WO2010116591A1 - 放射性廃液の処理方法および処理装置 - Google Patents
放射性廃液の処理方法および処理装置 Download PDFInfo
- Publication number
- WO2010116591A1 WO2010116591A1 PCT/JP2010/001136 JP2010001136W WO2010116591A1 WO 2010116591 A1 WO2010116591 A1 WO 2010116591A1 JP 2010001136 W JP2010001136 W JP 2010001136W WO 2010116591 A1 WO2010116591 A1 WO 2010116591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sodium
- radioactive
- liquid
- waste
- reducing
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/04—Treating liquids
- G21F9/06—Processing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/42—Electrodialysis; Electro-osmosis ; Electro-ultrafiltration; Membrane capacitive deionization
- B01D61/44—Ion-selective electrodialysis
- B01D61/445—Ion-selective electrodialysis with bipolar membranes; Water splitting
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/469—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis
- C02F1/4693—Treatment of water, waste water, or sewage by electrochemical methods by electrochemical separation, e.g. by electro-osmosis, electrodialysis, electrophoresis electrodialysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/70—Treatment of water, waste water, or sewage by reduction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/006—Radioactive compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/06—Controlling or monitoring parameters in water treatment pH
Definitions
- the present invention relates to a method and apparatus for treating radioactive liquid waste, and more specifically, electrodialysis of radioactive liquid waste mainly composed of sodium nitrate discharged from a nuclear facility, particularly a reprocessing facility, to selectively remove sodium. It is related with the processing method and processing apparatus of the radioactive liquid waste which isolate
- This application claims priority based on Japanese Patent Application No. 2009-093878 filed in Japan on April 8, 2009, the contents of which are incorporated herein by reference.
- radioactive liquid waste containing a large amount of sodium nitrate (NaNO 3 ) as an inorganic salt is generated.
- Development of a separation and removal technique for separating sodium from sodium nitrate in the waste liquid is in progress.
- DOE United States Department of Energy
- a method for separating sodium ions (Na + ) from water has been studied, and it has been demonstrated that sodium ion conductor membranes or organic cation exchange membranes can recover sodium ions as sodium hydroxide (NaOH). .
- radionuclides contained in radioactive liquid waste from sodium nitrate As a technology for separating radionuclides contained in radioactive liquid waste from sodium nitrate, after adding many reagents to the liquid waste and coprecipitating each major nuclide, the solid content is removed through an ultrafiltration membrane. Separation methods are used. In this method, since a lot of reagents are added, the amount of waste liquid increases, and the decontamination factor (DF) indicating how much radionuclides have been removed for a specific nuclide is limited to about 100. The radionuclide removal efficiency was low.
- DF decontamination factor
- radioactive waste liquid low-level concentrated waste liquid
- an electrodialysis method using a sodium selective permeable membrane can be mentioned.
- This technology may reduce the volume of radioactive waste liquid by separating and recovering only sodium from the radioactive waste liquid, and uses organic membranes (such as Nafion (registered trademark)) and inorganic membranes (NASICON membranes).
- organic membranes such as Nafion (registered trademark)
- NBICON membranes inorganic membranes
- Non-Patent Documents 1 to 4 As technologies for recovering sodium from waste liquids containing radioactive substances and / or waste liquids not containing radioactive substances by electrodialysis using a sodium permselective membrane, papers such as Non-Patent Documents 1 to 4 have been published and publicly known. It has become a technology.
- Non-Patent Documents 1 to 4 sodium is recovered from radioactive waste liquid containing sodium nitrate (low-level radioactive concentrated waste liquid) or waste liquid containing sodium generated from a pulp mill or the like by electrodialysis using a NASICON membrane.
- the target waste liquid is supplied to the anode chamber, the sodium hydroxide aqueous solution is filled in the cathode chamber, and a NASICON membrane is used as a diaphragm between the anode chamber and the cathode chamber of the electrolytic cell, and electrodialysis is performed.
- Sodium ions are moved from the anode chamber to the cathode chamber.
- Non-Patent Documents 1 to 4 report that it is possible to separate and recover only sodium from a radioactive liquid waste containing various radionuclides, without containing cesium 137 (Cs-137), which is the same family as sodium. Has been made.
- Non-Patent Documents 5 to 8 As techniques for reducing nitrate ions (NO 3 ⁇ ) contained in radioactive liquid waste, decomposing them, and converting them into harmless gases, papers such as Non-Patent Documents 5 to 8 have been published, and Patent Document 1 2 etc. are disclosed and are known techniques.
- Non-Patent Documents 5 to 8 and Patent Documents 1 and 2 nitrate ions in the sodium nitrate waste liquid are decomposed using a catalyst and a reducing agent, but the type of reduction product varies depending on the type of catalyst.
- nitrate ions NO 3 ⁇
- nitrite ions NO 2 ⁇
- Cu—Pd / AC catalyst Cu—Pd / AC catalyst
- nitrite ions are converted by the Cu / ⁇ alumina catalyst in the second stage.
- N 2 nitrogen
- reducing agents such as hydrazine (N 2 H 4 ) and formaldehyde (HCOH) are used.
- the following techniques are disclosed as techniques for reducing the volume of radioactive liquid waste.
- a second Two bipolar membranes are arranged, and an anion exchange membrane is arranged on the positive electrode side between the bipolar membranes, and a sodium ion selective permeable membrane is arranged on the negative electrode side, and electrodialysis is performed, so that radioactive waste liquid containing sodium salt can be removed.
- a radioactive waste liquid that separates and recovers sodium ions as sodium hydroxide and anions as acids has been disclosed (see, for example, Patent Document 3).
- the sodium nitrate which is the main component of the low-level radioactive concentrated waste liquid generated from the reprocessing facility, is greatly reduced without generating NOx that imposes a load on the waste gas system, and the decomposition products are reused.
- low-level radioactive concentrated waste liquid generated from the reprocessing facility for spent nuclear fuel is supplied to an electrolytic cell having a cation exchange membrane and an anion exchange membrane, and sodium hydroxide is added to the cathode side.
- a method for reducing the volume of low-level radioactive concentrated waste liquid that is reused in a reprocessing facility by generating and separating nitric acid on the anode side and separating it is disclosed (for example, see Patent Document 4).
- JP 2004-74107 A Japanese Patent Laid-Open No. 2003-126872 JP 2000-321395 A JP-A-4-283700 JP-A-8-066686
- radioactive dialysis low-level radioactive concentrated waste
- sodium hydroxide that does not contain radionuclides
- the volume of low-level radioactive concentrated waste liquid can be reduced to some extent.
- nitric acid containing a radionuclide is generated in the anode chamber, it is necessary to further treat nitric acid from the viewpoint of volume reduction.
- a strong alkali and strong acid solution exists through a very thin sodium ion permselective membrane with a thickness of several millimeters, there is a very high chemical risk when the permeable membrane is damaged. There is.
- bipolar membranes and anion exchange membranes are used to recover acids from acids containing radionuclides generated by separating and recovering sodium, but they contain radionuclides as in the case of cation exchange membranes. No acid can be recovered.
- bipolar membranes and anion exchange membranes are organic membranes, radiation resistance performance is not sufficient unlike inorganic membranes such as NASICON membranes.
- the sodium ion is separated and then nitrate ions are decomposed, or the nitrate ions are decomposed and then separated, so that the decomposition process is performed in two stages.
- the number of devices and the amount of waste liquid retained in the waste liquid treatment system increase.
- a multi-tank electrodialysis method can be mentioned.
- an ion exchange membrane is used for separation of nitrate ions.
- the ion exchange membrane has a problem that nitrate ions cannot be sufficiently separated.
- the present invention has been made in view of the above circumstances, and efficiently and continuously separates and recovers sodium ions from a radioactive liquid waste mainly composed of sodium nitrate without involving radionuclides. It aims at providing the processing method and processing apparatus of the radioactive liquid waste which can reduce
- the method for treating a radioactive liquid waste of the present invention is a method for treating a radioactive liquid waste containing a sodium salt, wherein sodium nitrate contained in the radioactive liquid waste is partially reduced, and the radioactive liquid waste is treated with sodium hydroxide, hydrogen carbonate.
- the waste liquid reduction step which is a reducing solution containing at least one of sodium and sodium carbonate, and in the anode chamber of the electrolytic cell in which the positive electrode and the negative electrode are installed on both sides of the permeable membrane that selectively transmits sodium ions
- the reduction An electrodialysis step of supplying a liquid and performing electrodialysis of the reducing solution.
- sodium ions permeated through the permeable membrane are separated as sodium hydroxide in the cathode chamber.
- the radioactive substance recovered and remaining in the anode chamber is separated as a radioactive substance concentrated solution, and the separated sodium hydroxide and the radioactive substance concentrated solution are separated.
- the waste liquid reduction step it is preferable to perform a treatment method using a chemical reaction using hydrazine and / or formic acid as a reducing agent.
- the treatment method using a chemical reaction using hydrazine and / or formic acid as the reducing agent is a treatment method in the presence of a catalyst.
- the waste liquid reduction step it is preferable to control the production rate of at least one of sodium hydroxide, sodium hydrogen carbonate and sodium carbonate by the supply rate of the reducing agent to the radioactive waste liquid.
- the pH of the reducing solution produced in the waste liquid reducing step is 10 or more.
- the supply rate of the reducing agent to the radioactive waste liquid is determined based on the pH of the radioactive substance concentrated solution collected in the anode chamber in the electrodialysis step, and the pH in the reducing device that reduces the radioactive waste liquid. It is preferable to control based on a measured value obtained by measuring at least one of the pH at the inlet of the anode chamber.
- the radioactive substance concentrated solution collected in the anode chamber in the electrodialysis step is supplied to the waste liquid reduction step.
- the sodium ion recovery rate is preferably controlled by the value of current flowing between the positive electrode and the negative electrode.
- the treatment apparatus for radioactive liquid waste is a treatment apparatus for radioactive liquid waste containing sodium salt, wherein sodium nitrate contained in the radioactive liquid waste is partially reduced, and the radioactive liquid waste is converted into sodium hydroxide, hydrogen carbonate.
- a reducing device that uses a reducing solution containing at least one of sodium and sodium carbonate, a permeable membrane that selectively transmits sodium ions contained in the reducing solution, and an anode chamber and a cathode chamber provided through the permeable membrane And an electrodialyzer having a positive electrode and a negative electrode respectively installed on both sides of the permeable membrane, and the pH of the radioactive substance concentrated solution collected in the anode chamber and supplied from the anode chamber to the reducing device And a pH measuring device for measuring at least one of the pH in the reducing device and the pH at the inlet of the anode chamber.
- a method for treating a radioactive liquid waste containing a sodium salt wherein sodium nitrate contained in the radioactive liquid waste is partially reduced, and the radioactive liquid waste is treated with sodium hydroxide
- a waste liquid reduction step that is a reducing solution containing at least one of sodium hydrogen carbonate and sodium carbonate, and an anode chamber of an electrolytic cell in which a positive electrode and a negative electrode are installed on both sides of a permeable membrane that selectively transmits sodium ions
- An electrodialysis step of supplying the reducing solution and performing electrodialysis of the reducing solution In a waste liquid reduction step that is a reducing solution containing at least one of sodium hydrogen carbonate and sodium carbonate, and an anode chamber of an electrolytic cell in which a positive electrode and a negative electrode are installed on both sides of a permeable membrane that selectively transmits sodium ions, An electrodialysis step of supplying the reducing solution and performing electrodialysis of the reducing solution.
- sodium hydroxide that permeates the permeable membrane in the cathode chamber is converted into sodium hydroxide.
- the radioactive substance remaining in the anode chamber is separated and collected as a radioactive substance concentrated solution, and the separated sodium hydroxide and the radioactive substance concentrated solution are separated.
- the production rate of at least one of sodium hydroxide, sodium hydrogen carbonate and sodium carbonate in the waste liquid reduction step is made equal to the sodium ion recovery rate in the electrodialysis step. Since it can be maintained on the alkali side, the separation efficiency of sodium ions (Na + ) can always be maintained at a high efficiency, and the continuous treatment of radioactive liquid waste becomes possible.
- sodium ions containing almost no radionuclides can be selectively separated and collected as sodium hydroxide from radioactive liquid waste, and only radioactive nuclides can be separated and concentrated from radioactive liquid waste.
- the volume reduction rate of the waste liquid can be increased.
- the waste liquid reduction process and the electrodialysis process are performed simultaneously, and the reducing liquid (including the radioactive substance concentrated solution) is circulated between the waste liquid reduction process and the electrodialysis process. Energy efficiency is improved because only one solution temperature adjustment is required.
- nitrate ions can be reduced to inert nitrogen gas, the environmental load can be eliminated.
- a radioactive waste liquid treatment apparatus containing a sodium salt, wherein sodium nitrate contained in the radioactive waste liquid is partially reduced, and the radioactive waste liquid is sodium hydroxide
- a reducing device comprising a reducing solution containing at least one of sodium bicarbonate and sodium carbonate; a permeation membrane that selectively permeates sodium ions contained in the reducing solution; an anode chamber provided through the permeation membrane; An electrodialyzer having a cathode chamber and a positive electrode and a negative electrode respectively installed on both sides of the permeable membrane, and a radioactive substance concentrated solution collected in the anode chamber and supplied from the anode chamber to the reducing device And a pH measuring device that measures at least one of the pH of the reducing device, the pH in the reducing device, and the pH at the inlet of the anode chamber.
- the Oite pH can be kept in the alkaline side, it is possible to maintain the separation efficiency of the sodium ions (Na +) always with high efficiency, it is possible to continuously process the radioactive liquid waste.
- sodium ions containing almost no radionuclides can be selectively separated and collected as sodium hydroxide from radioactive liquid waste, and only radioactive nuclides can be separated and concentrated from radioactive liquid waste.
- the volume reduction rate of the waste liquid can be increased.
- the waste liquid reduction process and the electrodialysis process are performed simultaneously, and the reducing liquid (including the radioactive substance concentrated solution) is circulated between the waste liquid reduction process and the electrodialysis process. Energy efficiency is improved because only one solution temperature adjustment is required.
- two actions separation of sodium ions and decomposition of nitrate ions
- the amount of radioactive waste liquid in the system can be reduced. Increased safety.
- it is the graph which showed the result of having measured the pH of the reducing solution in an anode chamber.
- it is the graph which showed the collection
- FIG. 1 is a schematic configuration diagram showing an embodiment of a processing apparatus for radioactive liquid waste according to the present invention.
- the radioactive waste liquid treatment apparatus (hereinafter referred to as “radioactive waste liquid treatment apparatus”) 10 of this embodiment includes a reduction device 11, an electrodialysis device 12, a radioactive waste liquid storage tank 17, an evaporation device 18, and a condensate.
- the receiving tank 19, the concentrated liquid receiving tank 20, the pH measuring device 21, the circulation tank 22, and the catholyte receiving tank 23 are schematically configured.
- the electrodialysis apparatus 12 includes a permeable membrane 13, an electrolytic cell 16 including an anode chamber 14 and a cathode chamber 15 provided through the permeable membrane 13, and a positive electrode (not shown) installed in the anode chamber 14. ) And a negative electrode (not shown) installed in the cathode chamber 15. That is, the positive electrode and the negative electrode are respectively installed on both sides of the permeable membrane 13.
- the reducing device 11 partially reduces (salt-converts) sodium nitrate (NaNO 3 ) contained in the radioactive liquid waste supplied from the radioactive liquid waste storage tank 17, and provides sodium hydroxide (NaOH) and sodium hydrogen carbonate (NaHCO 3 ). And a reducing liquid containing at least one of sodium carbonate (Na 2 CO 3 ).
- “partially reduced (salt conversion)” means that all sodium nitrate contained in the radioactive liquid waste is reduced (salt conversion) to at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate. Instead, it means that an appropriate amount of sodium nitrate contained in the radioactive liquid waste is reduced so that the pH of the reducing solution falls within a range suitable for electrodialysis in the electrodialysis apparatus 12.
- Examples of the reducing device 11 include a device using a processing method using a chemical reaction using a reducing agent.
- the apparatus using the treatment method using a chemical reaction using a reducing agent is preferably an apparatus using a method of treatment in the presence of a catalyst.
- an apparatus using a treatment method by a chemical reaction using a reducing agent for example, hydrazine (N 2 H 4 ) and / or formic acid (HCOOH) is administered as a reducing agent to a radioactive liquid waste containing sodium nitrate.
- An apparatus for proceeding a sodium reduction reaction (salt conversion reaction) can be mentioned.
- Examples of the catalyst 24 used in the reducing device 11 include a copper (Cu) catalyst, a palladium (Pd) -copper (Cu) catalyst, and a nickel (Ni) -copper (Cu) catalyst.
- a membrane made of ceramics and the like that selectively transmits sodium ions is used.
- a Na ion conductor membrane Na Super Ionic Conductor
- ⁇ -alumina ⁇ -alumina
- a dimensionally stable electrode Dimensional Stable Electrode, DSE
- a platinum-plated titanium electrode or the like is used.
- a platinum-plated titanium electrode or the like is used as the negative electrode of the electrodialysis apparatus.
- the anode chamber 14 of the electrodialyzer 12 is connected to the pH measuring device 21 through a flow path.
- the pH measuring device 21 measures the pH of the radioactive substance concentrated solution separated and recovered in the anode chamber 14 by electrodialysis of the radioactive liquid waste in the electrodialysis device 12 and supplied from the anode chamber 14 to the reducing device 11. Is for.
- the pH measuring device 21 may be one that measures the pH in the reducing device 11 or the pH at the inlet of the anode chamber 14, and is collected in the anode chamber 14 in the electrodialysis step. Two or more pH values may be measured among the pH of the radioactive substance concentrated solution, the pH in the reducing device 11, and the pH of the inlet of the anode chamber 14.
- the reduction device 11 performs a reduction (salt conversion) treatment of radioactive waste liquid generated from a nuclear facility such as a spent nuclear fuel reprocessing facility that is temporarily stored in the radioactive waste liquid storage tank 17 (a waste liquid reduction step). ).
- the radioactive liquid waste is a liquid mainly composed of sodium nitrate and containing radionuclides
- the reduction (salt conversion) treatment in this waste liquid reduction process partially reduces sodium nitrate contained in the radioactive liquid waste.
- the radioactive liquid waste is treated as a reducing liquid containing at least one of sodium hydroxide, sodium hydrogen carbonate and sodium carbonate.
- the reduction (salt conversion) treatment is a treatment method by a chemical reaction using a reducing agent.
- the treatment method using a chemical reaction using a reducing agent is preferably a treatment method in the presence of a catalyst.
- a chemical reaction using a reducing agent it is preferable to use a reduction reaction by administering hydrazine (N 2 H 4 ) and / or formic acid (HCOOH) to a radioactive liquid waste containing sodium nitrate.
- a treatment method by a chemical reaction using a reducing agent, and in the presence of a catalyst for example, a reducing agent is administered to a waste liquid containing sodium nitrate in the presence of a palladium-copper catalyst, and nitrate ions are added.
- a reducing agent is administered to a waste liquid containing sodium nitrate in the presence of a palladium-copper catalyst, and nitrate ions are added.
- the reaction of reducing to nitrogen is performed by a chemical reaction using a reducing agent, and in the presence of a catalyst, for example, a reducing agent is administered to a waste liquid containing sodium nitrate in the presence of a palladium-copper catalyst, and nitrate ions are added.
- the reaction of reducing to nitrogen for example, a reducing agent is administered to a waste liquid containing sodium nitrate in the presence of a palladium-copper catalyst, and nitrate ions are added.
- the production rate of at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate (the production amount of at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate per unit time), that is, It is preferable to control the reduction rate of sodium nitrate contained in the radioactive liquid waste (reduction amount of nitrate ions per unit time) by the supply rate of the reducing agent to the radioactive liquid waste (supply amount of reducing agent per unit time).
- the supply rate of the reducing agent to the radioactive liquid waste is not particularly limited, but the pH of the reducing liquid produced in this process depends on the amount of sodium nitrate contained in the radioactive liquid waste. It adjusts suitably so that it may become in the range suitable for electrodialysis.
- the supply rate of the reducing agent to the radioactive liquid waste is set as a target. It is preferably set within the range of 0.5 to 4 times the sodium ion recovery rate in the electrodialysis step, more preferably within the range of 1 to 3 times. If it does in this way, pH of the reducing solution produced
- FIG. Since the sodium ion recovery rate is set according to the volume (scale) of the radioactive liquid waste to be treated, the supply rate of the reducing agent to the radioactive liquid waste is appropriately adjusted according to the sodium ion recovery rate.
- the supply rate of the reducing agent to the radioactive liquid waste is determined based on the pH of the radioactive substance concentrated solution collected in the anode chamber 14 in the electrodialysis process, the pH in the reduction device 11, and the inlet of the anode chamber 14. It is preferable to control based on a measured value obtained by measuring at least one of the pHs. In this way, the pH of the reducing liquid produced in the waste liquid reduction step is adjusted as appropriate so that it falls within a range suitable for electrodialysis in the electrodialysis apparatus 12.
- generated at a waste liquid reduction process shall be 10 or more, More preferably, it is 11 or more. If the pH of the reducing liquid generated in the waste liquid reducing process, that is, the reducing liquid supplied to the electrodialysis process in the electrodialysis apparatus 12 is within the above range, sodium ions (Na + ) are separated in the electrodialysis process. Can be maintained at high efficiency at all times, so that the radioactive liquid waste can be treated continuously.
- the voltage applied between the positive electrode of the anode chamber 14 and the negative electrode of the cathode chamber 15 increases, and the resistance of the permeable membrane 13 increases, so that sodium ions are permeable to the permeable membrane. 13 becomes difficult to permeate, the separation efficiency of sodium ions (Na + ) decreases, and there is a possibility that the radioactive waste liquid cannot be treated continuously.
- the voltage applied between the positive electrode in the anode chamber 14 and the negative electrode in the cathode chamber 15 is increased in this way, the power consumption increases, so that the value as a process of the radioactive liquid waste treatment decreases.
- the reducing solution containing at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate in a high concentration specifically includes 1 mol / L or more of sodium hydroxide, preferably sodium hydroxide.
- a low concentration sodium hydroxide aqueous solution is supplied to the cathode chamber 15 of the electrodialyzer 12 in advance.
- the concentration of the aqueous sodium hydroxide solution supplied in advance to the cathode chamber 15 is set to a concentration range in which electrodialysis can be performed efficiently, specifically, 0.0001 mol / L to 5 mol / L.
- electrodialysis of a reducing solution containing at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate is performed in the electrodialysis apparatus 12.
- the temperature of the electrolyzer 16 (the anode chamber 14 and the cathode chamber 15) of the electrodialysis apparatus 12 when performing electrodialysis is appropriately set according to the type and concentration of the sodium salt contained in the reducing solution. ° C) to 100 ° C.
- sodium ions out of ions sodium ions (sodium ions (Na + ), hydroxide ions (OH ⁇ )) originating from at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate Only (Na + ) selectively permeates the permeable membrane 13 and moves from the anode chamber 14 to the sodium hydroxide aqueous solution in the cathode chamber 15.
- hydroxide ions OH ⁇
- sodium hydroxide contained in the reducing solution in the anode chamber 14 is recovered as hydroxide ions (OH ⁇ ) as water during electrodialysis as sodium ions are separated and recovered.
- hydroxide ions OH ⁇
- a chemical reaction relating to hydroxide ions shown in the following formula (1) proceeds.
- the sodium hydroxide recovery rate is preferably controlled by the value of current flowing between the positive electrode in the anode chamber 14 and the negative electrode in the cathode chamber 15. In this way, separation of sodium ions (Na + ) can always be maintained with high efficiency in the electrodialysis step.
- the applied current density is preferably 25 mA / cm 2 or more and 200 mA / cm 2 or less, more preferably 50 mA / cm 2 or more and 100 mA / cm 2 or less.
- the pH of the reducing solution in the anode chamber 14 decreases with the progress of separation and collection of sodium ions, so that the pH is not within a predetermined range (10 or more).
- the reduced liquid is separated as a radioactive substance concentrated solution, collected, and returned to the reducing device 11 through the flow path. Accordingly, as described above, the reducing solution whose pH is adjusted to 10 or more is supplied from the reducing device 11 to the anode chamber 14, and the pH of the reducing solution in the anode chamber 14 is maintained at 10 or more. .
- transmit the permeable membrane 13 remains in a radioactive substance concentrated solution, this radioactive substance is returned to the reduction
- the pH of the radioactive substance concentrated solution returned from the anode chamber 14 to the reducing device 11 is measured by the pH measuring device 21 as described above. Then, based on the measured value of the pH, a reducing agent is added so that the pH of the mixed solution of the radioactive substance concentrated solution returned into the reducing device 11 and the reducing solution in the reducing device 11 becomes 10 or more. The reduction reaction proceeds.
- the production rate of at least one of sodium hydroxide, sodium hydrogen carbonate and sodium carbonate in the waste liquid reduction step is equal to the recovery rate of sodium hydroxide in the electrodialysis step.
- the generation rate of sodium ions in the reducing solution in the waste liquid reduction step and the rate at which sodium ions permeate the permeable membrane 13 in the electrodialysis step and move from the anode chamber 14 to the cathode chamber 15 movement rate.
- the concentration of the sodium hydroxide aqueous solution in the cathode chamber 15 gradually increases due to the sodium ions that have passed through the permeable membrane 13 and moved from the anode chamber 14 to the cathode chamber 15.
- a sodium aqueous solution is fed into the circulation tank 22.
- the aqueous sodium hydroxide solution remaining in the circulation tank 22 is diluted to a predetermined concentration, sent to the cathode chamber 15 again, and used for electrodialysis of the radioactive liquid waste in the electrodialysis apparatus 12.
- reducing solution including radioactive substance concentrated solution
- electrodialyzer 12 a part of the reducing solution supplied from the reducing device 11 to the electrodialyzer 12 is used. It is extracted and sent to the evaporator 18.
- the solution sent from the anode chamber 14 is distilled by the evaporator 18, and the radionuclide is separated and recovered from this solution.
- the separated and recovered radionuclide is sent to the concentrate receiving tank 20 and sent again to the reducing device 11.
- the water generated by this distillation step is stored in the condensate receiving tank 19 and reused separately.
- the radioactive waste liquid treatment apparatus 10 and the radioactive waste liquid treatment method using the same in the waste liquid reduction process in the reduction apparatus 11, sodium nitrate contained in the radioactive waste liquid is partially reduced, and the radioactive waste liquid is obtained.
- a reducing solution containing at least one of sodium hydroxide, sodium hydrogen carbonate and sodium carbonate in the electrodialysis step of the electrodialyzer 12, sodium ions permeated through the permeable membrane 13 are hydroxylated in the cathode chamber 15.
- the radioactive substance separated as sodium and remaining in the anode chamber 14 is separated as a radioactive substance concentrated solution, and the separated sodium hydroxide and the radioactive substance concentrated solution are respectively recovered, and sodium hydroxide, carbonic acid in the waste liquid reduction step are recovered.
- Production of at least one of sodium hydrogen and sodium carbonate Since equal and degree, the sodium ion recovery rate in the electrodialysis step, the sodium ion concentration in the reducing solution is kept substantially constant, the pH in the electrodialysis device 12 can be held in the alkaline side (pH 10 or higher). Therefore, in the electrodialysis step, the separation efficiency of sodium ions (Na + ) can always be maintained at a high efficiency, so that the radioactive waste liquid can be continuously treated.
- sodium ions containing almost no radionuclides can be selectively separated and collected as sodium hydroxide from radioactive liquid waste, and only radioactive nuclides can be separated and concentrated from radioactive liquid waste.
- the volume reduction rate of the waste liquid can be increased. Specifically, the volume of radioactive waste liquid can be reduced to about 1/1000 to 1/10 or less of the stock solution before the treatment. By reducing the volume, the types and total number of wastes can be reduced. Moreover, handling of the separated sodium is facilitated.
- the volume reduction rate is higher than the conventional waste treatment method using electrodialysis, and the life of the permeable membrane installed in the electrolyzer is extended, greatly reducing the processing cost and final disposal site. can do.
- the reduction liquid (including the radioactive substance concentrated solution) is circulated between the reduction apparatus 11 and the electrodialysis apparatus 12. Energy efficiency is improved because it is only necessary to adjust the solution temperature in at least one of the waste liquid reduction step in the reduction device 11 or the electrodialysis step in the electrodialysis device 12.
- nitrate ions can be reduced to inert nitrogen gas, the environmental load can be eliminated.
- the amount of radioactive waste liquid in the system can be reduced, so in the treatment of radioactive waste liquid. Increased safety. Also, sodium nitrate contained in the radioactive liquid waste is converted to salt to produce sodium salt, and the radioactive liquid waste containing this sodium salt is electrodialyzed, so no acid (nitric acid) containing radionuclide is generated and concentrated. It is possible to simplify the treatment of the radioactive waste liquid. Furthermore, the environmental load resulting from nitrate ion can be eliminated by salt-converting sodium nitrate to produce a sodium salt.
- test examples are described more specifically with test examples, but the present invention is not limited to the following test examples.
- reaction solution a solution containing sodium nitrate as a main component
- reaction solution Nitrate ion (NO 3 ⁇ ) decomposition caused by sodium was performed, and while sodium nitrate (NaNO 3 ) was converted to sodium hydroxide (NaOH), continuous treatment was performed to recover sodium hydroxide produced by dialysis.
- Hydrazine (N 2 H 4 .H 2 O) is supplied at a supply rate of 7 g / h (0.15 mol / h) to the catalyst tank of the reducing device filled with the Pd—Cu catalyst, and is contained in the above reaction solution.
- the nitrate solution is partially reduced into a reducing solution, and this pump is used to extract this reducing solution and supply it to the anode chamber of the electrodialyzer and return it from the anode chamber to the catalyst tank of the reducing device.
- the reducing solution (including the reaction solution) was circulated.
- the amount (volume molar concentration) of sodium nitrate contained in the reaction solution was 2 mol / L, and the amount of sodium hydroxide (volume molar concentration) was 0.01 mol / L.
- the temperature of the reducing solution in the anode chamber was controlled at 65 ° C.
- the amount of sodium nitrate (volume molar concentration) contained in the reducing solution in the anode chamber was 2 mol / L, and the amount of sodium hydroxide (volume molar concentration) was 0.01 mol / L.
- the amount (volume molar concentration) of sodium hydroxide contained in the reducing solution in the cathode chamber was set to 0.2 mol / L.
- the temperature of the reducing solution in the cathode chamber was controlled at 65 ° C.
- the value of current flowing between the positive electrode in the anode chamber and the negative electrode in the cathode chamber was 3 A, and the current density was 70 mA / cm 2 . Further, the supply pressure of the reducing solution to the permeable membrane was set to 0.01 MPa.
- FIG. 2 is a graph showing the results of measuring the pH of the reducing solution in the anode chamber. From the results of the graph shown in FIG. 2, a slight decrease in pH is observed 5 hours after the start of the test, which is considered to be due to a decrease in the amount of hydrazine supplied over time. Therefore, it has been confirmed that, by increasing the supply amount of hydrazine and controlling the supply amount to be constant, it is possible to decompose nitrate ions and recover sodium ions while keeping the pH of the reducing solution constant. It was.
- FIG. 3 is a graph showing the recovery amount of sodium ions and the generation amount of hydroxide ions.
- the production amount of hydroxide ions was determined from the decrease amount of nitrate ions obtained by measurement based on the following reaction formula (5). 4NaNO 3 + 5N 2 H 4 ⁇ 7N 2 + 4NaOH + 8H 2 O (5)
- the pH is controlled by controlling the sodium hydroxide recovery rate or sodium hydroxide production rate, that is, by controlling the hydrazine supply rate or the current value flowing between the positive and negative electrodes. It was confirmed that the reaction solution can be processed while being controlled.
- the pH of the reducing solution was kept constant by making the production rate of at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate by the catalytic method equal to the recovery rate of sodium ions by electrodialysis. It was confirmed that the reaction solution could be continuously processed while maintaining Thus, the pH of the reducing solution during the treatment can be arbitrarily set by presetting the production rate of at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate by the catalytic method and the recovery rate of sodium ions by electrodialysis. Can be set.
- the pH of the reducing solution during the treatment is adjusted by adjusting the supply rate of hydrazine (that is, the production rate of at least one of sodium hydroxide, sodium bicarbonate and sodium carbonate) or between the positive electrode and the negative electrode. This can be achieved by controlling the value of the current that flows (that is, the recovery rate of sodium ions).
- radioactive waste liquid containing sodium nitrate as a main component without radioactive nuclides it is possible to efficiently and continuously separate and recover sodium ions from a radioactive waste liquid containing sodium nitrate as a main component without radioactive nuclides and to reduce nitrate ions to harmless nitrogen gas.
- a method and apparatus for treating radioactive liquid waste that can be produced can be provided, which is industrially useful.
Landscapes
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Urology & Nephrology (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Hydrology & Water Resources (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
Description
本願は、2009年4月8日に、日本に出願された特願2009-093878号に基づき優先権を主張し、その内容をここに援用する。
例えば、アメリカ合衆国エネルギー省(United States Department of Energy、DOE)では、Naイオン電導体膜(NASICON膜、Na Super Ionic Conductor)あるいは有機性陽イオン交換膜を用いて、硝酸ナトリウムを主成分とする放射性廃液からナトリウムイオン(Na+)を分離する方法が検討されており、Naイオン電導体膜あるいは有機性陽イオン交換膜が、ナトリウムイオンを水酸化ナトリウム(NaOH)として回収可能なことが実証されている。
ナトリウム選択透過膜を用いた電気透析法により、放射性物質を含む廃液および/または放射性物質を含まない廃液からナトリウムを回収する技術としては、非特許文献1~4などの論文が公表され、公知の技術となっている。
この技術では、陽極室に対象とする廃液を供給し、陰極室に水酸化ナトリウム水溶液を充填し、電解槽の陽極室と陰極室の隔膜としてNASICON膜を用いて、電気透析を行うことにより、ナトリウムイオンを陽極室から陰極室へ移動させている。
また、非特許文献1~4では、多種の放射性核種を含む放射性廃液から、ナトリウムと同族であるセシウム137(Cs-137)を含まず、ナトリウムのみを分離し、回収することができる旨の報告がなされている。
非特許文献5~8、および、特許文献1、2では、触媒および還元剤を使用して硝酸ナトリウム廃液中の硝酸イオンを分解するが、触媒の種類によって還元生成物の種類が異なる。触媒の種類を変えて、第一段階においてCu-Pd/AC触媒により硝酸イオン(NO3 -)を亜硝酸イオン(NO2 -)とし、第二段階においてCu/βアルミナ触媒により亜硝酸イオンを窒素(N2)に還元する。原子力施設では、爆発性ガスの使用は好まれないため、ヒドラジン(N2H4)やホルムアルデヒド(HCOH)などの還元剤が用いられる。
例えば、高濃度のナトリウム塩を含む放射性廃液からナトリウムおよび酸を回収して、この廃液の減容化、並びに、ナトリウムおよび酸の再利用を図るために、陽電極と陰電極の間に、二枚のバイポーラ膜を配置し、このバイポーラ膜間の陽電極側に陰イオン交換膜、陰電極側にナトリウムイオン選択透過膜をそれぞれ配置して電気透析を行うことにより、ナトリウム塩を含む放射性廃液からナトリウムイオンを水酸化ナトリウムとして、陰イオンを酸として、それぞれに分離し、回収する放射性廃液が開示されている(例えば、特許文献3参照)。
しかしながら、陽極室には、放射性核種を含んだ硝酸が生成するため、減容化の観点からは、さらに硝酸を処理する必要がある。また、厚みが数mmの非常に薄いナトリウムイオン選択透過膜を介して、強アルカリと強酸の液が存在することになるため、透過膜が破損した時の化学的危険性が非常に高いという問題がある。
また、この電気透析法により、低レベル放射性濃縮廃液から放射性核種を含まない水酸化ナトリウムを分離し、回収することができるものの、硝酸の生成によって、水酸化ナトリウムの回収が効率的に進まないという問題があった。
なお、この形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
この実施形態の放射性廃液の処理装置(以下、「放射性廃液処理装置」と言う。)10は、還元装置11と、電気透析装置12と、放射性廃液貯留槽17と、蒸発装置18と、復水受槽19と、濃縮液受槽20と、pH計測装置21と、循環槽22と、陰極液受槽23とから概略構成されている。
また、電気透析装置12は、透過膜13、この透過膜13を介して設けられた陽極室14および陰極室15からなる電解槽16、並びに、陽極室14内に設置された陽電極(図示略)および陰極室15内に設置された陰電極(図示略)を備えている。すなわち、陽電極と陰電極は、透過膜13の両側にそれぞれ設置されている。
還元剤を用いる化学反応による処理方法を用いた装置としては、例えば、硝酸ナトリウムを含む放射性廃液に、還元剤として、ヒドラジン(N2H4)および/またはギ酸(HCOOH)を投与して、硝酸ナトリウムの還元反応(塩転換反応)を進行させる装置が挙げられる。
電気透析装置12の陽電極としては、寸法安定電極(Dimensionally Stable Electrode、DSE)、白金めっきしたチタン電極などが用いられる。
電気透析装置12の陰電極としては、白金めっきしたチタン電極などが用いられる。
このpH計測装置21は、電気透析装置12における放射性廃液の電気透析により陽極室14にて分離され、回収されて、陽極室14から還元装置11に供給される放射性物質濃縮溶液のpHを計測するためのものである。
また、pH計測装置21としては、上記のものの他、還元装置11内のpHまたは陽極室14の入口のpHを測定するものであってもよく、電気透析工程において陽極室14にて回収された放射性物質濃縮溶液のpH、還元装置11内のpHおよび陽極室14の入口のpHのうち2ヶ所以上のpHを測定するものであってもよい。
詳細には、放射性廃液は、硝酸ナトリウムを主成分とし、放射性核種を含む液であるから、この廃液還元工程における還元(塩転換)処理は、放射性廃液に含まれる硝酸ナトリウムを部分的に還元して、放射性廃液を、水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種を含む還元液とする処理である。
還元剤を用いる化学反応としては、硝酸ナトリウムを含む放射性廃液に、ヒドラジン(N2H4)および/またはギ酸(HCOOH)を投与することによる還元反応が用いられることが好ましい。
さらに、還元剤を用いる化学反応による処理方法であって、触媒存在下において処理する方法としては、例えば、パラジウム-銅触媒が共存する中で硝酸ナトリウムを含む廃液に還元剤を投与し、硝酸イオンを窒素に還元させる反応が挙げられる。
廃液還元工程において、放射性廃液への還元剤の供給速度は特に限定されないが、放射性廃液に含まれる硝酸ナトリウムの量に応じて、この工程において生成される還元液のpHが、電気透析装置12における電気透析に適した範囲内となるように適宜調整される。
このようにすれば、廃液還元工程において生成される還元液のpHが、電気透析装置12における電気透析に適した範囲内となる。
なお、ナトリウムイオン回収速度は、処理の対象となる放射性廃液の容量(規模)に応じて設定するので、放射性廃液への還元剤の供給速度は、そのナトリウムイオン回収速度に応じて、適宜調整される。
このようにすれば、廃液還元工程において生成される還元液のpHが、電気透析装置12における電気透析に適した範囲内となるように適宜調整される。
廃液還元工程にて生成する還元液、すなわち、電気透析装置12における電気透析工程に供給される還元液のpHが上記の範囲内であれば、電気透析工程において、ナトリウムイオン(Na+)の分離を常に高効率に維持することができるので、放射性廃液の処理を連続的に行うことができる。還元液のpHが10未満では、陽極室14の陽電極と、陰極室15の陰電極との間に印加する電圧が上昇するため、透過膜13の抵抗が大きくなるので、ナトリウムイオンが透過膜13を透過し難くなり、ナトリウムイオン(Na+)の分離効率が低下し、放射性廃液の処理を連続的に行えなくなるおそれがある。また、このように陽極室14の陽電極と、陰極室15の陰電極との間に印加する電圧が上昇すると、消費電力が増加するので、放射性廃液処理のプロセスとしての価値が下がる。
ここで、水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種を高濃度に含有する還元液とは、具体的に、水酸化ナトリウムを1mol/L以上含有し、好ましくは水酸化ナトリウムを1mol/L以上、35mol/L以下含有する液、または、炭酸水素ナトリウムを1mol/L以上含有し、好ましくは炭酸水素ナトリウムを1mol/L以上、3mol/L以下含有する液、または、炭酸ナトリウムを0.5mol/L以上含有し、好ましくは炭酸ナトリウムを0.5mol/L以上、4mol/L以下含有する液である。
電気透析を行う際の電気透析装置12の電解槽16(陽極室14および陰極室15)の温度は、還元液に含まれるナトリウム塩の種類や濃度に応じて適宜設定されるが、室温(20℃)以上、100℃以下とすることが好ましい。
4OH-→2H2O+O2↑+4e- (1)
また、還元液に含まれる炭酸水素ナトリウムまたは炭酸ナトリウムは、電気透析中において、ナトリウムイオンの分離、回収の進行に伴って、陽極室14内の放射性廃液のpHが一時的に低下するため、それぞれ炭酸水素イオン(HCO3 -)または炭酸イオン(CO3 -)が二酸化炭素として陽極室14から排出され、結果として水として回収される。この時、陽極室14において、下記の式(2)に示す炭酸水素イオンに関する化学反応が進行する。
2HCO3 -+2OH-→2H2O+2CO2↑+O2↑+4e- (2)
また、陽極室14において、下記の式(3)、(4)に示す炭酸イオンに関する化学反応が進行する。
CO3 -+H2O→HCO3 -+OH- (3)
2HCO3 -+2OH-→2H2O+2CO2↑+O2↑+4e- (4)
このようにすれば、電気透析工程において、ナトリウムイオン(Na+)の分離を常に高効率に維持することができる。
例えば、印加する電流密度としては、25mA/cm2以上、200mA/cm2以下とすることが好ましく、より好ましくは50mA/cm2以上、100mA/cm2以下である。
なお、放射性物質濃縮溶液には、透過膜13を透過しない放射性物質が残留するため、この放射性物質は放射性物質濃縮溶液とともに、還元装置11に戻される。
一方、循環槽22に残された水酸化ナトリウム水溶液は、所定濃度に希釈され、再び陰極室15へ送り込まれ、電気透析装置12における放射性廃液の電気透析に用いられる。
そして、この分離、回収された放射性核種は、濃縮液受槽20へ送り込まれ、再び還元装置11に送り込まれる。
また、放射性廃液に含まれる硝酸ナトリウムを塩転換処理してナトリウム塩を生成し、このナトリウム塩を含む放射性廃液の電気透析を行うので、放射性核種を含む酸(硝酸)などが発生せず、濃縮された放射性廃液の処理を簡素化することができる。さらに、硝酸ナトリウムを塩転換処理してナトリウム塩を生成することにより、硝酸イオンに起因する環境負荷をなくすことができる。
Pd-Cu触媒を充填した還元装置の触媒槽に、ヒドラジン(N2H4・H2O)を、供給速度7g/h(0.15mol/h)で供給し、上記の反応溶液に含まれる硝酸イオンを部分的に還元して、還元液としながら、ポンプを使用して、この還元液を抜き出して、電気透析装置の陽極室に供給するとともに、陽極室から還元装置の触媒槽に戻す操作を繰り返して、還元液(反応溶液を含む)を循環させた。
また、陽極室内における還元液の温度を65℃に制御した。
また、透過膜に対する還元液の供給圧力を0.01MPaとした。
図2は、陽極室における還元液のpHを測定した結果を示したグラフである。
図2に示したグラフの結果から、試験開始から5時間後にpHの僅かな減少が見られるが、これは、ヒドラジンの供給量が経時的に減少したためであると考えられる。そこで、これ以降、ヒドラジンの供給量を増加させて、その供給量を一定に制御することにより、還元液のpHを一定に保ちながら、硝酸イオンの分解とナトリウムイオンの回収を行えることが確認された。
水酸化物イオンの生成量は、下記の反応式(5)に基づいて、測定により得られた硝酸イオンの減少量から求めた。
4NaNO3+5N2H4→7N2+4NaOH+8H2O (5)
このように、ナトリウムイオンの回収速度と水酸化物イオンの生成速度がほぼ等しいことが確認された。したがって、還元液のpHがほぼ一定のまま反応溶液を処理できたのは、電気透析による水酸化ナトリウムの回収速度と、触媒法による水酸化ナトリウムの生成速度がほぼ等しいことによるのが、実験的に示された。
その結果、水酸化ナトリウムの回収速度、あるいは、水酸化ナトリウムの生成速度を制御する、すなわち、ヒドラジンの供給速度、あるいは、陽電極と陰電極の間に流す電流値を制御することにより、pHを制御しながら、反応溶液を処理することが可能であることが確認された。
これにより、触媒法による水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種の生成速度と、電気透析によるナトリウムイオンの回収速度をあらかじめ設定することにより、処理中の還元液のpHを任意に設定できる。また、処理中の還元液のpHの調整は、ヒドラジンの供給速度(すなわち、水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種の生成速度)、あるいは、陽電極と陰電極の間に流す電流値(すなわち、ナトリウムイオンの回収速度)を制御することにより可能となる。
Claims (9)
- ナトリウム塩を含有する放射性廃液の処理方法であって、
放射性廃液に含まれる硝酸ナトリウムを部分的に還元して、前記放射性廃液を、水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種を含む還元液とする廃液還元工程と、
ナトリウムイオンを選択的に透過する透過膜の両側に陽電極、陰電極を設置した電解槽の陽極室に、前記還元液を供給して、前記還元液の電気透析を行う電気透析工程と、を有し、
前記電気透析工程にて、前記陰極室にて、前記透過膜を透過したナトリウムイオンを水酸化ナトリウムとして分離回収し、前記陽極室に残留した放射性物質を、放射性物質濃縮溶液として分離し、分離された前記水酸化ナトリウムおよび前記放射性物質濃縮溶液をそれぞれ回収し、
前記廃液還元工程における水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種の生成速度と、前記電気透析工程におけるナトリウムイオン回収速度を等しくすることを特徴とする放射性廃液の処理方法。 - 前記廃液還元工程にて、還元剤としてヒドラジンおよび/またはギ酸を用いる化学反応による処理方法を行うことを特徴とする請求項1に記載の放射性廃液の処理方法。
- 前記還元剤としてヒドラジンおよび/またはギ酸を用いる化学反応による処理方法が、触媒存在下において処理される方法であることを特徴とする請求項2に記載の放射性廃液の処理方法。
- 前記廃液還元工程において、水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種の生成速度を、前記放射性廃液への前記還元剤の供給速度により制御することを特徴とする請求項2または3に記載の放射性廃液の処理方法。
- 前記廃液還元工程にて生成する前記還元液のpHを10以上とすることを特徴とする請求項1に記載の放射性廃液の処理方法。
- 前記廃液還元工程において、前記放射性廃液への前記還元剤の供給速度を、前記電気透析工程において前記陽極室にて回収された放射性物質濃縮溶液のpH、前記放射性廃液を還元する還元装置内のpHおよび前記陽極室入口のpHのうち少なくとも1つを計測した計測値に基づいて制御することを特徴とする請求項5に記載の放射性廃液の処理方法。
- 前記電気透析工程において前記陽極室にて回収された放射性物質濃縮溶液を、前記廃液還元工程に供給することを特徴とする請求項1に記載に放射性廃液の処理方法。
- 前記電気透析工程において、ナトリウムイオン回収速度を、前記陽電極と前記陰電極の間に流す電流値により制御することを特徴とする請求項1に記載の放射性廃液の処理方法。
- ナトリウム塩を含有する放射性廃液の処理装置であって、
放射性廃液に含まれる硝酸ナトリウムを部分的に還元して、前記放射性廃液を、水酸化ナトリウム、炭酸水素ナトリウムおよび炭酸ナトリウムのうち少なくとも1種を含む還元液とする還元装置と、
前記還元液に含まれるナトリウムイオンを選択的に透過する透過膜、前記透過膜を介して設けられた陽極室および陰極室、並びに、前記透過膜の両側にそれぞれ設置された陽電極および陰電極を有する電気透析装置と、
前記陽極室にて回収され、前記陽極室から前記還元装置に供給される放射性物質濃縮溶液のpH、前記還元装置内のpHおよび前記陽極室入口のpHのうち少なくとも1つを計測するpH計測装置と、を備えたことを特徴とする放射性廃液の処理装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10761299A EP2418654A1 (en) | 2009-04-08 | 2010-02-22 | Method for treating radioactive waste solution and device for treating same |
US13/259,146 US20120022312A1 (en) | 2009-04-08 | 2010-02-22 | Method for treating radioactive liquid waste and apparatus for treating the same |
CN2010800145867A CN102396034A (zh) | 2009-04-08 | 2010-02-22 | 放射性废液的处理方法及处理装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009093878A JP5386215B2 (ja) | 2009-04-08 | 2009-04-08 | 放射性廃液の処理方法および処理装置 |
JP2009-093878 | 2009-04-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010116591A1 true WO2010116591A1 (ja) | 2010-10-14 |
Family
ID=42935891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/001136 WO2010116591A1 (ja) | 2009-04-08 | 2010-02-22 | 放射性廃液の処理方法および処理装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120022312A1 (ja) |
EP (1) | EP2418654A1 (ja) |
JP (1) | JP5386215B2 (ja) |
CN (1) | CN102396034A (ja) |
WO (1) | WO2010116591A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102522135A (zh) * | 2011-11-29 | 2012-06-27 | 清华大学 | 一种锆基草酸溶液转型的方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101207339B1 (ko) | 2011-01-06 | 2012-12-06 | 박영웅 | 실리카를 주성분으로 하는 감손우라늄을 함유하는 폐촉매 처리방법 |
FR2993877A1 (fr) * | 2012-07-24 | 2014-01-31 | Jean-Francois Bouyssou | Installation et procede de traitement d'un effluent aqueux charge en matiere azotee |
CN103440894A (zh) * | 2013-08-12 | 2013-12-11 | 清华大学 | 一种膜吸收法处理高氨放射性废水的工艺 |
RU2607646C1 (ru) * | 2016-04-22 | 2017-01-10 | Федеральное государственное унитарное предприятие "Горно-химический комбинат" (ФГУП "ГХК") | Способ разложения нитрата аммония в технологических растворах радиохимического производства |
CN106098130B (zh) * | 2016-06-16 | 2017-10-03 | 西南科技大学 | 一种电还原处理低浓度含铀废水制取铀氧化物的方法 |
CN107777826B (zh) * | 2016-08-27 | 2020-10-27 | 中国石油化工股份有限公司 | 一种高硝酸盐废水的深度处理系统和方法 |
CN109065202B (zh) * | 2018-07-31 | 2024-03-08 | 北京纬纶华业环保科技股份有限公司 | 放射性核废有机相的处理系统及方法 |
CN110391032B (zh) * | 2019-06-20 | 2022-07-29 | 中国辐射防护研究院 | 放射性废树脂芬顿氧化废液电解深度净化及硫酸回收方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04283700A (ja) | 1991-03-12 | 1992-10-08 | Toshiba Corp | 低レベル濃縮廃液の減容方法 |
JPH0866686A (ja) | 1994-08-29 | 1996-03-12 | Shinko Pantec Co Ltd | 廃液等の被処理液の処理方法とその装置 |
JP2000321395A (ja) | 1999-05-07 | 2000-11-24 | Kobe Steel Ltd | 放射性廃液の処理方法 |
JP2003126872A (ja) | 2001-10-29 | 2003-05-07 | Sumitomo Metal Mining Co Ltd | 硝酸性窒素含有排水の処理方法 |
JP2004074107A (ja) | 2002-08-22 | 2004-03-11 | Toshiba Corp | 硝酸性窒素の処理方法および処理装置 |
JP2004354313A (ja) * | 2003-05-30 | 2004-12-16 | Toshiba Corp | 放射性廃液の処理方法および処理設備 |
JP2008023522A (ja) * | 2006-06-20 | 2008-02-07 | Jgc Corp | 硝酸ナトリウム含有水溶液の処理方法および処理装置 |
WO2009072443A1 (ja) * | 2007-12-05 | 2009-06-11 | Jgc Corporation | 放射性廃液の処理方法および処理装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10038318C1 (de) * | 2000-08-05 | 2001-09-06 | Krupp Uhde Gmbh | Verfahren und Vorrichtung zur Erzeugung von Reinstaromaten |
JP5038160B2 (ja) * | 2006-01-19 | 2012-10-03 | 日本原燃株式会社 | 使用済核燃料の湿式再処理におけるナトリウム塩リサイクルシステム |
WO2008124047A1 (en) * | 2007-04-03 | 2008-10-16 | Ceramatec, Inc. | Electrochemical process to recycle aqueous alkali chemicals using ceramic ion conducting solid membranes |
-
2009
- 2009-04-08 JP JP2009093878A patent/JP5386215B2/ja not_active Expired - Fee Related
-
2010
- 2010-02-22 CN CN2010800145867A patent/CN102396034A/zh active Pending
- 2010-02-22 US US13/259,146 patent/US20120022312A1/en not_active Abandoned
- 2010-02-22 EP EP10761299A patent/EP2418654A1/en not_active Withdrawn
- 2010-02-22 WO PCT/JP2010/001136 patent/WO2010116591A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04283700A (ja) | 1991-03-12 | 1992-10-08 | Toshiba Corp | 低レベル濃縮廃液の減容方法 |
JPH0866686A (ja) | 1994-08-29 | 1996-03-12 | Shinko Pantec Co Ltd | 廃液等の被処理液の処理方法とその装置 |
JP2000321395A (ja) | 1999-05-07 | 2000-11-24 | Kobe Steel Ltd | 放射性廃液の処理方法 |
JP2003126872A (ja) | 2001-10-29 | 2003-05-07 | Sumitomo Metal Mining Co Ltd | 硝酸性窒素含有排水の処理方法 |
JP2004074107A (ja) | 2002-08-22 | 2004-03-11 | Toshiba Corp | 硝酸性窒素の処理方法および処理装置 |
JP2004354313A (ja) * | 2003-05-30 | 2004-12-16 | Toshiba Corp | 放射性廃液の処理方法および処理設備 |
JP2008023522A (ja) * | 2006-06-20 | 2008-02-07 | Jgc Corp | 硝酸ナトリウム含有水溶液の処理方法および処理装置 |
WO2009072443A1 (ja) * | 2007-12-05 | 2009-06-11 | Jgc Corporation | 放射性廃液の処理方法および処理装置 |
Non-Patent Citations (8)
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102522135A (zh) * | 2011-11-29 | 2012-06-27 | 清华大学 | 一种锆基草酸溶液转型的方法 |
CN102522135B (zh) * | 2011-11-29 | 2014-11-26 | 清华大学 | 一种锆基草酸溶液转型的方法 |
Also Published As
Publication number | Publication date |
---|---|
CN102396034A (zh) | 2012-03-28 |
EP2418654A1 (en) | 2012-02-15 |
JP5386215B2 (ja) | 2014-01-15 |
US20120022312A1 (en) | 2012-01-26 |
JP2010243392A (ja) | 2010-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5386215B2 (ja) | 放射性廃液の処理方法および処理装置 | |
JP5331707B2 (ja) | 放射性廃液の処理方法および処理装置 | |
US6294066B1 (en) | Apparatus and process for electrodialysis of salts | |
US6627061B2 (en) | Apparatus and process for electrodialysis of salts | |
CA2750414C (en) | Method for purifying lithium-containing waste waters during the continuous manufacture of lithium transition metal phosphates | |
JP5862167B2 (ja) | 閉鎖系空間用の水回収装置 | |
US10508049B2 (en) | System for regenerating sodium hydroxide and sulfuric acid from waste water stream containing sodium and sulfate ions | |
US20220144673A1 (en) | Electrodialyzer and electrodialysis system for co2 capture from ocean water | |
EP2949630B1 (en) | Water recovery device for closed system space | |
US20200147553A1 (en) | Method for electrochemical separation and regeneration of forward osmosis draw solution | |
Gain et al. | Ammonium nitrate wastewaters treatment by an electromembrane process | |
JPH09271781A (ja) | 廃水からの窒素分除去方法 | |
JP2001191080A (ja) | 電気脱イオン装置及びそれを用いた電気脱イオン化処理方法 | |
JP2014139530A (ja) | 溶離液の再生方法及びその再生装置 | |
CN114000160A (zh) | 一种四价铀的制备装置及方法 | |
KR20230110573A (ko) | 방사성 핵종 제거 프로세스 도중의 붕소-도핑된-다이아몬드 전극에 의한 유기 화합물의 광물화 | |
JPS5837596A (ja) | 硝酸塩含有放射性廃液の処理方法 | |
JP3293475B2 (ja) | 硝酸水溶液の濃縮方法およびその濃縮装置 | |
JP6752300B2 (ja) | 放射性廃液処理システム | |
KR20090112863A (ko) | 오염 탄산용액의 전해 재생방법 및 그 장치 | |
Irisawa et al. | Development of separation technique of sodium nitrate from low-level radioactive liquid waste using electrodialysis with selective ion-exchange membranes | |
JPH0975680A (ja) | 酸化窒素の製造方法 | |
JPH10268092A (ja) | 原子力発電所内有機物低減装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080014586.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10761299 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13259146 Country of ref document: US |
|
REEP | Request for entry into the european phase |
Ref document number: 2010761299 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010761299 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |