WO2012153831A1 - 車両懸架用ばね部品用鋼、車両懸架用ばね部品およびその製造方法 - Google Patents
車両懸架用ばね部品用鋼、車両懸架用ばね部品およびその製造方法 Download PDFInfo
- Publication number
- WO2012153831A1 WO2012153831A1 PCT/JP2012/062106 JP2012062106W WO2012153831A1 WO 2012153831 A1 WO2012153831 A1 WO 2012153831A1 JP 2012062106 W JP2012062106 W JP 2012062106W WO 2012153831 A1 WO2012153831 A1 WO 2012153831A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- less
- heating
- quenching
- steel
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/04—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
- B60G21/05—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
- B60G21/055—Stabiliser bars
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G99/00—Subject matter not provided for in other groups of this subclass
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/40—Direct resistance heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/42—Induction heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/06—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
- C21D8/065—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0075—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/021—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant characterised by their composition, e.g. comprising materials providing for particular spring properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/40—Constructional features of dampers and/or springs
- B60G2206/42—Springs
- B60G2206/427—Stabiliser bars or tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/70—Materials used in suspensions
- B60G2206/72—Steel
- B60G2206/724—Wires, bars or the like
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/80—Manufacturing procedures
- B60G2206/81—Shaping
- B60G2206/8103—Shaping by folding or bending
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/80—Manufacturing procedures
- B60G2206/81—Shaping
- B60G2206/8103—Shaping by folding or bending
- B60G2206/81035—Shaping by folding or bending involving heating to relieve internal stresses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/80—Manufacturing procedures
- B60G2206/84—Hardening
- B60G2206/8401—Annealing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2206/00—Indexing codes related to the manufacturing of suspensions: constructional features, the materials used, procedures or tools
- B60G2206/01—Constructional features of suspension elements, e.g. arms, dampers, springs
- B60G2206/80—Manufacturing procedures
- B60G2206/84—Hardening
- B60G2206/8402—Quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/04—Modifying the physical properties of iron or steel by deformation by cold working of the surface
- C21D7/06—Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to steel usable for vehicle suspension spring components such as stabilizers and leaf springs mainly used for automobiles, their spring components and a method for producing the same, and particularly high tensile strength of 1300 MPa or more, and
- the present invention relates to a spring component for vehicle suspension which is excellent in corrosion resistance and low temperature toughness.
- Stabilizers are a kind of suspension spring parts that have the function of preventing rolling when turning, while leaf springs are suspension spring parts that are used for suspension springs of a track and that guarantee traveling stability in uneven roads. . All of them are subject to repeated stress loading under natural environment conditions, so they are easily corroded, prone to set up, and exposed to low temperatures of -50 ° C to -30 ° C depending on the region. There is. Therefore, it is necessary that the characteristics such as corrosion resistance, settability and low temperature toughness be excellent.
- carbon steels for machine structure such as JIS S48C and spring steels such as JIS G4801 SUP 9 are used, and for example, in the manufacturing process, after hot-rolled steel is cut into predetermined dimensions, it is hot-bent formed
- the surface is adjusted to a predetermined strength and toughness by tempering treatment of quenching and tempering, and then, if necessary, shot peening is applied to the surface, and finally it is used through a coating process for anticorrosion.
- spring parts for vehicle suspension such as stabilizers and leaf springs have been further reduced in weight to achieve low fuel consumption.
- the tensile strength is insufficient at 1100 MPa or more, and the strength is further increased. Need to do is coming out.
- the ductility deteriorates. The ductility deterioration further reduces the crack propagation resistance and further increases the risk of breakage.
- plate springs and stabilizers are coated to ensure their anticorrosion performance, they are exposed to the outside of the vehicle due to their structure, so dents and peeling off of paint easily occur due to stepping stones during running.
- the object of the present invention is to provide a steel for vehicle suspension spring parts having tensile strength of 1300 MPa or more and excellent in corrosion resistance and low temperature toughness, strength higher than conventional products, spring parts for vehicle suspension, and a method of manufacturing the same. I assume.
- a steel for vehicle suspension spring parts characterized by having excellent corrosion resistance and low temperature toughness is provided.
- the grain after quenching is austenite grain size number of 7.5 to Provided is a method of manufacturing a spring component for vehicle suspension, comprising obtaining a spring component excellent in corrosion resistance and low temperature toughness having a tensile strength of 1300 MPa or more and a range of 10.5.
- (1) is a process diagram when manufacturing a stabilizer by cold forming
- (2) and (3) are process drawings when manufacturing a stabilizer by hot forming, respectively.
- the present inventors obtained the following findings as a result of intensive studies. That is, in the spring component for vehicle suspension, there are required, as described below, the improvement of the ductility and the improvement of the corrosion resistance as well as the increase of the strength.
- the present invention has been made based on the above findings.
- a high strength stabilizer for vehicles or a plate spring steel having high tensile strength of 1300 MPa or more and excellent corrosion resistance and low temperature toughness even in a very cold corrosive environment a method of manufacturing the same It becomes possible to provide parts, greatly reducing the weight of the vehicle by increasing the strength of the parts, and thus contributing greatly to the improvement of the global environment associated with the improvement of fuel consumption.
- C 0.15 to 0.35%
- C is an element necessary for the steel to secure a predetermined strength, and in order to secure a tensile strength of 1300 MPa or more, 0.15% or more is required.
- the content of C exceeds 0.35%, carbides become excessive and both the corrosion resistance and the toughness decrease too much, so the upper limit is made 0.35%.
- a steel material having a low carbon content as a stabilizer and a leaf spring material, it is possible to prevent corrosion cracking which has been a concern in a conventional steel manufacturing method and improve corrosion resistance to obtain a stabilizer and a leaf spring. It is considered to be safer.
- Si more than 0.6% and 1.5% or less (0.6% ⁇ Si ⁇ 1.5%) Si is important as a deoxidizer at the time of melting. Moreover, since it is an element effective for solid solution strengthening, it is an important element for increasing the strength. In order to exert the effect, it is necessary to add Si more than 0.6%. On the other hand, when the amount of Si exceeds 1.5%, the toughness decreases, so the upper limit is made 1.5%.
- Mn 1 to 3%
- Mn is an element that improves hardenability and is an effective element as a solid solution strengthening element, and in the case of a low carbon steel, it is important for securing strength. Mn is also important as an element which refines the structure and improves the ductility. In order to exert the effect, it is necessary to add 1% or more of Mn. On the other hand, when Mn is added in excess of 3%, the amount of carbides precipitated from low temperature during tempering becomes excessive and both the corrosion resistance and the toughness decrease, so the upper limit is made 3%.
- Al 0.005 to 0.080%
- Al is an important element as a deoxidizer at the time of melting. In order to exert the effect, it is necessary to add 0.005% or more of Al. On the other hand, when Al is added in excess of 0.080%, oxides and nitrides become excessive, and both corrosion resistance and toughness decrease, so the upper limit is made 0.080%.
- Ti forms carbonitrides in steel and is an element effective for improving the strength and refining the crystal grains. In order to exert these effects, it is necessary to add 0.005% or more of Ti. On the other hand, if Ti is added in excess of 0.060%, the carbonitrides become excessive and both the corrosion resistance and the toughness decrease, so the upper limit is made 0.060%.
- Nb forms carbonitrides in steel and is an element effective for improving the strength and refining the structure. In order to exert these effects, it is necessary to add 0.005% or more of Nb. On the other hand, when Nb is added in excess of 0.060%, the carbonitrides become excessive and both the corrosion resistance and the ductility toughness decrease, so the upper limit is made 0.060%.
- Ti and Nb form carbonitrides in steel as described above, and have the effects of enhancing strength and toughness, respectively. Demonstrate. On the other hand, if Ti and Nb are added in excess of 0.07% in the total amount of (Ti + Nb), the carbonitrides become excessive and both the corrosion resistance and the toughness decrease, so the total addition amount of (Ti + Nb) is 0. Reduce to 07% or less.
- Cu 0.01 to 1.00% Cu is an element effective to improve the corrosion resistance. In order to exert the effect, it is necessary to add 0.01% or more of Cu. On the other hand, addition of Cu exceeding 1.00% saturates the effect and is not economical. In addition, surface defects frequently occur during hot rolling to impair manufacturability, so the upper limit is 1.00%. And
- Ni 0.01 to 1.00% Like Cu, Ni is an element that improves the corrosion resistance, and in order to exert its effect, it is necessary to add 0.01% or more of Ni. On the other hand, even if Ni is added over 1.00%, the effect is saturated and it is not economical (Ni is a rare and expensive metal element whose production country is limited) and its upper limit is made 1.00%. .
- P 0.035% or less P is an impurity element which is unavoidably remaining or mixed in the steelmaking process, and segregates at grain boundaries to lower the toughness. Therefore, the upper limit is made 0.035%.
- S 0.035% or less S is, similarly to P, an impurity element which is inevitably left or mixed in the steel making process, and segregates at grain boundaries to lower the toughness. Furthermore, since the inclusions, MnS, become excessive and both the toughness and the corrosion resistance decrease, the upper limit is made 0.035%.
- N 150 ppm or less N forms carbonitrides in steel and is an element effective for improving the strength and refining the structure, but when it is added in excess of 150 ppm, the carbonitrides become excessive. Since the toughness and corrosion resistance both decrease, the upper limit is made 150 ppm.
- component elements such as Mo, V, B, Ca and Pb may be further added if they are a trace amount.
- the effects of the present invention can be obtained by limiting the addition amounts thereof to Mo: 1% or less, V: 1% or less, B: 0.010% or less, Ca: 0.010% or less, and Pb: 0.5% or less. Is not particularly inhibited.
- Mo is an element effective in improving hardenability and improving toughness. However, since the effect is saturated even if Mo is added in excess, it is desirable to limit it to at most 1% in consideration of the economics as Ni.
- V is an effective element that can suppress the reduction in hardness when the steel is subjected to high temperature tempering treatment and can effectively increase the softening resistance of the steel.
- V is also a rare element like Ni, price stability is low, and it is desirable not to add as much as it is likely to lead to an increase in raw material cost, and it is desirable to limit at most 1%.
- B is an element that increases the hardenability of the steel by the addition of a small amount.
- the effect of increasing the hardenability can be observed up to about 0.010% of the B addition amount, but the effect is saturated when the B addition amount exceeds 0.010%. Therefore, it is desirable that the addition amount of B is limited to 0.010% at the maximum.
- Ca and Pb are elements that improve the machinability of the steel material, and if added, the machinability of the stabilizer riser end is further improved.
- the stabilizer riser or the plate spring is once heated to the austenite region during quenching and heating, and then quenched to a cooling medium such as water or oil.
- a cooling medium such as water or oil.
- the desired strength is obtained by doing.
- the ferrite-pearlite structure before quenching (hereinafter simply referred to as “pre-structure”) has a cementite penetration of pearlite structure in particular. Since it is slow, a long heating and holding time is required, resulting in a coarse and uneven austenite structure, and the toughness of the steel after quenching is reduced.
- the forming process of the stabilizer riser or the plate spring may be either cold or hot and is not particularly limited.
- the work may be quenched immediately after the hot forming process as shown in (2) of FIG. 2, or as shown in (3) of FIG.
- the workpiece may be reheated after machining and then quenched.
- the heating method in the hot forming method of forming and quenching after heating is an appropriate amount of Ti and Nb even in a conventional air heating furnace or a quenching furnace of inert gas atmosphere furnace
- the structure is refined and sufficient toughness can be obtained with a tensile strength of 1300 MPa or more.
- high-frequency induction heating means or direct current heating means may be used, in the case of rapid heating at a heating rate of 30 ° C./sec or more, desired characteristics can be obtained by limiting the structure before heating as described above.
- the high frequency induction heating means includes a high frequency induction heating coil device having a coil that easily surrounds the object to be heated.
- the direct energization heating means includes a direct energization heating device having a bipolar terminal for causing a resistance to heat by direct energization to the object to be heated.
- the heating temperature if the lower limit is set to the austenitizing temperature + 50 ° C, and the upper limit is too high, adverse effects such as coarsening of crystal grains and decarburization are concerned, and therefore it is preferable to be less than 1050 ° C.
- the same can be said for the case where the stabilizer or the plate spring is quenched by heating after cold forming, or when it is reheated after quenching as necessary.
- Prior austenite grain size In the present invention, since a strength level of 1300 MPa or more is required as a desired strength, even if the crystal grain is too fine in order to obtain this strength level after quenching or after quenching and tempering. The hardenability is insufficient and the desired strength can not be obtained. On the other hand, it is necessary to secure the ductility by performing the refinement more than a certain level. As the range, it is necessary to set the former austenite grain size number in the range of 7.5 to 10.5. More preferably, it is in the range of the prior austenite grain size number 8.5 to 10.5. The crystal grain size was measured in accordance with JIS G 0551.
- the crystal grain size number is determined by comparing the microscopically observed image with a predetermined standard view in an optical microscope field of view at a magnification of 100 times, 10 fields of view are measured per sample, and their average value is calculated. The measured value was taken.
- the minimum unit is 1 in terms of the grain size number
- the display of 0.5 was used when the crystal grain under the microscopic field of view corresponds to the middle of the two standard drawings. That is, when the crystal grain (observed image) under the microscopic field of view is between the standard figure of grain size number 7 and the standard figure of grain size number 8, the grain size number Gh is determined to be 7.5 (Table 3, See Table 4).
- the grain size of the prior austenite refers to the grain size of the austenitic structure at the time of quenching and heating.
- Tempering treatment The tempering treatment after quenching is an optional treatment in the present invention, and may or may not be conducted. Since this has reduced the amount of carbon in the steel, it is desirable that the tempering treatment after quenching is not performed (in consideration of the temperature rise at the time of coating) within the scope of the present invention limitation. This is because the strength, the effects of the invention (corrosion resistance and low temperature toughness) can be obtained in some cases.
- the stabilizer 10 has a torsion portion 11 extending in the width direction of the vehicle body (not shown) and a pair of left and right arm portions 12 continuous from the torsion portion 11 at both ends.
- the torsion portion 11 is fixed to the vehicle body side via a bush 14 or the like.
- the terminal 12 a of the arm unit 12 is connected to the left and right suspension mechanisms 15 via a stabilizer link (not shown) and the like.
- the torsion portion 11 and the arm portion 12 are usually bent at a plurality of places or more than a dozen places in order to avoid interference with other parts.
- the stabilizer 10 When the vehicle turns, the stabilizer 10 receives the input of the upside-down phase in the suspension mechanism 15, the left and right arm parts 12 flex in the opposite direction, and the torsion part 11 is twisted to cause excessive inclination of the vehicle body (rolling Function as a spring that suppresses
- Production Example (1) Cold Forming Process A round bar is cut into a predetermined length, cold bent into a desired shape shown in FIG. 1, and heated in a heating furnace, or a resistance heating device or a high frequency heating device After heating to the austenite temperature range using this, it was quenched, subjected to a tempering treatment after quenching, the shape was corrected if necessary, shot peened and painted using a desired paint.
- tempering treatment can be omitted in the above manufacturing process.
- Production Example (2) Direct quenching after hot forming processing: A round bar is cut into a predetermined length and heated in a heating furnace or heated to an austenite temperature range using a resistance heating device or a high frequency heating device, In the temperature range, it is hot-bent to the desired shape shown in FIG. 1, hardened, hardened and tempered, and if necessary, corrected in shape, shot peened it and painted using the desired paint did.
- tempering treatment can be omitted in the above manufacturing process.
- Production Example (3) Reheated after hot forming and quenched Quench the rod to a predetermined length and heat in a heating furnace or use a resistance heating device or a high frequency heating device to austenite temperature range It is heated and hot-bent in the desired shape shown in FIG. 1 in that temperature range. Thereafter, if necessary, reheating, hardening, hardening and tempering treatment were performed, the shape was corrected as necessary, this was shot peened, and coating was performed using a desired paint. In the present invention, tempering treatment can be omitted in the above manufacturing process. In addition, it is possible to omit the shape correction process by performing restraint quenching.
- the hardening treatment was performed by heating for 30 minutes to the austenitizing temperature Ac 3 + 50 ° C. (rounded up at the first digit) calculated by using the chemical components of the respective steels and the following equation, and then hardening was performed.
- the tempering temperature is adjusted so that the tensile strength is about 1500 MPa, but the minimum tempering temperature is 180 ° C. This is because the material temperature at this time is raised to about 180 ° C., although painting is finally performed in the manufacturing process of the stabilizer riser.
- a plate-shaped test piece of 20 mm ⁇ length 50 mm ⁇ thickness 5 mm was collected from a round bar subjected to heat treatment to a predetermined strength, and further a width 15 mm ⁇ length 40 mm within the plate-shaped test piece
- the corrosion loss test was carried out by using a dry and dry cyclic corrosion test with the area of (1) as the corroded surface (others masked).
- the wet and dry conditions were carried out for a total of 10 cycles, including an operation of immersing in a 5% aqueous solution of NaCl at a temperature of 35 ° C for 8 hours and then storing it for 16 hours in a container kept at 50% relative humidity and 35 ° C. did.
- the corrosion loss was measured by measuring the weight before and after the corrosion test and dividing by the corrosion area.
- the rusting was performed with a 20% aqueous solution of ammonium hydrogen citrate at 80 ° C.
- the corrosion resistance was evaluated as those having a corrosion weight loss value of 1000 (g / m 2 ) or more as a rejection (sign ⁇ ) and those having a value of less than 1000 (g / m 2 ) It was passed (sign ⁇ ).
- a torsion fatigue test in a bar shape was performed to evaluate the material for the stabilizer
- a bending fatigue test in a sheet shape was performed to evaluate the material for the leaf spring.
- steel Nos. 22 to 50 are steel materials (examples 1 to 50) having chemical compositions, a structure before heat treatment, and prior austenite grain sizes within the scope of the present invention, and have high tensile strength of 1300 MPa or more.
- corrosion weight loss is less than 1000 (g / m 2 ) and corrosion resistance is excellent, and impact value at an impact test temperature of -40 ° C is also excellent at low temperature toughness of 100 (J / cm 2 ) or more The results were obtained.
- the conventional material No. 21 JIS SUP 9
- steel No. No. 1 to 21 are steel materials (comparative examples 1 to 21) outside the scope of the present invention in chemical composition, and in particular, steel No. 1 to No. 2 among these. 21 consists of JIS SUP9.
- Comparative Example 1 because the C content is too low, even when tempering at 180 ° C., the tensile strength is 1005 MPa, the desired strength can not be obtained, and the fatigue strength is lowered.
- Comparative Example 14 the Al content was too large, and an Al203-based oxide and nitrides such as AlN became excessive, and both the toughness and the corrosion resistance decreased, and the fatigue strength also decreased.
- Comparative Example 15 the Ti content is too small, and even when tempering at 180 ° C., the desired strength of 1212 MPa can not be obtained, and the structure is roughened and the toughness is also reduced. Decreased.
- Comparative Example 21 is an example of JIS SUP 9 used as a stabilizer, but the chemical component is out of the range of the present invention, and the toughness and the corrosion resistance are inferior.
- Table 5 below is an example showing the influence of grain size.
- the crystal grain size is within the range of the present invention, and both the strength and the toughness are excellent, and high fatigue characteristics are obtained.
- the crystal grain size was larger than the range of the present invention, the crystal grains were too fine and the hardenability was reduced, and the tensile strength was too low and the fatigue strength was reduced.
- Comparative Example 23 the crystal grain size was smaller than the range of the present invention, and the crystal grain was coarse, so the toughness deteriorated too much and the fatigue characteristics deteriorated.
- Comparative Example 24 the crystal grains were mixed grains, and as a result, the toughness deteriorated and the fatigue strength decreased.
- Example 27-4, 27-5, 27-6 and 27-7 are all within the scope of the present invention.
- the former structure is ferrite pearlite (F + P) and furnace heating is performed at a heating rate of 5 ° C./sec slower than 30 ° C./sec, Examples 27-5, 27-6, 27.
- the heating method is set to electric heating and the heating rate is set to 30 ° C./sec or more, and the pre-structure is changed to bainite (B), martensite (M) or bainite martensite (B + M). All had desired strength and toughness, and high fatigue strength was obtained.
- the heating rate is set to 30 ° C./sec or more, and the former structure is made of ferrite and pearlite.
- the heating rate is set to 100 ° C./sec and the former structure is made of ferrite and bainite (F + B).
- F + B ferrite and bainite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Articles (AREA)
- Springs (AREA)
- Vehicle Body Suspensions (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
Cは鋼が所定の強度を確保するために必要な元素であり、引張強度で1300MPa以上確保するためには0.15%以上が必要である。しかし、0.35%を超えてCを含有すると、炭化物が過剰になり、耐食性と靭性がともに低下しすぎるので、その上限を0.35%とした。本発明では、スタビライザおよび板ばね素材として炭素含有量の低い鋼材を用いることにより、従来の鋼材による製造方法において懸念されていた焼割れを防止するとともに、耐食性を向上させて、スタビライザおよび板ばねをさらに安全性の高いものとしている。
Siは溶製時の脱酸剤として重要である。また固溶強化に有効な元素なので、高強度化するには重要な元素である。その効果を発揮させるためには0.6%を超えてSiを添加する必要がある。一方、Si量が1.5%を超えると、靭性が低下するので、その上限を1.5%とした。
Mnは、焼入れ性を向上させ、固溶強化元素として有効な元素であり、低炭素鋼の場合、強度を確保するために重要である。また、Mnは組織を微細化し、延靭性を向上させる元素としても重要である。その効果を発揮するためには1%以上のMnを添加する必要がある。一方、3%を超えてMnを添加すると、焼戻し時に低温から析出する炭化物量が過剰になり、耐食性と靭性がともに低下するので、その上限を3%とした。
Crは、焼入れ性を向上させて強度を上げるが、耐食性にも影響を及ぼす。1300MPa以上の引張強さを確保するためには0.3%以上のCrを添加する必要がある。しかし、0.8%を超えて添加しても、焼き戻し時のCr含有炭化物が過剰に析出し、耐食性が極端に低下するので、その上限を0.8%に限定した。
Alは溶製時の脱酸剤として重要な元素である。その効果を発揮させるためには0.005%以上のAlを添加する必要がある。一方、0.080%を越えてAlを添加すると、酸化物および窒化物が過剰になり、耐食性と靭性がともに低下するので、その上限を0.080%とした。
Tiは鋼中で炭窒化物を形成し、強度の向上と結晶粒の微細化に有効な元素である。これらの効果を発揮させるためには0.005%以上のTiを添加する必要がある。一方、0.060%を越えてTiを添加すると、炭窒化物が過剰になり、耐食性と靭性がともに低下するので、その上限を0.060%とした。
Nbは、鋼中で炭窒化物を形成し、強度の向上と組織の微細化に有効な元素である。これらの効果を発揮させるためには0.005%以上のNbを添加する必要がある。一方、0.060%を越えてNbを添加すると、炭窒化物が過剰になり、耐食性と延靭性がともに低下するので、その上限を0.060%とした。
TiとNbは、上述のように鋼中で炭窒化物を形成し、強度と靭性を高める効果がそれぞれあり、両者を同時に複合添加することで相乗効果を発揮する。一方、(Ti+Nb)合計量で0.07%を超えてTiとNbを過剰に添加すると、炭窒化物が過剰になり、耐食性と靭性がともに低下するので、(Ti+Nb)合計添加量を0.07%以下に抑える。
Cuは、耐食性を向上させるのに有効な元素である。その効果を発揮させるためには0.01%以上のCuを添加する必要がある。一方、1.00%を越えてCuを添加してもその効果は飽和するので経済的ではなく、さらに熱間圧延時に表面疵が多発して製造性を損なうため、その上限を1.00%とした。
Niは、Cuと同様に耐食性を向上させる元素であり、その効果を発揮させるためには0.01%以上のNiを添加する必要がある。一方、1.00%を越えてNiを添加してもその効果は飽和するので経済的ではなく(Niは産出国が限られる希少かつ高価な金属元素)、その上限を1.00%とした。
Pは製鋼プロセスにおいて不可避的に残留または混入する不純物元素であり、結晶粒界に偏析して靭性を低下させるので、その上限を0.035%とした。
Sは、Pと同様に製鋼プロセスにおいて不可避的に残留または混入する不純物元素であり、結晶粒界に偏析して靭性を低下させる。さらに介在物であるMnSが過剰になり、靭性と耐食性がともに低下するので、その上限を0.035%とした。
Nは、鋼中で炭窒化物を形成し、強度の向上と組織の微細化に有効な元素であるが、150ppmを超えて添加すると、炭窒化物が過剰になり、靭性と耐食性がともに低下するので、その上限を150ppmとする。
前記添加元素の他に、微量であればMo、V、B、Ca、Pbなどの成分元素をさらに添加してもよい。これらの添加量をMo:1%以下、V:1%以下、B:0.010%以下、Ca:0.010%以下、Pb:0.5%以下にそれぞれ制限すれば、本発明の効果はとくに阻害されない。
本発明では、スタビライザライザあるいは板ばねの焼入れ加熱時にオーステナイト領域に一旦加熱し、その後、水や油などの冷却媒体に焼入れを行うことで所望の強度を得る。そのオーステナイト領域に加熱する際、昇温速度が30℃/sec以上の場合には、焼入れ前組織(以下、単に「前組織」という)がフェライト-パーライト組織では、特にパーライト組織のセメンタイトの溶け込みが遅いので、長い加熱保持時間が必要となり粗大で不均一なオーステナイト組織になり、焼入れ後の鋼材の靭性が低下する。このことからオーステナイト領域に加熱したときに炭化物の溶け込みが速く、微細で均一なオーステナイト組織を得るために前組織をベイナイト組織あるいはマルテンサイト組織、またはこれらの混合組織に限定する。本発明では、スタビライザライザ又は板ばねの成形加工は冷間または熱間のいずれでもよく特に限定はしない。熱間成形加工による場合は、図2の(2)に示すように熱間成形加工した直後にワークを焼入れするようにしてもよいし、また図2の(3)に示すように熱間成形加工後にワークを再加熱してから焼入れするようにしてもよい。
本発明でのスタビライザまたは板ばねにおいて、加熱後に成形して焼入れする熱間成形法での加熱方法は、従来の大気加熱炉あるいは不活性ガス雰囲気炉の焼入れ炉でも、適量のTiとNbの適量添加により、組織は微細化され、引張強さ1300MPa以上で充分な靭性が得られる。また、高周波誘導加熱手段または直接通電加熱手段を用いても良いが、昇温速度が30℃/sec以上の急速加熱する場合には前記の通り加熱前組織を限定する事により所望の特性が得られる。なお、高周波誘導加熱手段は、高周波誘導加熱炉の他に加熱対象物を簡易に取り囲むコイルを有する高周波誘導加熱コイル装置を含むものである。また、直接通電加熱手段は、加熱対象物に直接通電して抵抗発熱させるための両極端子を有する直接通電加熱装置を含むものである。なお、加熱温度に関しては、下限をオーステナイト化温度+50℃とし、上限を高くしすぎると結晶粒の粗大化や脱炭などの悪影響が懸念されるため1050℃未満とすることが好ましい。
本発明では、所望の強度として1300MPa以上の強度レベルが要求されているため、焼入れまま、または焼入れ・焼戻し後にこの強度レベルを得るためには結晶粒が微細化しすぎても焼入れ性が不足し、所望の強度が得られない。一方、一定以上の微細化を行う事により延靭性を確保する必要がある。その範囲としては旧オーステナイト結晶粒度番号で7.5~10.5の範囲にする必要がある。より好ましくは旧オーステナイト結晶粒度番号8.5~10.5の範囲である。なお、結晶粒度はJIS G 0551の規定に準じて測定した。具体的には、倍率を100倍とする光学顕微鏡視野において顕微鏡観察像を所定の標準図と比較することにより結晶粒度番号を判定し、1サンプルにつき10視野ずつ測定し、それらの平均値を算出して測定値とした。なお、標準図は最小単位が結晶粒度番号で1刻みであるが、顕微鏡視野下の結晶粒が2つの標準図の中間にあたる場合は0.5という表示を用いた。すなわち、顕微鏡視野下の結晶粒(観察像)が粒度番号7の標準図と粒度番号8の標準図との中間にあるときは、その結晶粒度番号Ghを7.5と判定する(表3、表4を参照)。なお、ここで旧オーステナイト粒度とは、焼入れ加熱時のオーステナイト組織の粒度のことをいう。
焼入れ後の焼戻し処理は、本発明において任意の処理であり、行なってもよいし、行なわなくてもよい。これは鋼中炭素量を低減しているので、本願限定の範囲内であれば特に焼入れ後の焼戻し処理を行わない場合であっても(塗装時の温度上昇を考慮しても)、所望の強度、発明の効果(耐食性と低温靭性)を得ることができる場合があるからである。
図1に示すように、スタビライザ10は、図示しない車体の幅方向に延び出すトーション部11と、トーション部11から両端に連続する左右一対のアーム部12とを有している。トーション部11はブッシュ14などを介して車体側に固定されている。アーム部12の端末12aは、左右のサスペンション機構15にスタビライザリンク(図示せず)などを介して連結される。トーション部11およびアーム部12は他の部品との干渉を避ける目的で通常の場合は複数個所もしくは十数箇所の曲げ加工がなされている。
次に、図2を用いて種々のスタビライザの製造例(1)~(3)を説明する。
丸棒を所定長さに切断し、図1に示す所望の形状に冷間曲げ加工し、加熱炉内で加熱するか、または抵抗発熱装置または高周波加熱装置を用いてオーステナイト温度域まで加熱した後、焼入れし、焼入れ後焼戻し処理を施し、必要に応じて形状を矯正し、ショットピーニングし、所望の塗料を用いて塗装した。なお、本発明では、上記の製造工程のうち焼戻し処理は省略可能である。また、拘束焼入れを行えば形状矯正工程も省略することが可能である。
丸棒を所定長さに切断し、加熱炉内で加熱するか、または抵抗発熱装置または高周波加熱装置を用いてオーステナイト温度域まで加熱し、その温度域において図1に示す所望の形状に熱間曲げ加工し、焼入れし、焼入れ後焼戻し処理を施し、必要に応じて形状を矯正し、これをショットピーニングし、所望の塗料を用いて塗装した。なお、本発明では、上記の製造工程のうち焼戻し処理は省略可能である。また、拘束焼入れを行えば形状矯正工程も省略することが可能である。
丸棒を所定長さに切断し、加熱炉内で加熱するか、または抵抗発熱装置または高周波加熱装置を用いてオーステナイト温度域まで加熱し、その温度域において図1に示す所望の形状に熱間曲げ加工する。その後、必要に応じて再加熱し、焼入れし、焼入れ後焼戻し処理を施し、必要に応じて形状を矯正し、これをショットピーニングし、所望の塗料を用いて塗装した。なお、本発明では、上記の製造工程のうち焼戻し処理は省略可能である。また、拘束焼入れを行えば形状矯正工程も省略することが可能である。
(2)引張試験は、JIS4号試験片で行なった。
(1)表1-2において、鋼No.22~50は化学成分、熱処理前組織、旧オーステナイト結晶粒度が本発明範囲内の鋼材(実施例1~50)であり、引張強度が1300MPa」以上の高強度レベルにあるにもかかわらず、表2-2に示すように腐食減量が1000(g/m2)未満で耐食性に優れ、衝撃試験温度-40℃における衝撃値が100(J/cm2)以上と低温靭性にも優れているという結果が得られた。また、疲労強度においても従来材であるNo.21(JIS SUP9)よりも、捩り疲労試験、曲げ疲労試験いずれの疲労試験においても高強度であることが証明された。
Claims (9)
- 0.15~0.35質量%のC、0.6質量%を超え1.5質量%以下のSi、1~3質量%のMn、0.3~0.8質量%のCr、0.005~0.080質量%のsol.Al、0.005~0.060質量%のTi、0.005~0.060質量%のNb、150ppm以下のN、0.035質量%以下のP、0.035質量%以下のS、0.01~1.00質量%のCu、0.01~1.00質量%のNiを含み、残部がFe及び不可避不純物からなり、Ti+Nb≦0.07質量%であり、引張強さ1300MPa以上を有する耐食性と低温靭性に優れたことを特徴とする車両懸架用ばね部品用鋼。
- 焼入れ後の結晶粒が旧オーステナイト粒度番号で7.5~10.5の範囲にあり、引張強さ1300MPa以上を有することを特徴とする請求項1記載のばね部品用鋼。
- 1%以下のMo、1%以下のV、0.010%以下のB、0.010%以下のCa、及び0.5%以下のPbを更に含むことを特徴とする請求項1記載のばね部品用鋼。
- 0.15~0.35質量%のC、0.6質量%を超え1.5質量%以下のSi、1~3質量%のMn、0.3~0.8質量%のCr、0.005~0.080質量%のsol.Al、0.005~0.060質量%のTi、0.005~0.060質量%のNb、
150ppm以下のN、0.035質量%以下のP、0.035質量%以下のS、0.01~1.00質量%のCu、0.01~1.00質量%のNiを含み、残部がFe及び不可避不純物からなり、Ti+Nb≦0.07質量%である鋼を、熱間または冷間でばね部品形状に成形加工すること、
成形加工体を炉加熱または高周波誘導加熱または通電加熱により再加熱して焼入れを行うことにより、焼入れ後の結晶粒を旧オーステナイト粒度番号で7.5~10.5の範囲とし、引張強さ1300MPa以上を有する耐食性と低温靭性に優れたばね部品を得ること
を具備することを特徴とする車両懸架用ばね部品の製造方法。 - 焼入れ前の組織がベイナイト又はマルテンサイト又はベイナイト/マルテンサイトの混合組織のいずれかからなる鋼を、所望のばね部品の形状に成形加工し、前記成形加工後に高周波誘導加熱または直接通電による抵抗発熱により30℃/秒以上の昇温速度で加熱した後に直ちに焼入れすることを特徴とする請求項4記載の製造方法。
- 前記加熱温度は、オーステナイト化温度+50℃以上、1050℃未満であることを特徴とする請求項4記載の製造方法。
- 前記焼入れ後に焼き戻し処理を行うことを特徴とする請求項4記載の製造方法。
- 0.15~0.35質量%のC、0.6質量%を超え1.5質量%以下のSi、1~3質量%のMn、0.3~0.8質量%のCr、0.005~0.080質量%のsol.Al、0.005~0.060質量%のTi、0.005~0.060質量%のNb、
150ppm以下のN、0.035質量%以下のP、0.035質量%以下のS、0.01~1.00質量%のCu、0.01~1.00質量%のNiを含み、残部がFe及び不可避不純物からなり、Ti+Nb≦0.07質量%である鋼を、熱間または冷間でばね部品形状に成形加工した後、炉加熱または高周波誘導加熱または通電加熱により再加熱して焼入れを行い、焼入れ後の結晶粒を旧オーステナイト粒度番号で7.5~10.5の範囲とし、引張強さ1300MPa以上を有する耐食性と低温靭性に優れていることを特徴とする車両懸架用ばね部品。 - 焼入れ前の組織がベイナイト又はマルテンサイト又はベイナイト/マルテンサイトの混合組織のいずれかからなる鋼を、所望のばね部品の形状に成形加工し、前記成形加工後に高周波誘導加熱または直接通電による抵抗発熱により30℃/秒以上の昇温速度で加熱した後に直ちに焼入れしたことを特徴とする請求項8記載のばね部品。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020137029876A KR101571949B1 (ko) | 2011-05-12 | 2012-05-11 | 차량 현가용 스프링 부품용 강, 차량 현가용 스프링 부품 및 그 제조 방법 |
MX2013013145A MX2013013145A (es) | 2011-05-12 | 2012-05-11 | Acero para parte del resorte de la suspension automotriz, parte del resorte de la suspension automotriz, y metodo de fabricacion del mismo. |
EP12782769.9A EP2708612A4 (en) | 2011-05-12 | 2012-05-11 | STEEL FOR AUTOMOBILE SUSPENSION SPRING COMPONENT, AUTOMOBILE SUSPENSION SPRING COMPONENT, AND METHOD FOR MANUFACTURING THE SAME |
CN201280023027.1A CN103518000A (zh) | 2011-05-12 | 2012-05-11 | 车辆悬架用弹簧部件用钢、车辆悬架用弹簧部件及其制造方法 |
US14/077,086 US20140060709A1 (en) | 2011-05-12 | 2013-11-11 | Steel for vehicle suspension spring part, vehicle suspension spring part, and method of fabricating the same |
US15/276,083 US20170021691A1 (en) | 2011-05-12 | 2016-09-26 | Steel for vehicle suspension spring part, vehicle suspension spring part, and method of fabricating the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011107513A JP5764383B2 (ja) | 2011-05-12 | 2011-05-12 | 車両懸架用ばね部品用鋼、車両懸架用ばね部品およびその製造方法 |
JP2011-107513 | 2011-05-12 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/077,086 Continuation US20140060709A1 (en) | 2011-05-12 | 2013-11-11 | Steel for vehicle suspension spring part, vehicle suspension spring part, and method of fabricating the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012153831A1 true WO2012153831A1 (ja) | 2012-11-15 |
Family
ID=47139305
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/062106 WO2012153831A1 (ja) | 2011-05-12 | 2012-05-11 | 車両懸架用ばね部品用鋼、車両懸架用ばね部品およびその製造方法 |
Country Status (7)
Country | Link |
---|---|
US (2) | US20140060709A1 (ja) |
EP (1) | EP2708612A4 (ja) |
JP (1) | JP5764383B2 (ja) |
KR (1) | KR101571949B1 (ja) |
CN (1) | CN103518000A (ja) |
MX (1) | MX2013013145A (ja) |
WO (1) | WO2012153831A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2886675A3 (en) * | 2013-12-20 | 2015-08-05 | CRS Holdings, Inc. | High strength steel alloy and strip and sheet product made therefrom |
WO2015146141A1 (ja) * | 2014-03-24 | 2015-10-01 | Jfe条鋼株式会社 | 高強度で耐食性に優れたスタビライザー用鋼と、それを用いた車両用スタビライザーおよびその製造方法 |
CN107058868A (zh) * | 2017-03-29 | 2017-08-18 | 苏州浩焱精密模具有限公司 | 一种高硬度精密雕刻刀模 |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101640358B1 (ko) * | 2013-01-18 | 2016-07-15 | 가부시키가이샤 고베 세이코쇼 | 열간 프레스 성형강 부재의 제조 방법 |
US20140283960A1 (en) * | 2013-03-22 | 2014-09-25 | Caterpillar Inc. | Air-hardenable bainitic steel with enhanced material characteristics |
JP6180956B2 (ja) * | 2014-02-13 | 2017-08-16 | 株式会社神戸製鋼所 | 耐食性に優れる塗装鋼材 |
CN104213022A (zh) * | 2014-08-25 | 2014-12-17 | 武汉钢铁(集团)公司 | 抗拉强度650MPa级搅拌罐用钢及其生产方法 |
DE102014112755B4 (de) * | 2014-09-04 | 2018-04-05 | Thyssenkrupp Ag | Verfahren zum Umformen eines Werkstücks, insbesondere einer Platine, aus Stahlblech |
CN106795576B (zh) | 2014-09-04 | 2018-11-09 | 蒂森克虏伯弹簧与稳定器有限责任公司 | 用于生产冷成型的钢弹簧的方法 |
JP6110840B2 (ja) | 2014-12-08 | 2017-04-05 | 日本発條株式会社 | スタビライザの製造方法 |
JP6053746B2 (ja) * | 2014-12-08 | 2016-12-27 | 日本発條株式会社 | スタビライザ |
JP2016147580A (ja) * | 2015-02-12 | 2016-08-18 | ヤマハ発動機株式会社 | 車両 |
JP6258243B2 (ja) | 2015-03-23 | 2018-01-10 | 日本発條株式会社 | スタビライザおよびその製造方法 |
DE102015114897B4 (de) * | 2015-09-04 | 2024-10-02 | Muhr Und Bender Kg | Drehstab-Stabilisator und Verfahren zum Herstellen eines Drehstab-Stabilisators |
CN108778905B (zh) * | 2016-03-14 | 2021-06-22 | Ksm铸造集团有限公司 | 用于制造经热处理的、具有车轮轴承的车轮架的方法 |
DE102016204194A1 (de) * | 2016-03-15 | 2017-09-21 | Comtes Fht A. S. | Federnde Bauteile aus einer Stahllegierung und Herstellungsverfahren |
JP6630817B2 (ja) | 2016-03-30 | 2020-01-15 | 日本発條株式会社 | 中空ばね部材及び中空ばね部材製造方法 |
CN107109587B (zh) | 2017-03-31 | 2019-03-01 | 华南理工大学 | 薄规格耐磨钢板及其制造方法 |
KR102131137B1 (ko) * | 2019-05-21 | 2020-07-07 | 대원강업주식회사 | 뜨임 공정 생략을 통해 제조된 스프링 |
KR102119207B1 (ko) * | 2019-05-21 | 2020-06-05 | 주식회사 삼원강재 | 자동차 현가장치용 판스프링 |
WO2020235756A1 (ko) * | 2019-05-21 | 2020-11-26 | 주식회사 삼원강재 | 뜨임공정을 생략하기 위한 스프링용 강재 및 이 강재를 이용한 스프링 제조방법 |
KR102208165B1 (ko) * | 2019-05-21 | 2021-01-27 | 주식회사 삼원강재 | 뜨임 공정을 생략하기 위한 스프링용 강재 |
CN112063816B (zh) * | 2019-06-10 | 2021-11-19 | 育材堂(苏州)材料科技有限公司 | 一种高强度钢的热处理方法和由此获得的产品 |
CN110669906A (zh) * | 2019-11-19 | 2020-01-10 | 马鞍山钢铁股份有限公司 | 一种高强度弹簧钢力学检测的热处理方法 |
JP7260500B2 (ja) * | 2020-03-19 | 2023-04-18 | トヨタ自動車株式会社 | 車両 |
CN113276617A (zh) * | 2021-06-28 | 2021-08-20 | 安徽拓盛汽车零部件有限公司 | 一种二次硫化稳定杆衬套及其加工工艺 |
CN113862569B (zh) * | 2021-09-18 | 2022-09-30 | 马鞍山钢铁股份有限公司 | 一种具有低摩擦系数且疲劳特性优异的汽车空心稳定杆用钢及其生产方法 |
CN115522154B (zh) * | 2022-10-09 | 2024-04-16 | 浙江吉利控股集团有限公司 | 一种稳定杆及其制备方法、悬架总成和车辆 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693339A (ja) * | 1992-07-27 | 1994-04-05 | Sumitomo Metal Ind Ltd | 高強度高延性電縫鋼管の製造方法 |
JP2002097547A (ja) * | 2000-09-20 | 2002-04-02 | Nkk Bars & Shapes Co Ltd | 溶接性および加工性に優れたばね用線材および鋼線 |
JP2003105485A (ja) * | 2001-09-26 | 2003-04-09 | Nippon Steel Corp | 耐水素疲労破壊特性に優れた高強度ばね用鋼およびその製造方法 |
JP2007284774A (ja) * | 2006-04-20 | 2007-11-01 | Jfe Bars & Shapes Corp | 耐遅れ破壊特性および冷間加工性に優れる線材およびその製造方法 |
JP2010185109A (ja) | 2009-02-12 | 2010-08-26 | Jfe Bars & Shapes Corp | 耐食性と低温靭性に優れた車両用高強度スタビライザ用鋼及びその製造方法とスタビライザ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3817105B2 (ja) * | 2000-02-23 | 2006-08-30 | 新日本製鐵株式会社 | 疲労特性の優れた高強度鋼およびその製造方法 |
JP4116762B2 (ja) * | 2000-09-25 | 2008-07-09 | 新日本製鐵株式会社 | 耐水素疲労特性の優れた高強度ばね用鋼およびその製造方法 |
JP4317491B2 (ja) * | 2004-06-29 | 2009-08-19 | 新日本製鐵株式会社 | 熱間プレス用鋼板 |
JP5330181B2 (ja) | 2009-10-05 | 2013-10-30 | 株式会社神戸製鋼所 | ばね用鋼の製造方法 |
-
2011
- 2011-05-12 JP JP2011107513A patent/JP5764383B2/ja active Active
-
2012
- 2012-05-11 KR KR1020137029876A patent/KR101571949B1/ko not_active IP Right Cessation
- 2012-05-11 MX MX2013013145A patent/MX2013013145A/es unknown
- 2012-05-11 WO PCT/JP2012/062106 patent/WO2012153831A1/ja active Application Filing
- 2012-05-11 CN CN201280023027.1A patent/CN103518000A/zh active Pending
- 2012-05-11 EP EP12782769.9A patent/EP2708612A4/en not_active Withdrawn
-
2013
- 2013-11-11 US US14/077,086 patent/US20140060709A1/en not_active Abandoned
-
2016
- 2016-09-26 US US15/276,083 patent/US20170021691A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0693339A (ja) * | 1992-07-27 | 1994-04-05 | Sumitomo Metal Ind Ltd | 高強度高延性電縫鋼管の製造方法 |
JP2002097547A (ja) * | 2000-09-20 | 2002-04-02 | Nkk Bars & Shapes Co Ltd | 溶接性および加工性に優れたばね用線材および鋼線 |
JP2003105485A (ja) * | 2001-09-26 | 2003-04-09 | Nippon Steel Corp | 耐水素疲労破壊特性に優れた高強度ばね用鋼およびその製造方法 |
JP2007284774A (ja) * | 2006-04-20 | 2007-11-01 | Jfe Bars & Shapes Corp | 耐遅れ破壊特性および冷間加工性に優れる線材およびその製造方法 |
JP2010185109A (ja) | 2009-02-12 | 2010-08-26 | Jfe Bars & Shapes Corp | 耐食性と低温靭性に優れた車両用高強度スタビライザ用鋼及びその製造方法とスタビライザ |
Non-Patent Citations (1)
Title |
---|
See also references of EP2708612A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2886675A3 (en) * | 2013-12-20 | 2015-08-05 | CRS Holdings, Inc. | High strength steel alloy and strip and sheet product made therefrom |
WO2015146141A1 (ja) * | 2014-03-24 | 2015-10-01 | Jfe条鋼株式会社 | 高強度で耐食性に優れたスタビライザー用鋼と、それを用いた車両用スタビライザーおよびその製造方法 |
JP2015183235A (ja) * | 2014-03-24 | 2015-10-22 | Jfe条鋼株式会社 | 高強度で耐食性に優れたスタビライザー用鋼と、それを用いた車両用スタビライザーおよびその製造方法 |
CN107058868A (zh) * | 2017-03-29 | 2017-08-18 | 苏州浩焱精密模具有限公司 | 一种高硬度精密雕刻刀模 |
CN107058868B (zh) * | 2017-03-29 | 2018-08-03 | 苏州浩焱精密模具有限公司 | 一种高硬度精密雕刻刀模 |
Also Published As
Publication number | Publication date |
---|---|
JP2012237040A (ja) | 2012-12-06 |
US20140060709A1 (en) | 2014-03-06 |
EP2708612A4 (en) | 2015-08-05 |
JP5764383B2 (ja) | 2015-08-19 |
KR20130140182A (ko) | 2013-12-23 |
US20170021691A1 (en) | 2017-01-26 |
CN103518000A (zh) | 2014-01-15 |
MX2013013145A (es) | 2014-03-27 |
EP2708612A1 (en) | 2014-03-19 |
KR101571949B1 (ko) | 2015-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012153831A1 (ja) | 車両懸架用ばね部品用鋼、車両懸架用ばね部品およびその製造方法 | |
JP5306845B2 (ja) | 耐食性と低温靭性に優れた車両用高強度スタビライザ用鋼及びその製造方法とスタビライザ | |
JP5064060B2 (ja) | 高強度ばね用鋼線及び高強度ばね並びにそれらの製造方法 | |
JP5973903B2 (ja) | 耐水素脆性に優れた高強度ばね用鋼線およびその製造方法並びに高強度ばね | |
JP6027302B2 (ja) | 高強度焼戻し省略ばね用鋼 | |
WO2005056856A1 (ja) | 自動車構造部材用鋼材およびその製造方法 | |
CN106103781B (zh) | 高强度且耐腐蚀性优异的稳定器用钢和使用其的车辆用稳定器及其制造方法 | |
EP3719149A1 (en) | High-hardness steel product and method of manufacturing the same | |
JP5543814B2 (ja) | 熱処理用鋼板及び鋼部材の製造方法 | |
JP3409277B2 (ja) | 非調質ばね用圧延線状鋼または棒状鋼 | |
JP6796472B2 (ja) | 中空部材及びその製造方法 | |
CN112840058B (zh) | 具有增强的韧性和腐蚀疲劳性能的弹簧用线材和钢丝、及其各自的制造方法 | |
JP4828321B2 (ja) | 低サイクル疲労特性に優れた高周波焼入れ鋼材及び高周波焼入れ部品 | |
JP4937499B2 (ja) | 耐食性および疲労特性に優れた高強度ばね用鋼およびその製造方法 | |
KR0146799B1 (ko) | 내식성이 우수한 고강도 강관형 스태빌라이저의 제조방법 | |
JPH06299296A (ja) | 耐脱炭性に優れた高強度ばね用鋼 | |
JP3457494B2 (ja) | 高強度pc鋼棒およびその製造方法 | |
JPH11236617A (ja) | 冷間加工性と耐遅れ破壊性に優れた高強度ボルト用鋼およびその製法 | |
JPH0674482B2 (ja) | 耐疲労性及び切削性にすぐれる熱間鍛造用非調質鋼 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12782769 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20137029876 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/013145 Country of ref document: MX Ref document number: 2012782769 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |