WO2000039861A1 - Clad metal plate for battery case, battery case and battery using the battery case - Google Patents

Clad metal plate for battery case, battery case and battery using the battery case Download PDF

Info

Publication number
WO2000039861A1
WO2000039861A1 PCT/JP1999/007267 JP9907267W WO0039861A1 WO 2000039861 A1 WO2000039861 A1 WO 2000039861A1 JP 9907267 W JP9907267 W JP 9907267W WO 0039861 A1 WO0039861 A1 WO 0039861A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery case
metal plate
clad
battery
nickel
Prior art date
Application number
PCT/JP1999/007267
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuo Yoshida
Kinji Saijo
Shinji Ohsawa
Original Assignee
Toyo Kohan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co., Ltd. filed Critical Toyo Kohan Co., Ltd.
Priority to AU18898/00A priority Critical patent/AU1889800A/en
Publication of WO2000039861A1 publication Critical patent/WO2000039861A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • H01M50/56Cup shaped terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/1243Primary casings; Jackets or wrappings characterised by the material having a layered structure characterised by the internal coating on the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/131Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
    • H01M50/134Hardness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a clad metal plate for a battery case prepared by using the surface activation method, a battery case using the same, and a battery using the battery case.
  • a stainless steel / aluminum clad plate Japanese Patent Application Laid-Open No. H10-20887 was used in view of battery characteristics, corrosion resistance and mechanical strength. No. 10, JP-A-5-174873 and JP-A-5-174873 are used. These clad plates are usually made using the cold rolling method, and because of their large work hardening and poor workability, it is difficult to perform strong forming such as deep drawing. It is limited to the application of a battery case.
  • lithium ion secondary batteries have also been required to have cylindrical shapes, like conventional manganese dry batteries, and have excellent battery characteristics, corrosion resistance, and mechanical strength, and can be formed into a bottomed cylindrical shape.
  • a clad metal plate having excellent workability.
  • the present invention provides a clad metal plate for a battery case, which is excellent in corrosion resistance and mechanical strength, and excellent in workability that can be formed into a bottomed cylindrical shape, produced by a surface activation method, and using the same.
  • An object of the present invention is to provide a battery case and a battery using the battery case that does not cause liquid leakage. Disclosure of the invention
  • the clad metal plate for a battery case according to claim 1 of the present invention is formed by bonding an aluminum foil having a thickness of 10 to 50 m to at least one surface of a nickel-plated steel plate by using a surface activation method. It is characterized by.
  • the clad metal plate according to claim 2 is characterized in that at least one surface of a nickel-plated steel plate is joined with a copper foil by using an interface activation method.
  • the clad metal plate according to claim 3 is characterized in that the thickness of the copper foil is 10 to 50 / m.
  • the clad metal sheet according to claim 4 is characterized in that the nickel-plated steel sheet has a nickel plating thickness of 1 to 10 m.
  • the clad metal plate according to claim 5 is characterized in that the steel plate has a hardness of Vickers hardness ( ⁇ ) 400 or less.
  • the clad metal plate according to claim 6 is characterized in that the thickness of the steel plate is 30 to 100 im.
  • the bottomed cylindrical battery case according to claim 7 is characterized in that the clad metal plate for the battery case is manufactured by a drawing method.
  • the cylindrical battery case with a bottom according to claim 8 is characterized in that the clad metal plate for the battery case is manufactured by using a DI working method.
  • a cylindrical battery case with a bottom according to claim 9 is characterized in that the clad metal plate for the battery case is manufactured by using a DTR processing method.
  • the cylindrical battery case with a bottom according to claim 10 is characterized in that the clad metal plate for the battery case is manufactured by a DTR working method and an ironing method.
  • the battery according to claim 11 is characterized by being manufactured using the battery case.
  • FIG. 1 is a schematic view showing an example of an apparatus for manufacturing a clad metal plate for a battery case according to the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
  • a cold-rolled steel sheet of ordinary steel particularly one based on a low-carbon aluminum-killed steel continuous material is used.
  • It steel can also be used. These steel sheets are used after being cold-rolled and annealed or after annealing and further subjected to temper rolling, and preferably have a thickness of 30 to 100 zm. If the thickness is less than 30 m, the aluminum foil / copper foil will be clad, drawn, etc., and formed into a bottomed cylindrical battery case. Is more than 100 m, the strength is sufficient, but steel is used.
  • the above steel sheet is plated with nickel to secure sufficient corrosion resistance after forming into a battery case.
  • a plating bath used for ordinary nickel plating such as a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath, can be used.
  • Nigel plating methods electroplating and electroless plating.
  • Electroless plating is also applicable to the present invention, but bath management and plating thickness control are easy. It is preferable to perform plating using an electroplating method.
  • the nickel plating described above can be used for matte plating without using an organic additive, and for semi-glossy plating or glossy plating using an organic additive lf.
  • the thickness of the nickel plating layer is preferably 1 to 10 m. Plating thickness If it is less than 1 m, the coating of the base of the steel sheet after forming into a battery case becomes insufficient, and sufficient corrosion resistance cannot be secured. On the other hand, if the plating thickness exceeds 10 m, the base of the steel sheet is sufficiently covered, and any further increase in the plating thickness is not economically advantageous and is not preferable.
  • This nickel plating layer may be formed on both sides of the steel sheet I), or may be formed only on one side without cladding aluminum foil / copper foil.
  • the nickel plating layer may be left attached, but after plating, heat treatment is performed to form a diffusion layer in which all or part of the nickel plating layer is diffused into the steel sheet.
  • I C is also good. By forming this diffusion layer, it is possible to prevent the nickel plating layer from peeling off from the steel sheet base when DI processing or DTR processing and ironing are performed.
  • the above heat treatment is performed in an atmosphere of a non-oxidizing or reducing protective gas in order to prevent formation of an oxide film on the surface of the diffusion layer.
  • a non-oxidizing gas nitrogen,
  • the box annealing method and the continuous annealing method can be applied as the heat treatment method.
  • the heat treatment temperature is preferably 450 ° C. or higher.
  • the heat treatment time is about 6 to 15 hours for box annealing and about 30 seconds to 2 minutes for continuous annealing.
  • an aluminum foil or a copper foil is used from the viewpoint of corrosion resistance to an electrolyte and a reduction in interface resistance.
  • These metal foils preferably have a thickness of 10 to 50 m. If the thickness is less than 10 m, the rigidity is poor, wrinkles are generated during the cladding work, and the wrinkled portions are folded and overlapped to generate a defective portion, which is not preferable. On the other hand, if the thickness exceeds 50, the amount of metal constituting the metal foil increases, which is not economically advantageous, Not preferred.
  • the above-mentioned nickel-plated steel sheet and aluminum foil or copper foil are cold-welded using a surface activation method by, for example, a method disclosed in Japanese Patent Application Laid-Open No. 1-224184 to form a T clad plate. . That is, nickel using the apparatus shown in FIG. 1, which is unwound from the exhaust pump 9 by 1 0 one 3 ⁇ 1 0- 6 Torr stand unwinding reel 3 provided in the vacuum chamber 1 held at a vacuum of a
  • the metal foil 20 B which is an aluminum foil or a copper foil that is unwound from the plated steel sheet 2 OA and the rewind reel 3, is partially formed of electrode rolls 6 A and 6 protruding into the etching chamber 22.
  • a high-frequency power supply having a frequency of 10 to 5 MHz is used by using a magnet li-l-pass method.
  • the frequency is less than 1 OMHz, it is difficult to maintain a stable glow discharge, so that the etching cannot be continuously performed.
  • the frequency exceeds 5 OMHz, oscillation tends to occur, and the power supply system becomes complicated, which is not preferable.
  • Ettsuchingu started, after prestores etching chamber 2 within 2 to 1 X 1 0 _ 4 Torr or less degree of vacuum by the exhaust pump 2 v 5, argon gas was introduced 1 0- 1 ⁇ 1 0- 4 Torr When the above high frequency is applied between the vacuum chamber 1 and the vacuum chamber 1, the plasma is generated in the chamber, and the surfaces of the nickel-plated steel sheet 2OA and the metal foil 20B are etched.
  • the argon gas pressure of the etching chamber 2 within 2> is in the range of 1 0- 1 ⁇ 1 0- 4 Torr .
  • the magnetron sputtering method used for manufacturing the clad plate 19 of the present invention since an etching rate of 100 ⁇ or more can be obtained, even a stable and thick oxide film such as an aluminum oxide film can be completely etched by several minutes. It is possible to completely remove steel etc. by etching for about several seconds, and obtain a clean surface IC.
  • the upper limit of the heating may be heating within a range that does not cause recrystallization annealing for lowering the bonding strength or formation of an alloy layer, 0 or carbide, and is preferably 300 ° C. or lower.
  • the rolling reduction when cold-welding the nickel-plated steel sheet 2OA and the metal foil 20B is preferably in the range of 0.1 to 30%.
  • the surface activation treatment of the nickel-plated steel plate 2OA and the metal foil 20B no new irregularities are formed on the metal surface, and the surface is flattened at the time of finish rolling before pressure welding.
  • the contact can be maintained at lf while maintaining the degree of contact, so that a large contact area can be obtained even with a small pressing force, and the contact part is securely metal-bonded, so a strong joint can be obtained even at a rolling rate as low as 0.1%. Is You.
  • the upper limit of the rolling reduction is set to 30% because cold welding and finish rolling or temper rolling may be performed in one rolling step. If cold pressing is performed at a rolling reduction of 30% or more, work hardening of the clad plate 19 becomes remarkable, which is not preferable.
  • the hardness of the clad plate prepared as described above is preferably not more than ⁇ 400 in Vickers hardness (Hv). If the hardness exceeds Hv400, the body of the cylindrical body breaks when aluminum foil ⁇ copper foil is clad and then subjected to strong processing such as DI processing, DTR processing, and ironing processing, forming Processing becomes impossible.
  • the hardness of the clad plate is measured by bringing an indenter into contact with the exposed nickel plated surface.
  • the battery case clad plate obtained as described above is formed into a battery case.
  • Forming is drawing, DI processing (drawing and ironing: drawing and ironing), DTR processing (drawing thin and redrawing: thinning deep drawing), DTR processing + ironing (final of DTR processing) It is preferable to use an ironing process in the process.
  • DI processing drawing and ironing: drawing and ironing
  • DTR processing drawing thin and redrawing: thinning deep drawing
  • DTR processing + ironing final of DTR processing
  • DI processing punch the clad plate into a blank and draw it into a shallow nip with a larger diameter and a smaller height than the target battery case.
  • This shallow force is sequentially drawn and supplied to a plurality of dies arranged in multiple stages on the same axis so that the ironing diameter becomes smaller.
  • the ironing diameter at the last stage is supplied to the ironing die corresponding to the outer diameter of the battery case.
  • it is pressurized with a punch having a rounded shoulder at the end, and continuously passed without causing constriction, and formed into a battery case having a diameter and height to be aimed at.
  • DTR processing and ironing processing are the same as DI processing.
  • the clad plate is punched into a blank and drawn into a shallow cup with a diameter that is larger and smaller than the target battery case.
  • this drawing cup is formed by redrawing and simultaneous bending and stretching to form a high redrawing force with a small diameter at the first shallow force and a thinner side wall. . This process is repeated several times, and the cup is made smaller and thinner to increase the height of the cup.
  • the ironing diameter is then supplied to an ironing die corresponding to the outer diameter of the battery case, and ironing is performed.
  • the inner and outer surfaces are smoothed and formed into a battery case having the desired diameter and height. In the evaluation of workability shown in Table 1, the case where the body part was broken during DI processing or DTR processing was judged to be bad, and the case where there was no break was judged to be good.
  • a positive electrode active material L of ICo0 2 powder and the current collector a binder Toka Ranaru cathode mix comprising a solvent and kneaded slurry such as N _ methylpyrrolidone etc. a strip-shaped aluminum foil, such as polyvinylidene fluoride resin Apply to both sides, dry and pressurize to form positive electrode plate.
  • a current collector consisting of a strip of copper foil and a slurry obtained by kneading a mixture consisting of a solvent such as styrene butadiene rubber and a binder capable of absorbing and releasing lithium ions and a solvent such as N-methylpyrrolidone.
  • an organic solvent such as c b propylene carbonate obtained by dissolving a solute such as an inorganic lithium salt such as L i C10 4 as the electrolyte the battery case by connecting a lead line connected to the negative electrode plate in the plane battery case
  • the negative electrode terminal, the lead wire connected to the positive electrode plate is connected to the back side of the metal lid to be applied via the insulating plate and the annular packing, and the positive terminal is used.
  • the upper end of the battery case is connected via the insulating plate and the annular packing. Close and seal to form a sealed lithium ion secondary battery.
  • the plating thickness was adjusted by the energizing time.
  • the nickel-plated steel sheet was subjected to thermal diffusion treatment at 550 ° C for 8 hours in an atmosphere of 94% nitrogen and 6% hydrogen.
  • the thickness of the nickel-iron diffusion layer after the treatment was measured by green discharge emission spectroscopy, and it was confirmed that the thickness was 0.5 to 5 m.
  • temper rolling was performed. The above ni Some of the Kel-plated steel sheets were clad with aluminum foil in the next step without thermal diffusion treatment.
  • the Al Miniumu foil thickness shown in Table 1 was inserted into a vacuum chamber, using a magnetic ir Toronsupa' evening method at 1 X 1 0- 2 Torr argon gas Then, one side of the nickel-plated steel sheet and one side of the aluminum foil were etched by about 500 angstroms, and then cold-rolled at room temperature at a rolling reduction of about 0.5% so that the surfaces to be etched overlapped each other. A clad plate was created. In sample No. 5 shown in Table 1, the A1 foil was as thin as 5 m, so the foil was wrinkled during lamination, and a normal clad plate could not be obtained.
  • the thickness of the copper foil shown in Table 1 was inserted into a vacuum chamber, 2 X 1 0- 3 Torr in an argon gas magnetron Nsupa' evening Method, one side of the nickel-plated steel sheet and one side of the copper foil are etched by about 500 angstroms, and then cold-rolled at room temperature with a rolling ratio of about 0.3% so that the surfaces to be etched overlap each other. Then, a clad plate was created.
  • the aluminum foil clad nickel-plated steel sheet and the copper foil clad nickel-plated steel sheet obtained as described above were measured for Vickers hardness ( ⁇ ⁇ ) by bringing an indenter into contact with the nickel-plated steel sheet. Table 1 shows the results.
  • the clad plate shown in Table 1 was formed into a battery case by DI processing.
  • a blank punched into a circular shape with a diameter of 4 D 1 mm was drawn into a 20.5 mm diameter cup with the aluminum or copper foil on the inside, then redrawn with a DI molding machine and a two-step process. Ironing was performed, and it was formed into a cylindrical can with an outer diameter of 13.8 mm and a height of 56 mm. After that, the upper end was trimmed to create a 49.3 mm high LR-6 battery case.
  • Table 1 shows the formability of the clad plate by this DI processing. ⁇ The workability was evaluated as 1 when the body was broken during processing, 2 when the body buckled when inserting the electrodes etc. into the battery case and caulking the lid, and the battery can be processed normally. Case 3 And each was evaluated.
  • the clad plate of Example 12 shown in Table 1 was formed into a battery case by drawing and pressing.
  • the blank punched into a circle is Y-shaped so that the aluminum foil is on the inside, subjected to eight steps of drawing and several times of re-drawing, and the cup is guided to an ironing die having an inner diameter of 13.8 mm and guided by a punch. It was pressed and formed into a cylindrical can with an outer diameter of 13.8 mm and a height of 52 mm. After that, the upper end was trimmed to make a 49.3 mm high LR_6 type battery case.
  • Example 13 The clad plate of Example 13 shown in Table 1 was formed into a battery case by DTR and ironing. A blank punched out into a circle with a diameter of 58 mm is subjected to drawing and bending and stretching at the same time as drawing and re-drawing several times with the aluminum foil inside, and then an inner diameter of 13.8 mm Guide the cup to an ironing die with a punch and press it with a punch to form a cylindrical can with an outer diameter of 13.8 mm and a height of 52 mm.
  • a slurry obtained by kneading LiC02 powder and polyvinylidene fluoride resin with N-methylpyrrolidone is applied to the battery case obtained as described above on both sides of a belt-shaped current collector made of aluminum foil, and dried and pressed.
  • a positive electrode plate was used.
  • a slurry obtained by kneading carbon powder and styrene butadiene rubber with N-methylpyrrolidone was applied to both sides of a strip-shaped current collector made of copper foil or the like, and dried and pressed to form a negative electrode plate.
  • a positive electrode plate and a negative electrode plate were wound and laminated via a strip-shaped separator made of a microporous polypropylene film, so that the outermost peripheral surface was wound by the separator to form a cylindrical unit cell.
  • the unit cell was inserted into the battery case, using a solution of the Li C10 4 in propylene carbonate as an electrolyte, the battery cable leads connected to the negative electrode plate
  • the battery case is used as the negative terminal by connecting to the inner surface of the battery, and the lead wire connected to the positive plate is connected to the back of the metal lid applied via the insulating plate and annular packing to form the positive terminal, and the upper end of the battery case is insulated This was sealed by caulking through a plate and an annular packing to form a sealed lithium ion secondary battery.
  • the battery thus obtained was aged at a temperature of 38 ° C. for one month, and then visually checked for liquid leakage. Table 1 shows the results.
  • Example 1 30 6 With 225 A1 30 DI 3 Without Example 2 75 1 With 307 A1 30 DI 3 Without Example 3 75 6 With 197 A1 10 DI 3 Without Example 4 75 6 With 176 A1 30 DI 3 Without Example 5 75 6 With 189 A1 50 DI 3 Without Example 6 75 6 Without 368 A1 30 DI 3 Without Example 7 100 6 With 188 A1 30 DI 3 Without Example 8 75 10 Yes 231 A1 30 DI 3 Without Example 9 75 6 Yes 211 Cu 10 DI 3 Without Actual ife Example 10 75 6 Yes 194 Cu 30 DI 3 Without Example 11 75 6 Yes 251 Cu 50 DI 3 None Example 12 75 6 ..
  • the clad sheet metal for a battery case of the present invention has excellent workability, and the clad sheet metal for a battery case is subjected to drawing, DI processing, or DTR processing followed by ironing. It can be formed into a battery case using a processing method.
  • the battery case is filled with an electrode plate and an electrolytic solution and the lid is caulked to make a battery, leakage of the electrolytic solution does not occur.
  • the battery case clad metal plate of the present invention can be formed into a battery case having a bottomed cylindrical shape, and is excellent in corrosion resistance and mechanical strength. Further, in the battery of the present invention, the above-mentioned battery case is filled with an IV electrolytic solution, a lid is placed on an upper end portion, and a peripheral portion is caulked to make the battery, so that no liquid leakage occurs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

The invention provides a clad metal plate capable of forming a bottomed cylinder, such as a battery case, using a surface activating technique; a battery case formed of the metal plate; and a battery using the case. The clad metal plate for a battery case includes a nickel-plated steel plate clad with aluminum or copper foil by surface activation. The clad metal plate formed into a bottomed battery case by a process of drawing, DI, or DTR.

Description

明 細 書 電池ケース用クラッド金属板、 それを用いた電池ケース、 およびその電池ケース を使用した電池 技術分野  Description Clad metal plate for battery case, battery case using the same, and battery using the battery case
本発明は界面活性化法を用いて作成した電池ケース用クラッド金属板、 それを 用いた電池ケース、 およびその電池ケースを使用した電池に関する。 背景技術  The present invention relates to a clad metal plate for a battery case prepared by using the surface activation method, a battery case using the same, and a battery using the battery case. Background art
従来、 非水電解液を用いるリチウムイオン二次電池などの電池ケースの素材と して、 電池特性、 耐食性、 および機械的強度の観点からステンレス/アルミニゥ ムクラッド板 (特開平 1 0— 2 0 8 7 1 0号公報、 特開平 5— 1 7 4 8 7 3号公 報) や鋼 Zアルミニウムクラッド板 (特開平 5— 1 7 4 8 7 3号公報) が使用さ れている。 これらのクラッド板は通常冷間圧延法を用いて作成されており、 加工 硬化が大きく加工性に乏しく、 深絞り加工などの強加工が困難であるため、 浅い 絞り加工で成形可能な偏平型の電池ケースの適用に限定されている。 近年、 リチ ゥムイオン二次電池においても従来のマンガン乾電池のような円筒型の形状を有 する電池が求められ、 電池特性、 耐食性、 および機械的強度に優れ、 かつ有底筒 状の形状に成形可能な加工性に優れたクラッド金属板が求められている。  Conventionally, as a material for a battery case such as a lithium ion secondary battery using a non-aqueous electrolyte, a stainless steel / aluminum clad plate (Japanese Patent Application Laid-Open No. H10-20887) was used in view of battery characteristics, corrosion resistance and mechanical strength. No. 10, JP-A-5-174873 and JP-A-5-174873 are used. These clad plates are usually made using the cold rolling method, and because of their large work hardening and poor workability, it is difficult to perform strong forming such as deep drawing. It is limited to the application of a battery case. In recent years, lithium ion secondary batteries have also been required to have cylindrical shapes, like conventional manganese dry batteries, and have excellent battery characteristics, corrosion resistance, and mechanical strength, and can be formed into a bottomed cylindrical shape. There is a demand for a clad metal plate having excellent workability.
本発明は、 耐食性、 および機械的強度に優れ、 かつ有底筒状の形状に成形可能 な加工性に優れた、 界面活性化法を用いて作成した電池ケース用クラッド金属板、 それを用いた電池ケース、 およびその電池ケースを使用した液漏れを生じること のない電池を提供することを目的とする。 発明の開示 本発明の請求項 1の電池ケース用クラッド金属板は、 少なくともニッケルめつ き鋼板の片面に、 界面活性化法を用いて、 厚みが 1 0〜5 0 mのアルミニウム 箔を接合してなることを特徴とする。 The present invention provides a clad metal plate for a battery case, which is excellent in corrosion resistance and mechanical strength, and excellent in workability that can be formed into a bottomed cylindrical shape, produced by a surface activation method, and using the same. An object of the present invention is to provide a battery case and a battery using the battery case that does not cause liquid leakage. Disclosure of the invention The clad metal plate for a battery case according to claim 1 of the present invention is formed by bonding an aluminum foil having a thickness of 10 to 50 m to at least one surface of a nickel-plated steel plate by using a surface activation method. It is characterized by.
請求項 2のクラッド金属板は、 少なくともニッケルめっき鋼板の片面に、 界面 活性化法を用いて銅箔を接合してなることを特徴とする。  The clad metal plate according to claim 2 is characterized in that at least one surface of a nickel-plated steel plate is joined with a copper foil by using an interface activation method.
請求項 3のクラッド金属板は、 前記銅箔の厚さが 1 0〜5 0 / mであることを 特徴とする。  The clad metal plate according to claim 3 is characterized in that the thickness of the copper foil is 10 to 50 / m.
請求項 4のクラッド金属板は、 前記ニッケルめっき鋼板のニッケルめっきの厚 さが 1〜 1 0 mであることを特徴とする。  The clad metal sheet according to claim 4 is characterized in that the nickel-plated steel sheet has a nickel plating thickness of 1 to 10 m.
請求項 5のクラッド金属板は、 前記鋼板がビッカース硬さ (Η ν ) 4 0 0以下 の硬度を有することを特徴とする。  The clad metal plate according to claim 5 is characterized in that the steel plate has a hardness of Vickers hardness (Ην) 400 or less.
請求項 6のクラッド金属板は、 前記鋼板の厚さが 3 0〜 1 0 0 i mであること を特徴とする。  The clad metal plate according to claim 6 is characterized in that the thickness of the steel plate is 30 to 100 im.
請求項 7の有底筒状の電池ケースは、 前記電池ケース用クラッド金属板を絞り ^ 加工法を用いて製造したものであることを特徴とする。  The bottomed cylindrical battery case according to claim 7 is characterized in that the clad metal plate for the battery case is manufactured by a drawing method.
請求項 8の有底筒状の電池ケースは、 前記電池ケース用クラッド金属板を D I 加工法を用いて製造したものであることを特徴とする。  The cylindrical battery case with a bottom according to claim 8 is characterized in that the clad metal plate for the battery case is manufactured by using a DI working method.
請求項 9の有底筒状の電池ケースは、 前記電池ケース用クラッド金属板を D T R加工法を用いて製造したものであることを特徴とする。  A cylindrical battery case with a bottom according to claim 9 is characterized in that the clad metal plate for the battery case is manufactured by using a DTR processing method.
^ 請求項 1 0の有底筒状の電池ケースは、 前記電池ケ一ス用クラッド金属板を D T R加工法及びしごき加工法を用いて製造したものであることを特徴とする。 請求項 1 1の電池は、 前記電池ケースを使用して製造したものであることを特 徴とする。 lf 図面の簡単な説明 ^ The cylindrical battery case with a bottom according to claim 10 is characterized in that the clad metal plate for the battery case is manufactured by a DTR working method and an ironing method. The battery according to claim 11 is characterized by being manufactured using the battery case. Brief description of lf drawings
図 1は、 本発明の電池ケース用クラッド金属板の製造装置の一例を示す概略図 である。 発明を実施するための最良の形態 FIG. 1 is a schematic view showing an example of an apparatus for manufacturing a clad metal plate for a battery case according to the present invention. It is. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の内容について詳しく説明する。  Hereinafter, the contents of the present invention will be described in detail.
[クラッド板の作成]  [Create clad plate]
(使用する鋼板)  (Steel used)
クラッド板に使用する鋼板としては、 普通鋼の冷延鋼板、 特に低炭素アルミキ ルド鋼連铸材をべ一スとするものが用いられる。 また、 炭素含有量が 0 . 0 0 3 重量%以下の極低炭素鋼やこれにニオブやチタンなどの金属を添加した非時効性 As the steel sheet used for the clad sheet, a cold-rolled steel sheet of ordinary steel, particularly one based on a low-carbon aluminum-killed steel continuous material is used. In addition, ultra-low carbon steel with a carbon content of 0.003% by weight or less, and non-aging properties by adding metals such as niobium and titanium
I t 鋼も使用することができる。 これらの鋼板は、 冷間圧延し焼鈍した後、 または焼 鈍後さらに調質圧延を施した状態で使用され、 3 0〜 1 0 0 z mの厚さを有して いることが好ましい。 厚さが 3 0 m未満の場合は、 アルミニウム箔ゃ銅箔をク ラッドし、 絞り加工などの加工を施して有底筒状の電池ケースに成形加工した際 に強度が不足し、 一方厚さが 1 0 0 mを超えると強度は十分であるが鋼の使用It steel can also be used. These steel sheets are used after being cold-rolled and annealed or after annealing and further subjected to temper rolling, and preferably have a thickness of 30 to 100 zm. If the thickness is less than 30 m, the aluminum foil / copper foil will be clad, drawn, etc., and formed into a bottomed cylindrical battery case. Is more than 100 m, the strength is sufficient, but steel is used.
|tf 量が増加し経済的に有利でなくなり、 また電池重量も増加するので好ましくない。 It is not preferable because the | tf amount increases and becomes economically unfavorable, and the battery weight also increases.
(ニッケルめっき)  (Nickel plating)
上記の鋼板には、 電池ケースに成形加工した後において十分な耐食性を確保す るためにニッケルめっきを施す。  The above steel sheet is plated with nickel to secure sufficient corrosion resistance after forming into a battery case.
ニッケルめっき浴としては、 ワット浴、 スルファミン酸浴、 ホウフッ化物浴、 塩化物浴など、 通常のニッケルめっきに使用されるめつき浴を用いることができ る。 ニッゲルめつき方法としては電気めつき法と無電解めつき法の 2通りの方法 があり、 本発明に無電解めつき法も適用可能であるが、 浴の管理、 めっき厚さの コントロールが容易な電気めつき法を用いてめっきすることが好ましい。  As the nickel plating bath, a plating bath used for ordinary nickel plating, such as a watt bath, a sulfamic acid bath, a borofluoride bath, and a chloride bath, can be used. There are two Nigel plating methods: electroplating and electroless plating.Electroless plating is also applicable to the present invention, but bath management and plating thickness control are easy. It is preferable to perform plating using an electroplating method.
上記のニッケルめっきは、 有機添加剤を使用しない無光沢めつき、 有機添加剤 lf を使用する半光沢めつきまたは光沢めつきのいずれも使用可能である。  The nickel plating described above can be used for matte plating without using an organic additive, and for semi-glossy plating or glossy plating using an organic additive lf.
ニッケルめっき層の厚さは 1〜1 0 mであることが好ましい。 めっき厚さが 1 m未満の場合は、 電池ケースに成形加工した後において鋼板下地の被覆が不 十分となり、 十分な耐食性を確保することができない。 一方、 めっき厚さが 1 0 mを超えると鋼板下地は十分に被覆され、 それ以上のめっき厚さの増加は経済 的に有利ではなくなり、 好ましくない。 このニッケルめっき層は鋼板の両面に形 I) 成されてもよいし、 またアルミニウム箔ゃ銅箔をクラッドしない片面のみに形成 されてもよい。 The thickness of the nickel plating layer is preferably 1 to 10 m. Plating thickness If it is less than 1 m, the coating of the base of the steel sheet after forming into a battery case becomes insufficient, and sufficient corrosion resistance cannot be secured. On the other hand, if the plating thickness exceeds 10 m, the base of the steel sheet is sufficiently covered, and any further increase in the plating thickness is not economically advantageous and is not preferable. This nickel plating layer may be formed on both sides of the steel sheet I), or may be formed only on one side without cladding aluminum foil / copper foil.
(拡散層の形成)  (Formation of diffusion layer)
ニッケルめっき層はめつきを施したままでもよいが、 めっき後、 熱処理を施し てニッケルめっき層の全部または一部を鋼板中に拡散させた拡散層を形成させて The nickel plating layer may be left attached, but after plating, heat treatment is performed to form a diffusion layer in which all or part of the nickel plating layer is diffused into the steel sheet.
I C もよい。 この拡散層を形成させることにより、 D I加工、 もしくは D T R加工お よびしごき加工を施した際に、 ニッケルめっき層が鋼板素地から剥離することを 防止できる。 I C is also good. By forming this diffusion layer, it is possible to prevent the nickel plating layer from peeling off from the steel sheet base when DI processing or DTR processing and ironing are performed.
上記の熱処理は、 拡散層表面に酸化皮膜が生成することを防止するため、 非酸 化性または還元性の保護ガスの雰囲気中で実施する。 非酸化性ガスとしては窒素、 |t アルゴン、 ヘリウムなどの不活性ガス、 還元性ガスとしては水素、 アンモニアク ラッキングガス (水素 7 5 %、 窒素 2 5 % ) などが好適に用いられる。 熱処理方 法としては箱形焼鈍法と連続焼鈍法のいずれも適用可能である。 箱形焼鈍の場合、 熱処理温度は 4 5 0 °C以上が好ましい。 熱処理時間は箱型焼鈍では 6〜 1 5時間、 連続焼鈍では 3 0秒〜 2分程度を要する。 The above heat treatment is performed in an atmosphere of a non-oxidizing or reducing protective gas in order to prevent formation of an oxide film on the surface of the diffusion layer. As the non-oxidizing gas, nitrogen, | t inert gas such as argon and helium, and as the reducing gas, hydrogen, ammonia cracking gas (75% hydrogen, 25% nitrogen) are preferably used. Both the box annealing method and the continuous annealing method can be applied as the heat treatment method. In the case of box annealing, the heat treatment temperature is preferably 450 ° C. or higher. The heat treatment time is about 6 to 15 hours for box annealing and about 30 seconds to 2 minutes for continuous annealing.
θ (使用する金属箔)  θ (metal foil used)
上記のニッケルめっき鋼板にクラッドする金属箔としては、 電解液に対する耐 食性や界面抵抗の減少の観点からアルミニウム箔または銅箔が用いられる。 これ らの金属箔は 1 0〜5 0 mの厚さを有していることが好ましい。 厚さが 1 0 m未満の場合は剛性に乏しく、 クラッド作業時にしわが生じ、 しわの部分が折り > 重なってクラッドされる欠陥部分を生じやすく好ましくない。 一方、 厚さが 5 0 を超えると金属箔を構成する金属の使用量が増加し経済的に有利でなくなり、 好ましくない。 As the metal foil to be clad on the nickel-plated steel sheet, an aluminum foil or a copper foil is used from the viewpoint of corrosion resistance to an electrolyte and a reduction in interface resistance. These metal foils preferably have a thickness of 10 to 50 m. If the thickness is less than 10 m, the rigidity is poor, wrinkles are generated during the cladding work, and the wrinkled portions are folded and overlapped to generate a defective portion, which is not preferable. On the other hand, if the thickness exceeds 50, the amount of metal constituting the metal foil increases, which is not economically advantageous, Not preferred.
(クラッド板の製造方法)  (Method of manufacturing clad plate)
上記のニッケルめっき鋼板とアルミニウム箔または銅箔を、 例えば特開平 1 _ 2 2 4 1 8 4号公報に開示された方法により、 界面活性化法を用いて冷間圧接し、 T クラッド板とする。 すなわち、 図 1に示す装置を用い、 排気ポンプ 9により 1 0 一3〜 1 0—6Torr台の真空度に保持された真空チャンバ 1内に設けられた巻き戻し リール 3 aから巻き戻されるニッケルめっき鋼板 2 O Aと巻き戻しリール 3 か ら巻き戻されるアルミニウム箔または銅箔である金属箔 2 0 Bは、 その一部がェ ツチングチャンバ 2 2内に突設された電極ロール 6 Aおよび 6 Bにそれぞれ巻き ( 付けられ、 エッチングチャンバ 2 2内においてスパッタリング処理され、 界面活 性化される。 その後、 真空チャンバ 1内に設けられた圧延ユニット 2にてニッケ ルめっき鋼板 2 O Aと金属箔 2 0 Bが当接されて冷間圧延され、 クラッド板 1 9 として卷き取り口一ル 5に卷き取られる。 The above-mentioned nickel-plated steel sheet and aluminum foil or copper foil are cold-welded using a surface activation method by, for example, a method disclosed in Japanese Patent Application Laid-Open No. 1-224184 to form a T clad plate. . That is, nickel using the apparatus shown in FIG. 1, which is unwound from the exhaust pump 9 by 1 0 one 3 ~ 1 0- 6 Torr stand unwinding reel 3 provided in the vacuum chamber 1 held at a vacuum of a The metal foil 20 B, which is an aluminum foil or a copper foil that is unwound from the plated steel sheet 2 OA and the rewind reel 3, is partially formed of electrode rolls 6 A and 6 protruding into the etching chamber 22. B is wound (sputtered) in the etching chamber 22 and surface-activated. Then, the nickel-plated steel sheet 2 OA and the metal foil 2 are rolled in the rolling unit 2 provided in the vacuum chamber 1. 0 B is abutted and cold rolled, and is wound as a clad plate 19 into the winding opening 5.
ニッケルめっき鋼板 2 O Aと金属箔 2 0 Bを活性化する方法として、 マグネト li ロンスパッ夕法を用い、 1 0〜5 O MH zの周波数の高周波電源を用いる。 周波 数が 1 O MH z未満の場合は安定なグロ一放電を維持するのが困難であり、 連続 的にエッチング処理できない。 一方、 周波数が 5 O MH zを超えると発振しやす く、 電力の供給系の装置が複雑となり、 好ましくない。  As a method of activating the nickel-plated steel sheet 2OA and the metal foil 20B, a high-frequency power supply having a frequency of 10 to 5 MHz is used by using a magnet li-l-pass method. When the frequency is less than 1 OMHz, it is difficult to maintain a stable glow discharge, so that the etching cannot be continuously performed. On the other hand, if the frequency exceeds 5 OMHz, oscillation tends to occur, and the power supply system becomes complicated, which is not preferable.
エッツチング開始に際しては、 予めエッチングチャンバ 2 2内を排気ポンプ 2 v 5で 1 X 1 0 _4Torr以下の真空度に保持した後、 アルゴンガスを導入して 1 0—1 〜1 0— 4Torr台のアルゴンガス雰囲気とし、 真空チャンバ 1との間に上記の高周 波を印加するとチャンバ内にプラズマが発生し、 ニッケルめっき鋼板 2 O Aと金 属箔 2 0 Bの表面がエッチングされる。 In Ettsuchingu started, after prestores etching chamber 2 within 2 to 1 X 1 0 _ 4 Torr or less degree of vacuum by the exhaust pump 2 v 5, argon gas was introduced 1 0- 1 ~1 0- 4 Torr When the above high frequency is applied between the vacuum chamber 1 and the vacuum chamber 1, the plasma is generated in the chamber, and the surfaces of the nickel-plated steel sheet 2OA and the metal foil 20B are etched.
アルゴンガス圧が 1 X 1 0— 4Torr未満の場合、 グロ一放電を安定化するのが困 yf 難となるのと同時に、 高いイオン流が得られず、 高速でエッチングすることが困 難になる。 一方、 アルゴンガス圧が 1 X 1 O Torrを超えるとスパッ夕された原 子の平均自由工程が小さくなり、 再び夕ーゲットに打ち込まれる頻度が高くなり、 エッチングによりニッケルめっき鋼板 2 O Aと金属箔 2 0 Bの表面に形成されて いる酸化物から離脱した酸素が再度ターゲッ卜に打ち込まれるため、 界面活性化 処理の効率が低下する。 このため、 エッチングチャンバ 2 2内のアルゴンガス圧 > は、 1 0―1〜 1 0— 4Torrの範囲とする。 When the argon gas pressure is less than 1 X 1 0- 4 Torr, at the same time that the yf flame coma to stabilize the glow one discharge, can not be obtained a high ion flow, the flame is frame to be etched at a high speed Become. On the other hand, when the argon gas pressure exceeds 1 X 1 O Torr, The average free path of the element becomes smaller, the frequency of being driven into the target again increases, and the oxygen released from the oxide formed on the surface of the nickel-plated steel sheet 2OA and the metal foil 20B by etching is targeted again. , The efficiency of the surface activation treatment decreases. Therefore, the argon gas pressure of the etching chamber 2 within 2> is in the range of 1 0- 1 ~ 1 0- 4 Torr .
本発明のクラッド板 1 9の製造に用いるマグネトロンスパッタ法では、 1 0 0 0オングストロームノ分以上のエッチング速度が得られるため、 アルミニウム酸 化皮膜などの安定で厚い酸化皮膜でも数分間のエッチングで完全に除去すること が可能であり、 鋼などは数秒間程度のエッチングで完全に除去され、 清浄な表面 IC が得られる。  In the magnetron sputtering method used for manufacturing the clad plate 19 of the present invention, since an etching rate of 100 Å or more can be obtained, even a stable and thick oxide film such as an aluminum oxide film can be completely etched by several minutes. It is possible to completely remove steel etc. by etching for about several seconds, and obtain a clean surface IC.
真空チャンバ 1内の真空度の低下は当然ながら接合強度の低下を招くが、 経済 性を考慮した場合、 1 X 1 0— 6Torrが下限である。 上限は 1 0— 3Torrまでは十分 に高い接合強度が得られる。 Reduction in the degree of vacuum in the vacuum chamber 1 is of course leads to a decrease in bonding strength but, when considering the economics, 1 X 1 0- 6 Torr is lower. The upper limit is sufficiently high bonding strength can be obtained up to 1 0- 3 Torr.
上記のようにして表面を清浄化したニッケルめっき鋼板 2 O Aと金属箔 2 0 B Nickel-plated steel sheet 2 O A and metal foil 20 B whose surface was cleaned as described above
|if を当接して冷間圧接してクラッド板 1 9を製造する際に、 ニッケルめっき鋼板 2 O Aと金属箔 2 0 Bを加熱する必要はなく、 常温で差し支えない。 しかし、 圧接 時に生じる発熱による異種金属の熱膨張率の差と、 それに伴う冷却後の変形を少 なくする、 などの必要に応じてニッケルめっき鋼板 2 O Aおよびまたは金属箔 2 0 Bを加熱する場合は、 加熱上限は接合強度を低下させる再結晶焼鈍や、 合金層、 0 や炭化物などの形成が生じない範囲で加熱すればよく、 3 0 0 °C以下が好ましい。 It is not necessary to heat the nickel-plated steel plate 2 O A and the metal foil 20 B at the time of manufacturing the clad plate 19 by contacting the | if and cold pressing, and it can be at room temperature. However, when heating the nickel-plated steel plate 2OA and / or the metal foil 20B as necessary, such as reducing the difference in the coefficient of thermal expansion of dissimilar metals due to heat generated during pressure welding and the accompanying deformation after cooling, etc. The upper limit of the heating may be heating within a range that does not cause recrystallization annealing for lowering the bonding strength or formation of an alloy layer, 0 or carbide, and is preferably 300 ° C. or lower.
ニッケルめっき鋼板 2 O Aと金属箔 2 0 Bを冷間圧接する際の圧延率は 0. 1 〜3 0 %の範囲であることが好ましい。 本発明のクラッド板 1 9の製造に際して、 ニッケルめっき鋼板 2 O Aと金属箔 2 0 Bの界面活性化処理においては金属表面 に新たな凹凸は形成されず、 圧接前の仕上げ圧延時の表面の平坦度を保持したま lf ま圧接可能であるので、 小さな加圧力でも大きな接触面積が得られ、 かつ接触部 は確実に金属結合するので、 0. 1 % 程度の低い圧延率でも強力な接合が得られ る。 一方、 圧延率の上限は、 冷間圧接と仕上げ圧延、 または調質圧延を 1回の圧 延工程で実施する場合があるので 3 0 %とする。 3 0 %以上の圧延率で冷間圧接 した場合はクラッド板 1 9の加工硬化が著しくなり、 好ましくない。 The rolling reduction when cold-welding the nickel-plated steel sheet 2OA and the metal foil 20B is preferably in the range of 0.1 to 30%. In the production of the clad plate 19 of the present invention, in the surface activation treatment of the nickel-plated steel plate 2OA and the metal foil 20B, no new irregularities are formed on the metal surface, and the surface is flattened at the time of finish rolling before pressure welding. The contact can be maintained at lf while maintaining the degree of contact, so that a large contact area can be obtained even with a small pressing force, and the contact part is securely metal-bonded, so a strong joint can be obtained even at a rolling rate as low as 0.1%. Is You. On the other hand, the upper limit of the rolling reduction is set to 30% because cold welding and finish rolling or temper rolling may be performed in one rolling step. If cold pressing is performed at a rolling reduction of 30% or more, work hardening of the clad plate 19 becomes remarkable, which is not preferable.
以上のようにして作成されたクラッド板の硬さは、 ビッカース硬さ (H v ) で !Γ 4 0 0以下であることが好ましい。 硬さが H v 4 0 0を超えると、 アルミニウム 箔ゃ銅箔をクラッドした後、 D I加工や D T R加工およびしごき加工などの強加 ェを施した場合に筒状体の胴部が破断し、 成形加工が不可能となる。 なお、 クラ ッド板の硬さの測定は、 ニッケルめっき面が露出した面に圧子を当接して測定す る。  The hardness of the clad plate prepared as described above is preferably not more than Γ400 in Vickers hardness (Hv). If the hardness exceeds Hv400, the body of the cylindrical body breaks when aluminum foil ゃ copper foil is clad and then subjected to strong processing such as DI processing, DTR processing, and ironing processing, forming Processing becomes impossible. The hardness of the clad plate is measured by bringing an indenter into contact with the exposed nickel plated surface.
[電池ケースの成形]  [Battery case molding]
上記のようにして得られた電池ケース用クラッド板を、 電池ケースに成形加工 する。 成形加工は絞り加工法、 D I加工法 (drawing and i roning: 絞りしごき 加工法) 、 D T R加工法 (drawing thin and redrawing:薄肉化深絞り加工) 、 D T R加工法 +しごき加工法 (D T R加工の最終工程でしごき加工を施す) のい llf ずれかの加工法によることが好ましい。 電池ケースの径に対して高さが低い電池 ケースの場合は、 通常の 1段または複数段の絞り加工で成形加工することが好ま しい。  The battery case clad plate obtained as described above is formed into a battery case. Forming is drawing, DI processing (drawing and ironing: drawing and ironing), DTR processing (drawing thin and redrawing: thinning deep drawing), DTR processing + ironing (final of DTR processing) It is preferable to use an ironing process in the process. In the case of a battery case having a height smaller than the diameter of the battery case, it is preferable to form by a normal one-stage or multiple-stage drawing process.
電池ケースの径に対して高さが高い電池ケースの場合は、 D I加工、 もしくは D T R加工およびしごき加工で成形加工することが好ましい。 D I加工による場 c 合は、 クラッド板をブランクに打ち抜き、 径が目的とする電池ケースより大きく、 高さの低い浅い力ップに絞り加工する。 この浅い力ップを順次絞りしごき径が小 さくなるように同軸上に多段配置された複数個のダイスに供給し、 最終段の絞り しごき径が電池ケースの外径に相当するしごきダイスに供給し、 先端に肩アール が施されたポンチで加圧し、 くびれを生じないようにして連続的に通過させ、 目 >t 的とする径と高さを有する電池ケースに成形加工する。  In the case of a battery case having a height higher than the diameter of the battery case, it is preferable to perform the forming process by DI processing or DTR processing and ironing processing. In the case of DI processing, punch the clad plate into a blank and draw it into a shallow nip with a larger diameter and a smaller height than the target battery case. This shallow force is sequentially drawn and supplied to a plurality of dies arranged in multiple stages on the same axis so that the ironing diameter becomes smaller.Then, the ironing diameter at the last stage is supplied to the ironing die corresponding to the outer diameter of the battery case. Then, it is pressurized with a punch having a rounded shoulder at the end, and continuously passed without causing constriction, and formed into a battery case having a diameter and height to be aimed at.
D T R加工およびしごき加工で成形加工する場合も、 D I加工による場合と同 様に、 まずクラッド板をブランクに打ち抜き、 径が目的とする電池ケースより大 きく、 高さの低い浅いカップに絞り加工する。 次いで、 この絞りカップを再絞り 加工および同時に行われる曲げ伸ばし加工により、 最初の浅い力ップょり小径で、 力ップ側壁が薄肉化した高さの高い再絞り力ップに成形加工する。 この工程を複 tr 数回繰り返し、 さらにカップを小径化および薄肉化してカップ高さを高めた後、 しごき径が電池ケースの外径に相当するしごきダイスに供給してしごき加工を施 し、 ケース内外面を平滑化し、 目的とする径と高さを有する電池ケースに成形加 ェする。 表 1に示す加工性の評価は D I加工あるいは D T R加工時に胴部が破断 した場合を不良、 破断がなかった場合を良好とした。 DTR processing and ironing processing are the same as DI processing. First, the clad plate is punched into a blank and drawn into a shallow cup with a diameter that is larger and smaller than the target battery case. Next, this drawing cup is formed by redrawing and simultaneous bending and stretching to form a high redrawing force with a small diameter at the first shallow force and a thinner side wall. . This process is repeated several times, and the cup is made smaller and thinner to increase the height of the cup. The ironing diameter is then supplied to an ironing die corresponding to the outer diameter of the battery case, and ironing is performed. The inner and outer surfaces are smoothed and formed into a battery case having the desired diameter and height. In the evaluation of workability shown in Table 1, the case where the body part was broken during DI processing or DTR processing was judged to be bad, and the case where there was no break was judged to be good.
( D [リチウムイオン二次電池の作成] (D [Preparation of lithium ion secondary battery]
正極活物質である L iCo02の粉末とポリフッ化ビニリデン樹脂などの結着剤とか らなる正極合剤を N _メチルピロリドンなどの溶媒と混練したスラリーを帯状の アルミニウム箔などからなる集電体の両面に塗布し、 乾燥加圧して正極板とする。 また、 リチウムイオンを吸蔵放出可能な力一ボンなどとスチレンブタジエンゴム などの結着剤とからなる合剤を N—メチルピロリドンなどの溶媒と混練したスラ リーを帯状の銅箔などからなる集電体の両面に塗布し、 乾燥加圧して負極板とす る。 そして正極板と負極板の間に帯状の微多孔性のポリプロピレンフィルムなど からなるセパレ一夕を介して捲回して積層し、 最外周面がセパレ一夕で捲かれる ように捲回し円筒型素電池とする。 この素電池を上記の電池ケースに挿入し、 プA positive electrode active material L of ICo0 2 powder and the current collector a binder Toka Ranaru cathode mix comprising a solvent and kneaded slurry such as N _ methylpyrrolidone etc. a strip-shaped aluminum foil, such as polyvinylidene fluoride resin Apply to both sides, dry and pressurize to form positive electrode plate. In addition, a current collector consisting of a strip of copper foil and a slurry obtained by kneading a mixture consisting of a solvent such as styrene butadiene rubber and a binder capable of absorbing and releasing lithium ions and a solvent such as N-methylpyrrolidone. It is applied to both sides of the body and dried and pressed to form a negative electrode plate. Then, a positive electrode plate and a negative electrode plate are wound and laminated via a strip-shaped separator made of a microporous polypropylene film or the like between the positive electrode plate and the negative electrode plate, and are wound so that the outermost peripheral surface is rolled up by the separator. . Insert this cell into the above battery case,
>c ロピレンカーボネートなどの有機溶媒に L i C104などの無機リチウム塩などの溶質 を溶解したものを電解液として用い、 負極板に接続したリード線を電池ケース内 面に接続して電池ケースを負極端子とし、 正極板に接続したリード線を絶縁板お よび環状パッキンを介して施す金属製の蓋の裏面に接続して正極端子とし、 電池 ケース上端部を絶縁板および環状パッキンを介してかしめて封口し、 密閉リチウ Τ ムイオン二次電池とする。 > used in an organic solvent such as c b propylene carbonate obtained by dissolving a solute such as an inorganic lithium salt such as L i C10 4 as the electrolyte, the battery case by connecting a lead line connected to the negative electrode plate in the plane battery case The negative electrode terminal, the lead wire connected to the positive electrode plate is connected to the back side of the metal lid to be applied via the insulating plate and the annular packing, and the positive terminal is used.The upper end of the battery case is connected via the insulating plate and the annular packing. Close and seal to form a sealed lithium ion secondary battery.
実施例 以下、 本発明を実施例に基づいてさらに詳細に説明する。 Example Hereinafter, the present invention will be described in more detail based on examples.
[クラッド材の作成方法]  [How to make clad material]
化学成分が C : 0. 03重量%、 Mn : 0. 20重量%、 S i : 0. 0 1重量%、 P : 0. 0 1 1重量%、 S : 0. 06重量%、 A 1 : 0. 0 1 1重量%、 N: 0. 0 »ί 025重量%、 残部が F eからなる熱延鋼板を冷間圧延、 焼鈍し表 1に示す厚さ を有する鋼板をめつき原板として使用した。 これらのめっき原板を N aOH水溶 液 (30 gZ 1 ) を用いて、 7 5°Cで陽極処理 (5 A/dm2 X 1 0秒) および 陰極処理 (5AZdm2 X 1 0秒) し、 アルカリ脱脂した。 次いで、 硫酸水溶液 (50 g/ l ) に約 1 5秒間浸漬して酸洗した後、 下記の条件で表 1に示す厚さ IP のニッケルめっきを施した。 Chemical components: C: 0.03% by weight, Mn: 0.20% by weight, Si: 0.01% by weight, P: 0.011% by weight, S: 0.06% by weight, A1: 0.01 1% by weight, N: 0.0 »な る 025% by weight, cold rolled and annealed hot-rolled steel sheet with the balance Fe did. Anodizing (5 A / dm 2 X 10 seconds) and cathodic treatment (5 AZdm 2 X 10 seconds) at 75 ° C using NaOH aqueous solution (30 gZ 1) of these plating base plates Defatted. Next, the film was immersed in an aqueous sulfuric acid solution (50 g / l) for about 15 seconds, and pickled, followed by nickel plating having a thickness IP shown in Table 1 under the following conditions.
(ニッケルめっき条件)  (Nickel plating conditions)
i) 浴組成  i) Bath composition
硫酸ニッケル 300 g/ 1  Nickel sulfate 300 g / 1
塩化ニッケル 45 g/ 1  Nickel chloride 45 g / 1
ほう酸 45 g/ 1  Boric acid 45 g / 1
ii)めっき条件  ii) Plating conditions
浴温度 55土 2 °C  Bath temperature 55 soil 2 ° C
PH 4. 2 ± 0. 2  PH 4.2 ± 0.2
電流密度 20 A/dm2 Current density 20 A / dm 2
撹拌 浴中に空気吹き込み  Blow air into the bath
ニッケルペレツト  Nickel pellet
めつき厚さは通電時間で調整した。  The plating thickness was adjusted by the energizing time.
上記のニッケルめっきを施した鋼板を 5 50°Cで 8時間、 窒素 94%、 水素: 6 %の雰囲気中で熱拡散処理した。 処理後のニッケル—鉄拡散層の厚さをグロ一 Τ 放電発光分光分析法で測定し、 0. 5〜5 m であることを確認した。 次いでス トレツチヤーストレインの発生を防止するため、 調質圧延を施した。 上記のニッ ケルめっき鋼板の一部は、 熱拡散処理を施さずに次工程でアルミニウム箔をクラ ッドした。 The nickel-plated steel sheet was subjected to thermal diffusion treatment at 550 ° C for 8 hours in an atmosphere of 94% nitrogen and 6% hydrogen. The thickness of the nickel-iron diffusion layer after the treatment was measured by green discharge emission spectroscopy, and it was confirmed that the thickness was 0.5 to 5 m. Next, in order to prevent the occurrence of strain strain, temper rolling was performed. The above ni Some of the Kel-plated steel sheets were clad with aluminum foil in the next step without thermal diffusion treatment.
このようにして得られたニッケルめっき鋼板の一部と、 表 1に示す厚さのアル ミニゥム箔を真空チャンバに挿入し、 1 X 1 0— 2Torrのアルゴンガス中でマグネ ir トロンスパッ夕法により、 ニッケルめっき鋼板の片面およびアルミニウム箔の片 面を約 5 0 0オングストロームエッチングした後、 両者の被エッチング面が重な るようにして、 室温にて圧延率約 0 . 5 %で冷間圧延し、 クラッド板を作成した。 表 1に示す試料番号 5は A 1箔が 5 mと薄いため、 積層時に箔にしわが発生し、 正常なクラッド板が得られなかった。 And some of the resulting nickel plated steel sheet in this manner, the Al Miniumu foil thickness shown in Table 1 was inserted into a vacuum chamber, using a magnetic ir Toronsupa' evening method at 1 X 1 0- 2 Torr argon gas Then, one side of the nickel-plated steel sheet and one side of the aluminum foil were etched by about 500 angstroms, and then cold-rolled at room temperature at a rolling reduction of about 0.5% so that the surfaces to be etched overlapped each other. A clad plate was created. In sample No. 5 shown in Table 1, the A1 foil was as thin as 5 m, so the foil was wrinkled during lamination, and a normal clad plate could not be obtained.
I C 銅箔を用いた場合では、 上記のニッケルめっき鋼板の一部と、 表 1に示す厚さ の銅箔を真空チャンバに挿入し、 2 X 1 0— 3Torrのアルゴンガス中でマグネトロ ンスパッ夕法により、 ニッケルめっき鋼板の片面および銅箔の片面を約 5 0 0ォ ングストロームエッチングした後、 両者の被エッチング面が重なるようにして、 室温にて圧延率約 0. 3 %で冷間圧延し、 クラッド板を作成した。 In case of using the IC copper foil, a part of the nickel plated steel plate, the thickness of the copper foil shown in Table 1 was inserted into a vacuum chamber, 2 X 1 0- 3 Torr in an argon gas magnetron Nsupa' evening Method, one side of the nickel-plated steel sheet and one side of the copper foil are etched by about 500 angstroms, and then cold-rolled at room temperature with a rolling ratio of about 0.3% so that the surfaces to be etched overlap each other. Then, a clad plate was created.
ιΤ 上記のようにして得られたアルミニウム箔クラッドニッケルめっき鋼板と銅箔 クラッドニッケルめっき鋼板について、 ニッケルめっき鋼板側に圧子を当接して ビッカース硬さ (Η ν ) を測定した。 結果を表 1に示す。 The aluminum foil clad nickel-plated steel sheet and the copper foil clad nickel-plated steel sheet obtained as described above were measured for Vickers hardness (Η ν) by bringing an indenter into contact with the nickel-plated steel sheet. Table 1 shows the results.
[DI加工条件]  [DI processing conditions]
表 1に示すクラッド板を D I加工により、 電池ケースに成形加工した。 直径 4 D 1 mmの円形に打ち抜いたブランクを、 アルミニウム箔または銅箔が内側となる ようにして直径 2 0. 5 mm のカップに絞り加工した後、 D I成形機で再絞りお よび 2段階のしごき加工を行い、 外径 1 3. 8 mm、 高さ 5 6 mmの円筒缶に成 形加工した。 この後、 上端部をトリミングし、 高さ 4 9 . 3 mm の L R— 6型電 池ケースを作成した。 この D I加工によるクラッド板の成形加工性を表 1に示す。 ^ 加工性の評価は加工時胴部が破断した場合を 1、 電池ケースに電極等を挿入し、 蓋をかしめる際に胴部が座屈した場合を 2、 正常に電池缶に加工できた場合を 3 とそれぞれ評価した。 The clad plate shown in Table 1 was formed into a battery case by DI processing. A blank punched into a circular shape with a diameter of 4 D 1 mm was drawn into a 20.5 mm diameter cup with the aluminum or copper foil on the inside, then redrawn with a DI molding machine and a two-step process. Ironing was performed, and it was formed into a cylindrical can with an outer diameter of 13.8 mm and a height of 56 mm. After that, the upper end was trimmed to create a 49.3 mm high LR-6 battery case. Table 1 shows the formability of the clad plate by this DI processing. ^ The workability was evaluated as 1 when the body was broken during processing, 2 when the body buckled when inserting the electrodes etc. into the battery case and caulking the lid, and the battery can be processed normally. Case 3 And each was evaluated.
[絞り加工条件]  [Drawing conditions]
表 1に示す実施例 1 2のクラッド板を絞りプレス加工により、 電池ケースに成 形加工した。 円形に打ち抜いたブランクを、 アルミニウム箔が内側となるように Y して 8工程の絞り加工および数回の再絞り加工を施し、 1 3. 8mm の内径を有 するしごきダイスにカップを導きポンチでプレスし、 外径 1 3. 8mm、 高さ 5 2 mmの円筒缶に成形加工した。 この後、 上端部をトリミングし、 高さ 49. 3m m の LR_ 6型電池ケースを作成した。  The clad plate of Example 12 shown in Table 1 was formed into a battery case by drawing and pressing. The blank punched into a circle is Y-shaped so that the aluminum foil is on the inside, subjected to eight steps of drawing and several times of re-drawing, and the cup is guided to an ironing die having an inner diameter of 13.8 mm and guided by a punch. It was pressed and formed into a cylindrical can with an outer diameter of 13.8 mm and a height of 52 mm. After that, the upper end was trimmed to make a 49.3 mm high LR_6 type battery case.
[DTR加工条件]  [DTR processing conditions]
I 表 1に示す実施例 1 3のクラッド板を DTR加工およびしごき加工により、 電 池ケースに成形加工した。 直径 58mmの円形に打ち抜いたブランクを、 アルミ 二ゥム箔が内側となるようにして絞り加工および数回の再絞り加工と同時に曲げ 伸ばし加工を行う加工を施した後、 1 3. 8mm の内径を有するしごきダイスに カップを導きポンチでプレスし、 外径 1 3. 8mm、 高さ 52mmの円筒缶に成 I The clad plate of Example 13 shown in Table 1 was formed into a battery case by DTR and ironing. A blank punched out into a circle with a diameter of 58 mm is subjected to drawing and bending and stretching at the same time as drawing and re-drawing several times with the aluminum foil inside, and then an inner diameter of 13.8 mm Guide the cup to an ironing die with a punch and press it with a punch to form a cylindrical can with an outer diameter of 13.8 mm and a height of 52 mm.
Iff 形加工した。 この後、 上端部をトリミングし、 高さ 49. 3mm の LR— 6型電 池ケースを作成した。 Iff shaped. After that, the upper end was trimmed to create a 49.3 mm high LR-6 battery case.
[電池作成条件]  [Battery making conditions]
上記のようにして得られた電池ケースに L i C0O2の粉末とポリフッ化ビニリデン 樹脂を N—メチルピロリドンと混練したスラリーをアルミニウム箔からなる帯状c 集電体の両面に塗布し、 乾燥加圧して正極板とした。 また、 カーボン粉末とスチ レンブタジエンゴムを N—メチルピロリドンと混練したスラリーを銅箔などから なる帯状集電体の両面に塗布し、 乾燥加圧して負極板とした。 そして正極板と負 極板の間に帯状の微多孔性のポリプロピレンフィルムからなるセパレー夕を介し て捲回して積層し、 最外周面がセパレー夕で捲かれるように捲回し円筒型素電池 とした。 この素電池を上記の電池ケースに挿入し、 プロピレンカーボネートに Li C104を溶解したものを電解液として用い、 負極板に接続したリード線を電池ケー ス内面に接続して電池ケースを負極端子とし、 正極板に接続したリード線を絶縁 板および環状パッキンを介して施す金属製の蓋の裏面に接続して正極端子とし、 電池ケース上端部を絶縁板および環状パッキンを介してかしめて封口し、 密閉リ チウムイオン二次電池とした。 このようにして得られた電池を 3 8 °Cの温度で 1 力月経時させた後、 液漏れの有無を肉眼判定した。 結果を表 1に示す。 A slurry obtained by kneading LiC02 powder and polyvinylidene fluoride resin with N-methylpyrrolidone is applied to the battery case obtained as described above on both sides of a belt-shaped current collector made of aluminum foil, and dried and pressed. A positive electrode plate was used. A slurry obtained by kneading carbon powder and styrene butadiene rubber with N-methylpyrrolidone was applied to both sides of a strip-shaped current collector made of copper foil or the like, and dried and pressed to form a negative electrode plate. Then, a positive electrode plate and a negative electrode plate were wound and laminated via a strip-shaped separator made of a microporous polypropylene film, so that the outermost peripheral surface was wound by the separator to form a cylindrical unit cell. The unit cell was inserted into the battery case, using a solution of the Li C10 4 in propylene carbonate as an electrolyte, the battery cable leads connected to the negative electrode plate The battery case is used as the negative terminal by connecting to the inner surface of the battery, and the lead wire connected to the positive plate is connected to the back of the metal lid applied via the insulating plate and annular packing to form the positive terminal, and the upper end of the battery case is insulated This was sealed by caulking through a plate and an annular packing to form a sealed lithium ion secondary battery. The battery thus obtained was aged at a temperature of 38 ° C. for one month, and then visually checked for liquid leakage. Table 1 shows the results.
ク ラ ッ ド 板 成形 特性評《 実施例 加ェ Characteristics of clad plate molding
または m 板 金 JR箔 方法 加 液 比較例 ェ 漏れ 厚み Niめつ 熟 硬さ 種 厚み 性 Or m Sheet metal JR foil method Liquid comparative example d Leakage thickness Ni ripening Hardness Kind Thickness
き厚み 拡散 類  Diffusion type
m) V U tn) 処理 (Hv) ( V- m)  m) V U tn) Processing (Hv) (V- m)
実施例 1 30 6 有り 225 A1 30 DI 3 無し 実施例 2 75 1 有 り 307 A1 30 DI 3 無 し 実施例 3 75 6 有り 197 A1 10 DI 3 無 し 実施例 4 75 6 有 り 176 A1 30 DI 3 無 し 実施例 5 75 6 有 り 189 A1 50 DI 3 無 し 実 ¾例 6 75 6 無 し 368 A1 30 DI 3 無 し 実施例 7 100 6 有 り 188 A1 30 DI 3 無 し 実施例 8 75 10 有 り 231 A1 30 DI 3 無 し 実施例 9 75 6 有 り 211 Cu 10 DI 3 無 し 実 ife例 10 75 6 有り 194 Cu 30 DI 3 無 し 実施例 11 75 6 有 り 251 Cu 50 DI 3 無 し 実施例 12 75 6 .. 有 り 322 Al 30 絞 り 3 無 し 実施例 13 75 6 無 し 395 Al 30 DTR 3 無 し 比較例 1 75 6 無 し 412 Al 30 DI 1 比較例 2 75 6 有 り 213 Al 5 DI 比較例 3 75 0.5 有 り 193 Al 30 DI 3 無 し 比較例 4 20 6 有 り 176 Al 30 DI 2 Example 1 30 6 With 225 A1 30 DI 3 Without Example 2 75 1 With 307 A1 30 DI 3 Without Example 3 75 6 With 197 A1 10 DI 3 Without Example 4 75 6 With 176 A1 30 DI 3 Without Example 5 75 6 With 189 A1 50 DI 3 Without Example 6 75 6 Without 368 A1 30 DI 3 Without Example 7 100 6 With 188 A1 30 DI 3 Without Example 8 75 10 Yes 231 A1 30 DI 3 Without Example 9 75 6 Yes 211 Cu 10 DI 3 Without Actual ife Example 10 75 6 Yes 194 Cu 30 DI 3 Without Example 11 75 6 Yes 251 Cu 50 DI 3 None Example 12 75 6 .. Yes 322 Al 30 Narrowing down 3 No Example 13 75 6 None 395 Al 30 DTR 3 None Comparative Example 1 75 6 None 412 Al 30 DI 1 Comparative Example 2 75 6 Yes 213 Al 5 DI Comparative example 3 75 0.5 Yes 193 Al 30 DI 3 No Comparative example 4 20 6 Yes 176 Al 30 DI 2
表 1に示すように、 本発明の電池ケース用クラッド板金属は加工性に優れてお り、 この電池ケ一ス用クラッド板金属を絞り加工、 D I加工、 または D T R加工 後にしごき加工を施す成形加工法を用いて電池ケースに成形することができる。 そしてこの電池ケースに電極板や電解液を充填し、 蓋をかしめて電池とした場合、 \ 電解液の漏洩を生じることがない。 産業上の利用可能性 As shown in Table 1, the clad sheet metal for a battery case of the present invention has excellent workability, and the clad sheet metal for a battery case is subjected to drawing, DI processing, or DTR processing followed by ironing. It can be formed into a battery case using a processing method. When the battery case is filled with an electrode plate and an electrolytic solution and the lid is caulked to make a battery, leakage of the electrolytic solution does not occur. Industrial applicability
本発明の電池ケース用クラッド金属板は、 有底筒状の形状の電池ケースに成形 することができ、 耐食性および機械的強度に優れている。 さらに本発明の電池は、 I V 電解液を前記の電池ケースに充填し、 上端部に蓋を載せ、 周縁部をかしめて電池 としたものであり、 液漏れを生じることがない。  The battery case clad metal plate of the present invention can be formed into a battery case having a bottomed cylindrical shape, and is excellent in corrosion resistance and mechanical strength. Further, in the battery of the present invention, the above-mentioned battery case is filled with an IV electrolytic solution, a lid is placed on an upper end portion, and a peripheral portion is caulked to make the battery, so that no liquid leakage occurs.

Claims

請 求 の 範 囲 The scope of the claims
1. 少なくともニッケルめっき鋼板の片面に、 界面活性化法を用いて、 厚みが1. At least one side of the nickel-plated steel sheet has a thickness of
10〜50 / mのアルミニウム箔を接合してなる、 電池ケース用クラッド金属板。Cladding metal plate for battery case, which is made by bonding aluminum foil of 10 to 50 / m.
2. 少なくともニッケルめっき鋼板の片面に、 界面活性化法を用いて銅箔を接 合してなる、 電池ケース用クラッド金属板。 2. A clad metal plate for a battery case, which is made by bonding a copper foil to at least one surface of a nickel-plated steel plate using a surface activation method.
3. 前記銅箔の厚さが 10〜50 である、 請求項 2に記載の電池ケース用 クラッド金属板。  3. The clad metal plate for a battery case according to claim 2, wherein the copper foil has a thickness of 10 to 50.
4. 前記ニッケルめっき鋼板のニッケルめっきの厚さが 1〜 10 /xmである、 請求項 1〜 3のいずれかに記載の電池ケース用クラッド金属板。  4. The clad metal plate for a battery case according to claim 1, wherein the nickel-plated steel sheet has a nickel plating thickness of 1 to 10 / xm.
5. 前記鋼板がピツカ一ス硬さ (Hv) 400以下の硬度を有する、 請求項 1 〜 4のいずれかに記載の電池ケース用クラッド金属板。  5. The clad metal plate for a battery case according to any one of claims 1 to 4, wherein the steel plate has a hardness of 400 or less in Picker hardness (Hv).
6. 前記鋼板の厚さが 30〜 100 /mである、 請求項 1〜5のいずれかに記 載の電池ケース用クラッド金属板。  6. The clad metal plate for a battery case according to any one of claims 1 to 5, wherein the thickness of the steel plate is 30 to 100 / m.
7. 請求項 1〜6のいずれかに記載の電池ケース用クラッド金属板を絞り加工 法を用いて製造した有底筒状の電池ケース。  7. A bottomed cylindrical battery case produced by drawing the clad metal plate for a battery case according to any one of claims 1 to 6 by a drawing method.
8. 請求項 1〜6のいずれかに記載の電池ケース用クラッド金属板を D I加工 法を用いて製造した有底筒状の電池ケース。  8. A bottomed cylindrical battery case, wherein the clad metal plate for a battery case according to any one of claims 1 to 6 is manufactured by using a DI processing method.
9. 請求項 1〜 6のいずれかに記載の電池ケース用クラッド金属板を D T R加 工法を用いて製造した有底筒状の電池ケース。  9. A bottomed cylindrical battery case, wherein the clad metal plate for a battery case according to any one of claims 1 to 6 is manufactured by a DTR processing method.
10. 請求項 1〜6のいずれかに記載の電池ケース用クラッド金属板を DTR 加工法及びしごき加工法を用いて製造した有底筒状の電池ケース。  10. A bottomed cylindrical battery case, wherein the clad metal plate for a battery case according to any one of claims 1 to 6 is manufactured by a DTR processing method and an ironing method.
1 1. 請求項 7〜10のいずれかに記載の電池ケースを使用した電池。  1 1. A battery using the battery case according to any one of claims 7 to 10.
PCT/JP1999/007267 1998-12-25 1999-12-24 Clad metal plate for battery case, battery case and battery using the battery case WO2000039861A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU18898/00A AU1889800A (en) 1998-12-25 1999-12-24 Clad metal plate for battery case, battery case and battery using the battery case

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10/369942 1998-12-25
JP36994298 1998-12-25

Publications (1)

Publication Number Publication Date
WO2000039861A1 true WO2000039861A1 (en) 2000-07-06

Family

ID=18495694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007267 WO2000039861A1 (en) 1998-12-25 1999-12-24 Clad metal plate for battery case, battery case and battery using the battery case

Country Status (2)

Country Link
AU (1) AU1889800A (en)
WO (1) WO2000039861A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222491A (en) * 2002-01-30 2003-08-08 Hitachi Cable Ltd Roll bond panel
JP2006140018A (en) * 2004-11-11 2006-06-01 Toyo Kohan Co Ltd Steel plate for case of lithium battery, surface treated steel plate for case of lithium battery, battery case, and lithium battery
WO2013047514A1 (en) * 2011-09-30 2013-04-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224184A (en) * 1988-03-02 1989-09-07 Toyo Kohan Co Ltd Method and device for manufacturing clad metal plate
JPH05174873A (en) * 1991-12-24 1993-07-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery resistant to overcharging
JPH0794153A (en) * 1993-09-28 1995-04-07 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery and negative electrode vessel
JPH1092395A (en) * 1996-09-12 1998-04-10 Katayama Tokushu Kogyo Kk Battery can forming material and manufacture thereof
JPH10208710A (en) * 1997-01-24 1998-08-07 Yuasa Corp Flat cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01224184A (en) * 1988-03-02 1989-09-07 Toyo Kohan Co Ltd Method and device for manufacturing clad metal plate
JPH05174873A (en) * 1991-12-24 1993-07-13 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery resistant to overcharging
JPH0794153A (en) * 1993-09-28 1995-04-07 Matsushita Electric Ind Co Ltd Manufacture of alkaline battery and negative electrode vessel
JPH1092395A (en) * 1996-09-12 1998-04-10 Katayama Tokushu Kogyo Kk Battery can forming material and manufacture thereof
JPH10208710A (en) * 1997-01-24 1998-08-07 Yuasa Corp Flat cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003222491A (en) * 2002-01-30 2003-08-08 Hitachi Cable Ltd Roll bond panel
JP2006140018A (en) * 2004-11-11 2006-06-01 Toyo Kohan Co Ltd Steel plate for case of lithium battery, surface treated steel plate for case of lithium battery, battery case, and lithium battery
WO2013047514A1 (en) * 2011-09-30 2013-04-04 三洋電機株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
AU1889800A (en) 2000-07-31

Similar Documents

Publication Publication Date Title
CN108291323B (en) Nickel-plated heat-treated steel sheet for battery can
JP5908194B1 (en) Steel foil for electrical storage device container, electrical storage device container and electrical storage device, and method for producing steel foil for electrical storage device container
JP4491208B2 (en) Battery can, manufacturing method thereof, and battery
JP2877957B2 (en) Surface treated steel sheet for battery case and battery case
WO2010113502A1 (en) Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case
JP5909606B1 (en) Steel foil for electrical storage device container, electrical storage device container and electrical storage device, and method for producing steel foil for electrical storage device container
JP3108360B2 (en) Battery safety valve element and battery case lid with safety valve
JP3432523B2 (en) Surface-treated steel sheet for battery case, battery case, and battery using the same
JP7413264B2 (en) Metal plate for battery container and method for manufacturing this metal plate for battery container
JP3432521B2 (en) Plated steel sheet for battery case, method for manufacturing the same, battery case, and battery
CN108701782A (en) The manufacturing method of battery case metallic plate and the battery case metallic plate
WO2000039861A1 (en) Clad metal plate for battery case, battery case and battery using the battery case
JP5168237B2 (en) Material for metal outer case of high capacity lithium ion battery in which elution of Ni and Fe is suppressed, metal outer case, and lithium ion battery
JP4819148B2 (en) Material for metal outer case and metal outer case of lithium ion battery with little voltage drop due to metal elution and lithium ion battery
WO2000074155A1 (en) Surface-treated steel sheet for battery case, battery case comprising the same, methods for producing them, and battery
JP2004076117A (en) Surface treated steel sheet for battery case, and battery case using the same
JP3594286B2 (en) Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery
JP3497754B2 (en) Surface-treated steel sheet for battery case, method of manufacturing the same, battery case using surface-treated steel sheet for battery case, and battery using same
JP3840430B2 (en) Surface-treated steel sheet for battery case and battery case
JP2004156078A (en) Method of producing surface treated steel sheet for battery vessel, surface treated steel sheet for battery vessel, battery vessel obtained by using the steel sheet, and battery using the vessel
JP3594285B2 (en) Surface-treated steel sheet for battery case, battery case using the same, manufacturing method thereof and battery
JP5440362B2 (en) Method for producing negative electrode case for lithium ion battery

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 591672

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase