WO2013022033A1 - ばね用材料およびその製造方法並びにばね - Google Patents

ばね用材料およびその製造方法並びにばね Download PDF

Info

Publication number
WO2013022033A1
WO2013022033A1 PCT/JP2012/070222 JP2012070222W WO2013022033A1 WO 2013022033 A1 WO2013022033 A1 WO 2013022033A1 JP 2012070222 W JP2012070222 W JP 2012070222W WO 2013022033 A1 WO2013022033 A1 WO 2013022033A1
Authority
WO
WIPO (PCT)
Prior art keywords
austenite
point
iron
spring
less
Prior art date
Application number
PCT/JP2012/070222
Other languages
English (en)
French (fr)
Inventor
鈴木 健
芳樹 小野
真平 黒川
紘介 柴入
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2013022033A1 publication Critical patent/WO2013022033A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a spring material and a spring having an excellent balance between strength and ductility, and more particularly to a spring material in which a decrease in ductility, which is a problem with a spring material having a tensile strength of 1900 MPa or more, is suppressed, and a method for producing the same. Regarding springs.
  • the suspension springs for automobiles and the valve springs for automobile engines are required to be further reduced in weight in order to improve the fuel efficiency of automobiles, and in recent years, springs having a tensile strength of 1900 MPa or more have been realized.
  • the notch sensitivity generally increases as the strength of the steel increases, so pits, surface flaws, inclusions, etc. generated in a corrosive environment are removed. There is a concern that the resulting crack is likely to propagate and adversely affect the spring characteristics. For this reason, there is a need for a steel material that has both high strength and high ductility and is unlikely to propagate cracks.
  • the present inventors have proposed a high strength and high ductility spring steel having a tensile strength of 1800 MPa or more mainly composed of lower bainite and having a structure having a high average carbon concentration in retained austenite (patent).
  • the lower bainite is composed of lath-shaped bainitic ferrite and residual austenite and / or iron carbide existing between and inside bainitic ferrite, and iron carbide regularly arranged inside bainitic ferrite. It is the feature that exists.
  • a steel sheet having a tensile strength of 980 MPa or more which is excellent in ductility and stretch flangeability, which defines the area ratio of the martensite, tempered martensite, upper bainite, and retained austenite to the entire structure and the carbon concentration in the retained austenite.
  • Patent Document 2 the upper bainite is composed of lath-shaped bainitic ferrite and residual austenite and / or iron carbide existing between bainitic ferrite, and iron carbide regularly arranged inside bainitic ferrite exists. The feature is not to. However, since it contains soft upper bainite, it is difficult for the tensile strength to exceed 1900 MPa.
  • Patent Document 2 a steel sheet having a tensile strength of 2234 MPa and a breaking elongation of 8% is shown as a comparative example, but the martensite ratio is high and the ductility is poor. That is, with the structure described in Patent Document 2, it is considered difficult to obtain a steel sheet having a tensile strength of 1900 MPa or more and excellent ductility.
  • An object of the present invention is to provide a spring material having a high tensile strength of 1900 MPa or more and a high ductility, a method for producing the same, and a spring.
  • the present inventors have found that a structure mainly composed of tempered martensite and lower bainite and containing residual austenite having a high average carbon concentration has a high tensile strength.
  • the present inventors have obtained the knowledge that even if it has, an excellent balance between strength and ductility is obtained, the present invention has been achieved.
  • the spring material of the present invention is made of an iron-based alloy, and is an area ratio of an internal structure in an arbitrary cross section, tempered martensite is 30 to 80%, lower bainite is 5 to 70%, and retained austenite is 8 to 15 The average carbon concentration in the retained austenite is 1.0 to 2.0 wt%.
  • Another spring material according to the present invention is made of an iron-based alloy, and is 30 to 80% tempered martensite, 5 to 70% lower bainite, and 0 martensite in an area ratio of the internal structure in an arbitrary cross section. More than 15% and not more than 15%, the retained austenite is 8 to 15%, and the average carbon concentration in the retained austenite is 1.0 to 2.0 wt%.
  • Tempered martensite 30-80% Tempered martensite has a high hardness and excellent ductility, and therefore is a structure necessary for improving the strength-ductility balance of the material. Tempered martensite is obtained by austenitizing the material, rapidly cooling to produce martensite, and further tempering at a predetermined temperature. If the area ratio of the tempered martensite is less than 30%, the area ratio of the as-quenched martensite is high, so that the tensile strength is high but the ductility is poor. On the other hand, if the area ratio of the tempered martensite is too small, the area ratio of the lower bainite becomes too high, making it difficult to obtain a desired tensile strength. On the other hand, if the area ratio of tempered martensite exceeds 80%, the area ratio of lower bainite and retained austenite decreases, so that the ductility becomes poor as described below.
  • Lower bay night 5-70%
  • Lower bainite is a metal structure obtained by isothermal transformation (bainite transformation) of austenitized material at a low temperature in a metal bath or salt bath, and then cooling to room temperature. It consists of bainitic ferrite and iron carbide. Is done.
  • the base bainitic ferrite has a high dislocation density, and the iron carbide has a precipitation strengthening effect, so that the tensile strength can be improved.
  • iron carbide precipitates at grain boundaries such as prior austenite and martensite blocks, and the grain boundary strength is lowered, so that ductility is likely to be lowered.
  • the lower bainite is an indispensable structure for obtaining high strength and high ductility, and its area ratio is 5 to 70%.
  • the area ratio of the lower bainite is less than 5%, retained austenite having a desired average carbon concentration cannot be obtained.
  • the area ratio of the lower bainite exceeds 70%, the area ratio of tempered martensite or martensite is small. Therefore, it becomes difficult to obtain a desired tensile strength.
  • Residual austenite 8-15% Residual austenite is effective in increasing ductility using the TRIP (Transformation-Induced Plasticity) phenomenon and improving tensile strength by strain hardening. In order to obtain high ductility, 8% or more of retained austenite is necessary. However, since retained austenite is soft, excessive strength causes a decrease in tensile strength. For this reason, retained austenite is suppressed to 15% or less.
  • Average carbon concentration in retained austenite 1.0 to 2.0 wt%
  • a high average carbon concentration in the retained austenite is an indispensable condition. Since the average carbon concentration in retained austenite increases as carbon is discharged from bainitic ferrite to the surrounding supercooled austenite when austenite transforms into bainite, the carbon concentration of the individual retained austenite locally. Are considered different. Residual austenite is more stable against deformation as its carbon concentration is higher, and tends to hardly transform into a work-induced martensite phase.
  • the retained austenite having a relatively low carbon concentration is hardened while undergoing martensitic transformation by TRIP to improve ductility, and when plastic deformation proceeds, the retained austenite having a high carbon concentration undergoes martensitic transformation. As a result, high ductility is exhibited.
  • the average carbon concentration in the retained austenite needs to be 1.0 wt% or more. When the average carbon concentration in the retained austenite is less than 1.0 wt%, most of the retained austenite is dominated by transformation hardening by TRIP in the early stage of plastic deformation, so that further improvement of ductility cannot be obtained when plastic deformation proceeds.
  • the desired high strength and high ductility cannot be obtained.
  • the average carbon concentration in the retained austenite exceeds 2.0 wt%, the TRIP phenomenon does not appear or is slight even when plastic working, and it is difficult to obtain a desired tensile strength.
  • Martensite more than 0% and not more than 15% If the spring material of the present invention further contains more than 0% martensite, the strength can be further improved. Martensite is a structure with poor ductility, but its hardness is very high. When the area ratio of martensite is more than 0% and 15% or less, the tensile strength can be increased without a significant decrease in ductility. However, when the area ratio of martensite exceeds 15%, the ductility is significantly reduced, the tensile strength is not increased, and the strength-ductility balance is significantly lowered. For this reason, in another spring material of the present invention, in order to further improve the strength, martensite is contained more than 0% and 15% or less.
  • the iron-based alloy is, by mass%, C: 0.45 to 0.65%, Si: 1.0 to 2.5%, Mn: 0.1 to 1.0. %, Cr: 0.1 to 1.0%, P: 0.035% or less, S: 0.035% or less, and the balance is preferably made of iron and inevitable impurities. Below, the reason for limitation of the average component of these elements is demonstrated.
  • C 0.45-0.65% C is an element effective for securing a tensile strength of 1900 MPa or more and a desired retained austenite area ratio, and is preferably contained in an amount of 0.45% or more.
  • the C content is preferably suppressed to 0.65% or less. .
  • Si 1.0 to 2.5% Si has an action of suppressing precipitation of iron carbide when carbon is discharged from bainitic ferrite to surrounding supercooled austenite when bainitic ferrite, which is a base of lower bainite, is generated. That is, since Si is hardly dissolved in iron carbide, iron carbide is deposited avoiding Si. However, since precipitation takes a very long time, precipitation of iron carbide is suppressed. Therefore, it is an effective element for obtaining a desired ratio of retained austenite having a high average carbon concentration by dissolving a large amount of C in austenite. Si is a solid solution strengthening element and is an effective element for obtaining high strength. For this reason, it is preferable that content of Si is 1.0% or more. However, if the Si content is excessive, the area ratio of the soft retained austenite becomes too high and the strength is lowered, so the Si content is preferably suppressed to 2.5% or less.
  • Mn 0.1 to 1.0% Mn is added as a deoxidizing element, but is also an element that stabilizes austenite. Therefore, it is preferable to add 0.1% or more in order to obtain a desired amount of retained austenite. On the other hand, if the Mn content is excessive, segregation of Mn occurs and the workability is liable to decrease, so the Mn content is preferably suppressed to 1.0% or less.
  • Cr 0.1 to 1.0% Cr is an element that improves the hardenability of the material and improves the strength. In addition, there is also an effect of delaying pearlite transformation in an isothermal transformation curve (TTT diagram; Time Temperature Transformation Diagram), and a tempered martensite structure and a lower bainite structure can be obtained stably, so 0.1% or more is added. It is preferable. However, if adding over 1.0%, the workability tends to decrease, so the Cr content is preferably suppressed to 1.0%.
  • P 0.035% or less
  • S 0.035% or less
  • P and S are elements that promote intergranular fracture due to grain boundary segregation, so a lower content is desirable, and 0.035% or less. It is preferable. More preferably, it is 0.01% or less.
  • the tensile strength is desirably 1900 MPa or more in order to reduce the weight of the spring.
  • the tensile strength and the elongation at break which is one of representative characteristic values representing ductility, are in a trade-off relationship.
  • the parameter Z defined below is 20000 or more. It is desirable to be.
  • the spring material of the present invention is mainly used for suspension springs and valve springs for automobiles.
  • the equivalent circle diameter of the spring material is preferably 1.5 to 15 mm.
  • the manufacturing method of the spring material of the present invention uses a material made of an iron-based alloy and austenitizes at a temperature exceeding the Ac3 point (Ac3 point + 250 ° C) and below, and at a rate of 20 ° C / second or more.
  • the isothermal transformation step for holding for 90 to 3600 seconds and the cooling step for cooling to room temperature are sequentially performed.
  • the Ac3 point is the boundary temperature between the austenite single-phase region and the ferrite + austenite two-phase region observed during heating, and the Ms point starts martensite generation from supercooled austenite during cooling. Temperature.
  • a material made of an iron-based alloy is used, but the structure of the material before austenitization is not particularly limited.
  • Austenitizing process The temperature of austenitizing needs to exceed Ac3 point (Ac3 point + 250 ° C.) or less. Below the Ac3 point, the material does not become austenite, and a desired structure cannot be obtained. Moreover, when it exceeds (Ac3 point +250 degreeC), a prior-austenite particle size will become coarse easily and there exists a possibility that ductility may fall.
  • Quenching process Cooling is performed at a rate of 20 ° C./second or more from the austenitizing temperature, and the material is quenched by holding at a temperature of (Ms ⁇ 200 ° C.) or more and Ms point or less for 10 to 60 seconds. Thereby, a part of supercooled austenite undergoes martensitic transformation. This martensite becomes tempered martensite after the isothermal transformation process described later. The faster the cooling rate, the better. If it is less than 20 ° C./second, soft ferrite or pearlite is generated during cooling, and the desired structure cannot be obtained.
  • Isothermal transformation process The material is heated at a rate of 10 ° C./second or more from the quenched temperature, and held at a temperature exceeding the Ms point (Ms point + 70 ° C.) and below for 90 to 3600 seconds. Thereby, a part of austenite is transformed into lower bainite, and part or all of martensite becomes tempered martensite. The higher the rate of temperature rise, the better. If it is less than 10 ° C./second, a homogeneous lower bainite cannot be obtained, and it takes much time to start producing the lower bainite, which is uneconomical. If the transformation temperature is equal to or lower than the Ms point, it is very difficult to obtain a desired area ratio of the lower bainite.
  • Cooling step After the isothermal transformation step, the material is cooled to room temperature.
  • the cooling rate is not particularly specified, water cooling or air cooling is preferable in consideration of production efficiency and cost.
  • the iron-based alloy is C: 0.45-0.65%, Si: 1.0-2.5%, Mn: 0.1-1. It is preferable that 0%, Cr: 0.1 to 1.0%, P: 0.035% or less, S: 0.035% or less are satisfied, and the balance is made of iron and inevitable impurities.
  • the spring of the present invention is characterized by being made of the above spring material and manufactured by the above manufacturing method, and it is desirable to perform shot peening and setting as necessary.
  • shot peening compressive residual stress can be imparted to the spring surface and fatigue resistance can be improved.
  • the sag resistance can be improved by performing setting.
  • the present invention it is possible to use a standard spring material such as JIS or SAE that does not contain an expensive alloy element and is easily available, and does not require a complicated heat treatment, and has a high strength and high ductility. Materials, manufacturing methods thereof, and springs can be provided. Moreover, since the spring material and spring of the present invention can use an alloy having a small amount of additive elements, it is excellent in recyclability. Furthermore, since the spring material and the spring of the present invention can simplify and shorten the manufacturing process as compared with a quenching and tempering treatment material that has been widely used conventionally, energy saving can be achieved.
  • a standard spring material such as JIS or SAE that does not contain an expensive alloy element and is easily available, and does not require a complicated heat treatment, and has a high strength and high ductility. Materials, manufacturing methods thereof, and springs can be provided. Moreover, since the spring material and spring of the present invention can use an alloy having a small amount of additive elements, it is excellent in recyclability. Furthermore, since the spring
  • a spring material having a high tensile strength of 1900 MPa or more and a high ductility can be obtained.
  • cooling is performed at a rate of 20 ° C./second or more, and quenching is performed using another metal bath or a salt bath (Ms ⁇ 200 ° C.) at a temperature of not less than the Ms point for 10 to 60 seconds (quenching step).
  • Ms ⁇ 200 ° C. a salt bath
  • the steel material is heated at a rate of 10 ° C./second or more using another metal bath or salt bath, and is kept isothermally at a temperature exceeding the Ms point (Ms point + 70 ° C.) and below for 90 to 3600 seconds (isothermal). Transformation process). Thereby, a part of austenite is transformed into lower bainite, and part or all of martensite becomes tempered martensite.
  • carbon is discharged from the bainitic ferrite to the surrounding supercooled austenite and the formation of iron carbide is suppressed by the presence of Si, so the carbon concentration in the supercooled austenite is increased. It can be a concentration.
  • the steel material after an isothermal transformation is cooled to room temperature by water cooling or air cooling (cooling process). Thereby, a retained austenite with a high average carbon concentration is obtained.
  • the spring material obtained from such a manufacturing method has an area ratio of the internal structure in an arbitrary cross section, tempered martensite is 30 to 80%, lower bainite is 5 to 70%, and retained austenite is 8 to 15%.
  • the average carbon concentration in the retained austenite is 1.0 to 2.0 wt%.
  • a spring may be manufactured by the above manufacturing method, and shot peening and setting may be applied to the spring to improve fatigue resistance and sag resistance.
  • shot peening and setting various execution conditions are set according to the required performance.
  • the steel material was kept for a predetermined time (t2) at a temperature (T2) shown in Table 2 using another salt bath (isothermal transformation step), and then immersed in room temperature water and cooled (cooling step).
  • the spring steel thus obtained was examined for the area ratio of various structures, tensile strength, and elongation at break in the following manner.
  • the tempered martensite structure can be distinguished from an as-quenched martensite structure in which fine iron carbide is precipitated inside the martensite and no iron carbide is observed inside the martensite.
  • the lower bainite structure is characterized by the presence of fine iron carbide regularly arranged inside acicular bainitic ferrite.
  • the retained austenite was determined for the area ratio by X-ray diffraction after mirror polishing in an arbitrary cross section of spring steel.
  • the area ratio of martensite was determined by subtracting the total area ratio (%) of tempered martensite, lower bainite, and retained austenite from the area ratio 100%. This is because it is difficult to distinguish martensite and retained austenite in the SEM observation.
  • the average carbon concentration ([C] (mass%)) in the retained austenite was determined from the diffraction peak angles of (111), (200), (220) and (311) of austenite by X-ray diffraction. Using the constant a (nm), calculation was made according to the following relational expression. The results are also shown in Table 2.
  • test pieces 1, 8, and 14 have the following problems (comparative example). That is, no. Since the specimens 1 and 8 have a short holding time in the isothermal transformation step, the ratio of martensite, retained austenite, and the average carbon concentration in retained austenite do not satisfy the requirements of the present invention, and as a result, the elongation at break decreases. Therefore, the parameter Z defined by the present invention cannot be secured. No.
  • the ratio of lower bainite, martensite, retained austenite, and the average carbon concentration in retained austenite do not satisfy the requirements of the present invention, and as a result, the elongation at break becomes small. Is not secured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Articles (AREA)
  • Springs (AREA)

Abstract

引張強度が1900MPa以上と高強度であり、かつ高い延性を有するばね用材料およびその製造方法を提供する。 鉄系合金からなり、任意の断面における内部組織の面積比率で、焼戻しマルテンサイトが30~80%、下部ベイナイトが5~70%、残留オーステナイトが8~15%であり、残留オーステナイト中の平均炭素濃度が1.0~2.0wt%であるばね用材料。

Description

ばね用材料およびその製造方法並びにばね
 本発明は、強度と延性のバランスに優れたばね用材料およびばねに関するものであって、特に引張強度が1900MPa以上のばね用材料で問題となる延性の低下を抑制したばね用材料およびその製造方法並びにばねに関する。
 自動車用懸架ばねや自動車エンジン用弁ばねは自動車の燃費向上のため一層の軽量化が要求されており、近年では鋼材の引張強さが1900MPa以上のばねも実現されている。しかしながら、鋼の組織が焼戻しマルテンサイトおよび残留オーステナイトのみで構成される場合、一般に鋼材の高強度化に伴い切欠き感受性が増加するため、腐食環境下で生成するピットや表面疵、介在物等を起因とするき裂が進展し易く、ばね特性に悪影響を及ぼすことが懸念されている。このため、高強度と高延性を併せ持つき裂の進展し難い鋼材が求められている。
 このような課題を解決すべく、本発明者らは下部ベイナイトを主体とし、残留オーステナイト中の平均炭素濃度の高い組織とした引張強さ1800MPa以上の高強度高延性ばね用鋼を提案した(特許文献1)。ここで、下部ベイナイトとは、ラス状のベイニティックフェライトと、ベイニティックフェライトの間や内部に存在する残留オーステナイトおよび/または鉄炭化物とからなり、ベイニティックフェライト内部に規則正しく並んだ鉄炭化物が存在することが特徴である。しかしながら、一層の軽量化のために引張強さをさらに向上させた高強度高延性ばね用鋼が求められている。
 また、マルテンサイト、焼戻しマルテンサイト、上部ベイナイト、残留オーステナイトの組織全体に対する面積率および残留オーステナイト中の炭素濃度を規定した、延性と伸びフランジ性に優れる引張強さが980MPa以上の鋼板が提案されている(特許文献2)。ここで、上部ベイナイトとは、ラス状のベイニティックフェライトと、ベイニティックフェライトの間に存在する残留オーステナイトおよび/または鉄炭化物とからなり、ベイニティックフェライト内部に規則正しく並んだ鉄炭化物が存在しないことが特徴である。しかしながら、軟質な上部ベイナイトを含有するため、引張強さが1900MPaを超えることは困難である。特許文献2の実施例において、引張強さ2234MPa、破断伸び8%の鋼板が比較例として示されているが、マルテンサイト比率が高く、延性に劣る。すなわち、特許文献2に記載の組織構成では引張強さ1900MPa以上でかつ延性に優れた鋼板を得ることは困難であると考えられる。
特開2010-222671号広報 特開2010-090475号広報
 本発明は、引張強度が1900MPa以上と高強度であり、かつ高い延性を有するばね用材料およびその製造方法並びにばねを提供することを目的とする。
 本発明者らは、ばね用材料の延性を改善する方法について鋭意研究した結果、焼戻しマルテンサイト、下部ベイナイトを主体とし、かつ平均炭素濃度の高い残留オーステナイトを含有する組織が、高い引張強さを有していても優れた強度-延性バランスを示すとの知見を得て、本発明に至った。
 すなわち、本発明のばね用材料は、鉄系合金からなり、任意の断面における内部組織の面積比率で、焼戻しマルテンサイトが30~80%、下部ベイナイトが5~70%、残留オーステナイトが8~15%であり、残留オーステナイト中の平均炭素濃度が1.0~2.0wt%であることを特徴とする。
 また、本発明の他のばね用材料は、鉄系合金からなり、任意の断面における内部組織の面積比率で、焼戻しマルテンサイトが30~80%、下部ベイナイトが5~70%、マルテンサイトが0%を超え15%以下、残留オーステナイトが8~15%であり、残留オーステナイト中の平均炭素濃度が1.0~2.0wt%であることを特徴とする。
 まず、任意の断面における内部組織の面積比率の限定理由について本発明の作用とともに説明する。
焼戻しマルテンサイト:30~80%
 焼戻しマルテンサイトは硬度が高くかつ延性に優れるため、材料の強度-延性バランスを向上する上で必要な組織である。焼戻しマルテンサイトは、材料をオーステナイト化後、急冷してマルテンサイトを生成させ、さらに所定の温度で焼戻すことにより得る。焼戻しマルテンサイトの面積比率が30%未満では、焼入れままのマルテンサイトの面積比率が高くなるため引張強さは高いものの延性が乏しくなる。また、焼戻しマルテンサイトの面積比率が小さすぎると、下部ベイナイトの面積比率が高くなり過ぎるため所望の引張強さを得難くなる。一方、焼戻しマルテンサイトの面積比率が80%を超えると、下部ベイナイトや残留オーステナイトの面積比率が減るため、以下に説明するように延性が乏しくなる。
下部ベイナイト:5~70%
 下部ベイナイトは、オーステナイト化された材料を金属浴や塩浴等において低温で等温変態(ベイナイト変態)させ、その後室温まで冷却することによって得られる金属組織であり、ベイニティックフェライトと鉄炭化物で構成される。基地のベイニティックフェライトは転位密度が高く、鉄炭化物は析出強化効果があるため、引張強度を向上させることができる。また、通常の焼入れ焼戻し材では、鉄炭化物は旧オーステナイトやマルテンサイトのブロック等の粒界に析出し、粒界強度が低下するため延性が低下し易い。これに対し、下部ベイナイト組織では、鉄炭化物はベイニティックフェライト基地に微細析出するため、粒界強度の低下が少なく、延性の低下を防止できる。さらに、下部ベイナイトの生成過程において、ベイニティックフェライトから周囲の過冷オーステナイトに炭素が排出され、かつSiの存在によって鉄炭化物の生成が抑制されるため、過冷オーステナイト中の炭素濃度を材料全体の平均炭素濃度よりも高くすることができる。炭素濃度が増加し化学的に安定化した過冷オーステナイトの一部はその後の冷却により、残留オーステナイトとなる。
 このように、下部ベイナイトは高強度と高延性を得るために不可欠な組織であり、その面積比率は5~70%とする。下部ベイナイトの面積比率が5%未満では、所望の平均炭素濃度の残留オーステナイトが得られず、一方、下部ベイナイトの面積比率が70%を超える場合は、焼戻しマルテンサイトやマルテンサイトの面積比率が小さくなるため、所望の引張強さを得難くなる。
残留オーステナイト:8~15%
 残留オーステナイトは、TRIP(Transformation-Induced Plasticity;変態誘起塑性)現象を利用した延性の増加とひずみ硬化による引張強さの向上に有効である。高延性を得るには残留オーステナイトは8%以上必要であるが、残留オーステナイトは軟質であるため、過剰であると引張強さの低下を招く。このため、残留オーステナイトは15%以下に抑える。
残留オーステナイト中の平均炭素濃度:1.0~2.0wt%
 高強度かつ高延性を得るためには、残留オーステナイト中の平均炭素濃度が高いことが不可欠な条件である。残留オーステナイト中の平均炭素濃度は、オーステナイトがベイナイトに変態する際、ベイニティックフェライトから周囲の過冷オーステナイトに炭素が排出されることで増加するため、局所的には個々の残留オーステナイトの炭素濃度は異なると考えられる。残留オーステナイトはその炭素濃度が高いものほど変形に対して安定しており、加工誘起マルテンサイト相に変態し難い傾向がある。したがって、塑性変形初期では、比較的炭素濃度の低い残留オーステナイトがTRIPによりマルテンサイト変態しつつ硬化して延性を向上させ、塑性変形が進むと、炭素濃度の高い残留オーステナイトがマルテンサイト変態するため、結果として高い延性を示す。所望の高強度高延性を得るため、残留オーステナイト中の平均炭素濃度は、1.0wt%以上必要である。残留オーステナイト中の平均炭素濃度が1.0wt%未満では、残留オーステナイトのほとんどが塑性変形初期においてTRIPによる変態硬化が支配的となるため、塑性変形が進行したときに延性のさらなる向上が得られなくなり、結果的に所望の高強度高延性を得ることができない。ただし、残留オーステナイト中の平均炭素濃度が2.0wt%を超えると、塑性加工に対してTRIP現象が発現しないか、発現しても僅かであり、所望の引張強さを得難くなる。
マルテンサイト:0%を超え15%以下
 本発明のばね用材料に、さらにマルテンサイトを0%を超えて含有させると、より一層強度を向上させることができる。マルテンサイトは延性に乏しい組織であるが、硬度が非常に高い。マルテンサイトの面積比率が0%を超え15%以下の場合は、延性の大幅な低下を伴わず、引張強さを増加させることができる。しかしながら、マルテンサイトの面積比率が15%を超えると、延性の低下が顕著となり、引張強さも増加せず、強度-延性のバランスが著しく低下する。このため、本発明の他のばね用材料では、より一層強度を向上させるため、マルテンサイトを0%を超え15%以下含有させる。
 本発明のばね用材料において、上記の鉄系合金は、質量%で、C:0.45~0.65%、Si:1.0~2.5%、Mn:0.1~1.0%、Cr:0.1~1.0%、P:0.035%以下、S:0.035%以下を満たし、残部が鉄および不可避不純物からなることが好ましい。以下に、それら元素の平均成分の限定理由について説明する。
C:0.45~0.65%
 Cは、1900MPa以上の引張強さおよび所望の残留オーステナイト面積比率を確保するために有効な元素であり、0.45%以上含有させることが好ましい。しかしながら、C含有量が過剰になると、比較的軟質な残留オーステナイトの面積比率が増え過ぎて所望の引張強さを得ることが困難になるため、C含有量は0.65%以下に抑えると良い。
Si:1.0~2.5%
 Siは、下部ベイナイトの基地であるベイニティックフェライト生成時に、ベイニティックフェライトから周囲の過冷オーステナイトへ炭素が排出される際、鉄炭化物の析出を抑制する作用を持つ。すなわち、鉄炭化物にSiはほとんど固溶されないため、鉄炭化物はSiを避けて析出するが、析出には非常に時間が掛かるため鉄炭化物の析出が抑制される。したがって、多量のCをオーステナイト中に固溶させて、平均炭素濃度の高い残留オーステナイトを所望の比率得るために有効な元素である。また、Siは固溶強化元素であり、高強度を得るために有効な元素である。このため、Siの含有量は1.0%以上であることが好ましい。しかしながら、Si含有量が過多であると、軟質な残留オーステナイトの面積比率が高くなり過ぎて強度の低下を招くため、Si含有量は2.5%以下に抑えると良い。
Mn:0.1~1.0%
 Mnは、脱酸元素として添加するが、オーステナイトを安定化させる元素でもあるため、所望量の残留オーステナイトを得るために0.1%以上添加することが好ましい。一方、Mnの含有量が過剰であると、Mnの偏析が生じて加工性が低下し易くなるため、Mn含有量は1.0%以下に抑えると良い。
Cr:0.1~1.0%
 Crは、材料の焼入れ性を高め、強度を向上させる元素である。また、等温変態曲線(TTT線図;Time Temperature Transformation Diagram)においてパーライト変態を遅延させる作用もあり、安定して焼戻しマルテンサイト組織と下部ベイナイト組織を得ることができるため、0.1%以上添加することが好ましい。ただし、1.0%を超えて添加すると、加工性が低下し易くなるため、Cr含有量は1.0%に抑えると良い。
P:0.035%以下、S:0.035%以下
 PおよびSは、粒界偏析による粒界破壊を助長する元素であるため、含有量は低い方が望ましく、0.035%以下とすることが好ましい。より好ましくは、0.01%以下である。
 本発明のばね用材料においては、ばねの軽量化のために、引張強さが1900MPa以上であることが望ましい。また、一般に、引張強さと、延性を表す代表的特性値の1つである破断伸びとはトレード・オフの関係にあり、引張強さが1900MPa以上においては下記に定義するパラメータZが20000以上であることが望ましい。
Figure JPOXMLDOC01-appb-M000001
 本発明のばね用材料は、自動車用の懸架ばねおよび弁ばねを主要な用途としており、その要求仕様を満たすためにばね用材料の円相当直径は1.5~15mmであることが好ましい。
 また、本発明のばね用材料の製造方法は、鉄系合金からなる材料を用い、Ac3点を超え(Ac3点+250℃)以下の温度でオーステナイト化する工程と、20℃/秒以上の速度で冷却し、(Ms-200℃)以上Ms点以下の温度で10~60秒間保持する焼入れ工程と、10℃/秒以上の速度で加熱し、Ms点を超え(Ms点+70℃)以下の温度で90~3600秒間保持する等温変態工程と、室温まで冷却する冷却工程とを順に行うことを特徴とする。ここで、Ac3点とは加熱中に観察されるオーステナイト単相域とフェライト+オーステナイトの二相域との境界温度であり、Ms点とは冷却中に過冷オーステナイトからマルテンサイトが生成を開始する温度である。
 以下、本発明のばね用材料の製造方法について説明する。鉄系合金からなる材料を用いるが、オーステナイト化を行う前の材料の組織については特に制限されない。たとえば、熱間鍛造や線引き加工した条鋼材を素材として使用できる。
オーステナイト化工程
 オーステナイト化の温度は、Ac3点を超え(Ac3点+250℃)以下である必要がある。Ac3点以下では材料がオーステナイト化せず、所望の組織を得ることができない。また、(Ac3点+250℃)を超えると、旧オーステナイト粒径が粗大化しやすくなり、延性が低下する虞がある。
焼入れ工程
 オーステナイト化温度から20℃/秒以上の速度で冷却し、(Ms-200℃)以上Ms点以下の温度で10~60秒間保持して焼入れを行う。これにより、過冷オーステナイトの一部がマルテンサイト変態する。このマルテンサイトは後述する等温変態工程後に焼戻しマルテンサイトとなる。冷却速度は速いほど良く、20℃/秒未満では冷却中に軟質なフェライトやパーライトが生成し、所望の組織を得ることができない。焼入れする温度は、(Ms-200℃)未満であるとマルテンサイトが過剰に生成されるため、その後の工程で下部ベイナイトや残留オーステナイトがほとんど得られなくなる。一方、Ms点を超えるとマルテンサイト自体が得られなくなる。また、保持時間は、10秒未満では材料の内部まで均一にマルテンサイトが生成されないため、所望の組織が得られない。一方、保持時間が60秒を超えると生成するマルテンサイトの面積比率は飽和するため、実質60秒を上限とする。
等温変態工程
 焼入れした温度から10℃/秒以上の速度で材料を加熱し、Ms点を超え(Ms点+70℃)以下の温度で90~3600秒間保持する。これにより、オーステナイトの一部が下部ベイナイトに変態し、マルテンサイトの一部または全部が焼戻しマルテンサイトとなる。昇温速度は速いほど良く、10℃/秒未満では均質な下部ベイナイトを得ることができない他、下部ベイナイトの生成開始に多大な時間を費やし不経済である。変態温度は、Ms点以下では所望の下部ベイナイトの面積比率を得ることが非常に困難となる。一方、(Ms点+70℃)を超えると軟質な上部ベイナイトが生成されるため引張強さが低下してしまう。また、保持時間は、90秒未満では下部ベイナイトの生成量が少なく所望の組織を得ることができない。一方、保持時間が3600秒を超えても各組織の面積比率は実質的にほとんど変化しないため、生産効率やコストを考慮し3600秒を上限とする。なお、変態温度および保持時間を調整することによって、マルテンサイト組織の面積比を0%を超え15%以下に維持して、より高強度のばね用材料とすることができる。
冷却工程
 等温変態工程後、材料を室温まで冷却する。冷却速度は特に規定するものではないが、生産効率やコストを考慮し水冷や空冷が望ましい。
 本発明のばね用材料の製造方法において、鉄系合金は、質量%で、C:0.45~0.65%、Si:1.0~2.5%、Mn:0.1~1.0%、Cr:0.1~1.0%、P:0.035%以下、S:0.035%以下を満たし、残部が鉄および不可避不純物からなることが好ましい。
 さらに、本発明のばねは、上記ばね用材料からなり、上記製造方法により作製されることを特徴とし、必要に応じてショットピーニングおよびセッチングを実施することが望ましい。ショットピーニングを施すことにより、ばね表面に圧縮残留応力を付与し、耐疲労性を向上させることができる。また、セッチングを施すことにより、耐へたり性を向上させることができる。
 本発明によれば、高価な合金元素を含有せず、入手が容易なJISまたはSAE等の規格ばね用材料を用いることができ、複雑な加工熱処理を必要とせず、高強度かつ高延性のばね用材料およびその製造方法並びにばねを提供することができる。また、本発明のばね用材料およびばねは、添加元素量が少ない合金を用いることができるため、リサイクル性にも優れる。さらに、本発明のばね用材料およびばねは、従来から広く利用されている焼入れ焼戻し処理材と比較し、製造工程を簡略化および短時間化できるため、省エネルギー化が可能である。
 本発明によれば、引張強度が1900MPa以上と高強度であり、かつ高い延性を有するばね用材料を得ることができる。
 以下、本発明について実施形態を用いてさらに詳細に説明する。まず、質量%で、C:0.45~0.65%、Si:1.0~2.5%、Mn:0.1~1.0%、Cr:0.1~1.0%、P:0.035%以下、S:0.035%以下を満たし、残部が鉄および不可避不純物からなり、円相当直径が1.5~15.0mmである鋼材を用意する。この鋼材を、Ac3点を超え(Ac3点+250℃)以下の温度の金属浴や塩浴中で、加熱してオーステナイト化させる(オーステナイト化工程)。次いで20℃/秒以上の速度で冷却し、別の金属浴や塩浴を用いて(Ms-200℃)以上Ms点以下の温度で10~60秒間保持して焼入れを行う(焼入れ工程)。これにより、オーステナイトに加え、過冷オーステナイトの一部が変態したマルテンサイトが得られる。
 次に、さらに別の金属浴や塩浴を用いて鋼材を10℃/秒以上の速度で加熱し、Ms点を超え(Ms点+70℃)以下の温度で90~3600秒間等温保持する(等温変態工程)。これにより、オーステナイトの一部が下部ベイナイトに変態し、マルテンサイトの一部または全部が焼戻しマルテンサイトとなる。このとき、下部ベイナイトの生成過程において、ベイニティックフェライトから周囲の過冷オーステナイトに炭素が排出され、かつSiの存在によって鉄炭化物の生成が抑制されるため、過冷オーステナイト中の炭素濃度を高濃度とすることができる。そして、等温変態後の鋼材を水冷や空冷により室温まで冷却する(冷却工程)。これにより、平均炭素濃度の高い残留オーステナイトが得られる。
 このような製造方法から得られるばね用材料は、任意の断面における内部組織の面積比率で、焼戻しマルテンサイトが30~80%、下部ベイナイトが5~70%、残留オーステナイトが8~15%であり、残留オーステナイト中の平均炭素濃度が1.0~2.0wt%となる。また、等温変態工程において、変態温度および保持時間を調整することによって、さらにマルテンサイトを0%を超え15%以下含有させ、より高強度としたばね用材料も得ることができる。これらのばね用材料は、引張強さが1900MPa以上、数1に定義するパラメータZが20000以上であり、強度と延性に非常に優れている。
 また、上記製造方法によりばねを作製し、ばねに対してショットピーニングおよびセッチングを施して耐疲労性や耐へたり性を向上させても良い。ショットピーニングやセッチングにおいては、要求性能に応じて各種実施条件を設定する。
 表1に記載の平均成分からなる市販のばね用鋼SAE9254(直径12mm)を用意した。なお、全自動変態点記録測定装置(富士電波工機(株)製formasor-F)を用いて測定した本鋼材のAc3点は796℃、Ms点は268℃であった。本鋼材を850℃の塩浴中で10分間加熱(オーステナイト化工程)後、次いで別の塩浴を用いて表2に記載の温度(T1)で所定時間(t1)保持した(焼入れ工程)。さらに、鋼材を別の塩浴を用いて表2に記載の温度(T2)で所定時間(t2)保持後(等温変態工程)、室温の水中に浸漬し冷却した(冷却工程)。このようにして得られたばね鋼に対し、以下の要領で各種組織の面積比率の測定、引張強さおよび破断伸びを調べた。
Figure JPOXMLDOC01-appb-T000002
[各種組織の面積比率]
 焼戻しマルテンサイト組織は、マルテンサイト内部に微細な鉄炭化物が析出しており、マルテンサイト内部に鉄炭化物が認められない焼入れままのマルテンサイト組織とは区別することができる。下部ベイナイト組織は、針状のベイニティックフェライトの内部に規則正しく並んだ微細な鉄炭化物が存在する特徴を有する。これらの組織は、ばね鋼の任意の横断面を鏡面研磨し、さらにナイタ-ルにより腐食させた後、SEM(走査型電子顕微鏡)によってそれぞれ観察して面積比率を求めた。これらの結果を表2に併記する。
 また、残留オーステナイトは、ばね鋼の任意の横断面において、鏡面研磨後、X線回折法により面積比率を求めた。マルテンサイトの面積比率は、面積比率100%から焼戻しマルテンサイト、下部ベイナイト、および残留オーステナイトの合計面積比率(%)を引くことにより求めた。これは、上記のSEM観察においてマルテンサイトと残留オーステナイトとの区別が困難であるためである。
 残留オーステナイト中の平均炭素濃度([C](mass%))は、X線回折でオーステナイトの(111)、(200)、(220)および(311)の各回折ピ-ク角度から求めた格子定数a(nm)を用い、以下に示す関係式により算出した。この結果を表2に併記する。
Figure JPOXMLDOC01-appb-M000003
[引張強さおよび破断伸び]
 平行部が直径6mm、標点間距離30mmの丸棒状試験片(JIS 14A号)を切削加工により作製し、この試験片に対して引張試験を実施して引張強さを求めた。また、引張試験後、破断面を突き合わせ、原標点間距離に対する標点間距離の増加分から破断伸びを求めた。これらの結果を表2に併記する。
Figure JPOXMLDOC01-appb-T000004
 表2から明らかなように、焼入れ工程および等温変態工程における温度および保持時間が本発明で規定した範囲内であるNo.2~7、9~13および15~17の試験片では、所望の組織が得られ、引張強さが1900MPa以上であり、かつパラメータZが20000以上と高強度高延性を示す(本発明例)。
 これに対し、等温変態工程における保持時間が本発明で規定した範囲外であるNo.1、8および14の試験片は以下の不具合を有している(比較例)。すなわち、No.1および8の試験片は等温変態工程の保持時間が短いため、マルテンサイト、残留オーステナイトの各比率および残留オーステナイト中の平均炭素濃度が本発明の要件を満たさず、その結果として破断伸びが小さくなるため本発明で規定するパラメータZを確保できていない。また、No.14の試験片では、下部ベイナイト、マルテンサイト、残留オーステナイトの各比率および残留オーステナイト中の平均炭素濃度が本発明の要件を満たさず、その結果として破断伸びが小さくなるため本発明で規定するパラメータZを確保できていない。

Claims (10)

  1.  鉄系合金からなり、任意の断面における内部組織の面積比率で、焼戻しマルテンサイトが30~80%、下部ベイナイトが5~70%、残留オーステナイトが8~15%であり、残留オーステナイト中の平均炭素濃度が1.0~2.0wt%であることを特徴とするばね用材料。
  2.  鉄系合金からなり、任意の断面における内部組織の面積比率で、焼戻しマルテンサイトが30~80%、下部ベイナイトが5~70%、マルテンサイトが0%を超え15%以下、残留オーステナイトが8~15%であり、残留オーステナイト中の平均炭素濃度が1.0~2.0wt%であることを特徴とするばね用材料。
  3.  前記鉄系合金は、質量%で、C:0.45~0.65%、Si:1.0~2.5%、Mn:0.1~1.0%、Cr:0.1~1.0%、P:0.035%以下、S:0.035%以下を満たし、残部が鉄および不可避不純物からなることを特徴とする請求項1または2に記載のばね用材料。
  4.  引張強さが1900MPa以上であり、以下に定義するパラメータZが20000以上であることを特徴とする請求項1~3のいずれかに記載のばね用材料。
      パラメータZ=(引張強さ(MPa))×(破断伸び(%))
  5.  線材の円相当直径が1.5~15.0mmであることを特徴とする請求項1~4のいずれかに記載のばね用材料。
  6.  請求項1~5のいずれかに記載のばね用材料からなるばね。
  7.  鉄系合金からなる材料を用い、
     加熱中に観察されるオーステナイト単相域とフェライト+オーステナイトの二相域との境界温度をAc3点とし、冷却中に過冷オーステナイトからマルテンサイトが生成を開始する温度をMs点としたときに、前記材料に対し、Ac3点を超え(Ac3点+250℃)以下の温度でオーステナイト化する工程と、20℃/秒以上の速度で冷却し、(Ms-200℃)以上Ms点以下の温度で10~60秒間保持する焼入れ工程と、10℃/秒以上の速度で加熱し、Ms点を超え(Ms点+70℃)以下の温度で90~3600秒間保持する等温変態工程と、室温まで冷却する冷却工程とを順に行うことを特徴とするばね用材料の製造方法。
  8.  前記鉄系合金は、質量%で、C:0.45~0.65%、Si:1.0~2.5%、Mn:0.1~1.0%、Cr:0.1~1.0%、P:0.035%以下、S:0.035%以下を満たし、残部が鉄および不可避不純物からなることを特徴とする請求項7に記載のばね用材料の製造方法。
  9.  請求項7または8に記載の製造方法により作製したばね。
  10.  ショットピーニングおよびセッチングが施されていることを特徴とする請求項9に記載のばね。
PCT/JP2012/070222 2011-08-09 2012-08-08 ばね用材料およびその製造方法並びにばね WO2013022033A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011173544A JP2013036087A (ja) 2011-08-09 2011-08-09 ばね用材料およびその製造方法並びにばね
JP2011-173544 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013022033A1 true WO2013022033A1 (ja) 2013-02-14

Family

ID=47668539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070222 WO2013022033A1 (ja) 2011-08-09 2012-08-08 ばね用材料およびその製造方法並びにばね

Country Status (2)

Country Link
JP (1) JP2013036087A (ja)
WO (1) WO2013022033A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462970A (zh) * 2021-06-21 2021-10-01 武汉钢铁有限公司 一种用CSP生产抗拉强度为1800MPa级高塑韧性汽车结构件用钢及生产方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101639897B1 (ko) * 2014-12-15 2016-07-15 주식회사 포스코 피로특성이 우수한 스프링강 및 그 제조 방법
JP6348436B2 (ja) * 2015-02-27 2018-06-27 株式会社神戸製鋼所 高強度高延性鋼板
DE102015217401B4 (de) * 2015-09-11 2018-04-05 Thyssenkrupp Ag Rohrfeder für Kraftfahrzeuge und ein Verfahren zum Herstellen einer Rohrfeder
CN110760656A (zh) * 2019-09-18 2020-02-07 南京钢铁股份有限公司 一种生产高强度SiCrV弹簧钢的热处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193323A (ja) * 1982-05-06 1983-11-11 Nippon Steel Corp 高強度ばねの製造法
JPS605820A (ja) * 1983-06-23 1985-01-12 Nisshin Steel Co Ltd 高強度高延性鋼の製法
JPH01165751A (ja) * 1987-12-21 1989-06-29 Nippon Steel Corp 高強度かつ耐久性のすぐれたばね
JP2007154240A (ja) * 2005-12-02 2007-06-21 Kobe Steel Ltd コイリング性と耐水素脆化特性に優れた高強度ばね鋼線

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193323A (ja) * 1982-05-06 1983-11-11 Nippon Steel Corp 高強度ばねの製造法
JPS605820A (ja) * 1983-06-23 1985-01-12 Nisshin Steel Co Ltd 高強度高延性鋼の製法
JPH01165751A (ja) * 1987-12-21 1989-06-29 Nippon Steel Corp 高強度かつ耐久性のすぐれたばね
JP2007154240A (ja) * 2005-12-02 2007-06-21 Kobe Steel Ltd コイリング性と耐水素脆化特性に優れた高強度ばね鋼線

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462970A (zh) * 2021-06-21 2021-10-01 武汉钢铁有限公司 一种用CSP生产抗拉强度为1800MPa级高塑韧性汽车结构件用钢及生产方法
CN113462970B (zh) * 2021-06-21 2022-06-17 武汉钢铁有限公司 一种用CSP生产抗拉强度为1800MPa级高塑韧性汽车结构件用钢及生产方法

Also Published As

Publication number Publication date
JP2013036087A (ja) 2013-02-21

Similar Documents

Publication Publication Date Title
JP4927899B2 (ja) ばね用鋼およびその製造方法並びにばね
JP5624503B2 (ja) ばねおよびその製造方法
JP4476863B2 (ja) 耐食性に優れた冷間成形ばね用鋼線
JP4423254B2 (ja) コイリング性と耐水素脆化特性に優れた高強度ばね鋼線
JP5674620B2 (ja) ボルト用鋼線及びボルト、並びにその製造方法
JP5064060B2 (ja) 高強度ばね用鋼線及び高強度ばね並びにそれらの製造方法
KR101768785B1 (ko) 내수소취성이 우수한 고강도 스프링용 강선재 및 그의 제조 방법, 및 고강도 스프링
JP6284279B2 (ja) 強度部材およびその製造方法
US11378147B2 (en) Spring and manufacture method thereof
KR20150002848A (ko) 코일링성과 내수소취성이 우수한 고강도 스프링용 강선 및 그의 제조 방법
JP5543814B2 (ja) 熱処理用鋼板及び鋼部材の製造方法
WO2013022033A1 (ja) ばね用材料およびその製造方法並びにばね
JP2007284774A (ja) 耐遅れ破壊特性および冷間加工性に優れる線材およびその製造方法
WO2012133885A1 (ja) ばねおよびその製造方法
WO2013146214A1 (ja) ばね用鋼およびその製造方法並びにばね
JP7133705B2 (ja) 靭性及び腐食疲労特性が向上されたスプリング用線材、鋼線及びその製造方法
JP7018444B2 (ja) 耐腐食疲労性に優れたばね用線材及び鋼線並びにそれらの製造方法
JP2008266782A (ja) 耐水素脆性、腐食疲労強度の優れたばね用鋼及びそれを用いた高強度ばね部品
JP5683230B2 (ja) ばねおよびその製造方法
JP5523241B2 (ja) ばねおよびその製造方法
WO2013115404A1 (ja) コイルばねおよびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12822722

Country of ref document: EP

Kind code of ref document: A1