JP2014139530A - 溶離液の再生方法及びその再生装置 - Google Patents

溶離液の再生方法及びその再生装置 Download PDF

Info

Publication number
JP2014139530A
JP2014139530A JP2013008402A JP2013008402A JP2014139530A JP 2014139530 A JP2014139530 A JP 2014139530A JP 2013008402 A JP2013008402 A JP 2013008402A JP 2013008402 A JP2013008402 A JP 2013008402A JP 2014139530 A JP2014139530 A JP 2014139530A
Authority
JP
Japan
Prior art keywords
eluent
exchange membrane
ion exchange
compartment
regenerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013008402A
Other languages
English (en)
Inventor
Hiroshi Okabe
寛史 岡部
Tsuneo Omura
恒雄 大村
Yoshiko Haruguchi
佳子 春口
Kanae Kawauchi
加苗 川内
Koji Negishi
孝次 根岸
Kazuo Murakami
一男 村上
Tetsuo Osato
哲夫 大里
Koji Mizuguchi
浩司 水口
Tadashi Fukushima
正 福島
Kazuya Yamada
和矢 山田
Michitaka Mikura
通孝 三倉
Seiichi Murayama
清一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2013008402A priority Critical patent/JP2014139530A/ja
Publication of JP2014139530A publication Critical patent/JP2014139530A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

【課題】使用済溶離液中の溶離阻害成分と溶離液成分とを分離・回収して除染効率を回復させる溶離液の再生技術を提供する。
【解決手段】放射能汚染物質を溶離液に浸漬して放射性核種を溶離させる工程(S12)と、放射性核種が溶離した溶離液を固相から分離する工程(S13)と、分離した溶離液をイオン交換膜で仕切られた区画(透析槽)に収容する工程(S16)と、この区画に電場を付与し収容された溶離液に含まれるイオン成分をイオン交換膜に透過させてこの溶離液を精製する工程(S17)と、前記精製された溶離液を回収する工程(S18)と、を含む。
【選択図】 図1

Description

本発明は、放射能に汚染された物質の除染に用いた溶離液の再生技術に関する。
原子力発電所において、放射性物質が建屋外に飛散するようなシビアアクシデントが発生すると、環境が広域に渡り放射能汚染されることが想定される。こうした放射能汚染の影響は、土壌、下水処理場で発生する汚泥、この汚泥を焼却処理した汚泥灰、及び各地の一般廃棄物焼却場で発生する焼却灰や飛灰等の処理工程にまでおよぶ。
このような、放射性物質が環境中に広く飛散する事態の発生に備え、放射能に汚染された物質の除染方法の開発が望まれている。
原子力発電所のシビアアクシデントに由来する放射能汚染物に含まれる放射性核種の大部分は、134Csや137Csである。このうち特に137Csは半減期が30.2年であって、比較的高強度の放射線を長期間にわたり環境に放出することが懸念される。
このため、汚泥灰や汚泥、土壌等の放射能汚染物は、含まれるセシウムを除去したうえで廃棄処分することが望まれる。
このような放射能汚染物から放射性核種を除去する技術として、放射能汚染物を、水、酸溶液、アルカリ溶液等の溶離液に浸漬し、放射性核種を溶離させる湿式溶離法が有力視されている。また、湿式溶離法は、溶離液を変更することにより、様々の金属元素を含む物質を除染対象とすることができる(例えば、特許文献1)。
特開平6−23340号公報
従来において、一度使用した溶離液は、再利用することなく廃棄されていたために、溶離工程で消費される薬品の量が多くなる課題があった。
また、溶離液の液性が酸性やアルカリ性であるために、使用済の溶離液の処理費用がかさみ、経済性に乏しいという課題があった。
そこで、ゼオライト等の吸着剤によりセシウムを取り除いた後の使用済溶離液を再利用することが検討される。
しかしこの場合、使用済の溶離液に残存するセシウム以外のミネラル成分の影響により、セシウムの溶離が阻害され、放射能汚染物質の除染効率が低下する課題があった。
本発明はこのような事情を考慮してなされたもので、使用済溶離液中の溶離阻害成分と溶離液成分とを分離・回収して除染効率を回復させる溶離液の再生技術を提供することを目的とする。
本発明に係る溶離液の再生方法は、放射能汚染物質を溶離液に浸漬して放射性核種を溶離させる工程と、前記放射性核種が溶離した溶離液を固相から分離する工程と、前記分離した溶離液を第1イオン交換膜で仕切られた区画に収容する工程と、前記区画に電場を付与し前記収容された溶離液に含まれるイオン成分を前記第1イオン交換膜に透過させてこの溶離液を精製する工程と、前記精製された溶離液を回収する工程と、を含むことを特徴とする。
本発明により、使用済溶離液中の溶離阻害成分と溶離液成分とを分離・回収して除染効率を回復させる溶離液の再生技術が提供される。
本発明に係る溶離液の再生方法の実施形態を示すフローチャート。 溶離液に含まれるミネラル成分とセシウムの溶離率との関係を示すテーブル。 (A)第1実施形態に係る溶離液の再生装置において陽イオン交換膜が適用された場合を示す構成図、(B)陰イオン交換膜が適用された場合を示す構成図。 第2実施形態に係る溶離液の再生装置を示す構成図。 第3実施形態に係る溶離液の再生装置を示す構成図。 第4実施形態に係る溶離液の再生装置を示す構成図。 電解条件と溶離液(シュウ酸)の再生率との関係を示すテーブル。
(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。
図1のフローチャートに示すように各実施形態に係る溶離液の再生方法は、溶離液を調整する工程(S11)と、放射能汚染物質を溶離液に浸漬して放射性核種を溶離させる工程(S12)と、放射性核種が溶離した溶離液を固相から分離する工程(S13)と、分離した溶離液からセシウムイオンを除去する工程(S14)と、溶離液を中和してイオン成分の一部を析出除去する工程(S15)と、溶離液をイオン交換膜で仕切られた区画(透析槽)に収容する工程(S16)と、この区画に電場を付与し収容された溶離液に含まれるイオン成分をイオン交換膜に透過させてこの溶離液を精製する工程(S17)と、前記精製された溶離液を回収する工程(S18)と、を含む。
工程(S11)において調整される溶離液としては、放射能汚染物質からセシウムを溶出させる能力に優れ、原子力分野で実績があるシュウ酸の水溶液が挙げられる。
次式(1)に示すようにシュウ酸は、過酸化水素を添加して水と二酸化炭素に分解することができ、廃棄物や廃液の発生量を抑制することができる。
(COOH)2+H22 → 2CO2+2H2O (1)
なお、放射能汚染物質から放射性核種を溶出させる酸性の溶離液としては、シュウ酸の他に、ギ酸溶液、酢酸溶液、クエン酸溶液、酒石酸溶液、硫酸溶液または塩酸溶液などが例示される。また、アルカリ性の溶離液としては、水酸化ナトリウム溶液、水酸化カリウム溶液、アンモニア溶液、炭酸水素ナトリウム溶液、炭酸水素カリウム溶液などが挙げられる。
このなかでも、シュウ酸、水酸化ナトリウム溶液、水酸化カリウム溶液、アンモニア溶液、炭酸水素ナトリウム溶液、炭酸水素カリウム溶液は、高い溶離率が得られ、さらに高い電気伝導率による消費電力の抑制効果が得られる点において優れている。
工程(S12)において溶離する放射性核種を含む放射能汚染物質としては、土壌、下水処理場で発生する汚泥、この汚泥を焼却処理した汚泥灰、及び各地の一般廃棄物焼却場で発生する焼却灰や飛灰等が挙げられる。
これら放射能汚染物質を所定の濃度に調整された溶離液に浸漬し撹拌することにより、放射能汚染物質に含まれる放射性核種が溶離液中に溶離する。
工程(S13)は、高比率で放射性核種が分配された溶離液と除染された放射能汚染物質(固相)とを、物理的方法により分離する。
そして、この除染された固相は、一般的な方法で処分される。
セシウム除去工程(S14)においては、モルデナイト、フェロシアン化ニッケルなどの無機吸着材を投入することにより、溶離液中のセシウムイオンを吸着除去する。
処理後の吸着材は、処理前の放射能汚染物質に比べて数十倍から数百倍にセシウムが濃縮されており、強い放射線を放出するために、安定化処理を施した上で特別な管理下に置かれる。
このようなセシウム除去工程(S14)を経た後の溶離液には、放射能汚染物質から溶出したミネラル成分が大量に残存している場合がある。
そして、この残存するミネラル成分は、使用済みの溶離液を溶離工程(S12)で再利用する場合に、放射性核種の溶離率の低下を招く原因となる。
図2のテーブルは、放射能汚染物質として汚泥焼却灰を用い、溶離液としてシュウ酸を用い、溶離液に特定の金属元素(ミネラル成分)を添加した場合における、セシウムの溶離率を示している。
このテーブルに示すように、金属元素を添加しない場合の溶離率が50%であるのに対し、特定の金属元素を溶離液に添加することによりセシウムの溶離率が低下する。
例えば、放射能汚染物質にミネラル成分として鉄が含まれる場合、シュウ酸と鉄が反応しシュウ酸鉄が生成するために、セシウムの溶離能力を低下させると考えられる。
このために使用済み溶離液を溶離工程(S12)において再使用するためには、含まれるシュウ酸鉄をシュウ酸に戻し、セシウム溶離能力を回復させる必要がある。
中和工程(S15)においては、溶離液に、逆の液性を示す中和剤を添加することにより、金属元素イオンを金属塩に変換して除去する。
例えば、シュウ酸を溶離液として用いた場合、水酸化ナトリウムや水酸化カリウムを中和剤として添加することにより、金属元素イオンは水酸化物に変換される。
ここで、セシウム溶離能力を阻害する金属元素である鉄について例示すると、溶離液に中和剤を添加することによりシュウ酸鉄を水酸化鉄に変換させることができる。
そして変換された水酸化鉄は、沈降分離やデカンタなどを用いて固液分離することにより、除去される。
また、Siの中和生成物のように粒子径が小さく分離が困難であるものは、さらに凝集剤を添加することにより、沈殿・分離除去することができる。
シュウ酸などの酸性溶離液を中和する場合は、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、アンモニアなどのアルカリ性中和剤を用いることが望ましい。
また、アルカリ性溶離液を中和する場合は、塩酸、硫酸、硝酸などの酸性中和剤を用いることが望ましい。
これら中和剤のうち、電気伝導率や沈殿生成の観点から、硫酸と水酸化カリウムが特に望ましい。
この水酸化カリウムを中和剤としてシュウ酸溶離液を処理すると、シュウ酸水素カリウムが中間生成物として生成する。
このシュウ酸水素カリウムは、シュウ酸水素ナトリウムに比べて溶解度が高く、析出しにくい性質を有している。
また、このシュウ酸水素カリウムは、シュウ酸水素ナトリウムに比べて電気伝導率が高いために、電圧損失が少なくなり後段の精製工程(S17)において、消費電力の節減に寄与する。
一方、水酸化ナトリウムを中和剤としてシュウ酸溶離液を処理すると、シュウ酸水素ナトリウムが中間生成物として生成する。
このシュウ酸水素ナトリウムは、溶解度が低く、温度や濃度の変動に伴って析出すると、溶液のイオン濃度を低下させ電気伝導率の悪化を招く。
このために、後段の精製工程(S17)において、透析槽の槽内の導電性を維持するために、シュウ酸水素ナトリウムを支持電解質として溶解させる操作が必要となる。
なお、上述したセシウム除去工程(S14)及び溶離液の中和工程(S15)は、溶離液の再生率向上及び再生コストの低減に寄与するものであるが、必須の工程ではない。
これら工程(S14)(S15)を省略する場合は、溶離液に含まれるセシウム及びその他の金属のイオンは、次の電気透析の工程(S16〜S18)において除去される。
収容工程(S16)において溶離液は、再生装置(図3)の透析槽10に収容される。
第1実施形態に係る溶離液の再生装置(図3(A)(B))の透析槽10は、陽極11が配置される陽極室13と、陰極12が配置される陰極室14と、陽極室13及び陰極室14を仕切る第1イオン交換膜21(21c,21a)とから構成されている。
そして、陽極室13には、その内部に供給又は循環させる電解液を蓄積する第1タンク31が接続されており、陰極室14にも同様に第2タンク32が接続されている。
第1イオン交換膜21は、その両面に接触する電解液中の陽イオン及び陰イオンのいずれか一方を選択的に通過させる性質を有する。
図3(A)に示す第1イオン交換膜21cは、マイナスの電荷交換基が固定されている陽イオン交換膜(カチオン膜)であり、陽イオンを選択的に通過させる。
図3(B)に示す第1イオン交換膜21aは、プラスの電荷交換基が固定されている陰イオン交換膜(アニオン膜)であり、陰イオンを選択的に通過させる。
イオン交換膜の材質としてはポリスルホン、ポリプロピレン、ポリエステル、ポリテトラフルオロエチレンなどが用いられ、炭化水素系樹脂よりもフッ素樹脂系のほうが耐薬品性の観点から好ましい。
電極11,12の材料としては、グラファイト、カーボン材料、ステンレス鋼、鉄、ニッケル、コバルト、亜鉛、鉛、パラジウム、ロジウム、白金、金、ルテニウム、ルテシウム、イリジウム、チタン、銅ののうちいずれかの使用が考えられる。
電極11,12は、これら材料を無垢のまま使用する場合や表面コーティングを施して使用する場合が考えられる。
なお、陽極11としてニッケル、鉄(ステンレス)、陰極12として白金、イリジウム(酸化イリジウム)等を用いることにより、水素発生過電圧や酸素発生過電圧を小さくし、消費電力を抑制して経済性を向上させることができる。
精製工程(S17)においては、陽極室13及び陰極室14のいずれか一方の区画に収容された溶離液及び他方の区画に収容された電解液に対し、電極11,12により電場が付与される。
溶離液中のミネラル成分(金属イオン)は、一般に陽イオンであるために、陰極12の方向に泳動する性質を有する。
このため図3(A)に示すように、第1イオン交換膜21c(陽イオン交換膜)により透析槽10の区画を仕切る場合は、溶離液を陽極室13の区画に収容する。
そして、この区画に電場を付与すると、ミネラル成分(金属イオン)が陽イオン交換膜21cを透過して、溶離液のイオン成分は陽極室13に留まって精製される。
これに対し図3(B)に示すように、第1イオン交換膜21a(陰イオン交換膜)により透析槽10の区画を仕切る場合は、溶離液を陰極室14の区画に収容する。
そして、この区画に電場を付与すると、溶離液のイオン成分が陰イオン交換膜21aを透過し精製された溶離液が陽極室13に濃縮され、陰極室14ではミネラル成分(金属イオン)が留まって濃縮される。
第1実施形態に係る溶離液の再生装置(図3)では、第1イオン交換膜21により仕切られる区画の数が少ないために、電極間距離を短くし電気抵抗を小さくして、消費電力を抑制し運転コストを低廉化することができる。
なお透析槽の各区画に電解液を収容する際に、その電気伝導率が低い場合は、電気抵抗の上昇による消費電力の増大を回避するために、支持電解質を投入する。
支持電解質としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、塩化アンモニウム、硫化ナトリウム、硫化水素ナトリウム、硫化カリウム、硫化水素カリウム、硫化マグネシウム、硫化水素マグネシウム、硫酸アンモニウム、硫酸水素アンモニウム、硝酸ナトリウム、硝酸カリウム、硝酸マグネシウム、硝酸アンモニウム、リン酸三ナトリウム、リン酸三カリウム、リン酸三マグネシウム、リン酸アンモニウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸マグネシウム、ホウ酸アンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化マグネシウム、フッ化アンモニウム等の塩が挙げられる。
また、支持電解質として硫酸、硝酸、塩酸などの酸や、水酸化ナトリウム、水酸化カリウムなどのアルカリを用いることができる。
なお支持電解質は、これら化合物に限定されることはなく、溶離液や中和剤と相互作用せず、十分な溶解度と解離度を有し、さらにイオン交換膜や電極と副反応を起こさないものであれば適宜採用される。
回収工程(S18)においては、精製(再生)した溶離液を回収し、溶離工程(S12)において再利用するまでタンクに蓄積する。
なお、図示においては、透析槽10の各区画に、始端と終端が連通する一本の配管の経路上に一つのタンクが接続される場合を示している。
しかし、精製される前の溶離液を供給する配管及び精製された後の溶離液を送出する配管を別個に設けることもでき、それぞれの溶離液を蓄積するタンクも別個に設けることができる。
(第2実施形態)
第2実施形態に係る溶離液の再生装置(図4)の透析槽10は、陽極室13及び陰極室14の間に中間室15が設けられている。
この中間室15の区画の一端は、陽イオン交換膜の第1イオン交換膜21cにより陰極室14から仕切られ、さらにその他端は、陽イオン交換膜の第2イオン交換膜22cにより陽極室13から仕切られている。
この中間室15には、その内部に供給又は循環させる電解液を蓄積する第3タンク33が接続されている。なお、図4において図3と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
図4に示すように、第2実施形態に係る溶離液の再生装置(図4)の透析槽10は、溶離液を中間室15の区画に収容する。
そして、この区画に電場を付与すると、ミネラル成分(金属イオン)が第1イオン交換膜21cを透過して、溶離液のイオン成分は中間室15に留まって精製される。
第2実施形態に係る溶離液の再生装置(図4)では、精製された後の溶離液が陽極11に接触しないために、電極に接触して電気化学反応するような溶離液の場合、溶離液の分解消失を少なくして生産性を向上させることができる。
図4に示す再生装置において、有機酸の一種であるシュウ酸の溶離液を精製する場合を説明する。
シュウ酸イオンは、陽極11に接触すると二酸化炭素と水素イオンに分解する性質がある。このために、中間室15に溶離液を収容させて、電極から隔離することにより、この問題を解決することができる。
図4の透析槽10において、陽極室13に硫酸又は塩酸などの酸性溶液、中間室15に使用済のシュウ酸溶離液、陰極室14に水酸化ナトリウム又は水酸化カリウムなどのアルカリ溶液を収容して電場を付与する。
中間室15における溶離液の金属イオンM+(陽イオン成分)は、第1イオン交換膜21c(陽イオン交換膜)を通過して陰極室14に移動するが、シュウ酸イオン(陰イオン成分)は第2イオン交換膜22c(陽イオン交換膜)を通過できず中間室15にとどまる。
一方、陽極室13で水の電気分解により発生した水素イオンH+は、電気泳動により中間室15に供給される。
これにより、使用済みのシュウ酸溶離液は、電極に接触して分解することなく、ミネラル成分を分離して再生されることになる。
ここで、陽極室13及び陰極室14における水の電気分解は、下記式(2)〜(7)のように、収容されている電解液の液性により異なる。これら陽極室13及び陰極室14に収容される電解液は、再生対象となる溶離液の組成によって適宜決定される。
・酸性溶液
陽極:2H2O → O2+4H++4e- (2)
陰極:2H++2e- → H2 (3)
・中性溶液
陽極:2H2O → O2+4H++4e- (4)
陰極:2H2O+2e- → H2+2OH- (5)
・アルカリ性溶液
陽極:4OH- → O2+2H2O+4e- (6)
陰極:2H2O+2e- → H2+2OH- (7)
なお、図1の中和工程(S15)において、使用済みのシュウ酸溶離液にアルカリ中和剤(NaOH又はKOH等)が投入されている場合は、図4の再生装置の陰極室14において、これらアルカリ中和剤も再生(精製)されることになる。
これら再生された中和剤は、陰極室14から回収されて、中和工程(図1;S15)において再利用することができるので経済性の向上に貢献する。
(第3実施形態)
第3実施形態に係る溶離液の再生装置(図5)の透析槽10は、陽極室13及び陰極室14の間に中間室15が設けられている。
この中間室15の区画の一端は、陰イオン交換膜の第1イオン交換膜21aにより陰極室14から仕切られ、さらにその他端は、陽イオン交換膜の第2イオン交換膜22cにより陽極室13から仕切られている。
なお、図5において図4と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
第3実施形態に係る溶離液の再生装置(図5)の透析槽10は、溶離液を陰極室14の区画に収容する。
そして、この区画に電場を付与すると、溶離液のイオン成分が第1イオン交換膜21aを透過し精製された溶離液が中間室15に濃縮され、陰極室14ではミネラル成分(金属イオンM+)が留まって濃縮される。
図5に示す再生装置において、有機酸の一種であるシュウ酸の溶離液を精製する場合を説明する。
図5の透析槽10において、陽極室13に硫酸又は塩酸などの酸性溶液、中間室15にシュウ酸溶液、陰極室14に使用済のシュウ酸溶離液を収容して電場を付与する。
陰極室14における溶離液のシュウ酸イオン(陰イオン成分)は、第1イオン交換膜21a(陰イオン交換膜)を通過して中間室15に移動するが、金属イオンM+(陽イオン成分)は第1イオン交換膜21a(陰イオン交換膜)を通過できず陰極室14にとどまる。
一方、中間室15のシュウ酸イオン(陰イオン成分)は、第2イオン交換膜22c(陽イオン交換膜)を通過できない。
そして、陽極室13で水の電気分解により発生した水素イオンH+は、電気泳動により中間室15に供給される。
これにより、使用済みのシュウ酸溶離液は、陽極11に接触して分解することなく、ミネラル成分を分離して再生されることになる。
(第4実施形態)
第4実施形態に係る溶離液の再生装置(図6)は、第3実施形態(図5)の透析槽10の構成からさらに、陽極室13を第3イオン交換膜23aにより区画し、陰極室14を第4イオン交換膜24cにより区画している。
図6のように透析槽10が構成されることにより、中間室15へのミネラル成分の浸入をさらに抑制しつつ精製される溶離液の濃度を制御することができる。
これにより精製される溶離液を、精製前よりも高濃度で再生することができるため、溶離工程(図1:S12)で投入される再生溶離液の液量を少なくすることができ、さらに設備の小型化をはかることもできる。
なおアルカリ性の使用済溶離液を再生する場合は、陽極室13に再生対象の使用済溶離液を収容し、中間室15に水又は溶離液、陰極室14に水酸化ナトリウムや水酸化カリウムなどのアルカリ溶液を収容して、電場を付与する。
使用済溶離液を収容する区画は、この溶離液の液性や組成に応じて、陽極室13、中間室15及び陰極室14の中から適宜選択される。
(実施例)
図4の構成を有する溶離液の再生装置を使用し、水酸化カリウムで中和したシュウ酸溶離液を再生する場合の効果を確認した実施例について説明する。
陽極11にステンレス、陰極12に白金を用い、陽極室13には硫酸1mol/L、中間室15にはシュウ酸中和溶液、陰極室14には水酸化カリウム1mol/Lを収容した。
図7に、試験の設定条件、及び再生率の結果を示す。
溶離液の再生装置の運転条件として、電解液の温度を20℃〜95℃に設定する。
一方、シュウ酸を水酸化ナトリウム又は水酸化カリウムで中和して、シュウ酸ナトリウム又はシュウ酸カリウムが溶離液に生成している場合は、特に50℃〜90℃に設定することが望ましい。
設定温度が50℃よりも低いと、中間生成物であるシュウ酸水素ナトリウム又はシュウ酸水素カリウムが溶解度の低下によりイオン交換膜に析出し、溶液中のイオン量が減少し電気伝導率が低下する。
このように、析出や電気伝導率の低下が起こると、電解電圧が上昇し経済性が低下する、さらに電解電圧が上昇しすぎると電解の継続が困難となる。
また、使用済溶離液の再生装置の運転条件として、電流密度を1mA/cm2〜5000mA/cm2に設定する。
電流密度が1mA/cm2よりも小さいと、使用済み溶離液の再生処理の効率が低下するか電極面積が大きくなり装置が大型化する。
一方、電流密度が5000mA/cm2よりも大きいと、電気分解によりガスが発生したり、電解液の電気抵抗損失が大きくなり電解電圧が上昇して経済性が低下したりする。
以上述べた少なくともひとつの実施形態の溶離液の再生方法によれば、イオン交換膜を用いてミネラル成分を分離することにより、溶離率の低下を招くことなく溶離液を再利用することが可能となる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
10…透析槽、11…陽極、12…陰極、13…陽極室、14…陰極室、15…中間室、21…イオン交換膜、21a…第1イオン交換膜(陰イオン交換膜)、21c…第1イオン交換膜(陽イオン交換膜)、22c…第2イオン交換膜(陽イオン交換膜)、23a…第3イオン交換膜(陰イオン交換膜)、24c…第4イオン交換膜(陽イオン交換膜)、31…第1タンク、32…第2タンク、33…第3タンク。

Claims (8)

  1. 放射能汚染物質を溶離液に浸漬して放射性核種を溶離させる工程と、
    前記放射性核種が溶離した溶離液を固相から分離する工程と、
    前記分離した溶離液を第1イオン交換膜で仕切られた区画に収容する工程と、
    前記区画に電場を付与し前記収容された溶離液に含まれるイオン成分を前記第1イオン交換膜に透過させてこの溶離液を精製する工程と、
    前記精製された溶離液を回収する工程と、を含むことを特徴とする溶離液の再生方法。
  2. 前記区画は、さらに陽極室を第2イオン交換膜で仕切ることにより形成される請求項1に記載の溶離液の再生方法。
  3. 前記区画に収容する工程を経る前に、
    前記溶離液からセシウムイオンを除去する工程を経る請求項1又は請求項2に記載の溶離液の再生方法。
  4. 前記区画に収容する工程を経る前に、
    前記溶離液を中和して前記イオン成分の一部を析出除去する工程を経る請求項1から請求項3のいずれか1項に記載の溶離液の再生方法。
  5. 前記溶離液の中和に用いたアルカリ中和剤を陰極室において回収し再利用する請求項4に記載の溶離液の再生方法。
  6. 前記陽極室はさらに第3イオン交換膜により仕切られ、陰極室は第4イオン交換膜により仕切られる請求項2から請求項5のいずれか1項に記載の溶離液の再生方法。
  7. 放射能汚染物質を浸漬した後に固相から分離された溶離液を収容する区画と、
    前記区画を仕切るイオン交換膜と、
    前記区画に電場を付与し前記収容された溶離液に含まれるイオン成分を前記イオン交換膜に透過させてこの溶離液を精製する電極と、
    前記区画に連通し前記精製される前又は精製された後の溶離液を蓄積するタンクと、を備えることを特徴とする溶離液の再生装置。
  8. 電流密度が1mA/cm2〜5000mA/cm2に設定される請求項7に記載の溶離液の再生装置。
JP2013008402A 2013-01-21 2013-01-21 溶離液の再生方法及びその再生装置 Pending JP2014139530A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013008402A JP2014139530A (ja) 2013-01-21 2013-01-21 溶離液の再生方法及びその再生装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013008402A JP2014139530A (ja) 2013-01-21 2013-01-21 溶離液の再生方法及びその再生装置

Publications (1)

Publication Number Publication Date
JP2014139530A true JP2014139530A (ja) 2014-07-31

Family

ID=51416301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013008402A Pending JP2014139530A (ja) 2013-01-21 2013-01-21 溶離液の再生方法及びその再生装置

Country Status (1)

Country Link
JP (1) JP2014139530A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609975B1 (ko) 2015-02-02 2016-04-07 한국원자력연구원 탈부착이 가능한 격자셀을 갖는 동전기 장치 및 이를 이용한 제염 방법
JP2016118508A (ja) * 2014-12-22 2016-06-30 国立大学法人 筑波大学 水溶性放射性物質の除去・濃縮装置および水溶性放射性物質の除去・濃縮方法
CN113707354A (zh) * 2021-08-18 2021-11-26 中国人民解放军63653部队 含239Pu、90Sr和137Cs的大体积放射性废液电化学分离固定方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240695A (ja) * 1995-03-02 1996-09-17 Ngk Insulators Ltd 放射性廃液の処理方法
JPH08271692A (ja) * 1995-03-28 1996-10-18 Toshiba Corp 放射性廃液の処理方法
JP2004028902A (ja) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd 硫酸ナトリウム量低減装置、およびそれを備えた放射性イオン交換樹脂の処理システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240695A (ja) * 1995-03-02 1996-09-17 Ngk Insulators Ltd 放射性廃液の処理方法
JPH08271692A (ja) * 1995-03-28 1996-10-18 Toshiba Corp 放射性廃液の処理方法
JP2004028902A (ja) * 2002-06-27 2004-01-29 Mitsubishi Heavy Ind Ltd 硫酸ナトリウム量低減装置、およびそれを備えた放射性イオン交換樹脂の処理システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016118508A (ja) * 2014-12-22 2016-06-30 国立大学法人 筑波大学 水溶性放射性物質の除去・濃縮装置および水溶性放射性物質の除去・濃縮方法
KR101609975B1 (ko) 2015-02-02 2016-04-07 한국원자력연구원 탈부착이 가능한 격자셀을 갖는 동전기 장치 및 이를 이용한 제염 방법
CN113707354A (zh) * 2021-08-18 2021-11-26 中国人民解放军63653部队 含239Pu、90Sr和137Cs的大体积放射性废液电化学分离固定方法
CN113707354B (zh) * 2021-08-18 2024-02-09 中国人民解放军63653部队 含239Pu、90Sr和137Cs的大体积放射性废液电化学分离固定方法

Similar Documents

Publication Publication Date Title
JP5331707B2 (ja) 放射性廃液の処理方法および処理装置
JP4473456B2 (ja) 浄水プロセス
US4596641A (en) Electrochemical deionization
JP4936505B2 (ja) アンモニア含有水の処理方法および処理装置
JP5386215B2 (ja) 放射性廃液の処理方法および処理装置
JP2014163843A (ja) 洗浄用酸の再生利用方法および再生処理設備
JP2735232B2 (ja) 液体処理方法
JP3227921B2 (ja) エステルからなる油分を含んだ排水の処理装置およびその処理方法
JP2014139530A (ja) 溶離液の再生方法及びその再生装置
PT1487748E (pt) ''processo electroquímico de descontaminação de materiais radioactivos''
JP2015160888A (ja) 使用済みイオン交換樹脂の処理方法及び処理装置
JP4311811B2 (ja) 放射性廃液の処理方法
JP2015081891A (ja) 原子力発電使用済み燃料プール水の浄化法及び装置並びに使用済み燃料プール水の処理方法及び装置
JP6692385B2 (ja) 放射性廃液処理システム
JP4859201B2 (ja) 水処理方法及びシステム
JP6534752B1 (ja) 放射性廃液処理システム
JPS62237398A (ja) 放射性有機ヨウ素含有排水の処理方法
JPS59224598A (ja) 使用済イオン交換樹脂の電解再生法
JPS6020720B2 (ja) 放射能で汚染された金属材料の除染方法
JP6752300B2 (ja) 放射性廃液処理システム
JP2938869B1 (ja) 放射性廃液の処理方法
CN116443995A (zh) 一种工作介质填充式离子膜立体电极电化学降解污染水中微量重金属离子的方法与装置
Guiragossian et al. The extraction of heavy metals by means of a new electrolytic method
JP2018084590A (ja) 原子力発電使用済み燃料プール水の浄化法及び装置並びに使用済み燃料プール水の処理方法及び装置
KR820001653B1 (ko) 원자로심의 냉각수를 정제하기 위한 셀(cell)구조체

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161018