WO2017017290A1 - Acero para ballestas de alta resistencia y templabilidad - Google Patents

Acero para ballestas de alta resistencia y templabilidad Download PDF

Info

Publication number
WO2017017290A1
WO2017017290A1 PCT/ES2015/070582 ES2015070582W WO2017017290A1 WO 2017017290 A1 WO2017017290 A1 WO 2017017290A1 ES 2015070582 W ES2015070582 W ES 2015070582W WO 2017017290 A1 WO2017017290 A1 WO 2017017290A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
steels
resistance
tempering
hardenability
Prior art date
Application number
PCT/ES2015/070582
Other languages
English (en)
French (fr)
Inventor
Roberto Elvira Eguizabal
Jacinto ALBARRÁN SANZ
Juan José LARAUDOGOITIA ELORTEGUI
Original Assignee
Gerdau Investigacion Y Desarrollo Europa, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gerdau Investigacion Y Desarrollo Europa, S.A. filed Critical Gerdau Investigacion Y Desarrollo Europa, S.A.
Priority to EP15795207.8A priority Critical patent/EP3330400A1/en
Priority to PCT/ES2015/070582 priority patent/WO2017017290A1/es
Publication of WO2017017290A1 publication Critical patent/WO2017017290A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/02Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten

Definitions

  • the present invention relates to a steel for crossbows of high strength and high hardenability, with a high fatigue life, which has application in the field of the steel industry, allowing its use for metal structures in the construction sector, being especially suitable , said parts, in automotive, for example for the manufacture of crossbows or other thick section suspension elements for suspension systems of industrial vehicles.
  • the invention allows to obtain a steel for crossbows, from a chemical composition and by a metallurgical process, which has a high mechanical resistance as well as a high life and fatigue resistance, in addition to having an excellent hardenability.
  • the main characteristic of the steels for crossbows is their elastic behavior, so that before an external effort they deform and when that effort disappears they recover their original form.
  • crossbow steels have a good fatigue response, considering the cyclic solicitations in service of the suspension elements; good corrosion resistance, given that, due to their situation in the vehicle and despite wearing paint or other corrosion protection, they are exposed to weather conditions and / or impacts that degrade their protective layer; Low sensitivity to hydrogen fragility, which accelerates the progression of small cracks, and moderate tenacity at room temperature and at low temperature, since they can be used in environments with sub-zero temperatures.
  • springs and springs typified as such in international standards, with tensile strength ranging between 1300 MPa and 2000 MPa. These values, however, depend remarkably on the thickness of the piece and the highest values are only obtained on springs of small thickness, generally helical springs manufactured from wire rod by cold or hot forming.
  • the steels for crossbows are hot formed, at temperatures between 950 ° C and 1 150 ° C, after a heating process that can be by combustion of gas, by induction and other means and that is usually done in the presence of oxidizing atmosphere by a more or less prolonged time, for example between 30-75 minutes per end.
  • a heating process that can be by combustion of gas, by induction and other means and that is usually done in the presence of oxidizing atmosphere by a more or less prolonged time, for example between 30-75 minutes per end.
  • These processes deteriorate the surface of the steel, either by decarburization, or by the formation of scale on the surface, which negatively influences the fatigue behavior of the piece.
  • this time is substantially shorter, so the problem of Decarburization, unlike the case of crossbow steels, is not relevant.
  • WO 2011/074600-A1 describes a method for obtaining a steel for crossbows with Ti alloy and Ti / N ⁇ 10 ratio that prevents the appearance of bainite and with it and with a hot shot peening treatment of the component, improves Fatigue life for crossbows with Vickers hardness greater than 510 HV.
  • JPH 08295984-A describes a steel with low Mn for crossbows with high toughness and delayed breaking strength for tensile strengths of 1650 MPa.
  • Chinese patent CN 102586687-A describes a spring steel with resistance of up to 1750 MPa and high hardenability, but reduced ductility even for a tempering treatment at 500 ° C.
  • Chinese patent no. CN 102634735-A describes a high strength alloy steel, with the addition of Cu between 0.50% and 0.80% and rare earth between 0.02% and 0.07%, which reaches a mechanical resistance ⁇ 2,000 MPa for springs diameter ⁇ 16 mm.
  • WO 2012/063620-A1 refers to the invention of a high corrosion resistance Si-Mn steel for application to helical springs cold or hot formed, as well as to the high resistance spring manufactured from this steel.
  • WO 2010/110041 -A1 patent solves the problem of the lack of ductility of high strength steels by austempering a Si-steel.
  • Mn-Cr that generates a mixed microstructure of retained bainite and austenite with high strength and good ductility.
  • WO 2008/102573-A1 improves the toughness of a high strength steel by adding high Si and an adequate balance of temperatures and tempering times that prevent the transformation of ⁇ carbides to cementite.
  • the present invention relates to a steel for leaf springs, in which as a result of various investigations an optimal combination of two opposing mechanical properties has been achieved, a high tensile strength, with resistance values of at least 1800 MPa, and a high ductility, with elongation values> 9% and area reduction> 30%.
  • the invention allows obtaining a steel for leaf springs, from a novel chemical composition and a certain metallurgical process, which has an optimal and tight resistance to decarburization, a high mechanical resistance as well as a good ductility, in addition to having an optimal hardenability, which is important, for example, for the complete transformation of austenite to martensite into thick pieces.
  • the heat treatment performed on steel has an important influence on the mechanical characteristics of the final component, that is, the part with the initial chemical composition is subjected to a certain tempering and tempering procedure, which it is necessary that it be carried out under specific conditions of time and temperature.
  • the inventors have proven a synergistic effect between a novel combination of chemical elements and a process for obtaining said steel, which contemplates a specific heat treatment, obtaining a steel for crossbows for tempering and tempering of high strength and ductility, as well as good aptitude for hot forming and good hardenability.
  • alloy elements are used in alloy steels to improve tensile strength, temper resistance, toughness or other characteristics, but not with the indicated weight concentrations, with the proposed combination of elements, or to obtain previously described properties that allow its use in the commented applications.
  • Carbon is an indispensable element to obtain a high resistance and hardness after tempering and tempering. Below 0.45% carbon, the resistance obtained is insufficient. On the other hand, above 0.58% the toughness of the steel decreases markedly and hydrogen embrittlement can be favored.
  • the optimal range is between 0.47% and 0.55%.
  • Silicon is one of the most important ferrite hardeners by solid solution. Since it dissolves in ferrite and not in cementite, it tends to inhibit The precipitation of carbides and, therefore, displaces the temperature of the fragility zone of the tempering at higher temperatures, which prevents hydrogen embrittlement and improves fatigue resistance under corrosion.
  • silicon is a powerful deoxidizer and as such is used in refining processes in steel processes. It also increases the hardenability and hardens the ferrite matrix of the martensite replacing the iron atoms of the crystalline network. For these effects to translate into a significant increase in resistance, at least 0.75% Silicon is required, with silicon content above 0.90% being recommended for this application.
  • silicon contributes to displacing the ductile-fragile transition temperature to higher temperatures, so that if the silicon content is very high it can embrittle the steel at room temperature, so that the upper limit is set at 2, 25% to ensure acceptable toughness, 2.00% to ensure acceptable decarburization in tempering and tempering heat treatments and 1.75% to ensure acceptable decarburization in the processes of rolling and relaminating the crossbows, depending on the process used .
  • silicon tends to combine with O2 and a greater decarburization occurs, which should be limited to 1.75% or even 1.50%.
  • the decarburization is lower and the upper limit can be left at 2.00%.
  • Silicon improves the mechanical properties of steel.
  • Manganese is an indispensable element to ensure the hardenability required in a crossbow steel. In addition, it reduces the temperature of transformation, which allows to obtain a crystalline structure of fine grains, allowing at the same time to increase the resistance and improve the toughness. It also prevents the harmful effect of sulfur, combining with it to form MnS. On the other hand, excessive content can favor the appearance of temper cracks, so that the optimum content is between 0.65% and 1.20%, it can even be limited between 0.80-1, 10%.
  • Chromium is an indispensable element to ensure hardenability required in a spring steel. Below 0.65% the hardenability may not be sufficient and unwanted structures may appear in the core of the piece. A high chromium content increases the risk of hardening cracks. Likewise, chromium carbides act as local electrodes on the surface of the steel, increasing pitting corrosion and reducing fatigue resistance under corrosion. Therefore, the upper limit is set at 1.50%. The best combination of properties is obtained for a fork of 0.80% to 1.25% Cr.
  • Molybdenum has a strong temperability-enhancing effect, while being a strong carbide former, which provides a remarkable secondary hardening effect during tempering.
  • molybdenum improves the resistance to pitting corrosion and prevents the fragility of tempering by avoiding the precipitation of phosphorus at the grain limit.
  • the preferable range is between 0.01% and 0.40%. The best relationship between cost and characteristics is achieved between 0, 10% and 0.30% molybdenum.
  • Vanadium is a micro-alloying element that helps refine the grain size and causes intense hardening due to precipitation and when it remains in solid solution it increases the hardenability. Vanadium precipitates are hydrogen nucleators, so that in corrosive environments they fix it and improve resistance to delayed fracture induced by hydrogen. However, with very high vanadium contents, the precipitates coalesce and their effect can become pernicious. Therefore, the vanadium content should be between 0.01% and 0.40%, with a content between 0.05% and 0.30% being preferable.
  • the steel proposed by the invention may additionally comprise at least one of the following elements or a combination thereof, with a percentage by weight:
  • Phosphorus hardens the steel and secretes in the grain boundaries of the austenite, dramatically reducing the toughness of the steel. In addition, it favors hydrogen embrittlement and delayed fracture. To limit its adverse effect the phosphorus content is limited to less than 0.040%, a content of less than 0.020% being desirable.
  • the addition of copper prevents decarburization of steel and improves corrosion resistance in a manner similar to nickel by inhibiting the growth of corrosion pitting.
  • a high copper content worsens the hot ductility of the steel, so that the upper copper limit is set at 0.50%.
  • the maximum copper content should be limited to 0.30%.
  • Aluminum is an element that acts as a powerful deoxidizer during the steelmaking process. Aluminum forms aluminum nitrides that help control the size of austenitic grain during heat treatments and warming prior to hot forming processes. However, it forms oxides of high hardness that are very harmful to life at fatigue, so that its upper limit is set at less than 0.050%.
  • Niobium is a micro-alloying element with effects similar to vanadium in the control of grain size and hardening of steel by precipitation, so that it contributes to increase mechanical strength and improve toughness.
  • niobium precipitates fix the hydrogen that attacks steel in corrosive environments, improving delayed fracture resistance. Above 0, 100%, however, a greasing of the precipitates occurs which is detrimental to the mechanical properties.
  • the optimal niobium content is set between 0.001% and 0.100%.
  • Titanium is an effective austenitic grain size controller at high temperature, typically at hot forging temperatures. However, given its affinity for nitrogen, it forms titanium nitrides at temperatures close to those of liquid steel, which transforms its precipitates into inclusions of very high hardness and harmful to fatigue life. To limit excessive greasing of titanium nitrides, the titanium content in the steel is limited to a maximum of 0.050%.
  • the nitrogen is combined with Ti, Nb, Al and V to form nitrides, whose precipitation temperatures depend on the respective content of the different elements and on constant characteristics. With an adequate size, these nitrides exert a pinning effect on the austenitic grain by controlling their size at high temperature and preventing their coalescence and growth.
  • a preferred composition of the steel proposed by the invention comprises a percentage by weight:
  • the steel may comprise at least one of the following elements, or a combination thereof, by weight:
  • the process is desescoriar until the furnace is practically left without slag, the objective being a presence of phosphorus, in this step or stage, less than 0.010% by weight.
  • All this steelmaking process allows to achieve low levels of sulfur, below 0.015% by weight, and phosphorus, below 0.020% by weight, in addition to a low inclusion level.
  • the CCT diagrams allow to represent the thermal treatments for a specific chemical composition when the phase transformations occur in non-equilibrium conditions.
  • the solidification products are subsequently transformed into hot, by a process consisting of heating at a temperature above 1 100 ° C and a series of consecutive deformations by forging or hot rolling until an intermediate product of the section, shape and microstructure is obtained adequate.
  • a steel with resistance to traction above 1800 MPa and high ductility, with strictness> 30% has a high hardenability, suitable for obtaining 100% martensite in thick sections, such as those presented by crossbows of industrial vehicles.
  • the invention contemplates the performance of a process by which said steel part is obtainable.
  • the process for obtaining pieces of said steel comprises a hot-forming process, with a preheating to a temperature greater than 950 ° C that allows the steel to provide sufficient hot ductility, to give the steel part a shape similar to that of the final component. After putting it in shape, the piece is allowed to cool in the air. Subsequently, the procedure contemplates a quenching process that is carried out with an austenization at a temperature greater than 800 ° C, followed by final forming operations and then a subsequent cooling, for example, in oil.
  • the steel of the invention has a balance of alloy elements that allows obtaining 100% martensite, even in thick sections, without raising the risk of cracking due to stresses caused by cooling.
  • the process comprises a tempering process, which is carried out at a temperature above 300 ° C for at least one hour, thus achieving to adjust the hardness and toughness of the material, in addition to avoiding decreases in resilience, which They are associated with the phenomenon of fragility of tempering.
  • the process for obtaining steel parts comprises the following steps: - Obtaining the steel of the invention, described above, in which the selected steel comprises the general composition or preferred composition defined above.
  • Figure 1 Shows a diagram of Jominy hardenability curves obtained for each of the A-H steels. Steels C, D and H show practically flat curves, while steels A, B, E, F and G produce hardness drops at distances to the tempered end equal to or less than 40 mm.
  • Figures 2-4. They show microscopes of the surface of steels B, H and A respectively after heating at 960 ° C for 10 minutes.
  • Figures 5-7. They show microscopes in which the decarburized layer of the same steels B, H and A are observed after heating at 1030 ° C for 35 minutes, followed by heating at 960 ° C for 45 minutes.
  • Example 1 By way of example, the tests carried out on samples of steels with compositions other than the chemical composition of the steel of the invention are described below. Said samples are the A-G steels, the H steel is the steel of the invention. Table 1 shows the chemical compositions in percentage by weight, the rest being Fe and impurities:
  • Table 2 shows the ideal critical diameter values, according to data tabulated in ASTM A255-02, for each of the compositions and steels described in table 1.
  • Figure 1 shows the Jominy hardenability curve diagram obtained for each of the A-H steels.
  • Steels C, D and H show practically flat curves, while steels A, B, E, F and G produce hardness drops at distances to the tempered end equal to or less than 40 mm.
  • steels A, B, C, D, E, F and G do not reach a resistance of 1800 MPa, maintaining a minimum area reduction of ⁇ 30%.
  • Steels B, C and E have low silicon contents, so that they do not reach 2000 MPa for any tempering temperature.
  • steels A, D and F despite having high silicon and exceeding 1800 MPa for tempering temperatures equal to or less than 400 ° C, do not achieve the desired ductility levels, since the combination of alloying elements does not It is adequate to achieve the required mechanical characteristics.
  • steel H which has a chemical composition within the limits object of the invention, that is to say the steel that the invention proposes
  • a bonus treatment consisting of harder tempering
  • the steel of the invention has a moderate decarburization, similar to the steels commonly used in crossbows, which allows its hot forming process without deteriorating the surface quality of the steel bar.
  • the surface of steels B, H and A is observed respectively after heating at 960 ° C for 110 minutes.
  • Steel A with 1.94% Si, shows total surface decarburization, which is unacceptable for a crossbow application given the lower resistance of the area subject to higher tensions in service.
  • the decarburized layer of the same steels B, H and A is observed after heating at 1030 ° C for 35 minutes, followed by heating at 960 ° C for 45 minutes.
  • the first treatment is similar to the preheating of the crossbow and the second treatment is similar to the austenization process prior to tempering.
  • Steel A with 1.94% Si, as can be seen in Figure 7, shows a decarbon layer of great thickness (0.20-0.25 mm) that negatively affects the performance of the piece.
  • Steels B and H with 0.28% Si and 1, 02% If respectively, represented in Figures 5 and 6, they show much less partial decarburization and no total decarburization is observed.
  • Steel H located within the limits of the invention, has the necessary hardenability to ensure 100% martensite in thick sections, without generating excessive stresses during tempering that are the origin of cracks. It also acquires a resistance of 1800 MPa by tempering and tempering heat treatment, maintaining a minimum area reduction of ⁇ 30%. All this, maintaining a sufficient resistance to decarburization so as not to lose mechanical properties on the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Acero de alta resistencia con una composición concreta de los siguientes elementos: 0,47 % ≤C ≤ 0,55 %, 0,90 % ≤ Si ≤ 2,00 %, 0,75 % ≤ Mn ≤ 1,20 %, 0,80 % ≤ Cr ≤ 1,25%, 0,10 % ≤ Mo < 0,30 % y 0,05 % ≤ V < 0,30 %, que con un procedimiento para obtener dicho acero consigue bajos contenidos de P y S,elevada limpieza inclusionaria y elevada templabilidad, con un diámetro crítico ideal igual o superior a 235 mm,contribuye a elevar la resistencia mecánica del acero a valores superiores a1800 MPa, y con una alta ductilidad, estricción con valores superiores a 30%,cuando se somete a un tratamiento específico de temple y revenido a una pieza para cuya fabricación se ha seleccionado dicho acero.

Description

ACERO PARA BALLESTAS DE ALTA RESISTENCIA Y TEMPLABILIDAD
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La presente invención se refiere a un acero para ballestas de alta resistencia y elevada templabilidad, con una alta vida a fatiga, que tiene aplicación en el ámbito de la industria siderúrgica, permitiendo su utilización para estructuras metálicas en el sector de construcción, siendo especialmente adecuadas, dichas piezas, en automoción, por ejemplo para la fabricación de ballestas u otros elementos de suspensión de sección gruesa para sistemas de suspensión de vehículos industriales.
La invención permite obtener un acero para ballestas, a partir de una composición química y mediante un proceso metalúrgico, que tiene una alta resistencia mecánica a la vez que una elevada vida y resistencia a fatiga, además de tener una óptima templabilidad.
ANTECEDENTES DE LA INVENCIÓN
La principal característica de los aceros para ballestas es su comportamiento elástico, de modo que ante un esfuerzo externo se deforman y al desaparecer ese esfuerzo recuperan su forma original.
Una de las aplicaciones de los aceros son los elementos de suspensión, en particular ballestas, muelles, y otros elementos y dispositivos utilizados en automoción, ferrocarril e industria. En este ámbito, es fundamental que los aceros para ballestas tengan valores muy elevados de resistencia a tracción y límite elástico, para asegurar el comportamiento elástico del elemento. Además estas propiedades deben mantenerse en el tiempo, evitando que aparezcan deformaciones plásticas permanentes.
Estas características se encuentran determinadas en gran medida por el contenido de carbono del acero, que oscila entre 0,40% y 0,65% en peso, así como el contenido de otros elementos de aleación como, por ejemplo, Si, Mn, Cr, Ni, Mo y V, cuyo objeto es incrementar la templabilidad del acero y asegurar que la microestructura de la pieza templada sea martensita en toda su sección.
Además, otros requisitos de los aceros para ballestas es que tengan buena respuesta a fatiga, considerando las solicitaciones cíclicas en servicio de los elementos de suspensión; buena resistencia a la corrosión, dado que, por su situación en el vehículo y pese a llevar pintura u otras protección anticorrosión, están expuestos a las inclemencias atmosféricas y/o a impactos que degraden su capa protectora; baja sensibilidad a la fragilidad por hidrógeno, que acelera la progresión de pequeñas grietas, y moderada tenacidad a temperatura ambiente y a baja temperatura, dado que pueden ser utilizados en entornos con temperaturas sub-cero. Existen numerosos aceros para ballestas y muelles tipificados como tales en normas internacionales, con resistencia a la tracción que oscila entre 1300 MPa y 2000 MPa. Estos valores, sin embargo, depende notablemente del espesor de la pieza y los valores más altos sólo se obtienen en muelles de pequeño espesor, generalmente muelles helicoidales fabricados a partir de alambrón por conformado en frío o en caliente.
Para elementos de suspensión de gran espesor, como las ballestas empleadas en vehículos industriales, se requieren aceros de muy alta templabilidad, siendo las calidades más comunes los aceros 55Cr3, 51 CrV4 ó 52CrMoV4 y sección rectangular redondeada.
Los aceros para ballestas se conforman en caliente, a temperaturas entre 950°C y 1 150°C, tras un proceso de calentamiento que puede ser por combustión de gas, por inducción y otros medios y que habitualmente se hace en presencia de atmósfera oxidante por un tiempo más o menos prolongado, por ejemplo entre 30-75 minutos por cada extremo. Estos procesos deterioran la superficie del acero, bien por descarburación, bien por formación de cascarilla en superficie, lo que influye negativamente en el comportamiento a fatiga de la pieza. En el caso de muelles helicoidales, dicho tiempo es sustancialmente menor, por lo que el problema de la descarburación, a diferencia del caso de aceros para ballestas, no es relevante.
Además de los citados, en la actualidad existen aceros y procedimientos de obtención de los mismos orientados a mejorar las características en servicio de los aceros destinados a las aplicaciones anteriormente comentadas, en los que habitualmente se añaden cantidades variables de elementos aleantes como por ejemplo Si, Mn, Cr, Ni, Mo, Cu, V, Ti, Al, Nb o B, de los cuales a continuación se mencionan algunos ejemplos.
La patente no. WO 2011/074600-A1 describe un método para la obtención de un acero para ballestas con aleación de Ti y relación Ti/N≥10 que previene la aparición de bainita y con ello y con un tratamiento de shot peening en caliente del componente, mejora la vida a fatiga para ballestas con dureza Vickers superior a 510 HV.
Por otro lado, la patente japonesa no. JPH 08295984-A describe un acero con bajo Mn para ballestas con elevada tenacidad y resistencia a la rotura retardada para resistencias a la tracción de 1650 MPa.
La patente china CN 102586687-A describe un acero para ballestas con resistencia de hasta 1750 MPa y elevada templabilidad, pero de ductilidad reducida incluso para un tratamiento de revenido a 500°C.
Otras invenciones de aceros de alta resistencia se orientan a aplicaciones de alambrón de pequeño espesor para suspensiones helicoidales como las que se refieren a continuación como ejemplo
La patente china no. CN 102634735-A describe un acero aleado de alta resistencia, con adición de Cu entre 0,50% y 0,80% y de tierras raras entre 0,02% y 0,07%, que alcanza una resistencia mecánica≥2000 MPa para muelles de diámetro <16 mm.
La patente WO 2012/063620-A1 se refiere a la invención de un acero al Si-Mn de alta resistencia a la corrosión para aplicación a muelles helicoidales conformados en frío o en caliente, así como al muelle de alta resistencia fabricado a partir de este acero.
La patente WO 2010/110041 -A1 resuelve el problema de la falta de ductilidad de los aceros de alta resistencia mediante austempering de un acero al Si-
Mn-Cr que genera una microestructura mixta de bainita y austenita retenida de alta resistencia y buena ductilidad.
La patente WO 2008/102573-A1 mejora la tenacidad de un acero de alta resistencia mediante la adición de alto Si y un adecuado balance de temperaturas y tiempos de revenido que impidan la transformación de carburos ε a cementita.
La mejora de la resistencia a la fatiga bajo corrosión de los aceros de alta resistencia se resuelve en la patente WO 2006/022009-A1 mediante la adición de elementos anticorrosión como Cu y Ni, la mejora del proceso de desoxidación que reduce drásticamente el contenido de óxidos de tamaño superior a 10 μηι de diámetro y un adecuado balance de otros elementos de aleación (Si, Mn, Cr).
La mejora de la tenacidad en aceros de alta resistencia se obtiene en la patente WO 1998/051834 mediante el afino de grano por efecto de la microprecipitación y la reducción de impurezas en los límites de grano de la austenita, con un adecuado balance de elementos de aleación (Si, Ti, B).
El aumento de la resistencia a la tracción por encima de 2000 MPa y de la resistencia a fatiga de aceros para muelles helicoidales se obtiene en las patentes japonesas JP 2842579-B2 y JP 3255296-B2 mediante un adecuado balance de elementos de aleación (Si, Ni, Cr, Mo, V) y restringiendo en número y tamaño el contenido de óxidos en el acero. La reducción de peso de las ballestas y brazos de suspensión de vehículos industriales precisa de aceros de elevada resistencia mecánica (≥1800 MPa) en piezas de espesor entre 10 y 60 mm y anchura entre 50 y 150 mm, con elevada vida a fatiga, buena resistencia a la corrosión y a la fatiga bajo corrosión, baja susceptibilidad a la fragilidad por hidrógeno y moderada tenacidad y resistencia a impacto a bajas temperaturas. Este reto todavía no ha sido resuelto en su totalidad por el estado de la técnica.
Por lo tanto, las propiedades de las piezas fabricadas con aceros destinados a dichas aplicaciones resultan susceptibles de ser optimizadas.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención se refiere a un acero para ballestas, en el que como resultado de diversas investigaciones se ha conseguido una combinación óptima de dos propiedades mecánicas contrapuestas, una alta resistencia a tracción, con valores de resistencia de al menos 1800 MPa, y una alta ductilidad, con valores de alargamiento >9% y de reducción de área >30%. La invención permite obtener un acero para ballestas, a partir de una composición química novedosa y un determinado proceso metalúrgico, que tiene una óptima y ajustada resistencia a la descarburación, una alta resistencia mecánica a la vez que una buena ductilidad, además de tener una óptima templabilidad, lo cual resulta importante, por ejemplo, para la completa transformación de austenita a martensita en piezas de gran espesor.
Por otro lado, además de la composición química, el tratamiento térmico realizado al acero influye de manera importante en las características mecánicas del componente final, es decir, la pieza con la composición química inicial se somete a un procedimiento de temple y revenido determinado, que es necesario que se realice en unas condiciones de tiempo y temperatura específicas.
Para garantizar una elevada vida a fatiga es necesario aplicar en el proceso de fabricación de este acero un procedimiento específico de desoxidación y de decantación de inclusiones en determinadas condiciones especiales.
Los inventores han comprobado un efecto sinérgico entre una combinación novedosa de elementos químicos y un procedimiento para obtener dicho acero, que contempla un tratamiento térmico específico, consiguiendo un acero de para ballestas para temple y revenido de elevada resistencia y ductilidad, además de una buena aptitud al conformado en caliente y una buena templabilidad.
Las investigaciones realizadas han dado como resultado una nueva calidad de acero aleado al SiCrMoV, que comprende la siguiente composición química en porcentaje en peso:
0,45%≤ C≤ 0,58%
0,75%≤ Si≤ 2,25%
0,65%≤ Mn≤ 1 ,20%
0,65%≤ Cr≤ 1 ,50%
0,01 %≤Mo≤ 0,40%
0,01 %≤ V≤0,40% siendo el resto de los elementos impurezas que resultan de su obtención.
Estos elementos de aleación se utilizan en aceros aleados para mejorar la resistencia a la tracción, la resistencia al revenido, la tenacidad u otras características, pero no con las concentraciones en peso indicadas, con la combinación de elementos que se propone, ni para obtener las propiedades anteriormente descritas que permiten su utilización en las aplicaciones comentadas.
Cada uno de los elementos de aleación, en las proporciones anteriormente indicadas influye en determinados parámetros y propiedades del acero finalmente obtenido.
El carbono es un elemento indispensable para obtener una elevada resistencia y dureza tras el tratamiento de temple y revenido. Por debajo de 0,45% de carbono, la resistencia que se obtiene es insuficiente. Por otra parte, por encima de 0,58% la tenacidad del acero decrece notoriamente y puede favorecerse la fragilización por hidrógeno. El rango óptimo se sitúa entre 0,47% y 0,55%.
El silicio es uno de los más importantes endurecedores de la ferrita por solución sólida. Dado que se disuelve en la ferrita y no en la cementita, tiende a inhibir la precipitación de los carburos y, por tanto, desplaza la temperatura de la zona de fragilidad del revenido a mayores temperaturas, lo que previene la fragilización por hidrógeno y mejora la resistencia a la fatiga bajo corrosión. Además, el silicio es un potente desoxidante y como tal se utiliza en los procesos de afino en los procesos siderúrgicos. Asimismo incrementa la templabilidad y endurece la matriz ferrítica de la martensita sustituyendo a los átomos de hierro de la red cristalina. Para que estos efectos se traduzcan en un aumento significativo de resistencia se precisa de al menos 0,75% de Silicio, recomendándose para esta aplicación un contenido de silicio por encima de 0,90%. Sin embargo, un contenido excesivo de silicio favorece la descarburación y la oxidación intergranular dada su tendencia a combinarse con el oxígeno de la atmósfera a las temperaturas de forja o laminación (>1000°C). Además, el silicio contribuye a desplazar la temperatura de transición dúctil-frágil a temperaturas más altas, de forma que, si el contenido de silicio es muy elevado puede fragilizar el acero a temperatura ambiente, de modo que el límite superior se fija en 2,25% para asegurar una tenacidad aceptable, 2,00% para asegurar una descarburación aceptable en tratamientos térmicos de temple y revenido y 1 ,75% para asegurar una descarburación aceptable en los procesos de laminación y relaminación de las ballestas, en función del proceso utilizado. En el caso de calentamiento por horno de gas el silicio tiende a combinarse con el O2 y se produce una mayor descarburación, con lo que habría que limitar a 1 ,75% o incluso 1 ,50%. En caso de que el calentamiento sea por inducción la descarburación es menor y se puede dejar el límite superior en un 2,00%. El silicio mejora las propiedades mecánicas del acero. El manganeso es un elemento indispensable para asegurar la templabilidad requerida en un acero para ballestas. Además, reduce la temperatura de transformación, lo que permite obtener una estructura cristalina de granos finos, permitiendo a la vez elevar la resistencia y mejorar la tenacidad. Asimismo, evita el efecto pernicioso del azufre, combinándose con él para formar MnS. Por otro lado, un contenido excesivo puede favorecer la aparición de grietas de temple, de forma que el contenido óptimo se sitúa entre 0,65% y 1 ,20%, incluso puede acotarse entre 0,80-1 , 10%.
El cromo es un elemento indispensable para asegurar la templabilidad requerida en un acero para ballestas. Por debajo de 0,65% la templabilidad puede no ser suficiente y pueden aparecer estructuras no deseadas en el núcleo de la pieza. Un contenido elevado de cromo aumenta el riesgo de grietas de temple. Asimismo, los carburos de cromo actúan como electrodos locales en la superficie del acero aumentando la corrosión por picadura y reduciendo la resistencia a la fatiga bajo corrosión. Por ello el límite superior se fija en 1 ,50%. La mejor combinación de propiedades se obtiene para una horquilla de 0,80% a 1 ,25%Cr.
El molibdeno tiene un fuerte efecto favorecedor de la templabilidad, siendo a su vez un fuerte formador de carburos, que proporcionan un notable efecto de endurecimiento secundario durante el revenido. Por otra parte, el molibdeno mejora la resistencia a la corrosión por picadura y evita la fragilidad del revenido evitando la precipitación de fósforo en límite de grano. No obstante, en contenidos elevados el coste de aleación es excesivo y económicamente inasumible, de modo que el rango preferible es entre 0,01 % y 0,40%. La mejor relación entre coste y características se consigue entre 0, 10% y 0,30% de molibdeno.
El vanadio es un elemento microaleante que contribuye a afinar el tamaño de grano y provoca un intenso endurecimiento por precipitación y que cuando permanece en solución sólida incrementa mucho la templabilidad. Los precipitados de vanadio son nucleadores de hidrógeno, de modo que en ambientes corrosivos lo fijan y mejora la resistencia a la fractura retardada inducida por hidrógeno. Sin embargo, con contenidos de vanadio muy elevados los precipitados coalescen y su efecto puede volverse pernicioso. Por tanto, el contenido de vanadio debe situarse entre 0,01 % y 0,40%, siendo preferible un contenido entre 0,05% y 0,30%.
Además, el acero que la invención propone puede comprender, adicionalmente, al menos uno de los elementos siguientes o una combinación de ellos, con un porcentaje en peso:
P≤ 0,040%
S≤ 0,040%
Cu≤ 0,50%
0,001 %≤ Al≤ 0,050% 0,001 %≤ Nb≤ 0, 100%
0,001 %≤ Ti≤ 0,050%
0,004%≤ N≤ 0,020% siendo el resto elementos residuales que resultan de la obtención del acero.
El fósforo endurece el acero y segrega en los límites de grano de la austenita reduciendo drásticamente la tenacidad del acero. Además, favorece la fragilización por hidrógeno y la fractura retardada. Para limitar su efecto adverso el contenido de fósforo se limita a menos de 0,040%, siendo deseable un contenido inferior a 0,020%.
El azufre fragiliza el acero de modo similar al fósforo. Pese a que este efecto se contrarresta por combinación con el manganeso, los sulfuras de manganeso forman inclusiones que se deforman longitudinalmente en la dirección de forja o laminación y deterioran considerablemente las propiedades mecánicas transversales y el comportamiento a fatiga. No obstante, en ocasiones se requiere una cantidad mínima de azufre para mejorar la maquinabilidad del acero y su puesta en forma por mecanizado. Por todo ello, el contenido de azufre se restringe a menos de 0,040%, siendo preferible un contenido inferior a 0,015%.
La adición de cobre previene la descarburación del acero y mejora la resistencia a la corrosión de manera similar al níquel inhibiendo el crecimiento de las picaduras de corrosión. Sin embargo, un contenido elevado de cobre empeora la ductilidad en caliente del acero, de modo que el límite superior de cobre se fija en 0,50%. Para un óptimo procesado en caliente, el contenido máximo de cobre debería limitarse a 0,30%. El aluminio es un elemento que actúa como potente desoxidante durante el proceso de fabricación del acero. El aluminio forma nitruros de aluminio que contribuyen a controlar el tamaño de grano austenítico durante los tratamientos térmicos y los calentamientos previos a los procesos de conformado en caliente. No obstante, forma óxidos de elevada dureza que son muy perjudiciales para la vida a fatiga, de modo que su límite superior se establece en menos de 0,050%.
El niobio es un elemento microaleante de efectos similares al vanadio en el control del tamaño de grano y en el endurecimiento del acero por precipitación, de modo que contribuye a incrementar la resistencia mecánica y a mejorar la tenacidad.
Además, los precipitados de niobio fijan el hidrógeno que ataca al acero en ambientes corrosivos, mejorando la resistencia a la fractura retardada. Por encima de 0, 100%, no obstante, se produce un engrasamiento de los precipitados que resulta perjudicial para las propiedades mecánicas. El contenido óptimo de niobio se fija entre 0,001 % y 0, 100%.
El titanio es un eficaz controlador del tamaño de grano austenítico a alta temperatura, típicamente a temperaturas de forja en caliente. Sin embargo, dada su afinidad por el nitrógeno, forma nitruros de titanio a temperaturas próximas a las del acero líquido, lo que transforma sus precipitados en inclusiones de muy elevada dureza y nocividad para la vida a fatiga. Para limitar un engrasamiento excesivo de los nitruros de titanio, el contenido de titanio en el acero se limita a un máximo de 0,050%. El nitrógeno se combina con Ti, Nb, Al y V para formar nitruros, cuyas temperaturas de precipitación dependen del contenido respectivo de los diferentes elementos y de constantes características. Con un tamaño adecuado, esos nitruros ejercen un efecto de pinning sobre el grano austenítico controlando su tamaño a alta temperatura e impidiendo su coalescencia y crecimiento. Sin embargo, si el contenido de nitrógeno o de los elementos microaleantes es muy elevado, la precipitación se produce a alta temperatura y los precipitados engrasan volviéndose ineficaces para controlar el grano y perjudiciales para la vida a fatiga. Por ello, el contenido de nitrógeno en el acero se limita de 0,004% a 0,020%. Anteriormente se ha comprobado que aceros de muelles de composición y proceso estándar para aplicaciones de ballestas de camión a los que se les ha realizado un proceso convencional de temple y revenido no llegaban a alcanzar las propiedades mecánicas exigidas y anteriormente comentadas, debido a que el grado de limpieza inclusionaria era menor y el balance de elementos microaleantes inadecuado, respecto al proceso optimizado que el acero de la invención presenta.
Una composición preferente del acero que la invención propone comprende, un porcentaje en peso:
0,47%≤ C≤ 0,55%
0,90%≤ Si≤ 2,00%
0,75%≤ Mn≤ 1 ,20%
0,80%≤Cr≤ 1 ,25%
0, 10%≤Mo≤ 0,30%
0,05%≤ V≤ 0,30%
Para esta composición preferente, adicionalmente, el acero puede comprender al menos uno de los elementos siguientes, o una combinación de ellos, en peso:
P≤ 0,020%
S≤ 0,015%
Cu≤ 0,50%
0,001 %≤ Al≤ 0,050%
0,001 %≤ Nb≤ 0,060%
0,001 %≤ Ti≤ 0,030%
0,004%≤ N≤ 0,020% Así, tras diversos experimentos se ha desarrollado un riguroso procedimiento para obtener el acero siguiendo los siguientes pasos:
- Controlar rigurosamente las materias primas del horno, es decir, coke y cal y, especialmente, chatarra.
- Usar entre un 30% y un 50% de chatarra de máxima calidad.
- Realizar un periodo oxidante en horno eléctrico, lo cual es importante para la defosforación del acero, previo a la escoria espumosa.
- Una vez ha finalizado la escoria espumosa, se procede a desescoriar hasta dejar prácticamente sin escoria el horno, siendo el objetivo una presencia de fósforo, en este paso o etapa, inferior a 0,010% en peso.
- Bascular al vuelco con temperatura estándar y partes por millón (ppm) de oxígeno, según estándar de aceros limpios, asegurándose que no pase escoria del horno a la cuchara.
- Desoxidar con Si, para obtener una escoria blanca muy fluida con base cal- espato.
- Controlar rigurosamente las materias primas de afino, es decir, ferroaleaciones y otras adiciones metálicas y escorificantes.
- Realizar un vacío prolongado, considerando como tiempo de vacío aquel que se encuentra por debajo de 1 mbar y siendo un 50% mayor que el tiempo de vacío convencional.
- Finalizar el tratamiento de vacío con una temperatura suficiente como para hacer un proceso de decantación de inclusiones después del mismo de al menos quince minutos, sin realizar adiciones ni calentamientos de ningún tipo.
- Finalmente, debe seguirse un meticuloso proceso de colada con protección especial del chorro de acero líquido.
- Si el proceso de solidificación es en colada continua, se ajustarán las condiciones de velocidad de colada, refrigeración y agitación para obtener una microestructura de solidificación homogénea.
Todo este procedimiento de fabricación del acero permite conseguir bajos niveles de azufre, por debajo del 0,015% en peso, y fósforo, por debajo del 0,020% en peso, además de un bajo nivel inclusionario.
Los diagramas CCT (Enfriamiento-Continuo-Transformación) permiten representar los tratamientos térmicos para una composición química determinada cuando las transformaciones de fase se producen en condiciones de no equilibrio.
Los productos de solidificación se transforman posteriormente en caliente, mediante un proceso que consta de calentamiento a una temperatura superior a 1 100°C y una serie de deformaciones consecutivas mediante forja o laminación en caliente hasta obtener un producto intermedio de la sección, forma y microestructura adecuadas. Después de diversos ensayos experimentales se ha constatado que, tras el proceso de fabricación del acero que la invención propone, con la composición química arriba indicada, ajusfando las temperaturas y los tiempos de mantenimiento del temple y el revenido, se consigue un acero con resistencia a tracción por encima de 1800 MPa y una ductilidad elevada, con estricción >30%. Además dicho acero presenta una alta templabilidad, adecuada para la obtención de un 100% de martensita en secciones gruesas, como las que presentan las ballestas de vehículos industriales. Para obtener una pieza del acero anteriormente obtenido de las características citadas, la invención contempla la realización de un procedimiento por el cual es obtenible dicha pieza de acero.
El procedimiento para obtener piezas de dicho acero comprende un proceso conformado en caliente, con un calentamiento previo a una temperatura superior a 950°C que permita dotar al acero de una ductilidad en caliente suficiente, para conferir a la pieza de acero una forma similar a la del componente final. Tras su puesta en forma, la pieza se deja enfriar al aire. Posteriormente, el procedimiento contempla un proceso de temple que se realiza con una austenización a temperatura superior a 800°C, seguido de operaciones finales de conformado y, a continuación, un enfriamiento posterior, por ejemplo, en aceite. El acero de la invención tiene un balance de elementos de aleación que permite la obtención de un 100% de martensita, incluso en secciones gruesas, sin elevar el riesgo de aparición de grietas de temple por las tensiones producidas en el enfriamiento.
Seguidamente, el procedimiento comprende un proceso de revenido, que se lleva a cabo a una temperatura superior a 300°C durante al menos una hora, consiguiendo de esta manera, ajusfar la dureza y tenacidad del material, además de evitar disminuciones de resiliencia, que están asociadas al fenómeno de fragilidad del revenido.
Finalmente llevar a cabo un proceso de shot peening, aplicando una tensión al componente o no, a una temperatura entre 0°C y 400°C, habitualmente a temperatura ambiente, para generar en las regiones superficiales del componente tensiones residuales de compresión que mejoren su comportamiento a fatiga. Adicionalmente se puede aplicar un recubrimiento superficial o pintado que mejore el comportamiento a corrosión del componente.
Por lo tanto, el procedimiento para obtener piezas de acero comprende los siguientes pasos: - Obtener el acero de la invención, anteriormente descrito, en el que el acero seleccionado comprende la composición general o la composición preferente anteriormente definidas.
- Fabricar una pieza de dicho acero, por ejemplo mediante laminación u otro proceso de conformado.
- Realizar en la pieza el tratamiento de temple anteriormente definido.
- Realizar en la pieza el tratamiento de revenido anteriormente definido.
- Realizar a la pieza un tratamiento de shot peening.
- Pintar o recubrir la pieza con un tratamiento anticorrosión. DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra un diagrama de curvas de templabilidad Jominy obtenido para cada uno de los aceros A-H. Los aceros C, D y H muestran curvas prácticamente planas, mientras que los aceros A, B, E, F y G se producen bajadas de dureza a distancias al extremo templado iguales o menores de 40 mm.
Las figuras 2-4.- Muestran microscopías de la superficie de los aceros B, H y A respectivamente tras un calentamiento a 960°C durante 1 10 minutos. La figuras 5-7.- Muestran microscopías en las que se observa la capa descarburada de los mismos aceros B, H y A tras un calentamiento a 1030°C durante 35 minutos, seguido de un calentamiento a 960°C durante 45 minutos.
EJEMPLOS DE REALIZACIÓN DE LA INVENCIÓN
Ejemplo 1 A modo de ejemplo, se describen a continuación los ensayos realizados con muestras de aceros con otras composiciones diferentes a la composición química del acero de la invención. Dichas muestras son los aceros A-G, el acero H es el acero de la invención. La tabla 1 muestra las composiciones químicas en porcentaje en peso, siendo el resto Fe e impurezas:
Figure imgf000016_0001
Tabla 1
La tabla 2 recoge los valores de diámetro crítico ideal, según datos tabulados en la norma ASTM A255-02, para cada una de las composiciones y aceros descritos en la tabla 1.
A B C D E F G H
DI (mm) 227 175 191 197 120 193 155 259 Tabla 2
La ilustración 1 muestra el diagrama de curvas de templabilidad Jominy obtenido para cada uno de los aceros A-H. Los aceros C, D y H muestran curvas prácticamente planas, mientras que los aceros A, B, E, F y G se producen bajadas de dureza a distancias al extremo templado iguales o menores de 40 mm.
Figure imgf000017_0001
10 20 30 40 50 Ilustración 1
Todos estos aceros han sido sometidos a tratamientos de temple y revenido en distintas condiciones, con el objetivo de conseguir la combinación de resistencia mecánica y tenacidad más óptima para cada uno de ellos.
Así, la resistencia mecánica para cada acero y cada temperatura de revenido se muestra en la tabla 3. Resistencia (MPa) versus Temperatura de Revenido
300°C 350°C 400°C 450°C
A 2075 2099 1938 1736
B 1932 1845 1695 1554
C 1965 1796 1650 1500
D 2144 1992 1838 1656
E 1653 1615 1536 1319
F 2138 2046 1814 1658
G 1731 1569 1562 1352
H 2050 2028 1874 1691
Tabla 3
Los resultados de estricción para cada acero y temperatura se muestran en la tabla 4.
Figure imgf000018_0001
Tabla 4
Como muestran las tabla 3 y 4, los aceros A, B, C, D, E, F y G no alcanzan una resistencia de 1800 MPa, manteniendo una reducción de área mínima≥30%. Los aceros B, C y E presentan bajos contenidos de silicio, de forma que no alcanzan 2000 MPa para ninguna temperatura de revenido.
A su vez los aceros A, D y F, a pesar de tener silicio alto y superar los 1800 MPa para temperaturas de revenido iguales o inferiores a 400°C, no consiguen los niveles de ductilidad deseada, ya que la combinación de elementos aleantes no es la adecuada para alcanzar las características mecánicas exigidas.
Sin embargo, para el acero H, que presenta una composición química dentro de los límites objeto de la invención, es decir es el acero que la invención propone, se ha comprobado que tras ser sometido a un tratamiento de bonificación, consistente en temple más revenido, alcanza las características mecánicas requeridas y su templabilidad es elevada. Además, el acero de la invención presenta una descarburación moderada, similar a los aceros comúnmente utilizados en ballestas, lo que permite su procesado por conformado en caliente sin deteriorar la calidad superficial de la barra de acero. En las figuras 2, 3 y 4 se observa la superficie de los aceros B, H y A respectivamente tras un calentamiento a 960°C durante 110 minutos. El acero A, con 1 ,94%Si, muestra descarburación total en superficie, lo que es inaceptable para una aplicación de ballestas dada la menor resistencia del área sometida a mayores tensiones en servicio.
En las figuras 5, 6 y 7 se observa la capa descarburada de los mismos aceros B, H y A tras un calentamiento a 1030°C durante 35 minutos, seguido de un calentamiento a 960°C durante 45 minutos. El primer tratamiento es similar al calentamiento previo a la relaminación de la ballesta y el segundo tratamiento es similar al proceso de austenización previo al temple.
El acero A, con 1 ,94%Si, tal y como se puede apreciar en la figura 7, muestra una capa descarburada de gran espesor (0,20-0,25 mm) que incide negativamente en las prestaciones de la pieza. Los aceros B y H, con 0,28%Si y 1 ,02%Si respectivamente, representados en las figuras 5 y 6, muestran mucha menor descarburación parcial y no se observa descarburación total.
El acero H, situado dentro de los límites de la invención, presenta la templabilidad necesaria para asegurar un 100% de martensita en secciones gruesas, sin generar excesivas tensiones durante el temple que sean origen de grietas. Asimismo, adquiere por tratamiento térmico de temple y revenido una resistencia de 1800 MPa, manteniendo una reducción de área mínima ≥30%. Todo ello, manteniendo una resistencia a la descarburación suficiente para no perder propiedades mecánicas en superficie.
La invención ha sido descrita según algunas realizaciones preferentes de la misma, pero para el experto en la materia resultará evidente que múltiples variaciones pueden ser introducidas en dichas realizaciones preferentes sin exceder el objeto de la invención reivindicada.

Claims

REIVI N DICACION ES
1. - Acero para ballestas, con alta resistencia a la tracción, alta templabilidad y alta ductilidad, caracterizado porque comprende los siguientes elementos con un porcentaje en peso:
0,45%≤ C≤ 0,58%
0,75%≤ Si≤ 2,25%
0,65%≤ Mn≤ 1,20%
0,65%≤ Cr≤ 1 ,50%
0,01%≤Mo≤ 0,40%
0,01%≤ V≤ 0,40%, siendo el resto hierro e impurezas.
2. - Acero para ballestas, según la reivindicación 1, caracterizado porque comprende al menos uno de los siguientes elementos con un porcentaje en peso:
P≤ 0,040%
S≤ 0,040%
Cu≤ 0,50%
0,001%≤ Al≤ 0,050%
0,001%≤ Nb≤ 0,100%
0,001%≤ Ti≤ 0,050%
0,004%≤ N≤ 0,020%.
3. - Acero para ballestas, según la reivindicación 1 , caracterizado porque comprende los siguientes elementos con un porcentaje en peso:
0,47%≤ C≤ 0,55%
0,90%≤ Si≤ 2,00%
0,75%≤ Mn≤ 1,20%
0,80%≤Cr≤ 1,25%
0,10%≤Mo≤ 0,30%
0,05%≤ V≤ 0,30%.
4.- Acero para ballestas, según cualquiera de las reivindicaciones 2 y 4, caracterizado porque comprende al menos uno de los siguientes elementos con porcentaje en peso: P≤ 0,020%
S≤ 0,015%
Cu < 0,50%
0,001 %≤AI≤ 0,050%
0,001 % < Nb < 0,060%
0,001 %≤Ti≤ 0,030%
0,004%≤ N≤ 0,020%.
5.- Acero para ballestas, según cualquiera de las reivindicaciones anteriores, caracterizado porque tiene resistencia mecánica a tracción superior o igual a aproximadamente 1800 MPa y estricción superior o igual a 30%.
PCT/ES2015/070582 2015-07-28 2015-07-28 Acero para ballestas de alta resistencia y templabilidad WO2017017290A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15795207.8A EP3330400A1 (en) 2015-07-28 2015-07-28 Steel for springs of high resistance and hardenability
PCT/ES2015/070582 WO2017017290A1 (es) 2015-07-28 2015-07-28 Acero para ballestas de alta resistencia y templabilidad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2015/070582 WO2017017290A1 (es) 2015-07-28 2015-07-28 Acero para ballestas de alta resistencia y templabilidad

Publications (1)

Publication Number Publication Date
WO2017017290A1 true WO2017017290A1 (es) 2017-02-02

Family

ID=54548202

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2015/070582 WO2017017290A1 (es) 2015-07-28 2015-07-28 Acero para ballestas de alta resistencia y templabilidad

Country Status (2)

Country Link
EP (1) EP3330400A1 (es)
WO (1) WO2017017290A1 (es)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086245A (ja) * 1983-10-17 1985-05-15 Daido Steel Co Ltd ばね用鋼
EP0676482A1 (en) * 1994-04-04 1995-10-11 Mitsubishi Steel Mfg. Co., Ltd. Low decarburization spring steel
JPH08170152A (ja) * 1994-12-16 1996-07-02 Kobe Steel Ltd 疲労特性の優れたばね
JPH08295984A (ja) 1995-04-25 1996-11-12 Aichi Steel Works Ltd 耐遅れ破壊性に優れた板ばね用鋼
WO1998051834A1 (fr) 1997-05-12 1998-11-19 Nippon Steel Corporation Acier pour ressort d'une grande tenacite
JP2842579B2 (ja) 1991-10-02 1999-01-06 株式会社 神戸製鋼所 疲労強度の優れた高強度ばね用鋼
JP3255296B2 (ja) 1992-02-03 2002-02-12 大同特殊鋼株式会社 高強度ばね用鋼およびその製造方法
WO2006022009A1 (ja) 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha 高強度ばね用鋼、並びに高強度ばね及びその製造方法
WO2008102573A1 (ja) 2007-02-22 2008-08-28 Nippon Steel Corporation 高強度ばね用鋼線及び高強度ばね並びにそれらの製造方法
WO2010110041A1 (ja) 2009-03-25 2010-09-30 日本発條株式会社 高強度高延性ばね用鋼およびその製造方法並びにばね
WO2011074600A1 (ja) 2009-12-18 2011-06-23 愛知製鋼株式会社 高疲労強度板ばね用鋼及び板ばね部品
WO2012063620A1 (ja) 2010-11-11 2012-05-18 日本発條株式会社 高強度ばね用鋼、高強度ばねの製造方法及び高強度ばね
CN102586687A (zh) 2012-01-09 2012-07-18 东风汽车悬架弹簧有限公司 一种高强度及高淬透性的弹簧钢材料
CN102634735A (zh) 2012-04-09 2012-08-15 广州市奥赛钢线科技有限公司 一种汽车悬架用弹簧钢及其制备方法和应用

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086245A (ja) * 1983-10-17 1985-05-15 Daido Steel Co Ltd ばね用鋼
JP2842579B2 (ja) 1991-10-02 1999-01-06 株式会社 神戸製鋼所 疲労強度の優れた高強度ばね用鋼
JP3255296B2 (ja) 1992-02-03 2002-02-12 大同特殊鋼株式会社 高強度ばね用鋼およびその製造方法
EP0676482A1 (en) * 1994-04-04 1995-10-11 Mitsubishi Steel Mfg. Co., Ltd. Low decarburization spring steel
JPH08170152A (ja) * 1994-12-16 1996-07-02 Kobe Steel Ltd 疲労特性の優れたばね
JPH08295984A (ja) 1995-04-25 1996-11-12 Aichi Steel Works Ltd 耐遅れ破壊性に優れた板ばね用鋼
WO1998051834A1 (fr) 1997-05-12 1998-11-19 Nippon Steel Corporation Acier pour ressort d'une grande tenacite
WO2006022009A1 (ja) 2004-08-26 2006-03-02 Daido Tokushuko Kabushiki Kaisha 高強度ばね用鋼、並びに高強度ばね及びその製造方法
WO2008102573A1 (ja) 2007-02-22 2008-08-28 Nippon Steel Corporation 高強度ばね用鋼線及び高強度ばね並びにそれらの製造方法
WO2010110041A1 (ja) 2009-03-25 2010-09-30 日本発條株式会社 高強度高延性ばね用鋼およびその製造方法並びにばね
WO2011074600A1 (ja) 2009-12-18 2011-06-23 愛知製鋼株式会社 高疲労強度板ばね用鋼及び板ばね部品
EP2514846A1 (en) * 2009-12-18 2012-10-24 Aichi Steel Corporation Steel for leaf spring with high fatigue strength, and leaf spring component
WO2012063620A1 (ja) 2010-11-11 2012-05-18 日本発條株式会社 高強度ばね用鋼、高強度ばねの製造方法及び高強度ばね
CN102586687A (zh) 2012-01-09 2012-07-18 东风汽车悬架弹簧有限公司 一种高强度及高淬透性的弹簧钢材料
CN102634735A (zh) 2012-04-09 2012-08-15 广州市奥赛钢线科技有限公司 一种汽车悬架用弹簧钢及其制备方法和应用

Also Published As

Publication number Publication date
EP3330400A1 (en) 2018-06-06

Similar Documents

Publication Publication Date Title
CN102317493B (zh) 耐腐蚀性和低温韧性优异的车辆用高强度稳定器用钢、其制造方法及稳定器
US9970072B2 (en) High-strength spring steel wire with excellent hydrogen embrittlement resistance, manufacturing process therefor, and high-strength spring
WO2012153831A1 (ja) 車両懸架用ばね部品用鋼、車両懸架用ばね部品およびその製造方法
ES2576453T3 (es) Acero endurecido y revenido y procedimiento de obtención de piezas de dicho acero
EP2746420B1 (en) Spring steel and spring
ES2818104T3 (es) Acero estabilizador que tiene alta resistencia y excelente resistencia a la corrosión, estabilizador del vehículo que lo emplea y método para fabricar el mismo
ES2860953T3 (es) Acero microaleado para conformado en caliente de piezas de alta resistencia y alto límite elástico
JP5304507B2 (ja) 高周波焼入れ用非調質鋼
EP3333277B1 (en) High-strength low-alloy steel with high resistance to high-temperature oxidation
JP6064515B2 (ja) レール
CN114929923B (zh) 超高强度弹簧用线材、钢丝及其制造方法
CN114207168B (zh) 用于高强度弹簧的线材和钢丝及其制造方法
WO2017017290A1 (es) Acero para ballestas de alta resistencia y templabilidad
KR102153196B1 (ko) 고탄소 보론강 강재 및 그 제조방법
RU2773729C1 (ru) Цельнокатаное колесо из стали
KR101400578B1 (ko) 형강 및 그 제조 방법
KR20100067522A (ko) 고강도 고인성 스프링용 강선재, 그 제조방법 및 스프링의 제조방법
KR20110075316A (ko) 피로수명이 우수한 고인성 스프링용 강선, 이를 이용한 스프링 및 이들의 제조방법
EP3426806B1 (en) A method for heat treating an iron-carbon alloy
KR101795265B1 (ko) 고내구 코일스프링강
JP4025229B2 (ja) 高周波焼入部の低温耐衝撃特性に優れたステアリングラック用棒鋼及びステアリングラック
KR101787241B1 (ko) 비조질강 및 이의 제조방법
CA3220321A1 (en) Method for producing a steel part and steel part
KR101355737B1 (ko) 형강 및 그 제조 방법
KR20140072244A (ko) 강재 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE