WO2010104119A1 - 放射線像変換パネルおよびその製造方法 - Google Patents

放射線像変換パネルおよびその製造方法 Download PDF

Info

Publication number
WO2010104119A1
WO2010104119A1 PCT/JP2010/054016 JP2010054016W WO2010104119A1 WO 2010104119 A1 WO2010104119 A1 WO 2010104119A1 JP 2010054016 W JP2010054016 W JP 2010054016W WO 2010104119 A1 WO2010104119 A1 WO 2010104119A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
columnar
radiation
radiation image
image conversion
Prior art date
Application number
PCT/JP2010/054016
Other languages
English (en)
French (fr)
Inventor
雅典 山下
楠山 泰
真太郎 外山
和広 白川
宗功 式田
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to CN201080011711.9A priority Critical patent/CN102349114B/zh
Priority to EP10750872.3A priority patent/EP2407978B1/en
Priority to JP2011503846A priority patent/JP5469158B2/ja
Priority to US13/255,715 priority patent/US8637830B2/en
Publication of WO2010104119A1 publication Critical patent/WO2010104119A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • C23C14/226Oblique incidence of vaporised material on substrate in order to form films with columnar structure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K4/00Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens
    • G21K2004/06Conversion screens for the conversion of the spatial distribution of X-rays or particle radiation into visible images, e.g. fluoroscopic screens with a phosphor layer

Definitions

  • the present invention relates to a radiation image conversion panel provided with a radiation conversion layer comprising a plurality of columnar crystals (needle crystals) and a method for producing the same.
  • a radiation image conversion panel including a radiation conversion layer composed of a plurality of columnar crystals is known.
  • This type of radiation image conversion panel is configured, for example, by providing a phosphor layer obtained by growing phosphor crystals in a columnar shape on a substrate made of amorphous carbon.
  • a radiation image conversion panel in which a reflective layer made of a metal thin film such as aluminum is formed is known. (For example, see Patent Documents 1 and 2).
  • Patent Documents there is also known a radiation image conversion panel that improves the image quality of a radiation image by increasing the linearity of the columnar crystal by keeping the width of the waviness within a certain range with respect to the side surface of the columnar crystal. 3). Furthermore, a radiation image conversion panel having an improved reflectance without forming a reflection layer has also been known (see, for example, Patent Document 4).
  • the radiation image conversion panel described in Patent Document 4 described above has improved reflectance by devising the structure of the columnar crystal.
  • each columnar crystal is formed by a lower layer in which a plurality of spherical crystal particles are stacked in a rosary shape in a vertical direction and a columnar crystal layer formed thereon. Therefore, there were the following problems.
  • each of the columnar crystals 100, 101, and 102 has spherical crystal particles 100a, 100b, 100c, 101a, 101b, 101c, 102a, 102b, and 102c, which form a lower layer by overlapping in a bead shape.
  • columnar crystal parts 100d, 101d, and 102d are stacked. In this case, when the adjacent ones of the columnar crystals 100, 101, 102 are seen, the crystal grains are in contact with each other.
  • each crystal particle has a curved surface whose surface is curved like a spherical surface, for example, as shown in FIG. 13B, the crystal particles 100a, 100b, and 100c are adjacent crystal particles 101a and 101b, respectively. , 101c and a certain range from the most overhanging portion contact to form a contact portion c. However, since a non-contact portion appears at a location away from the contact portion c, a situation in which a gap v is formed between the adjacent columnar crystals 100 and 101 cannot be avoided.
  • the density of the phosphor in the lower layer where the spherical crystal particles are present is low, and this lower layer functions as a reflective layer having light reflection characteristics.
  • the contrast (resolution) of the radiation image is lowered. If the contact portion c is not formed, the decrease in contrast is reduced, but the density of the phosphor in the reflection layer becomes too low, and the reflection effect is decreased.
  • the present invention has been made to solve the above problems, and the reflectance can be increased without forming a reflective layer made of a metal thin film or the like, and the reflective layer is formed by spherical crystal particles.
  • Another object of the present invention is to provide a radiation image conversion panel capable of exhibiting a high reflectance and a method for manufacturing the same.
  • a radiation image conversion panel is a radiation image conversion panel in which a radiation conversion layer for converting incident radiation into light is formed on a substrate, and the radiation conversion layer emits light.
  • a reflection layer for reflecting light to the emission surface side is provided on the opposite side of the light emission surface, and the reflection layer has a spiral structure in which phosphor crystals are stacked in a spiral shape.
  • the reflective layer since the reflective layer has a spiral structure in which phosphor crystals are spirally stacked, the crystal density in the reflective layer can be increased. Therefore, the reflectance can be increased without forming a reflective layer made of a metal thin film or the like, and a higher reflectance can be exhibited than when the reflective layer is formed of spherical crystal particles.
  • the radiation conversion layer is composed of a plurality of columnar crystals in which phosphor crystals are stacked in a columnar shape, and each of the columnar crystals has a spiral structure formed on the base side fixed to the substrate and a direction intersecting the substrate. And a columnar structure extending from the spiral structure to the light emitting surface side, and the spiral structure and the columnar structure are preferably configured by successively laminating phosphor crystals. According to this configuration, since the light reflected by the spiral structure is incident on the columnar structure laminated continuously on the spiral structure, the luminance can be increased without reducing the contrast of the radiation image.
  • the radiation conversion layer is composed of a plurality of columnar crystals in which phosphor crystals are stacked in a columnar shape, and a spiral structure is formed on the base side fixed to the substrate of the plurality of columnar crystals.
  • a spiral structure portion forming a spiral structure of the first and second columnar crystals adjacent to each other, the second columnar crystal may have a penetration structure in which the first columnar crystal is inserted in a space apart above and below the first columnar crystal. preferable. According to this configuration, the distance between the columnar crystals can be reduced while maintaining the crystal density and size of the spiral structure capable of exhibiting a sufficient reflection effect and mechanical strength, thereby reducing the radiation conversion efficiency. Without increasing brightness.
  • the portion on the second columnar crystal side in the spiral structure portion of the first columnar crystal and the portion on the first columnar crystal side in the spiral structure portion of the second columnar crystal are in a direction intersecting the substrate.
  • the gap between the spiral structure portion of the first columnar crystal and the spiral structure portion of the second columnar crystal is a wavy line when viewed from a direction orthogonal to the direction intersecting the substrate. More preferred. According to this configuration, it is possible to reliably maintain the crystal density and size of the spiral structure that can exhibit a sufficient reflection effect and mechanical strength, and to further reduce the interval between the columnar crystals.
  • a plurality of spiral loops forming a spiral structure are stacked in a direction intersecting the substrate.
  • a flat spherical portion forming the spiral structure is formed on the substrate. It is preferable that a plurality of layers are stacked obliquely with respect to the orthogonal direction. According to these structures, since the reflective function in a helical structure part becomes reliable, the reflectance in a reflective layer can be raised.
  • the flat spherical portion connected to the columnar structure in the flat spherical portion is not larger than the column diameter of the columnar structure (that is, in the direction orthogonal to the direction intersecting the substrate,
  • the width of the flat spherical portion to be connected is preferably smaller than the width of the columnar structure.
  • the reflecting layer is preferably such that the phosphor crystal is bent left and right in a cross section in a direction intersecting the surface of the substrate. More preferably, the spiral loop has an interval of about 0.67 ⁇ m to 5 ⁇ m in the direction intersecting the substrate. When the spiral loop has such an interval, it appears clearly that the phosphor crystal is bent left and right in the cross section in the direction intersecting the surface of the substrate.
  • the radiation conversion layer is constituted by a scintillator containing CsI or a photostimulable phosphor containing CsBr.
  • a substrate made of a material containing carbon fiber such as CFRP has a non-uniform structure in the surface direction of the substrate as compared with a substrate made of amorphous carbon, metal, glass or the like. Therefore, in a substrate made of a material containing carbon fiber, a difference occurs in the substrate absorption rate of emitted light, which affects the optical image output from the panel.
  • a substrate made of a material containing carbon fiber has a structure in which radiation transmission characteristics are not uniform in the plane direction. Therefore, especially when trying to take a radiation image in a low radiation intensity state (low energy), if the transmission characteristics are different in the surface direction, the ratio of the radiation that reaches the radiation conversion layer will be uneven in the surface direction.
  • a reflection film that reflects the light emitted from the radiation conversion layer can be formed between the substrate and the radiation conversion layer to increase the overall brightness and reduce this effect, but this reduces the contrast. Resulting in.
  • the configuration of the radiation image conversion panel according to the present invention is used, good luminance and contrast can be obtained even with a non-uniform substrate made of a material containing carbon fibers.
  • a manufacturing method of a radiation image conversion panel according to the present invention is a manufacturing method of a radiation image conversion panel for manufacturing a radiation image conversion panel in which a radiation conversion layer for converting incident radiation into light is formed on a substrate, The mounting table and the hole for evaporating the vapor deposition source to the outside from the vapor deposition container in which the vapor deposition source serving as the radiation conversion layer is placed around the rotation axis along the direction intersecting the substrate.
  • the radiation conversion layer on the opposite side of the light exit surface that emits light, by rotating a difference in rotation speed so that the hole portion is relatively slower than the other, rotating the deposition source on the substrate, A reflection layer that reflects light toward the emission surface is formed.
  • the hole is rotated at the first rotational speed, and the deposition source is deposited on the substrate.
  • a spiral structure in which phosphor crystals are spirally stacked is formed as a reflective layer;
  • the columnar structure extending from the spiral structure to the light emitting surface side along the direction intersecting the substrate is spirally structured by rotating the deposition source on the substrate by rotating at a second rotational speed that is faster than the rotational speed of
  • the above-described radiation image conversion panel according to the present invention can be obtained with certainty.
  • the reflectance can be increased without forming a reflective layer made of a metal thin film or the like, and a higher reflectance can be achieved than when the reflective layer is formed of spherical crystal particles.
  • a radiation image conversion panel with high brightness and a method for manufacturing the same can be obtained.
  • the contrast when the luminance is increased by the reflection effect, the contrast (resolution) is lowered, but the contrast can be increased as compared with the case where a reflective layer such as a metal thin film is formed.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. It is sectional drawing of the direction orthogonal to the board
  • FIG. 2 is a cross-sectional view in the direction orthogonal to the substrate of the radiation image conversion panel when the rotational speed difference is changed. It is sectional drawing of the direction orthogonal to the board
  • FIG. 1 It is a perspective view which shows the principal part of another manufacturing apparatus used for manufacture of a radiation image conversion panel.
  • A is sectional drawing of the direction orthogonal to the board
  • (b) is the figure which expanded the principal part.
  • FIG. 1 is a perspective view of a radiation image conversion panel 10 according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the radiation image conversion panel 10 includes a substrate 1 and a radiation conversion layer 2 formed on the substrate 1, and has a configuration in which the substrate 1 and the radiation conversion layer 2 are covered with a protective layer 9.
  • the protective layer 9 is a protective film (an organic film such as polyparaxylylene, or an inorganic film) that covers at least the radiation conversion layer 2 in order to protect the radiation conversion layer 2 from moisture or the like.
  • the substrate 1 is a plate material made of amorphous carbon, aluminum or the like, and the surface 1a on the side where the radiation conversion layer 2 is formed is formed flat.
  • the radiation conversion layer 2 converts the radiation R incident from the outside of the substrate 1 into a light image corresponding to the radiation R, and the light L formed from the converted light image and a light image reflected by a reflection layer 3 described later is a light emitting surface 2a. The light is emitted from.
  • the radiation conversion layer 2 includes the reflective layer 3 and the columnar layer 4, but has a structure in which a large number of columnar crystals 7 that are needle-shaped crystals gather as shown in FIG.
  • the reflective layer 3 and the columnar layer 4 are formed.
  • the thickness of the radiation converting layer 2 is about 50 ⁇ m to about 1000 ⁇ m
  • the reflective layer 3 is about 1% to 10% of the thickness, and has a thickness of about 5 ⁇ m to about 50 ⁇ m.
  • the columnar crystal 7 is obtained by growing a crystal of a scintillator (CsI) or a stimulable phosphor (CsBr), and the base portion on the substrate 1 side becomes a spiral structure portion 5, which is above the spiral structure portion 5 (light The portion on the emission surface 2 a side) is a columnar portion 6.
  • the spiral structure portion 5 and the columnar portion 6 are integrally formed by continuously laminating crystals such as scintillators.
  • the columnar crystal 7 is formed in a taper shape in which the outer diameter of the columnar portion 6 is smaller than the outer diameter of the spiral structure portion 5 and becomes thicker toward the tip side (opposite side of the substrate 1).
  • the columnar part excluding the pointed part is formed in a tapered shape.
  • the height difference of the unevenness on the side surface of the columnar portion 6 is smaller than the height difference of the unevenness on the side surface of the spiral structure portion 5.
  • the side surface of the columnar portion 6 is substantially linear when viewed from the direction intersecting the central axis X.
  • the cross-sectional shape along the central axis X of the columnar portion excluding the tip of the columnar portion 6 has a substantially rectangular shape (the columnar portion is tapered, This cross-sectional shape is trapezoidal).
  • Such a columnar part 6 is manufactured, for example, when the method disclosed in Japanese Patent Application Laid-Open No. 2005-241430 (a method of depositing the columnar part raw material while rotating the substrate at 10 rpm) is performed.
  • the spiral structure portion 5 is formed by laminating crystals such as scintillators spirally from the surface 1a, and a portion of one turn around the central axis X (spiral loop) is almost regular in a direction perpendicular to the surface 1a. It has a helical structure that is formed automatically. In FIG. 3, the ranges indicated by 5A and 5B constitute one helical loop.
  • the dimension of the spiral loop in the direction orthogonal to the surface 1a (hereinafter also referred to as “spiral pitch”) is about 0.5 ⁇ m to about 15 ⁇ m, and there are a plurality of substantially similar spiral loops (for example, about 5 to about 15).
  • the spiral structure 5 is formed by stacking.
  • the spiral structure portion 5 has a crystal such as a scintillator repeatedly bent substantially regularly on the left and right with the central axis X interposed therebetween.
  • the bent portions 5a and 5b are connected to each other to have a bent structure.
  • the portion that protrudes most to the right in FIG. 3 is a folded portion 5c, and the connecting portion is a connecting portion 5d.
  • the columnar section 6 is formed as a straight section following the spiral structure section 5 and has a columnar structure formed by extending a crystal such as a scintillator almost straight along the direction intersecting the surface 1a. And the spiral structure part 5 and the columnar part 6 are integrally formed continuously by vapor deposition.
  • the radiation incident on the columnar crystal 7 is converted into light (scintillation light), and the light is guided through the columnar portion 6 to the tip side (substrate 1). From the opposite side).
  • the columnar crystal 7 is a stimulable phosphor crystal, radiation information corresponding to incident radiation is accumulated and recorded.
  • red laser light or the like is irradiated as excitation light, light corresponding to the accumulated information is recorded. Is guided through the columnar portion 6 and emitted from the tip side (the side opposite to the substrate 1).
  • the reflective layer 3 reflects the light guided to the reflective layer 3 side among the light guided through the columnar crystal 7 to increase the amount of light emitted from the tip side.
  • the columnar crystal 7 has a relationship with the columnar crystals 8 and 9 on both sides, and the insertion structure in which the other is inserted between the vertically separated portions on one side. have. That is, as shown in FIG. 4B, which is an enlarged view of FIG. 4A, for the adjacent columnar crystals 7 and 8, the V-shaped portions 5a and 5b on the right side of the connection portion 5d of the columnar crystal 7 It has a penetration structure in which the connecting portion 5d of the columnar crystal 8 enters a gap 5e formed therebetween.
  • the columnar crystal 8 side portion of the columnar crystal 7 in the spiral structure portion 5 and the columnar crystal 7 side portion of the columnar crystal 8 in the spiral structure portion 5 are perpendicular to the surface 1 a of the substrate 1.
  • the gap between the spiral structure portion 5 of the columnar crystal 7 and the spiral structure portion 5 of the columnar crystal 8 is wavy when viewed from a direction parallel to the surface 1a of the substrate 1 (side surface side of the substrate 1).
  • the reflection layer 3 is constituted by the spiral structure portion 5, and the columnar layer 4 is constituted by the columnar portion 6.
  • the reflection layer 3 has a function of reflecting the light L because the light L is scattered by irregularly reflecting the light L when the light L enters. Therefore, the radiation image conversion panel 10 exhibits good light reflection characteristics even if it does not have a light reflection film such as a metal film for increasing the reflectance, and can increase the amount of light emitted from the light exit surface 2a. Therefore, the sensitivity for detecting radiation can be increased.
  • the radiation image conversion panel 10 has no risk of corrosion due to the metal film because the metal film is not formed to increase the sensitivity of detecting the radiation.
  • the reflective layer 3 is constituted by the spiral structure portion 5 of the columnar crystal 7.
  • the columnar crystal 7 forms an intrusion structure in which adjacent ones in the spiral structure portion 5 enter, in the spiral structure portion 5, a space where no crystal such as a scintillator exists is extremely small. Can do. Therefore, since the density of crystals such as a scintillator in the reflective layer 3 is high, a high reflectance is exhibited.
  • the formation density (packing density) of the columnar portions 6 in the panel surface can be increased to increase the radiation conversion efficiency. Furthermore, also in the spiral structure part 5, the formation density in a panel surface can be made high and a reflectance can be improved. In order to increase the contrast, it is desirable that all the columnar crystals 7 are separated into one columnar crystal 7 including the spiral structure portion 5 in the panel surface.
  • FIG. 5 is a perspective view showing a main part of the manufacturing apparatus 50 used for manufacturing the radiation image conversion panel 10.
  • the manufacturing apparatus 50 includes a disk 51 for placing a substrate and a vapor deposition container 52.
  • the disc 51 and the vapor deposition container 52 are housed in a vacuum device (not shown).
  • the disc 51 has a mounting portion 50a on which the substrate 1 is placed in the center, and a plurality of holes 50b are formed around the mounting portion 50a for weight reduction.
  • the vapor deposition container 52 has an annular storage portion 52a, and a vapor deposition source such as a scintillator is stored in the storage portion 52a.
  • the storage portion 52a has a flat surface 52b on the disc 51 side closed, but a hole 52c is formed in a part thereof. The hole 52c is opened and closed by a shutter (not shown).
  • the disc 51 and the vapor deposition vessel 52 are rotated by receiving a driving force from a rotation driving device (not shown) so that their respective rotation axes coincide with the axis XX. Further, the vapor deposition container 52 is heated to evaporate the vapor deposition source stored in the storage portion 52a, and the shutter is opened, and the evaporated vapor deposition source is stacked on the substrate 1 to perform crystal growth, thereby converting radiation. Layer 2 is formed.
  • the rotational speed of the vapor deposition vessel 52 is made slower than the rotational speed of the disk 51 by making a difference in the rotational speed per unit time of both.
  • the number of rotations per unit time of the disk 51 that is, the number of rotations per unit time of the substrate 1
  • the number of rotations per unit time of the vapor deposition vessel 52 that is, per unit time of the hole 52c.
  • the difference in rotation number is defined as a difference in rotation number
  • the difference in rotation number is made smaller than a certain value (details will be described later, also referred to as critical rotation number difference)
  • the columnar crystals 7 of the radiation conversion layer 2 are obtained.
  • the spiral structure 5 described above appears. Therefore, crystal growth is performed in a state in which the rotational speed difference is smaller than a certain value for a certain period of time from the start of manufacture, thereby forming the above-described spiral structure portion 5.
  • the radiation image conversion panel 10 can be manufactured by increasing the rotational speed difference and forming the columnar portion 6.
  • the vapor deposition source overlaps or deviates from the portion on the substrate 1 where the vapor deposition source has already been deposited. It will be deposited over the position.
  • the rotational speed difference is made smaller than the critical rotational speed difference, it is considered that the deposition source tends to be stacked while gradually shifting the position so as to draw a circle from the portion where the deposition source has already been deposited. Therefore, it is considered that the crystal grows while the vapor deposition sources are spirally stacked, and the spiral structure portion 5 is formed.
  • FIG. 6 shows the rotation speed difference and reflection applied at the time of manufacturing the radiation image conversion panel 10 manufactured by crystal growth with several kinds of rotation speed differences using the manufacturing apparatus 50 described above. It is the figure which showed the relationship with a rate.
  • the rotational speed difference was made in six types: “0.4”, “0.5”, “1”, “3”, “12”, “25”.
  • the case where the rotational speed difference is “1” corresponds to, for example, the case where the disk 51 is rotated at a rotational speed of Y [rpm] and the vapor deposition vessel 52 is rotated at a rotational speed of Y ⁇ 1 [rpm].
  • Y is a positive value greater than 1. Note that the rotational speed difference is a positive value.
  • FIG. 6 also shows the helical pitch in each radiation image conversion panel 10.
  • the reflectance of the manufactured radiation image conversion panel 10 is higher when the difference in rotational speed is reduced to “1” than when the difference in rotational speed is set to “25”. ing.
  • the spiral pitch is 0.04 ⁇ m.
  • the rotational speed difference is “3”
  • the helical pitch is 0.67 ⁇ m
  • the rotational speed difference is “1”
  • the spiral pitch is 0.04 ⁇ m.
  • the pitch difference becomes 2 ⁇ m
  • the spiral pitch increases as the rotational speed difference is reduced.
  • the rotational speed difference is reduced to “1”
  • the above-described bent structure appears clearly in the cross section of the radiation conversion layer 2, so that it is considered that the reflective layer 3 is constituted by the spiral structure portion 5.
  • FIG. 7 is a graph showing the relationship between the spiral pitch and the reflectance for the four types of substrates.
  • the effect of improving the reflectance clearly appears for any substrate when the helical pitch is about 2 ⁇ m, that is, when the rotational speed difference is reduced to “1”.
  • the spiral pitch becomes 5 ⁇ m, but the reflectance in this case is almost the same as when the rotational speed difference is made “0.5”. Therefore, it is considered that the spiral pitch may be about 5 ⁇ m at most.
  • the critical rotational speed difference can be set to “3” in the present embodiment.
  • the ac (amorphous carbon) substrate shows a dark black color while changing the helical pitch (changing the rotational speed difference as described above).
  • the color of the substrate gradually decreases from black to dark gray, gray, and light gray as the helical pitch becomes longer (the difference in rotational speed becomes smaller). This indicates that the reflectance of the radiation conversion layer 2 increases as the helical pitch increases.
  • FIG. 8A shows the film thickness and light of the spiral structure portion 5 for two types of substrates, a substrate C (a substrate in which aluminum is formed as a reflective film on an aluminum substrate) and an ac (amorphous carbon) substrate. It is the graph which showed the relationship with an output.
  • FIG. 8B is a graph showing the relationship between the film thickness of the spiral structure portion 5 and the CTF (Contrast Transfer Function: image resolution) for two types of substrates, the substrate C and the ac substrate.
  • FIG. 8 shows that although a high CTF is shown if the thickness of the spiral structure portion 5 is about 50 ⁇ m, the CTF gradually decreases when the thickness of the spiral structure portion 5 is larger than about 50 ⁇ m. Is done. Therefore, the film thickness of the spiral structure portion 5 is preferably about 10 ⁇ m to 50 ⁇ m. (Configuration of another radiation image conversion panel)
  • FIG. 9 is a cross-sectional view in a direction orthogonal to the substrate of the radiation image conversion panel 20 on which the radiation conversion layer 12 is formed
  • FIG. 10 is two spiral structures 15 constituting the reflection layer 13 of the radiation conversion layer 12.
  • 9 is a cross-sectional view similar to FIG. 9, and
  • FIG. 11 is a cross-sectional view similar to FIG.
  • the radiation conversion layer 12 is different from the radiation conversion layer 2 in that it has a reflection layer 13.
  • the reflective layer 13 is different from the reflective layer 3 in that the base portion 1 side portion of the columnar crystal 7 is a spiral structure portion 15.
  • the spiral structure portion 15 has a plurality of flat spherical portions 15a, and each flat spherical portion 15a is inclined with respect to the central axis X (a flat plane N described later is inclined with respect to the central axis X). ).
  • Each flat spherical portion 15a has a structure in which a spherical body is shrunk in a specific direction (for example, up and down direction) and a side surface portion is projected, and a surface passing through the most projected portion is a flat plane N. ing.
  • the flat spherical portion 15a is not limited to a spherical body contracted in a specific direction, and is a portion corresponding to each spiral loop when the above-described spiral loops are in contact with each other (when they are in contact in the vertical direction). May be. Further, the flat spherical portion 15 a connected to the columnar portion 6 (that is, the uppermost portion of the flat spherical portion 15 a) does not become larger than the column diameter of the columnar portion 6. Thus, scintillation light generated in the vicinity of the flat spherical portion 15a of the column diameter portion 6 can be efficiently reflected in the distal direction without being attenuated.
  • the radiation conversion layer 12 is obtained by overlapping an ellipse composed of a crystal such as a scintillator in a state inclined with respect to the central axis X in a cross section perpendicular to the substrate 1 a. It has a continuous elliptical structure.
  • the spiral structure portion 15 and the columnar portion 6 are integrally formed by continuously laminating crystals such as scintillators.
  • the columnar crystal 7 has a relationship with the adjacent columnar crystal 8, and a portion of the other flat spherical portion 15a enters between the flat spherical portions 15a on one side. It has a structure. Due to this penetration structure, the columnar crystal 8 side portion of the columnar crystal 7 on the spiral structure portion 15 and the columnar crystal 7 side portion of the columnar crystal 8 on the columnar crystal 7 side are perpendicular to the surface 1 a of the substrate 1. Are overlapping. The gap between the spiral structure portion 15 of the columnar crystal 7 and the spiral structure portion 15 of the columnar crystal 8 is wavy when viewed from a direction parallel to the surface 1a of the substrate 1 (side surface side of the substrate 1).
  • the reflective layer 3 is constituted by the spiral structure portion 15.
  • the spiral structure portion 15 has an insertion structure, the spiral structure portion 15 has a crystal such as a scintillator. The space where there is no can be made small. Therefore, since the density of crystals such as a scintillator in the reflective layer 13 is high, a high reflectance is exhibited.
  • the radiation image conversion panel 20 is obtained when the rotational speed difference is set to about “3” in the manufacturing apparatus 50 described above. Even if the rotational speed difference is about “3”, the vapor deposition source is stacked while gradually shifting the position from the portion where the vapor deposition source is already vapor deposited. In this case, the rotational speed difference is set to about “1”. The tendency of vapor deposition to overlap the same portion becomes more significant than in the case, and thus the crystal grows in a state where the vertical interval of the spiral loop is narrowed and collapsed. Therefore, it is considered that the spiral structure portion 15 is formed.
  • both of the radiation image conversion panels 10 and 20 can be manufactured by using the manufacturing apparatus 54 shown in FIG.
  • the manufacturing apparatus 54 is different from the manufacturing apparatus 50 in that it has a plurality of vapor deposition containers 53 instead of the vapor deposition containers 52.
  • the vapor deposition container 53 is a cylindrical container in which a vapor deposition source is housed.
  • a hole 53c is formed in a part of the vapor deposition container 53 and can be opened and closed by a shutter (not shown).
  • the disc 51 and the vapor deposition vessel 52 are rotated so that their respective rotation axes coincide with the axis XX.
  • the plurality of vapor deposition containers 53 are arranged on one plane intersecting the axis XX, and circulate around the axis XX on the plane.
  • each vapor deposition container 53 is heated to evaporate the stored vapor deposition source, and the crystal is grown by opening the shutter and laminating the evaporated vapor deposition source on the substrate 1, Radiation conversion layers 2 and 12 are formed.
  • the number of revolutions per unit time of the disk 51 that is, the number of revolutions per unit time of the substrate 1
  • the number of revolutions of the vapor deposition vessel 53 per unit time that is, the unit of the hole 53c.
  • the radiation conversion layers 2 and 12 can be formed.
  • the radiation conversion layers 2 and 12 may be prepared by rotating only the substrate 1 and slowing down the rotation speed when forming the reflective layer 3 (spiral structure portion 5) and increasing the rotation speed when forming the columnar layer 4 (columnar portion 6). Can be formed. In these cases, the rotational speed difference shown in FIG. 6 becomes the rotational speed of the substrate 1 or the holes 52c and 53c of the vapor deposition containers 52 and 53 as they are, and in each case, the reflective layer 3 (spiral structure) having the pitch shown in FIG. It is possible to form part 5).
  • the reflectance can be increased without forming a reflective layer made of a metal thin film, etc., and the reflectance is higher than when the reflective layer is formed of spherical crystal particles, and the luminance is high.
  • a radiation image conversion panel and a manufacturing method thereof are obtained.
  • the contrast when the luminance is increased by the reflection effect, the contrast (resolution) is lowered, but the contrast can be increased as compared with the case where a reflective layer such as a metal thin film is formed.

Abstract

 放射線像変換パネル10は、入射した放射線を光に変換する放射線変換層2が基板1上に形成されている。放射線変換層2は、光を出射する光出射面2aの反対側に光を出射面2a側に反射させる反射層3を有し、反射層3は、蛍光体の結晶が螺旋状に積層した螺旋構造を有している。このような、放射線像変換パネル10によれば、金属薄膜等からなる反射層を形成することなく反射率を高められ、しかも球状の結晶粒子によって反射層が形成されている場合よりも高い反射率を発揮できる。

Description

放射線像変換パネルおよびその製造方法
 本発明は複数の柱状結晶(針状結晶)からなる放射線変換層を備えた放射線像変換パネルおよびその製造方法に関する。
 従来、複数の柱状結晶(針状結晶)からなる放射線変換層を備えた放射線像変換パネルが知られている。この種の放射線像変換パネルは、例えばアモルファスカーボンからなる基材の上に蛍光体の結晶を柱状に成長させた蛍光体層を設けて構成されている。ところが、アモルファスカーボン等の基材の反射率が低く、そのままでは光の利用効率を高めることが困難であったため、従来、アルミニウム等金属薄膜からなる反射層を形成した放射線像変換パネルが知られている(例えば、特許文献1,2参照)。一方、柱状結晶の側面について、そのうねりの幅を一定範囲内に納めて柱状結晶の直線性を高めることにより、放射線画像の画質を高めた放射線像変換パネルも知られていた(例えば、特許文献3参照)。さらに、反射層を形成することなく反射率を高めた放射線像変換パネルも知られていた(例えば、特許文献4参照)。
特開2002-236181号公報 特開2003-75542号公報 特開2005-164380号公報 特許3987469号公報
 前述した特許文献4記載の放射線像変換パネルは、柱状結晶の構造を工夫することによって、反射率を高めている。
 しかし、特許文献4記載の放射線像変換パネルでは、球状の結晶粒子を複数垂直方向に数珠状に積層した下層とその上に形成した柱状の結晶層とによって、一つ一つの柱状結晶が形成されているため、次のような課題があった。ここで、例えば図13(a)に示すように、複数の柱状結晶100,101,102があったとする。柱状結晶100,101,102はそれぞれ球状の結晶粒子100a,100b,100c,101a,101b,101c,102a,102b,102cを有し、それらが数珠状に重なって下層を構成し、その下層の上にそれぞれ柱状の結晶部100d、101d、102dが積層されている。この場合、柱状結晶100,101,102の互いに隣り合うもの同士を見ると、結晶粒子同士が接触している。
 そして、各結晶粒子はその表面が球面のように湾曲した曲面状になっているため、例えば、図13(b)に示すように結晶粒子100a,100b,100cはそれぞれ隣の結晶粒子101a,101b,101cと、最も張り出した部分からある程度の範囲が接触して接触部分cを形成する。ところが、その接触部分cから離れた箇所に非接触部分が現われてしまうため、隣接する柱状結晶100,101の間に隙間vが形成される事態を回避することができなかった。
 したがって、特許文献4記載の放射線像変換パネルでは、球状の結晶粒子が存在している下層における蛍光体の密度が低く、この下層が光反射特性を備えた反射層として機能することから、反射率を高めることができなかった。しかも、接触部分cが形成されると、放射線像のコントラスト(解像度)が低下してしまう。なお、接触部分cが形成されないと、コントラストの低下は軽減されるが、反射層における蛍光体の密度が低くなり過ぎて、却って反射効果が低下してしまう。
 また、放射線像のコントラストを低下させずに輝度を上げるためには、1つの球状結晶粒子とその上側の柱状結晶とが連続するように形成されていることが必要である。その理由は、連続するように形成されていないと、球状結晶で反射した光がその上側以外の柱状結晶(すなわち、近接する柱状結晶)に入射してしまい、パネル全体の輝度が上がっても、コントラストが低下してしまうからである。ところが、連続するように形成されていても、球状の結晶粒子の存在によって、その上側の柱状結晶(100d,101d,102d)同士の間隔が大きくなり、パネル面内の柱状結晶の形成密度(packing  density)が小さくなって放射線変換効率が悪くなってしまう。逆に、球状結晶粒子を小さくすれば、柱状結晶(100d,101d,102d)同士の間隔は小さくなるが、反射効果が低下してしまい、さらに、球状結晶部分の機械的強度が低下してしまう。また、前述したように、隙間vは依然として存在するので、この隙間vによって反射率を高めることができない。
 そこで、本発明は上記課題を解決するためになされたもので、金属薄膜等からなる反射層を形成することなく反射率を高められ、しかも球状の結晶粒子によって反射層が形成されている場合よりも高い反射率を発揮できる放射線像変換パネルおよびその製造方法を提供することを目的とする。
 上記課題を解決するため、本発明に係る放射線像変換パネルは、入射した放射線を光に変換する放射線変換層を基板上に形成した放射線像変換パネルであって、放射線変換層は、光を出射する光出射面の反対側に光を出射面側に反射させる反射層を有し、反射層は、蛍光体の結晶が螺旋状に積層した螺旋構造を有することを特徴とする。
 この放射線像変換パネルによれば、蛍光体の結晶が螺旋状に積層した螺旋構造を反射層が有しているので、反射層における結晶密度を高くすることができる。従って、金属薄膜等からなる反射層を形成することなく反射率を高めることができ、しかも球状の結晶粒子によって反射層が形成されている場合よりも高い反射率を発揮させることができる。
 また、放射線変換層は、蛍光体の結晶が柱状に積層した複数の柱状結晶によって構成され、柱状結晶のそれぞれは、基板に固定される根本側に形成された螺旋構造、及び基板と交差する方向に沿って螺旋構造から光出射面側に延在する柱状構造を有し、螺旋構造と柱状構造とは、蛍光体の結晶が連続して積層することにより構成されていることが好ましい。この構成によれば、螺旋構造で反射した光が、その螺旋構造に連続して積層された柱状構造に入射するため、放射線像のコントラストを低下させずに輝度を上げることができる。
 また、放射線変換層は、蛍光体の結晶が柱状に積層した複数の柱状結晶によって構成され、該複数の柱状結晶の基板に固定される根本側に螺旋構造が形成され、複数の柱状結晶のうちの互いに隣接する第1、第2の柱状結晶の螺旋構造を形成する螺旋構造部において、第1の柱状結晶の上下に離れた間隙に第2の柱状結晶が入り込んだ入込構造を有することが好ましい。この構成によれば、十分な反射効果及び機械的強度を発揮し得る螺旋構造の結晶密度及び大きさを維持しつつ、柱状結晶同士の間隔を小さくすることができるので、放射線変換効率を低下させずに輝度を上げることができる。
 このとき、第1の柱状結晶の螺旋構造部における第2の柱状結晶側の部分と、第2の柱状結晶の螺旋構造部における第1の柱状結晶側の部分とは、基板と交差する方向から見て重なり合っており、第1の柱状結晶の螺旋構造部と第2の柱状結晶の螺旋構造部との間隙は、基板と交差する方向と直交する方向から見て波線状となっていることがより好ましい。この構成によれば、十分な反射効果及び機械的強度を発揮し得る螺旋構造の結晶密度及び大きさを確実に維持すると共に、柱状結晶同士の間隔をより小さくすることができる。
 また、放射線変換層においては、螺旋構造を形成する螺旋ループが基板と交差する方向に複数積層されていることが好ましく、或いは、放射線変換層においては、螺旋構造を形成する扁平球状部が基板と直交する方向に対して斜めになって複数積層されていることが好ましい。これらの構成によれば、螺旋構造部における反射機能が確実なものとなるため、反射層における反射率を高めることができる。更に、扁平球状部のうち柱状構造と接続する扁平球状部は、柱状構造の柱径より大きくならないことが好ましい(つまり、基板と交差する方向と直交する方向において、扁平球状部のうち柱状構造と接続する扁平球状部の幅は、柱状構造の幅よりも小さいことが好ましい)。これにより、柱径構造の扁平球状部付近で発生したシンチレーション光を減衰させずに効率良く先端方向に反射させることができる。
 そして、放射線変換層において螺旋ループが複数積層されている場合、反射層は、基板の表面と交差する方向の断面において、蛍光体の結晶が左右に屈曲していることが好ましく、放射線変換層は、螺旋ループが基板と交差する方向に約0.67μm~5μm程度の間隔を有することがより好ましい。螺旋ループがこの程度の間隔を有するときは、基板の表面と交差する方向の断面において、蛍光体の結晶が左右に屈曲しているようすが明確に現われる。
 また、放射線変換層が、CsIを含むシンチレータによって構成されている場合や、CsBrを含む輝尽性蛍光体によって構成されている場合がある。
 また、例えばCFRP等の炭素繊維を含む材料からなる基板は、アモルファスカーボンや金属、ガラス等からなる基板に比べて、基板の面方向で不均一な構造を有している。そのため、炭素繊維を含む材料からなる基板においては、発光した光の基板吸収率に差が生じて、パネルから出力される光像に影響が出てしまう。また、炭素繊維を含む材料からなる基板は、放射線の透過特性が面方向で不均一な構造を有している。そのため、特に放射線強度の低い状態(低エネルギー)で放射線画像を撮影しようとした場合、面方向で透過特性が異なると、放射線変換層に届く放射線の比率が面方向で不均一なものとなり、結果的に、得られる画像に影響が出てしまう。基板と放射線変換層との間に、放射線変換層で発光した光を反射させる反射膜を形成して、全体の輝度を上げ、このような影響を減少させることができるが、そうすると、コントラストが低下してしまう。それに対し、本発明に係る放射線像変換パネルの構成を用いれば、炭素繊維を含む材料からなる不均一な基板でも、良好な輝度とコントラストを得ることができる。
 本発明に係る放射線像変換パネルの製造方法は、入射した放射線を光に変換する放射線変換層を基板上に形成した放射線像変換パネルを製造する放射線像変換パネルの製造方法であって、基板が載置された載置台と、放射線変換層となる蒸着源が納められた蒸着容器から蒸着源を外部に蒸発させるための孔部とを、基板と交差する方向に沿った回転軸回りに、基板よりも孔部が相対的に遅くなるように回転数差を設けて回転させて、蒸着源を基板上に蒸着させることにより、放射線変換層において、光を出射する光出射面の反対側に、光を出射面側に反射させる反射層を形成することを特徴とする。
 そして、蛍光体の結晶が連続して柱状に積層した複数の柱状結晶によって放射線変換層を構成する場合には、孔部を第1の回転数で回転させて、蒸着源を基板上に蒸着させることにより、蛍光体の結晶が螺旋状に積層した螺旋構造を反射層として形成する工程と、孔部を第1の回転数より遅い第2の回転数で回転させて、蒸着源を基板上に蒸着させることにより、基板と交差する方向に沿って螺旋構造から光出射面側に延在する柱状構造を螺旋構造と一体的に形成する工程と、を含むことが好ましい。或いは、基板を第1の回転数で回転させて、蒸着源を基板上に蒸着させることにより、蛍光体の結晶が螺旋状に積層した螺旋構造を反射層として形成する工程と、基板を第1の回転数より早い第2の回転数で回転させて、蒸着源を基板上に蒸着させることにより、基板と交差する方向に沿って螺旋構造から光出射面側に延在する柱状構造を螺旋構造と一体的に形成する工程と、を含むことを特徴とする請求項12記載の放射線像変換パネルの製造方法。
 このような放射線像変換パネルの製造方法によれば、上述した本発明に係る放射線像変換パネルを確実に得ることができる。
 以上のように本発明によれば、金属薄膜等からなる反射層を形成することなく反射率を高められ、しかも球状の結晶粒子によって反射層が形成されている場合よりも高い反射率を発揮し、輝度の高い放射線像変換パネルおよびその製造方法が得られる。また、一般的に反射効果により輝度を上げるとコントラスト(解像度)が低下するが、金属薄膜等の反射層を形成する場合に比べてコントラストを高くすることができる。
本発明の実施形態に係る放射線像変換パネルの斜視図である。 図1のII-II線に沿っての断面図である。 放射線変換層を構成する柱状結晶の基板に直交する方向の断面図である。 図3の柱状結晶のうちの螺旋構造部を示す基板に直交する方向の断面図である。 放射線像変換パネルの製造に用いる製造装置の要部を示す斜視図である。 複数種類の基板について、数通りの回転数差で結晶成長を行い製造した放射線像変換パネルについて、製造時に適用した回転数差と反射率との関係を示した図である。 4種類の基板について、螺旋ピッチと反射率との関係をグラフである。 2種類の基板について、螺旋構造部の膜厚と光出力との関係、及び螺旋構造部の膜厚とCTFとの関係を示すグラフである。 図2の場合とは回転数差を変えた場合の放射線像変換パネルの基板に直交する方向の断面図である。 図9の放射線像変換パネルにおける放射線変換層を構成する柱状結晶の基板に直交する方向の断面図である。 同じく、螺旋構造部を示す基板に直交する方向の断面図である。 放射線像変換パネルの製造に用いる別の製造装置の要部を示す斜視図である。 (a)は従来の放射線像変換パネルの放射線変換層を構成する柱状結晶の基板に直交する方向の断面図、(b)は要部を拡大した図である。
 以下、添付図面を参照して本発明の実施形態について説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明は省略する。
(放射線像変換パネルの構成)
 図1は、本発明の実施形態に係る放射線像変換パネル10の斜視図であり、図2は図1のII-II線に沿っての断面図である。放射線像変換パネル10は、基板1と基板1上に形成された放射線変換層2とを有し、基板1及び放射線変換層2を保護層9によって被覆した構成を有している。保護層9は、放射線変換層2を湿気等から保護するたに少なくとも放射線変換層2を被覆する保護膜(ポリパラキシリレン等の有機膜、または無機膜)である。
 基板1はアモルファスカーボンやアルミニウム等からなる板材であって、放射線変換層2の形成されている側の表面1aが平坦に形成されている。放射線変換層2は基板1の外側から入射する放射線Rをそれに応じた光像に変換し、その変換した光像および後述する反射層3によって反射された光像からなる光Lを光出射面2aから出射させる。放射線変換層2は反射層3と柱状層4とを有しているが、図3に示すような針状結晶である柱状結晶7が多数寄り集まった構造を有し、多数の柱状結晶7によって反射層3と柱状層4とを形成している。放射線変換層2の厚さは約50μm~約1000μm程度、反射層3はそのうちの約1%~10%程度を占める厚さで、約5μm~約50μm程度の厚さを有している。
 柱状結晶7はシンチレータ(CsI)または輝尽性蛍光体(CsBr)の結晶を成長させて得たもので、基板1側の根本部分が螺旋構造部5となり、螺旋構造部5よりも上側(光出射面2a側)の部分が柱状部6となっている。各柱状結晶7において、螺旋構造部5と柱状部6とは、シンチレータ等の結晶が連続して積層することにより一体的に形成されている。なお、柱状結晶7は、螺旋構造部5の外径よりも柱状部6の外径が小さく、先端側(基板1と反対側)に行くほど太くなるテーパー状に形成されている。そして、最先端部は尖頭状になっているので、尖頭部分を除いた柱状部がテーパー状に形成される。柱状部6の側面の凹凸の高低差は、螺旋構造部5の側面の凹凸の高低差に比べて小さい。換言すれば、柱状部6の側面は、中心軸Xに交差する方向から見て、略直線状となっている。さらに換言すれば、柱状部6における最先端の尖頭部分を除いた柱状部の、中心軸Xに沿った断面形状は、略長方形状を呈している(柱状部がテーパー状であるので、厳密にはこの断面形状は台形状を呈している)。このような柱状部6は、例えば特開2005-241430号公報に開示された方法(基板を10rpmで回転させつつ柱状部の原料を蒸着させる方法)を実施した際に製造される。
 螺旋構造部5は、シンチレータ等の結晶が表面1aから螺旋状に積層されて構成されたもので、中心軸Xの回り1周分の部分(螺旋ループ)が表面1aと直交する方向にほぼ規則的に形成された螺旋構造を有している。図3では、5A,5Bで示された範囲が1つ1つの螺旋ループを構成している。表面1aと直交する方向の螺旋ループの寸法(以下「螺旋ピッチ」ともいう)は、約0.5μm~約15μm程度であり、ほぼ同様の螺旋ループが複数(例えば5個~約15個程度)積み重なって螺旋構造部5を構成している。
 また、螺旋構造部5は、図3に示したような基板1aに直交する方向の断面において、シンチレータ等の結晶が中心軸Xを挟んで左右に繰り返しほぼ規則的に屈曲し、複数のV字状部分5a,5bがつながって得られる屈曲構造を有している。各V字状部分5a,5bは、図3において右側に最も突出する部分が折返部5cとなり、それぞれのつながる部分が接続部5dとなっている。
 柱状部6はストレート部として螺旋構造部5に続いて形成され、シンチレータ等の結晶が表面1aに交差する方向に沿ってほぼ真っ直ぐに伸びて形成された柱状構造を有している。そして、螺旋構造部5と柱状部6とは、蒸着により連続して一体形成されている。
 なお、柱状結晶7がシンチレータの結晶である場合には、柱状結晶7に入射した放射線は、光(シンチレーション光)に変換され、その光は、柱状部6を導光されて先端側(基板1と反対側)から放出される。また、柱状結晶7が輝尽性蛍光体の結晶である場合には、入射放射線に応じた放射線情報が蓄積記録され、励起光として赤色レーザ光等が照射されると、蓄積情報に応じた光が柱状部6を導光されて先端側(基板1と反対側)から放出される。反射層3は、柱状結晶7を導光される光の内、反射層3側に導光される光を反射して、先端側から放出する光量を増加させる。
 そして、柱状結晶7は、図4(a)に示すように、両隣の柱状結晶8,9との関係をおいて、一方における上下に離れた部分の間に、もう一方が入り込んだ入込構造を有している。すなわち、図4(a)を拡大した図4(b)に示すように、隣接している柱状結晶7,8について、柱状結晶7の接続部5dの右側の、V字状部分5a,5bの間に形成される間隙5eに、柱状結晶8の接続部5dが入り込んだ入込構造を有している。
 この入込構造により、柱状結晶7の螺旋構造部5における柱状結晶8側の部分と、柱状結晶8の螺旋構造部5における柱状結晶7側の部分とが、基板1の表面1aと垂直な方向から見て重なり合っている。より具体的には、柱状結晶7の折返部5cと柱状結晶8の接続部5dとが上側から見て重なり合っている。そして、柱状結晶7の螺旋構造部5と柱状結晶8の螺旋構造部5との間隙は、基板1の表面1aと平行な方向(基板1の側面側)から見て波線状となっている。
 以上のような構造を有する柱状結晶7のうち、螺旋構造部5によって反射層3が構成され、柱状部6によって柱状層4が構成されている。反射層3は、光Lが入射したときにその光Lを不規則に反射させることによって散乱させるため、光Lの反射機能を有している。そのため、放射線像変換パネル10は、反射率を高めるための金属膜等の光反射膜を有していなくも良好な光反射特性を発揮し、光出射面2aからの発光量を増加させることができるから、放射線を検出する感度を高くすることができる。そして、放射線像変換パネル10は、放射線を検出する感度を高めるのに金属膜を形成していないから、金属膜に起因した腐食のおそれがないものとなっている。
 しかも、放射線像変換パネル10の場合、反射層3が柱状結晶7のうちの螺旋構造部5によって構成されている。前述したとおり、柱状結晶7は螺旋構造部5において隣接しているもの同士が入り込む入込構造を形成しているから、螺旋構造部5では、シンチレータ等の結晶の存在しない空間を極めて小さくすることができる。そのため、反射層3におけるシンチレータ等の結晶の密度が高くなっているため、高い反射率を発揮するようになっている。
 そして、上述したように、多少の間隙が形成される入込構造を螺旋構造部5に適用することで、螺旋構造部5が接触した場合に螺旋構造部5で反射した光が隣接する柱状結晶7に導光されてコントラストが低下するのを防止することができる。また、螺旋構造部5に多少の間隙が形成されても、パネル面内の柱状部6の形成密度(packing  density)を高くして放射線の変換効率を高くすることができる。さらに、螺旋構造部5においてもパネル面内の形成密度を高くして反射率を向上させることができる。なお、コントラストを高めるためには、パネル面内において全ての柱状結晶7が螺旋構造部5を含めて1本1本の柱状結晶7に分離されていることが望ましい。柱状結晶7は蒸着により形成されるので、全ての柱状結晶7を完璧に分離することは困難であるが、凡そ分離されるように形成すれば、良好な放射線像変換パネル10が得られる。
(放射線像変換パネルの製造方法)
 放射線像変換パネル10の製造方法について説明する。前述した放射線像変換パネル10は例えば次のようにして製造することができる。ここで、図5は放射線像変換パネル10の製造に用いる製造装置50の要部を示す斜視図である。製造装置50は基板載置用の円板51と、蒸着容器52とを有している。円板51と、蒸着容器52とは図示しない真空装置に納められている。
 円板51は、基板1を乗せる載置部50aを中央に有し、その周囲に複数の孔部50bが軽量化のために形成されている。蒸着容器52は、円環状の収納部52aを有し、収納部52aの中にシンチレータ等の蒸着源が納められている。収納部52aは、円板51側の平面52bは閉鎖されているが、その一部に孔部52cが形成されている。孔部52cは、シャッタ(図示せず)により開閉するようになっている。
 そして、円板51と、蒸着容器52とは図示しない回転駆動装置からの駆動力を受けてそれぞれの回転軸を軸XXに一致させるようにして回転する。また、蒸着容器52を加熱して収納部52aに納められた蒸着源を蒸発させるとともに、シャッタを開放して、蒸発させた蒸着源を基板1上に積層させることによって結晶成長を行い、放射線変換層2を形成する。
 その際、双方の単位時間あたりの回転数に差を持たせて円板51の回転速度よりも蒸着容器52の回転速度を遅くする。
 製造装置50において、円板51の単位時間あたりの回転数(すなわち、基板1の単位時間あたりの回転数)と、蒸着容器52の単位時間あたりの回転数(すなわち、孔部52cの単位時間あたりの回転数)との差を回転数差としたときに、その回転数差をある値(詳しくは後述するが、臨界回転数差ともいう)よりも小さくすると、放射線変換層2の柱状結晶7に前述した螺旋構造部5が現われる。そのため、製造開始からある程度の時間の間は回転数差をある値よりも小さくした状態で結晶成長を行い、それによって前述した螺旋構造部5を形成する。その後、回転数差を高くして柱状部6を形成することによって放射線像変換パネル10を製造することができる。
 円板51と、蒸着容器52とを以上のようにして回転させながら結晶成長を行う場合、蒸着源は、基板1上のすでに蒸着源が蒸着している部分に重なるか、またはそこからずれた位置に重なって蒸着していく。ところが、回転数差を臨界回転数差よりも小さくした場合、蒸着源は、すでに蒸着源が蒸着している部分から円を描くように少しずつ位置をずらしながら積層される傾向が顕著になると考えられ、そのため、蒸着源が螺旋状に積み重なりながら結晶が成長して螺旋構造部5が形成されるものと考えられる。
 ここで、図6は、複数種類の基板について、上述の製造装置50を用いて数通りの回転数差で結晶成長を行い製造した放射線像変換パネル10について、製造時に適用した回転数差と反射率との関係を示した図である。本実施の形態では、a-c(アモルファスカーボン)基板、ガラス基板、基板A(アルミニウム基板に反射膜としてアルミニウムを形成した基板)、基板B(アルミニウム基板に反射膜としてアルミニウムを形成した基板であって基板Aよりも反射率の高い基板)という4種類の基板を用意し、そのそれぞれについて、同じ蒸着源を用いて回転数差を変えながら結晶成長を行った。回転数差は、“0.4”,“0.5”、“1”、“3”、“12”、“25”の6種類で行った。回転数差が“1”の場合とは、例えば円板51をY[rpm]の回転速度で回転させ、かつ蒸着容器52をY-1[rpm]の回転速度で回転させた場合に相当する(この場合、Yは1よりも大きい正の値である。なお、回転数差は正の値である。)。
 図6には、それぞれの放射線像変換パネル10における螺旋ピッチも記載されている。図6から明らかなとおり、4種類いずれの基板についても、回転数差を“25”にした場合よりも“1”まで小さくした場合のほうが製造された放射線像変換パネル10の反射率が高くなっている。また、回転数差が“25”の場合、螺旋ピッチは0.04μmであるが、回転数差を“3”にすると螺旋ピッチは0.67μmになり、回転数差を“1”にすると螺旋ピッチは2μmになるように、回転数差を小さくするにしたがい螺旋ピッチは大きくなっていく。これらのうち、回転数差を“1”まで小さくした場合、放射線変換層2の断面に前述した屈曲構造が明確に現われるため、反射層3が螺旋構造部5によって構成されていると考えられる。
 また、図7は、4種類の基板についての螺旋ピッチと反射率との関係をグラフで示したものである。図7から明らかなとおり、どの基板についても、螺旋ピッチが2μm程度になれば、すなわち、回転数差が“1”まで小さくなれば反射率向上の効果が明確に現われる。しかしながら、回転数差を“1”よりも小さく“0.4”にすると、螺旋ピッチは5μmになるが、この場合の反射率は回転数差を“0.5”にした場合とほぼ同等であるから、螺旋ピッチは大きくても5μm程度でよいものと考えられる。
 特に、a-c(アモルファスカーボン)基板は、螺旋ピッチが1μmより小さい0.67でも、すなわち、回転数差が“3”でも、反射率向上の効果が明確に現われる。これらのことから、本実施の形態において臨界回転数差は“3”とすることができる。
 a-c(アモルファスカーボン)基板は、放射線変換層2を形成する前の状態において、基板の色が濃い黒色を示しているところ、前述のように螺旋ピッチを変えながら(回転数差を変えながら)放射線変換層2を形成すると、螺旋ピッチが長くなる(回転数差が小さくなる)にしたがい、基板の色が黒から濃い灰色、灰色、薄い灰色といったように順次薄くなっていく。このことは、螺旋ピッチが長くなるにしたがい、放射線変換層2の反射率が高くなっていくことを示している。
 そして、図8(a)は、基板C(アルミニウム基板に反射膜としてアルミニウムを形成した基板)、及びa-c(アモルファスカーボン)基板の2種類の基板について、螺旋構造部5の膜厚と光出力との関係を示したグラフである。図8(b)は、基板C及びa-c基板の2種類の基板について、螺旋構造部5の膜厚とCTF(Contrast Transfer Function:画像分解能)との関係を示したグラフである。図8から、螺旋構造部5の膜厚が50μm程度であれば高いCTFが示されるものの、螺旋構造部5の膜厚が50μm程度よりも大きくなると、CTFが徐々に低下していくことが理解される。したがって、螺旋構造部5の膜厚は10μm~50μm程度とすることが好ましい。
(別の放射線像変換パネルの構成)
 一方、回転数差が“3”になった場合、基板1上には放射線変換層2と異なる放射線変換層12が形成される。ここで、図9は放射線変換層12が形成されている放射線像変換パネル20の基板に直交する方向の断面図、図10は放射線変換層12の反射層13を構成する2つの螺旋構造部15を示す図9と同様の断面図、図11は螺旋構造部15を示す図9と同様の断面図である。
 放射線変換層12は、放射線変換層2と比較して反射層13を有する点で相違している。反射層13は、反射層3と比較して柱状結晶7の基板1側根本部分が螺旋構造部15になっている点で相違している。螺旋構造部15は、複数の扁平球状部15aを有し、各扁平球状部15aが中心軸Xに対して斜めになった状態(後述する扁平面Nが中心軸Xに対して傾斜している)で積み重なった構造を有している。各扁平球状部15aは、球状体を特定の方向(例えば上下方向)に縮めて側面部分を張り出させたような構造を有していて、最も張り出した部分を通る面が扁平面Nとなっている。なお、扁平球状部15aは、球状体を特定の方向に縮めたものに限定されず、上述した螺旋ループが互いに接触した場合(上下方向で接触した場合)において各螺旋ループに相当する部分であってもよい。また、柱状部6と接続する扁平球状部15a(すなわち、扁平球状部15aの最上部)は、柱状部6の柱径より大きくならない。このことにより、柱径部6の扁平球状部15a付近で発生したシンチレーション光を減衰させずに効率良く先端方向に反射させることができる。
 また、放射線変換層12は、図11に詳しく示すように、基板1aに直交する方向の断面において、シンチレータ等の結晶によって構成される楕円が中心軸Xに対して傾斜した状態で重なって得られる連続楕円構造を有している。各柱状結晶7において、螺旋構造部15と柱状部6とは、シンチレータ等の結晶が連続して積層することにより一体的に形成されている。
 柱状結晶7は、図10に示したように、隣接する柱状結晶8との関係をおいて、一方における扁平球状部15a同士の間に、もう一方の扁平球状部15aの一部分が入り込んだ入込構造を有している。この入込構造により、柱状結晶7の螺旋構造部15における柱状結晶8側の部分と、柱状結晶8の螺旋構造部15における柱状結晶7側の部分とが、基板1の表面1aと垂直な方向から見て重なり合っている。そして、柱状結晶7の螺旋構造部15と柱状結晶8の螺旋構造部15との間隙は、基板1の表面1aと平行な方向(基板1の側面側)から見て波線状となっている。
 このような放射線像変換パネル20も、反射層3が螺旋構造部15によって構成されているが、螺旋構造部15が入込構造を有しているから、螺旋構造部15では、シンチレータ等の結晶の存在しない空間を小さくすることができる。そのため、反射層13におけるシンチレータ等の結晶の密度が高くなっているため、高い反射率を発揮するようになっている。
 放射線像変換パネル20は、前述した製造装置50において、回転数差を“3”程度にした場合に得られる。回転数差を“3”程度にしても、蒸着源は、すでに蒸着源が蒸着している部分から少しずつ位置をずらしながら積層されるが、この場合、回転数差を“1”程度にした場合よりも同じ部分に重なって蒸着される傾向が顕著になり、したがって、螺旋ループの上下方向間隔が狭まりつぶれた状態で結晶が成長する。そのため、螺旋構造部15が形成されるものと考えられる。
 そして、放射線像変換パネル10,20のいずれも、製造装置50の代わりに図12に示した製造装置54を用いて製造することができる。製造装置54は、製造装置50と比較して蒸着容器52の代わりに複数の蒸着容器53を有する点で相違している。蒸着容器53は円筒状の容器であって、中に蒸着源が納められており、その一部に孔部53cが形成され、図示しないシャッタ(図示せず)で開閉自在となっている。
 製造装置50の場合は円板51と、蒸着容器52とはそれぞれの回転軸を軸XXに一致させるようにして回転するようになっている。製造装置54では、複数の蒸着容器53が軸XXに交差するひとつの平面上に配置されていて、その平面上を軸XXの周りに周回するようになっている。この製造装置54では、各蒸着容器53を加熱して納められている蒸着源を蒸発させるとともに、シャッタを開放して、蒸発させた蒸着源を基板1上に積層させることによって結晶成長を行い、放射線変換層2,12を形成する。
 この製造装置50においても、円板51の単位時間あたりの回転数(すなわち、基板1の単位時間あたりの回転数)と、蒸着容器53の単位時間あたりの回転数(すなわち、孔部53cの単位時間あたりの回転数)との差を回転数差としたときに、その回転数差を臨界回転数差よりも小さくすることで、放射線変換層2の柱状結晶7に螺旋構造部5を形成する。その後、回転数差を高くして柱状部6を形成する。
 また、蒸着容器52,53の孔部52c,53cのみを回転させ、その回転数を反射層3(螺旋構造部5)の形成時に遅くし、柱状層4(柱状部6)の形成時に早くすることでも、放射線変換層2,12を形成することが可能である。或いは、基板1のみを回転させ、その回転数を反射層3(螺旋構造部5)の形成時に遅くし、柱状層4(柱状部6)の形成時に早くすることでも、放射線変換層2,12を形成することが可能である。これらの場合、図6に記載した回転数差が、そのまま基板1或いは蒸着容器52,53の孔部52c,53cの回転数となり、それぞれにおいて、図6に記載したピッチの反射層3(螺旋構造部5)を形成することが可能である。
 以上の説明は、本発明の実施の形態についての説明であって、この発明の装置及び方法を限定するものではなく、様々な変形例を容易に実施することができる。又、各実施形態における構成要素、機能、特徴あるいは方法ステップを適宜組み合わせて構成される装置又は方法も本発明に含まれるものである。
 本発明によれば、金属薄膜等からなる反射層を形成することなく反射率を高められ、しかも球状の結晶粒子によって反射層が形成されている場合よりも高い反射率を発揮し、輝度の高い放射線像変換パネルおよびその製造方法が得られる。また、一般的に反射効果により輝度を上げるとコントラスト(解像度)が低下するが、金属薄膜等の反射層を形成する場合に比べてコントラストを高くすることができる。
 1…基板、2、12…放射線変換層、3、13…反射層、4…柱状層、5…螺旋構造部、6…柱状部、7,8,9…柱状結晶、10、20…放射線像変換パネル、50、54…製造装置、51…円板、52、53…蒸着容器。

Claims (15)

  1.  入射した放射線を光に変換する放射線変換層を基板上に形成した放射線像変換パネルであって、
     前記放射線変換層は、前記光を出射する光出射面の反対側に前記光を前記出射面側に反射させる反射層を有し、
     前記反射層は、蛍光体の結晶が螺旋状に積層した螺旋構造を有することを特徴とする放射線像変換パネル。
  2.  前記放射線変換層は、前記蛍光体の結晶が柱状に積層した複数の柱状結晶によって構成され、
     前記柱状結晶のそれぞれは、前記基板に固定される根本側に形成された前記螺旋構造、及び前記基板と交差する方向に沿って前記螺旋構造から前記光出射面側に延在する柱状構造を有し、
     前記螺旋構造と前記柱状構造とは、前記蛍光体の結晶が連続して積層することにより構成されていることを特徴とする請求項1記載の放射線像変換パネル。
  3.  前記放射線変換層は、前記蛍光体の結晶が柱状に積層した複数の柱状結晶によって構成され、該複数の柱状結晶の前記基板に固定される根本側に前記螺旋構造が形成され、前記複数の柱状結晶のうちの互いに隣接する第1、第2の柱状結晶の前記螺旋構造を形成する螺旋構造部において、前記第1の柱状結晶の上下に離れた間隙に前記第2の柱状結晶が入り込んだ入込構造を有することを特徴とする請求項1記載の放射線像変換パネル。
  4.  前記第1の柱状結晶の前記螺旋構造部における前記第2の柱状結晶側の部分と、前記第2の柱状結晶の前記螺旋構造部における前記第1の柱状結晶側の部分とは、前記基板と交差する方向から見て重なり合っており、
     前記第1の柱状結晶の前記螺旋構造部と前記第2の柱状結晶の前記螺旋構造部との間隙は、前記基板と交差する方向と直交する方向から見て波線状となっていることを特徴とする請求項3記載の放射線像変換パネル。
  5.  前記放射線変換層においては、前記螺旋構造を形成する螺旋ループが前記基板と交差する方向に複数積層されていることを特徴とする請求項1記載の放射線像変換パネル。
  6.  前記反射層は、前記基板の表面と交差する方向の断面において、前記蛍光体の結晶が左右に屈曲していることを特徴とする請求項5記載の放射線像変換パネル。
  7.  前記放射線変換層は、前記螺旋ループが前記基板と交差する方向に約0.67μm~5μm程度の間隔を有することを特徴とする請求項5記載の放射線像変換パネル。
  8.  前記放射線変換層においては、前記螺旋構造を形成する扁平球状部が前記基板と直交する方向に対して斜めになって複数積層されていることを特徴とする請求項1記載の放射線像変換パネル。
  9.  前記扁平球状部のうち前記柱状構造と接続する前記扁平球状部は、前記柱状構造の柱径より大きくならないことを特徴とする請求項8記載の放射線変換パネル。
  10.  前記放射線変換層は、CsIを含むシンチレータによって構成されていることを特徴とする請求項1記載の放射線像変換パネル。
  11.  前記放射線変換層は、CsBrを含む輝尽性蛍光体によって構成されていることを特徴とする請求項1記載の放射線像変換パネル。
  12.  前記基板は、炭素繊維を含む材料からなることを特徴とする請求項1記載の放射線像変換パネル。
  13.  入射した放射線を光に変換する放射線変換層を基板上に形成した放射線像変換パネルを製造する放射線像変換パネルの製造方法であって、
     前記基板が載置された載置台と、前記放射線変換層となる蒸着源が納められた蒸着容器から前記蒸着源を外部に蒸発させるための孔部とを、前記基板と交差する方向に沿った回転軸回りに、前記基板よりも前記孔部が相対的に遅くなるように回転数差を設けて回転させて、前記蒸着源を前記基板上に蒸着させることにより、前記放射線変換層において、前記光を出射する光出射面の反対側に、前記光を前記出射面側に反射させる反射層を形成することを特徴とする放射線像変換パネルの製造方法。
  14.  蛍光体の結晶が連続して柱状に積層した複数の柱状結晶によって前記放射線変換層を構成する場合には、
     前記孔部を第1の回転数で回転させて、前記蒸着源を前記基板上に蒸着させることにより、前記蛍光体の結晶が螺旋状に積層した螺旋構造を前記反射層として形成する工程と、
     前記孔部を前記第1の回転数より遅い第2の回転数で回転させて、前記蒸着源を前記基板上に蒸着させることにより、前記基板と交差する方向に沿って前記螺旋構造から前記光出射面側に延在する柱状構造を前記螺旋構造と一体的に形成する工程と、を含むことを特徴とする請求項13記載の放射線像変換パネルの製造方法。
  15.  蛍光体の結晶が連続して柱状に積層した複数の柱状結晶によって前記放射線変換層を構成する場合には、
     前記基板を第1の回転数で回転させて、前記蒸着源を前記基板上に蒸着させることにより、前記蛍光体の結晶が螺旋状に積層した螺旋構造を前記反射層として形成する工程と、
     前記基板を前記第1の回転数より早い第2の回転数で回転させて、前記蒸着源を前記基板上に蒸着させることにより、前記基板と交差する方向に沿って前記螺旋構造から前記光出射面側に延在する柱状構造を前記螺旋構造と一体的に形成する工程と、を含むことを特徴とする請求項13記載の放射線像変換パネルの製造方法。
PCT/JP2010/054016 2009-03-13 2010-03-10 放射線像変換パネルおよびその製造方法 WO2010104119A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080011711.9A CN102349114B (zh) 2009-03-13 2010-03-10 放射线图像转换面板
EP10750872.3A EP2407978B1 (en) 2009-03-13 2010-03-10 Radiation image conversion panel and method for producing same
JP2011503846A JP5469158B2 (ja) 2009-03-13 2010-03-10 放射線像変換パネルおよびその製造方法
US13/255,715 US8637830B2 (en) 2009-03-13 2010-03-10 Radiation image conversion panel and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-060911 2009-03-13
JP2009060911 2009-03-13

Publications (1)

Publication Number Publication Date
WO2010104119A1 true WO2010104119A1 (ja) 2010-09-16

Family

ID=42728408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054016 WO2010104119A1 (ja) 2009-03-13 2010-03-10 放射線像変換パネルおよびその製造方法

Country Status (6)

Country Link
US (1) US8637830B2 (ja)
EP (1) EP2407978B1 (ja)
JP (1) JP5469158B2 (ja)
KR (1) KR101585286B1 (ja)
CN (2) CN103811094B (ja)
WO (1) WO2010104119A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034372A1 (ja) * 2012-08-29 2014-03-06 浜松ホトニクス株式会社 放射線像変換パネル
JP2016183970A (ja) * 2016-06-02 2016-10-20 浜松ホトニクス株式会社 放射線像変換パネル

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5947155B2 (ja) * 2012-08-29 2016-07-06 浜松ホトニクス株式会社 放射線像変換パネル
CN109948261B (zh) * 2019-03-22 2023-04-07 哈尔滨工业大学(深圳) 一种建构等积球体在圆管中螺旋形最密堆积结构的方法
CN113173591A (zh) * 2021-03-09 2021-07-27 中国工程物理研究院材料研究所 用于液态流出物中低水平放射性核素连续测量的氟化钙闪烁晶体颗粒、制作工艺及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236181A (ja) 2001-02-07 2002-08-23 Canon Inc シンチレータパネル、放射線検出装置及びシステム
JP2003050298A (ja) * 2001-08-06 2003-02-21 Fuji Photo Film Co Ltd 放射線像変換パネルおよびその製造方法
JP2003075542A (ja) 2001-09-07 2003-03-12 Canon Inc シンチレータパネル、放射線撮像装置及び放射線検出システム
JP2005069991A (ja) * 2003-08-27 2005-03-17 Fuji Photo Film Co Ltd 放射線像変換パネル
JP2005164380A (ja) 2003-12-02 2005-06-23 Konica Minolta Medical & Graphic Inc 放射線像変換パネル
JP2005241430A (ja) 2004-02-26 2005-09-08 Konica Minolta Medical & Graphic Inc 放射線画像変換プレートの製造方法、放射線画像変換プレート

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE764195C (de) * 1942-11-05 1954-04-05 Siemens Reiniger Werke Ag Verfahren zur Herstellung von Leuchtschirmen, insbesondere von Verstaerkungsfolien fuer Roentgenstrahlen
JPS6210687U (ja) * 1985-07-04 1987-01-22
JPS6210687A (ja) 1985-07-09 1987-01-19 三双電機株式会社 集団教育装置
JP2815881B2 (ja) * 1988-03-04 1998-10-27 株式会社東芝 X線イメージ管の製造方法
US5334839A (en) 1991-10-29 1994-08-02 The Board Of Regents, The University Of Texas System. Position sensitive radiation detector
KR20030072606A (ko) * 2001-01-30 2003-09-15 하마마츠 포토닉스 가부시키가이샤 신틸레이터 패널 및 방사선 이미지 센서
US6835936B2 (en) 2001-02-07 2004-12-28 Canon Kabushiki Kaisha Scintillator panel, method of manufacturing scintillator panel, radiation detection device, and radiation detection system
JP2003166873A (ja) 2001-11-29 2003-06-13 Nissan Motor Co Ltd 乗員重量測定装置
JP2005016980A (ja) 2003-06-23 2005-01-20 Toshiba Corp トリチウム測定装置
JP4912599B2 (ja) * 2005-02-18 2012-04-11 株式会社アルバック 成膜方法
JP2007232619A (ja) * 2006-03-02 2007-09-13 Fujifilm Corp 放射線像変換パネルおよび放射線像変換パネルの製造方法
JP2007315866A (ja) 2006-05-24 2007-12-06 Fujifilm Corp 放射線画像変換パネルおよび放射線画像変換パネルの製造方法
JP2008014892A (ja) 2006-07-10 2008-01-24 Fujifilm Corp 放射線画像変換パネルおよび放射線画像変換パネルの製造方法
JP2008170374A (ja) 2007-01-15 2008-07-24 Canon Inc 放射線検出装置及びシンチレータパネル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002236181A (ja) 2001-02-07 2002-08-23 Canon Inc シンチレータパネル、放射線検出装置及びシステム
JP2003050298A (ja) * 2001-08-06 2003-02-21 Fuji Photo Film Co Ltd 放射線像変換パネルおよびその製造方法
JP2003075542A (ja) 2001-09-07 2003-03-12 Canon Inc シンチレータパネル、放射線撮像装置及び放射線検出システム
JP2005069991A (ja) * 2003-08-27 2005-03-17 Fuji Photo Film Co Ltd 放射線像変換パネル
JP3987469B2 (ja) 2003-08-27 2007-10-10 富士フイルム株式会社 放射線像変換パネル
JP2005164380A (ja) 2003-12-02 2005-06-23 Konica Minolta Medical & Graphic Inc 放射線像変換パネル
JP2005241430A (ja) 2004-02-26 2005-09-08 Konica Minolta Medical & Graphic Inc 放射線画像変換プレートの製造方法、放射線画像変換プレート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407978A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014034372A1 (ja) * 2012-08-29 2014-03-06 浜松ホトニクス株式会社 放射線像変換パネル
JP2014048059A (ja) * 2012-08-29 2014-03-17 Hamamatsu Photonics Kk 放射線像変換パネル
JP2016183970A (ja) * 2016-06-02 2016-10-20 浜松ホトニクス株式会社 放射線像変換パネル

Also Published As

Publication number Publication date
EP2407978B1 (en) 2015-06-03
US20120025102A1 (en) 2012-02-02
CN102349114A (zh) 2012-02-08
CN102349114B (zh) 2014-08-20
EP2407978A1 (en) 2012-01-18
CN103811094B (zh) 2016-06-29
KR20110128272A (ko) 2011-11-29
EP2407978A4 (en) 2014-07-23
CN103811094A (zh) 2014-05-21
US8637830B2 (en) 2014-01-28
JP5469158B2 (ja) 2014-04-09
KR101585286B1 (ko) 2016-01-13
JPWO2010104119A1 (ja) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5469158B2 (ja) 放射線像変換パネルおよびその製造方法
JP6171401B2 (ja) シンチレータパネル
KR101011938B1 (ko) 스크린 및 그 제조 방법 및 화상 표시 시스템
JP6186748B2 (ja) シンチレータパネル
US20080011961A1 (en) Scintillator panel
JPH01131500A (ja) 放射線画像変換パネル
JPWO2015002281A1 (ja) シンチレータパネル及びその製造方法
JP5443083B2 (ja) シンチレータパネルおよび放射線イメージセンサ
JP6519195B2 (ja) シンチレータパネル及び放射線検出器
JP5416500B2 (ja) 放射線像変換パネルおよび放射線イメージセンサ
JP5194793B2 (ja) 放射線画像変換パネル及びその製造方法
US20110031415A1 (en) Radiation image converting panel
JP6033609B2 (ja) 放射線像変換パネル
JP2016172928A (ja) 蒸着用基板およびシンチレータパネル
JPH01269100A (ja) 放射線画像変換パネル
JP3070943B2 (ja) 放射線画像変換パネルの製造方法
JP4321395B2 (ja) 放射線画像変換パネル及びその製造方法
JP2011128031A (ja) 放射線検出器及びシンチレータパネル
JP6223179B2 (ja) シンチレータプレートおよび放射線検出器
JP2002350596A (ja) 放射線像変換パネル
JP5873660B2 (ja) シンチレータパネル
JP2006084267A (ja) 放射線像変換パネル及び放射線像撮影方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011711.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117016979

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011503846

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13255715

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010750872

Country of ref document: EP