WO2010113483A1 - ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法 - Google Patents

ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法 Download PDF

Info

Publication number
WO2010113483A1
WO2010113483A1 PCT/JP2010/002325 JP2010002325W WO2010113483A1 WO 2010113483 A1 WO2010113483 A1 WO 2010113483A1 JP 2010002325 W JP2010002325 W JP 2010002325W WO 2010113483 A1 WO2010113483 A1 WO 2010113483A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorosulfonyl
bis
imide
salt
producing
Prior art date
Application number
PCT/JP2010/002325
Other languages
English (en)
French (fr)
Inventor
本田常俊
神谷武志
Original Assignee
三菱マテリアル株式会社
三菱マテリアル電子化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社, 三菱マテリアル電子化成株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN2010800107901A priority Critical patent/CN102341343B/zh
Priority to US13/258,628 priority patent/US8580220B2/en
Priority to EP10758263.7A priority patent/EP2415709B1/en
Priority to KR1020117022534A priority patent/KR101364432B1/ko
Publication of WO2010113483A1 publication Critical patent/WO2010113483A1/ja
Priority to US14/052,004 priority patent/US9156692B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • C01B21/084Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms containing also one or more oxygen atoms, e.g. nitrosyl halides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/087Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms
    • C01B21/093Compounds containing nitrogen and non-metals and optionally metals containing one or more hydrogen atoms containing also one or more sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/45Compounds containing sulfur and halogen, with or without oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/083Compounds containing nitrogen and non-metals and optionally metals containing one or more halogen atoms
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/86Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by NMR- or ESR-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • C01P2006/33Phase transition temperatures
    • C01P2006/35Boiling temperatures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/02Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof
    • C07C303/22Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of sulfonic acids or halides thereof from sulfonic acids, by reactions not involving the formation of sulfo or halosulfonyl groups; from sulfonic halides by reactions not involving the formation of halosulfonyl groups

Definitions

  • the present invention relates to a method for producing a bis (fluorosulfonyl) imide salt, a method for producing a fluorosulfate, and a method for producing a bis (fluorosulfonyl) imide / onium salt.
  • Bis (fluorosulfonyl) imide salt ((FSO 2 ) 2 N ⁇ M, M is Li, Na, K, NH 4, etc.) is a substance useful as an anion source of an ion conductive material or an ionic liquid It has been known. Further, it is known that fluorosulfate is a substance useful as an ion conductive material or a flame retardant. Furthermore, bis (fluorosulfonyl) imide onium salts are known to be ionic compounds useful as ionic liquids.
  • Non-Patent Document 1 and Non-Patent Document 2 are known as methods for producing bis (fluorosulfonyl) imide.
  • Non-Patent Document 1 discloses a method in which urea (CO (NH 2 ) 2 ) and fluorosulfuric acid (FSO 3 H) are mixed and then reacted by heating. Thereby, a chemical reaction as shown in the following formula (1) occurs, and bis (fluorosulfonyl) imide, ammonium sulfate (NH 4 HSO 4 ), hydrogen fluoride (HF), and carbon dioxide (CO 2 ) are generated.
  • urea CO
  • FSO 3 H fluorosulfuric acid
  • the produced mixed liquid of bis (fluorosulfonyl) imide and fluorosulfuric acid can be fractionated from the reaction liquid.
  • bis (fluorosulfonyl) imide can be isolated by distilling the obtained liquid mixture.
  • Non-Patent Document 2 discloses a method of reacting bis (chlorosulfonyl) imide ((ClSO 2 ) 2 NH) with arsenic trifluoride (AsF 3 ). Thereby, a chemical reaction as shown in the following formula (2) occurs, and bis (fluorosulfonyl) imide and arsenic trichloride (AsCl 3 ) are generated.
  • the produced bis (fluorosulfonyl) imide is dissolved in dichloromethane.
  • the produced bis (fluorosulfonyl) imide contains fluorosulfuric acid as an impurity, and this fluorosulfuric acid is also dissolved in dichloromethane.
  • NaCl is added to this solution, a chemical reaction as shown in the following formula (3) occurs to produce sodium salt of fluorosulfuric acid (FSO 3 Na) and hydrochloric acid (HCl).
  • dichloromethane can be distilled off to isolate bis (fluorosulfonyl) imide.
  • bis (fluorosulfonyl) imide salt As a conventional method for producing a bis (fluorosulfonyl) imide salt, as described in Non-Patent Document 3, bis (fluorosulfonyl) imide is produced by the method disclosed in Non-Patent Document 1 and Non-Patent Document 2 described above. There is known a method in which an isolated bis (fluorosulfonyl) imide is dissolved in water or the like and then neutralized with an alkali to produce a bis (fluorosulfonyl) imide salt.
  • a mixture of bis (fluorosulfonyl) imide and fluorosulfuric acid obtained by the methods disclosed in Non-Patent Document 1 and Non-Patent Document 2 described above is prepared by using methylene chloride, dichloromethane or the like.
  • a method is known in which a fluorosulfate is formed by using a chemical reaction represented by the above formula (3) by reacting with NaCl after dissolving in a solvent.
  • bis (fluorosulfonyl) imide is produced by the method disclosed in Non-Patent Document 1 and Non-Patent Document 2 described above, and isolated bis (fluoro A method is known in which sulfonyl) imide is dissolved in water or the like and then an onium compound is added to produce a bis (fluorosulfonyl) imide onium salt.
  • Non-Patent Document 2 that is, the method for producing a sodium salt of fluorosulfuric acid
  • hydrochloric acid gas is by-produced to corrode the apparatus. It was.
  • the generation of hydrochloric acid gas from the filtered sodium salt of fluorosulfuric acid continues for several days, the treatment method has been a big problem.
  • Non-Patent Document 3 a part of the bis (fluorosulfonyl) imide salt is hydrolyzed in the step of distilling off water.
  • impurities such as fluorine ions are mixed in the fluorosulfonyl) imide salt, and it is difficult to isolate a high-purity bis (fluorosulfonyl) imide salt.
  • the present invention has been made in view of the above circumstances, and provides a method for producing a bis (fluorosulfonyl) imide salt capable of isolating a highly pure bis (fluorosulfonyl) imide salt safely and simply.
  • the purpose is to provide.
  • Another object of the present invention is to provide a safe and simple method for producing a fluorosulfate.
  • an object of the present invention is to provide a safe and simple method for producing a bis (fluorosulfonyl) imide-onium salt.
  • the present inventor can dissolve fluorosulfuric acid in water in the presence of bis (fluorosulfonyl) imide, and a mixed liquid of bis (fluorosulfonyl) imide and fluorosulfuric acid.
  • the present inventors have found that a bis (fluorosulfonyl) imide salt and a fluorosulfate can be obtained by dissolving in water and then neutralizing with an alkali.
  • the solubility of the bis (fluorosulfonyl) imide salt or fluorosulfate in the neutralized solution is low, it precipitates and separates from the neutralized solution. Therefore, the target salt can be combined with operations such as liquid separation and filtration. Can be obtained.
  • the present invention includes a step of dissolving a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water to prepare an aqueous solution, a step of neutralizing the aqueous solution with an alkali to prepare a neutralized solution, And a step of isolating the bis (fluorosulfonyl) imide salt from the neutralized solution.
  • the step of isolating the bis (fluorosulfonyl) imide salt may extract the bis (fluorosulfonyl) imide salt from the neutralized solution using an organic solvent. .
  • the mixed liquid containing the bis (fluorosulfonyl) imide and fluorosulfuric acid may be a reaction liquid of urea and fluorosulfuric acid.
  • the alkali may be any one of compounds selected from the group consisting of MOH, M 2 CO 3 , MHCO 3 , ammonia, and an amine.
  • said M is any 1 type of Na, K, Li, and an ammonium cation.
  • the content of fluorine ions in the bis (fluorosulfonyl) imide salt may be 100 ppm or less.
  • the content of fluorine ions in the bis (fluorosulfonyl) imide salt may be 20 ppm or less.
  • the present invention also includes a step of preparing an aqueous solution by dissolving a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water, and a step of preparing a neutralized solution by neutralizing the aqueous solution with an alkali. And a step of isolating the fluorosulfate from the neutralized solution.
  • the step of isolating the fluorosulfate may filter out the fluorosulfate precipitated from the neutralization solution.
  • the mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid may be a reaction solution of urea and fluorosulfuric acid.
  • the alkali may be any one of compounds selected from the group consisting of MOH, M 2 CO 3 , MHCO 3 , ammonia, and an amine.
  • said M is any 1 type of Na, K, Li, and an ammonium cation.
  • the present invention also includes a step of preparing an aqueous solution by dissolving a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water, and a step of preparing a neutralized solution by neutralizing the aqueous solution with an alkali. And a step of adding an onium compound to the neutralized solution.
  • a method for producing a bis (fluorosulfonyl) imide onium salt is provided.
  • the mixed liquid containing bis (fluorosulfonyl) imide and fluorosulfuric acid may be a reaction liquid of urea and fluorosulfuric acid.
  • the alkali may be any one of compounds selected from the group consisting of MOH, M 2 CO 3 , MHCO 3 , ammonia, and an amine. Good.
  • said M is any 1 type of Na, K, Li, and an ammonium cation.
  • a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid is dissolved in water to prepare an aqueous solution, and the aqueous solution is neutralized with an alkali.
  • a bis (fluorosulfonyl) imide salt and a fluorosulfate can be generated.
  • isolating the bis (fluorosulfonyl) imide salt from the obtained neutralized solution a highly pure bis (fluorosulfonyl) imide salt can be obtained safely and simply.
  • the bis (fluorosulfonyl) imide salt when the bis (fluorosulfonyl) imide salt is dissolved in the neutralization solution, the bis (fluorosulfonyl) imide salt can be extracted from the neutralization solution by using an organic solvent. Thereby, only the bis (fluorosulfonyl) imide salt can be isolated from the neutralized solution.
  • a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid is dissolved in water to prepare an aqueous solution, and this aqueous solution is neutralized with an alkali, A (fluorosulfonyl) imide salt and a fluorosulfate can be obtained. Then, by isolating the fluorosulfate from the resulting neutralized solution, a highly pure fluorosulfate can be obtained safely and simply.
  • the fluorosulfate when the fluorosulfate is precipitated from the neutralized solution, the fluorosulfate can be separated by filtering the neutralized solution. Thereby, only a fluorosulfate can be isolated from the said neutralization liquid.
  • an aqueous solution is prepared by dissolving a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water, and the aqueous solution is alkali-containing.
  • a bis (fluorosulfonyl) imide salt and a fluorosulfate can be obtained.
  • an onium salt of bis (fluorosulfonyl) imide can be obtained safely and simply by adding an onium compound to the obtained neutralized solution to cause salt exchange.
  • the method for producing a bis (fluorosulfonyl) imide salt of the present invention includes a step of preparing an aqueous solution by dissolving a mixed liquid containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water (an aqueous solution preparation step), and the above aqueous solution.
  • a step of preparing a neutralized solution by neutralizing the solution with an alkali (a step of preparing a neutralized solution) and a step of isolating a bis (fluorosulfonyl) imide salt from the neutralized solution (isolation step). ing.
  • a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid is obtained.
  • the mixed liquid containing bis (fluorosulfonyl) imide and fluorosulfuric acid is not particularly limited, but may be a reaction liquid of urea (CO (NH 2 ) 2 ) and fluorosulfuric acid (FSO 3 H). preferable.
  • Non-Patent Document 1 For the reaction between urea (CO (NH 2 ) 2 ) and fluorosulfuric acid (FSO 3 H), a conventional reaction represented by the following formula (4) disclosed in Non-Patent Document 1 can be used.
  • the mixed solution of the produced bis (fluorosulfonyl) imide and the raw material fluorosulfuric acid can be fractionated from the reaction solution by distillation under reduced pressure simultaneously with the reaction represented by the above formula (4).
  • reaction between urea (CO (NH 2 ) 2 ) and fluorosulfuric acid (FSO 3 H) is not limited to the reaction mechanism disclosed in Non-Patent Document 1, but other reaction mechanisms. Also good.
  • the amount of water in which the mixed solution is dissolved is preferably 1 to 50 times, more preferably 2 to 10 times the mass part of the mixed solution.
  • an aqueous solution can be prepared by dissolving a mixed solution of bis (fluorosulfonyl) imide and fluorosulfuric acid in water under mild conditions.
  • the aqueous solution is quickly neutralized with an aqueous alkaline solution to prepare a neutralized solution.
  • the neutralization of the aqueous solution is preferably carried out until the pH is within the range of 4 to 10, and more preferably within the range of pH 7 to 9. If the pH is less than 4, it is not preferable because the production of fluorosulfate and bis (fluorosulfonyl) imide salt is insufficient. On the other hand, if the pH exceeds 10, the decomposition reaction of fluorosulfate and bis (fluorosulfonyl) imide salt proceeds, which is not preferable. Within the above range, the formation of fluorosulfate and bis (fluorosulfonyl) imide salt is sufficient, and the decomposition reaction is also suppressed, which is preferable.
  • the alkali used for neutralization of the aqueous solution is an aqueous solution of any one of compounds selected from the group consisting of MOH, M 2 CO 3 , MHCO 3 , ammonia (NH 3 ), and amine (NR 1 R 2 R 3 ).
  • the cation M is any one of Na, K, Li, and an ammonium cation (R 4 ⁇ N + R 1 R 2 R 3 ).
  • the ammonium cation (R 4 —N + R 1 R 2 R 3 ) is not particularly limited, and ammonium ion (NH 4 + ), primary ammonium cation, secondary ammonium cation, tertiary ammonium cation Any of quaternary ammonium cations may be used.
  • R 1 , R 2 , R 3 and R 4 are a hydrogen atom (H), an aliphatic alkyl group or an aromatic alkyl group.
  • alkyl group methyl group, ethyl group, butyl group, pentyl group, hexyl group, octyl group, decyl group, dodecyl group, tetradecyl group, hexadecyl group, octadecyl group, octadecenyl group, octadecadienyl group, phenyl A group or the like can be appropriately mixed and used in the present invention.
  • the amine may be any of primary amine, secondary amine, and tertiary amine.
  • the primary amine is not particularly limited.
  • the secondary amine is not particularly limited, and examples thereof include diethylamine, di-n-propylamine, di-iso-propylamine, di-n-butylamine, di-iso-butylamine, di-sec-butylamine, Examples include diethanolamine, di-n-propanolamine, di-iso-propanolamine and the like.
  • the tertiary amine is not particularly limited, and examples thereof include triethylamine, tri-n-propylamine, tri-iso-propylamine, tri-n-butylamine, tri-iso-butylamine, triethanolamine, tri-amine, and the like. Examples thereof include n-propanolamine and tri-iso-propanolamine.
  • bis (fluorosulfonyl) imide salt (FSO 2 ) 2 N ⁇ M)
  • bis (fluorosulfonyl) imide sodium salt bis (fluorosulfonyl) imide potassium salt
  • bis (fluorosulfonyl) imide lithium salt bis (fluoro And sulfonyl) imidoammonium salts.
  • fluorosulfate examples include sodium fluorosulfate, potassium fluorosulfate, lithium fluorosulfate, and ammonium fluorosulfate.
  • a bis (fluorosulfonyl) imide salt is isolated from the neutralized solution.
  • the bis (fluorosulfonyl) is separated from the neutralized solution by a separation operation such as liquid separation (when separated as a liquid) or filtration (when precipitated as a solid).
  • Imide salts can be isolated.
  • the bis (fluorosulfonyl) imide salt When the bis (fluorosulfonyl) imide salt is dissolved in the neutralization solution, the bis (fluorosulfonyl) imide salt can be extracted from the neutralization solution by using an organic solvent. Thereby, only the bis (fluorosulfonyl) imide salt can be isolated from the neutralized solution.
  • the organic solvent for extracting the bis (fluorosulfonyl) imide salt from the neutralized solution is not particularly limited as long as it is an organic solvent in which the bis (fluorosulfonyl) imide salt is dissolved and separated from water.
  • an acetate ester solvent is preferably used, and ethyl acetate is particularly preferable.
  • the amount of solvent required for extraction of the bis (fluorosulfonyl) imide salt is preferably 1 to 50 times, more preferably 10 to 20 times the mass part of the bis (fluorosulfonyl) imide salt. preferable.
  • the amount of the solvent is less than 10 times, extraction of the bis (fluorosulfonyl) imide salt is insufficient, which is not preferable.
  • it exceeds 50 times it is economically useless.
  • the bis (fluorosulfonyl) imide salt can be sufficiently extracted, which is preferable.
  • the bis (fluorosulfonyl) imide salt When the produced bis (fluorosulfonyl) imide salt is solid at room temperature, the bis (fluorosulfonyl) imide salt can be obtained as crystals by distilling off the organic solvent used for extraction. As described above, a bis (fluorosulfonyl) imide salt can be produced.
  • Non-Patent Document 3 a part of the bis (fluorosulfonyl) imide salt is hydrolyzed in the step of distilling off water. Since it decomposes, impurities such as fluorine ions are mixed in the bis (fluorosulfonyl) imide salt, and the isolated bis (fluorosulfonyl) imide salt has a problem that many impurities are contained. Specifically, the impurity contained several hundred ppm to several thousand ppm of fluorine ions.
  • Non-Patent Document 3 also describes a purification method by recrystallization using ethanol, but almost no effect of reducing fluorine ions by recrystallization was observed.
  • a bis (fluorosulfonyl) imide salt is precipitated from an aqueous solution containing the bis (fluorosulfonyl) imide salt, or bis (fluorosulfonyl) imide.
  • the salt is dissolved, only the bis (fluorosulfonyl) imide salt is extracted with an organic solvent, and the extracted organic solvent is distilled off to obtain a bis (fluorosulfonyl) imide salt.
  • the fluorine ion content in the bis (fluorosulfonyl) imide salt can be measured, for example, by ion chromatography. Specifically, the content of fluorine ions by ion chromatography can be measured as follows.
  • a sample is dissolved in 50 mL of ion exchange water to prepare a measurement sample.
  • the fluorine ion content in the sample is measured using, for example, an ion chromatography system ICS-2000 (column: IonPacAS19, detector: electrical conductivity detector) manufactured by DIONEX, and 20 mmol / L hydroxylation.
  • ICS-2000 columnumn: IonPacAS19, detector: electrical conductivity detector
  • a potassium solution is used as an eluent (flow rate: 1.0 ml / min).
  • the method for producing a fluorosulfate of the present invention comprises a step of preparing an aqueous solution by dissolving a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water (a step of preparing an aqueous solution), and the above aqueous solution in an alkali. It comprises a step of adding and preparing a neutralized solution (a step of preparing a neutralized solution) and a step of isolating the fluorosulfate from the neutralized solution (isolation step). Since the preparation process of the aqueous solution and the preparation process of the neutralization solution are the same as the above-described method for producing the bis (fluorosulfonyl) imide salt, description thereof is omitted. (Isolation process)
  • fluorosulfate is isolated from the neutralized solution prepared in the neutralizing solution preparation step.
  • the solubility of fluorosulfate in a neutralized solution is low, it often precipitates as a solid from the neutralized solution.
  • the bis (fluorosulfonyl) imide salt is often dissolved in the neutralizing solution. Therefore, the fluorosulfate can be isolated from the neutralized solution by a separation operation such as filtration of the neutralized solution.
  • the method for producing a bis (fluorosulfonyl) imide-onium salt of the present invention comprises a step of preparing an aqueous solution by dissolving a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water (a step of preparing an aqueous solution), A step of neutralizing the aqueous solution with an alkali to prepare a neutralization solution (a step of preparing a neutralization solution), and a step of adding an onium compound to the neutralization solution (an addition step of the onium compound). . Since the preparation step of the aqueous solution and the preparation step of the neutralization solution are the same as the above-described method for producing a bis (fluorosulfonyl) imide salt, description thereof is omitted. (Onium compound addition process)
  • an onium compound is added to the neutralization solution prepared in the neutralization solution preparation step. This causes salt exchange between the generated bis (fluorosulfonyl) imide salt ((FSO 2 ) 2 N ⁇ M) and the onium compound, and bis (fluorosulfonyl) imide anion ((FSO 2 ) 2 N ⁇ ) and onium An ionic compound with the salt is produced.
  • the onium compound is not particularly limited, but examples include a salt composed of an onium cation and a halogen ion, nitrate ion, sulfate ion, phosphate ion, perchlorate ion, methanesulfonate ion, toluenesulfonate ion, and the like. Is done.
  • Examples of the onium cation include at least one produced by coordination of a cationic atomic group to a compound containing an element having a lone electron pair such as nitrogen, sulfur, oxygen, phosphorus, selenium, tin, iodine, and antimony. There is no particular limitation as long as it is a cation having two organic groups.
  • onium ions examples include symmetrical ammonium cations such as tetramethylammonium cation, tetraethylammonium cation, and tetrapropylammonium cation; ethyltrimethylammonium cation, vinyltrimethylammonium cation, triethylmethylammonium cation, triethylpropylammonium Shortest substituents such as cation, diethyldimethylammonium cation, tributylethylammonium cation, triethylisopropylammonium cation, N, N-dimethylpyrrolidinium cation, N-methyl-N-ethylpyrrolidinium cation, triethylmethoxymethylammonium cation
  • the carbon number of the longest substituent is 50% or more and less than 100% (below) Also referred to as symmetry.) Ammonium
  • Asymmetric sulfonium cations such as: tetramethylphosphonium cation, tetraethylphosphonium cation, tetrapropylphosphonium cation, tetrabutylphosphonium cation, tetraoctylphosphonium cation, tetraphenylphosphonium cation, etc .; trimethylethylphosphonium cation, triethylmethylphosphonium cation And asymmetric phosphonium cations such as hexyltrimethylphosphonium cation and trimethyloctylphosphonium cation.
  • an imidazole-based onium salt and an ammonium-based onium salt it is particularly preferable to use an imidazole-based onium salt and an ammonium-based onium salt. In this way, a bis (fluorosulfonyl) imide onium salt can be produced.
  • a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid is dissolved in water to prepare an aqueous solution.
  • a bis (fluorosulfonyl) imide salt and a fluorosulfate By neutralizing with alkali, it is possible to produce a bis (fluorosulfonyl) imide salt and a fluorosulfate.
  • a highly pure bis (fluorosulfonyl) imide salt can be obtained safely and simply.
  • the bis (fluorosulfonyl) imide salt when the bis (fluorosulfonyl) imide salt is dissolved in the neutralization solution, the bis (fluorosulfonyl) imide salt can be extracted from the neutralization solution by using an organic solvent. Thereby, only the bis (fluorosulfonyl) imide salt can be isolated from the neutralized solution.
  • a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid is dissolved in water to prepare an aqueous solution, and this aqueous solution is neutralized with an alkali, A (fluorosulfonyl) imide salt and a fluorosulfate can be obtained. Then, by isolating the fluorosulfate from the resulting neutralized solution, a highly pure fluorosulfate can be obtained safely and simply.
  • the fluorosulfate when the fluorosulfate is precipitated from the neutralized solution, the fluorosulfate can be separated by filtering the neutralized solution. Thereby, only a fluorosulfate can be isolated from the said neutralization liquid.
  • an aqueous solution is prepared by dissolving a mixed solution containing bis (fluorosulfonyl) imide and fluorosulfuric acid in water, and the aqueous solution is obtained with an alkali.
  • a bis (fluorosulfonyl) imide salt and a fluorosulfate can be obtained.
  • an onium salt of bis (fluorosulfonyl) imide can be obtained safely and simply by adding an onium compound to the obtained neutralized solution to cause salt exchange.
  • Example 1 Example 1
  • a 5 L polytetrafluoroethylene (PTFE) reactor equipped with a stirrer and a thermometer was charged with 3.2 kg of fluorosulfuric acid, and 800 g of urea was added little by little while cooling to prepare a fluorosulfuric acid solution of urea. .
  • PTFE polytetrafluoroethylene
  • a 5 L PTFE-coated stainless steel reactor equipped with a stirrer, thermometer, and gas flow meter was charged with 2.4 kg of fluorosulfuric acid and 80 g of bis (fluorosulfonyl) imide and heated at 120 ° C. to urea.
  • the generation of carbon dioxide gas was confirmed at the same time as the dropping, and a total of 299 L of gas was generated at the end of dropping.
  • the reaction-terminated liquid was cooled to room temperature and dissolved gradually in 15 kg of water. Thereafter, 3.6 kg of potassium carbonate was added, neutralized to pH 9, and the precipitated crystals were filtered and dried at 60 ° C. to obtain 4.4 kg of fluorosulfuric acid potassium salt.
  • the filtrate was extracted twice with 7 kg of ethyl acetate and once with 2 kg.
  • Example 4 100 g of the reaction solution obtained in the same manner as in Example 1 was dissolved in 200 g of water. Thereafter, the solution was neutralized to pH 7 with 46 g of lithium carbonate. Excess lithium carbonate was filtered off, and the aqueous layer was extracted twice with 100 g of ethyl acetate and once with 30 g. The ethyl acetate layer was washed with 30 g of ion-exchanged water, and the ethyl acetate layer was distilled off to obtain 14.5 g of bis (fluorosulfonyl) imide lithium (35% yield based on urea). The fluorine ion concentration of the obtained bis (fluorosulfonyl) imide lithium was 8 ppm.
  • Example 4 100 g of the reaction solution obtained in the same manner as in Example 1 was dissolved in 200 g of water. Thereafter, the solution was neutralized to pH 7 with 46 g of lithium carbonate. Excess lithium carbonate was filtered off
  • Example 5 200 g of the reaction solution obtained in the same manner as in Example 1 was dissolved in 800 g of water. Thereafter, the solution was neutralized with 52 g of potassium carbonate to pH 7, and the precipitated potassium salt of fluorosulfuric acid was separated by filtration. An aqueous solution in which 37 g of tetrapropylammonium bromide was dissolved was dropped into the filtrate, and at the same time, crystals of bis (fluorosulfonyl) imide / tetrapropylammonium were deposited, separated by filtration, and dried in a dryer at 60 ° C. 48 g of imidotetrapropylammonium was obtained (yield based on urea: 30%). The resulting bis (fluorosulfonyl) imide / tetrapropylammonium had a fluorine ion concentration of 1 ppm and a melting point of 140 to 141 ° C. (Example 5)
  • the reaction solution performed in the same manner as in Example 1 was distilled under reduced pressure to obtain a mixture of fluorosulfuric acid and bis (fluorosulfonyl) imide. 645 g of this mixture was dissolved in 3230 g of methylene chloride, and 170 g of sodium chloride was added to produce potassium fluorosulfate, which was separated by filtration. Methylene chloride was distilled off from the filtrate, and then atmospheric distillation was performed to obtain 326 g of bis (fluorosulfonyl) imide. This was dissolved in 978 g of water, neutralized to pH 7 with 154 g of potassium carbonate, and water was distilled off to obtain 313 g of potassium bis (fluorosulfonyl) imide. The obtained bis (fluorosulfonyl) imide potassium had a fluorine ion concentration of 354 ppm.
  • the present invention relates to a method for producing a bis (fluorosulfonyl) imide salt, a method for producing a fluorosulfate, and a method for producing a bis (fluorosulfonyl) imide / onium salt.
  • the method for producing a bis (fluorosulfonyl) imide salt, the method for producing a fluorosulfate, and the method for producing a bis (fluorosulfonyl) imide onium salt the mixture containing bis (fluorosulfonyl) imide and fluorosulfuric acid.
  • a bis (fluorosulfonyl) imide salt and a fluorosulfate By dissolving the liquid in water to prepare an aqueous solution and neutralizing the aqueous solution with an alkali, a bis (fluorosulfonyl) imide salt and a fluorosulfate can be produced. Then, an onium salt of bis (fluorosulfonyl) imide can be obtained safely and simply by adding an onium compound to the obtained neutralized solution to cause salt exchange.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 この、ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法は、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和するビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法であり、ビス(フルオロスルホニル)イミド塩、フルオロ硫酸塩、及びビス(フルオロスルホニル)イミド・オニウム塩を安全且つ簡便に生成することを可能にする。

Description

ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
 本発明は、ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法に関する。 
 本願は、2009年3月31日に出願された日本国特許出願第2009-084160号、及び2009年10月15日に出願された日本国特許出願第2009-238344号に対し優先権を主張し、その内容をここに援用する。
 ビス(フルオロスルホニル)イミド塩((FSON・M,Mは、Li,Na,K,NH等である)は、イオン導電材料やイオン液体のアニオン源として有用な物質であることが知られている。また、フルオロ硫酸塩は、イオン導電材料や難燃剤として有用な物質であることが知られている。さらに、ビス(フルオロスルホニル)イミド・オニウム塩は、イオン液体として有用なイオン性化合物であることが知られている。
 ビス(フルオロスルホニル)イミドの製造方法としては、下記の非特許文献1及び非特許文献2が知られている。具体的に、非特許文献1には、尿素(CO(NH)とフルオロ硫酸(FSOH)とを混合した後に加熱して反応させる方法が開示されている。これにより、下記式(1)に示すような化学反応が生じ、ビス(フルオロスルホニル)イミド、硫酸アンモニウム(NHHSO)、フッ化水素(HF)及び炭酸ガス(CO)が生成される。
  3FSOH+CO(NH→(FSONH+NHHSO+HF+CO 式(1)
 上記式(1)に示す反応と同時に減圧蒸留することで、生成したビス(フルオロスルホニル)イミドとフルオロ硫酸との混合液を反応液から分留することができる。そして、得られた混合液を蒸留することでビス(フルオロスルホニル)イミドを単離することができる。
 また、非特許文献2には、ビス(クロロスルホニル)イミド((ClSONH)と三フッ化ヒ素(AsF)とを反応させる方法が開示されている。これにより、下記式(2)に示すような化学反応が生じ、ビス(フルオロスルホニル)イミド及び三塩化ヒ素(AsCl)が生成される。
  3(ClSONH+2AsF→3(FSONH+2AsCl 式(2)
 次いで、生成したビス(フルオロスルホニル)イミドをジクロロメタンに溶解させる。生成したビス(フルオロスルホニル)イミドには不純物としてフルオロ硫酸が含まれており、このフルオロ硫酸もジクロロメタンに溶解する。この溶解液にNaClを添加すると下記式(3)に示すような化学反応が生じ、フルオロ硫酸のナトリウム塩(FSONa)と塩酸(HCl)とが生成される。そして、析出したフルオロ硫酸のナトリウム塩を分離した後、ジクロロメタンを留去してビス(フルオロスルホニル)イミドを単離することができる。
  FSOH+NaCl→FSONa+HCl 式(3)
 従来のビス(フルオロスルホニル)イミド塩の製造方法としては、非特許文献3に記されているように、上述した非特許文献1及び非特許文献2に開示された方法によってビス(フルオロスルホニル)イミドを生成し、単離したビス(フルオロスルホニル)イミドを水などに溶解した後にアルカリで中和してビス(フルオロスルホニル)イミド塩を生成する方法が知られている。
 従来のフルオロ硫酸塩の製造方法としては、上述した非特許文献1及び非特許文献2に開示された方法によって得られたビス(フルオロスルホニル)イミドとフルオロ硫酸との混合物を塩化メチレン、ジクロロメタン等の溶媒に溶解した後にNaClと反応させ、上記式(3)に示すような化学反応を用いてフルオロ硫酸塩を生成する方法が知られている。
 従来のビス(フルオロスルホニル)イミド・オニウム塩の製造方法としては、上述した非特許文献1及び非特許文献2に開示された方法によってビス(フルオロスルホニル)イミドを生成し、単離したビス(フルオロスルホニル)イミドを水などに溶解した後にオニウム化合物を添加してビス(フルオロスルホニル)イミド・オニウム塩を生成する方法が知られている。
Chem.Ber.95,246~8(1962)(Appel &Eisenhauer) Inorg.Synth.11,138~43(1968) Inorganic Chemistry Vol.4, 10, 1446-1449(1965)
 ビス(フルオロスルホニル)イミドの製造方法として、尿素とフルオロ硫酸とを用いる方法は、反応工程が短く、原料も安価であるため工業的に有利である。しかしながら、非特許文献1に開示された、尿素とフルオロ硫酸とを用いたビス(フルオロスルホニル)イミドの反応では、原料であるフルオロ硫酸が非常に強い酸であり、このフルオロ硫酸の一部が分解すると硫酸とフッ化水素とが生成することが知られている。したがって、上記式(1)に示す化学反応による反応液からビス(フルオロスルホニル)イミドとフルオロ硫酸との混合液を減圧蒸留で抜き出す際に、一般に使用されているガラスや金属材質の装置が反応液によって腐食される問題があった。
 非特許文献1に開示された、ビス(フルオロスルホニル)イミドとフルオロ硫酸との混合物を蒸留して分離する方法では、ビス(フルオロスルホニル)イミドの沸点(170℃)とフルオロ硫酸の沸点(163℃)とが近いため、蒸留によるビス(フルオロスルホニル)イミドとフルオロ硫酸との分離が困難であるという問題があった。
 非特許文献2に開示された、ビス(フルオロスルホニル)イミドを単離する方法(すなわち、フルオロ硫酸のナトリウム塩の製造方法)では、塩酸ガスが多量に副生して装置を腐食させる問題があった。さらに、濾別したフルオロ硫酸のナトリウム塩から、塩酸ガスの発生が数日間続くため、その処理方法は大きな問題であった。 
 非特許文献3に開示された従来のビス(フルオロスルホニル)イミド塩の製造方法では、水を留去する工程において、ビス(フルオロスルホニル)イミド塩の一部が加水分解してしまうため、ビス(フルオロスルホニル)イミド塩中にフッ素イオン等の不純物が混入してしまい、高純度のビス(フルオロスルホニル)イミド塩を単離することが困難であるという問題があった。
 本発明は、上記事情に鑑みてなされたものであって、安全且つ簡便に、高純度のビス(フルオロスルホニル)イミド塩を単離することが可能なビス(フルオロスルホニル)イミド塩の製造方法を提供することを目的とする。
 また、本発明は、安全且つ簡便なフルオロ硫酸塩の製造方法を提供することを目的とする。
 さらに、本発明は、安全且つ簡便なビス(フルオロスルホニル)イミド・オニウム塩の製造方法を提供することを目的とする。
 本発明者は、上記課題について鋭意研究した結果、フルオロ硫酸がビス(フルオロスルホニル)イミドの存在下では水に溶解させることが可能であり、ビス(フルオロスルホニル)イミドとフルオロ硫酸との混合液を水に溶解させた後にアルカリで中和することによってビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを得ることができることを見出し、本発明に至った。特に、ビス(フルオロスルホニル)イミド塩又はフルオロ硫酸塩の中和液に対する溶解度が低い場合には、中和液から析出して分離するため、分液や濾過等の操作と組み合わせることで目的の塩を得ることができる。
 本発明は、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程と、前記水溶液をアルカリで中和して中和液を調製する工程と、前記中和液からビス(フルオロスルホニル)イミド塩を単離する工程と、を備えるビス(フルオロスルホニル)イミド塩の製造方法を提供する。前記ビス(フルオロスルホニル)イミド塩の製造方法では、前記ビス(フルオロスルホニル)イミド塩を単離する工程が、有機溶剤を用いて中和液からビス(フルオロスルホニル)イミド塩を抽出してもよい。また、前記ビス(フルオロスルホニル)イミド塩の製造方法では、前記ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む前記混合液が、尿素とフルオロ硫酸との反応液であってもよい。また、前記ビス(フルオロスルホニル)イミド塩の製造方法では、前記アルカリが、MOH、MCO、MHCO、アンモニア、アミンからなる群から選ばれた化合物のいずれか一種であってもよい。
 但し、上記Mは、Na,K,Li,アンモニウムカチオンのいずれか一種である。 
 さらに、前記ビス(フルオロスルホニル)イミド塩の製造方法では、ビス(フルオロスルホニル)イミド塩のフッ素イオンの含有量が、100ppm以下であってもよい。また、前記ビス(フルオロスルホニル)イミド塩の製造方法では、ビス(フルオロスルホニル)イミド塩のフッ素イオンの含有量が、20ppm以下であってもよい。
 また、本発明は、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程と、前記水溶液をアルカリで中和して中和液を調製する工程と、前記中和液からフルオロ硫酸塩を単離する工程と、を備えるフルオロ硫酸塩の製造方法を提供する。前記フルオロ硫酸塩の製造方法では、フルオロ硫酸塩を単離する工程が、前記中和液から析出したフルオロ硫酸塩を濾別してもよい。また、前記フルオロ硫酸塩の製造方法では、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む前記混合液が、尿素とフルオロ硫酸との反応液であってもよい。また、前記フルオロ硫酸塩の製造方法では、前記アルカリが、MOH、MCO、MHCO、アンモニア、アミンからなる群から選ばれた化合物のいずれか一種であってもよい。
 但し、上記Mは、Na,K,Li,アンモニウムカチオンのいずれか一種である。
また、本発明は、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程と、前記水溶液をアルカリで中和して中和液を調製する工程と、前記中和液にオニウム化合物を添加する工程と、を備えるビス(フルオロスルホニル)イミド・オニウム塩の製造方法を提供する。前記ビス(フルオロスルホニル)イミド・オニウム塩の製造方法では、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む前記混合液が、尿素とフルオロ硫酸との反応液であってもよい。また、前記ビス(フルオロスルホニル)イミド・オニウム塩の製造方法では、前記アルカリが、MOH、MCO、MHCO、アンモニア、アミンからなる群から選ばれた化合物のいずれか一種であってもよい。
 但し、上記Mは、Na,K,Li,アンモニウムカチオンのいずれか一種である。
 本発明のビス(フルオロスルホニル)イミド塩の製造方法によれば、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和することで、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを生成することができる。そして、得られた中和液からビス(フルオロスルホニル)イミド塩を単離することにより、安全且つ簡便に、高純度のビス(フルオロスルホニル)イミド塩を得ることができる。
 また、ビス(フルオロスルホニル)イミド塩が中和液に溶解している場合には、有機溶剤を用いることにより中和液からビス(フルオロスルホニル)イミド塩を抽出することができる。これにより、上記中和液からビス(フルオロスルホニル)イミド塩のみを単離することができる。
 本発明のフルオロ硫酸塩の製造方法によれば、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和することで、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを得ることができる。そして、得られた中和液からフルオロ硫酸塩を単離することにより、安全且つ簡便に、高純度のフルオロ硫酸塩を得ることができる。
 また、フルオロ硫酸塩が中和液から析出している場合には、中和液を濾別することにより、フルオロ硫酸塩を分離することができる。これにより、上記中和液からフルオロ硫酸塩のみを単離することができる。
 本発明のビス(フルオロスルホニル)イミド・オニウム塩の製造方法によれば、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和することで、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを得ることができる。そして、得られた中和液にオニウム化合物を添加して塩交換させることにより、ビス(フルオロスルホニル)イミドのオニウム塩を安全且つ簡便に得ることができる。
 以下、本発明のビス(フルオロスルホニル)イミド塩の製造方法、フルオロ硫酸塩の製造方法及びビス(フルオロスルホニル)イミド・オニウム塩の製造方法について詳細に説明する。
<ビス(フルオロスルホニル)イミド塩の製造方法>
 本発明のビス(フルオロスルホニル)イミド塩の製造方法は、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程(水溶液の調製工程)と、上記水溶液をアルカリで中和して中和液を調製する工程(中和液の調製工程)と、上記中和液からビス(フルオロスルホニル)イミド塩を単離する工程(単離工程)と、を備えている。以下、各工程について詳細に説明する。
(水溶液の調製工程)
 水溶液の調製工程では、先ず、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を入手する。ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液は、特に限定されるものではないが、尿素(CO(NH)とフルオロ硫酸(FSOH)との反応液であることが好ましい。
 尿素(CO(NH)とフルオロ硫酸(FSOH)との反応は、非特許文献1に開示されている下記式(4)に示すような従来の反応を用いることができる。
  3FSOH+CO(NH→(FSONH+NHHSO+HF+CO 式(4)
 上記式(4)に示す反応と同時に減圧蒸留することで、生成したビス(フルオロスルホニル)イミドと原料であるフルオロ硫酸との混合液を反応液から分留することができる。
 なお、尿素(CO(NH)とフルオロ硫酸(FSOH)との反応は、非特許文献1に開示されている反応機構に限定されるものではなく、その他の反応機構であっても良い。
 次に、上記混合液を水に溶解させる。混合液を溶解させる水の量は、混合液の質量部に対して1~50倍であることが好ましく、2~10倍であることがより好ましい。
 ところで、フルオロ硫酸は、通常では水と接触すると激しく反応し、フッ化水素と硫酸とに分解する。しかしながら、本発明では、フルオロ硫酸が水と接触しても激しい分解反応が生じない。この理由として、尿素とフルオロ硫酸との反応終了液にはフルオロ硫酸の他にビス(フルオロスルホニル)イミド、あるいは尿素が分解して生成したアンモニア等が含まれていることにより、水中におけるフルオロ硫酸の分解速度が非常に遅くなるためと考えられる。従って、本発明では、ビス(フルオロスルホニル)イミドとフルオロ硫酸との混合液を穏やかな条件で水に溶解させて、水溶液を調製することができる。
(中和液の調製工程)
 次に、上記水溶液を速やかにアルカリ水溶液で中和して中和液を調製する。水溶液の中和は、pH4~10の範囲内となるまで行うことが好ましく、pH7~9の範囲内まで行うことがより好ましい。pH4未満では、フルオロ硫酸塩とビス(フルオロスルホニル)イミド塩の生成が不十分であるために好ましくない。また、pH10を超えると、フルオロ硫酸塩とビス(フルオロスルホニル)イミド塩の分解反応が進むために好ましくない。上記範囲内であると、フルオロ硫酸塩とビス(フルオロスルホニル)イミド塩の生成が十分であり、また分解反応も抑えられるので好ましい。
 上記水溶液の中和に用いるアルカリは、MOH、MCO、MHCO、アンモニア(NH)、アミン(NR)からなる群から選ばれた化合物のいずれか一種の水溶液であることが好ましい。但し、上記カチオンMは、Na,K,Li,アンモニウムカチオン(R-N)のいずれか一種である。
 より具体的には、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化リチウム(LiOH)、水酸化アンモニウム(RNOH)、炭酸ナトリウム(NaCO)、炭酸カリウム(KCO)、炭酸リチウム(LiCO)、炭酸アンモニウム((RN)CO)、炭酸水素ナトリウム(NaHCO)、炭酸水素カリウム(KHCO)、炭酸水素リチウム(LiHCO)、炭酸水素アンモニウム((RN)HCO)、アンモニア(NH)等が上げられる。
 アンモニウムカチオン(R-N)は、特に限定されるものではなく、アンモニウムイオン(NH )、第一級アンモニウムカチオン、第二級アンモニウムカチオン、第三級アンモニウムカチオン、第四級アンモニウムカチオンのいずれであっても良い。上記R、R、R、Rは、水素原子(H)、脂肪族のアルキル基又は芳香族のアルキル基である。また、アルキル基としては、メチル基、エチル基、ブチル基、ペンチル基、ヘキシル基、オクチル基、デシル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基、オクタデセニル基、オクタデカジエニル基、フェニル基等を適宜混合して本発明に用いることが出来る。
 アミンは、第一級アミン、第二級アミン、第三級アミンのいずれであっても良い。第一級アミンは、特に限定されるものではなく、例えば、エチルアミン、n-プロピルアミン、iso-プロピルアミン、n-ブチルアミン、iso-ブチルアミン、sec-ブチルアミン、t-ブチルアミン、エタノールアミン、n-プロパノールアミン、iso-プロパノールアミン、4-アミノ-1-ブタノール、2-アミノ-1-ブタノール、1-アミノ-2-ブタノール、エチレンジアミン、1,3-プロパンジアミン、1,4-ブタンジアミン、1,6-ヘキサメチレンジアミン等が挙げられる。第二級アミンは、特に限定されるものではなく、例えば、ジエチルアミン、ジ-n-プロピルアミン、ジ-iso-プロピルアミン、ジ-n-ブチルアミン、ジ-iso-ブチルアミン、ジ-sec-ブチルアミン、ジエタノールアミン、ジ-n-プロパノールアミン、ジ-iso-プロパノールアミン等が挙げられる。第三級アミンは、特に限定されるものではなく、例えば、トリエチルアミン、トリ-n-プロピルアミン、トリ-iso-プロピルアミン、トリ-n-ブチルアミン、トリ-iso-ブチルアミン、トリエタノールアミン、トリ-n-プロパノールアミン、トリ-iso-プロパノールアミン等が挙げられる。
 上記水溶液をアルカリで中和して中和液を調製することにより、ビス(フルオロスルホニル)イミド塩((FSON・M)とフルオロ硫酸塩(FSO・M)とを生成することができる。
 ビス(フルオロスルホニル)イミド塩((FSON・M)としては、ビス(フルオロスルホニル)イミドナトリウム塩、ビス(フルオロスルホニル)イミドカリウム塩、ビス(フルオロスルホニル)イミドリチウム塩、ビス(フルオロスルホニル)イミドアンモニウム塩が挙げられる。
 フルオロ硫酸塩(FSO・M)としては、フルオロ硫酸ナトリウム塩、フルオロ硫酸カリウム塩、フルオロ硫酸リチウム塩、フルオロ硫酸アンモニウム塩が挙げられる。
(単離工程)
 次に、上記中和液からビス(フルオロスルホニル)イミド塩を単離する。ビス(フルオロスルホニル)イミド塩の中和液に対する溶解度が低い場合には、分液(液体として分離する場合)や濾過(固体として析出する場合)等の分離操作によって中和液からビス(フルオロスルホニル)イミド塩を単離することができる。
 ビス(フルオロスルホニル)イミド塩が中和液に溶解している場合には、有機溶剤を用いることにより中和液からビス(フルオロスルホニル)イミド塩を抽出することができる。これにより、上記中和液からビス(フルオロスルホニル)イミド塩のみを単離することができる。中和液からビス(フルオロスルホニル)イミド塩を抽出する有機溶剤としては、ビス(フルオロスルホニル)イミド塩が溶解し、水と分離する有機溶剤であれば特に限定されるものではない。水と分離する有機溶剤としては、例えば酢酸エステル系溶媒を用いることが好ましく、酢酸エチルが特に好ましい。
 また、ビス(フルオロスルホニル)イミド塩の抽出に必要な溶剤量は、ビス(フルオロスルホニル)イミド塩の質量部に対して1~50倍であることが好ましく、10~20倍であることがより好ましい。溶剤量が10倍未満では、ビス(フルオロスルホニル)イミド塩の抽出が不十分であるために好ましくない。また、50倍を超えると、経済的に無駄である。上記範囲内であると、ビス(フルオロスルホニル)イミド塩を十分に抽出できるので好ましい。
 生成したビス(フルオロスルホニル)イミド塩が常温で固体の場合には、抽出に使用した有機溶媒等を留去することにより、ビス(フルオロスルホニル)イミド塩を結晶として得ることができる。
 以上のようにして、ビス(フルオロスルホニル)イミド塩を製造することができる。
 ビス(フルオロスルホニル)イミド塩などのフッ素含有アニオンを持つ化合物は、イオン導電材料や電解質、イオン液体のアニオン源として有用であることが知られているが、フッ素イオンが多いビス(フルオロスルホニル)イミド塩を用いた場合には、不純物であるフッ素イオンによる装置の腐食や、樹脂の劣化などを引き起こしてしまうため、ビス(フルオロスルホニル)イミド塩中のフッ素イオン含有量は少ない方が好ましい。
 しかし、上記非特許文献3に開示されているような従来のビス(フルオロスルホニル)イミド塩の製造方法によれば、水を留去する工程において、ビス(フルオロスルホニル)イミド塩の一部が加水分解してしまうため、ビス(フルオロスルホニル)イミド塩中にフッ素イオン等の不純物が混入してしまい、単離したビス(フルオロスルホニル)イミド塩中には不純物が多く含まれるという問題があった。具体的には、不純物としては、フッ素イオンが数百ppm~数千ppm含まれていた。非特許文献3にはエタノールを用いた再結晶による精製方法も記載されているが、再結晶によるフッ素イオンの低減の効果はほとんど見られなかった。
 これに対して、本発明のビス(フルオロスルホニル)イミド塩の製造方法によれば、ビス(フルオロスルホニル)イミド塩を含む水溶液からビス(フルオロスルホニル)イミド塩が析出、もしくはビス(フルオロスルホニル)イミド塩が溶解している場合にはビス(フルオロスルホニル)イミド塩のみを有機溶剤で抽出し、抽出した有機溶剤を留去することでビス(フルオロスルホニル)イミド塩が得られるという構成となっているため、ビス(フルオロスルホニル)イミド塩を水中で加熱するという操作が無いことから、水による加水分解が極めて起こりにくく、不純物の含有量を低減することができる。これにより、高純度のビス(フルオロスルホニル)イミド塩を単離することが可能となる。
 ビス(フルオロスルホニル)イミド塩中のフッ素イオンの含有量は、例えばイオンクロマトグラフィー法により測定することができる。イオンクロマトグラフィー法によるフッ素イオンの含有量の測定は、具体的には、次のようにして行なうことができる。
 先ず、試料0.5gをイオン交換水50mLに溶解し、測定用試料を調製する。次に、試料中のフッ素イオン含有量の測定は、例えば、DIONEX社製のイオンクロマトグラフィーシステムICS-2000(カラム:IonPacAS19、検出器:電気伝導度検出器)を用い、20mmol/Lの水酸化カリウム溶液を溶離液(流量1.0ml/min)として行う。
<フルオロ硫酸塩の製造方法>
 本発明のフルオロ硫酸塩の製造方法は、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程(水溶液の調製工程)と、上記水溶液をアルカリで中和して中和液を調製する工程(中和液の調製工程)と、上記中和液からフルオロ硫酸塩を単離する工程(単離工程)と、を備えている。水溶液の調製工程及び中和液の調製工程は、上述したビス(フルオロスルホニル)イミド塩の製造方法と同様であるため、説明を省略する。
(単離工程)
 次に、上記中和液の調製工程で調製した中和液からフルオロ硫酸塩を単離する。一般的にフルオロ硫酸塩の中和液に対する溶解度は低いため、中和液から固体として析出する場合が多い。ビス(フルオロスルホニル)イミド塩は中和液に溶解している場合が多い。したがって、中和液を濾過等の分離操作によって中和液からフルオロ硫酸塩を単離することができる。
 また、フルオロ硫酸塩の中和液に対する溶解度が高い場合には、上述したビス(フルオロスルホニル)イミド塩の単離方法と同様の分離手段を適宜選択することにより、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを分離することができる。
<ビス(フルオロスルホニル)イミド・オニウム塩の製造方法>
 本発明のビス(フルオロスルホニル)イミド・オニウム塩の製造方法は、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程(水溶液の調製工程)と、上記水溶液をアルカリで中和して中和液を調製する工程(中和液の調製工程)と、上記中和液にオニウム化合物を添加する工程(オニウム化合物の添加工程)と、を備えている。水溶液の調製工程及び中和液の調製工程は、上述したビス(フルオロスルホニル)イミド塩の製造方法と同様であるため、説明を省略する。
(オニウム化合物の添加工程)
 次に、上記中和液の調製工程で調製した中和液にオニウム化合物を添加する。これにより、生成したビス(フルオロスルホニル)イミド塩((FSON・M)とオニウム化合物との塩交換が生じ、ビス(フルオロスルホニル)イミドアニオン((FSO)とオニウム塩とのイオン性化合物が生成される。
 オニウム化合物は、特に限定されるものではないが、オニウムカチオンと、ハロゲンイオン、硝酸イオン、硫酸イオン、リン酸イオン、過塩素酸イオン、メタンスルホン酸イオン、トルエンスルホン酸イオンなどからなる塩が例示される。
 上記オニウムカチオンとしては、例えば、窒素、硫黄、酸素、リン、セレン、錫、ヨウ素、アンチモン等の孤立電子対を有する元素を含んだ化合物に陽イオン型の原子団が配位して生ずる少なくとも一つの有機基を有するカチオンであればよく、特に制限されない。本発明で使用できるオニウムイオンを例示すれば、テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラプロピルアンモニウムカチオン等の対称アンモニウムカチオン類;エチルトリメチルアンモニウムカチオン、ビニルトリメチルアンモニウムカチオン、トリエチルメチルアンモニウムカチオン、トリエチルプロピルアンモニウムカチオン、ジエチルジメチルアンモニウムカチオン、トリブチルエチルアンモニウムカチオン、トリエチルイソプロピルアンモニウムカチオン、N、N-ジメチルピロリジニウムカチオン、N-メチル-N-エチルピロリジニウムカチオン、トリエチルメトキシメチルアンモニウムカチオン等の最短の置換基の炭素数が最長の置換基の炭素数の50%以上100%未満である(以下擬対称ともいう。)アンモニウムカチオン類;トリメチルプロピルアンモニウムカチオン、トリメチルイソプロピルアンモニウムカチオン、ブチルトリメチルアンモニウムカチオン、アリルトリメチルアンモニウムカチオン、ヘキシルトリメチルアンモニウムカチオン、オクチルトリメチルアンモニウムカチオン、ドデシルトリメチルアンモニウムカチオン、トリエチルメトキシエトキシメチルアンモニウムカチオン、ジメチルジプロピルアンモニウムカチオン等の非対称アンモニウムカチオン類;ヘキサメトニウムカチオン等の2価アンモニウムカチオン類;1,3-ジメチルイミダゾリウムカチオン、1,3-ジエチルイミダゾリウムカチオン、1,3-ジプロピルイミダゾリウムカチオン、1,3-ジプロピルイミダゾリウムカチオン等の対称イミダゾリウムカチオン類;1-エチル-3-メチルイミダゾリウムカチオン、1-メチル-3-プロピルイミダゾリウムカチオン、1-ブチル-3-メチルイミダゾリウムカチオン、1-イソプロピル-3-プロピルイミダゾリウムカチオン、1-tert-ブチル-3-イソプロピルイミダゾリウムカチオン等の非対称イミダゾリウムカチオン類;N-エチルピリジニウムカチオン、N-ブチルピリジニウムカチオン等のピリジニウムカチオン類;トリメチルスルホニウムカチオン、トリエチルスルホニウムカチオン、トリブチルスルホニウムカチオン等の対称スルホニウムカチオン類;ジエチルメチルスルホニウムカチオン等の擬対称スルホニウムカチオン類;ジメチルプロピルスルホニウム、ジメチルヘキシルスルホニウム等の非対称スルホニウムカチオン類;テトラメチルホスホニウムカチオン、テトラエチルホスホニウムカチオン、テトラプロピルホスホニウムカチオン、テトラブチルホスホニウムカチオン、テトラオクチルホスホニウムカチオン、テトラフェニルホスホニウムカチオン等の対称ホスホニウムカチオン類;トリメチルエチルホスホニウムカチオン、トリエチルメチルホスホニウムカチオン等の擬対称ホスホニウムカチオン類;ヘキシルトリメチルホスホニウムカチオン、トリメチルオクチルホスホニウムカチオン等の非対称ホスホニウムカチオン類等を挙げることができる。
 本発明では、特に、イミダゾール系のオニウム塩及びアンモニウム系のオニウム塩を用いることが好ましい。このようにして、ビス(フルオロスルホニル)イミド・オニウム塩を製造することができる。
 以上説明したように、本発明のビス(フルオロスルホニル)イミド塩の製造方法によれば、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和することで、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを生成することができる。そして、得られた中和液からビス(フルオロスルホニル)イミド塩を単離することにより、安全且つ簡便に、高純度のビス(フルオロスルホニル)イミド塩を得ることができる。
 また、ビス(フルオロスルホニル)イミド塩が中和液に溶解している場合には、有機溶剤を用いることにより中和液からビス(フルオロスルホニル)イミド塩を抽出することができる。これにより、上記中和液からビス(フルオロスルホニル)イミド塩のみを単離することができる。
 本発明のフルオロ硫酸塩の製造方法によれば、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和することで、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを得ることができる。そして、得られた中和液からフルオロ硫酸塩を単離することにより、安全且つ簡便に、高純度のフルオロ硫酸塩を得ることができる。
 また、フルオロ硫酸塩が中和液から析出している場合には、中和液を濾別することにより、フルオロ硫酸塩を分離することができる。これにより、上記中和液からフルオロ硫酸塩のみを単離することができる。
 本発明のビス(フルオロスルホニル)イミド・オニウム塩の製造方法によれば、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和することで、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを得ることができる。そして、得られた中和液にオニウム化合物を添加して塩交換させることにより、ビス(フルオロスルホニル)イミドのオニウム塩を安全且つ簡便に得ることができる。
 以下、実施例によって本発明の効果をさらに詳細に説明する。なお、本発明は実施例によって、なんら限定されるものではない。
(実施例1)
 撹拌機、温度計を備えた5Lのポリテトラフルオロエチレン(PTFE)製の反応器に、フルオロ硫酸3.2kgを仕込み、冷却しながら尿素800gを少量ずつ添加し、尿素のフルオロ硫酸溶液を調製した。
 撹拌機、温度計、ガス流量計を備えた5LのPTFEコーティングしたステンレス製の反応器にフルオロ硫酸2.4kg、ビス(フルオロスルホニル)イミド80gを仕込み、120℃で加熱しているところへ、尿素のフルオロ硫酸溶液を定量ポンプで525g/Hrの速度で滴下した。
 滴下と同時に炭酸ガスの発生を確認し、滴下終了時には合計299Lのガスが発生した。反応終了液を室温に冷却し、15kgの水に徐々に滴下して溶解させた。その後、炭酸カリウム3.6kgを加え、pH9まで中和を行い、析出した結晶を濾過し、60℃で乾燥してフルオロ硫酸のカリウム塩を4.4kg得た。濾液を酢酸エチル7kgで2回、2kgで1回抽出した。
 酢酸エチル層を水で洗浄し、酢酸エチルを留去して、残渣としてビス(フルオロスルホニル)イミドカリウム1081gを得た(尿素基準の収率37%)。DIONEX社製のイオンクロマトグラフィーシステムICS-2000(カラム:IonPacAS19、検出器:電気伝導度検出器)を用い、20mmol/L水酸化カリウム溶液を溶離液(流量1.0ml/min)としてサンプル中のフッ素イオン含有量の測定を行った結果、フッ素イオン濃度は3ppmであった。得られたビス(フルオロスルホニル)イミドカリウムの融点は103~104℃であり、19F-NMRにて分析を行った結果53.5ppmにピークが確認された(溶媒DMSO-d 内部標準物質CFCl)。
(実施例2)(アンモニウム塩の例)
 実施例1と同様に反応を行い、反応終了液を室温に冷却し、15kgの水に溶解、28%アンモニア水2.0kgでpH7まで中和した。その後、酢酸エチル7kgで2回、2kgで1回抽出し、酢酸エチル層を水で洗浄し、酢酸エチルを留去してビス(フルオロスルホニル)イミドアンモニウム792gを得た(尿素基準の収率30%)。得られたビス(フルオロスルホニル)イミドアンモニウムのフッ素イオン濃度は3ppm、融点は85~88℃であった。
(実施例3)(Liを用いた例)
 実施例1と同様に行った反応液100gを200gの水に溶解させた。その後炭酸リチウム46gでpH7まで中和を行った。過剰の炭酸リチウムを濾別し、水層を酢酸エチル100gで2回、30gで1回抽出した。イオン交換水30gで酢酸エチル層を洗浄し、酢酸エチル層を留去してビス(フルオロスルホニル)イミドリチウム14.5gを得た(尿素基準の収率35%)。得られたビス(フルオロスルホニル)イミドリチウムのフッ素イオン濃度は8ppmであった。
(実施例4)
 実施例1と同様に行った反応液200gを、800gの水に溶解させた。その後炭酸カリウム52gでpH7まで中和を行い、析出したフルオロ硫酸のカリウム塩を濾別した。テトラプロピルアンモニウムブロミド37gを溶解させた水溶液を濾液に滴下すると同時にビス(フルオロスルホニル)イミド・テトラプロピルアンモニウムの結晶が析出し、濾過分離後、60℃の乾燥機で乾燥し、ビス(フルオロスルホニル)イミド・テトラプロピルアンモニウム48gを得た(尿素基準の収率30%)。得られたビス(フルオロスルホニル)イミド・テトラプロピルアンモニウムのフッ素イオン濃度は1ppm、融点は140~141℃であった。
(実施例5)
 実施例1と同様に行った反応液200gを、800gの水に溶解させた。その後炭酸カリウム51gでpH7まで中和を行い、析出したフルオロ硫酸のカリウム塩を濾別した。濾液に1-ブチル-3-メチルイミダゾリウムブロミド31gを添加すると、ビス(フルオロスルホニル)イミド・1-ブチル-3-メチルイミダゾリウムが反応液から分離した。分離した有機層を水洗、乾燥してビス(フルオロスルホニル)イミド・1-ブチル-3-メチルイミダゾリウム45gを得た(尿素基準の収率32%)。得られたビス(フルオロスルホニル)イミド・1-ブチル-3-メチルイミダゾリウムのフッ素イオン濃度は1ppmであった。
(比較例)
 実施例1と同様に行った反応液を減圧蒸留し、フルオロ硫酸とビス(フルオロスルホニル)イミドの混合物を得た。この混合物645gを塩化メチレン3230gに溶解し、塩化ナトリウム170gを加えてフルオロ硫酸カリウムを生成させ、ろ過分離した。濾液から塩化メチレンを留去し、その後、常圧蒸留を行いビス(フルオロスルホニル)イミド326gを得た。これを水978gに溶解し、炭酸カリウム154gでpH7まで中和し、水を留去してビス(フルオロスルホニル)イミドカリウム313gを得た。得られたビス(フルオロスルホニル)イミドカリウムのフッ素イオン濃度は354ppmであった。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明は、ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法に関する。本発明ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法によれば、ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製し、この水溶液をアルカリで中和することで、ビス(フルオロスルホニル)イミド塩とフルオロ硫酸塩とを生成することができる。そして、得られた中和液にオニウム化合物を添加して塩交換させることにより、ビス(フルオロスルホニル)イミドのオニウム塩を安全且つ簡便に得ることができる。

Claims (13)

  1.  ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程と、
     前記水溶液をアルカリで中和して中和液を調製する工程と、
     前記中和液からビス(フルオロスルホニル)イミド塩を単離する工程と、を備えることを特徴とするビス(フルオロスルホニル)イミド塩の製造方法。
  2.  前記ビス(フルオロスルホニル)イミド塩を単離する工程が、前記中和液から有機溶剤でビス(フルオロスルホニル)イミド塩を抽出することを特徴とする請求項1に記載のビス(フルオロスルホニル)イミド塩の製造方法。
  3.  ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む前記混合液が、尿素とフルオロ硫酸との反応液であることを特徴とする請求項1又は2に記載のビス(フルオロスルホニル)イミド塩の製造方法。
  4.  前記アルカリが、MOH、MCO、MHCO、アンモニア、アミンからなる群から選ばれた化合物のいずれか一種であることを特徴とする請求項1から3のいずれか一項に記載のビス(フルオロスルホニル)イミド塩の製造方法。
     但し、上記Mは、Na,K,Li,アンモニウムカチオンのいずれか一種である。
  5.  ビス(フルオロスルホニル)イミド塩のフッ素イオンの含有量が、100ppm以下であることを特徴とする請求項1から4のいずれか一項に記載のビス(フルオロスルホニル)イミド塩の製造方法。
  6.  ビス(フルオロスルホニル)イミド塩のフッ素イオンの含有量が、20ppm以下であることを特徴とする請求項1から4のいずれか一項に記載のビス(フルオロスルホニル)イミド塩の製造方法。
  7.  ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程と、
     前記水溶液をアルカリで中和して中和液を調製する工程と、
     前記中和液からフルオロ硫酸塩を単離する工程と、を備えることを特徴とするフルオロ硫酸塩の製造方法。
  8.  フルオロ硫酸塩を単離する工程が、前記中和液から析出したフルオロ硫酸塩を濾別することを特徴とする請求項7に記載のフルオロ硫酸塩の製造方法。
  9.  ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む前記混合液が、尿素とフルオロ硫酸との反応液であることを特徴とする請求項7又は8に記載のフルオロ硫酸塩の製造方法。
  10.  前記アルカリが、MOH、MCO、MHCO、アンモニア、アミンからなる群から選ばれた化合物のいずれか一種であることを特徴とする請求項7から9のいずれか一項に記載のフルオロ硫酸塩の製造方法。
     但し、上記Mは、Na,K,Li,アンモニウムカチオンのいずれか一種である。
  11.  ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む混合液を水に溶解させて水溶液を調製する工程と、
     前記水溶液をアルカリで中和して中和液を調製する工程と、
     前記中和液にオニウム化合物を添加する工程と、を備えることを特徴とするビス(フルオロスルホニル)イミド・オニウム塩の製造方法。
  12.  ビス(フルオロスルホニル)イミドとフルオロ硫酸とを含む前記混合液が、尿素とフルオロ硫酸との反応液であることを特徴とする請求項11に記載のビス(フルオロスルホニル)イミド・オニウム塩の製造方法。
  13.  前記アルカリが、MOH、MCO、MHCO、アンモニア、アミンからなる群から選ばれた化合物のいずれか一種であることを特徴とする請求項11又は12に記載のビス(フルオロスルホニル)イミド・オニウム塩の製造方法。
     但し、上記Mは、Na,K,Li,アンモニウムカチオンのいずれか一種である。
PCT/JP2010/002325 2009-03-31 2010-03-30 ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法 WO2010113483A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2010800107901A CN102341343B (zh) 2009-03-31 2010-03-30 双(氟磺酰基)酰亚胺盐的制造方法及氟代硫酸盐的制造方法、以及双(氟磺酰基)酰亚胺鎓盐的制造方法
US13/258,628 US8580220B2 (en) 2009-03-31 2010-03-30 Method for producing bis(fluorosulfonyl)imide salt, method for producing fluorosulfate, and method for producing bis(fluorosulfonyl)imide onium salt
EP10758263.7A EP2415709B1 (en) 2009-03-31 2010-03-30 Method for producing bis(fluorosulfonyl)imide salt
KR1020117022534A KR101364432B1 (ko) 2009-03-31 2010-03-30 비스(플루오로술포닐)이미드염의 제조 방법 및 플루오로황산염의 제조 방법, 그리고 비스(플루오로술포닐)이미드·오늄염의 제조 방법
US14/052,004 US9156692B2 (en) 2009-03-31 2013-10-11 Method for producing bis(fluorosulfonyl)imide salt, method for producing fluorosulfate, and method for producing bis(fluorosulfonyl)imide onium salt

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-084160 2009-03-31
JP2009084160 2009-03-31
JP2009-238344 2009-10-15
JP2009238344A JP5443118B2 (ja) 2009-03-31 2009-10-15 ビス(フルオロスルホニル)イミド塩の製造方法、ビス(フルオロスルホニル)イミド塩及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/258,628 A-371-Of-International US8580220B2 (en) 2009-03-31 2010-03-30 Method for producing bis(fluorosulfonyl)imide salt, method for producing fluorosulfate, and method for producing bis(fluorosulfonyl)imide onium salt
US14/052,004 Division US9156692B2 (en) 2009-03-31 2013-10-11 Method for producing bis(fluorosulfonyl)imide salt, method for producing fluorosulfate, and method for producing bis(fluorosulfonyl)imide onium salt

Publications (1)

Publication Number Publication Date
WO2010113483A1 true WO2010113483A1 (ja) 2010-10-07

Family

ID=42827793

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002325 WO2010113483A1 (ja) 2009-03-31 2010-03-30 ビス(フルオロスルホニル)イミド塩の製造方法及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法

Country Status (6)

Country Link
US (2) US8580220B2 (ja)
EP (2) EP2835348B1 (ja)
JP (1) JP5443118B2 (ja)
KR (1) KR101364432B1 (ja)
CN (1) CN102341343B (ja)
WO (1) WO2010113483A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160280A2 (fr) 2011-05-24 2012-11-29 Arkema France Procede de preparation de bis(fluorosulfonyl)imidure de lithium ou sodium
WO2013083894A1 (fr) 2011-12-06 2013-06-13 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
CN103492319A (zh) * 2011-04-11 2014-01-01 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
EP2505551B1 (en) 2009-11-27 2018-07-25 Nippon Shokubai Co., Ltd. Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
KR20220135281A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법
KR20220135283A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471045B2 (ja) * 2009-06-03 2014-04-16 セントラル硝子株式会社 イミド酸塩の製造方法
WO2012128964A1 (en) 2011-03-08 2012-09-27 Trinapco, Inc. Method of making fluorosulfonylamine
JP5891598B2 (ja) * 2011-04-11 2016-03-23 三菱化学株式会社 フルオロスルホン酸リチウムの製造方法、およびフルオロスルホン酸リチウム
JP5987431B2 (ja) * 2011-04-13 2016-09-07 三菱化学株式会社 フルオロスルホン酸リチウム、非水系電解液、及び非水系電解液二次電池
JP6035835B2 (ja) * 2011-04-19 2016-11-30 三菱化学株式会社 フルオロスルホン酸リチウムの製造方法、およびフルオロスルホン酸リチウム
US8377406B1 (en) 2012-08-29 2013-02-19 Boulder Ionics Corporation Synthesis of bis(fluorosulfonyl)imide
EP2920147B1 (en) 2012-11-16 2019-02-13 Trinapco, Inc Synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts
FR3014438B1 (fr) * 2013-12-05 2017-10-06 Rhodia Operations Procede de preparation d'un compose fluore et soufre et de ses sels en milieu aqueux
FR3020060B1 (fr) * 2014-04-18 2016-04-01 Arkema France Preparation d'imides contenant un groupement fluorosulfonyle
KR101687374B1 (ko) 2016-06-07 2016-12-16 카보텍재료개발주식회사 디플루오로술포닐 이미드 또는 그 염의 제조 방법
CN109476482B (zh) * 2016-08-19 2022-02-18 日本曹达株式会社 含氟磺酰胺化合物的制造方法
JP2018035059A (ja) * 2016-08-30 2018-03-08 森田化学工業株式会社 リチウムビス(フルオロスルホニル)イミド組成物
FR3059994B1 (fr) * 2016-12-08 2021-03-19 Arkema France Procede de sechage et de purification de lifsi
FR3059993A1 (fr) 2016-12-08 2018-06-15 Arkema France Procede de sechage et de purification du sel de lithium de bis(fluorosulfonyl)imide
CN106800280B (zh) * 2016-12-29 2018-11-27 衢州康鹏化学有限公司 一种双(氟磺酰基)亚胺盐的制备方法
US11097949B2 (en) * 2017-02-08 2021-08-24 Morita Chemical Industries Co., Ltd. Bis(fluorosulfonyl) imide metal salt and method for preparing same
FR3062961B1 (fr) * 2017-02-14 2020-09-04 Arkema France Sel de bis(fluorosulfonyl)imide de lithium et ses utilisations
US20190157721A1 (en) * 2017-02-14 2019-05-23 Arkema France Lithium bis(fluorosulfonyl)imide Salt and Uses Thereof
FR3069544B1 (fr) 2017-07-28 2020-05-15 Arkema France Procede de preparation d'un film de polymere fluore reticule
CN108176392B (zh) * 2017-12-27 2020-09-08 万华化学集团股份有限公司 催化分解胺盐的复合催化剂及其制备方法、制备mda的方法
US10967295B2 (en) 2018-11-16 2021-04-06 Ses Holdings Pte. Ltd. Processes for removing reactive solvent from lithium bis(fluorosulfonyl)imide (LiFSI) using organic solvents that are stable toward anodes in lithium-ion and lithium-metal batteries
US10926190B2 (en) 2018-11-16 2021-02-23 Ses Holdings Pte. Ltd. Purified lithium bis(fluorosulfonyl)imide (LiFSI) products, methods of purifying crude LiFSI, and uses of purified LiFSI products
US10734664B1 (en) 2019-03-01 2020-08-04 Ses Holdings Pte. Ltd. Purified hydrogen bis(fluorosulfonyl)imide (HFSI) products, methods of purifying crude HFSI, and uses of purified HFSI products
US11267707B2 (en) 2019-04-16 2022-03-08 Honeywell International Inc Purification of bis(fluorosulfonyl) imide
WO2021031430A1 (en) * 2019-08-22 2021-02-25 Fujian Yongjing Technology Co., Ltd New process for the synthesis of fluorinated conductive salts for lithium ion batteries
CN110642269B (zh) * 2019-09-27 2022-02-08 浙江中硝康鹏化学有限公司 一种碱金属氟化盐和碱金属硫酸盐的联合制备方法
EP4045459B1 (en) * 2019-10-15 2024-08-28 Syensqo Sa Bis(fluorosulfonyl)imide salts and preparation method thereof
US11591218B2 (en) 2019-12-17 2023-02-28 Honeywell International Inc. Integrated processes for producing bis(fluorosulfonyl) imide
FR3098350A1 (fr) * 2020-07-07 2021-01-08 Arkema France Sel de bis(fluorosulfonyl)imide de lithium et ses utilisations
KR102516462B1 (ko) * 2020-12-23 2023-04-03 주식회사 천보신소재 비스(클로로술포닐)이미드의 제조 방법
US11772967B2 (en) 2021-01-07 2023-10-03 Honeywell International Inc. Integrated processes for treatment of an ammonium fluorosulfate byproduct of the production of bis (fluorosulfonyl) imide
US20220242731A1 (en) * 2021-01-29 2022-08-04 Honeywell International Inc. Sulfamyl fluoride compositions and processes for making sulfamyl fluoride compositions
CN116897138A (zh) 2021-03-01 2023-10-17 株式会社日本触媒 电解质成形体的制造方法及电解质成形体
EP4349775A1 (en) 2021-06-30 2024-04-10 Nippon Shokubai Co., Ltd. Method for purifying aqueous sulfonylimide solution, method for producing non-aqueous electrolyte, and method for producing electrolyte composition
KR20240026207A (ko) 2021-06-30 2024-02-27 가부시키가이샤 닛폰 쇼쿠바이 비수전해액의 제조방법
EP4343915A4 (en) 2021-06-30 2024-10-09 Nippon Catalytic Chem Ind METHOD FOR PREPARING A COMPOSITION AND NON-AQUEOUS ELECTROLYTE SOLUTION
CN113562746B (zh) * 2021-07-14 2023-09-01 珠海理文新材料有限公司 一种氟磺酸钾的制备方法
EP4242173A1 (en) 2022-03-11 2023-09-13 Specialty Operations France Purification of hydrogen bis(fluorosulfonyl)imide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2004522681A (ja) * 2000-12-29 2004-07-29 ハイドロ−ケベック ハロスルホニル基、又はジハロホスホニル基を含む化合物をフッ素化するための方法
JP2007182410A (ja) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
JP2009504790A (ja) * 2005-08-22 2009-02-05 トランスファート プラス エスイーシー スルホニルイミド及びその誘導体を調製するための方法
JP2009084160A (ja) 2007-09-27 2009-04-23 Sun Medical Co Ltd 接着タンパクの発現を誘導する組成物
JP2009238344A (ja) 2008-03-28 2009-10-15 Sanyo Electric Co Ltd 光ピックアップ装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245027A (en) * 1989-11-21 1993-09-14 Bristol-Myers Squibb Company 3-fluorosulfonyloxyceph-3-em compounds
DE69934170T2 (de) * 1998-02-03 2007-09-27 Acep Inc., Montreal Neue als elektrolytische solubilisate geeignete werkstoffe
JP2005200359A (ja) 2004-01-16 2005-07-28 Tosoh Corp イオン性化合物
JP2005298375A (ja) 2004-04-08 2005-10-27 Tosoh Corp 常温溶融塩の精製方法
US8134027B2 (en) * 2008-03-31 2012-03-13 Nippon Shokubai Co., Ltd. Sulfonylimide salt and method for producing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08511274A (ja) * 1994-03-21 1996-11-26 サントル・ナショナル・ドゥ・ラ・ルシェルシュ・シャンティフィク 良好な耐食性を示すイオン性伝導材料
JP2004522681A (ja) * 2000-12-29 2004-07-29 ハイドロ−ケベック ハロスルホニル基、又はジハロホスホニル基を含む化合物をフッ素化するための方法
JP2009504790A (ja) * 2005-08-22 2009-02-05 トランスファート プラス エスイーシー スルホニルイミド及びその誘導体を調製するための方法
JP2007182410A (ja) * 2006-01-10 2007-07-19 Dai Ichi Kogyo Seiyaku Co Ltd フッ素化合物の製造方法及びそれにより得られるフッ素化合物
JP2009084160A (ja) 2007-09-27 2009-04-23 Sun Medical Co Ltd 接着タンパクの発現を誘導する組成物
JP2009238344A (ja) 2008-03-28 2009-10-15 Sanyo Electric Co Ltd 光ピックアップ装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.BERAN ET AL.: "A New Method of the Preparation of Imido-bis(sulfuric acid) Dihalogenide, (F,Cl), and the Potassium Salt of Imido-bis(sulfuric acid) Difluoride", ZEITSCHRIFT FUR ANORGANISCHE UND ALLGEMEINE CHEMIE, vol. 631, no. 1, 2005, pages 55 - 59, XP055014688 *
See also references of EP2415709A4 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2505551B1 (en) 2009-11-27 2018-07-25 Nippon Shokubai Co., Ltd. Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
EP2505551B2 (en) 2009-11-27 2022-03-09 Nippon Shokubai Co., Ltd. Fluorosulfonyl imide salt and method for producing fluorosulfonyl imide salt
CN113387375A (zh) * 2011-04-11 2021-09-14 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
EP2698350A4 (en) * 2011-04-11 2014-10-22 Mitsubishi Chem Corp METHOD FOR THE PRODUCTION OF LITHIUM FLUOR SULFONATE, LITHIUM FLUOROSULFONATE, NON-ACID ELECTROLYTE SOLUTION AND NON-WATER ELECTROLYTE SECONDARY BATTERY
US10530008B2 (en) 2011-04-11 2020-01-07 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
CN104649301A (zh) * 2011-04-11 2015-05-27 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
CN108502904A (zh) * 2011-04-11 2018-09-07 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
US11387484B2 (en) 2011-04-11 2022-07-12 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, nonaqueous electrolytic solution, and nonaqueous electrolytic solution secondary battery
CN105129825A (zh) * 2011-04-11 2015-12-09 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
CN108502904B (zh) * 2011-04-11 2021-06-08 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
EP3782958A1 (en) * 2011-04-11 2021-02-24 Mitsubishi Chemical Corporation Nonaqueous electrolytic solution secondary battery
CN103492319A (zh) * 2011-04-11 2014-01-01 三菱化学株式会社 氟磺酸锂的制造方法、氟磺酸锂、非水电解液、以及非水电解质二次电池
EP4219400A3 (en) * 2011-04-11 2023-10-25 Mitsubishi Chemical Corporation Method for producing lithium fluorosulfonate, lithium fluorosulfonate, use of lithium fluorosulfonate in a nonaqueous electrolytic solution, and nonaqueous electrolytic solution
JP2014516907A (ja) * 2011-05-24 2014-07-17 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
US9440852B2 (en) 2011-05-24 2016-09-13 Arkema France Method for producing lithium or sodium bis(fluorosulfonyl)imide
EP3620433A1 (fr) 2011-05-24 2020-03-11 Arkema France Bis(fluorosulfonyl)imidure de lithium
US10547084B2 (en) 2011-05-24 2020-01-28 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
US9394172B2 (en) 2011-05-24 2016-07-19 Arkema France Process for the preparation of lithium or sodium bis(fluorosulphonyl)imide
WO2012160280A2 (fr) 2011-05-24 2012-11-29 Arkema France Procede de preparation de bis(fluorosulfonyl)imidure de lithium ou sodium
JP2015205815A (ja) * 2011-05-24 2015-11-19 アルケマ フランス リチウムまたはナトリウムビス(フルオロスルホニル)イミダイドを製造する方法
WO2013083894A1 (fr) 2011-12-06 2013-06-13 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
EP2947714A1 (fr) 2011-12-06 2015-11-25 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
KR20220135281A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법
KR20220135283A (ko) 2021-03-29 2022-10-07 주식회사 천보 나트륨 비스(플루오로설포닐)이미드의 제조방법

Also Published As

Publication number Publication date
KR20110131241A (ko) 2011-12-06
EP2415709A4 (en) 2014-02-12
JP5443118B2 (ja) 2014-03-19
US20140037529A1 (en) 2014-02-06
KR101364432B1 (ko) 2014-02-17
US9156692B2 (en) 2015-10-13
CN102341343B (zh) 2013-12-25
US20120014859A1 (en) 2012-01-19
EP2415709A1 (en) 2012-02-08
US8580220B2 (en) 2013-11-12
JP2010254543A (ja) 2010-11-11
CN102341343A (zh) 2012-02-01
EP2835348B1 (en) 2017-10-11
EP2835348A2 (en) 2015-02-11
EP2835348A3 (en) 2015-06-03
EP2415709B1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP5443118B2 (ja) ビス(フルオロスルホニル)イミド塩の製造方法、ビス(フルオロスルホニル)イミド塩及びフルオロ硫酸塩の製造方法、並びにビス(フルオロスルホニル)イミド・オニウム塩の製造方法
EP3126288B1 (en) Production of a hexafluorophosphate salt and of phosphorous pentafluoride
TWI485102B (zh) Methods for the production of phosphorus pentafluoride and hexafluorophosphate
KR101890787B1 (ko) 리튬비스플루오로설포닐이미드의 제조 방법
CN111498819B (zh) 制备含有氟磺酰基基团的酰亚胺
EP3024779B1 (en) Synthesis of hydrogen bis(fluorosulfonyl)imide
US9096502B2 (en) Production process for fluorosulfonylimide ammonium salt
JP4616925B2 (ja) ジフルオロリン酸塩の製造方法
WO2010016326A1 (ja) フッ化物ガスの製造方法
JP5740451B2 (ja) ビス(フルオロスルホニル)イミド塩の製造方法
JP2017137221A (ja) フッ化水素酸と硝酸の回収方法
WO2012026360A1 (ja) ビス(フルオロスルホニル)イミドの製造方法
JP2014105115A (ja) 高純度ビス(フルオロスルホニル)イミドおよびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080010790.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758263

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010758263

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13258628

Country of ref document: US

Ref document number: 2010758263

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117022534

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE