WO2010110305A1 - 成形体、その製造方法、電子デバイス用部材及び電子デバイス - Google Patents
成形体、その製造方法、電子デバイス用部材及び電子デバイス Download PDFInfo
- Publication number
- WO2010110305A1 WO2010110305A1 PCT/JP2010/055065 JP2010055065W WO2010110305A1 WO 2010110305 A1 WO2010110305 A1 WO 2010110305A1 JP 2010055065 W JP2010055065 W JP 2010055065W WO 2010110305 A1 WO2010110305 A1 WO 2010110305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- ion implantation
- electronic device
- molded body
- film
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B9/00—Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/56—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
- C23C14/562—Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks for coating elongated substrates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/62—Plasma-deposition of organic layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D2252/00—Sheets
- B05D2252/02—Sheets of indefinite length
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/14—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
- B05D3/141—Plasma treatment
- B05D3/145—After-treatment
- B05D3/148—After-treatment affecting the surface properties of the coating
Definitions
- the present invention relates to a molded article having excellent gas barrier properties, transparency, bending resistance, antistatic properties and surface smoothness, a method for producing the same, an electronic device member comprising the molded article, and an electronic device comprising the electronic device member. About.
- a polymer molded body such as a plastic film is inexpensive and excellent in workability, and thus has been used in various fields with a desired function.
- a display such as a liquid crystal display or an electroluminescence (EL) display
- EL electroluminescence
- a transparent plastic film is used as a substrate in place of a glass plate in order to realize a reduction in thickness, weight, and flexibility. It is being considered.
- Patent Document 1 proposes a gas barrier film in which a gas barrier layer made of an inorganic compound is formed on a transparent plastic film.
- the gas barrier film described in this document has a problem that pinholes are generated in the inorganic compound thin film, and the gas barrier property of the pinhole generating portion is extremely lowered. Further, when the film is rounded or bent, there is a problem that the gas barrier layer is cracked and the gas barrier property is lowered. Furthermore, the surface smoothness of the gas barrier layer is inferior, and when other layers are formed on the gas barrier layer, pinholes are easily generated in the formed other layers, and sufficient reliability as a member for electronic devices is obtained. There was also a problem of not.
- Patent Document 2 proposes a gas barrier film in which an amorphous diamond-like carbon film is formed on a plastic substrate.
- the gas barrier film described in this document has low transparency, it may be difficult to use it particularly for display applications.
- Patent Document 3 proposes a molded body having a cured layer of an ionizing radiation curable resin composition and a diamond-like carbon film. This describes a technique for forming a diamond-like carbon film on a hardened layer by a plasma ion implantation method.
- the molded body obtained by the technique described in this document is excellent in moisture permeability, but does not have sufficient gas barrier properties.
- the present invention has been made in view of the above-described prior art, and is a molded article excellent in gas barrier properties, transparency, bending resistance, antistatic properties and surface smoothness, a method for producing the same, and an electronic device comprising the molded article It is an object to provide a member for use and an electronic device including the member for electronic device.
- a molded product having a layer containing a polyorganosiloxane compound on the surface portion has a hydrocarbon on the surface portion of the layer containing the polyorganosiloxane compound. It has been found that by injecting ions of a system compound, a target molded article can be easily and efficiently produced, and the present invention has been completed.
- the following molded articles (1) to (3) are provided.
- the manufacturing method of the molded object of following (4) and (5) is provided.
- the following electronic device member (6) is provided.
- An electronic device member comprising the molded article according to any one of (1) to (3).
- an electronic device comprising the electronic device member according to (6).
- the molded article of the present invention is excellent in gas barrier properties, transparency, bending resistance, antistatic properties and surface smoothness. Therefore, the molded object of this invention can be used suitably as members for electronic devices, such as a flexible display and a solar cell. According to the production method of the present invention, the molded product of the present invention can be produced simply and efficiently. Since the electronic device member of the present invention has excellent gas barrier properties, transparency, and the like, it can be suitably used for electronic devices such as displays and solar cells.
- Molded article The molded article of the present invention is obtained by implanting hydrocarbon compound ions into a layer containing a polyorganosiloxane compound (hereinafter sometimes referred to as "polyorganosiloxane compound layer").
- a layer hereinafter referred to as an “ion implantation layer”.
- the polyorganosiloxane compound means a silicon-containing polymer compound having a repeating unit having a siloxane bond [— (O—Si) —O—].
- linear main chain structure includes a structure represented by the following formula (a)
- ladder main chain structure includes a structure represented by the following formula (b)
- chain structure include structures represented by the following formula (c).
- each of Rx, Ry, and Rz independently represents a hydrogen atom, an unsubstituted or substituted alkyl group, an unsubstituted or substituted alkenyl group, an unsubstituted or substituted aryl group, etc. Represents a hydrolyzable group.
- both Rx in the formula (a) are not hydrogen atoms.
- the plurality of Rx in the formula (a), the plurality of Ry in the formula (b), and the plurality of Rz in the formula (c) may be the same or different.
- alkyl group of the unsubstituted or substituted alkyl group examples include, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, n
- alkyl groups having 1 to 10 carbon atoms such as -pentyl group, isopentyl group, neopentyl group, n-hexyl group, n-heptyl group and n-octyl group.
- alkenyl group examples include alkenyl groups having 2 to 10 carbon atoms such as vinyl group, 1-propenyl group, 2-propenyl group, 1-butenyl group, 2-butenyl group and 3-butenyl group.
- substituent for the alkyl group and alkenyl group examples include a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom and an iodine atom; a hydroxyl group; a thiol group; an epoxy group; a glycidoxy group; a (meth) acryloyloxy group; And a phenyl group having no substituent or a substituent such as a 4-methylphenyl group and a 4-chlorophenyl group.
- aryl group of an unsubstituted or substituted aryl group examples include aryl groups having 6 to 10 carbon atoms such as a phenyl group, a 1-naphthyl group, and a 2-naphthyl group.
- substituent of the aryl group examples include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; alkyl groups having 1 to 6 carbon atoms such as methyl group and ethyl group; carbon numbers such as methoxy group and ethoxy group 1-6 alkoxy groups; nitro groups; cyano groups; hydroxyl groups; thiol groups; epoxy groups; glycidoxy groups; (meth) acryloyloxy groups; unsubstituted phenyl groups, 4-methylphenyl groups, 4-chlorophenyl groups, etc.
- Rx, Ry, and Rz a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or a phenyl group is preferable, and an alkyl group having 1 to 6 carbon atoms is particularly preferable.
- the polyorganosiloxane-based compound is preferably a linear compound represented by the formula (a) or a ladder-like compound represented by the formula (b).
- a linear compound represented by the formula (a) is more preferable, and in the formula (a), two Rx are both methyl groups. Siloxane is particularly preferred.
- the polyorganosiloxane compound can be obtained by a known production method in which a silane compound having a hydrolyzable functional group is polycondensed.
- the silane compound having a hydrolyzable functional group may be appropriately selected and used according to the structure of the target polyorganosiloxane compound.
- Specific examples of the silane compound having a hydrolyzable functional group include bifunctional silane compounds such as dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyldiethoxysilane; methyltrimethoxysilane, methyltriethoxysilane, and ethyl Trifunctional silane compounds such as trimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-butyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyldiethoxymethoxysilane; tetramethoxysilane, tetra Ethoxysilane, tetra n-
- polyorganosiloxane compound a commercially available product as a release agent, an adhesive, a sealant, a paint, or the like can be used as it is.
- the polyorganosiloxane compound layer may contain other components in addition to the polyorganosiloxane compound as long as the object of the present invention is not impaired.
- other components include curing agents, other polymers, anti-aging agents, light stabilizers, and flame retardants.
- the content of the polyorganosiloxane compound in the polyorganosiloxane compound layer is preferably 50% by weight or more and 70% by weight or more from the viewpoint of forming an ion-implanted layer having excellent gas barrier properties. Is more preferable.
- the method for forming the polyorganosiloxane-based compound layer is not particularly limited.
- a polyorganosiloxane-based compound layer containing at least one polyorganosiloxane-based compound, optionally other components, and a solvent examples include a method in which the composition is applied onto a suitable substrate, the obtained coating film is dried, and heated to form as necessary.
- the film which consists of a raw material of the other layer mentioned later can be used as a base material.
- the thickness of the polyorganosiloxane compound layer to be formed is not particularly limited, but is usually 30 nm to 100 ⁇ m.
- the ion-implanted layer is obtained by implanting hydrocarbon compound ions (hereinafter, simply referred to as “ions”) into the polyorganosiloxane compound layer.
- the raw material gas for generating hydrocarbon compound ions includes alkane gases such as methane, ethane, propane, butane, pentane and hexane; alkene gases such as ethylene, propylene, butene and pentene; pentadiene, butadiene and the like Alkyne gases such as acetylene and methylacetylene; aromatic hydrocarbon gases such as benzene, toluene, xylene, indene, naphthalene and phenanthrene; cycloalkane gases such as cyclopropane and cyclohexane; And cycloalkene gases such as cyclopentene and cyclohexene. These gases may be used alone or in combination of two or more.
- alkane gases such as methane, ethane, propane, butane, pentane and hexane
- alkene gases such as ethylene, propylene, butene and penten
- a hydrocarbon compound gas having 1 to 3 carbon atoms is preferable, and methane gas, ethylene gas, and acetylene gas are particularly preferable.
- the ion implantation amount may be appropriately determined according to the intended use (necessary gas barrier property, transparency, etc.) of the formed article to be formed.
- the method for implanting ions is not particularly limited, and a known method can be employed. For example, a method of irradiating ions accelerated by an electric field (ion beam), a method of injecting ions in plasma, and the like can be given. Among them, in the present invention, since the gas barrier molded article can be easily obtained, the latter method of implanting ions in plasma (hereinafter referred to as “plasma ion implantation method”) is preferable.
- the plasma ion implantation method applies a negative high-voltage pulse to a molded article having a polyorganosiloxane-based compound layer on the surface exposed to the plasma, thereby causing ions in the plasma to flow into the layer.
- an ion implantation layer is formed by implantation into the surface portion.
- the thickness of the ion-implanted portion can be controlled by the implantation conditions, and may be appropriately determined according to the purpose of use of the molded body, but is usually 0.1 to 1000 nm.
- the ion implantation can be confirmed by performing an elemental analysis measurement at around 10 nm from the surface using X-ray photoelectron spectroscopy (XPS).
- XPS X-ray photoelectron spectroscopy
- the shape of the molded product of the present invention is not particularly limited, and examples thereof include a film shape, a sheet shape, a rectangular parallelepiped shape, a polygonal column shape, and a cylindrical shape. When used as an electronic device member as described later, it is preferably a film or sheet. When the molded product of the present invention is a film-like product, the thickness of the film is not particularly limited and can be appropriately determined depending on the intended use of the electronic device.
- the molded body of the present invention may be composed only of an ion-implanted layer, or may further include other layers. Further, the other layer may be a single layer or two or more layers of the same type or different types. As another layer, the base material which consists of materials other than a polyorganosiloxane type compound is mentioned, for example.
- the material of the other layer is not particularly limited as long as it meets the purpose of the molded body, for example, Polyimide, polyamide, polyamideimide, polyphenylene ether, polyether ketone, polyether ether ketone, polyolefin, polyester, polycarbonate, polysulfone, polyethersulfone, polyphenylene sulfide, polyarylate, acrylic resin, cycloolefin polymer, aromatic A polymer etc. are mentioned.
- polyester, polyamide or cycloolefin polymer is preferable, and polyester or cycloolefin polymer is more preferable because of excellent transparency and versatility.
- polyester examples include polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, and polyarylate.
- polyamide examples include wholly aromatic polyamide, nylon 6, nylon 66, nylon copolymer, and the like.
- cycloolefin polymers include norbornene polymers, monocyclic olefin polymers, cyclic conjugated diene polymers, vinyl alicyclic hydrocarbon polymers, and hydrides thereof. Specific examples thereof include Apel (an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals), Arton (a norbornene polymer manufactured by JSR), Zeonoa (a norbornene polymer manufactured by Nippon Zeon), and the like. .
- Apel an ethylene-cycloolefin copolymer manufactured by Mitsui Chemicals
- Arton a norbornene polymer manufactured by JSR
- Zeonoa a norbornene polymer manufactured by Nippon Zeon
- the position of the ion-implanted layer is not particularly limited, but it is preferable to have the ion-implanted layer on the surface because it can be efficiently manufactured.
- the ion implantation layer may be formed only in the single side
- the molded product of the present invention is excellent in gas barrier properties, transparency, bending resistance, antistatic properties and surface smoothness. It can be confirmed that the molded article of the present invention is excellent in gas barrier properties because the permeability of gas such as water vapor of the molded article of the present invention is remarkably smaller than that in which no ions are implanted. .
- the water vapor transmission rate in an atmosphere of 40 ° C. and 90% relative humidity that is, the amount of water vapor passing through the molded body (film) from the humidity control chamber of 90% relative humidity at 40 ° C. is 1.5 g / m 2 / day or less is preferable.
- the transmittance of the molded body such as water vapor can be measured using a known gas permeability measuring device.
- the molded product of the present invention has high visible light transmittance and excellent transparency.
- the visible light transmittance at a wavelength of 550 nm of the molded article of the present invention is preferably 80% or more, and more preferably 85% or more.
- permeability of a molded object can be measured using a well-known ultraviolet visible near infrared spectral transmittance meter.
- the molded product of the present invention is excellent in bending resistance.
- the molded body of the present invention is excellent in bending resistance.
- the molded body is not deteriorated even if the molded body is wound around a stainless steel rod with the ion-implanted surface outside and is reciprocated 10 times in the circumferential direction (cracking). Etc.) can be confirmed.
- the molded product of the present invention is excellent in antistatic properties.
- the molded article of the present invention is excellent in antistatic property.
- the molded article is charged by a charge attenuation measuring device, and the time (half-life) until the initial charged voltage is attenuated to 50% is measured. Can be confirmed from the short time. It can also be confirmed from the fact that the surface resistance is measured using a high resistivity meter and the value is small.
- the surface resistance of the molded product of the present invention is usually 1.1 ⁇ 10 14 ⁇ / ⁇ or less, preferably 1.0 ⁇ 10 10 ⁇ / ⁇ to 1.05 ⁇ 10 14 ⁇ / ⁇ .
- the molded article of the present invention is excellent in surface smoothness.
- the fact that the molded article of the present invention is excellent in surface smoothness is obtained, for example, by measuring the surface roughness Ra value (nm) in the measurement regions 1 ⁇ 1 ⁇ m and 25 ⁇ 25 ⁇ m using an atomic force microscope (AFM). Can be confirmed.
- the Ra value at 1 ⁇ 1 ⁇ m is preferably 0.35 nm or less, more preferably 0.3 nm or less, and the Ra value at 25 ⁇ 25 ⁇ m is preferably 3 nm or less, and is 2.3 nm or less. More preferably.
- hydrocarbon compound ions examples include the same ones as exemplified in the section of 1) molded article.
- ions of hydrocarbon compounds are introduced into the polyorganosiloxane compound layer. It is preferable to produce a molded body by pouring. According to this manufacturing method, for example, a long molded product can be unwound from an unwinding roll, and ions can be injected while being conveyed in a certain direction, and can be wound up by a winding roll. The molded product obtained in this way can be continuously produced.
- the shape of the long molded product is a film, which may be a polyorganosiloxane compound layer alone or may include other layers.
- the other layer include a base material made of a material other than the polyorganosiloxane compound, and the same layers as the other layers described above can be used.
- the thickness of the molded product is preferably 1 ⁇ m to 500 ⁇ m, more preferably 5 ⁇ m to 300 ⁇ m, from the viewpoint of unwinding, winding and conveying operability.
- the method for ion implantation into the polyorganosiloxane compound layer is not particularly limited. Among these, a method of forming an ion implantation layer on the surface portion of the layer by plasma ion implantation is preferable.
- a plasma is generated in an atmosphere containing a hydrocarbon compound gas, and a negative high voltage pulse is applied to the polyorganosiloxane compound layer, whereby a hydrocarbon-based compound is contained in the plasma.
- Compound ions can be generated and injected into the surface of the polyorganosiloxane compound layer.
- (A) a method in which ions existing in plasma generated using an external electric field are implanted into the surface portion of the layer, or (B) the layer is formed without using an external electric field.
- a method of injecting ions present in the plasma generated only by the electric field by the negative high voltage pulse to be applied to the surface portion of the layer is preferable.
- the pressure during ion implantation is preferably 0.01 to 1 Pa.
- the pressure during plasma ion implantation is in such a range, a uniform ion implantation layer can be easily and efficiently formed, and an ion implantation layer having both transparency and gas barrier properties can be efficiently formed. Can do.
- the processing operation is simple, and the processing time can be greatly shortened. Further, the entire layer can be processed uniformly, and ions in the plasma can be continuously injected into the surface portion of the layer with high energy when a negative high voltage pulse is applied. Furthermore, without applying special other means such as radio frequency (hereinafter abbreviated as “RF”) or a high frequency power source such as a microwave, just applying a negative high voltage pulse to the layer, An ion implantation layer can be uniformly formed on the surface portion of the layer.
- RF radio frequency
- a high frequency power source such as a microwave
- the pulse width when applying a negative high voltage pulse is preferably 1 to 15 ⁇ sec.
- the pulse width is in such a range, a transparent and uniform ion implantation layer can be formed more easily and efficiently.
- the applied voltage when generating plasma is preferably -1 kV to -50 kV, more preferably -1 kV to -30 kV, and particularly preferably -5 kV to -20 kV. If ion implantation is performed at an applied voltage greater than ⁇ 1 kV, the ion implantation amount (dose amount) becomes insufficient, and desired performance cannot be obtained. On the other hand, if ion implantation is performed at a value smaller than ⁇ 50 kV, the molded body is charged at the time of ion implantation, and defects such as coloring of the molded body occur.
- a plasma ion implantation apparatus When ions in plasma are implanted into the surface portion of the layer, a plasma ion implantation apparatus is used. Specifically, as a plasma ion implantation apparatus, ( ⁇ ) a high frequency power is applied to a feedthrough that applies a negative high voltage pulse to a polyorganosiloxane compound layer (hereinafter, also referred to as “ion implantation layer”). Is an apparatus that uniformly surrounds the periphery of the layer to be ion-implanted with plasma, attracts, injects, collides, and deposits ions in the plasma (Japanese Patent Laid-Open No.
- the plasma ion implantation apparatus ( ⁇ ) or ( ⁇ ) because the processing operation is simple, the processing time can be greatly shortened, and it is suitable for continuous use.
- a method using the plasma ion implantation apparatuses ( ⁇ ) and ( ⁇ ) will be described in detail with reference to the drawings.
- FIG. 1 is a diagram showing an outline of a continuous plasma ion implantation apparatus including the plasma ion implantation apparatus ( ⁇ ).
- 1a is a long film-like molded product (hereinafter referred to as “film”) having a polyorganosiloxane compound layer on the surface
- 11a is a chamber
- 20a is a turbo molecular pump
- 3a is Unwinding roll for feeding out the film 1a before being ion-implanted
- 5a is a winding roll for winding the ion-implanted film (molded body) 1b into a roll
- 2a is a high-voltage applied rotation can
- 6a is a film feeding roll 10a is a gas inlet
- 7a is a high voltage pulse power source
- 4 is a plasma discharge electrode (external electric field).
- FIG. 1B is a perspective view of the high-voltage applying rotation can 2a
- 15 is a high-voltage introduction terminal (feedthrough).
- the long film 1a having a polyorganosiloxane compound layer on the surface used in the present embodiment is a film in which a polyorganosiloxane compound layer is formed on a substrate (other layer).
- the film 1a is transported in the chamber 11a from the unwinding roll 3a in the direction of the arrow X in FIG. It is wound up on a roll 5a.
- the film 1a is transported by rotating the high voltage application rotating can 2a at a constant speed. ing.
- the rotation of the high voltage application rotation can 2a is performed by rotating the central shaft 13 of the high voltage introduction terminal 15 by a motor.
- the high voltage introduction terminal 15 and the plurality of delivery rolls 6a with which the film 1a comes into contact are made of an insulator, for example, formed by coating the surface of alumina with a resin such as polytetrafluoroethylene.
- the high-voltage applying rotation can 2a is made of a conductor and can be formed of, for example, stainless steel.
- the conveyance speed of the film 1a can be set as appropriate.
- the film 1a is conveyed from the unwinding roll 3a and is ion-implanted into the surface portion (polyorganosiloxane-based compound layer) of the film 1a until the film 1a is wound on the winding roll 5a, thereby forming a desired ion-implanted layer.
- the film winding speed (line speed) is usually from 0.1 to 3 m / min, preferably from 0.2 to 2.5 m / min, although it depends on the applied voltage, the apparatus scale, and the like.
- the chamber 11a is evacuated by a turbo molecular pump 20a connected to a rotary pump to reduce the pressure.
- the degree of reduced pressure is usually 1 ⁇ 10 ⁇ 4 Pa to 1 Pa, preferably 1 ⁇ 10 ⁇ 3 Pa to 1 ⁇ 10 ⁇ 2 Pa.
- a gas for ion implantation such as methane gas (hereinafter sometimes referred to as “ion implantation gas”) is introduced into the chamber 11a from the gas inlet 10a, and the reduced pressure ion implantation gas is introduced into the chamber 11a.
- ion implantation gas such as methane gas
- plasma is generated by the plasma discharge electrode 4 (external electric field).
- a method for generating plasma a known method using a high-frequency power source such as a microwave or RF may be used.
- the negative high voltage pulse 9a is applied by the high voltage pulse power source 7a connected to the high voltage application rotation can 2a via the high voltage introduction terminal 15.
- ions in the plasma are induced and injected into the surface of the film around the high voltage application rotation can 2a (in FIG. 1 (a), Arrow Y).
- the pressure during ion implantation (the pressure of the plasma gas in the chamber 11a) is preferably 0.01 to 1 Pa, and the pulse width during ion implantation is 1 to 15 ⁇ sec.
- the applied voltage when applying a negative high voltage to the high-voltage applying rotation can 2a is preferably ⁇ 1 kV to ⁇ 50 kV.
- the apparatus shown in FIG. 2 includes the plasma ion implantation apparatus ( ⁇ ).
- This plasma ion implantation apparatus generates plasma only by an electric field by a high voltage pulse applied without using an external electric field (that is, plasma discharge electrode 4 in FIG. 1).
- the film (film-like molded product) 1c is removed from the unwinding roll 3b by rotating the high-voltage applying rotation can 2b as in the apparatus of FIG. 2 is conveyed in the direction of arrow X, and is taken up by the take-up roll 5b.
- Reference numeral 6b denotes a feeding roll.
- ion implantation into the surface of the polyorganosiloxane compound layer of the film is performed as follows.
- the film 1c is placed in the chamber 11b, and the inside of the chamber 11b is evacuated by the turbo molecular pump 20b connected to the rotary pump to reduce the pressure.
- an ion implantation gas such as methane gas is introduced into the chamber 11b from the gas inlet 10b, and the inside of the chamber 11b is made a reduced pressure ion implantation gas atmosphere.
- the pressure at the time of ion implantation (the pressure of the plasma gas in the chamber 11b) is 10 Pa or less, preferably 0.01 to 5 Pa, more preferably 0.01 to 1 Pa.
- the high voltage pulse 9b is applied from the high voltage pulse power source 7b connected to the high voltage application rotation can 2b through the high voltage introduction terminal while the film 1c is conveyed in the direction X in FIG.
- the applied voltage when applying a negative high voltage to the high-voltage applying rotation can 2b, the pulse width, and the pressure during ion implantation are the same as those in the continuous plasma ion implantation apparatus shown in FIG.
- the plasma generating means for generating plasma is also used by the high voltage pulse power source, no special other means such as a high frequency power source such as RF or microwave is required.
- a high frequency power source such as RF or microwave
- plasma is generated, ions in the plasma are implanted into the surface of the polyorganosiloxane compound layer of the film, and an ion-implanted layer is continuously formed.
- the electronic device member of the present invention is characterized by comprising the molded article of the present invention. Therefore, since the electronic device member of the present invention is excellent in gas barrier properties, deterioration of the element due to gas such as water vapor can be prevented. Furthermore, since it is excellent in transparency, bending resistance, antistatic property and surface smoothness, it is suitable as a display member such as a liquid crystal display or an EL display; a solar cell member; As a solar cell member, transparency is not necessary, but it can also be suitably used for a solar cell backsheet that requires gas barrier properties.
- the electronic device of the present invention includes the electronic device member of the present invention.
- Specific examples include a liquid crystal display, an organic EL display, an inorganic EL display, electronic paper, and a solar battery. Since the electronic device of the present invention includes the electronic device member comprising the molded article of the present invention, it is excellent in gas barrier properties, transparency, bending resistance, antistatic properties and surface smoothness.
- Plasma ion implantation apparatus Water vapor transmission rate measurement device and measurement conditions, visible light transmission measurement device, bending resistance test method, charged voltage measurement device, surface resistivity measurement device, and surface smoothness evaluation are as follows: It is.
- the plasma ion implantation apparatus used is an apparatus for ion implantation using an external electric field.
- RF power source Model number “RF” 56000, JEOL high voltage pulse power source: “PV-3-HSHV-0835”, Kurita Manufacturing Co., Ltd.
- Transmittance measuring device “L89-500”, measurement conditions manufactured by LYSSY: 40 ° C., relative humidity 90%
- UV-3600 ultraviolet-visible near-infrared spectral transmittance meter
- Comparative Example 1 and Comparative Example 2 are the silicone release agent layer side
- Comparative Example 3 was installed with the polyphenylsilsesquioxane layer side and Comparative Example 4 the silicon nitride film side), applied with an output voltage of 10 kV, and charged while rotating at a rotational speed of 1300 rpm.
- the voltage (mV), half-life (time until the initial charged voltage decays to 50%), and charged voltage after 60 seconds were measured.
- the half-life was set to “60 seconds or more” when it was 60 seconds or more.
- Example 1 Polyethylene terephthalate film (“PET38T-300”, manufactured by Mitsubishi Plastics, thickness 38 ⁇ m) (hereinafter referred to as “PET film”) (hereinafter referred to as “PET film”) as a base material, silicone release agent 1 (“KS847”, A silicone resin based on polydimethylsiloxane (manufactured by Shin-Etsu Chemical Co., Ltd.) is applied and heated at 120 ° C. for 2 minutes to form a layer containing 100 nm thick polydimethylsiloxane on a PET film. Got. Next, using the plasma ion implantation apparatus shown in FIG. 1, methane (CH 4 ) was plasma ion implanted into the surface of the layer containing polydimethylsiloxane to produce a compact 1.
- CH 4 methane
- Example 2 Molding in the same manner as in Example 1 except that phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as “silicone release agent 2”) was used as the polyorganosiloxane compound instead of silicone release agent 1. Body 2 was produced.
- phenyltrimethoxysilane manufactured by Tokyo Chemical Industry Co., Ltd., hereinafter referred to as “silicone release agent 2”
- silicone release agent 2 phenyltrimethoxysilane
- Example 3 A molded body 3 was produced in the same manner as in Example 1 except that polyphenylsilsesquioxane (SR-23, manufactured by Konishi Chemical Industry Co., Ltd.) was used as the polyorganosiloxane compound in place of the silicone release agent 1. .
- polyphenylsilsesquioxane SR-23, manufactured by Konishi Chemical Industry Co., Ltd.
- Example 4 A molded body 4 was produced in the same manner as in Example 1 except that acetylene was used instead of methane as the ion implantation gas.
- Example 5 A molded body 5 was produced in the same manner as in Example 2 except that acetylene was used instead of methane as the ion implantation gas.
- Example 6 A molded body 6 was produced in the same manner as in Example 3 except that acetylene was used instead of methane as the ion implantation gas.
- Example 7 A molded body 7 was produced in the same manner as in Example 1 except that toluene was used instead of methane as the ion implantation gas.
- Example 8 A molded body 8 was produced in the same manner as in Example 2 except that toluene was used in place of methane as the ion implantation gas.
- Example 9 A molded body 9 was produced in the same manner as in Example 3 except that toluene was used instead of methane as the ion implantation gas.
- Example 10 A molded body 10 was produced in the same manner as in Example 1 except that ethylene was used instead of methane as the ion implantation gas.
- Example 1 A molded body was produced in the same manner as in Example 1 except that ion implantation was not performed. That is, a layer of the silicone release agent 1 was formed on the PET film to obtain a molded body 1c.
- Example 2 A molded body was produced in the same manner as in Example 2 except that ion implantation was not performed. That is, a layer of the silicone release agent 2 was formed on the PET film to obtain a molded body 2c.
- Example 3 A molded body was produced in the same manner as in Example 3 except that ion implantation was not performed. That is, a polyphenylsilsesquioxane layer was formed on a PET film to obtain a molded body 3c.
- Example 5 A molded body was produced in the same manner as in Example 1 except that the polyorganosiloxane compound was not applied to the PET film. That is, methane was plasma ion-implanted on the surface of the PET film to obtain a molded body 5c.
- Example 6 A molded body was produced in the same manner as in Example 4 except that the polyorganosiloxane compound was not applied to the PET film. That is, acetylene was ion-implanted into the surface of the PET film to obtain a molded body 6c.
- Example 7 A molded body was produced in the same manner as in Example 7 except that the polyorganosiloxane compound was not applied to the PET film. That is, a molded product 7c was formed by plasma ion implantation of toluene on the surface of the PET film.
- Example 1 to 10 Reference Examples 1 to 3, and Comparative Examples 5 to 7, the fact that an ion implantation layer is formed is determined by using XPS (measuring device: manufactured by ULVAC-PHI), an element near 10 nm from the surface. It was confirmed by performing an analytical measurement. Further, for the molded products 1 to 10, 1r to 3r, and 1c to 7c obtained in Examples 1 to 10, Reference Examples 1 to 3, and Comparative Examples 1 to 7, measurement of water vapor transmission rate, bending resistance test, visible The light transmittance, the charged voltage, and the surface resistance were measured. The results are shown in Table 1 below.
- the molded bodies 1 to 10 of Examples 1 to 10 have a lower water vapor transmission rate than the molded bodies 1c to 3c and 5c to 7c of Comparative Examples 1 to 3, 5 to 7. And had excellent gas barrier properties.
- the molded bodies 4 to 10 of Examples 4 to 10 had small charged voltage and surface resistance value and excellent antistatic properties as compared with the molded bodies 1c to 5c of Comparative Examples 1 to 5.
- the molded bodies of Examples 1 to 10 were free from cracks and had excellent bending resistance as compared with the molded body 4c of Comparative Example 4 in which an inorganic film was formed. I understand.
- the molded products 1 to 10 of Examples 1 to 10 were superior in surface smoothness to the molded products 1c to 7c of Comparative Examples 1 to 7. From the above, it can be seen that a molded article excellent in all of gas barrier properties, transparency, antistatic properties, bending resistance and surface smoothness can be obtained by performing ion implantation of hydrocarbon compounds under appropriate conditions. .
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
例えば、近年、液晶ディスプレイやエレクトロルミネッセンス(EL)ディスプレイ等のディスプレイには、薄型化、軽量化、フレキシブル化等を実現するために、基板として、ガラス板に代えて、透明プラスチックフィルムを用いることが検討されている。
しかしながら、この文献に記載された技術により得られる成形体は、耐透湿性に優れるものの、充分なガスバリア性を有するものではない。
(1)ポリオルガノシロキサン系化合物を含む層に、炭化水素系化合物のイオンが注入されて得られる層を有することを特徴とする成形体。
(2)ポリオルガノシロキサン系化合物を含む層に、プラズマイオン注入法により、炭化水素系化合物のイオンが注入されて得られる層を有することを特徴とする(1)に記載の成形体。
(3)40℃、相対湿度90%雰囲気下での水蒸気透過率が1.5g/m2/day以下であることを特徴とする(1)又は(2)に記載の成形体。
(4)ポリオルガノシロキサン系化合物を含む層を表面部に有する成形物の、前記ポリオルガノシロキサン系化合物を含む層の表面部に、炭化水素系化合物のイオンを注入する工程を有する(1)に記載の成形体の製造方法。
(5)ポリオルガノシロキサン系化合物を含む層を表面部に有する長尺の成形物を一定方向に搬送しながら、前記ポリオルガノシロキサン系化合物を含む層に、炭化水素系化合物のイオンを注入することを特徴とする(4)に記載の成形体の製造方法。
(6)前記(1)~(3)のいずれかに記載の成形体からなる電子デバイス用部材。
(7)前記(6)に記載の電子デバイス用部材を備える電子デバイス。
本発明の製造方法によれば、本発明の成形体を簡便かつ効率よく製造することができる。
本発明の電子デバイス用部材は、優れたガスバリア性、透明性等を有するため、ディスプレイ、太陽電池等の電子デバイスに好適に用いることができる。
本発明の成形体は、ポリオルガノシロキサン系化合物を含む層(以下、「ポリオルガノシロキサン系化合物層」ということがある。)に、炭化水素系化合物のイオンが注入されて得られる層(以下、「イオン注入層」という。)を有することを特徴とする。
例えば、前記直鎖状の主鎖構造としては下記式(a)で表される構造が、ラダー状の主鎖構造としては下記式(b)で表される構造が挙げられ、籠状の主鎖構造としては下記式(c)で表される構造が例示される。
これらのガスは、一種単独で、あるいは二種以上を組み合わせて用いてもよい。
ポリイミド、ポリアミド、ポリアミドイミド、ポリフェニレンエーテル、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリオレフィン、ポリエステル、ポリカーボネート、ポリスルフォン、ポリエーテルスルフォン、ポリフェニレンスルフィド、ポリアリレート、アクリル系樹脂、シクロオレフィン系ポリマー、芳香族系重合体等が挙げられる。
ポリアミドとしては、全芳香族ポリアミド、ナイロン6、ナイロン66、ナイロン共重合体等が挙げられる。
本発明の成形体がガスバリア性に優れることは、本発明の成形体の水蒸気等のガスの透過率が、イオンが注入されていないものに比して、格段に小さいことから確認することができる。例えば、40℃、相対湿度90%雰囲気下での水蒸気透過度、すなわち、40℃において、相対湿度90%の調湿室から成型体(フィルム)を通過してくる水蒸気量は、1.5g/m2/day以下が好ましい。
成形体の水蒸気等の透過率は、公知のガス透過率測定装置を使用して測定することができる。
また、高抵抗率計を用いて表面抵抗を測定し、その値が小さいことからも確認することができる。本発明の成形体の表面抵抗は、通常1.1×1014Ω/□以下、好ましくは1.0×1010Ω/□~1.05×1014Ω/□である。
本発明の成形体の製造方法は、ポリオルガノシロキサン系化合物層を表面部に有する成形物の、前記ポリオルガノシロキサン系化合物層に、炭化水素系化合物のイオンを注入する工程を有することを特徴とする。
プラズマイオン注入装置としては、具体的には、(α)ポリオルガノシロキサン系化合物層(以下、「イオン注入する層」ということがある。)に負の高電圧パルスを印加するフィードスルーに高周波電力を重畳してイオン注入する層の周囲を均等にプラズマで囲み、プラズマ中のイオンを誘引、注入、衝突、堆積させる装置(特開2001-26887号公報)、(β)チャンバー内にアンテナを設け、高周波電力を与えてプラズマを発生させてイオン注入する層周囲にプラズマが到達後、イオン注入する層に正と負のパルスを交互に印加することで、正のパルスでプラズマ中の電子を誘引衝突させてイオン注入する層を加熱し、パルス定数を制御して温度制御を行いつつ、負のパルスを印加してプラズマ中のイオンを誘引、注入させる装置(特開2001-156013号公報)、(γ)マイクロ波等の高周波電力源等の外部電界を用いてプラズマを発生させ、高電圧パルスを印加してプラズマ中のイオンを誘引、注入させるプラズマイオン注入装置、(δ)外部電界を用いることなく高電圧パルスの印加により発生する電界のみで発生するプラズマ中のイオンを注入するプラズマイオン注入装置等が挙げられる。
以下、前記(γ)及び(δ)のプラズマイオン注入装置を用いる方法について、図面を参照しながら詳細に説明する。
図1(a)において、1aはポリオルガノシロキサン系化合物層を表面部に有する長尺のフィルム状の成形物(以下、「フィルム」という。)、11aはチャンバー、20aはターボ分子ポンプ、3aはイオン注入される前のフィルム1aを送り出す巻き出しロール、5aはイオン注入されたフィルム(成形体)1bをロール状に巻き取る巻取りロール、2aは高電圧印加回転キャン、6aはフィルムの送り出しロール、10aはガス導入口、7aは高電圧パルス電源、4はプラズマ放電用電極(外部電界)である。図1(b)は、前記高電圧印加回転キャン2aの斜視図であり、15は高電圧導入端子(フィードスルー)である。
本発明の電子デバイス用部材は、本発明の成形体からなることを特徴とする。従って、本発明の電子デバイス用部材はガスバリア性に優れるので、水蒸気等のガスによる素子の劣化を防ぐことができる。さらに、透明性、耐屈曲性、帯電防止性及び表面平滑性に優れるので、液晶ディスプレイ、ELディスプレイ等のディスプレイ部材;太陽電池用部材;等として好適である。太陽電池用部材としては、透明性は必要ではないが、ガスバリア性が要求される太陽電池用バックシートにも好適に用いることができる。
本発明の電子デバイスは、本発明の成形体からなる電子デバイス用部材を備えているので、ガスバリア性、透明性、耐屈曲性、帯電防止性及び表面平滑性に優れる。
RF電源:型番号「RF」56000、日本電子社製
高電圧パルス電源:「PV-3-HSHV-0835」、栗田製作所社製
(水蒸気透過率測定装置)
透過率測定器:「L89-500」、LYSSY社製
測定条件:40℃、相対湿度90%
紫外可視近赤外分光透過率計(UV-3600、島津製作所社製)を用いて波長550nmにおける透過率を測定した。
3mmφステンレスの棒に、得られた成形体のイオン注入面(比較例1、比較例2はシリコーン剥離剤層側、比較例3はポリフェニルシルセスキオキサン層側、比較例4は窒化ケイ素膜側)を外側にして成形体を巻きつけ、周方向に10往復させた後、光学顕微鏡(倍率2000倍、キーエンス社製)でクラック発生の有無を観察した。クラックの発生が認められなかった場合を「なし」、クラックの発生が認められた場合を「あり」と評価した。
電荷減衰度測定装置(STATIC HONESTMETER TypeS-5109、シシド静電気社製)を用いて、ターンテーブル上に、得られた成形体のイオン注入面(比較例1、比較例2はシリコーン剥離剤層側、比較例3はポリフェニルシルセスキオキサン層側、比較例4は窒化ケイ素膜側)を上にして設置し、出力電圧10kVの電圧の印加し、回転数1300rpmで回転させながら帯電し、初期帯電圧(mV)、半減期(初期帯電圧が50%に減衰するまでの時間)、及び60秒後の帯電圧を測定した。半減期は、60秒以上である場合「60秒以上」とした。
高抵抗率計(ハイレスターUP MCP-HT450、三菱化学社製)を用いて、得られた成形体のイオン注入面(比較例1、比較例2はシリコーン剥離剤層側、比較例3はポリフェニルシルセスキオキサン層側、比較例4は窒化ケイ素膜側)の表面抵抗を測定した。表面抵抗値は、1.0×1015Ω/□以上の場合「1.0×1015Ω/□」とした。
原子間力顕微鏡(AFM)(「SPA300 HV」、エスアイアイ・ナノテクノロジー社製)を用いて測定領域1×1μm(1μm□)及び25×25μm(25μm□)における、得られた成形体のイオン注入面の表面粗さRa値(nm)を測定した。
基材としてのポリエチレンテレフタレートフィルム(「PET38T-300」、三菱樹脂社製、厚さ38μm)(以下、「PETフィルム」という。)に、ポリオルガノシロキサン系化合物としてシリコーン剥離剤1(「KS847」、ポリジメチルシロキサンを主成分とするシリコーン樹脂、信越化学工業社製)を塗布し、120℃で2分間加熱して、PETフィルム上に厚さ100nmのポリジメチルシロキサンを含む層を形成して成形物を得た。次に、図1に示すプラズマイオン注入装置を用いてポリジメチルシロキサンを含む層の表面に、メタン(CH4)をプラズマイオン注入して成形体1を作製した。
・Duty比:0.5%
・繰り返し周波数:1000Hz
・印加電圧:-10kV
・RF電源:周波 13.56MHz、印加電力 1000W
・チャンバー内圧:0.2Pa
・パルス幅:5μsec
・処理時間(イオン注入時間):5分間
・ガス流量:100ccm
ポリオルガノシロキサン系化合物としてシリコーン剥離剤1の代わりに、フェニルトリメトキシシラン(東京化成工業社製、以下、「シリコーン剥離剤2」という。)を用いた以外は、実施例1と同様にして成形体2を作製した。
ポリオルガノシロキサン系化合物としてシリコーン剥離剤1の代わりに、ポリフェニルシルセスキオキサン(SR-23、小西化学工業社製)を用いた以外は、実施例1と同様にして成形体3を作製した。
イオン注入用ガスとして、メタンの代わりにアセチレンを用いた以外は、実施例1と同様にして成形体4を作製した。
イオン注入用ガスとして、メタンの代わりにアセチレンを用いた以外は、実施例2と同様にして成形体5を作製した。
イオン注入用ガスとして、メタンの代わりにアセチレンを用いた以外は、実施例3と同様にして成形体6を作製した。
イオン注入用ガスとして、メタンの代わりにトルエンを用いた以外は、実施例1と同様にして成形体7を作製した。
イオン注入用ガスとして、メタンの代わりにトルエンを用いた以外は、実施例2と同様にして成形体8を作製した。
イオン注入用ガスとして、メタンの代わりにトルエンを用いた以外は、実施例3と同様にして成形体9を作製した。
イオン注入用ガスとして、メタンの代わりにエチレンを用いた以外は、実施例1と同様にして成形体10を作製した。
イオン注入用ガスとして、メタンの代わりにアルゴンを用いた以外は、実施例1と同様にして成形体1rを作製した。
イオン注入用ガスとして、メタンの代わりにアルゴンを用いた以外は、実施例2と同様にして成形体2rを作製した。
イオン注入用ガスとして、メタンの代わりにアルゴンを用いた以外は、実施例3と同様にして成形体3r作製した。
イオン注入を行わない以外は、実施例1と同様にして成形体を作製した。すなわち、PETフィルム上にシリコーン剥離剤1の層を形成し、成形体1cとした。
イオン注入を行わない以外は、実施例2と同様にして成形体を作製した。すなわち、PETフィルム上にシリコーン剥離剤2の層を形成し、成形体2cとした。
イオン注入を行わない以外は、実施例3と同様にして成形体を作製した。すなわち、PETフィルム上にポリフェニルシルセスキオキサンの層を形成し、成形体3cとした。
PETフィルムに、スパッタリング法により、厚さ50nmの窒化ケイ素(Si3N4)の膜を設け、成形体4cを作製した。
PETフィルムにポリオルガノシロキサン系化合物を塗布しない以外は、実施例1と同様にして成形体を作製した。すなわち、PETフィルムの表面にメタンをプラズマイオン注入して成形体5cとした。
PETフィルムにポリオルガノシロキサン系化合物を塗布しない以外は、実施例4と同様にして成形体を作製した。すなわち、PETフィルムの表面にアセチレンをプラズマイオン注入して成形体6cとした。
PETフィルムに、ポリオルガノシロキサン系化合物を塗布しない以外は、実施例7と同様にして成形体を作製した。すなわち、PETフィルムの表面にトルエンをプラズマイオン注入して成形体7cとした。
また、実施例1~10、参考例1~3及び比較例1~7で得られた成形体1~10、1r~3r、1c~7cにつき、水蒸気透過率の測定、耐屈曲性試験、可視光透過率の測定、帯電圧測定、及び表面抵抗の測定を行った。結果を下記第1表に示す。
また、耐屈曲性試験において、実施例1~10の成形体はクラックの発生がみられず、無機膜を形成した比較例4の成形体4cに比して、耐折り曲げ性に優れていることがわかる。
以上のことから、炭化水素系化合物のイオン注入を適切な条件で行うことにより、ガスバリア性、透明性、帯電防止性、耐屈曲性及び表面平滑性のすべてに優れる成形体が得られることがわかる。
Claims (7)
- ポリオルガノシロキサン系化合物を含む層に、炭化水素系化合物のイオンが注入されて得られる層を有することを特徴とする成形体。
- ポリオルガノシロキサン系化合物を含む層に、プラズマイオン注入法により、炭化水素系化合物のイオンが注入されて得られる層を有することを特徴とする請求項1に記載の成形体。
- 40℃、相対湿度90%雰囲気下での水蒸気透過率が1.5g/m2/day以下であることを特徴とする請求項1または2に記載の成形体。
- ポリオルガノシロキサン系化合物を含む層を表面部に有する成形物の、前記ポリオルガノシロキサン系化合物を含む層の表面部に、炭化水素系化合物のイオンを注入する工程を有する請求項1に記載の成形体の製造方法。
- ポリオルガノシロキサン系化合物を含む層を表面部に有する長尺の成形物を一定方向に搬送しながら、前記ポリオルガノシロキサン系化合物を含む層に、炭化水素系化合物のイオンを注入することを特徴とする請求項4に記載の成形体の製造方法。
- 請求項1~3のいずれかに記載の成形体からなる電子デバイス用部材。
- 請求項6に記載の電子デバイス用部材を備える電子デバイス。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/138,499 US9611541B2 (en) | 2009-03-26 | 2010-03-24 | Formed article, method for producing same, electronic device member, and electronic device |
KR1020117022347A KR101335093B1 (ko) | 2009-03-26 | 2010-03-24 | 성형체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스 |
EP10756101.1A EP2412522A4 (en) | 2009-03-26 | 2010-03-24 | MOLDED BODY, PROCESS FOR PRODUCING THE SAME, ELECTRONIC DEVICE ORGAN, AND ELECTRONIC DEVICE |
CN201080015944.6A CN102387921B (zh) | 2009-03-26 | 2010-03-24 | 成形物、成形物的制备方法、电子装置元件和电子装置 |
JP2011506078A JP5631864B2 (ja) | 2009-03-26 | 2010-03-24 | 成形体、その製造方法、電子デバイス用部材及び電子デバイス |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-075947 | 2009-03-26 | ||
JP2009075947 | 2009-03-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010110305A1 true WO2010110305A1 (ja) | 2010-09-30 |
Family
ID=42780999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055065 WO2010110305A1 (ja) | 2009-03-26 | 2010-03-24 | 成形体、その製造方法、電子デバイス用部材及び電子デバイス |
Country Status (7)
Country | Link |
---|---|
US (1) | US9611541B2 (ja) |
EP (1) | EP2412522A4 (ja) |
JP (1) | JP5631864B2 (ja) |
KR (1) | KR101335093B1 (ja) |
CN (1) | CN102387921B (ja) |
TW (1) | TWI522404B (ja) |
WO (1) | WO2010110305A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012216767A (ja) * | 2011-03-25 | 2012-11-08 | Nissin Ion Equipment Co Ltd | イオン注入方法 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101502202B1 (ko) | 2008-08-19 | 2015-03-12 | 린텍 가부시키가이샤 | 성형체, 그 제조 방법, 전자 디바이스 부재 및 전자 디바이스 |
WO2010134609A1 (ja) | 2009-05-22 | 2010-11-25 | リンテック株式会社 | 成形体、その製造方法、電子デバイス用部材および電子デバイス |
KR101474090B1 (ko) * | 2010-03-29 | 2014-12-17 | 린텍 가부시키가이샤 | 성형체, 그 제조 방법, 전자 디바이스용 부재 및 전자 디바이스 |
JP5697230B2 (ja) | 2010-03-31 | 2015-04-08 | リンテック株式会社 | 成形体、その製造方法、電子デバイス用部材及び電子デバイス |
WO2012023389A1 (ja) | 2010-08-20 | 2012-02-23 | リンテック株式会社 | 成形体、その製造方法、電子デバイス用部材及び電子デバイス |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06344495A (ja) | 1993-06-10 | 1994-12-20 | Sekisui Chem Co Ltd | ガスバリヤーフィルム |
JP2001026887A (ja) | 1999-07-12 | 2001-01-30 | Agency Of Ind Science & Technol | 表面改質方法及び表面改質装置 |
JP2001156013A (ja) | 1999-11-26 | 2001-06-08 | Natl Inst Of Advanced Industrial Science & Technology Meti | 表面改質方法及び表面改質装置 |
JP2001192826A (ja) * | 1999-05-27 | 2001-07-17 | Sony Corp | 表面処理装置および表面処理方法並びに表面処理物 |
JP2005048252A (ja) * | 2003-07-30 | 2005-02-24 | Ion Engineering Research Institute Corp | 潤滑性と離型性を有する炭素膜被覆物品及びその表面処理方法 |
JP2006070238A (ja) * | 2004-08-05 | 2006-03-16 | Lintec Corp | 高分子フィルムの連続的表面改質方法、連続的表面改質装置および表面部にイオン注入層が形成された高分子フィルム |
JP2006297737A (ja) | 2005-04-20 | 2006-11-02 | Fuji Photo Film Co Ltd | ガスバリアフィルム |
JP2007283726A (ja) | 2006-04-20 | 2007-11-01 | Bridgestone Corp | 成形体及びその製造方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5098202A (en) * | 1989-05-11 | 1992-03-24 | Baxter International Inc. | Multi-layer web of film having a gas barrier |
US5190807A (en) * | 1990-10-18 | 1993-03-02 | Diamonex, Incorporated | Abrasion wear resistant polymeric substrate product |
HU211184B (en) * | 1993-02-03 | 1996-02-28 | Mta Termeszettu Domanyi Kutato | Method for modification of gas-separating membrane |
JPH10321888A (ja) * | 1997-05-21 | 1998-12-04 | Shibata Ind Co Ltd | 太陽電池モジュール用保護シート |
KR20000075388A (ko) | 1999-05-27 | 2000-12-15 | 이데이 노부유끼 | 표면 처리 장치 및 표면 처리 방법 |
US8241713B2 (en) * | 2007-02-21 | 2012-08-14 | 3M Innovative Properties Company | Moisture barrier coatings for organic light emitting diode devices |
TWI491500B (zh) * | 2009-02-16 | 2015-07-11 | Lintec Corp | A manufacturing method of a laminated body, a structure for an electronic device, and an electronic device |
-
2010
- 2010-03-19 TW TW099108129A patent/TWI522404B/zh active
- 2010-03-24 JP JP2011506078A patent/JP5631864B2/ja active Active
- 2010-03-24 EP EP10756101.1A patent/EP2412522A4/en not_active Withdrawn
- 2010-03-24 US US13/138,499 patent/US9611541B2/en active Active
- 2010-03-24 KR KR1020117022347A patent/KR101335093B1/ko active IP Right Grant
- 2010-03-24 CN CN201080015944.6A patent/CN102387921B/zh active Active
- 2010-03-24 WO PCT/JP2010/055065 patent/WO2010110305A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06344495A (ja) | 1993-06-10 | 1994-12-20 | Sekisui Chem Co Ltd | ガスバリヤーフィルム |
JP2001192826A (ja) * | 1999-05-27 | 2001-07-17 | Sony Corp | 表面処理装置および表面処理方法並びに表面処理物 |
JP2001026887A (ja) | 1999-07-12 | 2001-01-30 | Agency Of Ind Science & Technol | 表面改質方法及び表面改質装置 |
JP2001156013A (ja) | 1999-11-26 | 2001-06-08 | Natl Inst Of Advanced Industrial Science & Technology Meti | 表面改質方法及び表面改質装置 |
JP2005048252A (ja) * | 2003-07-30 | 2005-02-24 | Ion Engineering Research Institute Corp | 潤滑性と離型性を有する炭素膜被覆物品及びその表面処理方法 |
JP2006070238A (ja) * | 2004-08-05 | 2006-03-16 | Lintec Corp | 高分子フィルムの連続的表面改質方法、連続的表面改質装置および表面部にイオン注入層が形成された高分子フィルム |
JP2006297737A (ja) | 2005-04-20 | 2006-11-02 | Fuji Photo Film Co Ltd | ガスバリアフィルム |
JP2007283726A (ja) | 2006-04-20 | 2007-11-01 | Bridgestone Corp | 成形体及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2412522A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012216767A (ja) * | 2011-03-25 | 2012-11-08 | Nissin Ion Equipment Co Ltd | イオン注入方法 |
Also Published As
Publication number | Publication date |
---|---|
EP2412522A4 (en) | 2014-01-22 |
EP2412522A1 (en) | 2012-02-01 |
JP5631864B2 (ja) | 2014-11-26 |
CN102387921A (zh) | 2012-03-21 |
CN102387921B (zh) | 2015-02-11 |
KR101335093B1 (ko) | 2013-12-03 |
KR20110133035A (ko) | 2011-12-09 |
TW201035199A (en) | 2010-10-01 |
US9611541B2 (en) | 2017-04-04 |
US20120088880A1 (en) | 2012-04-12 |
JPWO2010110305A1 (ja) | 2012-09-27 |
TWI522404B (zh) | 2016-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5704610B2 (ja) | 成形体、その製造方法、電子デバイス用部材および電子デバイス | |
JP4944993B2 (ja) | 成形体、その製造方法、電子デバイス部材および電子デバイス | |
TWI618632B (zh) | 氣體阻隔性層積體、電子裝置用構件及電子裝置 | |
JP5631864B2 (ja) | 成形体、その製造方法、電子デバイス用部材及び電子デバイス | |
JP5372240B2 (ja) | 透明導電性フィルムおよびその製造方法並びに透明導電性フィルムを用いた電子デバイス | |
WO2012039357A1 (ja) | 成形体、その製造方法、電子デバイス用部材及び電子デバイス | |
KR101489552B1 (ko) | 성형체, 그 제조 방법, 전자 디바이스용 부재, 및 전자 디바이스 | |
JP5389255B2 (ja) | 成形体、その製造方法、電子デバイス用部材及び電子デバイス | |
TWI490258B (zh) | A molded body, a manufacturing method thereof, an electronic device element, and an electronic device | |
JP5697230B2 (ja) | 成形体、その製造方法、電子デバイス用部材及び電子デバイス | |
JP5750441B2 (ja) | 成形体、その製造方法、電子デバイス用部材及び電子デバイス | |
US20190232611A1 (en) | Laminate film, electronic device member, and electronic device | |
JP2024067718A (ja) | ガスバリアフィルム及びガスバリアフィルムの製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080015944.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10756101 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011506078 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010756101 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117022347 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13138499 Country of ref document: US |