to ensure sufficient rail head hardness and further reduce the residual stress of the column portion (that is, increase the compressive residual stress). It is providing the cooling method of a rail welding part which can improve the fatigue strength of a part, and the cooling device used for it.
  • a first aspect of the present invention is a rail welding having an Ac1 region heated to a transformation start temperature Ac1 or higher of pearlite to austenite and an Ac3 region heated to a transformation completion temperature Ac3 or higher.
  • a second column cooling step for cooling the column portion cooling region after the entire column portion in the section is transformed into pearlite; a foot cooling step for cooling the foot portion in the rail welded portion; and the rail welded portion
  • a head cooling step for cooling the head in the above, and when the cooling time of the first column cooling step and the second column cooling step is t (minutes), the column cooling region k value obtained by dividing the width L in the width LAc1 the Ac1 region is -0.1t + 0.63 ⁇ k ⁇ -0.1t + 2.33 cooling method of the rail weld which satisfies the formula given by.
  • cooling is performed at a cooling rate exceeding a natural cooling rate and 5 ° C./s or less.
  • the cooling may be performed at a cooling rate that exceeds the natural cooling rate and is equal to or higher than the cooling rate of the feet.
  • cooling is performed at a cooling rate that exceeds the natural cooling rate and is equal to or higher than the cooling rate of the feet. Also good.
  • cooling may be performed at a cooling rate exceeding 5 ° C./s exceeding the natural cooling rate.
  • the cooling step in the austenite temperature region is changed to the first column part cooling previous step, and subsequently to the pearlite.
  • a first column part cooling latter stage step of cooling in a temperature range until the transformation is completed wherein the first column part cooling first stage step exceeds the natural cooling rate and is equal to or higher than the cooling rate of the rail foot part.
  • the cooling is performed at a natural cooling rate or a cooling rate of 2 ° C./s or less, and in the second column cooling step, the natural cooling rate is exceeded. And you may cool with the cooling rate more than the cooling rate of the said rail leg part.
  • the cooling rate of the feet may be a natural cooling rate.
  • the head cooling step at least a part of the temperature until the transformation from the austenite temperature range exceeding A3, Ae, or Acm to pearlite is completed. It may be cooled at a cooling rate exceeding 5 ° C./s exceeding the natural cooling rate in the range.
  • the cooling of the lower corner portion of the jaw portion is performed when the head portion and the column portion are cooled. The speed may be slower than the cooling rate of the column part.
  • a second aspect of the present invention is a rail welded joint cooled using the method for cooling a rail welded portion according to (1) above, wherein the column has a vertical residual stress of 350 MPa or less.
  • a rail welded joint comprising: a portion of the rail foot where the longitudinal residual stress is a compressive stress; and the welded portion in which 95% or more of the metal structure is a pearlite structure.
  • a third aspect of the present invention is a rail welded joint cooled using the method for cooling a rail welded portion described in (8) above, wherein the residual stress in the circumferential direction of the rail cross section is 300 MPa or less.
  • a rail welded joint comprising: the pillar portion; and the head portion having a hardness of Hv320 or more.
  • the position is lower than the position 2Hs / 3 below the upper end of the head side portion.
  • a head cooling unit that accelerates and cools the entire head except for the head region may be provided.
  • the head cooling unit includes: an ejection portion that ejects a cooling fluid toward the head; 2Hs / from the upper end of the head side portion; And 3 a shielding plate that covers the head region below the lower position.
  • fatigue cracks are generated in the welded part by improving the residual stress of the column part of the rail welded part and controlling the residual stress of the sole part in the compression range. It can be made difficult to occur.
  • the cooling rate of the jaw part is made slower than the cooling rate of the column part, thereby It is possible to further reduce the residual stress of the column part while ensuring sufficient hardness of the head part. For this reason, the wearability of a rail head part and the fatigue strength of a rail welding part can be improved.
  • the rail welded joint described in (11) above damage due to metal fatigue can be suppressed even when a heavy-duty train passes on the rail.
  • the rail welded joint described in (12) above damage due to metal fatigue and wear of the rail head can be suppressed even when a heavy-duty train passes on the rail.
  • the head cooling unit accelerates and cools the entire head area excluding the head area below the position 2Hs / 3 below the upper end of the head side part. Therefore, the cooling rate of the jaw portion is relaxed, and the cooling rate of the jaw portion can be made slower than the cooling rate of the column portion. For this reason, it is possible to further reduce the vertical residual stress of the column portion while keeping the hardness of the rail head in contact with the wheel high.
  • FIG. 1B is a cross-sectional view taken along line AA in FIG. 1A. It is the schematic which shows the flushing process of flash butt welding. It is the schematic which shows the upset process of flash butt welding. It is the schematic which shows the trimming process of flash butt welding. It is the schematic for demonstrating thermite welding.
  • FIG. 3B is a cross-sectional view taken along line BB in FIG. 3A. It is the schematic which shows the heating process of gas pressure welding. It is the schematic which shows the pressurization process of gas pressure welding. It is the schematic which shows the trimming process of gas pressure welding. It is the schematic for demonstrating enclosed arc welding. It is sectional drawing for demonstrating enclose arc welding.
  • (First cooling pattern) It is the schematic which shows the temperature history in the case of accelerated cooling of a rail pillar part from the start of austenite decomposition to completion of pearlite transformation.
  • (Second cooling pattern) It is another schematic diagram of the temperature history when the rail column part is accelerated and cooled from the start of austenite decomposition until the completion of pearlite transformation.
  • (Second cooling pattern) It is another schematic diagram of the temperature history when the rail column part is accelerated and cooled from the start of austenite decomposition until the completion of pearlite transformation.
  • (Second cooling pattern) It is the schematic of the temperature history at the time of accelerating cooling the rail pillar part from the start of austenite decomposition to completion of pearlite transformation and further accelerating cooling after completion of pearlite transformation.
  • (Third cooling pattern) It is the schematic of the temperature history at the time of accelerating cooling the rail pillar part and the head from the start of austenite decomposition until the completion of pearlite transformation and further cooling the rail pillar part after completion of the pearlite transformation.
  • (4th cooling pattern) It is the schematic of the temperature history at the time of cooling, and is a figure in the case of providing the gentle cooling area of 2 degrees C / s or less in the pearlite transformation temperature area in the middle of cooling.
  • (4th cooling pattern) It is the schematic of the temperature history at the time of cooling, and is a figure in the case of accelerating cooling the rail column part and the head from the start of austenite decomposition to the completion of pearlite transformation and further accelerating cooling the rail column part after completion of pearlite transformation.
  • (5th cooling pattern) It is the schematic of the temperature distribution of a welding part when a cooling width is narrow. It is the schematic of the temperature distribution of the welding part in case a cooling width is a middle grade. It is the schematic of the temperature distribution of the welding part in case a cooling width is wide.
  • FIG. 27B is a cross-sectional view taken along line X′-X ′ of FIG. 27A. It is a fragmentary sectional view of a rail head. It is the schematic of the cooling device of the rail welding part which concerns on one Embodiment of this invention. It is a top view of the head cooling unit which accelerates and cools the head of a rail welding part. It is a side view of the same head cooling unit.
  • FIG. 30B is a cross-sectional view taken along the line A′-A ′ of FIG. 30A.
  • FIG. 32 is a cross-sectional view taken along line C′-C ′ of FIG. 31.
  • FIG. 30B is a cross-sectional view taken along the line B′-B ′ of FIG. 30A.
  • the welding method of the rail welded portion is not limited to flash butt welding.
  • flash butt welding will be described in more detail with reference to FIGS. 2A to 2C as an example of the welding method of the rail welded portion.
  • the first step of the flash butt welding method is a step of generating an arc continuously between the end faces shown in FIG. 2A (flushing step). In this step, an arc is generated between the end faces of the material to be welded by the voltage applied via the electrode 9. The portion where the arc is generated is melted locally, and a part of the melted metal is released to the outside as a sputter, and the rest remains on the end face.
  • a dent called a crater occurs in the part melted by the arc.
  • the material to be welded is gradually brought closer, and arcs are successively generated at new contact portions, and the material is gradually shortened by repeated local melting. In this process, the moving speed of the material to be welded is adjusted so that the material interval is kept substantially constant.
  • a process may be employed in which the material end face is intentionally brought into contact and the temperature of the base material to be welded is increased by a large current by direct energization.
  • the purpose is to smoothen the temperature distribution in the vicinity of the end face and proceed to the upset process more efficiently.
  • This process is called a “preheating process”, and usually a contact energization of about 2 to 5 seconds and a non-contact and rest period of about 1 second are repeated several times.
  • the weld bead 11 is hot sheared and removed by the trimmer 12 during a high temperature period immediately after welding (trimming process). After trimming, a thin weld bead with a height of several mm and a width of 10 to 30 mm remains around the weld.
  • the thin weld bead remaining after trimming is smoothed and polished with a grinder on the rail head that comes into contact with the wheels.
  • the rail bead and foot weld beads have different treatment methods depending on the railway company, such as complete smoothing by grinder polishing, thinning by grinder polishing, no maintenance.
  • Rail steel is hypoeutectoid steel containing 0.5 to 0.8% by mass of carbon, or eutectoid carbon containing about 0.8% by mass of carbon, as defined in JIS-E1101 and JIS-E1120. Steel is generally used. Recently, rail steels with a hypereutectoid composition containing more than 0.8% by mass of carbon with improved wear resistance have been spreading for heavy-duty cargo lines in overseas mining railways.
  • FIG. 11 is an equilibrium diagram of carbon steel showing the carbon content on the horizontal axis.
  • the carbon content of the rail steel is generally in the range of 0.4 to 1.2% by mass.
  • Rail steel contains Si and Mn in addition to carbon, and in some cases contains reinforcing elements such as Cr. Strictly speaking, the equilibrium diagram changes due to the influence of these elements other than carbon, but the change is negligible in the range of the content (of elements other than carbon) in the rail steel.
  • the hypoeutectoid composition steel has a metal structure mainly composed of pearlite and partially containing ferrite at temperatures below the A1 point, and has a metal structure in which ferrite and austenite are mixed at temperatures from the A1 to A3 points. At a temperature of A3 point or higher, it has an austenite structure.
  • a eutectoid composition steel In the case of a eutectoid composition steel, it has a pearlite structure at a temperature of A1 point or lower, and has an austenite structure at a temperature of Ae point or higher.
  • a steel with a hypereutectoid composition has a metal structure mainly containing pearlite and partially containing cementite at temperatures below the A1 point, and has a metal structure in which ferrite and cementite are mixed at temperatures between the A1 and Acm points. However, it has an austenite structure at temperatures above the Acm point.
  • All the steels having the above composition have a two-phase structure of an austenite phase and a liquid phase at a temperature higher than the higher solidus temperature Ts point, and a liquid phase structure at a temperature higher than the liquidus temperature TL point.
  • the temperature at the weld interface reaches the TL point.
  • it has a low temperature, so that it goes away from a welding interface.
  • the pearlite structure fraction reaches almost 100%.
  • the “accelerated cooling” refers to forcibly cooling the object to be cooled at a cooling rate faster than the natural cooling rate by ejecting a cooling fluid onto the object to be cooled.
  • FIG. 12 is a schematic view showing a structural change accompanying heating / cooling of carbon steel.
  • the actual tissue change in the heating process starts at a temperature higher than the equilibrium transformation temperature depending on the heating rate.
  • the actual structural change in the cooling process starts at a temperature lower than the equilibrium transformation temperature depending on the cooling rate. For this reason, an overheating state occurs in the heating process, and an overcooling state occurs in the cooling process.
  • the transformation temperature in the heating process is distinguished by attaching “c” to the equilibrium transformation temperature such as A1 or A3
  • the transformation temperature in the cooling process is distinguished by attaching “r” to the equilibrium transformation temperature such as A1 or A3.
  • the starting point of the pearlite to austenite transformation in the heating process is called Ac1
  • the temperature at which it completely transforms to austenite is called Ac3
  • the starting point of the austenite to ferrite transformation in the cooling process is Ar3
  • austenite is referred to as Ar1.
  • the starting point of the pearlite ⁇ austenite transformation in the heating process is called Ac1
  • the temperature at which it completely transforms to austenite is called Accm
  • the starting point of the austenite ⁇ cementite transformation in the cooling process is Arcm
  • the temperature at which austenite disappears is called Ar1.
  • the starting point of the pearlite ⁇ austenite transformation in the heating process is called Ac1
  • the temperature at which it completely transforms to austenite is called Ace
  • the starting point of the austenite ⁇ pearlite transformation in the cooling process is Are
  • austenite is The temperature at which it disappears.
  • the point where the A3 line and the Acm line gather is referred to as an Ae point.
  • FIG. 13A is a CCT diagram of hypoeutectoid steel.
  • pro-eutectoid ferrite precipitates at the temperature at the intersection of the Fs line and the curve (0).
  • the pearlite transformation starts at the temperature of the intersection of the Ps line and the curve (0).
  • the pearlite transformation is completed at the temperature at the intersection of the Pf line and the curve (0).
  • the metal structure becomes a ferrite pearlite structure containing a small amount of grain boundary ferrite.
  • the metal structure is a pearlite structure.
  • a martensitic transformation occurs between the temperature C and the temperature D.
  • the metal structure is a structure in which pearlite, bainite, and martensite are mixed.
  • the curve (5) When the cooling rate is further increased and cooling as shown by the curve (5) is performed, the curve (5) does not cross the Ps line, and is supercooled to the Ms point with the austenite structure, and then martensitic transformation is performed. Wake up. Since the martensitic structure of high carbon steel is extremely hard and brittle, it is preferable to avoid rapid cooling beyond the cooling curve (2) in rail steel welding.
  • FIG. 13B is a CCT diagram of eutectoid steel.
  • proeutectoid ferrite does not precipitate during slow cooling unlike hypoeutectoid steel.
  • FIG. 13C is a CCT diagram of hypereutectoid steel.
  • proeutectoid cementite precipitates during slow cooling, unlike hypoeutectoid steel where proeutectoid ferrite precipitates during slow cooling.
  • the ⁇ s line indicates the first precipitation line of cementite.
  • FIG. 14 schematically shows the temperature distribution in the rail axis direction at the completion of rail welding, the metal structure (high temperature structure) at the completion of rail welding, the metal structure after cooling, and the hardness after cooling.
  • the left end of FIG. 14 is a rail base material that is not affected by heat, and the right end indicates the welding center.
  • the temperature at the welding center (right end in FIG. 14) exceeds the solidus temperature Ts, and a decarburized portion is generated at the rail welding center.
  • the decarburization part remains thin even after the upset process. Since this part is more prone to proeutectoid ferrite than the surroundings during cooling, the hardness after cooling decreases.
  • the first region in the vicinity of the weld center that has been heated beyond Ac3, Ace, or Accm and transformed into a complete austenite phase undergoes pearlite transformation during subsequent cooling, and a uniform hardness is obtained after cooling.
  • a second region whose temperature is Ac1 or higher but does not exceed Ac3, Ace, or Accm.
  • an austenite phase and an untransformed ferrite phase or cementite phase are mixed at the time of heating.
  • the portion transformed into austenite is transformed into pearlite by subsequent cooling, but the untransformed ferrite phase and the undissolved spheroidized cementite remain at room temperature.
  • These structures have lower hardness than normal pearlite transformed from the austenite phase. Since the fraction of the untransformed phase increases as the distance from the welding center increases, the hardness of the second region decreases.
  • the macro structure of the vertical longitudinal section of the weld zone is the same as the base material in the spheroidized region from 500 ° C to Ac1, but the region above Ac1, Ac3, Ace, and Accm is the mixed phase region of austenite, ferrite, and cementite. Therefore, it becomes fine and can be clearly discriminated by nitrate alcohol.
  • the first region heated to Ac3, Ace, Accm or more has a tendency to become grainy due to high-temperature heating, but presents a structure close to the base material with the naked eye.
  • SEM scanning electron microscope
  • the distance that the work piece is heated to Ac1 or more in the rail welding varies somewhat depending on the welding method, welding conditions, and the part of the rail.
  • the rail column portion of flash butt welding was in the range of 10 to 50 mm depending on the welding conditions.
  • the distance heated to Ac3, Ae3 or Accm or more was 5 to 40 mm.
  • the electrode 9 for power supply (see FIG. 2A) is water-cooled in order to suppress wear due to melting or the like. For this reason, the rail material is cooled from the water-cooled electrode 9, and the temperature in the vicinity of the electrode 9 is about 300 ° C. even at the end of welding.
  • the mounting position of the electrode 9 on the rail is usually about 100 mm away from the weld end face. Therefore, when the welding is completed, a temperature difference of about 1000 ° C. occurs between the electrode 9 and the end face distance of about 100 mm.
  • 15A to 15D show the temperature distribution in the column portion of the rail welded portion. Curve XX0 in FIG. 15A shows the temperature distribution immediately after welding. FIG. 15A shows that a steep temperature gradient is generated in the rail material.
  • the rail end face is melted and welded by pouring high-temperature molten steel, so that a strong temperature distribution is generated in the longitudinal direction of the rail due to molten steel pouring.
  • the vicinity of the end face of the rail to be welded is heated to around 1000 ° C., and a temperature distribution is generated in the rail longitudinal direction as in the above welding method.
  • the weld metal is piled up by manual welding sequentially from the bottom of the rail over an hour of work time.
  • the temperature distribution in the longitudinal direction of the rail is generated in the same manner as the above welding method, but the temperature distribution in the vertical direction is slightly different from other welding methods, and the control cooling method of the present invention is not necessarily effective for this welding method. I can not say.
  • the generation of residual stress in the vertical direction (circumferential direction) in the rail column is most noticeable in flash butt welding with the steepest temperature gradient.
  • the temperature distribution is gradually reduced, that is, the residual stress is relaxed.
  • the present invention is effective for any of these welding methods.
  • Residual stress remains as internal stress because the components in the structure constrain shrinkage strain to each other when there is non-uniformity of thermal shrinkage stress due to temperature nonuniformity in the structure. As a result, it occurs.
  • the yield point is low and plastic deformation easily occurs. Therefore, no restraining force is generated between the constituent members, and the residual stress is small.
  • the yield point is known to increase with decreasing temperature, and the occurrence of residual stress increases at low temperatures.
  • FIG. 15B shows the temperature distribution and shrinkage stress at a certain point in the cooling process in the column of the weld.
  • a solid line XX1 indicates the temperature distribution at that time. Due to the difference between the temperature T1 at the center of the weld and the ambient temperature, shrinkage stress is generated in the weld. Since the stress is once released in the transformation temperature range, the stress is small in that temperature range, and it is considered that residual stress is generated in earnest after T1 is cooled to the transformation completion temperature Ar1.
  • FIG. 15C shows the temperature distribution at a certain point in the natural cooling process and the accelerated cooling process in the column part of the welded part.
  • a curve YY2 shown by a broken line shows a temperature distribution when the high temperature region near the weld center is accelerated and cooled.
  • a curved line XX2 indicated by a solid line shows a temperature distribution when the high temperature region near the weld center is naturally cooled.
  • FIG. 15D is a diagram showing a temperature distribution at the time when the temperature of the welding center is slightly higher than Ar1 in the natural cooling process and the accelerated cooling process.
  • a curve XX3 indicated by a solid line shows a temperature distribution in the case of natural cooling.
  • a curved line YY3 indicated by a broken line shows a temperature distribution when a wide area near the center of the weld is accelerated and cooled, and a curved line ZZ3 shown by a broken line shows a temperature distribution when the narrow area near the center of the weld is accelerated and cooled. .
  • the time to reach this temperature is shorter when the weld center is accelerated and cooled.
  • a difference in temperature distribution in a certain region near the welding center for example, a range (LAc1) in which the maximum heating temperature is equal to or higher than Ac1 in the temperature distribution XX0 immediately after welding, and a difference in residual stress based thereon will be described below.
  • LAc1 range in which the maximum heating temperature is equal to or higher than Ac1 in the temperature distribution XX0 immediately after welding
  • a difference in residual stress based thereon will be described below.
  • the difference between the maximum temperature and the minimum temperature in the range of LAc1 is smaller than in the case of natural cooling.
  • the generation of residual stress based on the temperature difference within this range is reduced.
  • the shrinkage constraint due to the low temperature part away from the welded part is dispersed over a wide range of the welded part, so that the occurrence of residual stress is reduced.
  • the effect of reducing the residual stress can be obtained by reducing the difference between the maximum temperature and the minimum temperature within a certain range of the welded portion when a certain time has elapsed after welding.
  • the temperature distribution changes, and in some cases, the temperature may be a concave temperature distribution with a low temperature at the center as shown by a curve ZZ3 in FIG. 15D. The same effect can be obtained if the difference from the temperature is reduced.
  • the temperature difference between the maximum temperature and the minimum temperature in the region when a certain time has elapsed after welding is within 50 ° C.
  • the effect of reducing the residual stress in the column was confirmed.
  • the temperature distribution is affected by the cooling time and the cooling rate. Since rail steel has a high carbon composition, it has high hardenability, and when accelerated cooling is performed from the austenite region, consideration must be given to the variation formula. When the cooling rate is too high, it does not pass through the austenite ⁇ pearlite transformation region shown in FIGS. 13A to 13C, but passes through the supercooled austenite region on the short side. For this reason, a hard and brittle martensite structure is generated, and the welded portion becomes brittle. Therefore, in the present invention, in order to prevent embrittlement of the rail steel, the cooling rate is regulated to a maximum of 5 ° C./s. According to the experiments by the present inventors, the cooling time and the cooling width are the main factors for the residual stress in the range of the cooling rate in which martensite does not occur. An appropriate range of the cooling time and the cooling width will be described later.
  • the effect of reducing the residual stress by flattening the temperature distribution by accelerating cooling near the weld center is considered to be most effective when the flattened temperature distribution is obtained near Ar1. It is effective even at temperatures above or below. However, even if a flat temperature distribution is obtained in a state where the center temperature of the welded portion is below 200 ° C., the residual stress has already been greatly generated and the effect is small.
  • FIG. 16A schematically shows the temperature distribution of the rail head portion, the column portion, and the foot portion in the welded portion when the rail column portion is cooled over a wide range.
  • the temperature distribution in the longitudinal direction BB ′ in the central part of the rail column part only decreases the temperature as a whole, and it cannot be expected to reduce the stress by flattening the temperature distribution in the central part.
  • the temperature distribution diagram of the welding center as the cooling time becomes longer, the column part relatively lower in temperature than the head and foot, so that the contraction stress in the longitudinal direction of the head and foot Restrained by the cooled column, tensile stress is generated in the longitudinal direction, particularly in the sole.
  • Tension of the residual stress in the longitudinal direction of the sole portion is not preferable because there is a concern that the bending fatigue strength is lowered.
  • the column portion is compressed in the longitudinal direction and the residual stress in the vertical direction (circumferential direction) is relieved, the fatigue strength is improved only in the column portion.
  • the influence of the cooling width varies depending on the cooling time. The appropriate conditions will be described later.
  • FIG. 16B shows a temperature distribution when the rail sole is excessively cooled.
  • the contraction stress in the longitudinal direction of the rail column portion is constrained by the foot portion where the temperature is further lowered.
  • a tensile stress in the longitudinal direction is generated in the column part
  • a tensile stress corresponding to the Poisson's ratio is also generated in the vertical direction (circumferential direction)
  • the vertical stress in the column part is changed to the tensile side. It becomes. For this reason, it is desirable to keep the temperature higher than that of the rail column when the rail foot is accelerated and cooled for the purpose of increasing the strength.
  • the cooling device for the welded portion is not particularly limited as long as it can appropriately cool the rail portion to be cooled.
  • the cooling capacity varies depending on the cooling medium, the type of the cooling medium is not particularly limited as long as the cooling rate defined in the present invention can be obtained.
  • a heat-treated rail having a high hardness is manufactured by lowering the transformation temperature by accelerated cooling from a high temperature austenite state performed in the rail manufacturing process.
  • the hardness of the austenitic region near the weld center is determined according to the cooling rate after welding. For this reason, the hardness of the welded portion is different from the hardness of the portion of the heat-treated rail where the welding heat is not affected.
  • the cooling rate in the pearlite transformation temperature region in natural cooling after welding by flash butt welding is usually 1 ° C./s or less, the hardness of the welded portion is often lower than that of the heat-treated rail. For this reason, in the welding of heat-treated rails, it is desirable that the rail head is accelerated and cooled in the temperature range from the austenite region to the completion of pearlite transformation after welding to obtain the same hardness as the base material. In welding methods other than flash butt welding, the cooling rate is even slower, so the hardness of the welded portion further decreases. In order to obtain a weld hardness similar to that of the base material by welding of the heat-treated rail, it is desirable to accelerate and cool the rail head from the austenite decomposition start temperature to the completion of pearlite transformation after welding.
  • the spheroidized cementite region or ferrite single-phase region in the portion heated to a temperature range of 500 ° C. or higher and Ac3, Ace, or Accm by welding does not harden even when accelerated cooling is performed. Therefore, the portion where the hardness can be adjusted by performing accelerated cooling is a region heated to the austenite single phase region in the vicinity of the welding center.
  • FIG. 17 shows a first cooling pattern for accelerating cooling of the rail column after the rail column completes the pearlite transformation.
  • the cooling rate of the column part needs to be higher than the natural cooling rate, and the faster the cooling rate, the easier the flattening of the temperature distribution at the weld center and the greater the effect of reducing the residual stress.
  • FIG. 18A, FIG. 18B, and FIG. 18C show a second cooling pattern in which accelerated cooling is started from a state where the temperature of the column portion of the rail welded portion is in the austenite temperature range.
  • FIG. 18A shows an example in which the temperature of the column portion is cooled from the austenite region until the pearlite transformation is completed.
  • Increase the fatigue strength by increasing the strength by flattening the temperature distribution in the vicinity of the weld center in advance and accelerating cooling of the weld column before reaching the pearlite transformation temperature where the occurrence of residual stress becomes significant. Can do.
  • it is necessary to start cooling from the austenite temperature range.
  • the hardness of a cooling part rises notably.
  • FIG. 18B is an example in which the temperature of the column portion of the rail welded portion starts accelerated cooling from the austenite temperature range and is cooled to the middle of the pearlite transformation range.
  • the fatigue distribution due to the effect of increasing the strength by flattening the temperature distribution in the vicinity of the weld center in advance and accelerating cooling of the welded column before reaching the pearlite transformation temperature where the occurrence of residual stress becomes significant. Strength can be increased.
  • the allowance for increasing the hardness is smaller than that shown in FIG. 18A.
  • FIG. 18C is an example in which the accelerated cooling starts from the austenite temperature range when the temperature of the column portion of the rail welded portion is reached, and the cooling is stopped before entering the pearlite transformation range.
  • the fatigue strength can be increased by flattening the temperature distribution in the vicinity of the weld center in advance before reaching the pearlite transformation temperature at which the occurrence of residual stress becomes significant.
  • the cooling rate cannot be achieved by a natural cooling rate. Conversely, when the cooling rate is too fast, the columnar structure does not undergo pearlite transformation and bainite or martensite transformation occurs at a lower temperature. The martensitic structure of high carbon steel is extremely hard and brittle and must be avoided. In addition, the strength of the bainite structure varies depending on the transformation temperature, and the segregated portion of the alloy component has a risk that the transformation is further delayed and the martensite structure is mixed, which is not preferable. In order to prevent structures other than these pearlites, the cooling rate needs to be 5 ° C./s or less.
  • FIG. 19 shows a third cooling pattern in which the column portion of the rail welded portion starts accelerated cooling from the austenite temperature range, and the column portion is accelerated and cooled even after the column portion completes the pearlite transformation.
  • This method increases the strength of the column by flattening the temperature distribution in the vicinity of the weld center in advance and accelerating cooling of the welded column before reaching the pearlite transformation temperature at which the occurrence of residual stress becomes significant.
  • the fatigue strength can be further increased by further cooling the column portion after the effect and the column portion has completed the pearlite transformation. In order to obtain these effects, it is necessary to start cooling at least from the austenite temperature range. At the end of cooling from the austenite temperature range, it is desirable to cool at least 50 ° C.
  • Cooling from the austenite region may be performed until after completion of pearlite transformation, and then cooling after completion of pearlite may be continuously performed.
  • the cooling rate from the austenite region to the completion of the pearlite transformation needs to be higher than the natural cooling rate, but is preferably 5 ° C./s or less in order to avoid martensite structure and bainite structure.
  • the cooling rate of the column after completing the pearlite transformation is higher than the natural cooling rate.
  • the cooling rate in the pearlite transformation region needs to be 5 ° C./s or less.
  • a cooling rate is sufficiently slow in the pearlite transformation temperature range, for example, a natural cooling rate or an accelerated cooling of 2 ° C./s or less is provided, and the completion of the pearlite transformation is awaited. The method is also effective. Regardless of the cooling rate in the temperature range other than the pearlite transformation temperature range, by providing this sufficiently slow cooling period in the pearlite transformation temperature range, the pearlite transformation is completed, and the formation of martensite can be completely suppressed.
  • the cooling period of the weld zone is divided into a first stage, a middle stage, and a second stage, the middle period is set to a part of the pearlite transformation temperature range of 650 ° C to 600 ° C, and the natural cooling rate or 2 ° C / This is a method of setting a slow cooling rate of s or less. In order to suppress the martensite structure, it is desirable that the middle cooling period be 20 seconds or longer.
  • FIG. 20A and 20B show a fourth cooling pattern as an example.
  • FIG. 20A shows that the temperature of the column part of the rail welded portion is accelerated from the austenite temperature range to the middle of the pearlite transformation temperature range by the cooling in the previous stage, and then the natural cooling rate or a slow cooling rate of 2 ° C./s or less as the cooling in the middle stage.
  • This is an example in which the pearlite transformation of the column part is completed, and then the column part is cooled at a cooling rate higher than the natural cooling rate by subsequent cooling.
  • This method has an effect of increasing the strength of the column part because the cooling temperature section in the previous stage includes a part of the pearlite transformation temperature range. The faster the cooling rate of the post column after completion of the pearlite transformation, the greater the effect of reducing the residual stress.
  • FIG. 20B shows the natural cooling rate until the column temperature of the rail welded portion starts accelerated cooling from the austenite temperature range and switches to intermediate cooling in the austenite temperature range, and completes pearlite transformation from the austenite temperature range as intermediate cooling.
  • the cooling is performed slowly at a cooling rate of 2 ° C./s or less, and then the column portion is accelerated and cooled as subsequent cooling. The faster the cooling rate of the column portion after completing the pearlite transformation, the greater the effect of reducing the residual stress.
  • the pillar part contracts with a delay, and the shrinkage of the pillar part is restrained by the foot part, and the tensile residual stress in the longitudinal direction As a result, the tensile stress corresponding to the Poisson's ratio is generated in the vertical direction (circumferential direction), which is not preferable.
  • the residual stress in the vertical direction (circumferential direction) of the rail column portion can be further reduced, and higher fatigue strength can be obtained by increasing the strength of the column portion.
  • FIG. 21 shows a fifth cooling pattern in which the temperature of the rail head portion and the column portion starts accelerated cooling from the austenite temperature range, and further, after the column portion completes the pearlite transformation, the column portion is further accelerated and cooled.
  • accelerated cooling of the rail head In order to harden the rail head and column, accelerated cooling of the rail head must be started from the austenite temperature range exceeding A3, Ae, or Acm, and at least a part of the temperature range until the pearlite transformation is completed. Need to be cooled. At the end of cooling from the austenite temperature range, it is desirable to cool at least 50 ° C. from the start of cooling in order to achieve a flat temperature distribution. Further, in order to increase the hardness, it is necessary to cool to Ar3 point, Ae point, Acm point or less where the metallurgical driving force of pearlite transformation acts, and in order to obtain more sufficient hardness, Ar1 completes pearlite transformation. It is necessary to cool to the following.
  • Cooling from the austenite region may be performed until after completion of pearlite transformation, and then cooling after completion of pearlite may be continuously performed, but may be interrupted in the middle.
  • the cooling rate of the head and column from the austenite region must be higher than the natural cooling rate and cannot be hardened. On the other hand, in order to avoid martensite structure and bainite structure, it should be 5 ° C / s or less. is required. In the heat-treated rail in which the rail head is hardened by this method, it is possible to reduce the residual stress in the vertical direction (circumferential direction) of the rail column portion and to suppress partial uneven wear of the welded portion.
  • the vertical axis represents temperature
  • the horizontal axis represents the dimensionless number obtained by dividing the distance from the welding center by the distance LAc1 at which the material is heated to Ac1 or more.
  • the Ac1 temperature of this material is 730 ° C.
  • the width heated to Ac1 or higher at the time of welding is 20 mm on one side from the welding center, but the total width extending from the welding center to both sides is 40 mm.
  • 22A to 22C show natural cooling for 1 minute after welding, and then cooling only the rail column portion with air at a cooling rate of 2 ° C./s, immediately after welding, 1 minute after welding, 3 minutes after welding, after welding 9 Shows the state of the minute.
  • the solid line shows the state of natural cooling of the column part
  • the dotted line shows the temperature of the state of accelerated cooling of the column part.
  • the foot is naturally cooled, and the temperature distribution of the foot corresponds to a solid line.
  • FIG. 22A shows a temperature distribution when k is 0.1, which is a case where the cooling range L of the rail column is extremely narrow.
  • the cooling width is 2 mm on one side from the welding center, and the total cooling width is 4 mm when viewed from the whole welded portion.
  • the width (LAc1) at which the rail column part is equal to or greater than Ac1 is 40 mm, and k is 0.1 when the ratio to this and the cooling range L is k.
  • the temperature distribution of the column part is such that only the temperature at the center of the weld decreases, and the region where the temperature at the center of the weld, that is, the column part becomes Ac1 or higher (the horizontal axis in the figure,
  • the difference between the maximum temperature and the minimum temperature in the range of 0 to 0.5 times LAc1) exceeds 50 ° C., and the residual stress in the vertical direction (circumferential direction) of the column part is not reduced.
  • FIG. 22B shows the temperature distribution when k is 1 when the cooling range L of the rail column is medium.
  • the cooling width is 20 mm on one side from the welding center, and the total cooling width is 40 mm.
  • the ratio (k) to the total width of 40 mm at which the rail column portion is Ac1 or more is 1.
  • the temperature range in the region where the temperature of the welded part is Ac1 or higher (the distance from the welding stop in the figure is 0 to 0.5 times LAc1) is within 50 ° C.
  • the residual stress in the vertical direction (circumferential direction) is reduced.
  • FIG. 22C shows the temperature distribution when k is 2 when the cooling range L of the rail column is extremely wide.
  • the cooling width is 40 mm on one side from the welding center, and the total cooling width is 80 mm.
  • the ratio k to the width 40 mm at which the rail column portion is equal to or greater than Ac1 is 2.
  • the temperature of the column part decreases uniformly over a wide range, so the tendency of the weld center to remain high remains, and the region where the temperature of the weld center part, that is, the column part becomes Ac1 or higher (from the horizontal axis in the figure,
  • the difference between the maximum temperature and the minimum temperature in the range of 0 to 0.5 times the distance of LAc1 exceeds 50 ° C., and the effect of reducing the residual stress in the vertical direction (circumferential direction) is small.
  • the hot part is preferentially cooled, so the temperature of the welded part gradually decreases.
  • the difference between the maximum temperature and the minimum temperature in the region where the temperature of the weld center, that is, the column, is Ac1 or higher (the horizontal axis in the figure, the distance from the weld center is 0 to 0.5 times LAc1) is 50
  • the residual stress in the vertical direction (circumferential direction) of the column portion is reduced.
  • FIGS. 22A to 22C are divided into the case of short-time cooling and the case of long-time cooling, and are arranged as shown in FIGS. 23A and 23B when arranged by the cooling width.
  • the cooling time shown in FIG. 23B when the cooling time shown in FIG. 23B is long, the residual stress of the column portion decreases as the cooling width increases.
  • the cooling width is too wide, the region where the temperature difference from the foot is large is wide, the shrinkage strain in the longitudinal direction of the foot acts on the column, and the vertical compression (strain direction) of the column in the vertical direction (circumferential direction) of the column Tensile is reduced.
  • the contraction in the longitudinal direction of the sole is constrained by the column part, and the residual stress deteriorates until the absolute value reaches the tensile stress.
  • the appropriate range of the cooling width is until the absolute value of the residual stress in the longitudinal direction of the sole reaches the tension.
  • FIG. 24 indicates the ratio k between the cooling width L of the column part and the width LAc1 heated to Ac1 or more in the column part, and the horizontal axis indicates the cooling time in minutes.
  • An appropriate cooling range is a range surrounded by straight lines shown in FIGS. 4A and 4B, and shifts to a narrow range as the cooling time increases.
  • the range surrounded by the straight line (a) and the straight line (b) is expressed by the formula (1).
  • the cooling width is too narrow, the cooling efficiency is lowered and the effect of reducing the residual stress is lowered. Therefore, it is desirable to cool at least a range of 5 mm or more.
  • the cooling time used in the equations (1) and (2) is obtained by subtracting the slow cooling time of 2 ° C./s or less from the entire cooling time. It is necessary to use a value.
  • the top surface 115 of the rail head is “the top of the head”
  • the head side surface 117 is “the head side”
  • the constriction between the head and the column is narrowed.
  • the portion 119 may be referred to as a “neck portion”
  • the upper corner portion 116 between the crown and the head side portion may be referred to as a “gauge corner portion”
  • the lower corner portion 118 between the head side portion and the neck portion may be referred to as a “jaw portion”. .
  • the cooling speed of the jaw portion becomes faster than other portions.
  • the present inventors have discovered that when the cooling rate of the jaw becomes faster than other parts, the residual stress of the column part does not decrease so much. Therefore, in the present embodiment, when the head and the column portion of the rail welded portion are accelerated and cooled, the cooling speed of the jaw portion is made slower than the cooling rate of the column portion, while ensuring the hardness of the rail head portion sufficiently. , To reduce the residual stress in the column. When the cooling rate of the jaw part is made slower than the cooling rate of the column part, it is presumed that the shrinkage strain of the column part is absorbed by reducing the strength in the vicinity of the jaw part and the residual stress of the column part is reduced.
  • the cooling rate of a jaw part is relieve
  • a shielding plate is provided in a head region below a position 2Hs / 3 below the upper end of the head side part, and a cooling fluid is directed toward the head. You may squirt. According to such a configuration, the cooling fluid ejected from the upper end of the head side portion toward the head region below 2Hs / 3 is blocked by the shielding plate. The cooling rate is relaxed, and the cooling rate of the jaws can be made slower than the cooling rate of the pillars.
  • the fluid for cooling what is necessary is just to be able to select either air, air-water (mixed fluid of air and water), and water according to a cooling rate.
  • the cooling device used in the method for cooling the rail welded portion is 2Hs / 3 lower than the upper end of the head side portion, where Hs is the height of the head side portion forming the side surface of the head of the rail welded portion.
  • a head cooling unit for accelerating and cooling the entire head area excluding the head area below the position is provided.
  • the head cooling unit includes a jet part for jetting a cooling fluid toward the head part, and a position 2Hs / 3 below the upper end of the head side part. You may provide the shielding board which covers a lower head region.
  • the residual stress in the circumferential direction of the rail section in the column portion is set to 300 MPa or less and the hardness of the head is equal to or higher than Hv320 by the method for cooling the rail welded portion. It is said.
  • hardness is Vickers hardness.
  • the residual stress in the circumferential direction of the rail cross section exceeds 300 MPa, the fatigue strength of the rail is significantly reduced. Further, when the hardness of the head is less than Hv320, the wear of the rail head becomes severe and the durability of the rail is remarkably lowered. It should be noted that wear is very easy on a curved track of a heavy-duty railway, and a rail having a base material head surface layer hardness of around Hv400 is often used. For this reason, it is preferable that the head surface layer of the rail welded portion has a hardness of about Hv400, which is the same as that of the base material rail.
  • Flash butt welding The residual stress in the vertical direction at the column portion of the rail welded portion is remarkable in flash butt welding in which the temperature gradient is the steepest. For this reason, in this specification, flash butt welding will be described as an example of a rail joint welding method. In addition, it cannot be overemphasized that the cooling method of the rail welding part which concerns on this invention, and the cooling device used therewith are applicable also to other welding methods, such as thermite welding.
  • FIGS. 34A to 34C Schematic diagrams for explaining flash butt welding are shown in FIGS. 34A to 34C.
  • a flushing process an arc is continuously generated between the end surfaces of the rails 111 connected by a voltage applied via the electrode 136 connected to the power source 137 (see FIG. 34A).
  • the part where the arc is generated melts locally, and a part of the molten metal is released to the outside as spatter, but the rest remains on the end surface of the rail 111.
  • a dent called a crater is generated in the part melted by the arc.
  • the rail 111 is gradually approached, arcs are successively generated at new contact portions, and the rail 111 is gradually shortened by repeated local melting.
  • the weld bead 138 is sheared and removed hot by the trimmer 139 in the high temperature period immediately after welding. This process is called trimming. After trimming, a thin weld bead 138 remains around the weld.
  • the thin weld bead 138 remaining on the rail head is smoothed by grinding with a grinder, but the thin weld bead 138 remaining on the rail column and foot is polished by a grinder or unmaintained by a railway company such as Treatment is different.
  • Rail steel is a hypoeutectoid containing 0.5 to 0.8% by mass of carbon as specified in JIS-E1101 "Normal rails and special rails for turnouts" and JIS-E1120 “Heat treatment rails”.
  • eutectoid carbon steel is generally used.
  • rail steel with a hypereutectoid composition containing more than 0.8 mass% of carbon, which has improved wearability, has been widely used for heavy-duty cargo lines in overseas mining railways.
  • a rail welded part cooling device 110 is a head of rail welded part 150 after rail 111 is welded.
  • the head cooling unit 120 for accelerating cooling 112 and the column cooling unit 121 for accelerating cooling of the column 113 of the rail welded portion 150, and the cooling unit for accelerating and cooling the foot 114 of the rail welded portion 150 are as follows. Not prepared.
  • the cooling device 110 may have a control device (not shown) described later.
  • the head cooling unit 120 includes an ejection portion 123 that ejects a cooling fluid toward the head 112, and a pair of shielding plates 125 disposed on the sides of the head 112 (FIGS. 30A and 30B). reference).
  • the ejection portion 123 has a semi-cylindrical shape that surrounds the top portion 112a and the head side portion 112b of the rail welded portion 150, and an ejection hole 123a that ejects a cooling fluid toward the top portion 112a and the head side portion 112b has an inner peripheral surface. Is provided.
  • the pair of shielding plates 125 are long in the rail axis direction, and both end portions in the longitudinal direction have a substantially U-shaped (reverse U-shaped) cross section, and an intermediate portion has a substantially L-shaped (reverse L-shaped) cross section ( (See FIGS. 31, 32, and 33).
  • the upper edge portions of both ends of the pair of shielding plates 125 are connected by a hinge 126, and are placed on the crown 112a (see FIG. 33).
  • the pair of shielding plates 125 rotate in a plane orthogonal to the rail axis with the hinge 126 as a rotation axis, and can be opened and closed.
  • the intermediate portion having a substantially L-shaped (inverted L-shaped) cross section is a head region below the position 2Hs / 3 below the upper end of the head side portion 112b, where Hs is the height of the head side portion 112b.
  • Hs is the height of the head side portion 112b.
  • the lower side Hs / 3 of the head side portion 112b + the jaw portion 112c + the neck portion 112d is covered (see FIGS. 29 and 31).
  • the upper edge 125a of the intermediate portion of the shielding plate 125 is inclined toward the head side portion 112b so that the cooling fluid does not flow into the head region.
  • the column portion cooling unit 121 includes a pair of ejection portions 124 that are disposed to face each other with the column portion 113 of the rail welded portion 150 interposed therebetween, and are provided with ejection holes 124 a that eject a cooling fluid toward the column portion 113. (See FIG. 29).
  • a supply pipe 128 for supplying a cooling fluid is connected to the ejection part 123 of the head cooling unit 120 that accelerates and cools the head 112 of the rail welded part 150, and the column part 113 of the rail welded part 150 is accelerated and cooled.
  • a supply pipe 129 for supplying a cooling fluid is connected to each of the ejection portions 124 of the column cooling unit 121 that performs the cooling.
  • the supply pipes 128 and 129 are held by a pedestal 122 formed of a gate-type frame laid across the rail 111.
  • the head region (lower Hs / 3 + jaw portion 112c + neck portion 112d of the head side portion 112b) below the position 2Hs / 3 below the upper end of the head side portion 112b of the rail welded portion 150 is the shielding plate 125. It will be in the covered state (refer FIG. 31).
  • the gantry 122 made of a portal frame is installed so as to straddle the rail 111, and the ejection part 123 of the head cooling unit 120 is set so as to surround the head top part 112a and the head side part 112b of the rail welded part 150.
  • the column cooling units 121 are arranged opposite to each other with the column 113 of the rail welded portion 150 interposed therebetween.
  • FIG. 35 shows the temperature history when the rail welded portion is accelerated and cooled by the rail welded portion cooling method according to the embodiment of the present invention
  • FIG. 36 shows the temperature history when the rail welded portion is naturally cooled
  • FIG. FIG. 37 shows the temperature history when only the head is accelerated
  • FIG. 38 shows the temperature history when the head and the column of the rail welded portion are accelerated and cooled by the conventional method.
  • the cooling speed of the jaws is the fastest in any case of natural cooling, accelerated cooling of the head only, and accelerated cooling of the head and the column by the conventional method. It can be seen that the cooling rate of the jaw is slower than that of the jaw.
  • the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims.
  • the shielding plate that shields the cooling fluid ejected from the upper end of the head side portion toward the head region below 2Hs / 3 is provided, but the shielding plate is not provided.
  • the cooling fluid may be ejected from the lower end of the head side portion toward the head region above the position above Hs / 3.
  • the ejection part of the head cooling unit is made into the semi-cylinder shape, you may provide the ejection part for head top parts, and the ejection part for head side parts.
  • ⁇ Test method> (About the fatigue test method of the column) The fatigue strength evaluation test for the horizontal crack of the column part was performed by the method schematically shown in FIG. A rail welded portion was placed on the surface plate 27, and a load was repeatedly applied from the rail head portion of the welded portion with a pressing jig. The radius of curvature of the pressing jig 28 was 450 mm close to the wheel. Considering that the actual load under heavy load is about 20 tons, the load to be applied was set to 30 tons to promote the experimental speed. When the minimum load in the load repetition is 0 ton, the test piece may be lifted up. The load repetition rate was 2 Hz, and the test was terminated when a crack occurred in the weld. Moreover, when the load repetition number was not broken up to 2 million times, the test was terminated there.
  • FIG. 26 schematically shows the test method.
  • a rail welded portion cut to 1.5 m was placed in the center of the pedestals 29 and 29 ′ set at a distance of 1 m in an upright posture, and a load was applied to the center portion from the rail head by the pushing jig 30.
  • the radius of curvature of the bases 29, 29 ′ and the portion of the pushing jig 30 in contact with the rail was 100 mmR.
  • the test stress was set at the center of the sole of the rail. The minimum stress was 30 MPa, the maximum stress was 330 MPa, and the stress fluctuation range was 300 MPa.
  • a normal flash butt weld joint has a fatigue life of up to 2 million times in a stress range of 300 MPa.
  • the load repetition rate was 5 Hz, and the test was terminated when a crack occurred in the weld. Moreover, when the load repetition number was non-ruptured up to 2 million times, the test was terminated, and it was judged that the tire had sufficient fatigue performance.
  • Rail steel A is a steel type commonly known as ordinary rail, and is a hypoeutectoid steel containing 0.65 to 0.75% by weight of carbon. It is a raw material, and the rail head has a Vickers hardness of 260 ⁇ 290.
  • Rail steel B is a rail heat-treated after rolling and is a eutectoid steel containing 0.75 to 0.85% by weight of carbon, and has a Vickers hardness of 360 to 400 at 5mm below the surface of the rail head. It was used.
  • Rail steel C is a hypereutectoid steel containing carbon content of 0.85 to 0.95%.
  • the rail size used was a general railway size with a metric unit weight of 60 kg / m.
  • the type of the rail to be welded the width in the longitudinal direction LAc1, Ac3, Ace, and the width in the region where the maximum heating temperature of the welded portion is Ac1 or higher, the width in the longitudinal direction of the region where it is greater than or equal to Accm, Longitudinal width, ratio k value of cooling width L and LAc1 of column part, cooling time t, upper and lower limits of appropriate range of k value obtained by equation 1, suitability of whether k value is included in upper and lower limits, cooling Temperature range, residual stress measurement value, weld hardness, and number of cracks in fatigue test.
  • the hardness was measured with a Shore hardness meter on the surface 2 mm from the welding center and converted to Vickers hardness. Residual stress was calculated from the change in strain by cutting out the strain gauge bonded portion.
  • the metal structure was mirror-polished on a cross section perpendicular to the rail longitudinal direction at a position 2 mm from the welding center and 2 mm below the surface, etched with 3% nitric acid alcohol, and observed with a microscope. The tissue fraction of the metal structure was observed at a magnification of 100 times and calculated by the point count method.
  • Tables 2 to 6 those for which structures other than perlite such as martensite were recognized were entered in the remarks column.
  • the temperature described in the table is the surface temperature near the center of the weld.
  • the temperature distribution in the longitudinal direction of the weld changes by adjusting the time of the flash process.
  • the range of the maximum heating temperature of the welded portion was changed by adjusting the flushing time.
  • Table 2 shows the natural cooling rate in the region defined below in the longitudinal direction of the rail column after the entire rail column has completed the transformation from austenite to pearlite after flash butt welding of the rail. An embodiment in which cooling is performed at a cooling rate exceeding the cooling rate at the rail foot or higher is shown.
  • the cooling method at this time is as follows.
  • compressed air or Cooling is performed by controlling the flow rate and flow rate of compressed air including water droplets with a control device, and the flow rate and flow rate of compressed air are within the longitudinal region (range narrower than the region) of the foot where the maximum heating temperature is Ac1 or higher.
  • the region other than the region was naturally cooled. In short, it is a part of the rail that provides accelerated cooling. Steel grade A in Table 1 was used for the welded rail.
  • Examples A1 to A6 are examples in which the cooling rate when the column part is cooled after the pearlite transformation of the column part is changed is variously changed.
  • the pearlite transformation completion temperature was about 600 ° C.
  • the column portion cooling start temperature was 500 ° C.
  • the cooling end temperature was 200 ° C.
  • Example A4 is an example in which the cooling range in the longitudinal direction is changed.
  • the residual stress in the vertical direction (circumferential direction) of the column portion was lower than that of the as-welded material shown in Comparative Example A1. Accordingly, in the as-welded material of Comparative Example A1, cracks occurred with a short life that did not reach 2,000,000 load repetitions in the column fatigue test, whereas in Examples A1 to A6, 2,000 cracks occurred. Cracks did not occur up to 1,000 times.
  • the residual stress in the longitudinal direction of the sole portion was in the compression range, and in the bending fatigue test, no crack was generated up to 2,000,000 times and there was no breakage, and comprehensively high fatigue strength was confirmed. All of the metal structures had a pearlite structure of 95% or more.
  • Comparative Example A4 is an example in which the start timing of cooling is as high as 650 ° C., and cooling was started before completion of the pearlite transformation.
  • the martensite structure fraction was 10% or more in area ratio because the cooling rate was fast, The hardness of the column became abnormally high. In the fatigue test of the column part, it broke during the short life.
  • Comparative Example A5 the ratio k value between the cooling width L and LAc1 of the column portion was narrower than the appropriate range, the residual stress in the longitudinal direction of the column portion was tensile, and the column portion was fractured in the middle with a short life in the fatigue test.
  • Example B> Table 3 shows that after the rails are flash-butt welded, the transformation from the austenite temperature range where the column temperature is higher than Ae to the pearlite is completed in the following limited region in the longitudinal direction of the rail column portion of the welded portion.
  • the Example which cooled at least one part temperature range with the cooling rate exceeding 5 degree-C / s exceeding a natural cooling rate is shown.
  • the cooling method at this time is as follows.
  • compressed air or Cooling is performed by controlling the flow rate and flow rate of compressed air containing water droplets, and the flow rate and flow rate of compressed air are controlled in the longitudinal region of the foot where the maximum heating temperature is at least Ac1 (range narrower than the region).
  • the region other than the region was naturally cooled. In short, it is a part of the rail that provides accelerated cooling.
  • the perlite transformation temperature range is 650 ° C to 600 ° C in natural cooling, but when cooling is performed, the transformation temperature changes somewhat depending on the cooling rate.
  • Steel grade A in Table 1 was used for the welded rail.
  • Examples B1 to B4 are examples in which the cooling rate and the cooling temperature range when the column portion is cooled from the austenite region are variously changed.
  • the residual stress in the vertical direction (circumferential direction) of the column portion was reduced as compared with the as-welded material shown in Comparative Example A1. Accordingly, cracks did not occur up to 2,000,000 times in the column fatigue test.
  • the residual stress in the longitudinal direction of the sole portion was in the compression range, and in the bending fatigue test, no crack was generated up to 2,000,000 times and there was no breakage, and comprehensively high fatigue strength was confirmed.
  • All of the metal structures had a pearlite structure of 95% or more. Further, by accelerating and cooling the pearlite transformation region of the rail column part, the hardness of the column part is increased to Hv 350 or more, which is further advantageous in terms of fatigue strength.
  • Comparative Example B1 the cooling rate of the column part exceeded 5 ° C./s, the martensite structure fraction in the column part was 10% or more in area ratio, and the hardness was abnormally high. In the fatigue test of the column part, it broke during the short life.
  • Comparative Example B3 the end temperature of cooling is as high as 760 ° C., and the amount of decrease in temperature due to cooling is small, so the residual stress is not much different from as-welded, and the hardness is not increased because cooling was terminated before pearlite transformation started, In the fatigue test of the column part, it broke during the short life.
  • Example C In Table 4, after welding the rails, the temperature in the column part is changed from the austenite temperature range of A3, Ae, or Acm to pearlite in the following limited region in the longitudinal direction of the rail column part of the welded part. At least a part of the temperature range until the transformation of the steel is cooled at a cooling rate exceeding the natural cooling rate and 5 ° C./s or less, and after the entire rail column has completed the transformation from austenite to pearlite, An embodiment in which cooling is performed at a cooling rate exceeding the cooling rate and at or above the cooling rate of the rail foot will be described. The cooling method at this time is as follows.
  • compressed air or Cooling is performed by controlling the flow rate and flow rate of compressed air containing water droplets, and the flow rate and flow rate of compressed air are controlled in the longitudinal region of the foot where the maximum heating temperature is at least Ac1 (range narrower than the region).
  • the region other than the region was naturally cooled. In short, it is a part of the rail that provides accelerated cooling.
  • the perlite transformation temperature range is 650 ° C to 600 ° C in natural cooling, but when cooling is performed, the transformation temperature changes somewhat depending on the cooling rate. Normal pearlite transformation is completed at less than 600 ° C.
  • the cooling temperature range after completion of the pearlite transformation was set to 500 ° C to 200 ° C. Steel grade A in Table 1 was used for the welded rail.
  • Examples C1 to C4 are examples in which the cooling temperature range and cooling rate when the column portion cools the pearlite transformation temperature region from the austenite region, and the cooling rate of cooling after completion of the pearlite transformation are changed.
  • the residual stress in the vertical direction (circumferential direction) of the column portion was lower than that of the as-welded material shown in Comparative Example A1. Accordingly, cracks did not occur up to 2,000,000 times in the column fatigue test. Further, the residual stress in the longitudinal direction of the sole portion was compression, and in the bending fatigue test, cracks were not generated up to 2,000,000 times, and comprehensively high fatigue strength was confirmed. All of the metal structures had a pearlite structure of 95% or more. In addition, by accelerating and cooling the pearlite transformation region of the rail column part, the hardness of the column part is increased to Hv 350 or more, which is considered to be further advantageous in terms of fatigue strength.
  • Table 5 shows at least a part of the temperature range until the transformation from the austenite temperature range in which the temperature of the column part exceeds A3, Ae, or Acm to pearlite after the rail is welded, after welding the rail. Cooling at a cooling rate exceeding the natural cooling rate, cooling at least a part of the pearlite transformation temperature range at a natural cooling rate or a cooling rate of 2 ° C / s or less, and the entire rail column portion of the welded portion from austenite to pearlite After the transformation is completed, an embodiment is shown in which the region in the longitudinal direction of the rail column part of the welded part in the previous period is cooled at a cooling rate exceeding the natural cooling rate and at or above the cooling rate of the rail foot.
  • the cooling method at this time is as follows.
  • compressed air or Cooling is achieved by controlling the flow rate and flow rate of compressed air containing water droplets, cooling by controlling the flow rate and flow rate of compressed air within the longitudinal region of the foot where the maximum heating temperature is Ac1 or higher, The area other than the area was naturally cooled. In short, it is a part of the rail that provides accelerated cooling.
  • the pearlite transformation temperature range is 650 ° C. to 600 ° C., and the middle stage cooling is made to include this temperature range, and a temperature drop of 200 ° C.
  • Example D2 the column part is cooled from the austenite region to a part of the pearlite transformation temperature range, and then the pearlite transformation is completed by cooling at a cooling rate of 2 ° C./s or less or by natural cooling, and further cooling at the latter stage. This is an example in which the column portion is accelerated and cooled. In Example D2, the middle stage cooling was natural cooling.
  • Example D5 and D6 the first stage cooling was performed while the column part was in the austenite temperature region, the austenite temperature range to the completion of pearlite transformation were naturally cooled as the middle stage cooling, and the column part was accelerated and cooled as the second stage cooling. It is an example.
  • the residual stress in the vertical direction (circumferential direction) of the column portion was lower than that of the as-welded material shown in Comparative Example A1. Accordingly, cracks did not occur up to 2,000,000 times in the column fatigue test. Further, the residual stress in the longitudinal direction of the sole portion was compression, and in the bending fatigue test, cracks were not generated up to 2,000,000 times, and comprehensively high fatigue strength was confirmed. All the metal structures were 100% pearlite structures.
  • Comparative Example D1 the foot cooling rate was faster than that of the column part, the residual stress of the column part did not decrease, and the column part fractured shortly in the fatigue test of the column part.
  • Comparative Example D2 the ratio k value between the cooling width L of the column portion and LAc1 was wider than the appropriate range, the foot portion's longitudinal residual stress was in the tensile region, and the fracture occurred in the bending fatigue test with a short life.
  • Comparative Example D3 the ratio k value of the cooling width L and LAc1 of the column portion was narrower than the appropriate range, the residual stress in the longitudinal direction of the column portion was tensile, and the column portion fractured with a short life in the middle.
  • Example E> Table 6 shows an example in which the rail feet are naturally cooled in addition to the conditions of Examples A, B, and C.
  • the pearlite transformation temperature range is 650 ° C. to 600 ° C. in natural cooling, but when cooling is performed, the transformation temperature changes somewhat depending on the cooling rate. Normal pearlite transformation is completed at less than 600 ° C.
  • the cooling temperature range of the example in which the cooling was performed from the temperature range of A3, Ae, Acm or higher before the pearlite transformation is 800 to 500 ° C.
  • the cooling temperature range of the example in which the cooling after completion of the pearlite transformation was performed was 500 ° C. to 200 ° C.
  • Steel grade A in Table 1 was used for the welded rail.
  • the residual stress in the vertical direction (circumferential direction) of the column part is lower than that of the as-welded material shown in Comparative Example A1, and the vertical stress (circumferential direction) residual stress of the column part is On average, it is further reduced than the embodiment.
  • the column fatigue test no cracks occurred up to 2,000,000 times. Further, the residual stress in the longitudinal direction of the sole portion was in the compression range, and in the bending fatigue test, no crack was generated up to 2,000,000 times, and comprehensively high fatigue strength was confirmed. All of the metal structures had a pearlite structure of 95% or more.
  • Example F In addition to the conditions of Examples A, B, C, and E, at least a part of the temperature range until the transformation of the rail head portion of the welded portion from the A3, Ae, or Acm austenite temperature range to pearlite is completed.
  • Table 7 shows examples in which the cooling rate was exceeded and the cooling rate was 5 ° C./s or less.
  • the pearlite transformation temperature range is 650 ° C. to 600 ° C. in natural cooling, but when cooling is performed, the transformation temperature changes somewhat depending on the cooling rate. Normal pearlite transformation is completed at less than 600 ° C.
  • the cooling temperature range of the example in which the cooling was performed from the temperature range of A3, Ae, Acm or higher before the pearlite transformation was set to 800 to 500 ° C.
  • the cooling temperature range of the example in which the cooling after completion of the pearlite transformation was performed was 500 ° C. to 200 ° C.
  • the eutectoid or hypereutectoid heat-treated rail of steel type B or steel type C shown in Table 1 was used as the rail to be welded.
  • the residual stress in the vertical direction (circumferential direction) of the column portion was lower than that of the as-welded material shown in Comparative Example A1. Accordingly, cracks did not occur up to 2,000,000 times in the column fatigue test. Further, the residual stress in the longitudinal direction of the sole portion was in the compression range, and in the bending fatigue test, no crack was generated up to 2,000,000 times, and overall high fatigue strength was confirmed. All of the metal structures had a pearlite structure of 95% or more.
  • Table 8 shows an example in which the rail foot portion is naturally cooled in addition to the conditions of Example D in which a slow cooling period of 2 ° C./s or less is provided in a part of the pearlite transformation temperature range. This is an example in which at least a part of the temperature range from the Ae or Acm austenite temperature range to the completion of transformation to pearlite is cooled at a cooling rate of 5 ° C./s or less exceeding the natural cooling rate. Steel grade C in Table 1 was used for the rail to be welded.
  • Examples G1 and G2 are examples in which the foot is naturally cooled
  • Examples G3 and G4 are examples in which the head is accelerated and cooled in a part of the temperature range until the transformation from the austenite temperature range to the pearlite is completed
  • Example G5 is an example in which the head is accelerated and cooled in a part of the temperature range until the transformation from the austenite temperature range to the pearlite is completed, and the foot is naturally cooled.
  • the residual stress in the vertical direction (circumferential direction) of the column portion was lower than that of the as-welded material shown in Comparative Example A1. Accordingly, cracks did not occur up to 2,000,000 times in the column fatigue test.
  • the residual stress in the longitudinal direction of the sole portion was compression, and in the bending fatigue test, cracks were not generated up to 2,000,000 times, and comprehensively high fatigue strength was confirmed. All metal structures were 100% pearlite structures.
  • the foot cooling rate was faster than that of the column part, the residual stress of the column part was not lowered, and the column part fractured with a short life in the fatigue test of the column part.
  • the ratio k value between the cooling width L and LAc1 of the column portion was wider than the appropriate range, the foot portion's longitudinal residual stress was in the tensile region, and the fracture occurred in the bending fatigue test with a short life.
  • the rail steel used for the cooling test is the US AREA standard 136 pound rail, and its component ratio is 0.8C-0.4Si-1.0Mn-0.2Cr. Rail joints were welded and joined by flash butt welding to form a welded joint. Air was used as a cooling fluid for accelerated cooling of the rail weld. Table 9 shows the air pressure and flow rate during accelerated cooling.
  • the temperature measurement of the rail welded part is a total of 5 points at the center of the top of the head, the chin, the 1/2 height of the column part, the foot surface part, and the center of the sole part at a position 20 mm away from the welding center in the rail axial direction. And measured with a K thermocouple.
  • the hardness of the rail welded portion was measured with a Vickers hardness tester at a position 5 mm below the surface of the top of the head and 5 mm below the surface of the head side at a position 5 mm away from the welding center in the rail axis direction.
  • the residual stress is measured by attaching a biaxial strain gauge with a gauge length of 2 mm to both sides of the column (1/2 height position of the column) on the weld center line, and this portion is 5 mm thick x 15 mm wide x 15 mm
  • the residual stress was calculated from the relation between stress and strain using the difference between the strain before cutting and the strain after cutting.
  • the fatigue test of the column part was performed as follows. A rail welded portion was placed on the surface plate, and a load was repeatedly applied to the head of the rail welded portion by a pushing jig whose tip was an arc-shaped convex portion. The radius of curvature of the arc-shaped convex portion was 450 mm close to the wheel. The load to be applied was set to a maximum of 30 ton considering that the actual load under heavy load is about 20 ton. On the other hand, the minimum load during load repetition was 4 tons. The load repetition rate was 2 Hz, and the test was terminated when a crack occurred in the rail weld.
  • Table 10 shows a list of test results.
  • the fatigue test results are “GOOD” when fatigue cracks do not occur until the load is repeated 2 million times, “FAIR” when cracks occur from 1 million times to less than 2 million times, and 100 The case where the crack occurred less than 10,000 times was indicated as “POOR”.
  • surface is an average value of the residual stress computed from the strain gauge stuck on both surfaces of the column part.
  • Example 11 when the entire head portion and the column portion were accelerated and cooled after welding, the cooling rate of the head side portion was weakened and the cooling rate of the jaw portion was adjusted to be equal to or lower than the cooling rate of the column portion.
  • the hardness of the top of the head is the same as that of the base metal rail, and the hardness of the head side is reduced by decreasing the cooling rate of the head side, but is harder than when naturally cooled after welding.
  • the residual stress in the column portion was improved as compared with Comparative Examples 11-13. In the fatigue test, fatigue cracks occurred between 1 million and 2 million load cycles, but the fatigue performance is superior to Comparative Examples 11-13.
  • Example 12 adjusted the cooling rate of the column part so that the cooling rate of the jaw part was equal to or lower than the cooling rate of the column part when the entire head and the column part were accelerated and cooled after welding.
  • the hardness of the top and the side of the head became the same as that of the base material rail, and the residual stress of the column part was improved as compared with Example 11.
  • fatigue cracks occurred between 1 million and 2 million load cycles, but the fatigue performance is superior to Comparative Examples 11-13.
  • Example 13 when the head and the column part were accelerated and cooled after welding, the air ejection holes on the head side part were adjusted to be in the range of 2/3 or more of the upper side of the head side part.
  • the jaw portion was not subjected to accelerated cooling, the cooling rate increased compared to the case of Comparative Example 11 where no accelerated cooling was applied to any part. This is due to heat conduction accompanying accelerated cooling of the head side portion and the column portion.
  • the hardness at the top of the head is the same as that of the base metal rail, and the head side is also almost the same as the base metal rail.
  • the residual stress in the column portion was improved as compared with Comparative Examples 11-13. In the fatigue test, fatigue cracks occurred between 1 million and 2 million load cycles, but the fatigue performance is superior to Comparative Examples 11-13.
  • Example 14 when the head and the column part were accelerated and cooled after welding, the air ejection holes on the head side part were adjusted to be in a range of 1/2 or more on the upper side of the head side part.
  • the hardness of the top of the head is the same as that of the base metal rail, and the hardness of the head side is lowered due to the reduced cooling rate, but is significantly harder than when naturally cooled after welding.
  • the residual stress of the column portion was further improved as compared with Example 13. In the fatigue test, fatigue cracks did not occur up to 2 million load cycles.
  • Example 15 is an example in which the head region below the position 2Hs / 3 below the upper end of the head side portion is covered with a shielding plate when the entire head portion and the column portion are accelerated and cooled after welding.
  • the hardness of the top of the head is the same as that of the base metal rail, and the head side is harder than the case where it is naturally cooled after welding, although the hardness is reduced due to the reduced cooling rate.
  • the residual stress in the column portion was improved as compared with Comparative Examples 11-13. In the fatigue test, fatigue cracks occurred between 1 million and 2 million load cycles, but the fatigue performance is superior to Comparative Examples 11-13.
  • Example 16 is an improvement example of Example 15 in which the gap between the shield plate and the rail is narrowed so that the cooling rate of the jaw is smaller than that of the column. Although the hardness of the head side part further decreased, it is harder than when naturally cooled after welding. The residual stress in the column portion was significantly improved as compared with Example 15. In the fatigue test, fatigue cracks did not occur up to 2 million load cycles.
  • Example 17 when the head and the column part are accelerated and cooled after the welding, the air ejection hole of the head side part is adjusted so as to be in the range of 1/2 or more of the upper side of the head side part, and the head side part
  • the head region below the position 2Hs / 3 below the upper end of the head is covered with a shielding plate.
  • the hardness of the top and the side of the head is the same as that of the base material rail.
  • the residual stress in the column portion was significantly improved as compared with Comparative Examples 11-13. In the fatigue test, fatigue cracks did not occur up to 2 million load cycles.
  • Comparative Example 11 shows an example of natural cooling after welding.
  • the cooling rate at each measurement position was 0.7 to 0.9 ° C./s.
  • the hardness of the head is low, and the residual stress of the column is in a strong tensile state of about 400 MPa.
  • the comparative example 12 shows the example which acceleratedly cooled the whole head part after welding.
  • the hardness of the head is the same as that of the base metal rail, but the residual stress of the column is worse than that when naturally cooled after welding.
  • fatigue cracks occurred when the load was repeated less than 1 million times.
  • the comparative example 13 shows the example which acceleratedly cooled the head whole region and the column part after welding.
  • the hardness of the head is the same as that of the base metal rail, and the residual stress of the column is improved compared to the case of natural cooling after welding.
  • the present invention it is possible to efficiently manufacture a rail having an improved fatigue strength of the welded portion as compared with the prior art. For this reason, the present invention has sufficient industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Arc Welding In General (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

 本発明は、レール溶接部における柱部冷却領域を、オーステナイトからパーライトへの変態が完了するまでの少なくとも一部の温度範囲において冷却する第1の柱部冷却工程と;前記レール溶接部における前記柱部の全体がパーライトへ変態後、前記柱部冷却領域を冷却する第2の柱部冷却工程と;前記レール溶接部における足部を冷却する足部冷却工程と;前記レール溶接部における頭部を冷却する頭部冷却工程と;を有し、前記第1の柱部冷却工程及び前記第2の柱部冷却工程の冷却時間をt(分)とすると、k値が-0.1t+0.63≦k≦-0.1t+2.33で示される式を満たすレール溶接部の冷却方法を提供する。

Description

レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手
 本発明は、従来と比較して溶接継手の疲労強度を向上させるレール溶接部の冷却方法及びレール溶接部の冷却装置、そしてレール溶接継手に関する。特に、本発明は、溶接直後のレール継手部の冷却方法及び冷却装置に関する。
 本願は、2009年3月30日に、日本に出願された特願2009-081587号と、2009年7月28日に、日本に出願された特願2009-175646号とに基づき優先権を主張し、その内容をここに援用する。
 レール継手部(レール溶接部)はレールの中で最も損傷が起こりやすく、保守コストがかかる。また、レール継手部は列車通過時に生じる騒音・振動の主要な発生源である。列車の高速化や重積載化が各地で進められているため、上記問題点を有するレール継手部を溶接によって連続化してロングレールにする技術が一般化している。
 図1A、図1Bを用いて一般的なレールについて説明する。図1Aはロングレールの側面図である。ロングレールは、少なくとも2本のレールを溶接することにより製造される。このためロングレールには溶接部7が含まれる。溶接部7には溶接ビード8が存在する。
 図1Bは図1Aに示すA-A線に沿って得られる断面図である。図1Bに示すように、レールは、車輪が接触する頭部1(レール上部)と、枕木の上に設けられる足部3(レール下部)と、頭部1及び足部3の中間に存在する柱部2とを有する。また、頭部1は頭頂部4を有し、足部は足表部5と足裏部6とを有する。
 フラッシュバット溶接(例えば特許文献1)、ガス圧接(例えば特許文献2)、エンクローズアーク溶接(例えば特許文献3)、及びテルミット溶接(例えば特許文献4)は、レールの主な溶接方法である。
 図2A~図2Cは、フラッシュバット溶接の説明図である。フラッシュバット溶接は、図2A~図2Cに示すように、対向して設置された被溶接材10に電極9を介して電圧をかけて、端面間にアークを発生させて被溶接材の端面を溶融させる。そして、十分に被溶接材が加熱された時点で、軸方向に材料を加圧して被溶接材を接合する。
 図3A、図3Bは、テルミット溶接の説明図である。図3Bは、図3Aに示すB-B線に沿って得られる断面図である。テルミット溶接では、図3A及び図3Bに示すように、被溶接材10を20~30mmの間瞭を設けて対向させ、間瞭を鋳型14で囲む。そして、その鋳型内に、ルツボ15内でアルミと酸化鉄との反応によって生成した溶鋼16を注入してレール端面を溶融させ、溶接する。
 図4A~図4Cは、ガス圧接の説明図である。ガス圧接では、図4Aに示すように、接合面を加圧した状態で接合面近傍の被溶接材を側面からバーナー17で加熱し、高温で接合面を圧接する。図4Bに示すように、溶接部近傍は加圧により膨張変形する。そして、図4Cに示すように、膨張部はトリマー18によって除去される。
 図5A、図5Bは、エンクローズアーク溶接の説明図である。エンクローズアーク溶接では図5A、図5Bに示すように、被溶接材を10~20mmの間瞭を設けて対向させ、この間瞭の周囲に裏当て金19と側面当て金20とを配置する。そして、その間瞭に対して溶接棒21を用いて溶接金属を盛り上げる。この方法は、いわゆるマニュアルアーク溶接方法である。
 特に重荷重の貨物列車が通る路線や寒冷地の路線などでは、レール溶接部の中立軸を起点として疲労亀裂が発生する虞がある。従って、この疲労亀裂を起因とするレールの脆性破壊を防ぐために、レールを頻繁に取替える必要がある。図6A、図6Bにこの状態の一例を示す。
 図6Aは、柱部に水平方向に発生した疲労亀裂22と、これに起因する脆性亀裂23とを示す図である。また、図6Bは、図6Aに示す疲労亀裂22及び脆性亀裂23の亀裂面を示す図である。疲労亀裂22は、中立軸近傍の溶接ビード8付近の溶接欠陥を起点に水平方向に発生している。疲労亀裂22を起因とする脆性亀裂23は、板厚方向に柱部を貫通した後、一方の亀裂はレール頭頂部側へ、他方の亀裂は足部側へ進展している。疲労亀裂22の起点は溶接欠陥に限らず、様々な要因が考えられる。
 疲労亀裂の発生には、外的な負荷条件とともに、材料内部の残留応力が影響すると考えられている。図7Aは、レール溶接部の周部における、周方向の残留応力分布を示している。図7Aにおいて、残留応力が0より大きい場合、引張残留応力が存在することを示し、残留応力が0より小さい場合、圧縮残留応力が存在することを示す。
 図7Aから、レール溶接部の柱部近傍に、レール周方向(すなわち上下方向)の大きな引張残留応力が溶接により発生していることがわかる。従って、溶接欠陥を起点とする疲労亀裂は、大きな引張残留応力を有するレール溶接部の柱部近傍に対して、列車の通過による繰返し負荷が与えられるために発生すると考えられる。このような疲労亀裂を防止するためには、起点となる溶接欠陥の防止とともに、溶接欠陥が存在してもそれを無害化することが望ましい。
 また、図7Bは、溶接中心からの距離(レール長さ方向)と、レールの柱部の上下方向に存在する残留応力との関係を示す。図7Bから、溶接中心から25mm程度までの範囲に大きな引張残留応力が存在することがわかる。
 鉄道における軌道(トラック)は、レールと、レールを支持する枕木とを有する。レール上を列車が通過する際には、多数の列車の車輪から分散した荷重がレールに加わる。
 前述の疲労亀裂をひき起す原因は、レール溶接部に対する、車輪からの負荷状態に関連する。列車通過時のレールの負担は、枕木24の直上のレール部と、2つの枕木24の間のレール部とで異なる。枕木24の直上のレール部には、列車の垂直荷重が直接レールに加えられる。工場で溶接されたロングレールを現地で枕木上に設置する場合、溶接部と枕木との位置が偶然一致することがある。1本数百メートルのロングレールには、枕木位置と溶接部とが一致する箇所が数か所は存在すると考えられる。
 図9Aは、枕木24の位置が溶接部に一致する箇所において、枕木24の直上(溶接部)を車輪25が通過する時点を示す。この場合、断面積が小さいレール柱部2に最も大きい応力が発生する。この場合の応力は圧縮応力であるが、前述したように、レール柱部2には大きな引張残留応力が存在する。従って、レール柱部2は実質、引張応力を受けた状態で繰返し応力が作用する状態となる。
 一方、図9Bは、枕木24の位置が溶接部に一致しない箇所において、2つの枕木24、24の間(溶接部)を車輪25が通過する時点を示す。この場合、車輪25からレールに対して上方から押し曲げる荷重が加えられる。このため、レール頭部1には長手方向の圧縮応力、レール足部3には長手方向の引張応力が発生する。レールの柱部2にかかる曲げ応力は中立である。レール足部3の引張応力は車輪25の通過ごとに発生するため、レール足部3には疲労亀裂の発生に対する配慮が必要である。
 図8は、フラッシュバット溶接による溶接部の周部における、長手方向の残留応力を示す。図示するように、レール底部には長手方向に強い圧縮応力が残留している。このため、列車通過時にレール底部に引張応力が付加されたとしても、実効的な応力状態は圧縮残留応力と相殺される。従って、疲労亀裂の発生を抑えることができる。このためレール足部からの疲労破壊の実例は少ないが、圧縮残留応力が小さい場合等には、図10A、図10Bに示すような、レール足裏に発生した疲労亀裂26を起点とする損傷が発生する場合もある。
 特許文献5,6は、レール柱部の損傷を防ぐために、レール溶接部全体又はレール溶接部の頭部と柱部とを溶接熱又は外部からの加熱により高温状態とし、その後加速冷却する方法を開示している。この技術によれば、レール溶接部の残留応力が制御されるため、レール溶接部の柱部に上下方向に発生する引張残留応力を軽減するか、あるいは、圧縮残留応力に変えることができる。このため、レール溶接部の疲労強度を改善することができる。このような技術により、レール柱部からの疲労亀裂の発生を低減することができる。
 その他に、レール溶接部の疲労強度を向上させる技術としては、例えば特許文献7のようにショットピーニングを用いる方法や、ハンマーピーニング、グラインダー処理、TIGドレッシングを用いる方法等がある。
 また、特許文献8は、レール溶接部の冷却装置を開示している。
 ロングレールの耐久性を向上させる為には、溶接部の柱部および足部からの疲労亀裂の発生を抑制し、これらの部位の耐疲労特性を両立させることが必要である。
 特許文献5及び特許文献6に記載されている冷却方法によりレール溶接部の頭部及び柱部を加速冷却した場合、レール柱部における上下方向の引張残留応力は改善され、これにより柱部の疲労亀裂の発生が抑えられることが示されている。しかしながら、非特許文献1には、この方法によると足裏部におけるレール長手方向の残留応力が引張残留応力に転ずることが図示されている。近年、重荷重の列車が増加する傾向があるため、足裏部に対する曲げ荷重による負荷は増大している。曲げ荷重による負荷により足裏部はレール長手方向に引っ張られるため、レール足裏部の疲労強度は重要な意味を持つ。上述したように、レール足裏部の疲労強度にはレール長手方向の残留応力が強く影響する。しかしながら、上述のように特許文献5及び特許文献6の冷却処理ではレール足裏部のレール長手方向の残留応力が減少する(引張残留応力に転じようとする)ため、疲労強度の低下が懸念される。このため、図10A、図10Bに示すような損傷が発生する虞がある。
 一方、機械的な後処理により残留応力を改善するための(すなわち、圧縮残留応力を付与するための)従来技術であるショットピーニング処理によれば、直径数mmの鋼球を材料に打ち付けて材料表層を塑性変形させて加工硬化させ、残留応力を増加させることで疲労強度を向上させることができる。しかしその処理には、鋼球投射、鋼球回集、又は粉塵防止等のための大掛かりな設備が必要となり、大型の溶接部には適用が制限される。加えて投射材の摩滅、損壊を補給する必要があるため、コスト面で不利である。
 また、工具の先端を材料に打撃して溶接部に塑性変形を与えるハンマーピーニングに関しては、圧縮応力を導入するとともに、塑性変形により応力集中を低減することで材料の疲労強度が向上すると言われている。しかし打撃時の振動が大きく、作業者への負担が大きいことに加え、細かいコントロールが難しく、均一な処理が難しい。非特許文献2には、処理条件によっては加工によって生じるシワ状の溝部が影響し、疲労強度の向上効果は小さいことが示されている。
 また、グラインダー処理は溶接ビード止端部を滑らかにすることで応力集中を下げることにより、確実な効果が期待できる。しかしながら、削りすぎた場合は溶接部の肉厚が不足して強度低下を招くことから、処理に熟練を要し、作業に長時間を要するという欠点がある。
 また、TIGドレッシングは、溶接ビードの止端部をタングステン電極から発生するアークで再溶融させて、滑らかな形状に再凝固させて、応力集中を軽減することにより疲労強度を向上できる。しかしレールなどの高炭素材料における手溶接では、硬くて脆いマルテンサイト組織が生成しやすく、これを防止するためには、厳格な施工管理が必要である。
 また、特許文献8に示されている溶接部の冷却装置を使用することにより、溶接後の高温状態から適切な冷却を行えば、溶接部の硬度を上昇することが可能である。一方、本発明者らの検討によると、溶接部の残留応力状態を制御するためには適切な範囲を適切な強さで冷却する必要がある。特許文献8の装置を使用することにより残留応力も変化すると思われるが、適切な残留応力分布を得るための冷却条件は説明されていない。
 上述したように、レール継手部(レール溶接部)はレールの中で最も損傷が起こりやすく、保守コストがかかる。また、レール継手部は列車通過時に生じる騒音・振動の主要な発生源である。列車の高速化や重積載化が各地で進められているため、上記問題点を有するレール継手部を溶接によって連続化してロングレールにする技術が一般化している。
 フラッシュバット溶接(例えば特許文献1参照)、ガス圧接(例えば特許文献2参照)、エンクローズアーク溶接(例えば特許文献3参照)、及びテルミット溶接(例えば特許文献4参照)は、レールの主な溶接方法である。
 レール継手部を溶接した場合、特に重荷重の貨物列車が通る路線や寒冷地の路線などでは、レール溶接部の中立軸付近に疲労亀裂が発生する虞がある。このため、この疲労亀裂を起因とするレールの脆性破壊を防ぐために、レールを頻繁に取り替える必要がある。図41A、図41Bは、この状態の一例を示す。図41Aは、水平方向に発生した疲労亀裂151がレール溶接部150の中立軸付近に発生している状態を示す。脆性亀裂152は、レール頭部及びレール足部へ向けて発生している。図41Bは、疲労亀裂151と脆性亀裂152の破面を示す。図41Bから、レール溶接部150の中立軸付近を起点として疲労亀裂151が発生し、その後、脆性亀裂152が柱部を板厚方向に貫通している様子がわかる。なお、本明細書では、車輪と接触するレール上部160を「頭部」、枕木に接地するレール下部162を「足部」、頭部と足部の間の部位161を「柱部」と呼ぶことがある(図27A、図27B参照)。
 疲労亀裂の発生には、外的な負荷条件と共に、材料内部の残留応力が影響すると考えられている。図42は、フラッシュバット溶接によるレール溶接部の、周部における周方向の残留応力分布を示している。図42のグラフにおいて、縦軸の正方向が引張残留応力、縦軸の負方向が圧縮残留応力を表している。図42から、柱部の引張残留応力が大きいことがわかる。枕木上にレール溶接部が位置している場合、列車通過時、柱部には上下方向の圧縮応力が作用する。しかし、柱部には、上下方向(レール断面周方向)の大きな引張応力が残留しているため、柱部は実質、引張応力を受けた状態で繰返し応力が作用する状態となる。このため、柱部では、疲労亀裂が発生しやすい。
 特許文献5,6は、レール柱部の損傷を防ぐために、レール溶接部全体又はレール溶接部の頭部と柱部とを溶接熱又は外部からの加熱により高温状態とし、その後加速冷却する方法を開示している。この技術によれば、レール溶接部の残留応力が制御されるため、レール溶接部の柱部に上下方向に発生する引張残留応力を軽減するか、あるいは、圧縮残留応力に変えることができる。このため、レール溶接部の疲労強度を改善することができる。
 また、レール溶接部の疲労強度を向上させる技術としては、例えば特許文献7に開示されるようなショットピーニング処理を用いる方法がある。ショットピーニング処理では、直径数ミリの鋼球を材料に投射して材料表層を塑性変形させて加工硬化させる。これにより、残留応力を圧縮応力に変えることで疲労強度を向上させる。
 また、特許文献8は、レール溶接部の頭頂面を冷却する空気室と、レール溶接部の頭側面を冷却する空気室と、レール溶接部の腹部(柱部)及び底部(足部)を冷却する空気室とを有するレール溶接部の冷却装置を開示している。各空気室にはそれぞれ圧縮空気吐出用の複数のノズルが設けられ、頭頂部を冷却する空気室におけるノズル群の中央には温度検出用のノズルが設けられる。
 レール頭部は、車輪との接触により摩耗する。特に曲線軌道では、車輪とレールとの間に生じる相対滑りにより摩耗が促進される。このため、レール頭部を硬化させた熱処理レールが曲線区間に採用されることが多い。熱処理レールの溶接では、溶接後にレール頭部をオーステナイト温度域からパーライト変態完了までの温度範囲で加速冷却し、被溶接母材並みの硬度を得ることが望ましい。溶接後にレール頭部を加速冷却する際、レール溶接部の頭部及び柱部を加速冷却することにより、レール柱部における上下方向の残留応力が低減し(すなわち、圧縮残留応力が増加し)、これにより柱部の疲労亀裂の発生が抑えられることが非特許文献1に示されている。しかしながら、本発明者等の実験により、レール溶接部の頭部及び柱部を加速冷却しても、柱部における残留応力が大きく低減しないことがわかった。
 また、ショットピーニング処理の場合、鋼球を投射、回収すると共に粉塵防止のための大掛かりな設備が必要となり、大型の溶接部への適用が制限される。加えて、鋼球が摩滅、損壊するため、定期的に鋼球を補給する必要があり、ランニングコストが掛かるという問題がある。
 さらにまた、特許文献8に示されている冷却装置を用いてレール溶接部を加速冷却した場合、レール柱部の残留応力が低下せず、疲労寿命もさほど延びないことが、本発明者らが実施した試験によって判明した。即ち、レール溶接部の適切な範囲について適切な冷却速度で冷却を行わないと、レール溶接部の残留応力を低減(圧縮残留応力を増加)できないことが明らかとなった。
特開昭56-136292号公報 特開平11-270810号公報 特開平6-292968号公報 特開昭48-95337号公報 特開昭59-93837号公報 特開昭59-93838号公報 特開平3-249127号公報 特開昭60-33313号公報
Proceedings of the Second International Conference on residual stresses, ICR2,Nancy, France, 23-25,Nov,1988,P912-918 三木、穴見、谷、杉本、「溶接止端部改良による疲労強度向上」、溶接学会論文集、Vol.17,No.1,P111-119(1999)
 上述したように、レール柱部の疲労強度とレール足裏部の疲労強度とレール頭部の硬度とを効率的に高めるための技術は従来存在しなかった。そこで、本発明の第1の目的は、従来と比較して溶接部の疲労強度が向上したレールを効率的に製造するための方法を提供することである。
 また、本発明の第2の目的は、レール頭部の硬度を十分確保すると共に、柱部の残留応力をさらに低減させる(すなわち、圧縮残留応力を増加させる)ことにより、従来に比べてレール溶接部の疲労強度を向上させることが可能な、レール溶接部の冷却方法及びそれに用いられる冷却装置を提供することである。
 本発明は、上述の課題を解決するために、以下の手段を採用した。(1)本発明の第1の態様は、パーライトからオーステナイトへの変態の開始温度Ac1以上に加熱されたAc1領域と、前記変態の完了温度Ac3以上に加熱されたAc3領域と、を有するレール溶接部の冷却方法であって、前記レール溶接部における柱部冷却領域を、オーステナイトからパーライトへの変態が完了するまでの一部の温度範囲において冷却する第1の柱部冷却工程と;前記レール溶接部における前記柱部の全体がパーライトへ変態後、前記柱部冷却領域を冷却する第2の柱部冷却工程と;前記レール溶接部における足部を冷却する足部冷却工程と;前記レール溶接部における頭部を冷却する頭部冷却工程と;を備え、前記第1の柱部冷却工程及び前記第2の柱部冷却工程の冷却時間をt(分)とすると、前記柱部冷却領域の幅Lを前記Ac1領域の幅LAc1で除して得られるk値が-0.1t+0.63≦k≦-0.1t+2.33で示される式を満たすレール溶接部の冷却方法である。
(2)上記(1)に記載のレール溶接部の冷却方法では、前記第1の柱部冷却工程では、自然冷却速度を超え、5℃/s以下の冷却速度で冷却し、前記第2の柱部冷却工程では、自然冷却速度を超え、且つ、前記足部の冷却速度以上の冷却速度で冷却してもよい。
(3)上記(1)に記載のレール溶接部の冷却方法では、前記第2の柱部冷却工程では、自然冷却速度を超え、且つ、前記足部の冷却速度以上の冷却速度で冷却してもよい。
(4)上記(1)に記載のレール溶接部の冷却方法では、前記第1の柱部冷却工程では、自然冷却速度を超え5℃/s以下の冷却速度で冷却してもよい。
(5)上記(1)に記載のレール溶接部の冷却方法では、前記第1の柱部冷却工程において、オーステナイト温度領域の冷却工程を第1の柱部冷却前期工程と、その後引き続きパーライトへの変態が完了するまでの温度範囲において冷却する第1の柱部冷却後期工程とを備え、前記第1の柱部冷却前期工程では、自然冷却速度を越え、且つ、前記レール足部の冷却速度以上の冷却速度で冷却し、前記第1の柱部冷却後期工程では、自然冷却速度又は2℃/s以下の冷却速度で冷却し、前記第2の柱部冷却工程では、自然冷却速度を超え、且つ、前記レール足部の冷却速度以上の冷却速度で冷却してもよい。
(6)上記(1)に記載のレール溶接部の冷却方法では、前記足部の冷却速度が自然冷却速度であってもよい。
(7)上記(1)に記載のレール溶接部の冷却方法では、前記頭部冷却工程では、A3、AeもしくはAcm超のオーステナイト温度域からパーライトへの変態を完了するまでの少なくとも一部の温度範囲において自然冷却速度を超え5℃/s以下の冷却速度で冷却してもよい。
(8)上記(1)~(7)のいずれか1項に記載のレール溶接部の冷却方法では、前記頭部と前記柱部とを冷却する際に、顎部の下側コーナー部の冷却速度を前記柱部の冷却速度より遅くしてもよい。
(9)上記(8)に記載のレール溶接部の冷却方法では、前記頭部の側面を形成する頭側部の高さをHsとすると、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を除く頭部全域を加速冷却してもよい。
(10)上記(9)に記載のレール溶接部の冷却方法では、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域に遮蔽板を設け、前記頭部に向けて冷却用流体を噴出してもよい。
(11)本発明の第2の態様は、上記(1)に記載のレール溶接部の冷却方法を用いて冷却されたレール溶接継手であって、上下方向の残留応力が350MPa以下である前記柱部と;長手方向残留応力が圧縮応力であるレール足裏部と;金属組織の95%以上がパーライト組織である前記溶接部と;を備えるレール溶接継手である。
(12)本発明の第3の態様は、上記(8)に記載のレール溶接部の冷却方法を用いて冷却されたレール溶接継手であって、レール断面周方向の残留応力が300MPa以下である前記柱部と;前記頭部の硬度がHv320以上である前記頭部と;を備えるレール溶接継手である。(13)本発明の第4の態様は、レール溶接部の頭部の側面を形成する頭側部の高さをHsとすると、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を除く頭部全域を加速冷却する頭部冷却ユニットを備えてもよい。
(14)上記(13)に記載のレール溶接部の冷却装置では、前記頭部冷却ユニットは、前記頭部に向けて冷却用流体を噴出する噴出部と;前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を覆う遮蔽板と;を備えてもよい。
 上記(1)~(7)に記載の方法によれば、レール溶接部の柱部の残留応力を改善し、足裏部の残留応力も圧縮範囲に制御することにより、溶接部に疲労亀裂が生じにくくすることができる。
上記(8)~(10)に記載の方法によれば、レール溶接部の頭部及び柱部を加速冷却する際に、顎部の冷却速度を柱部の冷却速度より遅くすることにより、レール頭部の硬度を十分確保しつつ、柱部の残留応力をさらに低減させることができる。このため、レール頭部の磨耗性とレール溶接部の疲労強度とを向上させることができる。
 上記(11)に記載のレール溶接継手によれば、重荷重の列車がレール上を通過する場合であっても、金属疲労による損傷を抑えることができる。
 上記(12)に記載のレール溶接継手によれば、重荷重の列車がレール上を通過する場合であっても、金属疲労による損傷や、レール頭部の磨耗を抑えることができる。
 上記(13)、(14)に記載の装置によれば、頭部冷却ユニットが、頭側部の上端から2Hs/3下方の位置より下側の頭部領域を除く頭部全域を加速冷却するので、顎部の冷却速度が緩和され、顎部の冷却速度を柱部の冷却速度より遅くすることができる。このため、車輪に接するレール頭部の硬度を高く保った上で、柱部の上下方向の残留応力をさらに低減させることができる。
レールの側面図である。 図1AのA-A線に沿って得られる断面図である。 フラッシュバット溶接のフラッシング工程を示す概略図である。 フラッシュバット溶接のアップセット工程を示す概略図である。 フラッシュバット溶接のトリミング工程を示す概略図である。 テルミット溶接について説明するための概略図である。 図3AのB-B線に沿って得られる断面図である。 ガス圧接の加熱工程を示す概略図である。 ガス圧接の加圧工程を示す概略図である。 ガス圧接のトリミング工程を示す概略図である。 エンクローズアーク溶接について説明するための概略図である。 エンクローズアーク溶接について説明するための断面図である。 レール溶接部の柱部からの疲労損傷を示す概略図である。 同損傷の破面を示す概略図である。 レール溶接部の周部の周方向に存在する残留応力分布を示すグラフである。 溶接中心からの距離と、レール柱部の上下方向に存在する残留応力との関係を示すグラフである。 レール溶接部の周部のレール長手方向に存在する残留応力分布を示すグラフである。 車輪が枕木の直上を通過する時点を示す概略図である。 車輪が枕木の間を通過する時点を示す概略図である。 レール溶接部の足部からの疲労損傷を示す概略図である。 同損傷の破面を示す概略図である。 炭素鋼の平衡状態図である。 炭素鋼の加熱・冷却に伴う組織変化を示す概略図である。 亜共析組成の鋼のCCT図である。 共析組成の鋼のCCT図である。 過共析組成の鋼のCCT図である。 レール軸方向のレール温度分布と硬度分布とを示すグラフである。 溶接部の柱部における、溶接直後の温度分布を示す図である。 溶接部の柱部における、冷却過程のある時点での温度分布と収縮応力とを示す図である。 溶接部の柱部における、自然冷却過程及び加速冷却過程のある時点での温度分布を示す図である。 溶接部の柱部における、自然冷却過程及び加速冷却過程の、溶接中心の温度がAr1より僅かに高温になる時点での温度分布を示す図である。 柱部を広範囲に冷却した場合の温度分布を示す概略図である。 足部を過剰に冷却した場合の温度分布を示す概略図である。 レール柱部をパーライト変態完了後に加速冷却する場合の温度履歴を示す概略図である。(第1冷却パターン) レール柱部をオーステナイト分解開始前からパーライト変態完了まで加速冷却する場合の温度履歴を示す概略図である。(第2冷却パターン) レール柱部をオーステナイト分解開始前からパーライト変態完了まで加速冷却する場合の温度履歴の他の概略図である。(第2冷却パターン) レール柱部をオーステナイト分解開始前からパーライト変態完了まで加速冷却する場合の温度履歴の他の概略図である。(第2冷却パターン) レール柱部をオーステナイト分解開始前からパーライト変態完了までを加速冷却しさらにパーライト変態完了後に加速冷却する場合の温度履歴の概略図である。(第3冷却パターン) レール柱部と頭部とをオーステナイト分解開始前からパーライト変態完了までを加速冷却し、さらにレール柱部をパーライト変態完了後に加速冷却する場合の温度履歴の概略図である。(第4冷却パターン) 冷却時の温度履歴の概略図であり、冷却の途中のパーライト変態温度域で2℃/s以下の緩い冷却域を設ける場合の図である。(第4冷却パターン) 冷却時の温度履歴の概略図であり、レール柱部と頭部をオーステナイト分解開始前からパーライト変態完了までを加速冷却しさらにレール柱部をパーライト変態完了後に加速冷却する場合の図である。(第5冷却パターン) 冷却幅が狭い場合の溶接部の温度分布の概略図である。 冷却幅が中間程度の場合の溶接部の温度分布の概略図である。 冷却幅が広い場合の溶接部の温度分布の概略図である。 短時間冷却の場合の、k値(冷却幅とAc1以上に加熱される材料幅の比)と残留応力との関係を示す概略図である。 長時間冷却の場合の、k値(冷却幅とAc1以上に加熱される材料幅の比)と残留応力との関係を示す概略図である。 残留応力低減に効果的なk値(冷却幅とAc1以上に加熱される材料幅の比)と冷却時間との関係を示す概略図である。 柱部の疲労強度評価試験の概略図である。 足部の曲げ疲労強度評価試験の概略図である。 レールの側面図である。 図27AのX’-X’線に沿って得られる断面図である。 レール頭部の部分断面図である。 本発明の一実施形態に係るレール溶接部の冷却装置の概略図である。 レール溶接部の頭部を加速冷却する頭部冷却ユニットの平面図である。 同頭部冷却ユニットの側面図である。 図30AのA’-A’線に沿って得られる断面図である。 図31のC’-C’線に沿って得られる断面図である。 図30AのB’-B’線に沿って得られる断面図である。 フラッシュバット溶接のフラッシング工程を示す概略図である。 フラッシュバット溶接のアップセット工程を示す概略図である。 フラッシュバット溶接のトリミング工程を示す概略図である。 本発明の一実施形態に係るレール溶接部の冷却方法によりレール溶接部を加速冷却したときの温度履歴を示す概略図である。 レール溶接部を自然冷却したときの温度履歴を示す概略図である。 レール溶接部の頭部のみを加速冷却したときの温度履歴を示す概略図である。 従来の方法によりレール溶接部の頭部及び柱部を加速冷却したときの温度履歴を示す概略図である。 4通りの冷却方法による残留応力分布の一例を示す概略図である。 レール溶接部の冷却試験における、温度、硬度、及び残留応力の測定箇所を示した概略図である。 レール溶接部の柱部からの疲労損傷を示す概略図である。 同損傷の破面を示す概略図である。 レール溶接部の周部の周方向に存在する残留応力分布を示すグラフである。
<溶接方法>
 本発明において、レール溶接部の溶接方法は、フラッシュバット溶接に限らない。以下、レール溶接部の溶接方法の1例として、フラッシュバット溶接について図2A~図2Cを参照してさらに詳しく説明する。
 フラッシュバット溶接方法の第1の工程は、図2Aで示した端面間に連続してアークを発生させる工程である(フラッシング工程)。この工程では、電極9を介して印加される電圧により被溶接材の端面間にアークが発生する。アークが発生した部分は局部的に溶かされて、溶けた金属の一部はスパッターとして外部に放出され、残りは端面に残留する。アークによって溶かされた部分にはクレータと呼ばれる凹みが発生する。被溶接材は徐々に近づけられていき、次々に新たな接触部分にアークが発生し、その局部的な溶融の繰返しにより材料は次第に短くなっていく。この過程では材料間隔がほぼ一定の間隔を保つように被溶接材の移動速度が調整される。
 フラッシング工程の途中において、故意に材料端面を接触させ、直接通電による大電流により被溶接母材の温度を高める工程が採用される場合がある。その目的は、端面近傍の温度分布をなだらかにして、より効率的にアップセット工程に進むためである。この工程は「予熱工程」と呼ばれ、2~5秒程度の接触通電と1秒程度の非接触、休止期間を数回繰り返すのが通常である。
 フラッシング工程を数10秒から数分間続けることにより、被溶接材の端面の全面が溶融した状態となる。また、端面近傍の材料は温度上昇により軟化する。この状態に到達した時点で、図2Bに示すように、軸方向へ加圧が行われる。このアップセットと呼ばれる加圧により、端面に形成されていたクレータ凹凸面はつぶされ、端面間に存在していた溶融金属は系外に押し出される。軟化した端面近傍は、塑性変形して断面が増大し、溶接面の周囲には溶接ビード11が形成される。
 この溶接ビード11は図2Cに示すように、溶接直後の高温の期間にトリマー12により熱間でせん断、除去される(トリミング工程)。トリミング後は溶接部の周囲に高さ数mm、幅10~30mm程度の薄い溶接ビードが残存する。
 トリミング後に残った薄い溶接ビードは、車輪と接触するレール頭部はグラインダーで平滑化、研磨される。レール柱部、足部の溶接ビードは、鉄道会社によりグラインダー研磨による完全な平滑化、グラインダー研磨による薄肉化、無手入れ、などと処置方法が異なる。
<レール素材>
 次にレール鋼について説明する。レール鋼はJIS-E1101、JIS-E1120に規定されているように、炭素を0.5~0.8質量%含有する亜共析鋼、もしくは炭素を約0.8質量%含有する共析炭素鋼が一般的に用いられる。また、最近は海外の鉱山鉄道における重荷重貨物線を対象に、より耐摩耗性を向上させた、0.8質量%を超える炭素を含有する過共析組成のレール鋼も普及しつつある。
<平衡状態図>
 図11は、炭素量を横軸で示す炭素鋼の平衡状態図である。前記の通り、レール鋼の炭素量は概ね0.4~1.2質量%の範囲にある。レール鋼は炭素の他、SiやMnを含有し、場合によってはCrなどの強化元素を含有する。これら炭素以外の元素の影響により厳密には平衡状態図は変化するが、その変化はレール鋼における(炭素以外の元素の)含有量の範囲においてはごく僅かである。亜共析組成の鋼は、A1点以下の温度ではパーライトを主体としてフェライトを一部含有する金属組織を有し、A1点~A3点の温度ではフェライトとオーステナイトとが混合する金属組織を有し、A3点以上の温度ではオーステナイト組織を有する。
 共析組成の鋼の場合、A1点以下の温度ではパーライト組織を有し、Ae点以上の温度ではオーステナイト組織を有する。
 過共析組成の鋼の場合、A1点以下の温度ではパーライトを主体としてセメンタイトを一部含有する金属組織を有し、A1点~Acm点の温度ではフェライトとセメンタイトとが混合する金属組織を有し、Acm点以上の温度ではオーステナイト組織を有する。
 上述の組成の鋼はいずれも、さらに高温の固相線温度Ts点以上の温度ではオーステナイト相と液相との2相組織となり、液相線温度TL点以上の温度では液相組織となる。フラッシュバット溶接では溶接界面の温度はTL点に達する。また、溶接界面から遠ざかる位置ほど低い温度を有する。
 レール圧延後の大気中自然冷却(自然放冷)、もしくは圧延に引き続いて行われる加速冷却、さらに一旦常温まで冷却された後の再加熱々処理後の連続冷却過程では、その冷却速度に応じて平衡変態温度からの過冷が起こり、状態図から想定される初析相の含有量が低下し、組織分率はパーライト組織が大半を占める。特に共析組成近傍の炭素量0.6~1.0質量%の範囲については、パーライト組織分率はほぼ100%に達する。なお、「加速冷却」とは、冷却用流体を被冷却物に噴出することにより当該被冷却物を自然冷却速度より速い冷却速度で強制的に冷却することをいう。
<溶接熱サイクルと組織変化>
 図12は、炭素鋼の加熱・冷却に伴う組織変化を示す概略図である。図12に示されるように、加熱過程における実際の組織変化は、その加熱速度に応じて平衡変態温度より高い温度で開始する。また、冷却過程における実際の組織変化は、その冷却速度に応じて平衡変態温度より低い温度で開始する。このため、加熱過程においては過熱状態が生じ、冷却過程においては過冷状態が生じる。一般に、加熱過程における変態温度はA1、A3などの平衡変態温度に「c」を付け、冷却過程における変態温度はA1、A3などの平衡変態温度に「r」を付けて区別される。
 すなわち、亜共析組成の鋼に関しては、加熱過程におけるパーライト→オーステナイト変態の開始点をAc1、完全にオーステナイトに変態する温度をAc3と呼び、冷却過程におけるオーステナイト→フェライト変態の開始点をAr3、オーステナイトが消失する温度をAr1と呼ぶ。
 同様に、過共析組成の鋼に関しては、加熱過程におけるパーライト→オーステナイト変態の開始点をAc1、完全にオーステナイトに変態する温度をAccmと呼び、冷却過程におけるオーステナイト→セメンタイト変態の開始点をArcm、オーステナイトが消失する温度をAr1と呼ぶ。
 また、共析組成の鋼に関しては、加熱過程におけるパーライト→オーステナイト変態の開始点をAc1、完全にオーステナイトに変態する温度をAceと呼び、冷却過程におけるオーステナイト→パーライト変態の開始点をAre、オーステナイトが消失する温度をAr1と呼ぶ。
 尚、図11に示すように、共析組成の鋼に関しては、A3線とAcm線とが集合する点をAe点と呼ぶ。
<連続冷却線図(CCT図)による組織変化の説明>
 一般に、冷却過程における相変化に関しては、鋼成分と冷却速度とにより変態温度、析出相が異なる。図13A~図13Cは、連続冷却による高炭素鋼の組織変化を示すCCT図である。
 図13Aは亜共析鋼のCCT図である。曲線(0)で示されるような緩冷却を行う場合、Fs線と曲線(0)との交点の温度で初析フェライトが析出する。その後、Ps線と曲線(0)との交点の温度でパーライト変態が開始する。更に、Pf線と曲線(0)との交点の温度でパーライト変態が完了する。この場合、金属組織は微量の粒界フェライトを含有するフェライト・パーライト組織となる。冷却速度を上げて、曲線(1)で示されるような冷却を行う場合、Fs線がPs線と合流して消失するため初析フェライトは析出しないが、Ps線とPf線との間でパーライト変態が起きる。この場合、金属組織はパーライト組織となる。さらに冷却速度を上げて、曲線(3)で示されるような冷却を行う場合、温度Bでパーライト変態が停止し、一部ベイナイト組織を生じることがあるが、未変態部はオーステナイトのまま過冷される。そして、温度Cと温度Dとの間でマルテンサイト変態を起こす。この場合、金属組織はパーライトとベイナイトとマルテンサイトとが混合した組織となる。さらに冷却速度を上げて、曲線(5)で示されるような冷却を行う場合、曲線(5)はPs線と交差せず、オーステナイト組織のままMs点まで過冷された後、マルテンサイト変態を起こす。高炭素鋼のマルテンサイト組織は極めて硬くて脆いため、レール鋼の溶接においては冷却曲線(2)を越すような速い冷却は避けることが好ましい。
 図13Bは共析鋼のCCT図である。共析鋼の場合、亜共析鋼と異なり、緩冷却時の初析フェライトが析出しない。
 図13Cは過共析鋼のCCT図である。過共析鋼の場合、緩冷却時に初析フェライトが析出する亜共析鋼とは異なり、緩冷却時に初析セメンタイトが析出する。図中、θs線はセメンタイトの初析線を示す。冷却曲線がθs線に交差する緩冷却を行う場合、金属組織は初析セメンタイトを微量含む、セメンタイト・パーライト組織となる。
<硬度分布から見た最高温度、組織、硬度>
 図14は、レール溶接完了時のレール軸方向の温度分布と、レール溶接完了時の金属組織(高温組織)と、冷却後の金属組織と、冷却後の硬度と、を模式的に示す。図14の左端は熱影響を受けないレール母材であり、右端は溶接中心を示す。
 フラッシング工程により、溶接中心(図14中の右端)の温度は固相線温度Tsを超え、レール溶接中心部には脱炭部が生じる。脱炭部はアップセット工程後も薄く残留する。この部分は冷却時に周囲に比較して初析フェライトが生じやすいため、冷却後の硬度が下がる。
 Ac3、Ace、又はAccmを超えて加熱され、完全なオーステナイト相に変態した溶接中心付近の第1の領域は、その後の冷却時に全てパーライト変態し、冷却後は均一な硬度が得られる。その第1の領域の外側には、温度がAc1以上であるが、Ac3、Ace、又はAccmを超えない第2の領域がある。この第2の領域には、加熱時点で、オーステナイト相と、未変態のフェライト相又はセメンタイト相と、が混在する。オーステナイトに変態した部分はその後の冷却でパーライトに変態するが、未変態のフェライト相や、未溶解で球状化したままのセメンタイトはそのまま室温まで残る。これらの組織はオーステナイト相から変態した正常なパーライトに比較して硬度が低い。この未変態相の分率が溶接中心から遠ざかるにつれて増加するため、第2の領域の硬度は低下していく。
 さらに溶接中心から離れると、Ac1に達しない領域がある。この領域においても500℃以上に加熱される第3の領域はパーライト中のセメンタイトが球状化し硬度が低下する。溶接中心から遠ざかるにつれて球状化の程度は小さくなり、しだいに母材の硬度に近づいていく。
 また、溶接部の鉛直長手断面のマクロ組織は、500℃~Ac1までの球状化域は母材と変わらないが、Ac1以上、Ac3、Ace、Accm以下の領域はオーステナイト、フェライト、セメンタイトの混相領域のため細粒となり硝酸アルコールなどにより差異が明確に判別できる。Ac3、Ace、Accm以上に加熱された第1の領域は高温加熱により粒が粗くなる傾向はあるが、肉眼では母材に近い組織を呈する。なお、500℃~Ac1までの第3の領域では走査型電子顕微鏡(SEM)により球状化したセメンタイトを確認できる。
 レールの溶接において被溶接材がAc1以上に加熱される距離は、溶接方法、溶接条件、レールの部位により多少の差がある。レール溶接後の鉛直長手方向断面におけるマクロ組織、硬度分布を観察した結果、フラッシュバット溶接のレール柱部においては溶接条件に応じて10~50mmの範囲であった。また、同様にAc3、Ae3又はAccm以上に加熱される距離は、5~40mmであった。
<残留応力の発生メカニズム>
 次にレール溶接における柱部の著大な上下方向残留応力の発生メカニズムについて、発明者らの考えを説明する。
 フラッシュバット溶接では、レールの端面間にフラッシングを起こさせ、端面を1300~1400℃の融点以上に達せしめる。一方、電力供給のための電極9(図2A参照)は溶損などによる損耗を抑制するために水冷される。このため、レール材は水冷された電極9から冷却されており、電極9の近傍では溶接終了時点でも300℃程度である。電極9のレールへの装着位置は通常、溶接端面から100mm前後離間している。従って、溶接完了時点において、電極9と端面の距離100mm程度の間には、1000℃前後の温度差が生じる。図15A~図15Dは、レール溶接部の柱部における温度分布を示す。図15Aにおける曲線XX0は溶接直後の温度分布を示す。この図15Aから、急峻な温度勾配がレール材に生じていることがわかる。
 なお、テルミット溶接法では高温の溶鋼の注入によりレール端面を溶融させて溶接するため、溶鋼注入によりレール長手方向に強い温度分布が一時に生じる。
 ガス圧接では圧接するレール端面近傍の加熱により、端面の近傍は1000℃前後に加熱され、上記溶接法と同様にレール長手方向に温度分布が生じる。
 エンクローズアーク溶接では作業時間1時間以上をかけてレール底部から順次、手溶接により溶接金属が盛られていく。上記溶接法と同様にレール長手方向の温度分布が生じるが、上下方向にも温度分布が生じる点が他の溶接方法とやや異なり、この溶接方法に関しては本発明の制御冷却方法は必ずしも有効とは言えない。
 レール柱部における上下方向(周方向)残留応力の発生は、温度勾配が最も急峻なフラッシュバット溶接が最も顕著である。そして、テルミット溶接、ガス圧接は順に温度分布が緩くなる、すなわち、残留応力が緩和する。本発明はこれらの溶接方法に対していずれも有効である。
 残留応力は、構造物内の温度の不均一に基づく熱収縮応力の不均一が存在する場合に、構造物内の構成部位が互いに収縮ひずみを拘束しあうために収縮応力が内部応力として残存する結果、発生する。上記構造物が高温の状態では、降伏点が低く塑性変形が容易に起こるため、構成部材間に拘束力が発生せず、残留応力は少ない。降伏点は温度が低下するとともに増加することが知られており、残留応力の発生は低温で大きくなる。
 一方、冷却過程でオーステナイト相から変態が起こる際には、応力のより小さい方向に結晶格子が組み変わりやすい。その結果、その方向に大きくひずみが生じることで応力が緩和されることがある。このため変態点において、応力はいったん開放されると考えられる。常温に到達した後の状態からみると、変態点より高い温度における応力分布は省略して考えて良い場合もある。ただし、温度分布そのものは変態前後において引き継がれ、その後の残留応力の発生に影響するため重要である。
 図15Bは溶接部の柱部における、冷却過程のある時点での温度分布と収縮応力とを示す。実線XX1はその時点での温度分布を示している。溶接部中心の温度T1と、周囲の温度との違いにより、溶接部には収縮応力が発生する。変態温度域ではいったん応力が開放されるため、その温度域では応力は小さく、T1が変態完了温度Ar1まで冷却した以降に本格的に残留応力が発生すると考えられる。
 図15Cは、溶接部の柱部における、自然冷却過程及び加速冷却過程のある時点での温度分布を示す。破線で示した曲線YY2は溶接部中心付近の高温領域を加速冷却した場合の温度分布を曲線を示す。実線で示した曲線XX2は溶接部中心付近の高温領域を自然冷却した場合の温度分布を示す。
 図15Dは、自然冷却過程及び加速冷却過程における、溶接中心の温度がAr1より僅かに高温になる時点での温度分布を示す図である。実線で示した曲線XX3は自然冷却の場合の温度分布を示す。破線で示した曲線YY3は、溶接部中心付近の広範囲を加速冷却した場合の温度分布を示し、破線で示した曲線ZZ3は、溶接部中心付近の狭範囲を加速冷却した場合の温度分布を示す。この温度に達するまでの時間は溶接中心を加速冷却した場合のほうが短い。ここで、溶接中心付近における、ある一定領域、例えば溶接直後の温度分布XX0において最高加熱温度がAc1以上となる範囲(LAc1)における温度分布の違いと、それに基づく残留応力の違いとについて以下に説明する。溶接中心を加速冷却すると、自然冷却の場合に比べ前記LAc1範囲内における最高温度と最低温度の差が小さくなる。その結果、この範囲内における温度差に基づく残留応力の発生は小さくなる。また、より広範囲に考えた場合にも、溶接部から離れた低温部による収縮拘束が溶接部の広い範囲に分散されるため、残留応力の発生は小さくなる。このように、溶接後一定時間が経過した時点における、溶接部のある範囲内の最高温度と最低温度との差を小さくすることにより、残留応力を低減する効果が得られる。冷却幅を変更することにより温度分布は変化し、場合によっては図15D中の曲線ZZ3のように中心部の温度が低い、凹型の温度分布となることがあるが、上記領域における最高温度と最低温度との差が小さくなれば同様の効果が得られる。
 本発明者らの実験によると、溶接部の最高加熱温度がAc1を超える領域において、溶接後一定時間経過した時点における前記領域中の最高温度と最低温度との温度差が50℃以内であると柱部の残留応力の低減効果が認められた。
 温度分布は冷却する時間と、冷却速度とに影響される。レール鋼は高炭素組成であるために焼入れ性が高く、オーステナイト領域から加速冷却を行う場合には、変態様式に対する配慮が必要である。冷却速度が速すぎる場合、図13A~図13Cに示したオーステナイト→パーライト変態領域を通らず、その短時間側の過冷オーステナイト領域を通過する。このため、硬くて脆いマルテンサイト組織が生成し、溶接部が脆化する。そこで、本発明では、レール鋼の脆化を防止するために、冷却速度を最大5℃/sに規定する。本発明者らの実験によると、マルテンサイトが発生しない冷却速度の範囲では、冷却時間と冷却幅とが残留応力に対する主な因子である。冷却時間及び冷却幅の適正な範囲は後述する。
 溶接中心付近を加速冷却して温度分布を平坦化することにより残留応力を軽減する効果は、平坦化された温度分布がAr1付近で得られていることが最も効果が大きいと考えられるが、それ以上の温度、またはそれ以下の温度でも効果を有する。ただし溶接部の中心温度が200℃を下回った状態で平坦な温度分布が得られても、すでに残留応力は大きく発生しており効果が小さい。
<溶接部の冷却幅>
 図16Aは、レール柱部を広範囲に冷却した場合の、溶接部におけるレール頭部、柱部、足部の温度分布を模式的に示す。レール柱部中央部における長手方向B-B’上の温度分布は全体に温度が低下するのみで、中心部の温度分布を平坦にして応力を緩和させる働きは期待できない。一方、溶接中心の温度分布図において、冷却時間が長くなるにつれて柱部が頭部、足部に比べて相対的に温度低下する結果、頭部、足部の長手方向の収縮応力が、先に冷却した柱部に拘束され、特に足裏部に長手方向に引張応力が発生する。足裏部の長手方向残留応力の引張化は曲げ疲労強度を低下させる懸念があり、好ましくない。ただし柱部は長手方向に圧縮され、上下方向(周方向)の残留応力も緩和されることから、柱部に限れば疲労強度は向上していく。このように冷却幅の影響は冷却する時間によっても変わる。その適正条件については後述する。
<足裏冷却>
 図16Bは、レール足裏部を過剰に冷却した場合の温度分布を示す。加速冷却により足部が柱部に比べて温度低下した場合、レール柱部の長手方向の収縮応力がより温度の低下した足部に拘束される。この作用により、柱部に長手方向の引張応力が発生し、上下方向(周方向)にもポアソン比分の引張応力を発生し、柱部の上下方向(周方向)応力を引張側に変化させる結果となる。このため、レール足部を強度増加などを目的として加速冷却する場合には、レール柱部より温度を高く保つことが望ましい。
<冷却装置>
 溶接部の冷却装置は冷却対象とするレール部位を適切に冷却できるものであれば、特にその形式は問わない。冷却媒体により冷却能力が異なるが、本発明で規定する冷却速度が得られれば冷却媒体の種類は特に限定されない。ただしレール部位ごとに冷却速度を調整できるようになっていることが必要である。たとえば冷却媒体として空気を用いる場合にはその噴出量、噴出ノズルとレール表面との距離、などの調整により冷却速度を調整できることが必要である。このような冷却装置の詳細は後述する。
<冷却方法(高強度熱処理レールの頭部冷却方法)>
 ところで、レール頭部には車輪との接触により摩耗が生じる。特に曲線軌道においては車輪とレールの間に生じる相対すべりにより、摩耗が促進される。また、列車重量が重いほどその傾向は強まる。このため、曲線区間にはレールの交換頻度を少なくするために、レール頭部を硬化させた熱処理レールが採用されることが多い。
 高い硬度を有する熱処理レールは、レールの製造工程において行われる高温のオーステナイト状態からの加速冷却により変態温度を低下させて製造される。熱処理レールを溶接する場合、溶接中心付近のオーステナイト化領域は溶接後の冷却速度に応じて硬度が決まる。このため、溶接部の硬度は、熱処理レールのうち溶接熱が影響されない部分の硬度と異なる。
 フラッシュバット溶接による溶接後の自然冷却におけるパーライト変態温度域での冷却速度は通常1℃/s以下であるため、溶接部は熱処理レールより硬度が低下する場合が多い。このため、熱処理レールの溶接では、溶接後にレール頭部をオーステナイト領域からパーライト変態完了までの温度範囲で加速冷却し、母材並の硬度を得ることが望ましい。フラッシュバット溶接以外の溶接法では、冷却速度がさらに遅いため、溶接部の硬度はさらに低下する。熱処理レールの溶接で母材並の溶接部硬度を得るためには、溶接後にレール頭部をオーステナイト分解開始温度からパーライト変態完了までの温度範囲を加速冷却することが望ましい。
 ただし、溶接により500℃以上、かつAc3、Ace、Accm以下の温度域に加熱された部分における、球状化したセメンタイト領域又はフェライト単相領域は加速冷却を行っても硬化しない。したがって、加速冷却を行って硬度調整が可能な部分は、溶接中心近傍の、オーステナイト単相域まで加熱された領域である。
<冷却温度域>
 冷却温度域について、図17~図21に基づき以下に説明する。
 図17は、レール柱部がパーライト変態完了した後に、レール柱部を加速冷却する第1冷却パターンを示す。
 柱部の冷却の開始温度は高いほど望ましいが、パーライト変態が完了していない高温の状態から高冷速で冷却すると、マルテンサイト組織が発生する危険性があり、望ましくない。
 柱部の冷却速度は自然冷却速度以上が必要であり、冷速が早いほど溶接中心の温度分布を平坦化しやすく、残留応力を低減する効果が大きい。
 また、足部が柱部を超える冷却速度となった場合、遅れて柱部に収縮応力が発生することになる。その結果、柱部の収縮が足部に拘束されるため、長手方向の引張残留応力が増大する。その結果、柱部の上下方向(周方向)にもポアソン比分の引張応力が生じるため、上下方向(周方向)の残留応力が引張側に悪化するため好ましくない。図17に示す第1冷却パターンによりレール柱部の上下方向(周方向)の残留応力を低減し、足部の長手方向残留応力を圧縮に保つことが可能である。
 図18A、図18B、及び図18Cは、レール溶接部の柱部の温度がオーステナイト温度域である状態から加速冷却を開始する第2冷却パターンを示す。
 図18Aは柱部の温度がオーステナイト域からパーライト変態が完了するまでを冷却した例である。残留応力の発生が著しくなるパーライト変態温度以下に至るまでに、あらかじめ溶接中心近傍の温度分布を平坦化すること、及び溶接部柱部を加速冷却することで強度を高める効果により疲労強度を高めることができる。これらの効果を得るためには、オーステナイト温度域から冷却を開始する必要がある。またパーライト変態が完了するAr1以下まで冷却しているため冷却部の硬度は顕著に上昇する。
 図18Bはレール溶接部の柱部の温度がオーステナイト温度域から加速冷却を開始し、パーライト変態域の途中まで冷却した例である。
 この方法においても残留応力の発生が著しくなるパーライト変態温度以下に至るまでに、あらかじめ溶接中心近傍の温度分布を平坦化すること、及び溶接部柱部を加速冷却することで強度を高める効果により疲労強度を高めることができる。これらの効果を得るためには、少なくともオーステナイト温度域から冷却を開始する必要がある。一方、パーライト変態が完了する前に冷却を停止しているため、硬度の上昇代は先に示した図18Aより小さい。
 図18Cはレール溶接部の柱部の温度がオーステナイト温度域から加速冷却を開始し、パーライト変態域に差しかかかる前に冷却を停止した例である。
 この冷却方法においても残留応力の発生が著しくなるパーライト変態温度以下に至るまでに、あらかじめ溶接中心近傍の温度分布を平坦化することにより疲労強度を高めることができる。この効果を得るためには、少なくともオーステナイト温度域から冷却を開始する必要がある。また、温度分布の平坦化を目指すためには、少なくとも冷却開始から50℃以上、温度低下するまで冷却することが望ましい。この場合、冷却停止温度がパーライト変態の冶金的な駆動力が作用するAr3点、Ae点、Acm点以下まで冷却された場合には硬度は幾分上昇するが、硬度の上昇代は図18A、図18Bより小さい。冷却停止温度がパーライト変態の冶金的な駆動力が作用するAr3点、Ae点、Acm点以上の場合には硬度上昇は起きないが、この場合においても温度分布の平坦化により残留応力は改善される。
 冷却速度は自然冷却速度ではその効果が得られず、逆に冷却が速すぎる場合、柱部の組織がパーライト変態を起こさず、より低温でベイナイトもしくはマルテンサイト変態を起こす。高炭素鋼のマルテンサイト組織はきわめて硬くてもろいため避けなければならない。またベイナイト組織は変態温度により強度が変動し、合金成分の偏析部はさらに変態が遅延してマルテンサイト組織を混入する危険性があり、好ましくない。これらパーライト以外の組織を防止するためには冷却速度は5℃/s以下である必要がある。
 図19はレール溶接部の柱部の温度がオーステナイト温度域から加速冷却を開始し、さらに柱部がパーライト変態を完了した後も柱部を加速冷却する第3冷却パターンを示す。この方法は残留応力の発生が著しくなるパーライト変態温度以下に至るまでに、あらかじめ溶接中心近傍の温度分布を平坦化することと、溶接部柱部を加速冷却することで、柱部の強度を高める効果と、柱部がパーライト変態が完了した後に更に柱部を冷却することで、さらに疲労強度を高めることができる。これらの効果を得るためには、少なくともオーステナイト温度域から冷却を開始する必要がある。オーステナイト温度域からの冷却終了は、温度分布の平坦化を目指すためには少なくとも冷却開始から50℃以上の冷却を行うことが望ましい。また、硬度上昇を得るためにはパーライト変態の冶金的な駆動力が作用するAr3点、Ae点、Acm点以下まで冷却することが望ましい。オーステナイト域からの冷却をパーライト変態完了後まで行い、引き続きパーライト完了後の冷却を連続的に行っても良い。
 オーステナイト領域からパーライト変態完了までの冷速は自然冷却速度以上が必要であるが、マルテンサイト組織、ベイナイト組織を避けるために、5℃/s以下であることが好ましい。
 パーライト変態を完了した後の柱部の冷却速度は自然冷却速度以上であり、冷速が早いほど残留応力を低減する効果が大きい。
前述したようにマルテンサイト組織を防止するためにはパーライト変態域の冷却速度を5℃/s以下にする必要がある。マルテンサイト組織を防止するための他の方法として、パーライト変態温度域において冷却速度が十分に遅い、たとえば自然冷却速度もしくは2℃/s以下の加速冷却となる期間を設け、パーライト変態の完了を待つ方法も有効である。パーライト変態温度域以外の温度域における冷却速度にかかわらず、パーライト変態温度域におけるこの十分に遅い冷却の期間を設けることによりパーライト変態が完了し、マルテンサイトの生成を完全に抑制することができる。
 言い換えると、この冷却パターンは溶接部の冷却期間を前段、中段、後段に区分し、中段の期間を650℃~600℃のパーライト変態温度域の一部に設定し、自然冷却速度もしくは2℃/s以下の緩い冷却速度とする方法である。中段冷却の期間は20秒以上とすることがマルテンサイト組織を抑制するために望ましい。
 図20A、図20Bはその例である第4冷却パターンを示す。
図20Aは前段の冷却によりレール溶接部の柱部の温度がオーステナイト温度域からパーライト変態温度域の途中まで加速冷却し、引き続き中段の冷却として自然冷却速度もしくは2℃/s以下の緩い冷却速度で柱部のパーライト変態を完了させ、引き続き後段の冷却で、柱部を自然冷却速度以上の冷却速度で冷却した例である。この方法は前段の冷却の温度区間がパーライト変態温度域の一部を含むことから、柱部の強度を高める効果が得られる。パーライト変態を完了した後の後段の柱部の冷却速度は、速いほど残留応力を低減する効果が大きい。
 図20Bはレール溶接部の柱部の温度がオーステナイト温度域から前段の加速冷却を開始してオーステナイト温度域で中段冷却に切り替え、中段冷却としてオーステナイト温度域からパーライト変態を完了するまでを自然冷却速度もしくは冷却速度2℃/s以下で緩やかに冷却し、引き続き後段の冷却として柱部を加速冷却した例である。パーライト変態を完了した後の柱部の冷却速度は、速いほど残留応力を低減する効果が大きい。
 また、柱部がパーライト変態した後の冷却において、足部の冷速が柱部を超える場合、柱部が遅れて収縮し、柱部の収縮が足部に拘束されて長手方向の引張残留応力が増加する結果、上下方向(周方向)にもポアソン比分の引張応力が生じるため好ましくない。この方法によりレール柱部の上下方向(周方向)の残留応力をさらに低減し、また、柱部の強度を増すことでより高い疲労強度を得ることができる。
 上記冷却方法において、柱部がパーライト変態した後の足部の冷却速度が柱部のそれを超えないことが必要であることを説明した。この観点から、重荷重鉄道などのレールがより過酷な環境で使用される場合において、より残留応力を改善し、さたに高い疲労強度を得るためには、溶接後の冷却過程においてレール足部を自然冷却とすることが必要である。
 一方、磨耗の早い曲線軌道向けのレール頭部を熱処理したレールに対しては、溶接後の冷却過程において、レール頭部がパーライト変態する温度域を加速冷却して、母材レールと同等の硬度を与えることが望ましい。
 図21は、レール頭部および柱部の温度がオーステナイト温度域から加速冷却を開始し、さらに柱部がパーライト変態を完了した後に、さらに柱部を加速冷却する第5冷却パターンを示す。
 レール頭部、柱部を硬化させるためには、レール頭部の加速冷却はA3、AeもしくはAcm超のオーステナイト温度域から開始させる必要があり、パーライト変態が完了するまでの少なくとも一部の温度範囲を冷却する必要がある。オーステナイト温度域からの冷却終了は、温度分布の平坦化を目指すためには少なくとも冷却開始から50℃以上の冷却を行うことが望ましい。また、硬度を上げるためにはパーライト変態の冶金的な駆動力が作用するAr3点、Ae点、Acm点以下まで冷却する必要があり、より十分な硬度を得るためにはパーライト変態が完了するAr1以下まで冷却する必要がある。オーステナイト域からの冷却をパーライト変態完了後まで行い、引き続きパーライト完了後の冷却を連続的に行っても良いが、途中、中断してもかまわない。オーステナイト領域からの頭部と柱部の冷速はいずれも自然冷却速度以上でなくては硬化させることができず、一方、マルテンサイト組織、ベイナイト組織を避けるために5℃/s以下であることが必要である。この方法によりレール頭部を硬化させた熱処理レールにおいて、レール柱部の上下方向(周方向)の残留応力を低減するとともに、溶接部の部分的な偏磨耗を抑制することが可能である。
<適正な溶接部冷却幅と冷却時間の関係>
 また、溶接部を冷却した場合、溶接後の経過時間によってレール柱部の溶接部の温度分布状態は変化していく。残留応力が溶接部の温度分布によって決まることから、冷却を停止する温度、あるいは冷却時間によって、残留応力を低減させるのに効果的な冷却範囲が異なってくる。
 以下、図22A~図22Cを用いて、溶接中心からレール長手方向の温度分布が溶接後の時間経過とともに変化する状況を模式的に図示し、その場合の残留応力の変化について説明する。
 図22A~図22Cの縦軸は温度、横軸は溶接中心からの距離を材料がAc1以上に加熱される距離LAc1で除した無次元数である。この材料のAc1温度は730℃であり、溶接時にAc1以上に加熱されている幅は溶接中心部から片側20mmであるが、溶接中心から両側にまたがる全幅は40mmである。
 図22A~図22Cは溶接後1分間自然冷却の後、エアでレール柱部だけを冷却速度2℃/sで冷却した場合の、溶接直後、溶接後1分、溶接後3分、溶接後9分の状態を示している。実線は柱部を自然冷却の状態を示し、点線は柱部を加速冷却した状態の温度を示している。これらの例では足部は自然冷却しており、足部の温度分布は実線に相当する。
 図22Aはレール柱部の冷却範囲Lが極度に狭い場合であるkが0.1の場合の温度分布を示している。冷却幅は溶接中心から片側2mm、溶接部全体から見ると全冷却幅は4mmである。レール柱部がAc1以上となる幅(LAc1)は40mmで、これと冷却範囲Lに対する比率をkとした場合、kは0.1である。
 冷却時間が短い段階では柱部の温度分布は溶接中心部のみが温度低下するだけで、溶接中心部すなわち柱部の温度がAc1以上となる領域(図中の横軸、溶接中心からの距離がLAc1の0~0.5倍の範囲)での最高温度と最低温度の差が50℃を超えており、柱部上下方向(周方向)の残留応力は低減しない。
 冷却幅が極端に狭いkが0.1の条件で冷却を長い時間行ったとしても、やはり溶接中心近傍だけが温度低下し、柱部の温度がAc1以上となる領域(図中の横軸、溶接中心からの距離がLAc1の0~0.5倍の範囲)での最高温度と最低温度の差は100℃程度あり、引張残留応力は低減しない。
 図22Bはレール柱部の冷却範囲Lが中程度の場合であるkが1の場合の温度分布を示している。冷却幅は溶接中心から片側20mm、全冷却幅で40mmであり、レール柱部がAc1以上となる全幅40mmに対する比率(k)は1である。
 冷却時間が短い段階から柱部の溶接部の温度がAc1以上となる領域(図中の横軸、溶接中心からの距離がLAc1の0~0.5倍の範囲)での最高温度と最低温度の差は50℃以内であり、上下方向(周方向)残留応力は低減する。
 長時間冷却を行った状態でも、溶接部の温度がAc1以上となる領域(図中の溶接中止からの距離がLAc1の0~0.5倍の範囲)での温度範囲は50℃以内であり、上下方向(周方向)残留応力は低減する。
 図22Cはレール柱部の冷却範囲Lが極度に広い場合であるkが2の場合の温度分布を示している。冷却幅は溶接中心から片側40mm、全冷却幅で80mmであり、レール柱部がAc1以上となる幅40mmに対する比率kは2である。
 冷却時間が短い段階では柱部は広範囲に均等に温度低下するため、溶接中心が高い傾向が残り、溶接中心部すなわち柱部の温度がAc1以上となる領域(図中の横軸、溶接中心からの距離がLAc1の0~0.5倍の範囲)の最高温度と最低温度の差は50℃を越えており、上下方向(周方向)残留応力の低減効果は小さい。
 一方、長時間冷却を行うと高温部が優先的に冷えていくため、しだいに溶接部中央の温度低下が進む。このため溶接中心部すなわち柱部の温度がAc1以上となる領域(図中の横軸、溶接中心からの距離がLAc1の0~0.5倍の範囲)の最高温度と最低温度の差は50℃以下となり、柱部上下方向(周方向)残留応力は低減する。
 一方、柱部と足部(非冷却部)の温度差が顕著な領域が広がると足裏部の長手方向の残留応力は引張側に移行する。図22A~図22Cに示されるように、冷却幅が増加するに従って、また、冷却時間が長くなるに従って柱部と足部(非冷却部)の温度差が顕著な領域は広がっていく。
 図22A~図22Cの中では、冷却範囲が広い図22Cの長時間冷却した場合、柱部と足部の温度差が顕著な領域が著しく広がり、足裏部長手方向の残留応力の絶対値は引張となった。
 以上のように、冷却幅に加えて冷却する時間によって温度分布が異なり、それによってもたらされる残留応力が異なってくる。図22A~図22Cにおいて説明した内容を短時間冷却の場合と長時間冷却の場合に分け、冷却幅で整理すると図23A、図23Bのように整理される。
 まず図23Aに示す短時間冷却の場合は柱部の冷却幅が狭すぎる場合は柱部上下方向(周方向)の応力が変化しない。冷却幅が広すぎると、冷却の際に溶接部およびその周囲が全体的に冷やされるため、溶接中心部が高温の状態のまま残り、残留応力が軽減しない。一方、足裏長手方向応力は冷却幅が増加するにしたがって増加し、冷却幅が極端に広い場合にも引張にまでなることはない。以上から、冷却時間が短い場合には柱部の上下方向(周方向)残留応力が低下する中間的な冷却幅が適正範囲である。
 一方、図23Bに示す冷却時間が長い場合には、柱部の残留応力は冷却幅が広くなるほど低減する。冷却幅が広すぎる場合、足部との温度差が大きい領域が広く、足部の長手方向の収縮ひずみが柱部に作用し、長手方向の圧縮歪により柱部の上下方向(周方向)の引張が減じる。これに伴い、足裏は長手方向収縮が柱部に拘束され、残留応力は絶対値が引張応力に達するまで悪化する。冷却幅の適正範囲は足裏の長手方向残留応力の絶対値が引張に達するまでである。
 以上から、冷却時間が長くなるに従い冷却幅の適正範囲は狭い範囲に移行する。この様子を図24に示す。図24の縦軸は柱部の冷却幅Lと柱部においてAc1以上に加熱される幅LAc1の比k、横軸は冷却時間を分単位で示している。適正な冷却範囲は図中に(a)、(b)に示す直線に囲まれた範囲であり、冷却時間が延びるにしたがって狭い範囲に移行する。直線(a)、直線(b)に取り囲まれる範囲は式(1)で表される。
k=-0.1t+1.48±0.85  ・・・・(1)
 言い換えると、kの範囲は-0.1t+0.63≦k≦-0.1t+2.33・・・(2)
で示される。
 前述したように、レール柱部の溶接部近傍の温度分布を平坦にすることにより、柱部の上下方向の残留応力を低減することが可能である。そのために冷却範囲を溶接部中心付近の高温域に限定することが有効である。
 なお、冷却幅が狭過ぎる場合には冷却効率が低下して残留応力を低減する効果が下がるため、少なくとも5mm以上の範囲を冷却することが望ましい。
 以上の溶接後の制御冷却により、レール溶接部における柱部の上下方向残留応力は低減し、足裏部の長手方向残留応力も圧縮範囲となる良好な溶接継手が得られる。レール柱部の上下方向の残留応力を引張350MPa以下に低減することにより、本発明者らの実験によると、重荷重鉄道を模擬した疲労試験で柱部の水平亀裂の発生が認められなくなった。また、足裏部の長手方向の残留応力が圧縮範囲であることにより、曲げ疲労試験でも十分な疲労寿命が得られた。また、これらの効果はパーライト変態温度域を冷却する場合の冷却速度の調整により、金属組織の95%以上をパーライト組織とすることにより、硬くて脆いマルテンサイト組織の発生を抑えることで得られる。
尚、図20A、図20Bに示したように、冷却工程のなかに極めて冷却速度の遅い区間を含む場合には冷却開始から終了までの全体の冷却時間が長くなる。本発明者らの検討によると、このような冷却方法においては、式(1)及び式(2)に用いる冷却時間は、全体の冷却時間から2℃/s以下の緩冷却の時間を差し引いた値を用いる必要がある。
 続いて、レール頭部の硬度を十分確保すると共に、柱部の残留応力をさらに低減させるための一形態について、図面を参照して以下に説明する。なお、以下の実施形態の説明では、図28に示すように、レール頭部の上面115を「頭頂部」、頭部側面117を「頭側部」、頭部と柱部の間のくびれた部分119を「首部」、頭頂部と頭側部の間の上側コーナー部116を「ゲージコーナー部」、頭側部と首部の間の下側コーナー部118を「顎部」と呼ぶ場合がある。
 レール溶接部の頭部及び柱部を加速冷却する場合、顎部が角張っているため、後述するように、顎部の冷却速度が他の部位に比べて速くなる。本発明者らは、顎部の冷却速度が他の部位より速くなると、柱部の残留応力が、さほど低下しないことを発見した。そこで、本実施形態では、レール溶接部の頭部及び柱部を加速冷却する際に、顎部の冷却速度を柱部の冷却速度より遅くすることにより、レール頭部の硬度を十分確保しつつ、柱部における残留応力の低減を図る。顎部の冷却速度を柱部の冷却速度より遅くした場合、顎部近傍の強度が低減することにより柱部の収縮歪が吸収され、柱部の残留応力が低減するものと推察される。
 また、本実施形態に係るレール溶接部の冷却方法では、前記頭部の側面を形成する頭側部の高さをHsとすると、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を除く頭部全域を加速冷却することが好ましい。これにより、顎部の冷却速度が緩和され、顎部の冷却速度を柱部の冷却速度より遅くすることができる。
 また、本発明に係るレール溶接部の冷却方法では、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域に遮蔽板を設け、前記頭部に向けて冷却用流体を噴出してもよい。このような構成によれば、頭側部の上端から2Hs/3下方の位置より下側の頭部領域に向けて噴出される冷却用流体を遮蔽板で遮るようにしているので、顎部の冷却速度が緩和され、顎部の冷却速度を柱部の冷却速度より遅くすることができる。なお、冷却用流体の種類としては、冷却速度に応じて、エア、気水(エアと水の混合流体)、及び水のいずれかを選択できるようにしておけばよい。
 また、上記レール溶接部の冷却方法に用いられる冷却装置は、レール溶接部の頭部の側面を形成する頭側部の高さをHsとすると、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を除く頭部全域を加速冷却する頭部冷却ユニットを備えることを特徴としている。
 また、本発明に係るレール溶接部の冷却装置では、前記頭部冷却ユニットは、前記頭部に向けて冷却用流体を噴出する噴出部と、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を覆う遮蔽板とを備えていてもよい。
 また、本発明の一実施形態に係る溶接継手は、上記レール溶接部の冷却方法により、前記柱部におけるレール断面周方向の残留応力が300MPa以下とされ、かつ、前記頭部の硬度がHv320以上とされる。ここで、「硬度」は、ビッカース硬度である。
 柱部におけるレール断面周方向の残留応力が300MPaを超えると、レールの疲労強度が著しく低下する。また、頭部の硬度がHv320未満であると、レール頭部の摩耗が激しくなり、レールの耐久性が著しく低下する。なお、重荷重鉄道の曲線軌道では極めて摩耗が進みやすく、母材の頭部表層の硬度がHv400前後のレールが適用されることが多い。このため、レール溶接部の頭部表層においても母材レール並みのHv400程度の硬度を有することが好ましい。
[フラッシュバット溶接]
 レール溶接部の柱部における上下方向の残留応力は、温度勾配が最も急峻になるフラッシュバット溶接において顕著である。このため、本明細書では、レール継目の溶接方法の一例として、フラッシュバット溶接について説明しておく。なお、本発明に係るレール溶接部の冷却方法及びそれに用いられる冷却装置がテルミット溶接等の他の溶接方法に対しても適用できることは言うまでもない。
 フラッシュバット溶接を説明するための概略図を図34A~図34Cに示す。フラッシング工程と呼ばれる第一の工程では、電源137に接続された電極136を介して印加される電圧により、連設されたレール111の端面間に連続してアークを発生させる(図34A参照)。アークが発生した部分は局部的に溶融し、溶融した金属の一部はスパッターとして外部に放出されるが、残りはレール111の端面に残留する。アークによって溶融した部分にはクレータと呼ばれる凹みが発生する。レール111は徐々に近づけられていき、新たな接触部分にアークが次々に発生し、局部的な溶融の繰返しによりレール111は次第に短くなっていく。フラッシング工程を数十秒から数分間継続することにより、レール111の端面の全面が溶融した状態となる。また、レール111の端面近傍は温度上昇により軟化する。この状態に達した時点で、図34Bに示すように、レール軸方向へ加圧が行われる(アップセット工程)。このアップセットと呼ばれる加圧により、レール111の端面に形成されていたクレータは潰され、端面間に存在していた溶融金属が溶接面の外へ押し出される。軟化した端面近傍は、塑性変形して断面が増大し、溶接面の周囲には溶接ビード138が形成される。この溶接ビード138は、図34Cに示すように、溶接直後の高温期にトリマー139により熱間でせん断除去される。この工程はトリミングと呼ばれる。トリミング後は、溶接部の周囲に薄い溶接ビード138が残存する。レール頭部に残存する薄い溶接ビード138は、グラインダーで研磨して平滑化されるが、レール柱部及び足部に残存する薄い溶接ビード138は、グラインダーで研磨したり、無手入れなど鉄道会社によって処置が異なる。
[レール鋼]
 レール鋼は、JIS-E1101「普通レール及び分岐器類用特殊レール」、JIS-E1120「熱処理レール」に規定されているように、炭素を0.5~0.8質量%含有する亜共析もしくは共析炭素鋼が一般的に使用される。また、最近では海外の鉱山鉄道における重荷重貨物線を対象に、より摩耗性を向上させた、0.8質量%を超える炭素を含有する過共析組成のレール鋼も普及しつつある。
[残留応力の発生メカニズム]
 レール内の不均一な温度に起因する不均一な収縮歪が存在する場合に、レール内の各部位が互いに収縮歪を拘束し合うことにより生じる収縮応力が内部応力として残存したものが残留応力である。レールの継目を溶接した場合、レール溶接部と周囲との間に大きな温度差が発生する。これにより、レール溶接部に収縮応力が発生していき残留応力となる。そこで、溶接中心付近を加速冷却すれば、溶接中心付近における温度分布が平坦になるため、溶接中心における残留応力の発生は低減される。ただし、溶接中心付近を加速冷却して温度分布を平坦化することにより残留応力を軽減する効果は、平坦化された温度分布がAr1(オーステナイトが消失する温度)付近で得られている場合が最も効果が大きく、レール溶接部の中心温度が200℃を下回った状態で平坦な温度分布が得られても、既に大きな残留応力が発生しており残留応力の低減効果は小さい。
[レール溶接部の冷却装置]
 本発明の一実施の形態に係るレール溶接部の冷却装置(以下では、単に冷却装置と呼ぶ。)110は、図29に示すように、レール111を溶接した後のレール溶接部150の頭部112を加速冷却する頭部冷却ユニット120と、レール溶接部150の柱部113を加速冷却する柱部冷却ユニット121とから概略構成され、レール溶接部150の足部114を加速冷却する冷却ユニットは備えていない。なお、冷却装置110は後述する制御装置(図示せず)を有してもよい。
 頭部冷却ユニット120は、頭部112に向けて冷却用流体を噴出する噴出部123と、頭部112の側方に配置される一対の遮蔽板125とを備えている(図30A、図30B参照)。噴出部123は、レール溶接部150の頭頂部112a及び頭側部112bを取り囲む半筒状とされ、頭頂部112a及び頭側部112bに向けて冷却用流体を噴出する噴出孔123aが内周面に設けられている。
 一対の遮蔽板125は、レール軸方向に長く、長手方向の両端部が略コ字状(逆コ字状)断面、中間部が略L字状(逆L字状)断面とされている(図31、図32、図33参照)。一対の遮蔽板125の両端部は、その上縁部が蝶番126により連結されており、頭頂部112a上に載置される(図33参照)。一対の遮蔽板125は、蝶番126を回動軸としてレール軸と直交する面内で回動し、開閉自在とされている。略L字状(逆L字状)断面とされた中間部は、頭側部112bの高さをHsとすると、頭側部112bの上端から2Hs/3下方の位置より下側の頭部領域(頭側部112bの下側Hs/3+顎部112c+首部112d)を覆っている(図29、図31参照)。なお、遮蔽板125の中間部の上縁125aは、冷却用流体が頭部領域に流れ込まないように、頭側部112b側に傾斜している。
 柱部冷却ユニット121は、レール溶接部150の柱部113を挟んで対向配置され、柱部113に向けて冷却用流体を噴出する噴出孔124aが設けられた一対の噴出部124を備えている(図29参照)。
 レール溶接部150の頭部112を加速冷却する頭部冷却ユニット120の噴出部123には、冷却用流体を供給するための供給管128が接続され、レール溶接部150の柱部113を加速冷却する柱部冷却ユニット121の噴出部124には、冷却用流体を供給するための供給管129がそれぞれ接続されている。供給管128、129は、レール111を跨いで架設された門型フレームからなる架台122に保持されている。
[レール溶接部の冷却方法]
 次に、冷却装置110によるレール溶接部150の冷却方法について説明する。
(1)図33の破線で示すように、一対の遮蔽板125を蝶番126を回動軸として回動させて開いた状態とし、レール溶接部150の頭頂部112aの上に、蝶番126が設けられている部位を載置する。頭頂部112aの上に載置された一対の遮蔽板125は、その先端部が自重により下方に回動し、図33の実線で示した状態となる。これにより、レール溶接部150の頭側部112bの上端から2Hs/3下方の位置より下側の頭部領域(頭側部112bの下側Hs/3+顎部112c+首部112d)が遮蔽板125で覆われた状態となる(図31参照)。
(2)門型フレームからなる架台122を、レール111を跨ぐように設置し、レール溶接部150の頭頂部112a及び頭側部112bを取り囲むように、頭部冷却ユニット120の噴出部123をセットすると共に、レール溶接部150の柱部113を挟んで柱部冷却ユニット121を対向配置する。
(3)レール溶接部150の頭部112及び柱部113においてオーステナイト温度域からパーライトへの変態が完了するまでの間、頭部冷却ユニット120の噴出部123及び柱部冷却ユニット121の噴出部124から冷却用流体を噴出して頭部112及び柱部113を加速冷却する。上述の冷却の制御には、冷却装置110に設けられる制御装置が用いられる。
 本発明の実施形態に係るレール溶接部の冷却方法によりレール溶接部を加速冷却したときの温度履歴を図35に、レール溶接部を自然冷却したときの温度履歴を図36に、レール溶接部の頭部のみを加速冷却したときの温度履歴を図37に、従来の方法によりレール溶接部の頭部及び柱部を加速冷却したときの温度履歴を図38にそれぞれ示す。これらの図より、自然冷却、頭部のみ加速冷却、従来の方法により頭部及び柱部を加速冷却したいずれの場合においても、顎部の冷却速度が最も速いが、本発明によれば、柱部より顎部のほうが冷却速度が緩やかなことがわかる。
 図39は、上記各冷却方法を実施した際の、レールの溶接中心におけるレール断面周方向の残留応力の分布を示したものである。同図より、頭部のみ加速冷却した場合は、自然冷却の場合より柱部の残留応力が大きくなり、従来の方法により頭部及び柱部を加速冷却した場合は、自然冷却の場合より柱部の残留応力が低下することがわかる。さらに、本発明によった場合、従来の方法よりさらに柱部の残留応力を低下することがわかる。
 以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、頭側部の上端から2Hs/3下方の位置より下側の頭部領域に向けて噴出される冷却用流体を遮る遮蔽板を設けたが、遮蔽板を設けず、頭側部の下端からHs/3上方の位置より上側の頭部領域に向けて冷却用流体を噴出するようにしてもよい。また、上記実施の形態では、頭部冷却ユニットの噴出部は半筒状としているが、頭頂部用の噴出部と頭側部用の噴出部とを設けてもよい。
<試験方法>
(柱部の疲労試験方法について)
 柱部の水平亀裂に対する疲労強度の評価試験は図25に模式的に示す方法で行った。定盤27の上にレール溶接部を置き、溶接部のレール頭部から押し治具28で荷重を繰返し与えた。押し治具28の曲率半径は車輪に近い450mmとした。付与する荷重は重荷重での実荷重が20トン程度であることを考慮し、実験速度の促進のために30トンに設定した。荷重繰返しにおける最低荷重は0トンとすると試験片が浮き上がることがあり、それを避けるために4トンとした。荷重繰返し速度は2Hzとし、溶接部に亀裂が発生した時点で試験を終了した。また、荷重繰返し回数が200万回まで非破断であった場合は、そこで試験を終了した。
(足部の疲労試験方法について)
 曲げ疲労強度の評価試験は3点曲げ方式で行った。図26に試験法方を模式的に示す。1mの距離でセットされた台座29、29’の中心に1.5mに切断したレール溶接部を正立姿勢で置き、その中心部にレール頭部から押し治具30で荷重を与えた。台座29、29’および押し治具30のレールに接する部位の曲率半径は100mmRとした。試験応力はレールの足裏中央部分で設定した。最低応力を30MPaとし、最大応力を330MPa、応力変動範囲を300MPaとした。通常のフラッシュバット溶接継ぎ手は応力範囲300MPaで200万回までの疲労寿命を有している。荷重繰返し速度は5Hzとし、溶接部に亀裂が発生した時点で試験を終了した。また、荷重繰返し回数が200万回まで非破断であった場合は試験を終了し、十分な疲労性能を有していると判断した。
(使用したレールについて)
 表1に使用した3種類のレールを示す。レール鋼Aは通称、普通レールと呼ばれる鋼種で、炭素量0.65~0.75重量%を含有する亜共析鋼であり、圧延ままの素材で、レール頭部の硬度はビッカース硬度260~290である。レール鋼Bは圧延後に熱処理されたレールで、炭素量0.75~0.85重量%を含有する共析鋼であり、レール頭部の表面下5mmでの硬度がビッカース硬度360~400の鋼種を使用した。レール鋼Cは炭素量0.85~0.95%を含有する過共析鋼であり、圧延後に熱処理されたレールで、レール頭部の表面下5mmでの硬度がビッカース硬度400~450の鋼種を使用した。レールサイズはメートル単重60kg/mの一般鉄道用サイズを用いた。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-1
 本発明の実施例、比較例を表2~表8に示す。同一条件で3本の試験体を作成し、そのうち1本は残留応力、溶接部硬度、金属組織を調査し、2本目は柱部の疲労寿命評価試験を行い、3本目は曲げ疲労試験を行った。表中で被溶接レールの種類、溶接部の最高加熱温度がAc1以上となる領域の長手方向の幅LAc1、Ac3、Ace、Accm以上となる領域の長手方向の幅、溶接後に冷却を行う場合の長手方向の幅、柱部の冷却幅LとLAc1の比k値、冷却時間t、1式で求められるk値の適正範囲の上下限、k値が上下限に含まれるかどうかの適否、冷却する温度域、残留応力の測定値、溶接部の硬度、疲労試験における亀裂発生回数を示した。硬度については溶接中心の脱炭領域の測定値がばらつくため、溶接中心から2mm位置の表面でショア式硬度計により測定し、ビッカース硬度に換算した。残留応力は歪ゲージ接着部を切り出して歪の変化から残留応力値を算出した。金属組織は溶接中心から2mm位置、表面下2mmの、レール長手方向に直角断面を鏡面研磨し、3%硝酸アルコールでエッチングして顕微鏡で観察した。金属組織の組織分率は倍率100倍で観察し、ポイントカウント法で算出した。表2~表6の中で、マルテンサイトなど、パーライト以外の組織が認められたものについては備考欄に記入した。なお表中に記載した温度は溶接中央部付近の表面温度である。
 また、フラッシュバット溶接ではフラッシュ工程の時間調整により、溶接部の長手方向温度分布が変化する。以下の実施例で溶接部の最高加熱温度の幅を変化させた例は、フラッシング時間の調整によって行った。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-2
<実施例A> 表2はレールをフラッシュバット溶接した後にレール柱部全体がオーステナイトからパーライトへの変態を完了した後、レール柱部の下記、長手方向の限定した領域内を、自然冷却速度を超える冷却速度で、かつ、レール足部の冷却速度以上で冷却した実施例を示す。
この際の冷却方法は次の通りである。レール柱部の長手方向の柱部の最高加熱温度がAc1点以上となるレール柱部の幅LAc1と表中のk値の積(L)で算出される長手方向の領域内を、圧縮空気あるいは水滴を含む圧縮空気の流量および流速を制御装置により制御することによって冷却し、最高加熱温度がAc1点以上となる足部の長手方向の領域内(領域より狭い範囲)を圧縮空気の流量および流速を制御することによって冷却し、前記領域内以外の領域は自然冷却とした。要するに、加速冷却を施すのはレールの一部分である。被溶接レールには表1の鋼種Aを用いた。
 実施例A1~A6は柱部がパーライト変態完了した後に柱部を冷却する際の冷却速度を種々変化させた例である。パーライト変態完了温度は約600℃であり、柱部の冷却開始温度は500℃、冷却終了温度200℃とした。実施例A4は長手方向の冷却範囲を変化させた例である。
 いずれの実施例も柱部の上下方向(周方向)の残留応力は、比較例A1で示した溶接まま材に比較して低下した。それに伴い、比較例A1の溶接まま材では柱部の疲労試験において荷重繰り返し回数2,000,000回に到達しない短寿命で亀裂が発生したのに対して、実施例A1~A6では2,000,000回まで亀裂は発生しなかった。また、足裏部の長手方向の残留応力は圧縮範囲であり、曲げ疲労試験において2,000,000回まで亀裂発生がなく非破断であり、総合的に高い疲労強度が確認された。金属組織はいずれも95%以上がパーライト組織であった。
 一方、比較例A2は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも広く、足部の長手方向残留応力が引張となり、曲げ疲労試験において短寿命で途中破断した。
 また、比較例A3は足部の冷却速度が柱部より速く、柱部の残留応力が下がらず、柱部の疲労試験において短寿命で途中破断した。
 比較例A4は冷却の開始タイミングが650℃と高く、パーライト変態が完了する前に冷却を開始させた例で、加えて冷却速度が速かったためマルテンサイト組織分率が面積率で10%以上となり、柱部の硬度が異常に高くなった。柱部の疲労試験において短寿命で途中破断した。
 比較例A5は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも狭く、柱部の長手方向残留応力が引張となり、柱部の疲労試験において短寿命で途中破断した。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-3
<実施例B>
 表3はレールをフラッシュバット溶接した後に、溶接部のレール柱部の下記、長手方向の限定した領域内を、柱部の温度がAe超のオーステナイト温度域からパーライトへの変態を完了するまでの少なくとも一部の温度範囲を、自然冷却速度を超え5℃/s以下の冷却速度で冷却した実施例を示す。この際の冷却方法は次の通りである。
レール柱部の長手方向の柱部の最高加熱温度がAc1点以上となるレール柱部の幅LAc1と表中のk値の積(L)で算出される長手方向の領域内を、圧縮空気あるいは水滴を含む圧縮空気の流量および流速を制御することによって冷却し、最高加熱温度がAc1点以上となる足部の長手方向の領域内(領域より狭い範囲)を圧縮空気の流量および流速を制御することによって冷却し、前記領域内以外の領域は自然冷却とした。要するに、加速冷却を施すのはレールの一部分である。
 パーライト変態温度域は、自然冷却では650℃~600℃であるが、冷却を行うと冷却速度に応じて変態温度は幾分変化する。被溶接レールには表1の鋼種Aを用いた。
 実施例B1~B4は柱部がオーステナイト領域から冷却する際の冷却速度、冷却温度域を種々変化させた例である。
 いずれの実施例も柱部の上下方向(周方向)の残留応力は、比較例A1で示した溶接まま材に比較して低減した。それに伴い、柱部の疲労試験において2,000,000回まで亀裂は発生しなかった。また、足裏部の長手方向の残留応力は圧縮範囲であり、曲げ疲労試験において2,000,000回まで亀裂発生がなく非破断であり、総合的に高い疲労強度が確認された。金属組織はいずれも95%以上がパーライト組織であった。また、レール柱部のパーライト変態域を加速冷却することで、柱部の硬度がHv350以上に増加しており、疲労強度の面でさらに有利になっている。
 一方、比較例B1は柱部の冷却速度が5℃/sを超えており、柱部にマルテンサイト組織分率が面積率で10%以上となり、硬度が異常に高くなった。柱部の疲労試験において短寿命で途中破断した。
 比較例B2は柱部の冷却幅LとLAc1の比k値が適正範囲よりも広く、足部の長手方向残留応力が引張領域となり、曲げ疲労試験において短寿命で途中破断した。
 また、比較例B3は冷却の終了温度が760℃と高く、冷却による温度低下量も小さいため残留応力は溶接ままと大差なく、パーライト変態が開始する前に冷却を終了させたため硬度も上がらず、柱部の疲労試験において短寿命で途中破断した。
 比較例B4は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも狭く、柱部の長手方向残留応力が引張となり、柱部の疲労試験において短寿命で途中破断した。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-4
<実施例C> 表4はレールを溶接した後に、溶接部のレール柱部の下記、長手方向の限定した領域内を、柱部の温度がA3、AeもしくはAcm超のオーステナイト温度域からパーライトへの変態を完了するまでの少なくとも一部の温度範囲を、自然冷却速度を超え5℃/s以下の冷却速度で冷却し、さらにレール柱部全体がオーステナイトからパーライトへの変態を完了した後、自然冷却速度を超える冷却速度で、かつ、レール足部の冷却速度以上で冷却した実施例を示す。
この際の冷却方法は次の通りである。レール柱部の長手方向の柱部の最高加熱温度がAc1点以上となるレール柱部の幅LAc1と表中のk値の積(L)で算出される長手方向の領域内を、圧縮空気あるいは水滴を含む圧縮空気の流量および流速を制御することによって冷却し、最高加熱温度がAc1点以上となる足部の長手方向の領域内(領域より狭い範囲)を圧縮空気の流量および流速を制御することによって冷却し、前記領域内以外の領域は自然冷却とした。要するに、加速冷却を施すのはレールの一部分である。
 パーライト変態温度域は、自然冷却では650℃~600℃であるが、冷却を行うと冷却速度に応じて変態温度は幾分変化する。正常なパーライト変態は600℃弱で完了する。なおパーライト変態完了後の冷却の温度域は500℃~200℃とした。被溶接レールには表1の鋼種Aを用いた。
 実施例C1~C4は柱部がオーステナイト領域からパーライト変態温度域を冷却する際の冷却温度範囲と冷却速度、パーライト変態完了後の冷却の冷却速度を変化させた例である。
 いずれの実施例も柱部の上下方向(周方向)の残留応力は、比較例A1で示した溶接まま材に比較して低下した。それに伴い、柱部の疲労試験において2,000,000回まで亀裂は発生しなかった。また、足裏部の長手方向の残留応力は圧縮であり、曲げ疲労試験において2,000,000回まで亀裂発生がなく、総合的に高い疲労強度が確認された。金属組織はいずれも95%以上がパーライト組織であった。また、レール柱部のパーライト変態域を加速冷却することで、柱部の硬度がHv350以上に増加しており、疲労強度の面でさらに有利と考えられる。
 一方、比較例C1は柱部の冷却速度が5℃/sを超えており、柱部のマルテンサイト組織分率が面積率で10%以上となり、柱部の硬度が異常に高くなった。柱部の疲労試験において短寿命で途中破断した。
 また、比較例C2は足部の冷却速度が柱部より速く、柱部の残留応力が下がらず、柱部の疲労試験において短寿命で途中破断した。
 比較例C3は柱部の冷却幅LとLAc1の比k値が適正範囲よりも広く、足部の長手方向残留応力が引張領域となり、曲げ疲労試験において短寿命で途中破断した。
 比較例C4は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも狭く、柱部の長手方向残留応力が引張となり、柱部の疲労試験において短寿命で途中破断した。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-5
<実施例D>
 表5はレールを溶接した後に、溶接部のレール柱部を、柱部の温度がA3、AeもしくはAcm超のオーステナイト温度域からパーライトへの変態を完了するまでの少なくとも一部の温度範囲を、自然冷却速度を超える冷却速度で冷却し、パーライト変態温度域の少なくとも一部を自然冷却速度もしくは2℃/s以下の冷却速度で冷却し、前記溶接部のレール柱部全体がオーステナイトからパーライトへの変態を完了した後、前期溶接部のレール柱部の長手方向の領域を、自然冷却速度を超える冷却速度で、かつ、レール足部の冷却速度以上で冷却した実施例を示す。
 この際の冷却方法は次の通りである。レール柱部の長手方向の柱部の最高加熱温度がAc1点以上となるレール柱部の幅LAc1と表中のk値の積(L)で算出される長手方向の領域内を、圧縮空気あるいは水滴を含む圧縮空気の流量および流速を制御することによって冷却し、最高加熱温度がAc1点以上となる足部の長手方向の領域内を圧縮空気の流量および流速を制御することによって冷却し、前記領域内以外の領域は自然冷却とした。要するに、加速冷却を施すのはレールの一部分である。
 パーライト変態温度域は650℃~600℃であり、中段の冷却はこの温度域を含むようにし、600℃以下のパーライト変態完了後の後段の柱部の冷却において、200℃の温度低下が得られるようにした。被溶接レールには表1の鋼種Bを用いた。
 実施例D1~D4は柱部がオーステナイト領域からパーライト変態温度域の一部までを前段冷却し、その後、2℃/s以下の冷却速度で冷却もしくは自然冷却でパーライト変態を完了させ、さらに後段冷却として柱部を加速冷却した例である。実施例D2は中段冷却は自然冷却とした。
 実施例D5、D6は柱部がオーステナイト温度領域にある期間で前段の冷却を行い、中段の冷却としてオーステナイト温度域からパーライト変態完了までを自然冷却し、さらに後段の冷却として柱部を加速冷却した例である。
 いずれの実施例も柱部の上下方向(周方向)の残留応力は、比較例A1で示した溶接まま材に比較して低下した。それに伴い、柱部の疲労試験において2,000,000回まで亀裂は発生しなかった。また、足裏部の長手方向の残留応力は圧縮であり、曲げ疲労試験において2,000,000回まで亀裂発生がなく、総合的に高い疲労強度が確認された。金属組織はいずれも100%パーライト組織であった。
 一方、比較例D1は足部の冷却速度が柱部より速く、柱部の残留応力が下がらず、柱部の疲労試験において短寿命で途中破断した。
 比較例D2は柱部の冷却幅LとLAc1の比k値が適正範囲よりも広く、足部の長手方向残留応力が引張領域となり、曲げ疲労試験において短寿命で途中破断した。
 比較例D3は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも狭く、柱部の長手方向残留応力が引張となり、柱部の疲労試験において短寿命で途中破断した。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-6
<実施例E>
 表6は実施例A、B、Cの条件に加え、レール足部を自然冷却とした場合の実施例を示す。パーライト変態温度域は、自然冷却では650℃~600℃であるが、冷却を行うと冷却速度に応じて変態温度は幾分変化する。正常なパーライト変態は600℃弱で完了する。パーライト変態前のA3、Ae、Acm以上の温度域からの冷却を行った実施例の冷却温度域は800~500℃である。またパーライト変態完了後の冷却を行った実施例の冷却温度域は500℃~200℃とした。被溶接レールには表1の鋼種Aを用いた。
 いずれの実施例も柱部の上下方向(周方向)の残留応力は、比較例A1で示した溶接まま材に比較して低下しており、柱部の上下方向(周方向)残留応力は前記実施例よりも平均的に見てさらに低減されている。柱部の疲労試験において2,000,000回まで亀裂は発生しなかった。また、足裏部の長手方向の残留応力は圧縮範囲であり、曲げ疲労試験において2,000,000回まで亀裂発生がなく、総合的に高い疲労強度が確認された。金属組織はいずれも95%以上がパーライト組織であった。
 一方、比較例E1は柱部の冷却幅LとLAc1の比k値が適正範囲よりも広く、足部の長手方向残留応力が引張領域となり、曲げ疲労試験において短寿命で途中破断した。
 比較例E2は柱部の冷却速度が5℃/sを超えて高く、柱部のマルテンサイト組織分率が面積率で10%以上となり、柱部の硬度が異常に高くなった。柱部の疲労試験において短寿命で途中破断した。
 比較例E3は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも狭く、柱部の長手方向残留応力が引張となり、柱部の疲労試験において短寿命で途中破断した。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-7
<実施例F>
 実施例A、B、C、Eの条件に加え、溶接部のレール頭部をA3、AeもしくはAcm超のオーステナイト温度域からパーライトへの変態を完了するまでの少なくとも一部の温度範囲を、自然冷却速度を超え5℃/s以下の冷却速度で冷却した実施例を表7に示す。パーライト変態温度域は、自然冷却では650℃~600℃であるが、冷却を行うと冷却速度に応じて変態温度は幾分変化する。正常なパーライト変態は600℃弱で完了する。パーライト変態前のA3、Ae、Acm以上の温度域からの冷却を行った実施例の冷却温度域は800~500℃とした。またパーライト変態完了後の冷却を行った実施例の冷却温度域は500℃~200℃とした。被溶接レールには表1の鋼種Bもしくは鋼種Cの共析、過共析の熱処理レールを用いた。
 いずれの実施例も柱部の上下方向(周方向)の残留応力は、比較例A1で示した溶接まま材に比較して低下した。それに伴い、柱部の疲労試験において2,000,000回まで亀裂は発生しなかった。また、足裏部の長手方向の残留応力は圧縮範囲であり、曲げ疲労試験においても2,000,000回まで亀裂発生がなく、総合的に高い疲労強度が確認された。金属組織はいずれも95%以上がパーライト組織であった。
 一方、比較例F1は足部の冷却速度が柱部より速く、柱部の残留応力が下がらず、柱部の疲労試験において短寿命で途中破断した。
 比較例F2は柱部の冷却幅LとLAc1の比k値が適正範囲よりも広く、足部の長手方向残留応力が引張領域となり、曲げ疲労試験において短寿命で途中破断した。
 比較例F3は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも狭く、柱部の長手方向残留応力が引張となり、柱部の疲労試験において短寿命で途中破断した。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-8
<実施例G>
 表8はパーライト変態温度域の一部で2℃/s以下の緩冷却期間を設ける実施例Dの条件に加え、レール足部を自然冷却とした例、さらに、溶接部のレール頭部をA3、AeもしくはAcm超のオーステナイト温度域からパーライトへの変態を完了するまでの少なくとも一部の温度範囲を、自然冷却速度を超え5℃/s以下の冷却速度で冷却した例である。被溶接レールには表1の鋼種Cを用いた。
 実施例G1、G2は足部を自然冷却した例、実施例G3、G4は頭部をオーステナイト温度域からパーライトへの変態を完了するまでの温度範囲の一部を加速冷却した例、実施例G5、G6は頭部をオーステナイト温度域からパーライトへの変態を完了するまでの一部の温度範囲を加速冷却し、かつ、足部は自然冷却した例である。
 いずれの実施例も柱部の上下方向(周方向)の残留応力は、比較例A1で示した溶接まま材に比較して低下した。それに伴い、柱部の疲労試験において2,000,000回まで亀裂は発生しなかった。また、足裏部の長手方向の残留応力は圧縮であり、曲げ疲労試験において2,000,000回まで亀裂発生がなく、総合的に高い疲労強度が確認された。金属組織はいずれも100%がパーライト組織であった。
 一方、比較例G1は足部の冷却速度が柱部より速く、柱部の残留応力が下がらず、柱部の疲労試験において短寿命で途中破断した。
 比較例G2は柱部の冷却幅LとLAc1の比k値が適正範囲よりも広く、足部の長手方向残留応力が引張領域となり、曲げ疲労試験において短寿命で途中破断した。
 比較例G3は柱部の柱部の冷却幅LとLAc1の比k値が適正範囲よりも狭く、柱部の長手方向残留応力が引張となり、柱部の疲労試験において短寿命で途中破断した。
 次に、冷却装置10を用いて実施したレール溶接部の冷却試験について説明する。冷却試験に使用したレール鋼は米国AREA規格136ポンドレールであり、その成分比は、0.8C-0.4Si-1.0Mn-0.2Crである。フラッシュバット溶接によりレールの継目を溶接接合して溶接継手を形成した。レール溶接部の加速冷却には、冷却用流体としてエアを使用した。加速冷却時のエアの圧力及び流量を表9に示す。
Figure JPOXMLDOC01-appb-T000009
 同一条件下で冷却した溶接継手を各2本準備し、そのうちの1本で温度、硬度、及び残留応力を測定し(図40参照)、他の1本で柱部の疲労寿命評価試験(以下、単に「疲労試験」と呼ぶ。)を実施した。レール溶接部の温度測定は、溶接中心からレール軸方向に20mm離れた位置における頭頂部の中央、顎部、柱部の1/2高さ、足表部、及び足裏部中央の計5点とし、K熱電対により計測した。また、レール溶接部の硬度測定は、溶接中心からレール軸方向に5mm離れた位置において、頭頂部の表面下5mm及び頭側部の表面下5mmの位置とし、ビッカース硬度計により計測した。
 残留応力の測定は、溶接中心線上にて、ゲージ長2mmの2軸歪ゲージを柱部の両面(柱部の1/2高さ位置)に貼り付け、この部分を5mm厚×15mm幅×15mm高さに切出し、切削前の歪と切削後の歪の差を用いて応力と歪の関係式から残留応力を算出した。
 また、柱部の疲労試験は以下のように行った。定盤の上にレール溶接部を置き、先端が弧状凸部とされた押し治具によりレール溶接部の頭部に荷重を繰返し与えた。弧状凸部の曲率半径は、車輪に近い450mmとした。負荷する荷重は、重荷重での実荷重が20ton程度であることを考慮し、最大30tonに設定した。一方、荷重繰返しにおける最低荷重は4tonとした。荷重繰り返し速度は2Hzとし、レール溶接部に亀裂が発生した時点で試験を終了した。
 表10に、試験結果の一覧を示す。なお、疲労試験の結果は、荷重繰返し回数が200万回まで疲労亀裂が生じなかった場合を「GOOD」、同じく100万回以上~200万回未満で亀裂発生した場合を「FAIR」、同じく100万回未満で亀裂発生した場合を「POOR」と表記した。また、表中の残留応力値は、柱部の両面に貼付した歪ゲージから算出した残留応力の平均値である。
[規則26に基づく補充 24.05.2010] 
Figure WO-DOC-TABLE-10
 実施例11は、溶接後、頭部全域及び柱部を加速冷却する際に、頭側部の冷却速度を弱め、顎部の冷却速度が柱部の冷却速度以下となるように調整した。頭頂部の硬度は母材レール並みになり、頭側部の冷却速度を弱めたことで頭側部の硬度は低下したが、溶接後自然冷却した場合より硬くなっている。柱部の残留応力は比較例11~13に比べて改善した。疲労試験では、荷重繰返し回数100万~200万回の間で疲労亀裂が生じたが、比較例11~13より疲労性能は優れている。
 実施例12は、溶接後、頭部全域及び柱部を加速冷却する際に、柱部の冷却速度を高めて、顎部の冷却速度が柱部の冷却速度以下となるように調整した。頭頂部及び頭側部の硬度は母材レール並みになり、柱部の残留応力は実施例11に比べて改善した。疲労試験では、荷重繰返し回数100万~200万回の間で疲労亀裂が生じたが、比較例11~13より疲労性能は優れている。
 実施例13は、溶接後、頭部及び柱部を加速冷却する際に、頭側部のエア噴出孔が頭側部の上側2/3以上の範囲となるように調整した。顎部は加速冷却を行っていないが、如何なる部位にも加速冷却を施さない比較例11の場合に比べて冷却速度は増大した。これは、頭側部及び柱部の加速冷却に伴う熱伝導によるものである。頭頂部の硬度は母材レール並みになり、頭側部もほぼ母材レール並みになった。柱部の残留応力は比較例11~13に比べて改善した。疲労試験では、荷重繰返し回数100万~200万回の間で疲労亀裂が生じたが、比較例11~13より疲労性能は優れている。
 実施例14は、溶接後、頭部及び柱部を加速冷却する際に、頭側部のエア噴出孔が頭側部の上側1/2以上の範囲となるように調整した。頭頂部の硬度は母材レール並みになり、頭側部は冷却速度が弱まったことで硬度は低下したが、溶接後自然冷却した場合より顕著に硬くなっている。柱部の残留応力は実施例13に比べてさらに改善した。疲労試験では、荷重繰返し回数200万回まで疲労亀裂は生じなかった。
 実施例15は、溶接後、頭部全域及び柱部を加速冷却する際に、頭側部の上端から2Hs/3下方の位置より下側の頭部領域を遮蔽板で覆った例である。頭頂部の硬度は母材レール並みであり、頭側部は冷却速度が弱まったことで硬度は低下したものの溶接後自然冷却した場合より硬くなっている。柱部の残留応力は比較例11~13に比べて改善した。疲労試験では、荷重繰返し回数100万~200万回の間で疲労亀裂が生じたが、比較例11~13より疲労性能は優れている。
 実施例16は、遮蔽板とレールの隙間を狭くして顎部の冷却速度が柱部より小さくなるように調整した実施例15の改善例である。頭側部の硬度はさらに低下したが、溶接後自然冷却した場合より硬い。柱部の残留応力は実施例15に比べて顕著に改善した。疲労試験では、荷重繰返し回数200万回まで疲労亀裂は生じなかった。
 実施例17は、溶接後、頭部及び柱部を加速冷却する際に、頭側部のエア噴出孔が頭側部の上側1/2以上の範囲となるように調整し、且つ頭側部の上端から2Hs/3下方の位置より下側の頭部領域を遮蔽板で覆った例である。頭頂部及び頭側部の硬度は母材レール並みである。柱部の残留応力は比較例11~13に比べて顕著に改善した。疲労試験では、荷重繰返し回数200万回まで疲労亀裂は生じなかった。
 これに対して、比較例11は、溶接後自然冷却した例を示す。各測定位置における冷却速度は、0.7~0.9℃/sであった。頭部の硬度は低く、柱部の残留応力は400MPa程度の強い引張状態にある。疲労試験では、荷重繰返し回数100万回未満で疲労亀裂が生じた。比較例12は、溶接後、頭部全域を加速冷却した例を示す。頭部の硬度は母材レール並みになるが、柱部の残留応力は溶接後自然冷却した場合に比べて悪化する。疲労試験では、荷重繰返し回数100万回未満で疲労亀裂が生じた。比較例13は、溶接後、頭部全域及び柱部を加速冷却した例を示す。頭部の硬度は母材レール並みで、柱部の残留応力は溶接後自然冷却した場合に比べて改善する。疲労試験では、荷重繰返し回数100万回未満で疲労亀裂が生じた。
 本発明によれば、従来と比較して溶接部の疲労強度が向上したレールを効率的に製造することができる。このため、本発明は産業上の利用可能性を十分に有する。
1…レールの頭部
2…レールの柱部
3…レールの足部
4…レールの頭頂部
5…レールの足表
6…レール足裏
7…溶接部
8…溶接ビード
9…電極
10…被溶接レール
11…アップセットによる溶接ビード
12…トリマー
13…電源
14…テルミット溶接の鋳型
15…テルミット溶接のルツボ
16…テルミット溶接の溶鋼
17…ガス圧接のバーナー
18…ガス圧接のトリマー
19…エンクローズアーク溶接の裏当て金
20…エンクローズアーク溶接の側面当て金
21…当て金エンクローズアーク溶接の溶接棒
22…疲労亀裂
23…脆性亀裂
24…枕木
25…車輪
26…疲労亀裂
XX、YY、ZZ…温度分布曲線
P…荷重
27…定盤
28…押し治具
29,29’…台座
30…押し治具
110…冷却装置
111…レール
112…頭部
112a…頭頂部
112b…頭側部
112c…顎部
112d…首部
113…柱部
114…足部
120…頭部冷却ユニット
121…柱部冷却ユニット
122…架台
123、124…噴出部
123a、124a…噴出孔
125…遮蔽板
125a…上縁
126…蝶番
128、129…供給管
136…電極
137…電源
138…溶接ビード
139…トリマー
150…レール溶接部

Claims (14)

  1.  パーライトからオーステナイトへの変態の開始温度Ac1以上に加熱されたAc1領域と、前記変態の完了温度Ac3以上に加熱されたAc3領域と、を有するレール溶接部の冷却方法であって、
     前記レール溶接部における柱部冷却領域を、オーステナイトからパーライトへの変態が完了するまでの一部の温度範囲において冷却する第1の柱部冷却工程と;
     前記レール溶接部における前記柱部の全体がパーライトへ変態後、前記柱部冷却領域を冷却する第2の柱部冷却工程と;
     前記レール溶接部における足部を冷却する足部冷却工程と;
     前記レール溶接部における頭部を冷却する頭部冷却工程と;
    を備え、
     前記第1の柱部冷却工程及び前記第2の柱部冷却工程の冷却時間をt分とすると、前記柱部冷却領域の幅Lを前記Ac1領域の幅LAc1で除して得られるk値が
    -0.1t+0.63≦k≦-0.1t+2.33
    で示される式を満たす
    ことを特徴とするレール溶接部の冷却方法。
  2.  前記第1の柱部冷却工程では、自然冷却速度を超え、5℃/s以下の冷却速度で冷却し、
     前記第2の柱部冷却工程では、自然冷却速度を超え、且つ、前記足部の冷却速度以上の冷却速度で冷却する
    ことを特徴とする請求項1に記載のレール溶接部の冷却方法。
  3.  前記第2の柱部冷却工程では、自然冷却速度を超え、且つ、前記足部の冷却速度以上の冷却速度で冷却する
    ことを特徴とする請求項1に記載のレール溶接部の冷却方法。
  4.  前記第1の柱部冷却工程では、自然冷却速度を超え5℃/s以下の冷却速度で冷却することを特徴とする請求項1に記載のレール溶接部の冷却方法。
  5.  前記第1の柱部冷却工程において、オーステナイト温度領域の冷却工程を第1の柱部冷却前期工程と、その後引き続きパーライトへの変態が完了するまでの温度範囲において冷却する第1の柱部冷却後期工程とを備え、
     前記第1の柱部冷却前期工程では、自然冷却速度を越え、且つ、前記足部の冷却速度以上の冷却速度で冷却し、
     前記第1の柱部冷却後期工程では、自然冷却速度又は2℃/s以下の冷却速度で冷却し、
     前記第2の柱部冷却工程では、自然冷却速度を超え、且つ、前記足部の冷却速度以上の冷却速度で冷却する、
    ことを特徴とする請求項1に記載のレール溶接部の冷却方法。
  6.  前記足部の冷却速度が自然冷却速度であることを特徴とする請求項1に記載のレール溶接部の冷却方法。
  7.  前記頭部冷却工程では、A3、AeもしくはAcm超のオーステナイト温度域からパーライトへの変態を完了するまでの少なくとも一部の温度範囲において自然冷却速度を超え5℃/s以下の冷却速度で冷却することを特徴とする請求項1に記載のレール溶接部の冷却方法。
  8.  前記頭部と前記柱部とを冷却する際に、顎部の下側コーナー部の冷却速度を前記柱部の冷却速度より遅くすることを特徴とする請求項1~7のいずれか1項に記載のレール溶接部の冷却方法。
  9.  前記頭部の側面を形成する頭側部の高さをHsとすると、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を除く頭部全域を加速冷却することを特徴とする請求項8に記載のレール溶接部の冷却方法。
  10.  前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域に遮蔽板を設け、前記頭部に向けて冷却用流体を噴出することを特徴とする請求項9に記載のレール溶接部の冷却方法。
  11.  請求項1に記載のレール溶接部の冷却方法を用いて冷却されたレール溶接継手であって、
     上下方向の残留応力が350MPa以下である前記柱部と;
     長手方向残留応力が圧縮応力であるレール足裏部と;
     金属組織の95%以上がパーライト組織である前記レール溶接部と;
    を備えることを特徴とするレール溶接継手。
  12.  請求項8に記載のレール溶接部の冷却方法を用いて冷却されたレール溶接継手であって、
     レール断面周方向の残留応力が300MPa以下である前記柱部と;
     前記頭部の硬度がHv320以上である前記頭部と;
    を備えることを特徴とするレール溶接継手。
  13.  レール溶接部の頭部の側面を形成する頭側部の高さをHsとすると、前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を除く頭部全域を加速冷却する頭部冷却ユニットを備えることを特徴とするレール溶接部の冷却装置。
  14.  前記頭部冷却ユニットは、
     前記頭部に向けて冷却用流体を噴出する噴出部と;
     前記頭側部の上端から2Hs/3下方の位置より下側の頭部領域を覆う遮蔽板と;
    を備えることを特徴とする請求項13に記載のレール溶接部の冷却装置。
PCT/JP2010/002303 2009-03-30 2010-03-30 レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手 WO2010116680A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
RU2011139538/02A RU2485187C2 (ru) 2009-03-30 2010-03-30 Способ охлаждения зоны сварки рельса, устройство для охлаждения зоны сварки рельса и сварное соединение рельса
US13/138,791 US8557064B2 (en) 2009-03-30 2010-03-30 Method of cooling rail weld zone, and rail weld joint
AU2010235826A AU2010235826B2 (en) 2009-03-30 2010-03-30 Method of cooling rail weld zone, device for cooling rail weld zone, and rail weld joint
JP2010529185A JP4819183B2 (ja) 2009-03-30 2010-03-30 レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手
CA2756855A CA2756855C (en) 2009-03-30 2010-03-30 Method of cooling rail weld zone, device for cooling rail weld zone, and rail weld joint
CN201080015514.4A CN102365377B (zh) 2009-03-30 2010-03-30 钢轨焊接区的冷却方法、钢轨焊接区的冷却装置以及钢轨焊接接头
BRPI1014787-0A BRPI1014787B1 (pt) 2009-03-30 2010-03-30 Método para resfriar uma zona de solda de trilho, dispositivo para resfriar uma zona de solda de trilho e junta de solda de trilho
EP10761386.1A EP2415885A4 (en) 2009-03-30 2010-03-30 METHOD FOR COOLING A WELDED RAIL SECTION, DEVICE FOR COOLING A WELDED RAIL SECTION AND WELDED RAIL BUMPER

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-081587 2009-03-30
JP2009081587 2009-03-30
JP2009-175646 2009-07-28
JP2009175646 2009-07-28

Publications (1)

Publication Number Publication Date
WO2010116680A1 true WO2010116680A1 (ja) 2010-10-14

Family

ID=42935979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002303 WO2010116680A1 (ja) 2009-03-30 2010-03-30 レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手

Country Status (9)

Country Link
US (1) US8557064B2 (ja)
EP (1) EP2415885A4 (ja)
JP (1) JP4819183B2 (ja)
CN (1) CN102365377B (ja)
AU (1) AU2010235826B2 (ja)
BR (1) BRPI1014787B1 (ja)
CA (1) CA2756855C (ja)
RU (1) RU2485187C2 (ja)
WO (1) WO2010116680A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161207A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 レール溶接部の再加熱方法
WO2012167225A3 (en) * 2011-06-02 2013-03-28 Taylor Winfield Technologies, Inc. Methods of and systems for forced freeze flash welding of advanced high strength steels with an offset stage
WO2015156243A1 (ja) * 2014-04-08 2015-10-15 新日鐵住金株式会社 熱処理装置、熱処理方法及びレール鋼
WO2017104719A1 (ja) * 2015-12-15 2017-06-22 Jfeスチール株式会社 レール鋼および車輪鋼の選択方法
CN113416833A (zh) * 2021-07-08 2021-09-21 包钢中铁轨道有限责任公司 一种钢轨焊缝热处理控制系统及热处理方法
JPWO2022071007A1 (ja) * 2020-09-30 2022-04-07
WO2024127454A1 (ja) * 2022-12-12 2024-06-20 日本製鉄株式会社 フラッシュバット溶接レールの溶接継手部の熱処理方法、及びフラッシュバット溶接レールの製造方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2470080C1 (ru) * 2009-03-27 2012-12-20 Ниппон Стил Корпорейшн Устройство и способ охлаждения зоны сварки рельса
US9243372B2 (en) * 2011-10-13 2016-01-26 Brent Felix Jury Apparatus and method of flash butt welding of railway lines
US9334546B2 (en) 2011-11-29 2016-05-10 Evraz Inc. Na Canada Method and apparatus for treatment of a rail weld
CN104862466B (zh) * 2015-06-11 2017-01-18 攀钢集团攀枝花钢铁研究院有限公司 过共析钢轨焊接接头焊后热处理的方法
FR3054153B1 (fr) * 2016-07-19 2018-07-27 Railtech Int Procede et dispositif de controle du prechauffage d'une zone d'un rail avant une soudure alumiothermique
CN107335770B (zh) * 2017-02-20 2019-05-10 湖北武铁山桥轨道装备有限公司 钢轨热处理系统和热处理工艺
CN107175402A (zh) * 2017-06-16 2017-09-19 中铁宝桥集团有限公司 一种合金钢道岔与槽型钢轨的焊接模型及焊接方法
JP6819479B2 (ja) * 2017-06-21 2021-01-27 トヨタ自動車株式会社 金属部材及びその製造方法
BR112019015220B1 (pt) 2017-09-29 2023-10-03 CF&I Steel L.P. D/B/A EVRAZ Rocky Mountain Steel Método para unir trilhos de aço com entrada de calor por solda controlada
US10464164B2 (en) * 2017-11-17 2019-11-05 Orgo-Thermit Inc. Rail welding crucible and cap with an oxygen/propane gas rail-preheating burner ignited reaction starter mix
CN107948914B (zh) * 2017-12-25 2024-04-12 苏州格洛佛精密科技有限公司 焊接机
CN108570550B (zh) * 2018-05-18 2020-06-26 攀钢集团攀枝花钢铁研究院有限公司 热处理型贝氏体钢轨焊接接头焊后热处理方法
CN109022748B (zh) * 2018-10-24 2020-06-09 攀钢集团攀枝花钢铁研究院有限公司 U71MnH钢轨焊接接头的热处理方法
CN109022749B (zh) * 2018-10-24 2020-06-02 攀钢集团攀枝花钢铁研究院有限公司 U71MnH钢轨焊接接头的焊后热处理方法
CN109022747B (zh) * 2018-10-24 2020-05-26 攀钢集团攀枝花钢铁研究院有限公司 U71MnH钢轨闪光焊接接头的焊后热处理方法
CN109022746B (zh) * 2018-10-24 2020-05-19 攀钢集团攀枝花钢铁研究院有限公司 U71MnH钢轨闪光焊接接头的热处理方法
US20220145546A1 (en) * 2019-02-19 2022-05-12 Jfe Steel Corporation Method for manufacturing rail, and rail
CN111575463B (zh) * 2020-05-12 2022-02-01 武汉钢铁有限公司 一种降低磁浮铁路f型轨端部扭转的生产方法
CN111635987B (zh) * 2020-05-18 2022-02-01 武汉钢铁有限公司 一种提高f型轨全断面残余应力均匀性的生产方法
CN112375891A (zh) * 2020-10-20 2021-02-19 包头钢铁(集团)有限责任公司 一种消除贝氏体钢轨拉伸断口脆性平台的在线回火工艺
CN112251587B (zh) * 2020-10-23 2022-03-22 攀钢集团攀枝花钢铁研究院有限公司 贝氏体钢轨与共析珠光体钢轨焊接接头的热处理方法
CN115722779A (zh) * 2022-11-03 2023-03-03 攀钢集团攀枝花钢铁研究院有限公司 减小过共析钢轨闪光焊接头热影响区宽度的方法
CN115488481B (zh) * 2022-11-03 2024-03-08 攀钢集团攀枝花钢铁研究院有限公司 减小过共析钢轨接头球化退火区宽度的方法
CN115679079A (zh) * 2022-11-03 2023-02-03 攀钢集团攀枝花钢铁研究院有限公司 一种提高过共析钢轨接头再奥氏体化区硬度的方法及装置
CN115488484B (zh) * 2022-11-03 2024-03-08 攀钢集团攀枝花钢铁研究院有限公司 提高过共析钢轨闪光焊接头正火区硬度的方法
AT18135U1 (de) * 2022-12-30 2024-02-15 Voestalpine Railway Systems GmbH Verfahren und eine Vorrichtung zum Verschweißen von befahrbaren Komponenten eines Gleises mittels Abbrennstumpfschweißen

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895337A (ja) 1972-02-24 1973-12-07
JPS56136292A (en) 1980-03-27 1981-10-24 Nippon Kokan Kk <Nkk> Rail clamping device to be used when rails are pressure welded
JPS5993838A (ja) 1982-11-19 1984-05-30 Nippon Steel Corp レ−ル溶接部の耐破壊特性向上法
JPS5993837A (ja) 1982-11-19 1984-05-30 Nippon Steel Corp レ−ル溶接部の耐疲労破壊特性向上法
JPS6033313A (ja) 1983-08-05 1985-02-20 Nippon Kokan Kk <Nkk> レ−ル溶接部の冷却装置
JPH03249127A (ja) 1990-02-28 1991-11-07 Nippon Steel Corp レール溶接継手部のショットピーニング処理方法
JPH06292968A (ja) 1993-03-10 1994-10-21 Nippon Steel Corp 相対向するレールのアーク溶接法
JPH08337819A (ja) * 1995-06-08 1996-12-24 Nippon Steel Corp レール溶接部の耐腹部水平き裂性改善法
JPH09137228A (ja) * 1995-09-14 1997-05-27 Nippon Steel Corp 耐摩耗性に優れたパーライト系レールの製造法
JPH11270810A (ja) 1998-03-25 1999-10-05 Railway Technical Res Inst レールガス圧接用ガスバーナ
JP2002263866A (ja) * 2001-03-08 2002-09-17 Railway Technical Res Inst レールのテルミット溶接方法
JP2004043864A (ja) * 2002-07-10 2004-02-12 Nippon Steel Corp 耐摩耗性および耐内部疲労損傷性に優れたパーライト系レールの熱処理方法
JP2004043862A (ja) * 2002-07-10 2004-02-12 Nippon Steel Corp 溶接継ぎ手部の靭性を向上させるパーライト系レールの熱処理方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0665725B2 (ja) 1986-03-10 1994-08-24 第一高周波工業株式会社 軌条の連続硬化装置
RU2003705C1 (ru) 1992-01-03 1993-11-30 Всероссийский научно-исследовательский институт железнодорожного транспорта Способ термической обработки рельсов и установка дл его осуществлени
JP3467597B2 (ja) 1993-02-01 2003-11-17 大和工業株式会社 クロッシング用ノーズレールの頭部連続スラッククエンチ熱処理方法
JPH06299246A (ja) 1993-04-12 1994-10-25 Nippon Steel Corp レールの熱処理方法
GB2299044B (en) * 1995-03-20 1998-09-30 British Steel Plc Improvements in and relating to steel rails and methods of producing the same
FR2738843B1 (fr) 1995-09-20 1997-10-17 Sogerail Procede de traitement thermique d'un rail en acier
RU2139946C1 (ru) 1996-04-15 1999-10-20 Ниппон Стил Корпорейшн Обладающие превосходной износостойкостью и свариваемостью рельсы из низколегированной термообработанной перлитной стали, а также способ их производства
CN1304618C (zh) 2002-04-05 2007-03-14 新日本制铁株式会社 耐磨性和延性优良的珠光体系钢轨及其制造方法
CN2639348Y (zh) * 2003-09-08 2004-09-08 郑体成 焊接钢轨热处理用喷风冷却装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4895337A (ja) 1972-02-24 1973-12-07
JPS56136292A (en) 1980-03-27 1981-10-24 Nippon Kokan Kk <Nkk> Rail clamping device to be used when rails are pressure welded
JPS5993838A (ja) 1982-11-19 1984-05-30 Nippon Steel Corp レ−ル溶接部の耐破壊特性向上法
JPS5993837A (ja) 1982-11-19 1984-05-30 Nippon Steel Corp レ−ル溶接部の耐疲労破壊特性向上法
JPS6033313A (ja) 1983-08-05 1985-02-20 Nippon Kokan Kk <Nkk> レ−ル溶接部の冷却装置
JPH03249127A (ja) 1990-02-28 1991-11-07 Nippon Steel Corp レール溶接継手部のショットピーニング処理方法
JPH06292968A (ja) 1993-03-10 1994-10-21 Nippon Steel Corp 相対向するレールのアーク溶接法
JPH08337819A (ja) * 1995-06-08 1996-12-24 Nippon Steel Corp レール溶接部の耐腹部水平き裂性改善法
JPH09137228A (ja) * 1995-09-14 1997-05-27 Nippon Steel Corp 耐摩耗性に優れたパーライト系レールの製造法
JPH11270810A (ja) 1998-03-25 1999-10-05 Railway Technical Res Inst レールガス圧接用ガスバーナ
JP2002263866A (ja) * 2001-03-08 2002-09-17 Railway Technical Res Inst レールのテルミット溶接方法
JP2004043864A (ja) * 2002-07-10 2004-02-12 Nippon Steel Corp 耐摩耗性および耐内部疲労損傷性に優れたパーライト系レールの熱処理方法
JP2004043862A (ja) * 2002-07-10 2004-02-12 Nippon Steel Corp 溶接継ぎ手部の靭性を向上させるパーライト系レールの熱処理方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Proceedings of the Second International Conference on residual stresses", ICR2, NANCY, FRANCE, 23-25, NOV, 1988, 23 November 1988 (1988-11-23), pages 912 - 918
MIKI, ANAMI, TANI, SUGIMATO: "Improvement of fatigue strength by modification of weld bead toes", COLLECTION OF PAPERS OF INSTITUTE OF WELDING, vol. 17, no. 1, 1999, pages 111 - 119
See also references of EP2415885A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144983B2 (en) 2011-05-25 2018-12-04 Nippon Steel and Sumitomo Metal Corporation Method of reheating rail weld zone
JP5549782B2 (ja) * 2011-05-25 2014-07-16 新日鐵住金株式会社 レール溶接部の再加熱方法
AU2012259857B2 (en) * 2011-05-25 2015-01-29 Nippon Steel Corporation Reheating method for rail weld parts
RU2545855C1 (ru) * 2011-05-25 2015-04-10 Ниппон Стил Энд Сумитомо Метал Корпорейшн Способ повторного нагрева сварной зоны рельсов
WO2012161207A1 (ja) * 2011-05-25 2012-11-29 新日鐵住金株式会社 レール溶接部の再加熱方法
WO2012167225A3 (en) * 2011-06-02 2013-03-28 Taylor Winfield Technologies, Inc. Methods of and systems for forced freeze flash welding of advanced high strength steels with an offset stage
WO2015156243A1 (ja) * 2014-04-08 2015-10-15 新日鐵住金株式会社 熱処理装置、熱処理方法及びレール鋼
JPWO2015156243A1 (ja) * 2014-04-08 2017-04-13 新日鐵住金株式会社 熱処理装置、熱処理方法及びレール鋼
US10544479B2 (en) 2014-04-08 2020-01-28 Nippon Steel Corporation Heat treatment device, heat treatment method, and rail steel
JP6222403B1 (ja) * 2015-12-15 2017-11-01 Jfeスチール株式会社 レール鋼および車輪鋼の選択方法
AU2016374421B2 (en) * 2015-12-15 2019-08-01 Jfe Steel Corporation Method for selecting rail steel and wheel steel
WO2017104719A1 (ja) * 2015-12-15 2017-06-22 Jfeスチール株式会社 レール鋼および車輪鋼の選択方法
US11401591B2 (en) 2015-12-15 2022-08-02 Jfe Steel Corporation Method for selecting rail steel and wheel steel
JPWO2022071007A1 (ja) * 2020-09-30 2022-04-07
WO2022071007A1 (ja) * 2020-09-30 2022-04-07 日本製鉄株式会社 溶接レール
JP7417170B2 (ja) 2020-09-30 2024-01-18 日本製鉄株式会社 溶接レール
CN113416833A (zh) * 2021-07-08 2021-09-21 包钢中铁轨道有限责任公司 一种钢轨焊缝热处理控制系统及热处理方法
CN113416833B (zh) * 2021-07-08 2022-06-10 包钢中铁轨道有限责任公司 一种钢轨焊缝热处理控制系统及热处理方法
WO2024127454A1 (ja) * 2022-12-12 2024-06-20 日本製鉄株式会社 フラッシュバット溶接レールの溶接継手部の熱処理方法、及びフラッシュバット溶接レールの製造方法

Also Published As

Publication number Publication date
US8557064B2 (en) 2013-10-15
JPWO2010116680A1 (ja) 2012-10-18
CN102365377A (zh) 2012-02-29
EP2415885A1 (en) 2012-02-08
JP4819183B2 (ja) 2011-11-24
CA2756855A1 (en) 2010-10-14
EP2415885A4 (en) 2014-04-23
AU2010235826A1 (en) 2011-10-27
AU2010235826B2 (en) 2015-07-02
CN102365377B (zh) 2014-03-05
RU2011139538A (ru) 2013-05-10
BRPI1014787A2 (pt) 2016-04-19
CA2756855C (en) 2013-11-19
US20120015212A1 (en) 2012-01-19
RU2485187C2 (ru) 2013-06-20
BRPI1014787B1 (pt) 2018-06-05

Similar Documents

Publication Publication Date Title
JP4819183B2 (ja) レール溶接部の冷却方法、レール溶接部の冷却装置、及びレール溶接継手
JP5531845B2 (ja) フラッシュバット溶接部近傍の後熱処理方法
JP4757955B2 (ja) レール溶接部の冷却装置および冷却方法
JP5549782B2 (ja) レール溶接部の再加熱方法
JP7417170B2 (ja) 溶接レール
JPH09316598A (ja) 耐摩耗性および溶接性に優れたパーライト系レールおよびその製造法
JP2010188382A (ja) レールの溶接部の冷却方法
JP2007175707A (ja) レール溶接部における疲労強度向上方法
JP2011251335A (ja) レール鋼のフラッシュバット溶接方法
JPS5919173B2 (ja) 溶接性低合金熱処理硬頭レ−ルの製造法
JP6354518B2 (ja) 溶接継手およびその製造方法
JP7553882B1 (ja) フラッシュバット溶接レールの製造方法
JPH1192867A (ja) 耐摩耗性、溶接性に優れた低偏析性パーライト系レールおよびその製造法
WO2024127454A1 (ja) フラッシュバット溶接レールの溶接継手部の熱処理方法、及びフラッシュバット溶接レールの製造方法
WO2023080135A1 (ja) 溶接レール
JP2004211194A (ja) 高炭素鋼レールの熱処理方法
JP4351402B2 (ja) レールのテルミット溶接方法
JPH08206853A (ja) クロッシングレールの接合方法及び装置
JP2005262281A (ja) 疲労寿命にすぐれた溶接継手
JPH0451277B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080015514.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010529185

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 7052/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2756855

Country of ref document: CA

Ref document number: 13138791

Country of ref document: US

Ref document number: 2010761386

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010235826

Country of ref document: AU

Date of ref document: 20100330

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2011139538

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1014787

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1014787

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110928