WO2010109671A1 - 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法 - Google Patents

揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法 Download PDF

Info

Publication number
WO2010109671A1
WO2010109671A1 PCT/JP2009/056401 JP2009056401W WO2010109671A1 WO 2010109671 A1 WO2010109671 A1 WO 2010109671A1 JP 2009056401 W JP2009056401 W JP 2009056401W WO 2010109671 A1 WO2010109671 A1 WO 2010109671A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
solid metal
zeolite
detoxifying
carbonate
Prior art date
Application number
PCT/JP2009/056401
Other languages
English (en)
French (fr)
Inventor
賢中 金
靖 塩谷
健一朗 砂田
Original Assignee
ズードケミー触媒株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ズードケミー触媒株式会社 filed Critical ズードケミー触媒株式会社
Priority to KR1020117024985A priority Critical patent/KR101623228B1/ko
Priority to DE112009004601.0T priority patent/DE112009004601T5/de
Priority to US13/260,512 priority patent/US8568672B2/en
Priority to JP2011505790A priority patent/JP6006492B2/ja
Priority to PCT/JP2009/056401 priority patent/WO2010109671A1/ja
Publication of WO2010109671A1 publication Critical patent/WO2010109671A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0218Compounds of Cr, Mo, W
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • B01J20/0237Compounds of Cu
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • B01J20/0244Compounds of Zn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3014Kneading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials

Definitions

  • the present invention relates to a detoxifying agent and detoxification method for metal hydride-containing exhaust gas, and more particularly to a detoxifying agent and detoxification method for metal hydride-containing exhaust gas generated in a semiconductor manufacturing plant, a liquid crystal manufacturing plant, or the like.
  • Exhaust gas treatment includes a wet method and a dry method, and the former is a method of cleaning exhaust gas with a chemical solution. Since the wet method uses a large amount of water and chemicals, a large amount of waste water must be treated after treatment, and the facilities are large and take up space. On the other hand, in the latter, exhaust gas is circulated through a packed column of a particulate solid processing agent, and the hazardous and harmful gases are separated by chemical action of the gas to be removed and the processing agent, that is, adsorption and / or chemical reaction. It is a detoxifying method and is often performed in the treatment of exhaust gas containing metal hydride or exhaust gas containing halide gas.
  • Patent Document 1 a detoxifying agent comprising a metal oxide
  • Patent Documents 2, 3, 4 a detoxifying agent comprising a metal hydroxide, a metal carbonate or a basic metal carbonate
  • Patent Documents 5 and 6 a detoxifying agent obtained by modifying a metal hydroxide, metal carbonate or basic metal carbonate with a basic compound such as an alkali metal
  • Patent Documents 5 and 6 monosilane using zeolite A detoxifying agent
  • Patent Document 7 that removes a trace amount of phosphine (PH 3 ) in (SiH 4 ) is disclosed.
  • the detoxifying agent composed of metal hydroxide, metal carbonate or basic metal carbonate has excellent detoxifying ability, but it has higher detoxifying ability as the amount of special gas used increases with recent technological progress. Therefore, the amount of exhaust gas treated per volume of the detoxifying agent as described above is no longer sufficient.
  • the amount of exhaust gas treated per volume of the detoxifying agent is not sufficient for the detoxifying agent obtained by modifying a metal hydroxide, metal carbonate or basic metal carbonate with a basic compound such as an alkali metal.
  • a metal hydroxide, metal carbonate or basic metal carbonate with a basic compound such as an alkali metal there is a step of mixing and molding powders and alkali components as detoxifying components, and when producing in large quantities on an industrial scale, there is a safety problem due to the use of strong alkali .
  • various capital investments, such as a closed system are required, resulting in various problems such as high production costs.
  • JP 05-269339 A Japanese Patent Laid-Open No. 06-319945 Japanese Patent Application Laid-Open No. 08-192020 Japanese Patent No. 26049991 Japanese Patent Laid-Open No. 08-155259 JP 2002-136634 A Japanese Patent Laid-Open No. 62-212217
  • An object of the present invention is to provide a detoxifying agent and a detoxifying method exhibiting high detoxifying ability in the detoxification treatment of exhaust gas containing metal hydride generated in a semiconductor manufacturing process.
  • zeolites are added to solid metal hydroxide, solid metal carbonate, solid metal basic carbonate, or a mixture of these compounds.
  • the present invention was completed by finding that it has excellent detoxifying performance for exhaust gas containing metal hydride.
  • a metal hydride-containing exhaust gas detoxifier characterized by adding zeolites to solid metal basic carbonate, solid metal oxide, solid metal hydroxide, solid metal carbonate or a mixture of these compounds is there.
  • the metal component of the solid metal basic carbonate, solid metal oxide, solid metal hydroxide, solid metal carbonate or a mixture of these compounds is selected from copper, iron, cobalt, nickel, manganese, zinc, and chromium.
  • a metal hydride-containing exhaust gas abatement agent characterized by (3) A metal hydride-containing exhaust gas abatement agent characterized in that the zeolite content is 10 to 90% by weight based on the total weight of the abatement agent.
  • a metal hydride-containing exhaust gas abatement agent characterized by (5) A method for detoxifying a metal hydride-containing exhaust gas, wherein the metal hydride-containing exhaust gas is brought into contact with the detoxifying agent described in (1) to (4) above.
  • the detoxifying agent of the present invention is applied to the detoxification of various metal hydride-containing exhaust gases such as silane, phosphine, and arsine generated in a semiconductor manufacturing factory or a liquid crystal manufacturing factory, and can efficiently absorb metal hydride gas. Since the absorption capacity is large, the utility value in operation is high.
  • metal hydride-containing exhaust gases such as silane, phosphine, and arsine generated in a semiconductor manufacturing factory or a liquid crystal manufacturing factory
  • metal hydride gas Since the absorption capacity is large, the utility value in operation is high.
  • zeolites with solid metal oxides, solid metal hydroxides, solid metal carbonates, solid metal basic carbonates or mixtures of these compounds, the physical properties of the zeolites can be exploited using the pores and high surface area. By combining adsorption and chemical reaction, even higher concentrations of metal hydrides can have high detoxifying ability, and the absorption capacity can be increased.
  • the present invention relates to a detoxifying agent obtained by adding a zeolite to a solid metal oxide, solid metal hydroxide, solid metal carbonate, solid metal basic carbonate or a mixture of these compounds.
  • the metal compounds that form the main component of the detoxifying agent are solid metal oxides, solid metal hydroxides, solid metal carbonates, solid basic metal carbonates, or a mixture thereof, which can exist stably. Any metal can be used, but copper, iron, cobalt, nickel, manganese, zinc and chromium, which are usually easily available and inexpensive, are advantageously used.
  • the solid metal compounds oxides, hydroxides, carbonates, or basic carbonates can be used.
  • an aqueous solution of an alkaline compound is used. It can also manufacture by neutralization reaction.
  • alkali compounds it is preferable to use sodium, potassium hydroxide, carbonate, aqueous ammonia, urea or the like. The precipitate obtained by the neutralization reaction is washed with water, filtered and dried.
  • both solid metal compounds by the precipitation method may be used not only as a single compound but also as a mixture.
  • a compound obtained by precipitating the compound alone may be mixed, but it is preferable to obtain a precipitate containing a plurality of components by the coprecipitation method.
  • Zeolite is an aluminosilicate containing SiO 2 and Al 2 O 3 as constituents, and having a chemical composition containing alkali metals, alkaline earth metals or other metals.
  • the structure of zeolite is a structure in which tetrahedral structures of SiO 4 or AlO 4 centering on Si or Al are regularly arranged in three dimensions. Since the tetrahedral structure of AlO 4 is negatively charged, cations such as alkali metals are held in the pores and cavities. A cation can be easily exchanged for another cation such as a proton.
  • zeolite classified by crystal structure There are many types of zeolite classified by crystal structure, and the type of zeolite added to the solid metal compounds used in the present invention is not particularly limited.
  • FAU Y-type zeolite
  • a type zeolite, X type zeolite, L type zeolite may be used.
  • SiO 2 / Al 2 O 3 ratio of the zeolite but it is desirably 3 to 150, and particularly preferably 3 to 50.
  • the specific surface area of the zeolite is preferably 100 m 2 / g or more, more preferably 400 m 2 / g or more.
  • the content of zeolite is 10% to 90% by weight, preferably 10 to 50% by weight, expressed as the amount of metal with respect to the total weight of the treating agent.
  • the hydride detoxifying ability is not sufficiently improved, and if the amount is 90% by weight or more, the effect of improving the treatment performance due to the reduction of the active metal is not recognized.
  • zeolites can be produced by known methods, such as silica sources such as silica, silica sol and sodium silicate, alumina sources such as alumina gel, alumina sol and sodium aluminate, sodium hydroxide and sodium silicate.
  • silica sources such as silica, silica sol and sodium silicate
  • alumina sources such as alumina gel, alumina sol and sodium aluminate
  • sodium hydroxide and sodium silicate sodium silica sources
  • silica sources such as silica, silica sol and sodium silicate
  • alumina sources such as alumina gel, alumina sol and sodium aluminate
  • sodium hydroxide and sodium silicate sodium silicate.
  • a raw material mixture containing an alkali source, water, and, if necessary, an organic base such as an amine is hydrothermally synthesized, and after separation of the product, it is washed with water, dried, and ion exchanged to obtain a proton type zeolite.
  • the alkali metal zeolite prepared by the above hydrothermal synthesis is treated with an ammonium chloride or ammonium nitrate aqueous solution to obtain an ammonium zeolite, and then calcined at a temperature range of about 400 to 700 ° C. to produce a proton type zeolite. It can be.
  • powdered products, molded products thereof, or granulated powders after molding are used, and in the case of solid metal compounds produced by the precipitation method, powders, After the completion of kneading with the metal compound precursor, the molded product formed into a molded product by extrusion or tableting, or a crushed product after molding is used.
  • zeolites are added during the neutralization reaction between an aqueous solution of metal salts, which are precursors of metal compounds, and alkali compounds. After final precipitation, filtration, drying, or by adding zeolites to metal compounds, physically kneading, further forming a molded product by extrusion or tableting, and then further drying or baking to finally remove the detoxifying agent Manufacturing.
  • the temperature for drying or firing is not particularly limited, but is preferably 80 ° C. to 200 ° C.
  • the shape of the manufactured detoxifying agent there is no particular limitation on the shape of the manufactured detoxifying agent, and silica, alumina, magnesia, or other inorganic binders that are effective for improving the strength as necessary in order to ensure mechanical strength that can be used. Can be added.
  • the disinfectant obtained by adding zeolite to solid metal hydroxide, solid metal carbonate, solid metal basic carbonate or a mixture of these compounds is packed in a flow-type packed tower in actual use.
  • the metal hydride gas is then detoxified by contact with an exhaust gas containing the metal hydride.
  • the inventors of the present invention filled the detoxifying agent obtained by a series of operations into a stainless steel flow reactor, and circulated a reducing gas containing silane, phosphine, and germane as a metal hydride gas to the reactor.
  • a reducing gas containing silane, phosphine, and germane as a metal hydride gas to the reactor.
  • the metal hydride containing gas leakage amount in the exit gas was measured and monitored by a break monitor (manufactured by Bionics), thereby performing a detoxification performance measurement test of the metal hydride-containing gas at room temperature.
  • the combination of pores and high surface area in the zeolites of the present invention with solid metal oxide, solid metal hydroxide, solid metal carbonate, solid metal basic carbonate or a mixture of these compounds is effective in physics.
  • By causing the chemical adsorption and chemical reaction it is possible to exhibit a much higher detoxifying ability than before. Even with a high concentration of metal hydride gas in the order of%, a very good detoxifying ability was exhibited.
  • the performance evaluation of the present pesticide was performed by measuring the detoxification performance of the metal hydride gas contained in the nitrogen gas.
  • the measurement is performed by a normal pressure flow type reaction apparatus, and the apparatus, conditions, and operation method are as follows.
  • Detoxification performance measuring device Normal pressure flow reactor Reaction tube size: Inner diameter 28mm, Length 700mm Measurement conditions Amount of used pesticide: 60 cc (filling height 100 mm) GHSV: 300 hr -1 Pressure: Normal pressure Reaction temperature: Normal temperature Reaction gas composition: SiH4 (silane) 1% N2 balance
  • the detoxifying agent (Metallic hydride gas abatement performance measurement operation method and abatement performance calculation method) 60 cc of the detoxifying agent is packed in the reaction tube so that the filling height is 100 mm and is installed in the measuring device, and then the metal hydride gas diluted with nitrogen is circulated through the packed bed of the detoxifying agent. After starting the gas flow, the metal hydride gas leakage into the reaction tube outlet gas was measured and monitored with a break monitor (manufactured by Nippon Bionics), and the cumulative amount of silane that flowed in until the outlet concentration reached 5 ppm was determined. The amount is converted per kg of processing agent. Specifically, the detoxification performance of the metal hydride gas is calculated from the measurement result by the following formula.
  • Example 1 50% by weight Y-type zeolite based on the oxide of the product obtained by neutralization reaction is added to an aqueous solution of copper sulfate to form a copper sulfate / zeolite aqueous solution, and by neutralization reaction with sodium carbonate prepared accordingly. A precipitate of basic copper carbonate was obtained. Subsequently, the impurities were sufficiently removed by washing with water, followed by filtration and drying at 110 ° C. to obtain a salted copper carbonate / zeolite.
  • Example 2 Commercially available basic copper carbonate is used as a metal compound, and after adding 100 g of pure water to 160 g of basic copper carbonate and 40 g of Y-type zeolite in a kneader and mixing well, it is extruded to a size of 3 mm in diameter and dried at 110 ° C. did. The obtained molded body was filled in a reaction tube. Table 1 shows the silane abatement performance results of the abatement agent thus prepared.
  • Example 3 The same procedure as in Example 2 was conducted except that the amount of Y-type zeolite added was 50% by weight. The results are shown in Table 1.
  • Example 4 The procedure was the same as in Example 2 except that the amount of Y-type zeolite added was 80% by weight. The results are shown in Table 1.
  • Example 5 The procedure was the same as in Example 2 except that the zeolite type added was BEA25, and the results are shown in Table 1.
  • Example 6 The procedure was the same as in Example 2 except that the zeolite type added was BEA 150, and the results are shown in Table 1.
  • Example 7 The procedure was the same as in Example 2 except that the type of zeolite added was MOR 20, and the results are shown in Table 1.
  • Example 8 The procedure was the same as in Example 2 except that the added zeolite was MFI27 (proton type). The results are shown in Table 1.
  • Example 9 The procedure was the same as in Example 2 except that the added zeolite was MFI27 (ammonium type). The results are shown in Table 1.
  • Example 10 A composite compound of copper and zinc by a neutralization reaction between an aqueous solution in which 280 g of copper sulfate and 160 g of zinc sulfate are dissolved in 0.8 L of pure water and an alkaline aqueous solution in which 240 g of sodium carbonate prepared according to this is dissolved in 3 L of pure water. A precipitate was obtained. Subsequently, the impurities were sufficiently removed by washing with water, followed by filtration, drying at 120 ° C., and baking at 300 ° C. to obtain copper oxide and zinc oxide. The same operation as in Example 3 was performed except that the obtained composite oxide of copper oxide and zinc oxide was used. The results are shown in Table 1.
  • Example 11 A composite compound of iron and manganese by a neutralization reaction between an aqueous solution in which 480 g of iron sulfate and 160 g of manganese sulfate are dissolved in 2 L of pure water and an alkaline aqueous solution in which 350 g of sodium carbonate prepared in accordance with this is dissolved in 1.7 L of pure water. A precipitate was obtained. Subsequently, the impurities were sufficiently removed by washing with water, followed by filtration, drying at 120 ° C., and baking at 500 ° C. to obtain iron oxide and manganese oxide. The same operation as in Example 3 was performed except that the obtained composite oxide of iron oxide and manganese oxide was used. The results are shown in Table 1.
  • Example 1 Comparative Example 1 In Example 1, an experiment was performed in the same manner as in Example 1 except that zeolite was not added. The results are shown in Table 1.
  • Example 3 (Comparative Example 3) In Example 10, an experiment was performed in the same manner as in Example 10 except that zeolite was not added. The results are shown in Table 1.
  • Example 4 (Comparative Example 4) In Example 11, the experiment was performed in the same manner as in Example 11 except that zeolite was not added. The results are shown in Table 1.
  • Examples 10 and 11 metal hydride gas abatement compared to Comparative Examples 3 and 4 where no zeolites were added to the same active component metal oxide mixture
  • the performance was remarkably high.
  • Examples 10 and 11 are slightly inferior compared with Examples 1 to 9 and Comparative Example 1 using different active ingredient basic copper carbonates. Although it is difficult to do, it has been shown that when the zeolite is added in the same active ingredient, the detoxification performance is remarkably improved.
  • the detoxifying agent of the present invention can be applied to the detoxification of exhaust gases containing various metal hydrides such as silane, phosphine, and arsine generated in semiconductor manufacturing plants or liquid crystal manufacturing plants. Focusing on the combination of zeolites with materials, solid metal hydroxides, solid metal carbonates, solid metal basic carbonates or mixtures of these compounds, and using the pores and high surface area of zeolites to achieve physical adsorption and Combined with chemical reaction, even high concentration metal hydride can have high detoxification ability, can absorb metal hydride gas more efficiently than before, and has high absorption capacity, so it has high operational utility value .
  • various metal hydrides such as silane, phosphine, and arsine generated in semiconductor manufacturing plants or liquid crystal manufacturing plants. Focusing on the combination of zeolites with materials, solid metal hydroxides, solid metal carbonates, solid metal basic carbonates or mixtures of these compounds, and using the pores and high surface area of zeolites to achieve physical adsorption and Combined with chemical reaction, even high

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)

Abstract

 本発明は、半導体製造工程で発生する揮発性無機水素化物含有排ガスの除害処理において、高い除害能力を示す除害剤と除害方法を提供することを目的とする。固体金属水酸化物、固体金属炭酸塩、固体金属塩基性炭酸塩又はこれら化合物の混合物に、ゼオライト類を添加することで、揮発性無機水素化物含有排ガスに対して優れた除害性能を有する。添加するゼオライトはY型ゼオライト、MFI型ゼオライト、モルデンナイト型ゼオライト、ベータ型ゼオライト、A型ゼオライト、X型ゼオライト、L型ゼオライトから選択される合成ゼオライトまたは天然ゼオライトである。

Description

[規則37.2に基づきISAが決定した発明の名称] 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法
 本発明は金属水素化物含有排ガスの除害剤及び除害方法に関し、詳しくは、半導体製造工場、もしくは液晶製造工場などで発生する金属水素化物含有排ガスの除害剤および除害方法に関する。
 半導体製造工場では、その製造中にシラン、ホスフィン、アルシンなどの各種金属水素化物ガス、ハロゲン化物ガス類が使用されている。これらのガスは可燃性及び/又は有害性であることから、これらを含有する排ガスを環境保全上、大気中にそのまま放出することはできず、その危険性、有害性をなくするための処理が必要である。
 排ガス処理には湿式法と乾式法があり、前者は薬液で排ガスを洗浄処理する方法である。湿式法は大量の水及び薬剤を使うため処理後大量の排水を処理しなければならないことと設備が大型で場所をとる短所がある。一方、後者は、粒状固体処理剤の充填塔に排ガスを流通させ、除害対象ガスと処理剤との化学的作用、即ち、吸着及び/又は化学反応により、危険性、有害性ガスを分離、除害する方法であり、金属水素化物含有排ガス或いはハロゲン化物ガス含有排ガスの処理で多く行われている。
 金属水素化物含有排ガス処理剤には多くの特許が見られ、金属酸化物からなる除害剤(特許文献1)、金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩からなる除害剤(特許文献2、3、4)、金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩などをアルカリ金属など塩基性化合物で修飾した除害剤(特許文献5、6)、ゼオライトを使用しモノシラン(SiH)中の微量のホスフィン(PH)を除去する除害剤(特許文献7)などが開示されている。
 しかしながら、金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩からなる除害剤は、優れた除害能力を有するが、近年の技術進歩とともに特殊ガス使用量の増加と共により除害能力の高い剤が求められてきており、前記のような除害剤の容量当たりの排ガス処理量では十分ではなくなってきている。
 金属水酸化物、金属炭酸塩或いは塩基性金属炭酸塩などをアルカリ金属など塩基性化合物で修飾した除害剤についても、同様に除害剤の容量当たりの排ガス処理量が十分ではない。また、除害成分である粉体とアルカリ成分を混合して、成形する工程を有し、工業規模で、大量に生産する場合には、強アルカリを使用するために安全上の問題が発生する。また、安全対策を行うためには、閉鎖系にするなど、各種の設備投資が必要となり、生産コストが高くなるなど様々の問題があった。
特開平05-269339号公報 特開平06-319945号公報 特開平08-192024号公報 特許第2604991号公報 特開平08-155259号公報 特開2002-136834号公報 特開昭62-212217号公報
 本発明は、半導体製造工程で発生する金属水素化物含有排ガスの除害処理において、高い除害能力を示す除害剤と除害方法を提供することを目的とする。
 本発明者等が、上記課題を解決するために鋭意行った検討の中で、固体金属水酸化物、固体金属炭酸塩、固体金属塩基性炭酸塩又はこれら化合物の混合物に、ゼオライト類を添加することで、金属水素化物含有排ガスに対して優れた除害性能を有することを見出し、本発明を完成した。
 すなわち、本発明は、
(1)固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物にゼオライト類を添加することを特徴とする金属水素化物含有排ガス除害剤である。
(2)固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物の金属成分が、銅、鉄、コバルト、ニッケル、マンガン、亜鉛、クロムから選択されることを特徴とする金属水素化物含有排ガス除害剤である。
(3)ゼオライトの含有量が、除害剤全重量に対して10~90重量%であることを特徴とする金属水素化物含有排ガス除害剤である。
(4)固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物の前駆体である金属塩類とアルカリ化合物類との中和反応による沈殿中にゼオライト類を添加する又は固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物からなる金属粉体にゼオライト類を添加し混練後成型されることを特徴とする金属水素化物含有排ガス除害剤である。
(5)金属水素化物含有排ガスを、上記(1)~(4)に記載される除害剤に接触させることを特徴とする金属水素化物含有排ガスの除害方法である。
 本発明の除害剤は、半導体製造工場、もしくは液晶製造工場などで発生するシラン、ホスフィン、アルシンなどの各種金属水素化物含有排ガスの除害に適用され、効率良く金属水素化物ガスを吸収でき、吸収容量も大きいため、操業上の利用価値が高い。特に固体金属酸化物、固体金属水酸化物、固体金属炭酸塩、固体金属塩基性炭酸塩又はこれら化合物の混合物にゼオライト類を組み合わせることにより、ゼオライト類の細孔および高表面積を利用して物理的吸着と化学反応を組み合わせることにより、より高濃度の金属水素化物でも高い除害能力を有することができ、吸収容量を大きくすることが可能となった。
 本発明は固体金属酸化物、固体金属水酸化物、固体金属炭酸塩、固体金属塩基性炭酸塩又はこれら化合物の混合物に、ゼオライト類を添加させた除害剤に関するものである。ここで除害剤の主体をなす金属化合物類としては、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩、或いは固体塩基性金属炭酸塩若しくはこれらの混合物で、安定に存在し得るものであればどのような金属でも使用することができるが、通常容易に入手できしかも安価な銅、鉄、コバルト、ニッケル、マンガン、亜鉛、クロムが有利に用いられる。
 固体金属化合物類は酸化物、水酸化物、炭酸塩、或いは塩基性炭酸塩を使用することができ、又固体金属化合物類の前駆体である金属塩類を水溶液となした後、アルカリ化合物類水溶液との中和反応によって製造することもできる。アルカリ化合物類としてはナトリウム、カリウムの水酸化物、炭酸塩、或いはアンモニア水、尿素等を使用するのが好ましい。中和反応によって得られた沈澱物は水洗した後、濾過、乾燥される。
 ここで、固体金属化合物類は沈澱法によるもの共に単一化合物での使用のみならず、混合物となして使用してもよい。沈殿法による化合物類の場合、混合物としての使用においては化合物を単独で沈澱させたものを混合してもよいが、共沈法によって複数成分を含む沈澱物を得ることによる方が好ましい。
 ゼオライトは、SiO及びAlを構成成分に含み、化学組成はアルカリ金属、アルカリ土類金属または他の金属を含有するアルミノケイ酸塩である。ゼオライトの構造は、Si又はAlを中心とするSiO又はAlOの四面体構造が三次元的に規則正しく配列した構造である。AlOの四面体構造は負に帯電しているので、アルカリ金属等の陽イオンを細孔や空洞内に保持している。陽イオンは、プロトン等の別の陽イオンと容易に交換することが可能である。
 ゼオライトには結晶構造により分類される数多くの種類があり、本発明に用いる固体金属化合物類に添加されるゼオライトの種類は特に制限されるものではなく、例えばY型ゼオライト(FAU)、MFI型ゼオライト、モルデンナイト型ゼオライト、ベータ型ゼオライト(BEA)、A型ゼオライト、X型ゼオライト、L型ゼオライトなど合成ゼオライトまたは天然ゼオライトのいずれでもよい。また、ゼオライト類のSiO/Alの比の制限はないが、望ましくは3~150であり、特に好ましくは3~50の範囲である。またゼオライト類の比表面積は100m/g以上が望ましく、より望ましくは400m/g以上である。
 ゼオライト類の含有量は、処理剤全重量に対する金属量として示すと10重量%~90重量%の範囲であり、好ましくは10~50重量%であるが、その含有量が10重量%以下では金属水素化物の除害能力の向上が不充分であり、又その量が90重量%以上では活性金属の低下による処理性能向上効果が認められなくなる。
 これらのゼオライト類は、公知の方法で製造することができ、シリカ、シリカゾル、ケイ酸ナトリウム等のシリカ源、アルミナゲル、アルミナゾル、アルミン酸ナトリウム等のアルミナ源、水酸化ナトリウム、ケイ酸ナトリウム等のアルカリ源、水、そして必要に応じてアミン等の有機塩基を含む原料混合物を、水熱合成し、生成物を分離後、水洗、乾燥してイオン交換することにより、プロトン型ゼオライトとすることができる。例えば、上記の水熱合成にて調製したアルカリ金属型ゼオライトを、塩化アンモニウムあるいは硝酸アンモニウム水溶液等で処理してアンモニウム型ゼオライトとし、しかる後、約400~700℃の温度範囲で焼成してプロトン型ゼオライトとすることができる。
 ゼオライト類を添加する固体金属化合物類として、粉状物、その成型物、或いは成型後破砕した顆粒が使用され、沈澱法により製造される固体金属化合物類の場合も同様に粉状物、粉末状の金属化合物類前駆体と混練終了後、押出し、或いは打錠によって成型物とされるその成型物、若しくは成型後の破砕物が使用される。
 このような金属化合物類に対してゼオライト類を添加して除害剤を製造する方法として、金属化合物類前駆体である金属塩類の水溶液とアルカリ化合物類との中和反応中にゼオライト類を添加し沈澱させ、濾過、乾燥後、あるいは金属化合物類にゼオライト類を添加し、物理的に混練後、更に押出し或いは打錠によって成型物とし、その後更に乾燥または焼成することによって最終的に除害剤を製造する。乾燥あるいは焼成する温度は特に制限されるものでないが、80℃~200℃であることが好ましい。
 また製造される除害剤の形状についても特に制限はなく、使用に耐え得る機械的強度を確保するために、必要に応じてシリカ、アルミナ、マグネシア、若しくはその他の強度改善に有効な無機バインダー類を加えることができる。
 固体金属水酸化物、固体金属炭酸塩、固体金属塩基性炭酸塩又はこれら化合物の混合物にゼオライト類を添加させることによって得られた除害剤は、実際の使用にあたっては流通式の充填塔に詰められ、次いで金属水素化物を含有する排ガスと接触させることによって金属水素化物ガスは除害される。
 本発明の除害剤によって除害できる金属水素化物ガス類としては、シラン、アルシン、ホスフィン、ジシラン、ジボラン、セレン化水素、ゲルマン、ジクロルシラン等がある。
 本発明者等は一連の操作によって得られた除害剤を、ステンレス製流通式反応装置に充填し、金属水素化物ガスとして、シラン、ホスフィン、ゲルマンを含有する還元性ガスを反応器に流通させ、出口ガス中の金属水素化物ガス漏洩量をブレークモニター(バイオニクス社製)によって測定、監視することによって、常温における金属水素化物含有ガスの除害性能測定試験を行った。
 その結果、ゼオライト類を含有しない固体金属酸化物、固体金属水酸化物、固体金属炭酸塩、固体塩基性金属炭酸塩系処理剤と比較して除害能力(L/kg)に優れ、しかも長時間にわたって出口ガス中に金属水素化物は検出されないことを確認して本発明を完成した。
 すなわち、本発明のゼオライト類における細孔および高表面積と、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩、固体金属塩基性炭酸塩又はこれら化合物の混合物との組み合わせが効果的な物理的吸着、化学反応を生じさせることにより従来よりも非常に高い除害能力を長時間発揮することができる。%オーダの高い濃度の金属水素化物ガスでも非常に優れた除害能力を発揮した。
 次に本発明の内容を実施例によって更に詳細に説明する。ここで、本発明除害剤の性能評価は、窒素ガス中に含まれる金属水素化物ガスの除害性能を測定することによって行った。測定は常圧流通式の反応装置によって行い、その装置、条件、操作法は次ぎの通りである。
(金属水素化物ガスの除害性能測定装置、及び測定条件)
    除害性能測定装置:常圧流通式反応装置
    反応管のサイズ :内径28mm、長さ700mm
    測定条件
      使用除害剤量:60cc(充填高さ100mm)      
      GHSV  :300hr-1
      圧力    :常圧
      反応温度  :常温
      反応ガス組成:SiH4(シラン)1%
             N2         バランス
(金属水素化物ガスの除害性能測定操作方法及び除害性能計算法)
 除害剤60ccを充填高が100mmになるように反応管内に詰めて測定装置に設置し、次いで窒素で希釈した金属水素化物ガスを除害剤充填層に流通する。ガス流通開始後、反応管出口ガス中への金属水素化物ガス漏洩をブレークモニター(日本バイオニクス製)で測定、監視し、その出口濃度が5ppmに達するまでに流入したシランの積算量を求め、その量を処理剤1kg当りに換算する。具体的には測定結果から次の式によって金属水素化物ガスの除害性能は計算される。
(処理剤の金属水素化物ガス除害性能計算法)
    除害性能(L/kg)=A×(B/100)×(C/E)
    ここで、A:測定ガス流量(L/min.)
        B:金属水素化物ガス濃度(容積%)
        C:金属水素化物ガスの出口濃度が所定の濃度に達するまでの累積ガス流通時間(min.)
        E:処理剤充填量(kg)
(実施例1)
 硫酸銅の水溶液に中和反応で得られる生成物の酸化物ベースで50重量%のY型ゼオライトを添加し硫酸銅/ゼオライト水溶液となし、これに合わせて準備した炭酸ナトリウムとの中和反応により塩基性炭酸銅の沈殿物を得た。次いで水洗することによって不純物類を充分除去した後濾過、110℃で乾燥し、塩性炭酸銅/ゼオライトを得た。得られた塩性炭酸銅/ゼオライトを用い、ニーダー中で塩基性炭酸銅/ゼオライト200gに対して純水120gを加えて充分混合した後、直径3mmのサイズに押出し成型し、110℃で乾燥した。得られた成型体を反応管に充填させた。このように調製した除害剤のシラン除害性能結果を表1に示した。
(実施例2)
 金属化合物として市販の塩基性炭酸銅を用い、ニーダー中で塩基性炭酸銅160gとY型ゼオライト40gに純水100gを加えて充分混合した後、直径3mmのサイズに押出し成型し、110℃で乾燥した。得られた成型体を反応管に充填させた。このように調製した除害剤のシラン除害性能結果を表1に示した。
(実施例3)
 Y型ゼオライトの添加量が50重量%以外は実施例2と同様に行い、その結果を表1に示した。
(実施例4)
 Y型ゼオライトの添加量が80重量%以外は実施例2と同様に行い、その結果を表1に示した。
(実施例5)
 添加したゼオライト種類がBEA25以外は実施例2と同様に行い、その結果を表1に示した。
(実施例6)
 添加したゼオライト種類がBEA150以外は実施例2と同様に行い、その結果を表1に示した。
(実施例7)
 添加したゼオライト種類がMOR20以外は実施例2と同様に行い、その結果を表1に示した。
(実施例8)
 添加したゼオライト種類がMFI27(プロトン型)以外は実施例2と同様に行い、その結果を表1に示した。
(実施例9)
 添加したゼオライト種類がMFI27(アンモニウム型)以外は実施例2と同様に行い、その結果を表1に示した。
(実施例10)
 硫酸銅280gと硫酸亜鉛160gを純水0.8Lに溶解した水溶液と、これに合わせて準備した炭酸ナトリウム240gを純水3Lに溶解したアルカリ水溶液との中和反応により、銅と亜鉛の複合化合物の沈殿物を得た。次いで水洗することによって不純物類を十分除去した後濾過、120℃で乾燥し、300℃で焼成し、酸化銅と酸化亜鉛を得た。得られた酸化銅と酸化亜鉛の複合酸化物を用いた以外は、実施例3と同様に行った。この結果を表1に示した。
(実施例11)
 硫酸鉄480gと硫酸マンガン160gを純水2Lに溶解した水溶液と、これに合わせて準備した炭酸ナトリウム350gを純水1.7Lに溶解したアルカリ水溶液との中和反応により、鉄とマンガンの複合化合物の沈殿物を得た。次いで水洗することによって不純物類を十分除去した後濾過、120℃で乾燥し、500℃で焼成し、酸化鉄と酸化マンガンを得た。得られた酸化鉄と酸化マンガンの複合酸化物を用いた以外は、実施例3と同様に行った。この結果を表1に示した。
(比較例1)
 実施例1において、ゼオライトを加えないこと以外は、実施例1と全く同様にして、実験を行った。この結果を表1に示した。
(比較例2)
 市販のべマイトにY形ゼオライトを加えニーダー中でベマイト/ゼオライト200gに対して酢酸2gと純水160gを加えて充分混合した後、直径3mmのサイズに押出し成型し、110℃で乾燥した。得られた成型体を反応管に充填させた。このように調製した除害剤の性能結果を表1に示した。
(比較例3)
 実施例10において、ゼオライトを加えないこと以外は、実施例10と全く同様にして、実験を行った。この結果を表1に示した。
(比較例4)
 実施例11において、ゼオライトを加えないこと以外は、実施例11と全く同様にして、実験を行った。この結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、実施例1~9における活性成分塩基性炭酸銅にゼオライト類を添加すると、同一活性成分にゼオライト類を添加しない比較例1に対して金属水素化物ガス除害性能が顕著に高いものであった。
 さらに、実施例10および11における活性成分金属酸化物混合物にゼオライト類を添加すると、同一活性成分の金属酸化物混合物にゼオライト類を添加しない比較例3および4に対して、金属水素化物ガス除害性能が顕著に高いものであった。なお、実施例10および11は異なる活性成分塩基性炭酸銅を使用した実施例1~9および比較例1に比較して除害性能がやや劣り、活性成分が異なる場合には除害能力を比較することは困難であるが、同一活性成分においてゼオライト類を添加した場合に除害性能が顕著に向上することが示された。
 また、本発明の活性成分を含まない担体にゼオライト類を添加した比較例2の除害能力が非常に低いことから、活性成分として金属酸化物、金属水酸化物、金属炭酸塩、塩基性金属炭酸塩系化合物に各種ゼオライトを添加する組み合わせにより金属水素化物ガス除害性能が顕著に高くなることが明らかとなった。
 本発明の除害剤は、半導体製造工場、もしくは液晶製造工場などで発生するシラン、ホスフィン、アルシンなどの各種金属水素化物含有排ガスの除害に適用することができ、本発明により初めて固体金属酸化物、固体金属水酸化物、固体金属炭酸塩、固体金属塩基性炭酸塩又はこれら化合物の混合物にゼオライト類を組み合わせることに着目し、ゼオライト類の細孔および高表面積を利用して物理的吸着と化学反応を組み合わせることにより、高濃度の金属水素化物でも高い除害能力を有することができ、従来になく効率良く金属水素化物ガスを吸収でき、吸収容量も大きいため、操業上の利用価値が高い。

Claims (5)

  1.  固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物にゼオライト類を添加することを特徴とする金属水素化物含有排ガス除害剤。
  2.  固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物の金属成分が、銅、鉄、コバルト、ニッケル、マンガン、亜鉛、クロムから選択されることを特徴とする請求項1に記載の金属水素化物含有排ガス除害剤。
  3.  ゼオライト類の含有量が、除害剤全重量に対して10~90重量%であることを特徴とする請求項1または2に記載の金属水素化物含有排ガス除害剤。
  4.  固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物の前駆体である金属塩類とアルカリ化合物類との中和反応による沈殿中にゼオライト類を添加する又は固体金属塩基性炭酸塩、固体金属酸化物、固体金属水酸化物、固体金属炭酸塩又はこれら化合物の混合物からなる金属粉体にゼオライト類を添加し混練後成型されることを特徴とする請求項1乃至3のいずれか一項に記載の金属水素化物含有排ガス除害剤。
  5.  金属水素化物含有排ガスを、請求項記載1乃至4のいずれか一項に記載の除害剤に接触させることを特徴とする金属水素化物含有排ガスの除害方法。
PCT/JP2009/056401 2009-03-27 2009-03-27 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法 WO2010109671A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117024985A KR101623228B1 (ko) 2009-03-27 2009-03-27 휘발성 무기 수소화물 함유 배기가스 제해제 및 휘발성 무기 수소화물 함유 배기가스 제해 방법
DE112009004601.0T DE112009004601T5 (de) 2009-03-27 2009-03-27 Mittel zur Entgiftung von Abgas, enthaltend flüchtige anorganische Hydride und Verfahren zur Entgiftung von Abgas, enthaltend flüchtige anorganische Hydride
US13/260,512 US8568672B2 (en) 2009-03-27 2009-03-27 Agent for detoxifying discharge gas containing volatile inorganic hydride and method of detoxifying discharge gas containing volatile inorganic hydride
JP2011505790A JP6006492B2 (ja) 2009-03-27 2009-03-27 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法
PCT/JP2009/056401 WO2010109671A1 (ja) 2009-03-27 2009-03-27 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056401 WO2010109671A1 (ja) 2009-03-27 2009-03-27 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法

Publications (1)

Publication Number Publication Date
WO2010109671A1 true WO2010109671A1 (ja) 2010-09-30

Family

ID=42780381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056401 WO2010109671A1 (ja) 2009-03-27 2009-03-27 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法

Country Status (5)

Country Link
US (1) US8568672B2 (ja)
JP (1) JP6006492B2 (ja)
KR (1) KR101623228B1 (ja)
DE (1) DE112009004601T5 (ja)
WO (1) WO2010109671A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3117886A1 (fr) * 2020-12-21 2022-06-24 IFP Energies Nouvelles Procede de captation de silicium en absence d’hydrogene
FR3117887A1 (fr) * 2020-12-21 2022-06-24 IFP Energies Nouvelles Procede de captation de silicium a faible vitesse spatiale horaire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192024A (ja) * 1995-01-20 1996-07-30 Mitsui Toatsu Chem Inc 排ガスの処理剤及び処理方法
JPH08318131A (ja) * 1995-05-26 1996-12-03 Mitsui Toatsu Chem Inc 排ガスの処理剤及び処理方法
JP2003126647A (ja) * 2001-10-22 2003-05-07 Nippon Sanso Corp 特殊ガスの除害方法及び装置
JP2007021318A (ja) * 2005-07-14 2007-02-01 Japan Pionics Co Ltd 排ガスの処理方法及び処理装置
JP2007098194A (ja) * 2005-09-30 2007-04-19 Sharp Corp 除害装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0645447B2 (ja) 1986-03-12 1994-06-15 三井東圧化学株式会社 水素化ケイ素の精製方法
JPH0729049B2 (ja) * 1987-04-30 1995-04-05 三菱重工業株式会社 燃焼排ガス中の砒素化合物除去方法
JPH02139033A (ja) * 1988-11-18 1990-05-29 Chiyoda Corp 有毒ガス吸着剤、その製造方法及びそれを用いる排ガスの浄化方法
JPH0724738B2 (ja) 1993-02-05 1995-03-22 三井東圧化学株式会社 排ガスの高度処理剤
JP2561616B2 (ja) 1993-03-17 1996-12-11 日本酸素株式会社 有害成分の固体除去剤
JP3557539B2 (ja) 1994-12-07 2004-08-25 日本酸素株式会社 有害ガスの除害方法及び除害剤
JP2604991B2 (ja) * 1994-12-22 1997-04-30 古河機械金属株式会社 排ガスの処理剤
US5916836A (en) * 1996-12-27 1999-06-29 Tricat Management Gmbh Method of manufacture of molecular sieves
JP4488616B2 (ja) 2000-11-02 2010-06-23 三井化学株式会社 排ガスの処理剤及び処理方法
AU2003211667A1 (en) * 2002-03-13 2003-09-22 China Petroleum And Chemical Corporation The transalkylation method of benzene and c9+ aromatic hydrocarbons
JP2003326128A (ja) * 2002-05-09 2003-11-18 Ebara Corp ヒ素又はヒ素化合物を含む排ガスの処理方法及び装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08192024A (ja) * 1995-01-20 1996-07-30 Mitsui Toatsu Chem Inc 排ガスの処理剤及び処理方法
JPH08318131A (ja) * 1995-05-26 1996-12-03 Mitsui Toatsu Chem Inc 排ガスの処理剤及び処理方法
JP2003126647A (ja) * 2001-10-22 2003-05-07 Nippon Sanso Corp 特殊ガスの除害方法及び装置
JP2007021318A (ja) * 2005-07-14 2007-02-01 Japan Pionics Co Ltd 排ガスの処理方法及び処理装置
JP2007098194A (ja) * 2005-09-30 2007-04-19 Sharp Corp 除害装置

Also Published As

Publication number Publication date
JP6006492B2 (ja) 2016-10-12
US8568672B2 (en) 2013-10-29
KR20120020101A (ko) 2012-03-07
DE112009004601T5 (de) 2014-01-09
JPWO2010109671A1 (ja) 2012-09-27
KR101623228B1 (ko) 2016-05-31
US20120107201A1 (en) 2012-05-03

Similar Documents

Publication Publication Date Title
AU755129B2 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide content in gases, method for obtaining same and application
JP5145904B2 (ja) ハロゲン系ガスの除害剤及びそれを使用するハロゲン系ガスの除害方法
JP5309945B2 (ja) ハロゲン系ガスの除害剤及びそれを使用するハロゲン系ガスの除害方法
JP6006492B2 (ja) 揮発性無機水素化物含有排ガス除害剤及び揮発性無機水素化物含有排ガス除害方法
KR101436992B1 (ko) 암모니아 및 과산화수소 가스 제거제 및 장치
JP5499816B2 (ja) ハロゲン系ガスの除去方法
JP2017218367A (ja) 高耐水熱性チャバザイト型ゼオライトおよびその製造方法
KR20010061933A (ko) 유해가스 정화제 및 정화방법
JP2009082785A (ja) 有害物質含有ガスの処理方法及び装置
JP2008302338A (ja) 金属水素化物含有排ガス除害剤及び金属水素化物含有排ガス除害方法
JP3838977B2 (ja) 排ガス処理剤及びその製造方法並びに排ガス処理方法
JP5833313B2 (ja) 金属水素化物含有排ガスの除害剤及び除害方法
JPS61129026A (ja) 排ガスの浄化方法
JPS63302923A (ja) 排ガスの浄化方法
JPH02139033A (ja) 有毒ガス吸着剤、その製造方法及びそれを用いる排ガスの浄化方法
JPH0687943B2 (ja) 排ガスの浄化方法
KR20180066907A (ko) 산 배기가스 제거를 위한 반응흡착제 및 반응흡착제 제조방법
KR101979343B1 (ko) 염소 가스 제거용 흡착제 및 그 흡착제 제조방법
JPH03101837A (ja) 窒素酸化物の分解触媒の製造方法
KR101139017B1 (ko) 유해가스 처리용 흡수제, 이의 제조 방법 및 이를 이용한 유해가스 처리 방법
JP6043398B2 (ja) 金属水素化物含有排ガスの除害剤及び除害方法
JP2006021132A (ja) アンモニウムイオン吸着剤及びアンモニウムイオンの除去方法
JPH06327931A (ja) 排ガスの浄化方法
JPS63123449A (ja) 排ガス中の窒素酸化物除去用触媒
JPS63302922A (ja) 排ガスの浄化筒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842285

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011505790

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 112009004601

Country of ref document: DE

Ref document number: 1120090046010

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 20117024985

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13260512

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09842285

Country of ref document: EP

Kind code of ref document: A1