WO2010113502A1 - 非水電解質を用いた二次電池の金属外装ケース用素材及び金属外装ケース、二次電池、金属外装ケース用素材の製造方法 - Google Patents
非水電解質を用いた二次電池の金属外装ケース用素材及び金属外装ケース、二次電池、金属外装ケース用素材の製造方法 Download PDFInfo
- Publication number
- WO2010113502A1 WO2010113502A1 PCT/JP2010/002372 JP2010002372W WO2010113502A1 WO 2010113502 A1 WO2010113502 A1 WO 2010113502A1 JP 2010002372 W JP2010002372 W JP 2010002372W WO 2010113502 A1 WO2010113502 A1 WO 2010113502A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- plating
- outer case
- secondary battery
- metal outer
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 137
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims description 58
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 230000008569 process Effects 0.000 title claims description 21
- 238000007747 plating Methods 0.000 claims abstract description 300
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 146
- 239000010959 steel Substances 0.000 claims abstract description 146
- 229910002482 Cu–Ni Inorganic materials 0.000 claims abstract description 81
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 198
- 229910052751 metal Inorganic materials 0.000 claims description 159
- 239000002184 metal Substances 0.000 claims description 159
- 239000010949 copper Substances 0.000 claims description 127
- 239000011651 chromium Substances 0.000 claims description 60
- 238000010438 heat treatment Methods 0.000 claims description 53
- 229910052759 nickel Inorganic materials 0.000 claims description 46
- 229910052802 copper Inorganic materials 0.000 claims description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 29
- 229910052804 chromium Inorganic materials 0.000 claims description 25
- 239000002994 raw material Substances 0.000 claims description 24
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 claims description 21
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 16
- 239000003792 electrolyte Substances 0.000 claims description 9
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 8
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 309
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 91
- 230000007797 corrosion Effects 0.000 description 37
- 238000005260 corrosion Methods 0.000 description 37
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 31
- 229910001416 lithium ion Inorganic materials 0.000 description 31
- 238000012545 processing Methods 0.000 description 31
- 150000002500 ions Chemical class 0.000 description 29
- 238000010828 elution Methods 0.000 description 26
- 229910052742 iron Inorganic materials 0.000 description 26
- 238000004458 analytical method Methods 0.000 description 25
- 230000000052 comparative effect Effects 0.000 description 22
- 230000032683 aging Effects 0.000 description 20
- 238000009792 diffusion process Methods 0.000 description 20
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 20
- 239000008151 electrolyte solution Substances 0.000 description 18
- 229910045601 alloy Inorganic materials 0.000 description 15
- 239000000956 alloy Substances 0.000 description 15
- 229910052744 lithium Inorganic materials 0.000 description 14
- 230000004048 modification Effects 0.000 description 14
- 238000012986 modification Methods 0.000 description 14
- 238000001878 scanning electron micrograph Methods 0.000 description 14
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 13
- 230000006378 damage Effects 0.000 description 13
- 238000000465 moulding Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 239000007774 positive electrode material Substances 0.000 description 12
- 239000007773 negative electrode material Substances 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- 238000010586 diagram Methods 0.000 description 10
- 238000009713 electroplating Methods 0.000 description 10
- 238000003825 pressing Methods 0.000 description 9
- 230000037303 wrinkles Effects 0.000 description 9
- 229910052782 aluminium Inorganic materials 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 8
- 239000004327 boric acid Substances 0.000 description 8
- 238000000137 annealing Methods 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 230000007423 decrease Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000009616 inductively coupled plasma Methods 0.000 description 7
- -1 iron ions Chemical class 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 229910000655 Killed steel Inorganic materials 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000007599 discharging Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000003575 carbonaceous material Substances 0.000 description 5
- 238000004090 dissolution Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000007935 neutral effect Effects 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 4
- 239000006230 acetylene black Substances 0.000 description 4
- 239000010426 asphalt Substances 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000007654 immersion Methods 0.000 description 4
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 238000005554 pickling Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 239000006104 solid solution Substances 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- 229910013870 LiPF 6 Inorganic materials 0.000 description 3
- 238000005275 alloying Methods 0.000 description 3
- 239000010953 base metal Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 239000004566 building material Substances 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000005486 organic electrolyte Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 229910003336 CuNi Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910003271 Ni-Fe Inorganic materials 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 229910003481 amorphous carbon Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- DOBRDRYODQBAMW-UHFFFAOYSA-N copper(i) cyanide Chemical compound [Cu+].N#[C-] DOBRDRYODQBAMW-UHFFFAOYSA-N 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- PEVJCYPAFCUXEZ-UHFFFAOYSA-J dicopper;phosphonato phosphate Chemical compound [Cu+2].[Cu+2].[O-]P([O-])(=O)OP([O-])([O-])=O PEVJCYPAFCUXEZ-UHFFFAOYSA-J 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000010409 ironing Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 206010014357 Electric shock Diseases 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910002555 FeNi Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910016087 LiMn0.5Ni0.5O2 Inorganic materials 0.000 description 1
- 229910015915 LiNi0.8Co0.2O2 Inorganic materials 0.000 description 1
- 229910015014 LiNiCoAlO Inorganic materials 0.000 description 1
- 229910017709 Ni Co Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- 229910003267 Ni-Co Inorganic materials 0.000 description 1
- 229910003262 Ni‐Co Inorganic materials 0.000 description 1
- 229910018487 Ni—Cr Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000002048 anodisation reaction Methods 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- MYWGVEGHKGKUMM-UHFFFAOYSA-N carbonic acid;ethene Chemical compound C=C.C=C.OC(O)=O MYWGVEGHKGKUMM-UHFFFAOYSA-N 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- 150000001844 chromium Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000002180 crystalline carbon material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/129—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/02—Electroplating: Baths therefor from solutions
- C25D3/38—Electroplating: Baths therefor from solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D3/00—Electroplating: Baths therefor
- C25D3/66—Electroplating: Baths therefor from melts
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/10—Electroplating with more than one layer of the same or of different metals
- C25D5/12—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
- C25D5/14—Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/48—After-treatment of electroplated surfaces
- C25D5/50—After-treatment of electroplated surfaces by heat-treatment
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/60—Electroplating characterised by the structure or texture of the layers
- C25D5/605—Surface topography of the layers, e.g. rough, dendritic or nodular layers
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D5/00—Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
- C25D5/627—Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/117—Inorganic material
- H01M50/119—Metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/1245—Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the external coating on the casing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
- H01M50/126—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
- H01M50/128—Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
- H01M50/133—Thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/116—Primary casings; Jackets or wrappings characterised by the material
- H01M50/124—Primary casings; Jackets or wrappings characterised by the material having a layered structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12806—Refractory [Group IVB, VB, or VIB] metal-base component
- Y10T428/12826—Group VIB metal-base component
- Y10T428/12847—Cr-base component
- Y10T428/12854—Next to Co-, Fe-, or Ni-base component
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/12—All metal or with adjacent metals
- Y10T428/12493—Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
- Y10T428/12771—Transition metal-base component
- Y10T428/12861—Group VIII or IB metal-base component
- Y10T428/12903—Cu-base component
- Y10T428/1291—Next to Co-, Cu-, or Ni-base component
Definitions
- the present invention relates to a material for producing a metal outer case of a secondary battery using a non-aqueous electrolyte and a method for producing the material.
- the present invention also provides a metal outer case of a secondary battery produced by press-molding the material for a metal outer case, and an electrolytic solution containing a non-aqueous electrolyte by inserting a positive electrode, a negative electrode, and a separator into the metal outer case.
- the present invention relates to a secondary battery made by injecting a liquid.
- a low-cost and highly reliable outer case material is required.
- a material for the exterior case a material obtained by applying Ni plating to the steel sheet surface is usually used from the viewpoint of press formability, weldability, corrosion resistance, strength, and the like.
- a battery can such as a cylindrical can or a square can is manufactured by press-molding this material, and an electrode group composed of a positive electrode plate, a negative electrode plate and a separator and an electrolyte are accommodated inside the battery can. Thereafter, the battery lid is caulked and fixed to the opening of the battery can, and the outer case composed of the battery can and the battery lid is sealed.
- a stepping process is applied to the opening of the battery can.
- the battery lid is fixed by caulking on the upper side (opening side) from the stepped portion.
- a score process may be given to a can bottom part so that it may work as a safety valve when an internal pressure is too high.
- Ni-plated steel plate in which a steel plate is plated in advance
- the Ni plating may be damaged during press forming and score processing, and the steel plate may be exposed. Even when the steel plate is not exposed, the Ni plating is too thin, and Fe ions may be easily eluted.
- post Ni plating since the plating coverage is not uniform, a portion where the Ni plating is extremely thin may occur near the bottom of the can. Furthermore, since the plating adhesion is inferior to that of the Ni-plated steel sheet, the Ni plating may be peeled off during the stepping process, and the steel sheet may be exposed. Thus, in post-Ni plating, since it is difficult to obtain the effect of Ni plating, Fe ions are likely to elute.
- a metal can is usually connected to a negative electrode.
- a negative electrode Even if the Ni plating is damaged, it is unlikely that Fe ions are eluted during the operation of the lithium ion battery in consideration of the potential of the negative electrode.
- the potential of the case is not doped with lithium ions.
- the carbon negative electrode potential for charging (3.2 to 3.4 V vs. Li / Li + ) is obtained.
- this aging process is normally performed for several days in order to fully infiltrate electrolyte solution in a positive electrode, a negative electrode, and a separator, and to stabilize the initial charge / discharge characteristic. For this reason, Fe ions are eluted from the damaged portion of the Ni plating. The Fe ions eluted during the aging process cause metal (metallic iron) to deposit and grow on the negative electrode surface when the battery is charged and discharged, so that the grown metal penetrates the separator and is short-circuited between the positive and negative electrodes. Is generated. Since the battery voltage of the battery in which this micro short-circuit has occurred decreases, the shipping test fails and the yield decreases.
- Patent Document 1 discloses a technique in which a Ni-plated steel sheet is formed into a case and then the inner and outer surfaces of the can are coated with asphalt.
- the asphalt film suppresses elution of Fe ions during aging and functions as an insulating film on the outer surface of the can.
- Patent Document 2 discloses a technique for suppressing micropores, which are plating defects, by forming a steel plate into a case and then applying Ni plating of 1 to 10 ⁇ m to the inner surface of the can.
- Patent Document 3 discloses a technique for applying composite plating composed of Ni metal and fluororesin fine particles on the surface of a steel sheet in order to suppress elution of Fe ions during battery overdischarge.
- Patent Document 4 discloses a technique for increasing the contact area between the positive electrode can and the positive electrode by applying Ni-Co alloy plating to the surface of the steel plate used as the inner surface of the positive electrode can and performing press forming to cause fine cracks in the plating. Is disclosed.
- Patent Document 5 an Fe—Ni diffusion plating layer is formed on the surface of a steel sheet used as the inner surface of a positive electrode can of an alkaline manganese battery, and the Fe exposure rate of the outermost layer of this Fe—Ni diffusion plating layer is 10% or more.
- An Ni-plated steel sheet for a positive electrode can of an alkaline manganese battery is disclosed.
- Patent Document 6 discloses a battery can having a Ni—Fe alloy layer on the inner surface of the battery can and an oxide layer containing iron having a thickness of 10 to 50 nm on the surface of the Ni—Fe alloy layer. . As described above, in Patent Documents 4 to 6, the internal resistance is reduced by improving the adhesion between the plating surface layer of the battery can and the electrode.
- Patent Documents 7 to 10 disclose Ni and Cu-based plated steel sheets.
- the steel sheet surface is plated so that the plating type (Ni or Cu) on both sides of the steel sheet is different, and then annealing is performed. A diffusion layer is formed at the iron / plating interface.
- Patent Document 8 in order to improve the deep drawability of the Ni-plated steel sheet for primary batteries, the steel sheet surface used as the outer surface of the battery can is plated with Ni, then plated with Cu, and annealed to form a plated steel sheet. A diffusion layer is generated.
- Patent Document 9 in order to improve the corrosion resistance of the Cu plating steel plate for roofs and rain gutters, thin Ni plating is performed between a steel plate and Cu plating, and it anneals and produces
- Patent Document 10 a Cu plating layer and a Ni plating layer are formed on both surfaces of a steel sheet in order to suppress the generation of iron rust on the negative electrode can surface of the lithium battery due to the reaction between moisture in the air and the steel sheet. ing.
- Non-Patent Document 1 proposes to perform Cu plating on the material surface as a base for Ni plating when decorative plating requires not only aesthetics but also corrosion resistance.
- Non-Patent Document 2 proposes replacing a part of Ni plating with Cu plating in order to reduce the amount of Ni used.
- a secondary battery for example, a lithium ion battery
- a negative electrode active material for example, a positive electrode active material
- an electrolyte Current collectors are being developed.
- the materials used as the metal exterior case have been selected based on characteristics and costs before processing such as corrosion resistance, liquid leakage, press formability, and weldability.
- a material that can be strongly processed without impairing the properties of the material for example, there is a need for a method for manufacturing a material having the required characteristics without increasing the number of steps and cost.
- Patent Documents 1 to 3 have an effect of suppressing the elution of Fe ions in the aging process.
- the material cost of asphalt is high, and an asphalt dipping process is added to the battery manufacturing process.
- the Ni plating thickness is greatly increased from the conventional about 2 ⁇ m to the maximum of 10 ⁇ m, the cost is remarkably increased. Further, even when the plating thickness is significantly increased, it is not always possible to prevent plating peeling at the stepped portion.
- the electroconductivity of plating is inferior, after welding a Ni lead plate to the bottom of the can before plating, it is necessary to apply a protective film so that the surface of the Ni lead plate is not covered with plating. is there. Furthermore, since it is necessary to peel off the protective film, the number of steps increases.
- Patent Documents 4 to 6 battery characteristics are improved by controlling the state of the inner surface of the metal outer case.
- a crack is formed in the portion where the metal outer case and the electrode are in contact, or Fe is exposed. Therefore, when the metal outer case described in Patent Documents 4 to 6 is used for a lithium ion battery using an organic electrolyte, it is possible to promote the elution of Fe ions at the portion where the metal outer case and the electrode are in contact in the aging process. High nature.
- the functions required for the inner surface of the case are different between the present invention and Patent Documents 4 to 6.
- Patent Documents 7 to 9 heat treatment is performed after Ni plating and Cu plating are performed on a steel sheet.
- the techniques of Patent Documents 7 to 9 differ from the present invention in the configuration of the plating layer, and Ni plating is the lower layer.
- the application is a building material such as a primary battery or a roof, a reduction in corrosion resistance due to strong processing such as multistage pressing is not taken into consideration.
- the metal outer case of Patent Documents 7 to 9 is used for a secondary battery using an organic electrolyte such as a lithium ion battery, there is a high possibility that sufficient corrosion resistance cannot be obtained.
- a Cu plating layer is formed on the surface of a steel plate, and a Ni plating layer is formed on the surface of the Cu plating layer.
- the Cu plating layer is used as a cushioning material.
- the Ni plating layer may be peeled off from the Cu plating layer due to the difference in physical property values between the Cu plating layer and the Ni plating layer. In some cases, fractures occur in the Ni plating. Further, since the lithium battery uses lithium or a lithium alloy for the negative electrode, it is not necessary to dope lithium into the negative electrode.
- Non-Patent Documents 1 and 2 post-plating is performed on a metal product that has been processed in advance for use as decorative plating. Therefore, the use as a metal outer case for a lithium ion battery is not considered. That is, it does not take into consideration a decrease in corrosion resistance (formation of a portion from which Fe ions are eluted) due to severe multi-stage pressing after plating. Further, it is not considered to make the plating thickness as thin as possible in order to realize the suppression of the deterioration of the corrosion resistance at a low cost. Therefore, when the materials 1 and 2 of the non-patent document are used for a secondary battery using an organic electrolyte such as a lithium ion battery, there is a high possibility that sufficient corrosion resistance cannot be obtained.
- Patent Documents 1 to 10 and Non-Patent Documents 1 and 2 disclose a metal outer case material that can suppress the elution of Fe ions in the aging process of a lithium ion battery even if strong processing is performed. Not. Further, it does not consider a method for improving battery yield, reducing material costs, or changing the battery manufacturing process.
- the present inventors investigated the damage state of Ni plating after performing deformation processing such as press forming, score processing, stepping processing, etc. using Ni-plated steel sheet, and earnestly studied. Repeated. As a result, in press molding, it was found that the wrinkled convex portions generated by the drawing were bent or bent back and subjected to ironing, so that the plating was thinned, and Fe ions were eluted in the thinned plated portion. In addition, the inventors have found that plating is peeled off at the interface between the base iron and the Fe—Ni diffusion layer in the score processing and the stepping processing.
- the present inventors formed Cu plating excellent in spreadability, slidability and adhesion as a lower layer of Ni plating excellent in wear resistance, It has been found that by alloying Cu and Ni, exposure of Fe after strict molding can be suppressed, and elution of Fe ions can be suppressed. Furthermore, even when severer forming is performed by appropriately setting the thickness and alloying conditions of Cu plating and Ni plating and controlling the configuration and thickness of the metal layer (single metal layer) and the alloy layer It has been found that the exposure of Fe can be suppressed.
- a material for a metal outer case of a secondary battery using the non-aqueous electrolyte of the present invention includes a steel plate; a Ni layer; and the Ni layer and the Ni layer and the steel plate arranged in contact with the Ni layer. And a plated layer in contact with the steel sheet.
- the plating layer of the metal outer case material of the secondary battery using the nonaqueous electrolyte described in (1) may include a region where Cu is 63 mass% or more.
- the plating layer of the metal outer case material of the secondary battery using the nonaqueous electrolyte according to (1) may include a region where Cu is 80 mass% or more.
- the total thickness of the region of the plating layer in the metal outer case material of the secondary battery using the nonaqueous electrolyte described in (3) may be 0.25 ⁇ m or more and 4.0 ⁇ m or less. .
- the plating layer of the metal outer case material of the secondary battery using the nonaqueous electrolyte according to (1) is disposed between the steel plate and the Cu—Ni layer, and the Cu—Ni A Cu layer in contact with the layer may be included.
- An Fe—Ni layer or an Fe—Cu—Ni layer may be included.
- the thickness of the Fe—Ni layer or the Fe—Cu—Ni layer of the material for the metal outer case of the secondary battery using the nonaqueous electrolyte described in (6) is 0.2 ⁇ m or more and 1.0 ⁇ m. It may be the following.
- the plating layer of the metal outer case material of the secondary battery using the nonaqueous electrolyte described in (1) may have a Cr layer that contacts the Ni layer.
- the amount of the Cr layer of the material for a secondary battery of the metal outer case using a non-aqueous electrolyte according to the above (8), may be 10 mg / m 2 or more 3500 mg / m 2 or less.
- the plating layer of the metal outer case material of the secondary battery using the nonaqueous electrolyte according to (1) may be in contact with both surfaces of the steel plate.
- the thickness of the Cu—Ni layer of the material for the metal outer case of the secondary battery using the nonaqueous electrolyte described in (1) may be 0.35 ⁇ m or more and 3.0 ⁇ m or less.
- the thickness of the Ni layer of the material for the metal outer case of the secondary battery using the nonaqueous electrolyte described in (1) may be 0.20 ⁇ m or more and 4.0 ⁇ m or less.
- the metal outer case of the secondary battery using the nonaqueous electrolyte of the present invention is manufactured using the metal outer case material described in (1) above.
- a secondary battery using the nonaqueous electrolyte of the present invention includes the metal outer case described in (13) above, a negative electrode, a positive electrode, a separator, and an electrolytic solution.
- a method for producing a material for a metal outer case of a secondary battery using the nonaqueous electrolyte of the present invention includes: (a) a copper plating step of plating copper on a steel plate; and (b) nickel after the copper plating step. And (c) a heat treatment step of heating after the nickel plating step.
- the method for producing a material for a metal outer case of a secondary battery according to (15) may include a strike plating step of plating nickel or copper on the steel plate before the copper plating step. .
- the method for manufacturing a metal outer case material for a secondary battery according to (15) may include (e) a chromium plating step of plating chromium after the heat treatment step.
- the amount of chromium may be 10 mg / m 2 or more 3500 mg / m 2 or less .
- the heating temperature is 400 ° C. or more and 550 ° C. or less, and the heating time is 0.5 minutes. It may be 3 minutes or less.
- the heating temperature is 550 ° C. or more and 650 ° C. or less, and the heating time is 0.2 minutes. It may be 1 minute or less.
- a copper sulfate bath may be used in the copper plating step.
- a secondary battery using a nonaqueous electrolyte such as a lithium ion battery in a secondary battery using a nonaqueous electrolyte such as a lithium ion battery, elution of Fe ions from the metal outer case in the aging process is suppressed. As a result, a decrease in battery voltage due to Fe deposition on the negative electrode surface during charge / discharge is avoided, and the yield of the battery is improved. Further, there is no need to change the battery manufacturing process, and a secondary battery with stable quality can be supplied at low cost.
- a Cr layer on the outermost layer of the metal exterior case material, it is possible to further suppress the exposure of Fe during molding, and passivat the inner surface of the case in a non-aqueous electrolyte.
- a material for a neutral connection it is possible to use a case material that is inexpensive and excellent in productivity for a large battery of an electric vehicle such as an electric vehicle.
- the secondary battery has a higher voltage and a higher capacity and the potential of the case becomes so noble as to elute Ni, the Ni plating does not elute. Therefore, a secondary battery with stable quality can be supplied at low cost in any application of an electric vehicle and home appliance.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of the comparative example which does not heat-process are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of the comparative example which does not heat-process are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of an example of embodiment of this invention are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of an example of embodiment of this invention are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of an example of embodiment of this invention are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of an example of embodiment of this invention are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of an example of embodiment of this invention are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of an example of embodiment of this invention are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of the comparative example which do not contain Ni layer are shown.
- the SEM image and EDX ray analysis result of the cross section of the raw material for metal exterior cases of the comparative example which do not contain Ni layer are shown.
- the schematic diagram of the element distribution of the cross section of the raw material for metal exterior cases of the modification of embodiment of this invention is shown.
- the schematic diagram of the element distribution of the cross section of the raw material for metal exterior cases of the modification of embodiment of this invention is shown. It is a longitudinal cross-sectional view of the metal mold
- the plating block diagram of the raw material for metal exterior cases of an example of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of an example of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of an example of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of an example of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of an example of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of the modification of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of the modification of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of the modification of embodiment of this invention is shown.
- the plating block diagram of the raw material for metal exterior cases of the modification of embodiment of this invention is shown.
- the secondary battery using the nonaqueous electrolyte that can be used in the present invention is, for example, a lithium ion battery.
- the secondary battery using this non-aqueous electrolyte includes an electrode group, a non-aqueous electrolyte, and a metal outer case.
- this electrode group is comprised from the positive electrode material, the negative electrode material, and the separator between a positive electrode material and a negative electrode material.
- the positive electrode material is an Al foil coated with a positive electrode active material capable of occluding and releasing lithium.
- the negative electrode material is a Cu foil coated with a negative electrode active material capable of inserting and extracting lithium.
- a non-aqueous electrolyte is added with a lithium salt as a solute and held in a separator.
- the electrode group is wound or laminated so that the positive electrode material and the negative electrode material are separated by the separator, and is joined to the current collector plate.
- the metal outer case houses this electrode group.
- the metal outer case may have a shape such as a cylindrical shape, a square shape, a square shape with a rounded corner (an ellipse or a track shape such as an athletic field), a coin shape, a button shape, or a seat shape.
- elution of Fe ions from the metal outer case in the aging process can be suppressed even when the material is easily damaged when the material is formed into a can (shape).
- the positive electrode active material of the secondary battery using the nonaqueous electrolyte in the present invention is not particularly limited.
- positive electrode active materials include layered compounds such as cobalt acid anhydride (LiCoO 2 ) and lithium nickelate (LiNiO 2 ), spinel compounds such as lithium manganate (LiMn 2 O 4 ), and lithium iron phosphate (LiFePO 4 ).
- the olivine compound may be used.
- a compound obtained by replacing a part of the metal element constituting the compound with another transition metal element and a compound obtained by adding a typical metal element to the compound may be used.
- LiNiO 2 , LiNi 0.8 Co 0.2 O 2 , LiMn 0.5 Ni 0.5 O 2 , LiNiCoAlO 2 and the amount ratio of these compounds can be used.
- the negative electrode active material of the secondary battery using the nonaqueous electrolyte in the present invention is not particularly limited.
- the negative electrode active material is preferably a carbon-based material into which lithium ions are reversibly inserted and desorbed with charge / discharge.
- the carbon-based material amorphous materials such as non-graphitizable carbon and graphitizable carbon and crystalline carbon materials such as graphite are used.
- the carbon-based material may be modified using tin oxide, silicon oxide, phosphorus, boron, fluorine, or the like.
- lithium ions may be inserted into the carbon-based material by electrochemically reducing the carbon-based material in advance.
- non-aqueous solvent based electrolyte for example, cyclic carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, or dimethyl Chain carbonates such as carbonate, methyl ethyl carbonate, and diethyl carbonate can be used.
- cyclic carbonate such as ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, or dimethyl Chain carbonates such as carbonate, methyl ethyl carbonate, and diethyl carbonate
- lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 are preferably used as the solute of the nonaqueous electrolyte in the present invention. Further, these lithium salts may be mixed. That is, in the secondary battery using the non-aqueous electrolyte of the present invention, the positive electrode active material, the negative electrode active material, and the non-aqueous electrolyte are configured so that metal ions can move in the electrolyte and can transfer charges at both electrodes. do it.
- a membrane such as a woven fabric, a non-woven fabric, or a synthetic resin microporous membrane can be used as the separator.
- a microporous membrane made of polyethylene or polypropylene is suitable.
- a metal case having excellent safety is used for the exterior of the battery.
- the laminate-type exterior case has an advantage that the electrode group can be easily stored.
- this laminate-type exterior case has low strength, it is necessary to cover the periphery of the exterior case with metal after the assembled battery is formed.
- the resin case can be molded freely and is lighter than the metal case.
- the cost, safety, and cooling efficiency of the resin case are inferior to those of the metal case.
- the metal outer case of the present invention may be connected to the negative electrode. If the metal exterior case is connected to the negative electrode, only the positive electrode terminal needs to be added as a terminal. However, when the metal outer case is neutrally connected, it is necessary to add a positive terminal and a negative terminal as terminals. In addition, since the cells need to be connected in series, the volume of the assembled battery increases. Further, when the cost and safety required for insulation of the outer case are more important as in the case of a large battery, the metal outer case may be neutrally connected.
- a steel plate having at least one surface coated with Ni and a Cu—Ni alloy (solid solution) is used as the outer case material (metal).
- a stainless steel plate can be used as this steel plate.
- a steel plate other than the stainless steel plate is superior in cost performance compared to a metal material such as aluminum.
- This steel plate is plated with a small amount of Ni in order to ensure corrosion resistance in an organic solvent.
- the metal outer case material of the present invention includes a steel plate and a plating layer in contact with at least one surface of the steel plate.
- the metal exterior case of this invention is shape
- the material for a metal exterior case according to the embodiment of the present invention is formed, for example, by forming a Cu plating excellent in spreadability, slidability, and adhesion on a steel plate or a pre-plated steel plate, and is excellent in wear resistance.
- the steel plate is heated to form a Cu—Ni layer (Cu—Ni diffusion layer, Cu—Ni solid solution layer).
- the metal outer case material according to the modification of the embodiment of the present invention is manufactured by further forming Cr plating on Ni plating.
- the structure of the single metal layer and the alloy layer can be controlled by appropriately controlling the thickness of the Cu plating, the thickness of the Ni plating, and the heating conditions for alloying. Therefore, as shown to FIG. 4A, the plating layer 10 of the metal exterior case material which concerns on embodiment of this invention is arrange
- the plating layer 10 of the metal exterior case material is disposed between the Ni layer 6, the Ni layer 6, and the steel plate 4. And at least a Cu—Ni layer 5 (lower layer of the Ni layer) in contact with the Ni layer 6 and a Cr layer 9 in contact with the Ni layer 6.
- the Ni layer 6 has high wear resistance, damage to the plated layer surface during processing is suppressed.
- the Cu—Ni layer 5 excellent in spreadability follows the steel plate 4 during processing and covers the surface of the steel plate 4.
- the Cu—Ni layer 5 is excellent in adhesion to the Ni layer 6 and the steel plate 4, peeling of the plating during processing (for example, peeling between the Cu—Ni layer 5 and the Ni layer 6) is prevented.
- the adhesiveness with the Ni layer 6 is excellent, the Cu—Ni layer 5 suppresses damage to a layer (for example, the Ni layer 6) above the Cu—Ni layer 5). If the Ni layer 6 or the Cu—Ni layer 5 is not present in the plate 10, the plating layer 10 is greatly damaged during processing.
- the plating layer 10 is disposed between the steel plate 4 and the Cu—Ni layer 5 and is in contact with the Cu—Ni layer 5 (the Cu—Ni layer 5 of the Cu—Ni layer 5). Lower layer). In this case, since the spreadability of the Cu layer 7 is higher than the spreadability of the Cu—Ni layer 5, the plated layer 10 follows the steel plate 4 even during more severe processing.
- the plating layer 10 preferably includes a region where Cu is 63 mass% or more.
- the extensibility of the region where Cu is 63 mass% or higher is higher than the extensibility of the region where Cu is less than 63 mass%. Therefore, the plating layer 10 follows the steel plate 4 even during more severe processing, and high corrosion resistance can be maintained.
- the plating layer 10 includes a region where Cu is 80 mass% or more.
- the spreadability of a region where Cu is 80 mass% or higher is higher than the spreadability of a region where Cu is less than 80 mass%. Therefore, the plating layer 10 can follow the steel plate 4 even during more severe processing, and high corrosion resistance can be maintained.
- the plating layer 10 is disposed between the steel plate 4 and the Cu—Ni layer 5 and is in contact with the steel plate 4.
- a Cu—Ni layer 8 may be included.
- the thickness of the Fe—Ni layer or the Fe—Cu—Ni layer 8 is not particularly limited.
- the diffusion depth of Ni into the steel plate 4 is preferably 0.2 ⁇ m or more and 1 ⁇ m or less.
- the diffusion depth is less than 0.2 ⁇ m, the adhesion between the steel plate 4 (ground iron) and the plating layer 10 is not sufficient.
- the diffusion depth exceeds 1 ⁇ m, the adhesion between the steel plate 4 (base metal) and the plating layer 10 is saturated.
- the thickness of the Cu—Ni layer 5 (Cu—Ni solid solution layer) is preferably 0.35 ⁇ m or more and 3.0 ⁇ m or less. When the thickness of the Cu—Ni layer 5 is less than 0.35 ⁇ m, the plating layer 10 does not sufficiently follow the processing. When the thickness of the Cu—Ni layer 5 exceeds 3.0 ⁇ m, the effect of the plating layer 10 following processing is saturated.
- the thickness of the Ni layer 6 is preferably 0.20 ⁇ m or more and 4.0 ⁇ m or less. When the thickness of the Ni layer 6 is less than 0.20 ⁇ m, the surface of the plating layer 10 is easily damaged by processing. When the thickness of the Ni layer 6 exceeds 4.0 ⁇ m, the effect of wear resistance is saturated.
- the total thickness of the region where Cu of the plating layer 10 is 80 mass% or more is 0.25 ⁇ m or more and 4.0 ⁇ m or less.
- the total thickness of the region where the Cu of the plating layer 10 is 80 mass% or more is the thickness of the region where the Cu in the Cu—Ni layer 5 is 80 mass% or more.
- the plating layer 10 includes the Cu layer 7 it is the sum of the thickness of the Cu layer 7 and the thickness of the region where Cu in the Cu—Ni layer 5 is 80 mass% or more.
- the total thickness is less than 0.25 ⁇ m, the plating layer 10 does not sufficiently follow the processing.
- the total thickness exceeds 4.0 ⁇ m the effect of the plating layer 10 following the processing is saturated.
- the plating layer 10 preferably has a Cr layer 9 in contact with the Ni layer 6 as shown in FIGS. 5A to 5D. That is, in the modification of the embodiment of the present invention, the plating layer of the metal exterior case material is the Ni layer 6, the Cu— disposed between the Ni layer 6 and the steel plate 4 and in contact with the Ni layer 6. At least a Ni layer 5 (a lower layer of the Ni layer 6) and a Cr layer 9 (an upper layer of the Ni layer 6) in contact with the Ni layer 6 are provided.
- a secondary battery for an electric vehicle such as a lithium ion battery is large and has a high capacity. For this reason, there is a risk of electric shock when the negative electrode is connected to the metal outer case, and therefore the metal outer case is often connected in a neutral manner.
- corrosion resistance to long-term use of the secondary battery particularly corrosion resistance to hydrogen fluoride generated in a very small amount in the electrolytic solution is required. Therefore, at present, stainless steel is used for the metal outer case to be neutrally connected.
- the cost is high, the productivity of press molding is low, and secondary processing brittleness may occur.
- a secondary battery such as a lithium ion battery is required to have a higher energy density (high voltage and high capacity). For this reason, the potential of the metal outer case is increased, and Ni plating may be eluted.
- the cutoff potential is set to 4.2V.
- a technique for setting and charging is disclosed. In this case, even Ni plating can be eluted. Therefore, even if the potential of the inner surface of the metal outer case is increased, the metal ions need not be eluted. Furthermore, it is necessary for the metal outer case to suppress plating damage and exposure of the steel sheet surface associated with forming and welding.
- the Cr layer increases the potential of the inner surface of the metal outer case in the electrolyte, and provides high corrosion resistance to the inner surface of the metal outer case.
- the plating layer does not include a Cu—Ni layer
- the Ni layer may be damaged during forming, and the steel plate surface may be exposed, and Fe and Cr may exist on the inner surface of the case. Since Fe and Cr have greatly different potentials, Fe ions are easily eluted from the exposed portion of the steel sheet surface. Therefore, the modification of the embodiment of the present invention in which the plating layer includes a Cr layer and a Cu—Ni layer can be used even for a secondary battery having a high energy density such that Ni is eluted.
- Patent Documents 12 to 14 disclose Ni and Cr-based plated steel sheets.
- Patent Document 12 proposes a technique in which, after imparting a glossy appearance and corrosion resistance, Ni is plated on a low-carbon steel plate, followed by partial diffusion annealing, and sequentially performing glossy Ni plating and Cr plating.
- Patent Document 13 in order to provide a bright-plated steel sheet for use without coating, the surface of the steel sheet with specified roughness is subjected to bright Ni plating, and after the bright Cr plating, the plated surface is covered with a transparent resin. The technology to do is proposed.
- Patent Document 14 sequentially applies Cr plating and Ni plating to a steel sheet so that the amount of plating is 0.2 g / m 2 or less. Then, a technique for performing heat treatment and performing Ni plating and chromate treatment in an amount of 1 g / m 2 or less is proposed.
- Patent Documents 15 to 17 disclose Ni, Cu, and Cr-based plated products.
- Patent Document 15 in order to improve the corrosion resistance of parts and maintain aesthetics over a long period of time, Cu plating, pure Ni plating, bright Ni plating, and Cr plating are sequentially applied to plastic or metal, and then anodization or chemical treatment is performed. A technique to passivate the surface of Cr plating by treatment is proposed.
- Patent Document 16 discloses a Ni-Cr alloy or a metal thin film such as Cr and Cu or the like that secures adhesion to an activated resin in order to impart roughness and conductivity to a plastic surface such as an automobile part.
- Patent Document 17 proposes a technique for generating a Fe—Cr—Ni alloy layer on a Cu plating of a steel material in order to provide a cheap and high corrosion-resistant steel plate used for a building material exterior in a beach area. . Therefore, the surface of the general steel material is subjected to heat treatment after being plated in the order of Cu, Fe, Cr, Ni, or in the order of Cu, Cr, Fe, Ni.
- Patent Documents 12 and 13 are used as materials for products that undergo severe processing such as battery cans, hard Ni plating is lost due to processing, and the steel sheet is exposed to an electrolyte solution and Fe is eluted. . Since the plated steel sheet for welding cans of Patent Document 14 has a thin plating layer, it cannot withstand the formation of battery cans.
- Patent Documents 15 and 16 since plating is performed after forming, reduction in corrosion resistance and reduction in plating thickness required for cost reduction when formed by severe press working are not considered.
- the plated steel sheet for building material exterior of Patent Document 17 does not take into account a decrease in corrosion resistance when formed by severe pressing.
- the metal outer case material of the modification of the embodiment of the present invention is formed by severe press working and used as an outer case for a secondary battery, it suppresses the elution of Fe ions in the aging process. , To improve the corrosion resistance of secondary batteries with high energy density.
- the plating layer of the metal exterior case material according to the modification of the embodiment of the present invention includes the above-described Cu layer (lower layer of the Cu—Ni layer), even if more severe forming is performed, the metal High corrosion resistance due to Cr can be maintained.
- the amount of Cr layer is preferably 10 mg / m 2 or more 3500 mg / m 2 or less.
- amount of the Cr layer is less than 10 mg / m 2 , the corrosion resistance is not sufficiently improved.
- amount of the Cr layer exceeds 3500 mg / m 2 , the effect of improving the corrosion resistance is saturated due to generation of cracks.
- the amount of Cr deposited is small, it is difficult to measure the Cr concentration by EDX ray analysis. Therefore, it is preferable to measure the amount of metal Cr deposited by ICP (Inductively coupled plasma) emission analysis after acid dissolving the plating layer.
- ICP Inductively coupled plasma
- the metal exterior case material of the modification of the embodiment of the present invention has, for example, the element distribution shown in FIGS. 2A and 2B. That is, it is the structure which has a Cr layer on the surface of the metal exterior case of embodiment of this invention.
- the outer case of the secondary battery is required to have corrosion resistance on the outer surface of the case exposed to the atmosphere. Therefore, it is necessary to reduce the exposure of the surface of the steel sheet after processing on the outer surface of the case. Therefore, it is preferable that the plating layer mentioned above is formed so that it may contact with both surfaces of a steel plate.
- the plating layer (second plating layer) corresponding to the outer surface of the outer case may have a configuration different from the plating layer (first plating layer) corresponding to the inner surface of the outer case.
- the plating layer corresponding to the outer surface of the outer case may have the same configuration as the plating layer corresponding to the inner surface of the outer case.
- a method for identifying and measuring a thickness of a Cu—Ni layer, a Ni layer, a Cu layer, a region where Cu is 63 mass% or more, a region where Cu is 80 mass% or more, a Fe—Ni layer or a Fe—Cu—Ni layer explain.
- Measured samples are prepared by vertically polishing the outer case material. The polished surface of this sample is observed using SEM, and Cu, Ni, and Fe are identified and quantified by EDX ray analysis. As the position of the line analysis, a portion where the plating layer in the SEM image (photograph) has an average thickness is selected. The average thickness of the plating layer is obtained in advance by a method such as chemical analysis. Moreover, it is preferable to perform a line analysis using three or more different samples. Further, it is preferable to perform line analysis at least at three locations per sample.
- JSM-7000F manufactured by JEOL, which is a field emission scanning electron microscope (FE-SEM), and GENESIS 4000 manufactured by EDAX, which is an energy dispersive X-ray fluorescence analyzer (EDX)
- FE-SEM field emission scanning electron microscope
- EDAX energy dispersive X-ray fluorescence analyzer
- the electron beam conditions for example, the acceleration voltage is set to 15 KV and the beam diameter is set to 10 nm.
- FIGS. 1A to 1J show the results of EDX ray analysis overwritten on the SEM image of the sample cross section.
- the mass% of each element is represented on the vertical axis, and the background of each data is corrected so that the mass% of Fe in the steel sheet is 100 mass%.
- the boundary of each layer is described under the horizontal axis.
- the Ni layer is represented as Ni, the Cu layer as Cu, the Cu—Ni layer as CuNi, the Fe—Ni layer, or the Fe—Cu—Ni layer as FeX.
- the EDX ray analysis results of these comparative examples include a region where 100 mass% Cu is detected in the plating layer, a region where 100 mass% Ni is detected, and the mass of Cu and Ni between these regions. There is a region (boundary region) where% changes sharply.
- the thickness of the boundary region (the length in the horizontal axis direction) is about 1 ⁇ m in any of the comparative examples.
- the boundary between the Cu layer and the Ni layer is determined at a position 0.5 ⁇ m to the left from the middle point of this boundary region, that is, the left end of the region where 100 mass% of Cu is detected.
- the boundary of each layer is determined by the same method. The thickness of each layer can be obtained from the determined boundary of each layer.
- the boundary width may be corrected according to the resolution (resolution) of the measurement apparatus (for example, the SEM / EDX analyzer).
- the plating layer since the plating layer does not have a Cu—Ni layer, the plating layer may be peeled between the Cu layer and the Ni layer during molding.
- FIGS. 1C to 1H show an example of the embodiment of the present invention.
- the grade of heat processing is FIG. 1C and FIG. 1D, FIG. 1E and FIG. 1F, FIG. 1G, and FIG.
- FIG. 1C is an example of an embodiment of the present invention having a Cu layer, a Cu—Ni layer, and a Ni layer in order from the steel plate side (lower layer side). Since it has a region where 100 mass% Cu is detected and a region where 100 mass% Ni is detected, a Cu layer and a Ni layer exist in the plating layer. On the other hand, unlike FIGS. 1A and 1B, since the thickness of the boundary region is 1 ⁇ m or more, it can be confirmed that a Cu—Ni layer is present in the plating layer. The boundary between the Cu layer and the Cu—Ni layer is determined at a position 0.5 ⁇ m (a half of 1 ⁇ m) away from the left end of the region where 100 mass% of Cu is detected.
- the boundary between the Ni layer and the Cu—Ni diffusion layer is determined at a position 0.5 ⁇ m (a half of 1 ⁇ m) away from the right end of the region where 100 mass% Ni is detected. Therefore, the thickness of the Cu—Ni layer is a length obtained by subtracting 1.0 ⁇ m from the distance between the left end of the region where 100 mass% of Cu is detected and the right end of the region where 100 mass% of Ni is detected.
- FIG. 1D is an example of an embodiment of the present invention having a Fe—Ni layer or a Fe—Cu—Ni layer (FeX), a Cu layer, a Cu—Ni layer, and a Ni layer in order from the steel sheet side (lower layer side). Since the distance (length in the horizontal axis direction) from the left end of the region where 100 mass% Fe is detected to the right end of the region where Fe is not detected is longer than 1 ⁇ m, it can be confirmed that an alloy layer containing Fe exists. Further, the thickness of the Fe—Ni layer or the Fe—Cu—Ni layer is substantially equal to the thickness of the uneven portion at the interface between the steel plate (base metal) and the plating layer in the SEM image. Therefore, it can confirm that the alloy layer containing Fe exists also from the unevenness
- FIGS. 1E to 1H each show an embodiment of the present invention having an Fe—Ni layer or an Fe—Cu—Ni layer (FeX), a Cu—Ni layer, and an Ni layer in order from the steel plate side (lower layer) side. It is an example. Since there is a region where 100 mass% Ni is detected, the plating layer has a Ni layer. However, since there is no region where 100 mass% of Cu is detected, the plating layer does not have a Cu layer. Therefore, the region where Cu is detected is the Cu—Ni layer.
- the thickness of the region of Cu—Ni layer where Cu is 80 mass% or more is determined by measuring the length (L 80 ) in the horizontal axis direction of the region where Cu of 80 mass% or more is detected by EDX analysis.
- L 80 the length of the region where Cu is 80 mass% or more in the Cu—Ni diffusion layer.
- the thickness of the region where Cu is 63 mass% or more in the Cu—Ni diffusion layer is determined by measuring the length (L 63 ) in the horizontal axis direction of the region where 63 mass% or more of Cu is detected by EDX analysis.
- the thickness of the region where Cu is 63 mass% or more and less than 80 mass% is calculated as L 63 -L 80 .
- the plating layer has an Fe—Ni layer, an Fe—Cu—Ni layer (FeX), and a Cu—Ni layer in this order from the steel plate side (lower layer side), but does not have an Ni layer. Moreover, since this plating layer is obtained by excessive heating after plating, the Fe alloy layer (FeX) is thick. In the comparative example of FIG. 1I and FIG. 1J, since the spreading property and abrasion property of a plating layer are both poor, it is difficult to use it as a material for an outer case of a secondary battery produced by molding.
- the manufacturing method of the outer case material of the present invention includes at least a copper plating step of plating copper on a steel sheet, a nickel plating step of plating nickel after the copper plating step, and a heat treatment step of heating after the nickel plating step.
- a steel type such as low-carbon aluminum killed steel or ultra-low carbon steel (sulc) can be used as the material of the steel plate.
- the plate thickness of the steel plate is usually 0.1 mm or more and 1 mm or less.
- the steel sheet is annealed in advance before plating.
- the surface on which the steel plate is plated is cleaned by a cleaning method such as degreasing and pickling.
- the copper plating step electroplating is performed using a known alkaline bath such as a copper cyanide bath or a copper pyrophosphate bath or an acidic bath such as a copper sulfate bath. Further, a known gloss additive may be added to the copper plating bath.
- the thickness of the copper plating is determined in consideration of the thickness of the Cu—Ni layer and the Cu layer required for the outer case material of the present invention. In particular, when forming a thick Cu layer, it is preferable to use an acidic bath such as a copper sulfate bath. More preferably, the acidic bath is a copper sulfate bath. Since the current density of electroplating using this copper sulfate bath is higher than the current density of electroplating using an alkaline bath, the time for completing copper plating can be shortened, and waste liquid treatment and bath management can be performed easily. it can.
- a strike plating process for plating nickel or copper on the steel sheet is performed before the copper plating process in order to improve the electrodeposition of the steel sheet surface. Also good. Strike plating is formed as thin as possible. However, strike plating needs to have a thickness that can suppress displacement deposition in the copper plating step. Therefore, specifically, the thickness of the strike plating is preferably about 0.2 ⁇ m.
- electroplating is performed using a known alkaline bath such as a copper cyanide bath or a copper pyrophosphate bath or an acidic bath such as a copper sulfate bath.
- a clean steel plate may be immersed in an aqueous boric acid solution before strike plating of nickel.
- a boric acid aqueous solution having a concentration of 10 g / l or more and 100 g / l or less is used at a temperature of 30 ° C. or more and 60 ° C. or less, and the steel sheet is immersed in this aqueous solution for 1 second or more and 10 seconds or less.
- the nickel plating process electroplating is performed using a known bath such as a watt bath, a borofluoride bath, or a sulfamic acid bath.
- the thickness of the nickel plating is determined in consideration of the thickness of the Cu—Ni diffusion layer and Ni layer required for the outer case material of the present invention.
- a atomizing agent (1st type brightener)
- a smoothing agent leveler, 2nd type brightener
- both the atomizing agent and the smoothing agent may be added to the nickel plating bath.
- the atomizing agent or the smoothing agent may be added to the nickel plating bath.
- alloy elements such as P, B, Cr, Co, and Mo may be added to the nickel plating bath. In this case, it is preferable to limit the addition amount of the alloy element to 10 mass% or less in order to obtain the addition effect of the alloy element while maintaining the excellent wear resistance and uniform coverage of the nickel plating.
- the nickel plating step is performed by using a steel sheet plated with Cu before nickel plating. It is preferable to include a boric acid dipping treatment for dipping in a boric acid aqueous solution.
- a boric acid aqueous solution having a concentration of 10 g / l or more and 100 g / l or less is used at a temperature of 30 ° C. or more and 60 ° C. or less, and the steel sheet is immersed in this aqueous solution for 1 second or more and 10 seconds or less. Since the range of the heating conditions for diffusing the plating metal when performing the heat treatment step can be set broadly by the boric acid immersion treatment, it is possible to easily obtain a suitable alloy layer thickness.
- the plating metal is diffused (interdiffusion) by heating.
- the amount of diffusion of the plated metal is small, so that no Cu—Ni layer is formed.
- the plating metal has a large diffusion amount, so that a region containing a large amount of Cu does not remain in the plating layer. Therefore, when at least a region where Cu is 63 mass% or more is obtained, heating can be performed for 0.2 minutes to 1 minute at a temperature of 550 ° C. to 650 ° C.
- Patent Document 7 heating is performed for 3 minutes at a temperature of 600 ° C. even under the mildest heating conditions.
- Patent Document 8 proposes box annealing at a temperature of 500 ° C. to 800 ° C. for 5 hours to 8 hours or continuous annealing at a temperature of 700 ° C. to 900 ° C. for 30 seconds to 2 minutes. ing.
- Patent Document 9 for example, heating is performed at a temperature of 700 ° C. for 8 hours.
- the steel material is annealed after plating, and an Fe—Ni layer is generated at the interface between the base iron and the plating.
- the steel sheet is annealed at the same time as the plating is alloyed by mutual diffusion, a high heating temperature is required.
- the steel material (steel plate) annealed in advance is plated, it is not necessary to perform heat treatment in consideration of annealing. Therefore, the heating conditions can be determined in consideration of only the diffusion of Cu and Ni.
- the Fe—Ni layer on the surface of the steel plate (ground iron).
- this nickel diffuses in a steel plate (base metal) and copper plating by heating. Therefore, an Fe—Ni layer or an Fe—Cu—Ni layer is formed in the vicinity of the interface between the steel plate (base iron) and the plating. As a result, the adhesion between the plating layer and the steel sheet is improved.
- a chromium plating step for plating chromium may be performed.
- pickling is performed by electrolysis or immersion in order to remove the oxide layer formed on the plating surface layer by heat treatment.
- the pickling conditions may be any conditions that do not damage the plating.
- chromium plating is performed on the surface of the nickel layer (plating layer).
- the conditions for chromium plating are generally the same as those for decorative chromium plating.
- electroplating is performed using a known chromium plating bath such as a sergeant bath, a fluoride-containing bath, a microcrack bath, a microporous bath, a tetrachromate bath, a trivalent chromium bath or the like.
- a known chromium plating bath such as a sergeant bath, a fluoride-containing bath, a microcrack bath, a microporous bath, a tetrachromate bath, a trivalent chromium bath or the like.
- a Sargent bath or a sodium silicofluoride addition bath it is preferable to use a Sargent bath or a sodium silicofluoride addition bath.
- the bath concentration, the current density, the bath temperature, and the plating thickness are selected so that plating can be performed uniformly without generating many cracks in the plating.
- a microcrack bath or a microporous bath can be used.
- a metal outer case for example, a lithium ion battery can
- metal outer case material plated steel plate
- ordinary multi-stage pressing may be performed.
- the metal outer case material of the present invention is less susceptible to plating damage than a normal Ni-plated steel sheet regardless of pressing conditions. However, it is preferable to optimize the pressing conditions in order to reliably prevent plating damage.
- a method for reducing plating damage in a multi-stage pressing process will be specifically described with reference to FIG.
- FIG. 3 shows a punch 1, a die 3, and a wrinkle retainer 2 that constitute a drawing die.
- the causes of plating damage in this process are wrinkles generated in the plated steel sheet during drawing, friction with the shoulder of the die 3, and thinning of plating by drawing.
- Plating damage caused by drawing while the wrinkles are generated on the plated steel sheet can be reduced by increasing the wrinkle holding pressure of the wrinkle presser 2.
- Plating damage due to friction with the shoulder of the die 3 can be reduced by increasing the die shoulder radius Rd or decreasing the wrinkle pressing pressure of the wrinkle presser 2.
- Plating damage due to the reduction of the plating thickness due to the drawing can be reduced by reducing the drawing ratio R1 / R2.
- the metal outer case material of the present invention has a plating layer excellent in slidability and spreadability, as a forming method other than multi-stage press, for example, when performing DI processing, lubricant and cooling water are used. The amount used can be reduced.
- the metal outer case material of the present invention is advantageous from the viewpoint of improving the productivity of the press and reducing the cost. Therefore, the metal outer case material of the present invention can be used as a material for a secondary battery (for example, a lithium battery, a lithium ion battery, a lithium air battery, etc.) using a non-aqueous electrolyte having an arbitrary configuration.
- the metal outer case material of the present invention is preferably used as a material for a lithium ion battery.
- a secondary battery (for example, a lithium ion battery) using the nonaqueous electrolyte of the present invention includes at least the metal outer case of the present invention, a negative electrode, a positive electrode, a separator, and an electrolytic solution.
- the secondary battery may be manufactured by a general manufacturing method using the metal outer case of the present invention.
- the electrolyte solution may be heated to about 40 ° C. in order to permeate the electrolyte solution quickly.
- the secondary battery using the nonaqueous electrolyte of the present invention has very little elution of Fe ions during the aging process, even if the battery is charged / discharged after the aging process, a micro short circuit that reduces the battery voltage does not occur. Therefore, this secondary battery can be manufactured with a high yield.
- an exterior case material was manufactured as follows.
- Test steel plate Annealed cold-rolled steel (steel) of low-carbon aluminum killed steel or Nb-Ti-sulc steel having the components shown in Table 1 was used.
- the plate thickness of each steel plate is 0.3 mm.
- the steel sheet was annealed in a 2% H 2 —N 2 atmosphere so that the residence time in the furnace was 80 seconds.
- the maximum temperature reached by the low-carbon aluminum killed steel during annealing was 740 ° C.
- the maximum temperature reached by annealing of the Nb—Ti-sul steel was 780 ° C.
- materials 1 to 19 and materials 39 to 57 are low-carbon aluminum killed steel
- materials 20 to 38 and materials 58 to 76 are Nb-Ti-sulc steel. It is.
- Table 2 shows the composition of various plating baths and electroplating conditions. Using these electroplating conditions, the plating shown in Tables 3 to 6 was performed on both surfaces of the steel sheet.
- the numbers of the plating conditions in Tables 3 to 6 correspond to the numbers (a) to (g) of the types of electroplating shown in Table 2.
- Tables 3 to 6 show the ultimate plate temperature and the in-furnace time (heating time) as the heating conditions in the heat treatment step. Heat treatment was performed under these conditions to obtain a metal outer case material (case material).
- Tables 3 to 6 show the structure of the plating layer of the obtained case material and the thickness of each layer. The thickness of each layer is an average value of values obtained by a total of nine EDX ray analyzes according to the method described above.
- Tables 5 and 6 show the amount of adhesion per unit area of the Cr layer.
- FeNi or FeCuNi indicates an Fe—Ni layer or an Fe—Cu—Ni layer (FeX in FIGS. 1D to 1J and FIG. 2B).
- Cu, CuNi, and Ni indicate a Cu layer, a Cu—Ni layer, and a Ni layer, respectively.
- Cu 80 Ni 20 to Cu 100 indicate regions where Cu contained in the Cu layer and the Cu—Ni layer is 80 mass% or more.
- Cu 20 Ni 80 to Ni 100 indicate regions in which Ni contained in the Ni layer and the Cu—Ni layer is 80 mass% or more.
- Cu 63 Ni 37 to Cu 80 Ni 20 show a region where Cu is 63 mass% or more and less than 80 mass%.
- the case material described above was formed into a 18650 type cylindrical battery can (metal outer case) by multi-stage molding.
- a case material using low-carbon aluminum killed steel as a steel plate (ground iron) was formed in a total of 7 steps.
- a case material using Nb-Ti-sulc steel as a steel plate (ground iron) was formed in a total of 5 steps.
- the total drawing ratio up to the final process was 4.56 for low-carbon aluminum killed steel and 4.24 for Nb-Ti-sulc steel.
- the drawing process includes a process in which the plating is thinned by the subsequent bending or unbending or ironing at the wrinkle protrusions generated by the drawing.
- Lithium cobaltate was used as the positive electrode active material.
- this mixture was applied to an Al foil as an aqueous dispersion, and the Al foil was dried. This Al foil was rolled to a predetermined thickness, cut into a predetermined size, and a positive electrode plate (positive electrode) was produced.
- NMP N-methyl-2-pyrrolidone
- the metal outer case material, battery can, and battery (cylindrical battery) described above were evaluated using the following methods.
- the metal exterior case material described above was punched into a circle with a blank diameter of ⁇ 90 (diameter 90 mm) and formed into a cylindrical can using a punch with ⁇ 45 (diameter 45 mm).
- a small piece having a width of 10 mm (circumferential direction of the cylindrical can) and a height of 22 mm (height direction of the cylindrical can) is cut out from the can wall of the formed cylindrical can, and 0T is formed at the center of the long side of the small piece. Bending was performed. This bending part was observed using SEM, and the degree of plating peeling was evaluated according to the following criteria (score). The score is 4 when there is no plating stripping.
- the score of the metal exterior case material whose plating peeling length is less than 10%, 10% or more, less than 20%, and more than 20% is 3, 2, 1 respectively.
- the test was performed four times, and the average value of the scores was obtained.
- Tables 7 and 8 show the average values of the plating adhesion scores.
- Ni multi-layer plated steel sheet compared to the conventional Ni single-layer plated steel sheet (comparative example using materials 37 and 38) and Cu, Ni multi-layer plated steel sheet (comparative example using materials 31 and 32) without heat treatment, plating adhesion
- the amount of Fe elution during aging and the voltage drop after the charge / discharge test are extremely small.
- the Fe elution amount during aging and the voltage after the charge / discharge test The decrease is extremely small.
- the corrosion resistance of the outer surface of the battery can is significantly superior to the comparative example described above.
- the plating layer of the example is less likely to be damaged during battery can molding, and there are few exposed portions of Fe on both the inner and outer surfaces of the can.
- the Example for example, the example using the raw materials 21 and 22 which performed the boric acid immersion process between Cu plating and Ni plating is the Example (for example, the raw materials 35 and 36) which did not perform the boric acid immersion process.
- Each performance is superior to the example using the raw materials 21 and 22.
- the counter electrode and reference electrode of this laminate cell were lithium metal, and the working electrode, counter electrode, and reference electrode of the laminate cell were isolated using a separator.
- the ethylene carbonate: diethylene carbonate 1: LiPF 6 was used 1 mol / l added electrolyte solution to a solution of 1 mixing ratio.
- anodic polarization is performed from the open circuit potential to the potential of 4.5 V (vs Li / Li + ) at a scanning speed of 0.5 mV / sec, and the rising potential at which the metal starts to dissolve (dissolution) Potential).
- Tables 9 and 10 show the dissolution potential.
- One cycle of the main charge / discharge is a main charge at a charge rate (constant current) of 0.5 C at a cutoff potential (constant voltage) of 4.2 V, and a 0.5 C discharge rate (constant of constant current) at a cutoff potential of 2.8 V. Current) main discharge.
- a hole was made in the battery lid the electrolyte solution was taken out, and the Fe ion and Ni ion concentrations of this electrolyte solution were measured by ICP emission analysis. Tables 9 and 10 show the average values of Fe ion and Ni ion concentrations.
- Tables 9 to 10 show the performance evaluation results.
- the elution of Fe ions due to aging is extremely suppressed, and the elution amounts of Fe and Ni due to high-pressure charge / discharge are also low.
- the dissolution potential is 3.8 V or more
- the material of the example of the present invention is significantly better in terms of corrosion resistance than the material of the comparative example.
- the present invention Since the secondary battery with stable quality can be supplied at low cost according to the present invention, the application of the secondary battery for consumer use and in-vehicle use is further promoted.
- the present invention also contributes to the improvement of the global environment by the spread of highly efficient mobile devices, hybrid vehicles, and plug-in hybrid vehicles. Therefore, the industrial utility value of the present invention is extremely large.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sealing Battery Cases Or Jackets (AREA)
- Electroplating Methods And Accessories (AREA)
Abstract
Description
本願は、2009年3月31日に、日本に出願された特願2009-085746号と2009年6月24日に、日本に出願された特願2009-150099号と2009年6月29日に、日本に出願された特願2009-153746号とに基づき優先権を主張し、その内容をここに援用する。
(2)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記めっき層は、Cuが63mass%以上の領域を含んでもよい。
(3)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記めっき層は、Cuが80mass%以上の領域を含んでもよい。
(4)上記(3)に記載の非水電解質を用いた二次電池の金属外装ケース用素材における前記めっき層の前記領域の全厚は、0.25μm以上4.0μm以下であってもよい。
(5)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記めっき層は、前記鋼板と前記Cu-Ni層との間に配置され、前記Cu-Ni層と接触するCu層を含んでもよい。
(6)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材前記めっき層は、前記鋼板と前記Cu-Ni層との間に配置され、前記鋼板と接触するFe-Ni層もしくはFe-Cu-Ni層を含んでもよい。
(7)上記(6)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記Fe-Ni層もしくは前記Fe-Cu-Ni層の厚みは、0.2μm以上1.0μm以下であってもよい。
(8)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記めっき層は、前記Ni層と接触するCr層を有してもよい。
(9)上記(8)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記Cr層の量は、10mg/m2以上3500mg/m2以下であってもよい。
(10)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記めっき層は、前記鋼板の両面と接触してもよい。
(11)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記Cu-Ni層の厚みは、0.35μm以上3.0μm以下であってもよい。
(12)上記(1)に記載の非水電解質を用いた二次電池の金属外装ケース用素材の前記Ni層の厚みは、0.20μm以上4.0μm以下であってもよい。
(13)本発明の非水電解質を用いた二次電池の金属外装ケースは、上記(1)に記載の金属外装ケース用素材を用いて製造される。
(14)本発明の非水電解質を用いた二次電池は、上記(13)に記載の金属外装ケースと、負極と、正極と、セパレータと、電解液とを有する。
(15)本発明の非水電解質を用いた二次電池の金属外装ケース用素材の製造方法は、(a)鋼板に銅をめっきする銅めっき工程と;(b)前記銅めっき工程後、ニッケルをめっきするニッケルめっき工程と;(c)前記ニッケルめっき工程後、加熱する熱処理工程と;を含む。
(16)上記(15)に記載の二次電池の金属外装ケース用素材の製造方法は、(d)前記銅めっき工程の前に前記鋼板にニッケルまたは銅をめっきするストライクめっき工程を含んでもよい。
(17)上記(15)に記載の二次電池の金属外装ケース用素材の製造方法は、(e)前記熱処理工程後、クロムをめっきするクロムめっき工程を含んでもよい。
(18)上記(17)に記載の二次電池の金属外装ケース用素材の製造方法では、前記クロムめっき工程において、クロムの量は、10mg/m2以上3500mg/m2以下であってもよい。
(19)上記(15)に記載の二次電池の金属外装ケース用素材の製造方法では、前記熱処理工程において、加熱温度は、400℃以上550℃以下であり、加熱時間は、0.5分以上3分以下であってもよい。
(20)上記(15)に記載の二次電池の金属外装ケース用素材の製造方法では、前記熱処理工程において、加熱温度は、550℃以上650℃以下であり、加熱時間は、0.2分以上1分以下であってもよい。
(21)上記(15)に記載の二次電池の金属外装ケース用素材の製造方法では、前記銅めっき工程において、硫酸銅浴を用いてもよい。
表1に示される成分の低炭アルミキルド鋼またはNb-Ti-sulc鋼の焼鈍済み冷延板(鋼板)を用いた。鋼板の板厚は、いずれも0.3mmである。2%H2-N2雰囲気中で、炉内滞在時間が80秒となるように鋼板を焼鈍した。この焼鈍時の低炭アルミキルド鋼の最高到達板温は、740℃であった。また、焼鈍時のNb-Ti-sulc鋼の最高到達板温は、780℃であった。なお、後述する表3~6の実施例及び比較例のうち、素材1~19及び素材39~57は、低炭アルミキルド鋼、素材20~38及び素材58~76は、Nb-Ti-sulc鋼である。
表2に各種めっき浴の組成と電気めっきの条件とを示す。これらの電気めっきの条件を用いて、表3~6に示すめっきを鋼板の両面に行った。なお、表3~6のめっき条件の番号は、表2に示す電気めっきの種類の番号(a)~(g)に対応している。また、表3~6に、熱処理工程の加熱条件として、到達板温と在炉時間(加熱時間)とを示す。これらの条件で熱処理を行い、金属外装ケース用素材(ケース素材)を得た。表3~6には、得られたケース素材のめっき層の構成と各層の厚みとを示している。各層の厚みは、前述の方法に従い、合計9ヶ所のEDX線分析によって得られた値の平均値である。なお、表5及び6には、Cr層の単位面積あたりの付着量を示している。
FeNiもしくはFeCuNiは、Fe-Ni層もしくはFe-Cu-Ni層(図1D~1J及び図2B中のFeX)を示す。Cu及びCuNi、Niは、それぞれ、Cu層及びCu-Ni層、Ni層を示す。Cu80Ni20~Cu100は、Cu層とCu-Ni層とに含まれるCuが80mass%以上の領域を示す。Cu20Ni80~Ni100は、Ni層とCu-Ni層とに含まれるNiが80mass%以上の領域を示す。Cu63Ni37~Cu80Ni20は、Cuが63mass%以上80mass%未満の領域を示す。
上述したケース素材を多段成形により18650型の円筒形電池缶(金属外装ケース)に成形した。鋼板(地鉄)として低炭アルミキルド鋼を用いたケース素材は、全7工程で成形した。また、鋼板(地鉄)としてNb-Ti-sulc鋼を用いたケース素材は、全5工程で成形した。最終工程までの通算の絞り比は、低炭アルミキルド鋼の場合には、4.56とし、Nb-Ti-sulc鋼の場合には、4.24とした。いずれの絞り比でケース素材を成形しても、絞り工程は、絞りにより発生したしわの凸部において、引き続き行われる曲げまたは曲げ戻しまたはしごきによりめっきが薄くなる工程を含んでいる。
上述の電池缶を外装ケースとして使用し、18650型のリチウムイオン電池(二次電池)を以下の方法で作成した。
正極活物質としてコバルト酸リチウムを用いた。この正極活物質にアセチレンブラックとポリフッ化ビニリデン(PVDF)とを加え、混合した。この混合物の混合比は、コバルト酸リチウム:アセチレンブラック:ポリフッ化ビニリデン=10:10:1である。その後、この混合物を水性ディスパージョンとしてAl箔に塗布し、このAl箔を乾燥した。このAl箔を所定の厚みとなるよう圧延し、所定の大きさに切り出して、正極板(正極)を作製した。
負極活物質として非晶質カーボンを用いた。この負極活物質を導電材であるアセチレンブラックと乾式混合した。さらに、この混合物中にポリフッ化ビニリデンを溶解させたN-メチルー2-ピロリドン(NMP)を均一に分散させて、ペーストを作製した。このペースト中の各物質の混合比は、非晶質カーボン:アセチレンブラック:PVDF=88:5:8である。このペーストをCu箔に塗布し、このCu箔を乾燥した。その後、このCu箔を所定の厚みとなるよう圧延し、所定の大きさに切り出して、負極板(負極)を作製した。
セパレータとしてポリエチレン微多孔膜を用いた。電解質として、エチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=25:35:40の体積比の混合液に、1mol/lのLiPF6を添加した溶液(電解液)を用いた。
上述した正極板と負極板とをセパレータで隔離するように捲回して、電極群を作製した。さらに、この電極群と、非水電解質と、電極群に接合された集電板とを、上述した電池缶に収納した。その後、この電池缶を負極リード板により負極接続し、電池蓋を取り付けて、18650型円筒型電池を作製した。この円筒形電池を適切に評価するために、表3~6に示す各ケース素材をそれぞれ15個ずつ準備した。
また、クロムめっきが行われるケース素材については、中立接続された角型電池も以下のような方法で作製した。
まず、板厚が0.7mmの鋼板(地鉄)を用いて、表5~6に示すケース素材を製造した。このケース素材を多段成形により、高さ113mm、幅44mm、長さ171mmの角型電池缶に成形した。この角型電池缶を外装ケースとするリチウムイオン電池を、上述した正極板、負極板、セパレータおよび電解液を用いて作製した。ただし、電池缶を中立接続し、正極端子と負極端子とを別途設けた。この角型電池を適切に評価するために、表5~6に示す各ケース素材をそれぞれ10個ずつ準備した。
上述した金属外装ケース素材をφ90(直径90mm)のブランク径の円に打ち抜き、φ45(直径45mm)のポンチを用いて円筒缶に成形した。この成形された円筒缶の缶壁から10mmの幅(円筒缶の周方向)と22mmの高さ(円筒缶の高さ方向)とを有する小片を切り出し、この小片の長辺の中央部で0T曲げを行った。SEMを用いてこの曲げ部を観察し、めっき剥離の程度を以下の基準(評点)で評価した。めっき剥離が無い場合、評点は、4である。また、めっき剥離の長さが10%未満、及び10%以上かつ20%未満、20%超である金属外装ケース素材の評点は、それぞれ、3、2、1である。なお、めっき密着性の評価では、試験を4回行い、評点の平均値を求めた。表7及び表8に、めっき密着性の評点の平均値を示す。
上述した15個のうち5個の電池を、常温で3日間、40℃で4日間、電位をかけずにエージングした後、電池蓋に穴を開けて電解液を取り出した。この電解液のFeイオン濃度をICP(Inductively coupled plasma)発光分析により測定した。さらに、Feイオン濃度の5つの測定値を平均して、Fe溶出量を求めた。表7及び8に、Fe溶出量を示す。また、残りの10個の電池も、上述した5個の電池と同じ条件でエージングした。その後、これらの10個の電池を0.3Cの電流(充電レート)で4.1Vまで充電し、1Cの電流(放電レート)で2.7Vまで放電した後、1Cの電流(充電レート)で3.7Vまで充電した。初期放電容量の平均値は、2.8Ahであった。その後、電池を25℃で3週間保持し、電池の電圧を測定して、1週間目の電圧と3週間目の電圧との差(電圧の低下量)を求めた。表7及び8に、電圧の低下量の平均値を示す。
電圧測定が終了した上述の10個の電池を用いて、下記のサイクル条件で缶外面の腐食試験を行った。すなわち、電池を-20℃に2h保持した後、60℃、95%rhの相対湿度の下に4h曝し、25℃に2h保持した。この8時間が1サイクルであるため、1日あたり3サイクルの腐食試験が行われる。
90サイクルの腐食試験を行い、缶外面に発生した点状赤錆(点錆)の個数を測定した。表3に点錆の平均値を示す。
円筒形電池缶を切り開き、缶壁から30mmの幅(円筒缶の周方向)と40mm(円筒缶の高さ方向)とを有する小片を切り出し、この小片の短辺にアルミタブを溶接した。その後、小片の中央から幅10mmかつ高さ10mmの部分を除き、シールテープを用いて小片の表裏面をシールした。この小片を作用極とする3電極式ラミネートセルを、非特許文献3に基づいてグローブボックス内で組み立てた。なお、このラミネートセルの対極および参照極は、リチウム金属であり、ラミネートセルの作用極と対極と参照極とを、セパレータを用いて隔離した。また、エチレンカーボネート:ジエチレンカーボネート=1:1の混合比の溶液にLiPF6を1mol/l添加した電解液を用いた。ラミネートセルを40℃に保持した後、開回路電位から4.5V(vs Li/Li+)の電位まで0.5mV/secの走査速度でアノード分極を行い、金属の溶解が始まる立ち上がり電位(溶解電位)を求めた。表9及び表10に、溶解電位を示す。
上述した15個のうち5個の円筒形電池を、常温で3日間、40℃で4日間、電位をかけずにエージングした後、電池蓋に穴を開けて電解液を取り出した。この電解液のFeイオン濃度をICP(Inductively coupled plasma)発光分析により測定した。さらに、Feイオン濃度の5つの測定値を平均して、Fe溶出量を求めた。表9及び10に、Fe溶出量の平均値を示す。
また、残りの10個も、上述した5個の円筒形電池と同様にエージングした後、下記の高圧充放電サイクル試験を行った。すなわち、まず、4.6Vのカットオフ電位(定電圧)で0.05Cの充電レート(定電流)の予備充電後、2.8Vのカットオフ電位で0.05Cの放電レート(定電流)の予備放電を行った。その後、本充放電を25℃で200サイクル繰り返した。本充放電の1サイクルは、4.2Vのカットオフ電位(定電圧)で0.5Cの充電レート(定電流)の本充電と、2.8Vのカットオフ電位で0.5C放電レート(定電流)の本放電とにより構成されている。試験後、電池蓋に穴を開けて電解液を取り出し、ICP発光分析によりこの電解液のFeイオンおよびNiイオン濃度を測定した。表9及び10に、FeイオンおよびNiイオン濃度の平均値を示す。
また、上記の角型電池を用いて下記の長期充放電サイクル試験を行い、試験終了後に電池を解体して、缶内面の最大侵食深さを求めた。すなわち、4.2Vのカットオフ電位(定電圧)で1Cの充電レート(定電流)の充電と、2.5Vのカットオフ電位で5Cの放電レート(定電流)の放電とを1サイクルとする充放電を25℃で1000サイクル繰り返した。表9及び10に、侵食深さの平均値を示す。
2 ダイス
3 しわ押さえ
4 鋼板(鉄板)
5 Cu-Ni層(Cu-Ni拡散層、Cu-Ni固溶層)
6 Ni層
7 Cu層
8 Fe-Ni層もしくはFe-Cu-Ni層
9 Cr層
10 めっき層
Claims (21)
- 鋼板と;
Ni層と、前記Ni層と前記鋼板との間に配置されて前記Ni層と接触しているCu-Ni層とを有し、前記鋼板に接触しているめっき層と;
を含むことを特徴とする非水電解質を用いた二次電池の金属外装ケース用素材。 - 前記めっき層は、Cuが63mass%以上の領域を含むことを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記めっき層は、Cuが80mass%以上の領域を含むことを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記めっき層の前記領域の全厚は、0.25μm以上4.0μm以下であることを特徴とする請求項3に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記めっき層は、
前記鋼板と前記Cu-Ni層との間に配置され、前記Cu-Ni層と接触するCu層を含むことを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。 - 前記めっき層は、
前記鋼板と前記Cu-Ni層との間に配置され、前記鋼板と接触するFe-Ni層もしくはFe-Cu-Ni層を含むことを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。 - 前記Fe-Ni層もしくは前記Fe-Cu-Ni層の厚みは、0.2μm以上1.0μm以下であることを特徴とする請求項6に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記めっき層は、前記Ni層と接触するCr層を有することを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記Cr層の量は、10mg/m2以上3500mg/m2以下であることを特徴とする請求項8に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記めっき層は、前記鋼板の両面と接触することを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記Cu-Ni層の厚みは、0.35μm以上3.0μm以下であることを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 前記Ni層の厚みは、0.20μm以上4.0μm以下であることを特徴とする請求項1に記載の非水電解質を用いた二次電池の金属外装ケース用素材。
- 請求項1に記載の金属外装ケース用素材を用いて製造された非水電解質を用いた二次電池の金属外装ケース。
- 請求項13に記載の金属外装ケースと、
負極と、
正極と、
セパレータと、
電解液と、
を有する非水電解質を用いた二次電池。 - (a)鋼板に銅をめっきする銅めっき工程と;
(b)前記銅めっき工程後、ニッケルをめっきするニッケルめっき工程と;
(c)前記ニッケルめっき工程後、加熱する熱処理工程と;
を含むことを特徴とする非水電解質を用いた二次電池の金属外装ケース用素材の製造方法。 - (d)前記銅めっき工程の前に前記鋼板にニッケルまたは銅をめっきするストライクめっき工程を含むことを特徴とする請求項15に記載の非水電解質を用いた二次電池の金属外装ケース用素材の製造方法。
- (e)前記熱処理工程後、クロムをめっきするクロムめっき工程を含むことを特徴とする請求項15に記載の非水電解質を用いた二次電池の金属外装ケース用素材の製造方法。
- 前記クロムめっき工程において、クロムの量は、10mg/m2以上3500mg/m2以下であることを特徴とする請求項17に記載の非水電解質を用いた二次電池の金属外装ケース用素材の製造方法。
- 前記熱処理工程において、加熱温度は、400℃以上550℃以下であり、加熱時間は、0.5分以上3分以下であることを特徴とする請求項15に記載の非水電解質を用いた二次電池の金属外装ケース用素材の製造方法。
- 前記熱処理工程において、加熱温度は、550℃以上650℃以下であり、加熱時間は、0.2分以上1分以下であることを特徴とする請求項15に記載の非水電解質を用いた二次電池の金属外装ケース用素材の製造方法。
- 前記銅めっき工程において、硫酸銅浴を用いることを特徴とする請求項15に記載の非水電解質を用いた二次電池の金属外装ケース用素材の製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080015506XA CN102365771A (zh) | 2009-03-31 | 2010-03-31 | 使用了非水电解质的二次电池的金属外装壳体用原材料及金属外装壳体、二次电池、金属外装壳体用原材料的制造方法 |
EP10758281A EP2416400A1 (en) | 2009-03-31 | 2010-03-31 | Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case |
US13/257,877 US20120009464A1 (en) | 2009-03-31 | 2010-03-31 | Material for metal case of secondary battery using non-aqueous electrolyte, metal case, secondary battery, and producing method of material for metal case |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009085746 | 2009-03-31 | ||
JP2009-085746 | 2009-03-31 | ||
JP2009-150099 | 2009-06-24 | ||
JP2009150099A JP4819148B2 (ja) | 2009-03-31 | 2009-06-24 | 金属溶出による電圧低下の少ないリチウムイオン電池の金属外装ケース用素材および金属外装ケースならびにリチウムイオン電池 |
JP2009153746A JP5168237B2 (ja) | 2009-06-29 | 2009-06-29 | NiおよびFeの溶出が抑制された高容量リチウムイオン電池の金属外装ケース用素材および金属外装ケースならびにリチウムイオン電池 |
JP2009-153746 | 2009-06-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010113502A1 true WO2010113502A1 (ja) | 2010-10-07 |
Family
ID=45438818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/002372 WO2010113502A1 (ja) | 2009-03-31 | 2010-03-31 | 非水電解質を用いた二次電池の金属外装ケース用素材及び金属外装ケース、二次電池、金属外装ケース用素材の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120009464A1 (ja) |
EP (1) | EP2416400A1 (ja) |
KR (1) | KR20110131250A (ja) |
CN (1) | CN102365771A (ja) |
WO (1) | WO2010113502A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014167504A1 (fr) | 2013-04-09 | 2014-10-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Accumulateur électrochimique au lithium avec boîtier a dissipation thermique améliorée, pack-batterie et procédés de réalisation associés |
US20150162576A1 (en) * | 2012-08-29 | 2015-06-11 | Toyo Kohan Co., Ltd. | Surface-treated steel sheet for battery containers, battery container, and battery |
WO2015114517A1 (fr) | 2014-01-31 | 2015-08-06 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de regeneration de capacite d'un accumulateur electrochimique au lithium, boitier d'accumulateur et accumulateur associes |
WO2017006834A1 (ja) * | 2015-07-07 | 2017-01-12 | 新日鐵住金株式会社 | 非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケース |
WO2017092901A1 (fr) | 2015-12-02 | 2017-06-08 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de regeneration de capacite d'un accumulateur electrochimique metal-ion, accumulateur associe |
EP3179532A1 (fr) | 2015-12-07 | 2017-06-14 | Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives | Traversée étanche de type verre-metal, utilisation en tant que pour accumulateur électrochimique au lithium, procédé de réalisation associé |
WO2018159760A1 (ja) * | 2017-03-02 | 2018-09-07 | 新日鐵住金株式会社 | 表面処理鋼板 |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10903487B2 (en) * | 2013-04-25 | 2021-01-26 | Toyota Motor Engineering & Manufacturing North America, Inc. | Metal-metal battery |
KR101696046B1 (ko) * | 2014-12-23 | 2017-01-13 | 주식회사 포스코 | 밀착성이 우수한 도금 강판 및 그 제조 방법 |
JP6706464B2 (ja) * | 2015-03-31 | 2020-06-10 | Fdk株式会社 | 電池缶形成用鋼板、及びアルカリ電池 |
JP2017120765A (ja) * | 2015-12-25 | 2017-07-06 | パナソニック株式会社 | 非水電解質二次電池 |
KR102041131B1 (ko) | 2017-04-27 | 2019-11-07 | 주식회사 엘지화학 | 이종 금속들로 이루어진 캔을 포함하는 원통형 전지셀 |
WO2019021909A1 (ja) | 2017-07-28 | 2019-01-31 | Jfeスチール株式会社 | 電池外筒缶用鋼板、電池外筒缶および電池 |
KR102263447B1 (ko) * | 2018-03-02 | 2021-06-11 | 주식회사 엘지에너지솔루션 | 용접용 레이저 광선을 차단하는 구조를 포함하는 원통형 이차전지 및 이를 포함하는 전지팩 |
CN111384336B (zh) * | 2018-12-30 | 2024-10-18 | 宁德时代新能源科技股份有限公司 | 一种电池模块、电池包及车辆 |
CN114746584A (zh) | 2019-12-20 | 2022-07-12 | 日本制铁株式会社 | 镀Ni钢板以及镀Ni钢板的制造方法 |
JP7120487B1 (ja) | 2020-10-21 | 2022-08-17 | 日本製鉄株式会社 | 電池用ケース |
US20240326381A1 (en) * | 2021-11-12 | 2024-10-03 | Nippon Steel Corporation | Welded member |
DE102021129641A1 (de) * | 2021-11-15 | 2023-05-17 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung eines Zellgehäuses für eine Batteriezelle und ein Zellgehäuse |
Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57108286A (en) | 1980-12-25 | 1982-07-06 | Nisshin Steel Co Ltd | Plated steel plate and its production |
JPH03249193A (ja) | 1990-02-28 | 1991-11-07 | Nkk Corp | 缶用Niめっき鋼板及びその製造方法 |
JPH0452295A (ja) * | 1990-06-20 | 1992-02-20 | Katayama Tokushu Kogyo Kk | Ni,Cu被覆ステンレス鋼板およびその製造方法 |
JPH0452294A (ja) | 1990-06-20 | 1992-02-20 | Katayama Tokushu Kogyo Kk | Ni,Cu被覆冷延鋼板およびその製造方法 |
JPH05106084A (ja) | 1991-10-16 | 1993-04-27 | Toyo Kohan Co Ltd | 光沢性と耐食性に優れたクロムめつき鋼板とその製造 法 |
JPH0794153A (ja) * | 1993-09-28 | 1995-04-07 | Matsushita Electric Ind Co Ltd | アルカリ電池および負極容器の製造法 |
JPH07331458A (ja) | 1994-06-07 | 1995-12-19 | Toyo Kohan Co Ltd | 光沢性と加工耐食性に優れた透明樹脂被覆めっき鋼板 |
JPH09259844A (ja) | 1996-03-18 | 1997-10-03 | Sony Corp | 有機電解質電池 |
JPH09263994A (ja) | 1996-03-26 | 1997-10-07 | Nisshin Steel Co Ltd | 深絞り加工性に優れた電池缶材料及びその製造方法 |
JPH10172521A (ja) | 1996-12-12 | 1998-06-26 | Toshiba Battery Co Ltd | アルカリ電池 |
JPH10226873A (ja) | 1997-02-17 | 1998-08-25 | Shinko Kosen Kogyo Kk | 耐候性に優れたFe−Cr−Ni拡散処理鋼材およびその製造方法 |
JP2002208382A (ja) | 2001-01-09 | 2002-07-26 | Nippon Steel Corp | アルカリマンガン電池正極缶用Niメッキ鋼板 |
JP2002231195A (ja) | 2001-02-06 | 2002-08-16 | Sanyo Electric Co Ltd | 非水電解質二次電池およびその製造方法 |
JP2005232529A (ja) | 2004-02-18 | 2005-09-02 | Toyota Motor Corp | クロムめっき製品および製造方法、検査方法 |
JP2007005092A (ja) | 2005-06-22 | 2007-01-11 | Matsushita Electric Ind Co Ltd | 電池缶およびその製造方法 |
JP2007066530A (ja) | 2005-08-29 | 2007-03-15 | Hitachi Vehicle Energy Ltd | 非水電解液二次電池 |
JP2007087704A (ja) | 2005-09-21 | 2007-04-05 | Hitachi Vehicle Energy Ltd | 非水電解液二次電池 |
JP2008031555A (ja) | 2006-07-05 | 2008-02-14 | Kakihara Kogyo Kk | スパッタリングによる樹脂導電化を利用した装飾めっき品の製造方法及び樹脂成形品を固定する吊り掛け治具 |
JP2009038036A (ja) | 2006-09-29 | 2009-02-19 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池の調整方法 |
JP2009085746A (ja) | 2007-09-28 | 2009-04-23 | Hitachi High-Technologies Corp | 微動ステージ、微粗動アクチュエータ装置、及び、磁気ヘッド検査装置 |
JP2009150099A (ja) | 2007-12-20 | 2009-07-09 | Ykk Ap株式会社 | 窓装置 |
JP2009153746A (ja) | 2007-12-27 | 2009-07-16 | Sammy Corp | 弾球遊技機 |
-
2010
- 2010-03-31 US US13/257,877 patent/US20120009464A1/en not_active Abandoned
- 2010-03-31 CN CN201080015506XA patent/CN102365771A/zh active Pending
- 2010-03-31 EP EP10758281A patent/EP2416400A1/en not_active Withdrawn
- 2010-03-31 KR KR1020117022642A patent/KR20110131250A/ko not_active Application Discontinuation
- 2010-03-31 WO PCT/JP2010/002372 patent/WO2010113502A1/ja active Application Filing
Patent Citations (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57108286A (en) | 1980-12-25 | 1982-07-06 | Nisshin Steel Co Ltd | Plated steel plate and its production |
JPH03249193A (ja) | 1990-02-28 | 1991-11-07 | Nkk Corp | 缶用Niめっき鋼板及びその製造方法 |
JPH0452295A (ja) * | 1990-06-20 | 1992-02-20 | Katayama Tokushu Kogyo Kk | Ni,Cu被覆ステンレス鋼板およびその製造方法 |
JPH0452294A (ja) | 1990-06-20 | 1992-02-20 | Katayama Tokushu Kogyo Kk | Ni,Cu被覆冷延鋼板およびその製造方法 |
JPH05106084A (ja) | 1991-10-16 | 1993-04-27 | Toyo Kohan Co Ltd | 光沢性と耐食性に優れたクロムめつき鋼板とその製造 法 |
JPH0794153A (ja) * | 1993-09-28 | 1995-04-07 | Matsushita Electric Ind Co Ltd | アルカリ電池および負極容器の製造法 |
JPH07331458A (ja) | 1994-06-07 | 1995-12-19 | Toyo Kohan Co Ltd | 光沢性と加工耐食性に優れた透明樹脂被覆めっき鋼板 |
JPH09259844A (ja) | 1996-03-18 | 1997-10-03 | Sony Corp | 有機電解質電池 |
JPH09263994A (ja) | 1996-03-26 | 1997-10-07 | Nisshin Steel Co Ltd | 深絞り加工性に優れた電池缶材料及びその製造方法 |
JPH10172521A (ja) | 1996-12-12 | 1998-06-26 | Toshiba Battery Co Ltd | アルカリ電池 |
JPH10226873A (ja) | 1997-02-17 | 1998-08-25 | Shinko Kosen Kogyo Kk | 耐候性に優れたFe−Cr−Ni拡散処理鋼材およびその製造方法 |
JP2002208382A (ja) | 2001-01-09 | 2002-07-26 | Nippon Steel Corp | アルカリマンガン電池正極缶用Niメッキ鋼板 |
JP2002231195A (ja) | 2001-02-06 | 2002-08-16 | Sanyo Electric Co Ltd | 非水電解質二次電池およびその製造方法 |
JP2005232529A (ja) | 2004-02-18 | 2005-09-02 | Toyota Motor Corp | クロムめっき製品および製造方法、検査方法 |
JP2007005092A (ja) | 2005-06-22 | 2007-01-11 | Matsushita Electric Ind Co Ltd | 電池缶およびその製造方法 |
JP2007066530A (ja) | 2005-08-29 | 2007-03-15 | Hitachi Vehicle Energy Ltd | 非水電解液二次電池 |
JP2007087704A (ja) | 2005-09-21 | 2007-04-05 | Hitachi Vehicle Energy Ltd | 非水電解液二次電池 |
JP2008031555A (ja) | 2006-07-05 | 2008-02-14 | Kakihara Kogyo Kk | スパッタリングによる樹脂導電化を利用した装飾めっき品の製造方法及び樹脂成形品を固定する吊り掛け治具 |
JP2009038036A (ja) | 2006-09-29 | 2009-02-19 | Mitsui Mining & Smelting Co Ltd | 非水電解液二次電池の調整方法 |
JP2009085746A (ja) | 2007-09-28 | 2009-04-23 | Hitachi High-Technologies Corp | 微動ステージ、微粗動アクチュエータ装置、及び、磁気ヘッド検査装置 |
JP2009150099A (ja) | 2007-12-20 | 2009-07-09 | Ykk Ap株式会社 | 窓装置 |
JP2009153746A (ja) | 2007-12-27 | 2009-07-16 | Sammy Corp | 弾球遊技機 |
Non-Patent Citations (3)
Title |
---|
"Handbook of Plating Technologies", 30 October 1977, NIKKAN KOGYO SHIMBUN, LTD., pages: 203 |
"Practical Evaluation Technology of Lithium-Ion Battery, Capacitors", 2006, TECHNICAL INFORMATION INSTITUTE CO., LTD., pages: 177 |
"Practical Plating (I) for Engineers in Field", 25 September 1978, MAKI SHOTEN, pages: 77 |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10665825B2 (en) | 2012-08-29 | 2020-05-26 | Toyo Kohan Co., Ltd. | Surface-treated steel sheet for battery containers, battery container, and battery |
US20150162576A1 (en) * | 2012-08-29 | 2015-06-11 | Toyo Kohan Co., Ltd. | Surface-treated steel sheet for battery containers, battery container, and battery |
US9911948B2 (en) * | 2012-08-29 | 2018-03-06 | Toyo Kohan Co., Ltd | Surface-treated steel sheet for battery containers, battery container, and battery |
WO2014167504A1 (fr) | 2013-04-09 | 2014-10-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Accumulateur électrochimique au lithium avec boîtier a dissipation thermique améliorée, pack-batterie et procédés de réalisation associés |
US9742045B2 (en) | 2013-04-09 | 2017-08-22 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Lithium electrochemical storage battery having a casing providing improved thermal dissipation, associated battery pack and production processes |
WO2015114517A1 (fr) | 2014-01-31 | 2015-08-06 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de regeneration de capacite d'un accumulateur electrochimique au lithium, boitier d'accumulateur et accumulateur associes |
US11165103B2 (en) | 2014-01-31 | 2021-11-02 | Commissariat à l'Energie Atomique et aux Energies Alternatives | Method for regenerating the capacity of an electrochemical lithium battery, and associated battery housing and battery |
WO2017006834A1 (ja) * | 2015-07-07 | 2017-01-12 | 新日鐵住金株式会社 | 非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケース |
JP6086176B1 (ja) * | 2015-07-07 | 2017-03-01 | 新日鐵住金株式会社 | 非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケース |
WO2017092901A1 (fr) | 2015-12-02 | 2017-06-08 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de regeneration de capacite d'un accumulateur electrochimique metal-ion, accumulateur associe |
EP3179532A1 (fr) | 2015-12-07 | 2017-06-14 | Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives | Traversée étanche de type verre-metal, utilisation en tant que pour accumulateur électrochimique au lithium, procédé de réalisation associé |
JP6394847B1 (ja) * | 2017-03-02 | 2018-09-26 | 新日鐵住金株式会社 | 表面処理鋼板 |
US11084252B2 (en) | 2017-03-02 | 2021-08-10 | Nippon Steel Corporation | Surface-treated steel sheet |
WO2018159760A1 (ja) * | 2017-03-02 | 2018-09-07 | 新日鐵住金株式会社 | 表面処理鋼板 |
Also Published As
Publication number | Publication date |
---|---|
KR20110131250A (ko) | 2011-12-06 |
US20120009464A1 (en) | 2012-01-12 |
EP2416400A1 (en) | 2012-02-08 |
CN102365771A (zh) | 2012-02-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010113502A1 (ja) | 非水電解質を用いた二次電池の金属外装ケース用素材及び金属外装ケース、二次電池、金属外装ケース用素材の製造方法 | |
JP4491208B2 (ja) | 電池缶およびその製造方法ならびに電池 | |
CN106536779B (zh) | 蓄电装置容器用钢箔、蓄电装置用容器和蓄电装置以及蓄电装置容器用钢箔的制造方法 | |
US20180145286A1 (en) | Surface-treated steel sheet for battery containers, battery container, and battery | |
KR20170000761A (ko) | 전해 동박, 그것을 포함하는 집전체, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 | |
EP2051313A1 (en) | Battery can and battery using the same | |
TWI586815B (zh) | 蓄電裝置容器用鋼箔、蓄電裝置用容器及蓄電裝置、以及蓄電裝置容器用鋼箔之製造方法 | |
KR102486559B1 (ko) | 전지용 집전체 및 전지 | |
CN103857818A (zh) | 钢箔及其制造方法 | |
KR20100008591A (ko) | 니켈 도금된 리튬 이차 전지용 양극단자 및 그 제조 방법 | |
KR20180080514A (ko) | 높은 내부식성을 갖고 활물질과의 접착력이 우수한 전해동박, 그것을 포함하는 전극, 그것을 포함하는 이차전지, 및 그것의 제조방법 | |
EP3404755A1 (en) | Copper foil, method for manufacturing same, electrode comprising same, and secondary battery comprising same | |
CN108701782A (zh) | 电池容器用金属板及该电池容器用金属板的制造方法 | |
CN107710446B (zh) | 非水电解液二次电池壳体用钢板和非水电解液二次电池壳体 | |
JP5168237B2 (ja) | NiおよびFeの溶出が抑制された高容量リチウムイオン電池の金属外装ケース用素材および金属外装ケースならびにリチウムイオン電池 | |
JP4819148B2 (ja) | 金属溶出による電圧低下の少ないリチウムイオン電池の金属外装ケース用素材および金属外装ケースならびにリチウムイオン電池 | |
CN116670335B (zh) | 表面处理钢板 | |
JP5440362B2 (ja) | リチウムイオン電池用負極ケースの製造方法 | |
JP5245858B2 (ja) | 充放電サイクルによる容量低下の少ない非水系二次電池のための金属外装ケースおよび非水系二次電池 | |
JP2006278187A (ja) | 非水二次電池およびその製造方法 | |
JP5356308B2 (ja) | 2次電池用負極、電極用銅箔、2次電池および2次電池用負極の製造方法 | |
JP2013165030A (ja) | 非水電解質二次電池ケース用鋼材 | |
WO2000039861A1 (en) | Clad metal plate for battery case, battery case and battery using the battery case | |
JP2013131465A (ja) | Sn−Cu合金活物質層担持電極部材用の中間製品金属シート | |
WO2005078823A1 (ja) | 電池容器用めっき鋼板、その電池容器用めっき鋼板を用いた電池容器、およびその電池容器を用いた電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080015506.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758281 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13257877 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20117022642 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010758281 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |