WO2010110041A1 - 高強度高延性ばね用鋼およびその製造方法並びにばね - Google Patents
高強度高延性ばね用鋼およびその製造方法並びにばね Download PDFInfo
- Publication number
- WO2010110041A1 WO2010110041A1 PCT/JP2010/053794 JP2010053794W WO2010110041A1 WO 2010110041 A1 WO2010110041 A1 WO 2010110041A1 JP 2010053794 W JP2010053794 W JP 2010053794W WO 2010110041 A1 WO2010110041 A1 WO 2010110041A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- steel
- spring
- austenite
- less
- spring steel
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/902—Metal treatment having portions of differing metallurgical properties or characteristics
- Y10S148/908—Spring
Definitions
- the present invention relates to a spring steel and a spring having an excellent balance between strength and ductility, and in particular, a spring steel in which a decrease in ductility, which is a problem with a spring steel having a tensile strength of 1800 MPa or more, is suppressed, a manufacturing method thereof, and a spring. About.
- Automotive suspension springs are required to be lighter in weight to improve automobile fuel efficiency, and in recent years, springs with a steel material with a tensile strength of 1800 MPa or more have also been realized.
- the notch sensitivity generally increases with the increase in strength of the steel material, so there is a concern that it may adversely affect the spring characteristics, such as durability in a corrosive environment,
- a steel material that has both high strength and high ductility and is difficult to crack.
- Patent Document 1 a suspension spring that has improved toughness and improved delayed fracture resistance by using steel in which Ni or Nb or the like is added to the basic steel components of spring steel specified in JIS Steel has been proposed. Also proposed is a steel for springs that uses steel added with at least one of Ti, V, Nb, Zr, and Hf to prevent embrittlement due to hydrogen penetrating into the steel and to improve corrosion fatigue resistance. (Patent Document 2).
- Patent Document 2 a steel for springs that uses steel added with at least one of Ti, V, Nb, Zr, and Hf to prevent embrittlement due to hydrogen penetrating into the steel and to improve corrosion fatigue resistance.
- Patent Document 2 a steel for springs that uses steel added with at least one of Ti, V, Nb, Zr, and Hf to prevent embrittlement due to hydrogen penetrating into the steel and to improve corrosion fatigue resistance.
- Patent Document 3 a high-strength and high-toughness steel that has a tempered martensite structure as a main component and does not require addition of a large amount of Ni, Cr, or the like has been proposed.
- This steel can be obtained by defining the average grain size and aspect ratio of prior austenite grains, the size of carbides, the number per observation unit cross-sectional area, and the like.
- the process since a process of performing cold working with a true strain of 0.2 or more at 500 ° C. or lower is required before the quenching process, the process may be complicated or productivity may be lowered.
- Patent Document 4 high-strength and high-toughness steel that does not require a large amount of alloying elements or special thermomechanical processing has been proposed, and fine carbides in austenite are dispersed and precipitated to refine the martensite substructure. Thus, toughness is improved (Patent Document 4).
- Patent Document 4 when heating in the quenching process, it is necessary to accurately control the temperature and time of heating in order to leave undissolved carbide, and there is a problem that process management becomes complicated.
- Patent Document 5 a high-strength steel sheet having a bainite structure using a strengthening method of high-strength steel that does not depend on quenching and tempering.
- This steel sheet can be obtained by heating a low alloy medium carbon steel (Nb: 0.005 to 0.2% contained) in the austenite region and isothermally holding (austempering) at a temperature equal to or higher than the Ms point.
- the steel sheet obtained has a maximum tensile strength of about 1530 MPa and an elongation of 9.0%, and sufficient strength and elongation are not obtained.
- Patent Document 5 targets a steel plate having a Vickers hardness of about 400 HV assuming post-processing such as bending and drawing, and the examination of the austempering conditions was only at a relatively high temperature.
- Patent Document 6 a spring steel having improved hydrogen embrittlement resistance has been proposed which mainly has a bainite or martensite structure and regulates the retained austenite content and crystal grain aspect ratio.
- Patent Document 6 does not describe an increase in the toughness of the steel itself, or a ductility characteristic value such as elongation or drawing in a tensile test.
- one of the structurally important factors for having both high strength and high ductility is that the average C concentration in the retained austenite is high. In Patent Document 6, this factor is not taken into consideration, and it is expected that high ductility is difficult to achieve even if high strength is obtained only by controlling the amount of retained austenite and its shape.
- Japanese Patent No. 3783306 Japanese Patent Laid-Open No. 2005-23404 JP 2001-288530 A JP 2002-212665 A Japanese Patent Publication No. 51-29492 JP 2007-1000020 A
- An object of the present invention is to provide a spring steel having a high tensile strength of 1800 MPa or more and a high ductility, a manufacturing method thereof, and a spring.
- the present inventors can increase the strength in a structure mainly composed of tempered martensite, but the drastic reduction in ductility associated therewith is fundamental.
- the problem can be solved by using a structure mainly composed of bainite obtained by austempering, and the present invention has been made.
- the spring steel of the present invention has an overall composition of mass%, C: 0.5 to 0.6%, Si: 1.0 to 1.8%, Mn: 0.1 to 1.0% , Cr: 0.1 to 1.0%, P: 0.035% or less, S: 0.035% or less, the balance is made of iron and inevitable impurities, and the area ratio of the internal structure in any cross section,
- the bainite is 65% or more
- the retained austenite is 6 to 13%
- the balance (including 0%) is martensite
- the average C concentration in the retained austenite is 0.65 to 1.7%.
- the spring steel of the present invention is preferably used with a diameter of 1.5 to 15 mm.
- the overall composition is mass%, C: 0.5 to 0.6%, Si: 1.0 to 1.8%, Mn: 0.1 to 1 0.03%, Cr: 0.1 to 1.0%, P: 0.035% or less, S: 0.035% or less, and the balance of the steel material consisting of iron and inevitable impurities exceeds Ac 3 ( (Ac 3 points + 250 ° C.) after austenitizing at a temperature of 20 ° C. or less, cooling at a rate of 20 ° C./s or more, holding at a temperature exceeding the Ms point (Ms point + 70 ° C.) and below 400-10800 seconds, It is characterized by cooling to room temperature at a cooling rate of s or more.
- the Ac 3 point is the boundary temperature between the austenite single-phase region and the ferrite + austenite two-phase region observed during heating, and the Ms point starts to form martensite from the supercooled austenite during cooling. Temperature.
- the spring of the present invention is made of the above spring steel and is manufactured by the above manufacturing method.
- JIS or SAE standard spring steel can be used as a raw material, and high strength and high ductility springs that do not require the addition of expensive alloy elements or complicated heat treatment Steel, a spring, and a manufacturing method thereof can be provided.
- the steel for springs and the spring of the present invention have a small amount of alloy elements, they are excellent in recyclability.
- the spring steel and spring of the present invention can simplify the manufacturing process as compared with the quenching and tempering treatment material that has been widely used conventionally, energy saving can be achieved.
- C 0.5 to 0.6%
- C is an element necessary for securing a tensile strength of 1800 MPa or more and retained austenite.
- C is an important element for obtaining a desired austenite area ratio at room temperature, and it is necessary to add 0.5% or more.
- the C concentration is excessive, the area ratio of the soft retained austenite increases excessively and it becomes difficult to obtain a desired strength, so the C content is suppressed to 0.6% or less.
- Si 1.0 to 1.8%
- Si has an action of suppressing precipitation of iron carbide even when C is discharged from bainitic ferrite to austenite, and is an indispensable element for obtaining high C concentration residual austenite which is a requirement of the present invention.
- Si is a solid solution strengthening element and is an effective element for obtaining high strength. However, if the amount of Si is excessive, the area ratio of the soft retained austenite becomes high and the strength is lowered, so the Si content is suppressed to 1.8% or less.
- Mn 0.1 to 1.0% Mn is added as a deoxidizing element, but is also an element that stabilizes austenite. Therefore, Mn is added in an amount of 0.1% or more in order to obtain retained austenite essential to the present invention. On the other hand, when the Mn content is excessive, segregation occurs and the workability is liable to decrease, so the Mn content is suppressed to 1.0% or less.
- Cr 0.1 to 1.0% Cr is an element that enhances the hardenability of the steel material and greatly improves the strength. Moreover, since there exists an effect
- P 0.035% or less
- S 0.035% or less Since P and S are elements that promote grain boundary segregation due to grain boundary segregation, each content is preferably low, and the upper limit is 0.035%. And Preferably, it is 0.01% or less.
- Bainite 65% or more Bainite is a metal structure obtained by isothermally transforming an austenitic steel material at a low temperature in a metal bath or a salt bath (bainite transformation) and then cooling to room temperature. Bainitic ferrite And iron carbide. Since bainitic ferrite at the base of the bainite structure has a high dislocation density and iron carbide has a precipitation strengthening effect, the strength can be increased by using the bainite structure. In the tempered martensite structure, iron carbide precipitates at the prior austenite grain boundaries, and the grain boundary strength decreases, so the ductility tends to decrease.
- the bainite structure is a structure in which iron carbide is finely precipitated on the bainitic ferrite matrix, and since the decrease in grain boundary strength is small, a decrease in ductility can be prevented.
- bainite is an indispensable structure for obtaining high strength and high ductility, and its area ratio is preferably as high as possible.
- 65% or more is necessary.
- a structure having an area ratio of bainite of less than 65% is obtained by water cooling after the bainite transformation has progressed to the initial or middle stage. Usually, the untransformed austenite during the isothermal holding becomes martensite or retained austenite by cooling thereafter.
- the concentration of C in the untransformed austenite at the initial or middle stage of the bainite transformation is small, when the bainite area ratio is less than 65%, the untransformed austenite is mostly martensite by cooling and partly austenite. Remains as. Therefore, if the bainite area ratio is less than 65%, martensite increases and high strength can be obtained, but the ductility is greatly reduced, so that the high strength and high ductility defined in the present invention cannot be satisfied.
- Residual austenite 6-13%
- the retained austenite is effective for increasing ductility and strain hardening using the TRIP (Transformation-Induced Plasticity) phenomenon.
- TRIP Transformation-Induced Plasticity
- 6% or more of retained austenite is necessary.
- retained austenite is soft, if it is excessive, the material strength is significantly reduced. For this reason, retained austenite is suppressed to 13% or less.
- Martensite remainder (including 0%) An appropriate amount of martensite can be present depending on the desired tensile strength.
- Average C concentration in retained austenite 0.65 to 1.7%
- a high average C concentration in retained austenite is an indispensable condition. Since the C concentration in the retained austenite increases as C is discharged from the bainitic ferrite to the surrounding supercooled (resultingly retained) austenite during the isothermal transformation described above, the C concentration in the retained austenite locally. Concentrations are considered different. Residual austenite tends to be stable as a phase even if it is deformed as its C concentration increases, and hardly transforms into a plasticity-induced martensite phase.
- the retained austenite having a relatively low C concentration is hardened while undergoing martensitic transformation by TRIP to improve the ductility, and when plastic deformation proceeds, the retained austenite having a high C concentration without martensitic transformation is obtained. It maintains ductility by being stable. As a result, it is considered that high ductility of the steel material is realized.
- the C concentration in the retained austenite needs to be 0.65% or more.
- the tensile strength of the spring steel is desirably 1800 MPa or more in order to reduce the weight of the spring.
- the tensile strength and the elongation at break which is one of typical characteristic values representing ductility, are in a trade-off relationship, and the parameter Z defined below is 15000 or more when the tensile strength is 1800 MPa or more. Is desirable.
- the spring steel according to the present invention satisfying these conditions has a clear advantage over the quenching martensite widely used conventionally.
- Parameter Z (Tensile strength (MPa)) ⁇ (Elongation at break (%))
- the spring steel of the present invention is mainly used for suspension springs and valve springs for automobiles, and the diameter of the spring steel is preferably 1.5 to 15 mm in order to satisfy the required specifications.
- the spring steel of the present invention is manufactured by making the structure bainite by isothermally holding the steel material having the above composition after it is austenitized and then cooling it.
- the structure of the steel material before austenitization is not particularly limited.
- a hot-forged or drawn steel strip can be used as the material.
- a cooling rate of 20 ° C./s or more, preferably 50 ° C./s or more.
- the cooling rate is less than 20 ° C./s, pearlite is generated during cooling, and thus a desired structure cannot be obtained.
- the temperature to be kept isothermally needs to exceed the Ms point (Ms point + 70 ° C.) or less, and the temperature here is a very important control factor in the manufacturing method for obtaining the spring steel and the spring of the present invention.
- the isothermal holding temperature is equal to or lower than the Ms point, hard martensite that inhibits improvement in ductility is generated at the early stage of transformation of bainite, and a desired bainite area ratio cannot be obtained.
- the isothermal holding temperature exceeds (Ms point + 70 ° C.)
- the substructure and carbides of bainitic ferrite become coarse and the tensile strength decreases.
- the time for isothermal holding needs to be 400 to 10800 s, and this time is also a very important control factor in the method for producing spring steel of the present invention. If the isothermal holding time is less than 400 s, the bainite transformation hardly proceeds, so that the bainite area ratio becomes small and the structure defined in the present invention cannot be obtained. Further, when the isothermal holding time exceeds 10800 s, C discharged from bainitic ferrite becomes supersaturated in untransformed austenite, and a large amount of iron carbide precipitates from untransformed austenite. Therefore, the amount of untransformed austenite is relatively Decrease. As a result, the area ratio of the retained austenite obtained after cooling decreases, so that the structure defined in the present invention cannot be achieved.
- cooling rate In order to obtain a uniform structure, the faster the cooling rate after isothermal holding, the better, and a cooling rate of 20 ° C./s or higher is necessary, preferably 50 ° C./s or higher.
- cooling may be performed by oil cooling or water cooling.
- the cooling rate is less than 20 ° C./s, the structure tends to be nonuniform on the steel material surface and inside, and the structure defined in the present invention may not be obtained.
- a to C steel materials having the composition shown in Table 1 were prepared, and each steel material was melted in a vacuum high-frequency induction furnace to form a 50 kg steel ingot, and forged to a diameter of 12 mm at 1180 ° C. Furthermore, after this steel bar was held at 820 ° C. for 3600 s, normalization was performed and pretreatment was performed. The heat treatment is performed by heating and holding at 1000 ° C. for 400 s, then cooling to a temperature T (° C.) shown in Table 2 at a rate of about 100 ° C./s, holding the time t (s) shown in Table 2, and then water cooling. Cooled to room temperature at a rate of about 50 ° C./s. The steel thus obtained was examined for phase distinction, tensile strength and elongation at break in the following manner.
- Phase distinction is made by collating the optical micrograph at the same location with the crystal orientation map obtained by EBSD (Electron Back Scattering Diffraction) method. I confirmed that there was. Then, the bainite area ratio and the total area ratio of martensite and retained austenite were obtained by image processing. Further, the area ratio of retained austenite was determined by an X-ray diffraction method using a buffed polished sample. The area ratio of martensite was determined by subtracting the retained austenite area ratio determined from X-ray diffraction from the total area ratio of martensite and retained austenite determined from the optical micrograph.
- EBSD Electro Back Scattering Diffraction
- test pieces of 6 to 10 exhibit a high strength and high ductility with a tensile strength of 1800 MPa or more and a parameter Z of 15000 or more.
- the C concentration in the retained austenite is low, so the elongation at break is small, does not meet the standard value of the parameter Z (No. 18), or the strength of the steel material itself used is low. Does not satisfy the standard value of tensile strength (No. 19, 20).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Steel (AREA)
- Springs (AREA)
Abstract
Description
パラメータZ=(引張強さ(MPa))×(破断伸び(%))
なお、本発明のばね用鋼を直径1.5~15mmとして用いることが好ましい。
Cは、1800MPa以上の引張強さおよび残留オーステナイトを確保するために必要な元素である。また、Cは室温で所望のオーステナイト面積比率を得るために重要な元素であり、0.5%以上添加することが必要である。しかしながら、C濃度が過剰になると、軟質な残留オーステナイトの面積比率が増加し過ぎて所望の強度を得ることが困難になるため、Cの含有量は0.6%以下に抑える。
Siは、ベイニティックフェライトからオーステナイトへCが排出されても鉄炭化物の析出を抑制する作用を持ち、本発明の要件にある高C濃度の残留オーステナイトを得るためには不可欠の元素である。また、Siは固溶強化元素であり、高強度を得るために有効な元素である。ただし、Si量が過剰であると、軟質な残留オーステナイトの面積比率が高くなり、強度の低下を招くため、Siの含有量は1.8%以下に抑える。
Mnは、脱酸元素として添加するが、オーステナイトを安定化させる元素でもあるため、本発明が必須とする残留オーステナイトを得るために0.1%以上添加する。一方、Mnの含有量が過剰であると、偏析が生じて加工性が低下しやすくなるため、Mnの含有量は1.0%以下に抑える。
Crは、鋼材の焼入れ性を高め、強度を大きく向上させる元素である。また、パーライト変態を遅延させる作用もあり、安定してベイナイト組織を得ることができるため、0.1%以上添加する。ただし、1.0%を超えて添加すると鉄炭化物が生じやすくなり、残留オーステナイトが生じ難くなるため、Crの含有量は1.0%以下に抑える。
PおよびSは、粒界偏析による粒界破壊を助長する元素であるため、各含有量は低いほうが望ましく、その上限は0.035%とする。好ましくは、0.01%以下である。
ベイナイト:65%以上
ベイナイトとは、オーステナイト化された鋼材を金属浴や塩浴等において低温で等温変態(ベイナイト変態)させ、その後室温まで冷却することによって得られる金属組織であり、ベイニティックフェライトと鉄炭化物で構成される。ベイナイト組織の基地のベイニティックフェライトは転位密度が高く、鉄炭化物は析出強化効果があるため、ベイナイト組織を用いることにより強度を高めることができる。焼戻しマルテンサイト組織は、鉄炭化物が旧オーステナイト粒界に析出し、粒界強度が低下するため延性が低下し易い。これに対し、ベイナイト組織は、鉄炭化物がベイニティックフェライト基地に微細析出した構造であり、粒界強度の低下が少ないため延性の低下を防止できる。このように、ベイナイトは高強度と高延性を得るために不可欠な組織であり、その面積比率は高いほど好ましく、本発明に規定する高強度高延性を得るためには65%以上が必要である。ベイナイトの面積比率が65%未満の組織は、ベイナイト変態を初期または中期段階まで進行させた後水冷却して得られるものである。通常、上記等温保持中における未変態オーステナイトは、その後冷却されることによりマルテンサイトや残留オーステナイトとなる。ベイナイト変態の初期または中期段階での未変態オーステナイトのCの濃縮度は小さいため、ベイナイト面積比率が65%未満となる場合は、未変態オーステナイトは冷却により大部分がマルテンサイトとなり、一部がオーステナイトとして残留する。したがって、ベイナイト面積比率が65%未満であると、マルテンサイトが多くなるため高強度は得られるが、延性が大きく低下するため、本発明に規定する高強度高延性を満足することができない。
残留オーステナイトは、TRIP(Transformation-induced plasticity;変態誘起塑性)現象を利用した延性の増加とひずみ硬化に有効である。高延性を得るには残留オーステナイトは6%以上必要であるが、残留オーステナイトは軟質であるため、過剰であると材料強度が著しく低下する。このため、残留オーステナイトは13%以下に抑える。
マルテンサイトは、所望の引張強さに応じて適当量存在させることができる。
高強度で高延性を得るためには、残留オーステナイト中の平均C濃度が高いことが不可欠な条件である。残留オーステナイト中のC濃度は、上記の等温変態中にベイニティックフェライトから周囲の過冷(結果として残留する)オーステナイトにCが排出されることで増加するため、局所的に残留オーステナイト中のC濃度は異なると考えられる。また、残留オーステナイトはそのC濃度が高いほど変形しても相としては安定で、塑性誘起マルテンサイト相に変態し難い傾向がある。したがって、塑性変形初期では、比較的C濃度の低い残留オーステナイトがTRIPによりマルテンサイト変態しつつ硬化して延性を向上させ、塑性変形が進むと、マルテンサイト変態していないC濃度の高い残留オーステナイトが安定に存在することにより延性を維持する。この結果、鋼材の高延性が実現するものと考えられる。本発明に規定する高強度高延性を満足するためには、残留オーステナイト中のC濃度は0.65%以上必要である。0.65%未満では、残留オーステナイトのほとんどがTRIPにより変態硬化を示すため、塑性変形が進行したときに延性のさらなる向上が得られなくなり、本発明の高強度高延性を満足することはできない。なお、後述するように、未変態オーステナイトは、そのC濃度が過剰であると鉄炭化物を形成するようになるため、未変態オーステナイト中のC濃度はある一定以上増加しない。このため、残留オーステナイト中のC濃度は、現実的に1.7%程度が上限となる。
パラメータZ=(引張強さ(MPa))×(破断伸び(%))
相の区別は、同一箇所の光学顕微鏡写真とEBSD(Electron Back Scattering Diffraction)法により求めた結晶方位マップの照合により、光学顕微鏡写真において黒色および灰色部がベイナイト、白色部がマルテンサイトまたは残留オーステナイトであることを確認した。そして、画像処理により、ベイナイト面積比率と、マルテンサイトと残留オーステナイトとの合計面積比率を求めた。また、残留オーステナイトの面積比率は、バフ研磨仕上げの試料を用いてX線回折法により求めた。マルテンサイトの面積比率は、光学顕微鏡写真から求めたマルテンサイトと残留オーステナイトとの合計面積比率から、X線回折から求めた残留オーステナイト面積比率を差し引くことにより求めた。残留オーステナイト中の平均C濃度は、X線回折でオーステナイトの(111)、(200)、(220)、および(311)の各回折ピーク角度から求めた格子定数a(nm)を用い、以下に示す関係式により算出した。これらの結果を表2に併記する。
a(nm)=0.3573+0.0033×(mass%C)
平行部が直径6mm、標点間距離30mmの丸棒状試験片(JIS 14A号)を切削加工により作製し、この試験片に対して引張試験を実施して引張強さを求めた。また、破断後の試験片から破断伸びを求めた。これらの結果を表2に併記する。
Claims (6)
- 全体組成が、質量%で、C:0.5~0.6%、Si:1.0~1.8%、Mn:0.1~1.0%、Cr:0.1~1.0%、P:0.035%以下、S:0.035%以下を満たし、残部が鉄および不可避不純物からなるばね用鋼であって、
任意の断面における内部組織の面積比率で、ベイナイトが65%以上、残留オーステナイトが6~13%、および残部(0%を含む)がマルテンサイトであり、
残留オーステナイト中の平均C濃度が0.65~1.7%であることを特徴とする高強度高延性ばね用鋼。 - 前記ばね用鋼は、引張強さが1800MPa以上であり、以下に定義するパラメータZが15000以上であることを特徴とする請求項1に記載のばね用鋼。
パラメータZ=(引張強さ(MPa))×(破断伸び(%)) - 前記ばね用鋼は、直径が1.5~15mmであることを特徴とする請求項1または2に記載のばね用鋼。
- 請求項1~3のいずれかに記載のばね用鋼からなることを特徴とするばね。
- 全体組成が、質量%で、C:0.5~0.6%、Si:1.0~1.8%、Mn:0.1~1.0%、Cr:0.1~1.0%、P:0.035%以下、S:0.035%以下を満たし、残部が鉄および不可避不純物からなる鋼材を用い、
加熱中に観察されるオーステナイト単相域とフェライト+オーステナイトの2相域との境界温度をAc3点とし、冷却中に過冷オーステナイトからマルテンサイトが生成を開始する温度をMs点としたときに、前記鋼材を、Ac3点を超え(Ac3点+250℃)以下の温度でオーステナイト化後、20℃/s以上の速度で冷却し、Ms点を超え(Ms点+70℃)以下の温度で400~10800秒間保持し、次いで20℃/s以上の冷却速度で室温まで冷却することを特徴とするばね用鋼の製造方法。 - 請求項5に記載の製造方法により作製したことを特徴とするばね。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080014044XA CN102362001B (zh) | 2009-03-25 | 2010-03-08 | 高强度高延性弹簧用钢及其制造方法以及弹簧 |
EP10755842.1A EP2412840B1 (en) | 2009-03-25 | 2010-03-08 | High-strength and high-ductility steel for spring, method for producing same, and spring |
US13/258,014 US8926768B2 (en) | 2009-03-25 | 2010-03-08 | High-strength and high-ductility steel for spring, method for producing same, and spring |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-073373 | 2009-03-25 | ||
JP2009073373A JP4927899B2 (ja) | 2009-03-25 | 2009-03-25 | ばね用鋼およびその製造方法並びにばね |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010110041A1 true WO2010110041A1 (ja) | 2010-09-30 |
Family
ID=42780735
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053794 WO2010110041A1 (ja) | 2009-03-25 | 2010-03-08 | 高強度高延性ばね用鋼およびその製造方法並びにばね |
Country Status (5)
Country | Link |
---|---|
US (1) | US8926768B2 (ja) |
EP (1) | EP2412840B1 (ja) |
JP (1) | JP4927899B2 (ja) |
CN (1) | CN102362001B (ja) |
WO (1) | WO2010110041A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012018144A1 (ja) * | 2010-08-04 | 2012-02-09 | 日本発條株式会社 | ばねおよびその製造方法 |
JP2012111992A (ja) * | 2010-11-22 | 2012-06-14 | Nhk Spring Co Ltd | ばねおよびその製造方法 |
WO2013115404A1 (ja) * | 2012-02-02 | 2013-08-08 | 日本発條株式会社 | コイルばねおよびその製造方法 |
WO2013146214A1 (ja) * | 2012-03-28 | 2013-10-03 | 日本発條株式会社 | ばね用鋼およびその製造方法並びにばね |
WO2017017290A1 (es) | 2015-07-28 | 2017-02-02 | Gerdau Investigacion Y Desarrollo Europa, S.A. | Acero para ballestas de alta resistencia y templabilidad |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012214859A (ja) * | 2011-04-01 | 2012-11-08 | Nhk Spring Co Ltd | ばねおよびその製造方法 |
JP5948124B2 (ja) * | 2012-04-18 | 2016-07-06 | 日本発條株式会社 | マグネシウム合金部材及びその製造方法 |
CN102734362B (zh) * | 2012-06-27 | 2015-04-01 | 贵州大学 | 用60Si2CrVA弹簧钢制作高强塑性弹簧的方法 |
WO2014136966A1 (ja) * | 2013-03-08 | 2014-09-12 | 日本発條株式会社 | 強度部材およびその製造方法 |
CA2865630C (en) | 2013-10-01 | 2023-01-10 | Hendrickson Usa, L.L.C. | Leaf spring and method of manufacture thereof having sections with different levels of through hardness |
WO2015097349A1 (fr) | 2013-12-24 | 2015-07-02 | Arcelormittal Wire France | Fil laminé à froid en acier à haute résistance à la fatigue et à la fragilisation par l'hydrogène et renfort de conduites flexibles l'incorporant |
JP6348436B2 (ja) * | 2015-02-27 | 2018-06-27 | 株式会社神戸製鋼所 | 高強度高延性鋼板 |
JP6728816B2 (ja) * | 2016-03-17 | 2020-07-22 | 日本製鉄株式会社 | 高強度ばね用鋼、ばね及び高強度ばね用鋼の製造方法 |
JP6728817B2 (ja) * | 2016-03-17 | 2020-07-22 | 日本製鉄株式会社 | 高強度ばね用鋼及びばね |
CN108179355A (zh) * | 2018-01-31 | 2018-06-19 | 中钢集团郑州金属制品研究院有限公司 | 一种高强度高韧性弹簧钢丝及其制备工艺 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5129492B2 (ja) | 1971-12-17 | 1976-08-26 | ||
JPS5842246B2 (ja) * | 1979-04-28 | 1983-09-19 | 日新製鋼株式会社 | 複合組織を有する高強度鋼帯の製造方法 |
JPS63312917A (ja) * | 1987-06-16 | 1988-12-21 | Nisshin Steel Co Ltd | ばね性と延性の優れた高強度鋼板の製造方法 |
JPH05320749A (ja) * | 1992-05-20 | 1993-12-03 | Nisshin Steel Co Ltd | 超高強度鋼の製造方法 |
JP2001288530A (ja) | 2000-03-31 | 2001-10-19 | Kobe Steel Ltd | 高強度・高靭性マルテンサイト鋼及びその製造方法 |
JP2002048693A (ja) * | 2000-07-31 | 2002-02-15 | National Institute For Materials Science | 高強度鋼における高疲労強度材料の評価法と高疲労強度材料 |
JP2002212665A (ja) | 2001-01-11 | 2002-07-31 | Kobe Steel Ltd | 高強度高靭性鋼 |
JP2005023404A (ja) | 2003-07-01 | 2005-01-27 | Kobe Steel Ltd | 耐腐食疲労性に優れたばね用鋼 |
JP3783306B2 (ja) | 1996-12-20 | 2006-06-07 | 大同特殊鋼株式会社 | 耐遅れ破壊特性に優れた懸架ばね用鋼 |
JP2006291291A (ja) * | 2005-04-11 | 2006-10-26 | Kobe Steel Ltd | 耐食性に優れた冷間成形ばね用鋼線およびその製造方法 |
JP2007100209A (ja) | 2005-01-28 | 2007-04-19 | Kobe Steel Ltd | 耐水素脆化特性に優れた高強度ばね用鋼 |
JP2007154240A (ja) * | 2005-12-02 | 2007-06-21 | Kobe Steel Ltd | コイリング性と耐水素脆化特性に優れた高強度ばね鋼線 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5129492A (en) | 1974-09-04 | 1976-03-12 | Sankyo Co | Sefuarosuhorinjudotai no seiho |
JPS5842246A (ja) | 1981-09-07 | 1983-03-11 | Toshiba Corp | 半導体装置 |
DE4340568C2 (de) * | 1993-11-29 | 1996-04-18 | Sendner Thermo Tec Anlagen Gmb | Verfahren zum kontinuierlichen Vergüten von Stahldraht |
EP1491647B1 (en) * | 2002-04-02 | 2006-07-26 | Kabushiki Kaisha Kobe Seiko Sho | Steel wire for hard drawn spring excellent in fatigue strength and resistance to settling, and hard drawn spring |
KR100764253B1 (ko) * | 2005-01-28 | 2007-10-05 | 가부시키가이샤 고베 세이코쇼 | 내수소취화 특성이 우수한 고강도 스프링용 강 |
JP5121360B2 (ja) * | 2007-09-10 | 2013-01-16 | 株式会社神戸製鋼所 | 耐脱炭性および伸線加工性に優れたばね用鋼線材およびその製造方法 |
WO2012018144A1 (ja) * | 2010-08-04 | 2012-02-09 | 日本発條株式会社 | ばねおよびその製造方法 |
-
2009
- 2009-03-25 JP JP2009073373A patent/JP4927899B2/ja active Active
-
2010
- 2010-03-08 WO PCT/JP2010/053794 patent/WO2010110041A1/ja active Application Filing
- 2010-03-08 US US13/258,014 patent/US8926768B2/en active Active
- 2010-03-08 CN CN201080014044XA patent/CN102362001B/zh active Active
- 2010-03-08 EP EP10755842.1A patent/EP2412840B1/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5129492B2 (ja) | 1971-12-17 | 1976-08-26 | ||
JPS5842246B2 (ja) * | 1979-04-28 | 1983-09-19 | 日新製鋼株式会社 | 複合組織を有する高強度鋼帯の製造方法 |
JPS63312917A (ja) * | 1987-06-16 | 1988-12-21 | Nisshin Steel Co Ltd | ばね性と延性の優れた高強度鋼板の製造方法 |
JPH05320749A (ja) * | 1992-05-20 | 1993-12-03 | Nisshin Steel Co Ltd | 超高強度鋼の製造方法 |
JP3783306B2 (ja) | 1996-12-20 | 2006-06-07 | 大同特殊鋼株式会社 | 耐遅れ破壊特性に優れた懸架ばね用鋼 |
JP2001288530A (ja) | 2000-03-31 | 2001-10-19 | Kobe Steel Ltd | 高強度・高靭性マルテンサイト鋼及びその製造方法 |
JP2002048693A (ja) * | 2000-07-31 | 2002-02-15 | National Institute For Materials Science | 高強度鋼における高疲労強度材料の評価法と高疲労強度材料 |
JP2002212665A (ja) | 2001-01-11 | 2002-07-31 | Kobe Steel Ltd | 高強度高靭性鋼 |
JP2005023404A (ja) | 2003-07-01 | 2005-01-27 | Kobe Steel Ltd | 耐腐食疲労性に優れたばね用鋼 |
JP2007100209A (ja) | 2005-01-28 | 2007-04-19 | Kobe Steel Ltd | 耐水素脆化特性に優れた高強度ばね用鋼 |
JP2006291291A (ja) * | 2005-04-11 | 2006-10-26 | Kobe Steel Ltd | 耐食性に優れた冷間成形ばね用鋼線およびその製造方法 |
JP2007154240A (ja) * | 2005-12-02 | 2007-06-21 | Kobe Steel Ltd | コイリング性と耐水素脆化特性に優れた高強度ばね鋼線 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012018144A1 (ja) * | 2010-08-04 | 2012-02-09 | 日本発條株式会社 | ばねおよびその製造方法 |
US20130118655A1 (en) * | 2010-08-04 | 2013-05-16 | Nhk Spring Co., Ltd. | Spring and manufacture method thereof |
US11378147B2 (en) | 2010-08-04 | 2022-07-05 | Nhk Spring Co., Ltd. | Spring and manufacture method thereof |
JP2012111992A (ja) * | 2010-11-22 | 2012-06-14 | Nhk Spring Co Ltd | ばねおよびその製造方法 |
WO2013115404A1 (ja) * | 2012-02-02 | 2013-08-08 | 日本発條株式会社 | コイルばねおよびその製造方法 |
JP2013159802A (ja) * | 2012-02-02 | 2013-08-19 | Nhk Spring Co Ltd | コイルばねおよびその製造方法 |
WO2013146214A1 (ja) * | 2012-03-28 | 2013-10-03 | 日本発條株式会社 | ばね用鋼およびその製造方法並びにばね |
WO2017017290A1 (es) | 2015-07-28 | 2017-02-02 | Gerdau Investigacion Y Desarrollo Europa, S.A. | Acero para ballestas de alta resistencia y templabilidad |
Also Published As
Publication number | Publication date |
---|---|
US20120024436A1 (en) | 2012-02-02 |
CN102362001A (zh) | 2012-02-22 |
JP4927899B2 (ja) | 2012-05-09 |
EP2412840B1 (en) | 2017-10-11 |
US8926768B2 (en) | 2015-01-06 |
EP2412840A1 (en) | 2012-02-01 |
EP2412840A4 (en) | 2014-11-19 |
CN102362001B (zh) | 2013-10-02 |
JP2010222671A (ja) | 2010-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4927899B2 (ja) | ばね用鋼およびその製造方法並びにばね | |
JP5344454B2 (ja) | 温間加工用鋼、その鋼を用いた温間加工方法、およびそれにより得られる鋼材ならびに鋼部品 | |
JP5064060B2 (ja) | 高強度ばね用鋼線及び高強度ばね並びにそれらの製造方法 | |
KR101126953B1 (ko) | 고강도 냉연 강판 | |
JP4268079B2 (ja) | 伸び及び耐水素脆化特性に優れた超高強度鋼板、その製造方法、並びに該超高強度鋼板を用いた超高強度プレス成形部品の製造方法 | |
KR102021216B1 (ko) | 산세성 및 담금질 템퍼링 후의 내지연파괴성이 우수한 볼트용 선재, 및 볼트 | |
WO2009110607A1 (ja) | 冷延鋼板 | |
JP4324225B1 (ja) | 伸びフランジ性に優れた高強度冷延鋼板 | |
US20130146180A1 (en) | Steel for carburizing, carburized steel component, and method of producing the same | |
JP4712838B2 (ja) | 耐水素脆化特性および加工性に優れた高強度冷延鋼板 | |
JP5363922B2 (ja) | 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板 | |
JP2005336526A (ja) | 加工性に優れた高強度鋼板及びその製造方法 | |
CN108315637B (zh) | 高碳热轧钢板及其制造方法 | |
JP5543814B2 (ja) | 熱処理用鋼板及び鋼部材の製造方法 | |
JP5302840B2 (ja) | 伸びと伸びフランジ性のバランスに優れた高強度冷延鋼板 | |
JP2005264328A (ja) | 加工性に優れた高強度鋼板およびその製造方法 | |
WO2013146214A1 (ja) | ばね用鋼およびその製造方法並びにばね | |
JP6798557B2 (ja) | 鋼 | |
JP5080215B2 (ja) | 等方性と伸びおよび伸びフランジ性に優れた高強度冷延鋼板 | |
WO2013022033A1 (ja) | ばね用材料およびその製造方法並びにばね | |
JP5189959B2 (ja) | 伸びおよび伸びフランジ性に優れた高強度冷延鋼板 | |
WO2010109702A1 (ja) | 冷延鋼板 | |
WO2021172297A1 (ja) | 鋼板、部材及びそれらの製造方法 | |
JP2011084784A (ja) | 温間加工用鋼 | |
JP4975261B2 (ja) | 耐遅れ破壊特性に優れた高強度鋼の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080014044.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10755842 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13258014 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010755842 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010755842 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4380/KOLNP/2011 Country of ref document: IN |