WO2010101239A1 - 太陽光(熱)吸収材およびこれを利用した吸熱・蓄熱材並びに太陽光(熱)吸収・調光資材 - Google Patents

太陽光(熱)吸収材およびこれを利用した吸熱・蓄熱材並びに太陽光(熱)吸収・調光資材 Download PDF

Info

Publication number
WO2010101239A1
WO2010101239A1 PCT/JP2010/053624 JP2010053624W WO2010101239A1 WO 2010101239 A1 WO2010101239 A1 WO 2010101239A1 JP 2010053624 W JP2010053624 W JP 2010053624W WO 2010101239 A1 WO2010101239 A1 WO 2010101239A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
absorption
sunlight
solar
light
Prior art date
Application number
PCT/JP2010/053624
Other languages
English (en)
French (fr)
Inventor
近藤 義和
正実 上野
芳信 川満
純一郎 堤
Original Assignee
国立大学法人 琉球大学
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 琉球大学, 大阪瓦斯株式会社 filed Critical 国立大学法人 琉球大学
Priority to US13/254,345 priority Critical patent/US20120017622A1/en
Priority to EP10748832.2A priority patent/EP2404973B1/en
Priority to JP2011502816A priority patent/JP5199454B2/ja
Publication of WO2010101239A1 publication Critical patent/WO2010101239A1/ja
Priority to US14/464,205 priority patent/US10018377B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/69Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of shingles or tiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/80Arrangements for controlling solar heat collectors for controlling collection or absorption of solar radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S70/00Details of absorbing elements
    • F24S70/10Details of absorbing elements characterised by the absorbing material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/272Solar heating or cooling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Definitions

  • the present invention relates to a sunlight (heat) absorber having excellent sunlight (heat) absorption capability, and more specifically, an endothermic material and a heat storage material using the sunlight (heat) absorber are integrated.
  • the present invention relates to a heat absorption / heat storage material that has little heat dissipation from the heat absorption material and has excellent solar heat absorption efficiency, and a heat absorption / heat storage structure, a cooling system, or a power generation system using the heat absorption / heat storage material.
  • the present invention is excellent in the absorption (light control) ability of sunlight (heat) using the above-described sunlight (heat) absorber, and is capable of easily changing the absorption / light adjustment ability ( (Heat) Absorption / dimming materials, agriculture / horticultural facilities and houses / buildings.
  • a solar water heater for example, a pump-type water heater in which a heat collecting part and a heat accumulating part are integrated, a natural circulation water heater in which a heat accumulating part is separated from a heat collecting part, or a forced circulation water heater are known.
  • These are different in form, but basically consist of a solar heat absorbing material (heat collecting plate) and a function of storing the heat collected there by transferring it to a heat storage material (generally water).
  • heat collecting plate heat collecting plate
  • a heat storage material generally water
  • the solar heat absorbing material absorbs a large amount of light of 2.5 ⁇ m or less in the sunlight spectrum (ultraviolet ray, visible ray, infrared ray) reaching the ground surface.
  • Black materials for example, black inorganic compounds and organic substances such as chromium oxide (black chromium), nickel oxide (black nickel), copper oxide, zinc oxide, iron oxide, and other metal oxide compounds have been developed (Patent Literature). 1 to 4).
  • Patent Literature black inorganic compounds and organic substances
  • plant cultivation requires appropriate stress such as light quantity, temperature, humidity, nutrients, water, or wind.
  • amount of light and temperature greatly depend on the external environment, and the types and yields of crops that can be cultivated due to geographical and seasonal factors are greatly limited.
  • subtropics and tropics where the latitude is low, it is extremely important to limit the amount of sunlight or to a temperature suitable for cultivation, and the cultivation of crops that do not meet the geographical conditions must be given up.
  • a large energy cost is required to obtain a temperature suitable for cultivation, and a large amount of electrical energy is required to secure the light quantity.
  • Patent Documents 17 to 19 describe that a light-shielding film or sheet is applied to a crop or an agricultural house in order to limit a great amount of sunlight (heat).
  • These sunlight (heat) absorption and light control materials are made by incorporating substances that limit sunlight into agricultural films and sheets, and always cut sunlight rays at a certain ratio. Nevertheless, sunlight (heat) absorption and dimming ability cannot be changed. Therefore, in order to block out a certain amount of sunlight even in low-sunlight periods such as in the morning, evening, and cloudy days, the amount of light suitable for growing crops does not reach much, which is rather counterproductive to crop growth. There is a problem of becoming.
  • Patent Documents 20 to 22 describe a heat insulating film that limits the solar radiation of a window for preventing this.
  • These solar (heat) absorption / dimming materials also cannot change the sunlight (heat) absorption / dimming capability, so it will be a hindrance in autumn / winter or cloudy days when the amount of solar radiation is low.
  • improvements have been made to building walls, roof insulation, insulation methods, etc., but these insulation methods increase the temperature of the insulation itself due to the passive insulation method, and the insulation effect increases with time. There is a problem that it drops.
  • JP 2001-99497 A Japanese Patent Laid-Open No. 7-139819 JP 2006-336960 A JP 2006-214654 A JP 2008-138899 A JP 2004-176966 A Japanese translation of PCT publication No. 2008-542681 JP-T-2002-517707 JP 2000-88359 A JP 2008-133991 A Japanese Patent Laid-Open No. 5-52427 JP-A-6-137688 JP 2004-176966 A JP 2005-265251 A JP 2004-116964 A Japanese National Patent Publication No. 11-512173 JP 2004-65004 A JP 2009-45027 A JP 2006-340675 A JP 2001-287291 A JP 2006-144538 A JP 2009-169252 A
  • the present invention has been made in view of the circumstances as described above, and has developed a sunlight (heat) absorber having excellent sunlight (heat) absorption capability, and by using this, with a simple structure, It is an object of the present invention to provide a low-cost and high-performance heat absorption / storage material, and further provide a solar water heater, a cooling system, a power generation system, etc. using the heat generated by the heat absorption / storage material. Moreover, this invention provides the sunlight (heat) absorption and light control material which can change sunlight (heat) absorption and light control capability easily using the said sunlight (heat) absorption material. It is another object of the present invention to provide agricultural / horticultural facilities and houses / buildings that can save unnecessary air-conditioning energy and contribute to saving fossil fuels and preserving the global environment.
  • a dispersion in which particles of biomass carbide or the like are dispersed in a medium such as water has excellent sunlight (heat) absorption / dimming ability. If this is used as a heat absorption / storage material, the concept of the conventional solar water heater is completely covered, and the heat absorption material is dispersed and integrated in the heat storage material, thereby simplifying the structure and reducing the cost. We found that we could satisfy all the contradictory demands of higher performance and higher performance. Further, the inventors have found that the sunlight (heat) absorption / dimming ability can be easily changed by changing the kind, size or dispersion concentration of the particles, and have completed the present invention.
  • the present invention has an L * value of 30 measured in a CIE-Lab color system (light source D65) in a liquid medium having a specific heat of 0.4 to 1.4 cal / g / ° C. and a melting point of 5 ° C. or less. It is a sunlight (heat) absorber formed by dispersing the following particles.
  • a carbide of biomass having micropores such as bagasse is used as particles.
  • micropores such as bagasse
  • grains and the absorptivity of sunlight (heat) can be brought about.
  • safety is high and the burden on the environment can be reduced.
  • the present invention is an endothermic / heat storage material composed of the above-described sunlight (heat) absorber.
  • the heat absorption / heat storage material is a heat absorption / heat storage structure formed by filling a container whose opening is covered with a light transmitting body.
  • the present invention is a solar (heat) absorption / compensation comprising a hollow part, wherein the solar part (heat) absorbing material is filled in a hollow part of a plate-like body having at least one of an upper surface and a lower surface having translucency. Dimmable material.
  • the solar light (heat) absorption material circulates between external devices.
  • grains can be uniformly disperse
  • the solar light (heat) absorption / dimming material further includes detection means for detecting the condition of the outside air, and adjustment means for adjusting the absorbance of the sunlight (heat) absorption material based on the condition of the outside air. Is.
  • the sunlight (heat) that is absorbed and dimmed can be adjusted according to the condition of the outside air, so that it can be controlled to a constant amount of solar radiation without being affected by time, weather, season, and the like.
  • the outside air is illuminance and / or temperature.
  • the solar light (heat) absorption / dimming material further includes conversion means for converting solar heat absorbed by the solar light (heat) absorption material into hot water / warm air or cold water / cold air. Thereby, the solar heat absorbed and stored in the sunlight (heat) absorber can be used effectively.
  • the solar light (heat) absorption / dimming material is one of window glass, tiles, and roofing material.
  • the present invention is a house / building that uses the sunlight (heat) absorption / dimming material on at least a part of a wall, window, roof, or rooftop.
  • the sunlight (heat) absorption and light control material functions as an extremely excellent heat insulating material, so that the energy required for indoor temperature control can be dramatically reduced. As a result, unnecessary air-conditioning energy can be saved in houses and buildings, which can greatly contribute to saving fossil fuels and preserving the global environment.
  • the solar light (heat) absorption material of the present invention has excellent solar light (heat) absorption capability, and further, by using harmless biomass-derived carbide particles, the waste can be effectively used. At the same time, the load on the environment can be reduced. In addition, when this is used as a heat absorption / storage material, the particles of the heat absorption material are dispersed in the liquid of the heat storage material, and as the temperature of the heat absorption material rises, heat is transferred directly to the heat storage material around it. Therefore, heat loss in the heat transfer process can be suppressed.
  • the endothermic material has been inevitably dissipated due to the black body radiation from the endothermic material itself as the temperature rises due to endotherm, but in the present invention, the endothermic material is dispersed in the heat storage material. All the heat radiation from the heat absorbing material is absorbed by the heat storage material. Thus, there is no heat loss in the heat transfer process, and there is no useless heat dissipation to the outside, so the solar heat absorption efficiency is high.
  • the sunlight (heat) absorption / dimming material of the present invention can easily change the sunlight (heat) absorption / dimming ability by changing the type, size or dispersion concentration of the particles.
  • it can be used for agricultural and horticultural facilities, houses and buildings, so that it can save energy for unnecessary air conditioning and heating, and has a great effect on saving fossil fuels and preserving the global environment.
  • FIG. 6 is a schematic diagram showing a method of a pseudo solar absorption test in Example 2.
  • FIG. It is a figure which shows the result of the absorption characteristic test in Example 3. It is a figure which shows the result of the temperature rise test in Example 4.
  • Example 7 It is a figure which shows the relationship between the bagasse dispersion density
  • Example 8 it is a figure which shows the bagasse charcoal dispersion
  • Example 9 it is a schematic diagram which shows the example which used sunlight (heat) absorption and a light control material as a heat insulating material of a detached house.
  • Example 10 it is a figure which shows the reduction condition of the cooling load at the time of using sunlight (heat) absorption and a light control material as a heat insulating material of a detached house.
  • the sunlight (heat) absorber of the present invention has a specific heat of 0.4 to 1.4 cal / g / ° C. and a CIE-Lab color system (light source D65) in a liquid medium having a melting point of 5 ° C. or less. Particles having a measured L * value of 30 or less are dispersed.
  • the medium (dispersion) used in the present invention has a specific heat of 0.4 to 1.4 cal / g / ° C. and is a liquid at room temperature with a melting point of 5 ° C. or less. By doing so, it is possible to optimize the amount of the medium used and it is advantageous in terms of cost. Further, by setting the melting point to 5 ° C. or less, it can be used in many places and time zones. Specific examples include water, aliphatic monoalcohols, aliphatic dialcohols, and hydrocarbons.
  • Water can be used well as it is, but in order to lower the melting point or suppress the growth of bacteria, etc., calcium chloride, sodium chloride, magnesium chloride, potassium chloride, strontium chloride, lithium chloride, ammonium chloride, barium chloride, chloride Disperses and dissolves inorganic compounds such as metal chlorides such as iron and aluminum chloride or bromides of the same series, and organic compounds such as ethanol, ethylene glycol, propylene glycol, glycerin, sucrose, glucose, acetic acid, succinic acid, succinic acid, and lactic acid. May be used.
  • inorganic compounds such as metal chlorides such as iron and aluminum chloride or bromides of the same series
  • organic compounds such as ethanol, ethylene glycol, propylene glycol, glycerin, sucrose, glucose, acetic acid, succinic acid, succinic acid, and lactic acid. May be used.
  • Examples of the aliphatic monoalcohol include ethyl alcohol, propyl alcohol, butyl alcohol, amyl alcohol, hexane alcohol and the like.
  • Examples of the aliphatic dialcohol include ethylene glycol, propylene glycol, polyethylene glycol, and polypropylene glycol.
  • Examples of the hydrocarbon include aromatic hydrocarbons such as paraffin, benzene, xylene, and chlorobenzene, or chlorinated aromatic hydrocarbons. Among these, water is most preferable from the viewpoints of safety, ease of handling, non-corrosiveness, and low price, but when high temperature heat is required, ethylene glycol, glycerin having a high boiling point or a mixed solution of these and water. Etc. are used.
  • the particles should be black in order to absorb sunlight (heat), and if expressed in the CIE-Lab color system, which is an international standard that expresses the color tone of an object, it is based on the standard of the whiteness and blackness of the object.
  • a certain L * value (L-value) is 30 or less, preferably 28 or less, more preferably 3 to 25.
  • the L * value is the most preferable criterion because 0 represents a black body and absorbs all light. However, it is very expensive to make this value 0, and the yield is also poor.
  • the particles themselves can absorb sunlight, but they are inappropriate for adjusting the degree of absorption and using the absorbed heat.
  • the particles are dispersed in the medium and used in order to adjust the degree of absorption and to use the absorbed heat.
  • biomass carbide commercially available carbon black, carbon nanotube, iron black, copper-iron black, other organic pigments, inorganic pigments, and the like can be exemplified.
  • iron black, copper-iron black, other organic pigments, inorganic pigments, etc. it is important to pay sufficient attention to safety and dispersibility in the medium.
  • the carbide of biomass is excellent in safety, dispersible in the above medium, and is preferably used because it has a low environmental impact.
  • sugar cane squeezed rice cake, coffee squeezed rice cake, soy milk squeezed rice cake examples include rice bran, rice bran, squeezed moromi after fermentation such as sake, various natural fibers, and carbides such as wood.
  • Such biomass has a fine void structure resulting from life phenomena. This void structure remains after carbonization and lowers the bulk specific gravity to improve the dispersibility in the medium and the sunlight (heat) absorption / storage characteristics.
  • the size of the voids can be adjusted depending on the type of biomass and the carbonization conditions. However, when used in the application of the present invention, the major axis of the opening of the hole is at most 100 ⁇ m, preferably 5 to 50 ⁇ m.
  • the void (microporous) ratio is at least 10%, preferably 20 to 70%.
  • Such biomass carbide can be produced according to a known method.
  • bagasse carbide particles which are sugar cane squeezed rice cake, can be produced by the following method.
  • Sugarcane harvested from the sugarcane field is delivered to the sugar factory with roots, leaves, and heads cut off. After that, squeeze the sugar cane and squeeze the sugar juice through a metal roller several times while applying hot water or steam. This will produce bagasse that is almost sugar free. Since this bagasse contains moisture, it is dried at a temperature of 100 ° C. or higher before carbonization. In drying, it is preferable to carry out in a non-oxidizing atmosphere such as nitrogen in order to suppress the deterioration of bagasse. After drying, it is carbonized by heating in a nitrogen atmosphere in an ordinary electric furnace. As a heat source for carbonization, a heat source for external heating or a self-combustion heat source for burning a part of bagasse to generate heat is used.
  • a heat source for carbonization a heat source for external heating or a self-combustion heat source for burning a part of bagasse to generate heat is used.
  • the temperature When performed in a laboratory, while flowing nitrogen gas in a muffle-type electric furnace and heating at a temperature rising rate of about 5 to 50 ° C. from normal temperature, the temperature is usually 200 ° C. or higher, preferably 300 to 1000 ° C., More preferably, heating is performed to 400 to 900 ° C. When the rate of temperature rise is faster than 50 ° C, a non-uniform temperature distribution tends to occur, and when it is slower than 5 ° C, it is economically disadvantageous. When the predetermined temperature is reached, heating is continued at that temperature for a certain time, for example at least 1 hour, preferably 2-5 hours.
  • bagasse charcoal black charcoal using bagasse as a raw material is obtained (bagasse charcoal).
  • the bagasse charcoal is pulverized with a blender or the like and classified as necessary to obtain bagasse carbide particles.
  • the above particles preferably have a bulk specific gravity of 0.3 or less, preferably about 0.05 to 0.2 g / ml, from the viewpoint of dispersibility in a medium.
  • the bulk specific gravity is a value measured according to JIS K7365-1999 (How to obtain an apparent density of a material that can be poured from a specified funnel: ISO 60: 1977).
  • the particles preferably have a particle size of 3 mm or less, more preferably 0.01 to 1 mm, and dispersibility in a medium is good when the particle diameter is within this range.
  • Particles having such a particle size can be obtained by classification with a sieve. That is, particles of 3 mm or less are obtained by collecting the particles that have passed through a 6-mesh sieve, and particles of 0.01 to 1 mm pass through a 16-mesh sieve and are collected on a 170-mesh sieve. You can get it by collecting things. Although the exact particle size of each individual particle can be observed with a microscope, errors may occur due to the variety of shapes. Therefore, in practice, it is possible to collect and use particles of an appropriate size using the above sieve. preferable.
  • the particles are usually from 0.01 to 5% by mass, preferably from about 0.1 to 1% by mass, more preferably from 0.3 to 0.7%, based on the medium. What is necessary is just to disperse
  • the feature of the present invention is that, if it is biomass charcoal particles, sufficient solar heat absorption / storage effect and sunlight (heat) absorption / dimming effect can be seen even at very low concentration dispersion.
  • Dispersing the particles in the medium can be carried out according to a conventional method, for example, a rotary blade stirrer having various stirring blades, a vibration stirrer having a vibration plate, a rotary stirrer that is stirred by rotation, a liquid It can be dispersed using a liquid flow stirrer that stirs by causing a flow or a collision, a stirrer such as a ball mill, an extruder having a rotating screw, or the like. In general, if the dispersion density of the particles is large and the viscosity of the medium is large, a rotary blade stirrer, an extruder, etc.
  • the dispersion density of the particles is low and the viscosity of the medium is low, a stirrer other than the extruder can be used. All are usable.
  • the degree of dispersion can be easily determined by the appearance of the dispersion.
  • a substance having a phase transition temperature in the temperature range of 50 to 120 ° C. can be present without being in direct contact with the medium.
  • the heat collection time by solar radiation may not necessarily match the time required for hot water supply / cooling / heating.
  • substances having a phase transition temperature in a temperature range of 50 to 120 ° C., preferably 70 to 120 ° C. are present in a state not in direct contact with the medium, the heat stored in these substances is stored. Can be used at night.
  • a so-called heat storage material can be used, for example, paraffin, polyethylene wax, polyethylene, alpha olefin copolymer, ethylene methacrylate copolymer, ethylene vinyl alcohol copolymer, modified polyester, polycaprolactone, polybutyl succinate, polyethylene.
  • Succinate, or two or more alloys of these polymers, or low molecular weight compounds with melting points in the above temperature range can be raised, but substances having a molecular weight in the polymer and oligomer regions in terms of moldability, operability and safety
  • the endothermic / heat storage material of the present invention is composed of the above-mentioned sunlight (heat) absorber, in a liquid medium having the above specific heat of 0.4 to 1.4 cal / g / ° C. and a melting point of 5 ° C. or less.
  • particles having an L * value of 30 or less measured with the CIE-Lab color standard (light source D65) are dispersed. In this way, the particles of the endothermic material are dispersed in the liquid medium of the heat storage material, and as the temperature of the heat absorption material rises, the heat is transferred directly to the heat storage material that exists around the heat absorption material. Less is.
  • the heat absorption material has been inevitably dissipated due to the black body radiation from the heat absorption material itself as the temperature rises due to the heat absorption, but in the present invention, the heat absorption material is dispersed in the heat storage material. Therefore, all the heat radiation from the heat absorbing material is absorbed by the heat storage material, and there is no useless heat dissipation to the outside, so the absorption efficiency is high.
  • the heat absorption / heat storage structure of the present invention has a structure in which the heat absorption / heat storage material is filled in a container whose opening is covered with a light transmitting body.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of the heat absorption / heat storage structure of the present invention.
  • Reference numeral 1 denotes an entire heat absorption / heat storage structure
  • 2 denotes a container
  • 3 denotes a light transmitting body
  • 4 denotes a heat insulating material
  • 5 denotes a heat absorption / heat storage material.
  • the material of the container 2 is metal, glass, resin or the like, and is preferably covered with an organic foam material such as foamed styrene or foamed urethane, or a heat insulating material such as glass fiber or inorganic fiber.
  • an organic foam material such as foamed styrene or foamed urethane
  • a heat insulating material such as glass fiber or inorganic fiber.
  • the light transmitting body 3 glass or the like is used, and it is airtightly attached to the container 2, and the heat absorption / heat storage material 5 is filled therein.
  • a permselective film that reflects heat rays radiated from the heat storage medium may be provided.
  • the thickness (liquid depth) of the heat absorption / storage layer may be a thickness at which the light transmittance at 550 nm is 10% or less, preferably 5% or less, more preferably 1% or less.
  • the heat storage temperature becomes higher as the thickness of the heat absorption / heat storage material layer is reduced, so that the heat storage temperature can be adjusted easily and at low cost.
  • the heat stored in the heat absorption / heat storage structure can be used for various solar heat utilization devices.
  • particles can be removed from the heated endothermic / heat storage material by a known separation means such as filtration, and used as a solar water heater for a shower or a bath as it is. .
  • the stored heat can be used as a cooling system by using it as a heat source for an absorption chiller or an adsorption chiller.
  • FIG. 2 is a view showing an embodiment of an absorption refrigerator using a heat medium such as hot water collected by the solar heat absorption / heat storage material of the present invention as a high temperature side heat source.
  • 11 is an endothermic / heat storage structure of the present invention
  • 12 is a heat medium pipe
  • 13 is a regenerator
  • 14 is a condenser
  • 15 is a heat exchanger
  • 16 is an absorber
  • 17 is an evaporator
  • 18 is an absorbent pump
  • 19 Represents a refrigerant pump
  • 20 represents a cooling water pipe
  • 21 represents a medium
  • 22 represents an absorbent
  • 23 represents a refrigerant liquid.
  • the required heat source temperature on the high temperature side varies depending on the absorption refrigerator type, but is at least 65 ° C., preferably about 70 ° C.
  • the upper limit is not particularly limited. For example, in the case of a multistage effect system such as that shown in FIG. 2, if the heat source temperature is high, a more efficient refrigerator can be obtained such as a two-stage effect, a three-stage effect, and so on.
  • the temperature difference power generation is a method of generating power by evaporating and expanding a low boiling point solvent with a heat source on the high temperature side and rotating a turbine with the mechanical energy, as in ocean temperature difference power generation.
  • the solar light (heat) absorption / dimming material of the present invention is obtained by filling the above-described solar light (heat) absorber in a hollow portion of a plate-like material having a hollow portion.
  • FIG. 3 the schematic of one Embodiment of the sunlight (heat) absorption and light control material 30 of this invention is shown.
  • 3 (a) is a perspective view of the solar light (heat) absorption / dimming material 30 of the present invention
  • FIG. 3 (b) is the top view
  • FIG. 3 (c) is the front view
  • FIG. It is the same side view.
  • the sunlight (heat) absorption / dimming material 30 has a structure in which the hollow portion of the plate-like object 31 is filled with the sunlight (heat) absorption material 32, and at least one of the upper surface 31a and the lower surface 31b is translucent. Have sex.
  • the thickness d (distance between the upper surface and the lower surface) of the hollow portion filled with the sunlight (heat) absorber 32 can be arbitrarily set depending on the purpose and required performance, but is usually 20 mm at most for absorbing sunlight, preferably 3 ⁇ 10 mm. The thicker the space, the heavier it becomes and the burden on installation and the like. On the other hand, if it is too thin, the dispersed state of the particles may be non-uniform.
  • the plate-like material 31 is a glass plate, a thermoplastic polymer such as polystyrene, polymethyl methacrylate, polycarbonate, polypropylene, polyethylene, polyethylene terephthalate, polyvinyl chloride, polyacetal, polyphenylene oxide, polyvinyl butyral, poly-4-methylpentene-1, or the like.
  • the resin plate is formed from a thermosetting resin such as a melamine resin, an epoxy resin, a phenol resin, a urethane resin, a diallyl phthalate resin, or an unsaturated polyester resin. The thinner the glass plate or resin plate constituting the plate-like object 31 is, the smaller and lighter it can be, and the cost can be reduced.
  • the plate-like object 31 since there is a relation with strength and durability, it is usually 1 mm or more and 20 mm or less, preferably 2 mm or more. When the area is 10 mm or less, particularly 1 m 2 or less, for example, 2 mm or more and 5 mm or less are sufficient.
  • a reinforcing material rib
  • This rib is also preferable because it controls the flow path of the dispersion liquid filled therein. At least one of the upper surface 31a and the lower surface 31b of the plate-like object 31 needs to have translucency, but if the plate-like object 31 having translucency is installed in both, the transmitted light can be obtained. Is possible.
  • the plate-like object 31 can be obtained by bonding a glass plate or a resin plate to be formed or integrally molding from a resin raw material according to a conventional method.
  • the sheet 31 is molded while leaving one surface such as a glass plate constituting the plate-shaped object 31, and the sunlight (heat) absorber 32 is filled there from there. Thereafter, the remaining glass plate or the like is joined and sealed, or an opening is provided in the integrally formed plate-like object 31, and after filling with sunlight (heat) absorber 32, the opening is closed.
  • the sunlight (heat) absorption / dimming material 30 of the present invention having such a structure enables efficient absorption of sunlight (heat) by dispersing particles in a medium, and from the absorbed particles.
  • the release of heat due to the black body radiation is absorbed by the medium in which the particles are dispersed, so that the release of heat to the outside can be suppressed as much as possible, and the sunlight (heat) absorption efficiency becomes extremely high.
  • the light of a metal halide lamp that is often used as simulated sunlight if the thickness of the space filled with the solar (heat) absorber is 5 mm. Has been found to absorb 99% or more. This can be measured by the method shown in FIG.
  • the dispersion concentration of the particles in the sunlight (heat) absorption material 32 may be any material that can absorb sunlight (heat) or control the transmittance. Moreover, since it varies depending on the thickness of the space of the opposing plate-like object 31, it cannot be limited uniformly, but normally, when absorbing sunlight (heat) 99% or more, at least 0.5 mass% is necessary. is there.
  • the solar light (heat) absorption / dimming material of the present invention can also adjust the absorbance of the solar light (heat) absorption material based on the state of the outside air in contact therewith.
  • the outside air conditions include temperature and solar radiation, but are not limited thereto.
  • the temperature and solar radiation can be detected with a thermometer or solar radiation meter with a recorder that can be automatically entered into a personal computer.
  • the dispersion concentration and thickness of the particles may be changed, but it is more realistic to change the dispersion concentration.
  • solar water (heat) absorbers for adjustment with varying concentrations of particles and dilution water storage tanks are prepared, and the flow rates of the liquid feed pumps attached to these storage tanks, respectively.
  • the dispersion concentration of the particles can be changed.
  • the amount of solar (heat) absorption with high dispersion concentration is increased to increase the dispersion concentration of the particles, thereby increasing sunlight (heat) absorption. Reduce the amount of light transmitted through the light control material.
  • the amount of transmitted light that passes through the sunlight (heat) absorption / dimming material is increased by increasing the amount of water to be added and reducing the dispersion concentration of the particles.
  • the dispersion concentration of the particles can be determined by creating a transparent portion having a constant channel width (for example, 10 mm) and measuring the absorbance through light of a predetermined wavelength (for example, 550 nm). In this way, by adjusting the absorbance of the sunlight (heat) absorbing material based on the outside air condition, the amount of solar radiation transmitted through the sunlight (heat) absorbing / dimming material can be made constant.
  • the solar light (heat) absorption / dimming material of the present invention can be in the form of a window glass, tile or roof material. Specifically, it can be used as a window glass by containing a sunlight (heat) absorber in the middle of a double-structured window glass that transmits light. This makes it possible to adjust transparency, adjust the amount of solar radiation, and adjust the room temperature. This has many features such as being cheaper than conventionally known photochromic materials and requiring no driving power. Moreover, when setting it as the form of a tile or a roof material, it is also possible to contain the sunlight (heat) absorber of this invention in the intermediate
  • the amount of solar radiation from the roof and the temperature can be adjusted.
  • a fixed glass plate was used.
  • the absorbance can be controlled, it is possible to easily block sunlight in summer and to put sunlight in winter.
  • the solar light (heat) absorption / dimming material of the present invention can be installed on the wall or ceiling of an agricultural / horticultural facility, or may be in the form of a ceiling or wall material of an agricultural / horticultural facility. it can.
  • Sunlight (heat) absorbers have sunlight (heat) absorption effects and control adjustment effects, so control sunlight (heat) incident on agricultural and horticultural facilities, for example, to suppress high temperatures inside the facilities Or adjust the amount of light.
  • the amount of sunlight during the summer is 2500 ⁇ mol / m 2 / sec (micromole / square m / sec), but the required solar radiation for summer vegetables is 200 to 300 ⁇ mol / m 2 / sec.
  • the solar radiation (heat) absorption / dimming material of the present invention can be used as a ceiling or wall material for agriculture / horticultural facilities, or installed on the outer wall, roof, etc.
  • the amount of solar radiation can be adjusted. It becomes possible.
  • the transmittance of sunlight can be adjusted by changing the amount of particles dispersed inside the sunlight (heat) absorber and adjusting the absorbance.
  • the amount of solar radiation in the morning and evening is low, the dispersion concentration is decreased to increase the amount of transmitted sunlight, and during the daytime when the amount of solar radiation is large, the dispersion concentration is increased to decrease the amount of transmission.
  • the feature is that the amount of sunlight to be adjusted can be adjusted to an appropriate amount (see FIG. 12).
  • the sunlight (heat) absorption / dimming material of the present invention can also be installed on windows, walls, roofs, or roofs of ordinary houses and buildings.
  • the heating of can be greatly suppressed.
  • the amount of sunlight can be adjusted by installing it on a window.
  • it installs on a wall, a roof, or a rooftop it functions as a very high-performance heat insulating material. That is, as described above, by dispersing the particles in the dispersion, and adjusting the concentration arbitrarily to control the absorbance, a large function of adjusting the transmittance of sunlight (heat) is exhibited. be able to.
  • this adjustment function is linked to the amount of solar radiation during the day, the amount of solar radiation and the duration of solar radiation can be arbitrarily adjusted. This is a new solar radiation amount, solar radiation time or indoor environment adjustment method for agricultural / horticultural facilities, ordinary houses, and buildings.
  • the solar light (heat) absorption material in the solar light (heat) absorption / dimming material of the present invention can be kept in the hollow part of the plate-like material, but circulates between external devices such as tanks. It is also possible to make it.
  • a pump is usually used, but natural circulation using the change in specific gravity of the medium whose temperature has risen by absorbing sunlight (heat) is also possible.
  • the solar heat absorbed and stored in the sunlight (heat) absorber can be used separately.
  • the solar heat absorbed by the solar light (heat) absorber contained in the solar light (heat) absorption / dimming material of the present invention is converted into hot water / warm air, and the hot water or heating in a home, office building, factory, etc. as it is.
  • it can be converted into cold water / cold air.
  • indoor cooling can be achieved by using it as a high-temperature heat source for absorption refrigerators and adsorption refrigerators.
  • the hot water converted from solar heat may be used as it is for an absorption chiller / heater using a high-temperature heat source as it is, or used as a main heat source of an exhaust heat input type gas adsorption chiller / heater.
  • The% unit is mass% unless otherwise indicated.
  • Example 1 Preparation of bagasse carbide (1): The sugarcane bagasse produced in Miyakojima, Okinawa Prefecture in 2008 was used. First, the bagasse was dried at 100 ° C. for 12 hours under a nitrogen stream. The obtained bagasse was milky white and clean and had a particle size of 10 mm or less. This bagasse was put in an electric furnace, heated from room temperature to 5 ° C. per minute under a nitrogen stream, and heated to 500 ° C. or 700 ° C. When the predetermined temperature was reached, the carbonization treatment was carried out at that temperature for 5 hours. After that, it was cooled to room temperature by natural cooling while flowing nitrogen. Bagasse was all black charcoal (bagasse charcoal).
  • the bagasse charcoal was pulverized at 14,000 rpm for 10 minutes with a stainless steel experimental blender. After grinding, the particles passed through a 100 mesh stainless steel sieve (aperture: 150 ⁇ m) were collected. All were uniform particles and fluidity was good. Each (L * value, bulk specific gravity) was as follows. 500 degreeC (27.2, 0.077), 700 degreeC (29.0, 0.0863). The bulk specific gravity was evaluated according to JIS K7365-1999 (How to obtain the apparent density of a material that can be poured from a specified funnel: ISO 60: 1977).
  • Example 2 Pseudo solar absorption test (1): In a petri dish with a diameter of 10 cm, an ethylene glycol (EG) liquid in which bagasse charcoal (500 ° C.) obtained in Example 1 is dispersed at a concentration of 0% and 0.5% is placed to a depth of 1 cm, and a pseudo-sun Use a commercially available halogen lamp (manufactured by Toshiba) as light, adjust the output so that the light intensity is 2800 ⁇ mol / m 2 / sec (corresponding to the amount of solar radiation in Naha city in summer), and irradiate the petri dish The amount of light transmitted was measured. The amount of light was measured with a commercially available photon meter (Quantum meter).
  • EG ethylene glycol
  • Example 4 Temperature rise test: Bagasse charcoal (500 ° C.) obtained in Example 1 was dispersed in the EG solution to a concentration of 0.5%. An EG solution to which no bagasse charcoal was added was used as a control. As in Example 2, this dispersion was irradiated with pseudo-sunlight at an intensity of 1997 ⁇ mol / m 2 / sec (corresponding to the amount of solar radiation in Naha City close to summer), and the temperature change rate of the internal liquid temperature over time was recorded. The results are shown in FIG.
  • the bagasse charcoal 0.5% dispersion EG liquid has a higher rise in internal liquid temperature than the control.
  • the intercept of the curve is also shown in the figure, and this slope is 9.5 ° C./min for the 0.5% bagasse charcoal dispersed EG solution and 2.7 ° C./min for the control.
  • the present invention shows that a temperature increase of 50 ° C. can be expected in 5 minutes, which is an extremely high temperature increase that has not been reported in the past.
  • EG liquid was used as a dispersion medium for bagasse charcoal, it was found that by using EG, a temperature of 100 ° C. or higher that cannot be achieved with water can be easily produced. Note that the temperature of the EG liquid itself containing no bagasse char is rising because the EG absorbs infrared rays of 1200 nm or more.
  • Example 5 Preparation of bagasse carbide (2): The bagasse collected from the sugar factory (Miyakojima) was carbonized at 300-800 ° C. Specifically, bagasse carbonization was performed by the following method and conditions. First, bagasse obtained from a sugar factory was first dried as it was in N 2 at 100 ° C. for 24 hours to make it completely dry. Next, it is put into a muffle furnace and heated from a room temperature to a predetermined temperature (300 to 800 ° C.) at a rate of temperature increase of 5 ° C./min in an N 2 stream. When the temperature could be raised to a predetermined temperature, the temperature was maintained for 3 hours for carbonization. Thereafter, it was returned to room temperature by natural cooling to obtain bagasse charcoal.
  • a predetermined temperature 300 to 800 ° C.
  • (D) is a SEM photograph of a carbide obtained at a carbonization temperature of 600 ° C.
  • (e) is a SEM photograph of a carbide obtained at a carbonization temperature of 700 ° C.
  • (f) is 800
  • carbonized_material obtained at the carbonization temperature of (degreeC) is shown. It can be seen that all the carbides have a good microporous state. From the photograph, it was found that the size of the hole was about 10 ⁇ m. Moreover, the bulk specific gravity (density) was very low, and in the example of Table 2, it was 96.3 (mg / cc) at most. It was found that good dispersibility was exhibited due to such microporosity and low specific gravity.
  • bagasse charcoal was finely pulverized with a blender (HB250S, manufactured by Hamilton), and then the particle size (150 ⁇ m or less) passed through a sieve of a stainless mesh 100 mesh was collected.
  • FIG. 8 shows the transmittance in the ultraviolet-visible (UV-VIS) region of a bagasse dispersion in which fine particles of bagasse charcoal are dispersed in a dispersion at a concentration of EG (ethylene glycol) of 0.1%.
  • the control product used was EG itself.
  • the numbers on the right side of the figure indicate the carbonization temperature.
  • the color difference was a Minolta color difference meter (CR-300). Bagasse charcoal was put in a plastic container that did not allow light to pass through, and the color difference meter was brought into close contact with bagasse charcoal for measurement.
  • the light used was D65 (corresponding to daylight light at a light temperature of 6500 ° C.).
  • L * -value, a-value, and b-value of the CIE color system were used.
  • the bulk specific gravity was evaluated according to JISK7365-1999 (How to determine the apparent density of a material that can be poured from a specified funnel: ISO 60: 1977).
  • the total carbon content (TC) is measured by measuring NO 2 and CO 2 using a combustion method (NC-90A, Shimadzu Corporation) from the dried sample before classification. The rate was calculated.
  • the specific surface area was measured by adsorbing N 2 in a liquid nitrogen atmosphere to a sample degassed under vacuum conditions for 24 hours and using a specific surface area / pore distribution measuring device (Trister 3000, Shimadzu Corporation).
  • the fine structure of bagasse charcoal was observed by SEM. SEM observation was performed after coating gold as usual using an ion coater (SS-500) manufactured by Shimadzu Corporation.
  • the UV-VIS measurement was performed by a conventional method using a spectrophotometer (UV-1600PC) manufactured by Shimadzu Corporation.
  • Example 6 Absorption characteristic test (2): Using the 600 ° C. carbonized bagasse charcoal produced in Example 5, the dispersion concentration in EG was changed to 0.1%, 0.5%, and 1%, and the light in the UV-VIS region was the same as in Example 5. The transmittance of was measured. The UV-VIS measurement was performed by a conventional method using a spectrophotometer (UV-1600PC) manufactured by Shimadzu Corporation. FIG. 9 shows the relationship between the bagasse char dispersion concentration and the transmittance in the UV-VIS region. At 0.1%, the transmittance is about 30% in the entire wavelength region, but when the dispersion concentration is 0.5% or more, the light transmittance is almost lost. In other words, it was found that if the dispersion concentration of bagasse charcoal was adjusted, a light control material with good sunlight was obtained.
  • UV-1600PC spectrophotometer
  • Example 7 Pseudo solar absorption test (2): A bagasse dispersion liquid was prepared using bagasse charcoalized at 600 ° C. among the carbides prepared in Example 5 and EG as a medium, and evaluation of light transmittance in simulated sunlight by the same method as in Example 2 A temperature rise test of the bagasse dispersion was performed. The light intensity of the pseudo sunlight (metal halide lamp: 4 pieces of 500 w) was adjusted to 2800 ⁇ mol / sec / m 2 . This value corresponds to the intensity of sunlight during the daytime in the summer of Naha City. Bagasse charcoal dispersion (liquid depth: 5 mm) was placed between the simulated solar light source and the sensor (photon counter), and the light transmitted therethrough was measured with the sensor.
  • pseudo sunlight metal halide lamp: 4 pieces of 500 w
  • bagasse char Without bagasse char (only EG), it passes 95% light, but with bagasse char dispersed 0.5% it absorbed 99.97% light (passed 0.03% light). all right.
  • concentration of bagasse charcoal is changed to 0%, 0.1%, 0.3%, and 0.5% and placed under simulated sunlight, and the temperature rise of the bagasse dispersion is increased with a thermocouple. It was measured. The results are shown in FIG. Even without bagasse charcoal, a certain temperature increase was observed, but when bagasse charcoal was dispersed, a temperature increase depending on the dispersion concentration was observed.
  • Example 8 Change in particle dispersion concentration A major feature of the present invention is that the sunlight (heat) absorption / dimming ability of the sunlight (heat) absorber can be easily and freely changed by changing the amount of particles dispersed in the medium. .
  • the amount of pseudo-sunlight is changed to about 500, 1000, 1500, 2000, 3000 ⁇ mol / sec / m 2 and the dispersion concentration of bagasse char is changed from 0 to 0.5% in increments of 0.1%.
  • a (heat) absorber (bagasse dispersion) was prepared. For the purpose of simulating the illuminance (Lx) inside the agricultural house for each light quantity, the device shown in Fig.
  • the dispersion concentration of bagasse char is about 0.06%
  • the concentration of bagasse charcoal needs to be about 0.21% when the concentration is about 0.15% and the intensity of pseudo-sunlight of 3000 ⁇ mol / sec / m 2 . In this way, it is possible to always control the intensity of light indoors even in outdoor agricultural houses.
  • Example 9 Cooling load simulation: Solar light (heat) absorption / light control material (heat collecting plate: liquid) prepared using the solar light (heat) absorber made with a 0.5% dispersion of bagasse charcoal (600 ° C.) prepared in Example 5 The simulation of the change of the cooling load in summer of a general concrete detached house (building area 64m 2 , total 2 stories) in Okinawa when installing 5mm deep on the roof or outer wall was conducted.
  • FIG. 14 is a diagram showing a state in which Cases 0 to 3 are provided with sunlight (heat) absorption / dimming material in a house. There are no windows to simplify the simulation. The results are shown in FIG.
  • the comparative example (Case-0) is a case where such sunlight (heat) absorption / dimming material is not installed. However, when the sunshine is strongest during the day, electric power of about 11.5 kwh is required. On the other hand, when the solar light (heat) absorption / dimming material of the present invention is installed on a part of the roof (20 m 2 ) (Case-1), the cooling power decreases to 9.7 kwh, and the entire roof surface (64 m 2 ). When installed in (Case-2), the cooling power is reduced to 6 kwh.
  • a low-cost and high-performance heat-absorbing / storing material can be obtained with a simple structure, and can be used for solar heat utilization devices such as a water heater, a cooling system or a power generation system using solar heat.
  • the sunlight (heat) absorption / dimming material of the present invention can be used as a window glass or a roofing material for a house / building, or for an agricultural / horticultural facility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Building Environments (AREA)

Abstract

 本発明は、優れた太陽光(熱)吸収能力を有し、簡易な構造で、低コストかつ高性能の吸熱・蓄熱材として利用でき、さらに、太陽光(熱)吸収・調光能力を容易に変更できる太陽光(熱)吸収・調光資材として利用可能な太陽光(熱)吸収材を提供することを課題とする。当該太陽光(熱)吸収材は、比熱が0.4~1.4cal/g/℃であり、融点が5℃以下の液体の媒体中にCIE-Lab標色系(光源D65)で測定したL値が30以下である粒子を分散してなるものである。

Description

太陽光(熱)吸収材およびこれを利用した吸熱・蓄熱材並びに太陽光(熱)吸収・調光資材
 本発明は、太陽光(熱)の吸収能力に優れた太陽光(熱)吸収材に関し、さらに詳細には、この太陽光(熱)吸収材を利用した、吸熱材と蓄熱材とが一体化され、吸熱材からの熱の放散が少なく、太陽熱の吸収効率に優れた吸熱・蓄熱材、およびこれを利用した吸熱・蓄熱構造体、冷房システムまたは発電システムに関する。
 また本発明は、上記太陽光(熱)吸収材を利用した、太陽光(熱)の吸収・調光能力に優れるとともに、この吸収・調光能力を容易に変更することが可能な太陽光(熱)吸収・調光資材、農業・園芸施設および住宅・建築物に関する。
 昨今の地球温暖化、化石燃料の枯渇など、地球全体が大きな問題に直面しているが、今後の持続的発展を可能とするために、太陽熱の利用が大いに期待されている。太陽熱の利用としては、従来から太陽熱温水器により水から湯に変換して、そのままシャワーや風呂などで利用したり、その温熱を利用した発電や冷房が行われている。
 太陽熱温水器としては、例えば、集熱部と蓄熱部が一体となった汲み置き式温水器、集熱部から蓄熱部を分離した自然循環式温水器、或いは強制循環式温水器が知られている。これらは形式が色々異なるが、基本的には太陽熱の吸熱材(集熱板)とそこで集めた熱を蓄熱材(一般的に水)に伝導して蓄熱する機能よりなる。従来より、太陽温水器において、その性能を向上させるために、太陽熱の吸収効率を上げること、集熱板からの放熱を抑えること、蓄熱部の温度を上げることなどが検討され、一方で製造コストの抑制も図られてきた。
 その中でも最も注力されたのは太陽熱の吸熱材であり、これまで、地表に到達する太陽光のスペクトル(紫外線、可視光線、赤外線)のうち、量的に多い2.5μm以下の光を吸収する黒色の材料、例えば、酸化クロム(ブラッククロム)、酸化ニッケル(ブラックニッケル)、酸化銅、亜鉛酸化物、酸化鉄等の酸化金属化合物などの黒色の無機化合物や有機物が開発されてきた(特許文献1ないし4)。しかしながら、これらはいずれも高価であり、上記製造コストの抑制への要請に反するものであった。
 また、蓄熱部の温度を上げるためには、太陽光の集光面積を上げることと集熱板からの放熱を抑えることが最も効果的であるということで、色々な提案がなされてきた(特許文献5ないし16)。
 しかし、これらはいずれも基本的には同じ原理に基づくものであり、画期的に高性能化、低価格化、小型化することは出来なかった。つまり、これまで提案されてきた太陽熱温水器の構造では、太陽光の吸収効率を向上させ、集光板の温度を上げることが蓄熱部への伝熱性能の向上のためには不可欠である。しかしながら、そうすると逆に集光板からの放熱(黒体放射∝σT)の増加が避けられなくなる。この放熱を抑制する為に、選択吸収膜を設置したり、集光板の設置した空間を真空にしたり、希ガスを封入したりすることが必要になり、装置の複雑化、大型化、高価格化を招いていた。
 このように、これまでの太陽熱温水器では、高性能化を実現するために、設備の複雑化、大型化、特殊材料の使用などが必要となり、これに伴って製造コストが上昇するため、必ずしも十分に普及するには至っていないのが実情であった。
 一方、植物の栽培には、光量、温度、湿度、養分、水、或いは風などの適当なストレスが必要である。特に、光量、温度は外部環境に大きく依存し、地理的要因、季節要因で栽培できる作物の種類や収量は大きく制限される。緯度の低い亜熱帯・熱帯では太陽光の量を如何に制限するか或いは栽培に適した温度にするかが極めて重要であり、地理的条件に合っていない作物の栽培はあきらめざるを得ないのが現状である。また、寒帯では栽培に適した温度にするのに多大なエネルギーコストを要し、また、光量を確保するのに多大な電気エネルギーを必要とする。
 下記の特許文献17乃至19には、多大な太陽光(熱)を制限するために、遮光フィルム・シートなどを作物や農業ハウスにかけることが記載されている。これらの太陽光(熱)吸収・調光資材は太陽光を制限する物質を農業フィルム・シートに練りこんだものであり、常に一定の比率で太陽光線をカットする。それにもかかわらず、太陽光(熱)吸収・調光能力を変更することができない。したがって、朝方や夕方および曇りの日などの日射量の少ない時間帯でさえも一定量の太陽光をさえぎるために、作物の栽培に適した光量にはるかに届かず作物の生育にむしろ逆効果になってしまうという問題がある。
 また、住宅や建築物も日中の日射によって屋根や壁が加熱され、内部の住空間の温度が上がり、住居環境が悪化する。温度上昇を低下させるために空調を行えば、そのための電気エネルギーは膨大となり、ひいては地球温暖化を促進するという悪循環をもたらしている。
 下記の特許文献20乃至22には、これを防ぐための窓の日射を制限する断熱フィルムが記載されている。これらの太陽光(熱)吸収・調光資材も、太陽光(熱)吸収・調光能力を変更することができないので、日射量の少ない秋冬や曇りの日などではむしろ障害になってしまうという問題がある。さらに、建物の壁、屋根の断熱材や断熱方法などについて改良が行われているが、こうした断熱方法は、パッシブの断熱方法のために断熱材自体の温度が上がり、それにつれて断熱効果は経時的に低下してしまうという問題がある。
特開2001-99497号公報 特開平7-139819号公報 特開2006-336960号公報 特開2006-214654号公報 特開2008-138899号公報 特開2004-176966号公報 特表2008-542681号公報 特表2002-517707号公報 特開2000-88359号公報 特開2008-133991号公報 特開平5-52427号公報 特開平6-137688号公報 特開2004-176966号公報 特開2005-265251号公報 特開2004-116964号公報 特表平11-512173号公報 特開2004-65004号公報 特開2009-45027号公報 特開2006-340675号公報 特開2001-287291号公報 特開2006-144538号公報 特開2009-169252号公報
 本発明は以上のような事情に鑑みてなされたものであり、優れた太陽光(熱)吸収能力を有する太陽光(熱)吸収材を開発し、これを利用して、簡易な構造で、低コストかつ高性能の吸熱・蓄熱材とし、さらにはこの吸熱・蓄熱材により発生させた温熱を利用した太陽熱温水器や冷房システム、発電システムなどを提供することを課題とする。
 また本発明は、上記太陽光(熱)吸収材を利用して、太陽光(熱)吸収・調光能力を容易に変更することができる太陽光(熱)吸収・調光資材を提供すること、および、不要な冷暖房のエネルギーを節約することができ、化石燃料の節約や地球環境の保全に貢献する農業・園芸施設や住宅・建築物を提供することを課題とする。
 本発明者らは上記課題を解決すべく鋭意研究した結果、バイオマスの炭化物などの粒子を水などの媒体に分散させた分散物は、優れた太陽光(熱)吸収・調光能力を有しており、これを吸熱・蓄熱材として利用すれば、従来の太陽熱温水器の概念を全く覆し、蓄熱材中に吸熱材を分散させて一体化した構造となって、構造の簡易化、低コスト化、高性能化という相矛盾する要求を全て満足し得ることを見出した。
 また、粒子の種類、サイズ又は分散濃度を変化させることにより、太陽光(熱)吸収・調光能力を容易に変更できることを見出し、本発明を完成させるに至った。
 すなわち本発明は、比熱が0.4~1.4cal/g/℃であり、融点が5℃以下の液体の媒体中にCIE-Lab標色系(光源D65)で測定したL値が30以下である粒子を分散してなる太陽光(熱)吸収材である。
 また上記太陽光(熱)吸収材において、粒子としてバガスなど微多孔を有するバイオマスの炭化物を用いたものである。このように微多孔を有することで、粒子の分散性の向上や太陽光(熱)の吸収性の向上をもたらすことができる。さらに、バイオマスを利用することで、安全性が高く、また環境に対する負荷を小さくすることができる。
 また本発明は、上記太陽光(熱)吸収材からなる吸熱・蓄熱材である。
 また、上記吸熱・蓄熱材が開口部を光透過体で被覆された容器に充填されてなる吸熱・蓄熱構造体である。
 また、上記吸熱・蓄熱構造体を利用した太陽熱温水器、冷房システム、発電システムである。
 さらに本発明は、中空部を備え、上面及び下面のうち少なくとも一面が透光性を有する板状体の中空部に上記太陽光(熱)吸収材が充填されてなる太陽光(熱)吸収・調光資材である。
 また、上記太陽光(熱)吸収・調光資材において、太陽光(熱)吸収材が外部機器との間で循環する構成としたものである。
 これにより、粒子を太陽光(熱)吸収材内に均一に分散させることができ、また太陽光(熱)吸収材に吸収蓄熱した太陽熱を別途利用できる。
 また上記太陽光(熱)吸収・調光資材において、外気の状況を検知する検知手段と、該外気の状況に基づいて太陽光(熱)吸収材の吸光度を調整する調整手段とをさらに備えたものである。
 これにより、外気の状況に応じて吸収・調光する太陽光(熱)を調整することができるので、時刻、天候、季節等の影響を受けず一定の日射量に制御することができる。
 また、上記太陽光(熱)吸収・調光資材において、外気の状況が照度及び/又は温度であるものである。
 また、上記太陽光(熱)吸収・調光資材において、前記太陽光(熱)吸収材が吸収した太陽熱を温水・温風又は冷水・冷風に変換する変換手段をさらに備えたものである。
 これにより、太陽光(熱)吸収材に吸収蓄熱した太陽熱を有効に利用することができる。
 また、上記太陽光(熱)吸収・調光資材が、窓ガラス、瓦、屋根材のいずれかであるものである。
 また、上記太陽光(熱)吸収・調光資材を壁及び/又は天井に使用した農業・園芸施設である。
 これにより、農業・園芸施設において不要な冷暖房のエネルギーを節約することができ、化石燃料の節約や地球環境の保全にも大きく貢献することができる。
 また、上記太陽光(熱)吸収・調光資材を壁、窓、屋根又は屋上の少なくとも一部に使用した住宅・建築物である。
 太陽光(熱)吸収・調光資材が、きわめて優れた断熱材として機能することで、室内の温調に要するエネルギーを飛躍的に低減できる。その結果、住宅・建築物において不要な冷暖房のエネルギーを節約することができ、化石燃料の節約や地球環境の保全にも大きく貢献することができる。
 本発明の太陽光(熱)吸収材は、優れた太陽光(熱)吸収能力を備えたものであり、さらに、無害なバイオマス由来の炭化物粒子を使用することにより、廃棄物の有効利用になるとともに環境に対する負荷を低減できる。またこれを吸熱・蓄熱材として利用した場合、吸熱材の粒子が蓄熱材の液体中に分散している構造であり、吸熱材の温度上昇に伴い、直接その周りに存在する蓄熱材に伝熱されるため、伝熱過程での熱の損失を抑制できる。従来であれば、吸熱材は吸熱による温度上昇に伴い、吸熱材自体からの黒体放射による熱の散逸が避けれらなかったが、本発明では吸熱材が蓄熱材中に分散しているため、吸熱材からの放熱も全て蓄熱材に吸収されることになる。このように、伝熱過程での熱の損失がなく、かつ外部への無駄な熱の散逸がないため太陽熱の吸収効率が高い。
 さらに、高温の熱を得るために、従来では面積の大きい集光板と面積の小さい蓄熱槽が組み合わせられていたが、集熱板の面積を大きくするに伴い放熱量も大きくなるため、その為の対策を要するという悪循環に陥っており、効率性やコストの面から必ずしも十分なものとはいえなかった。これに対し、本発明では、蓄熱温度は吸熱・蓄熱材層の厚みによって調整できるため、極めて簡便かつ低コストで高温の熱を得ることが可能である。
 また本発明の太陽光(熱)吸収・調光資材は、粒子の種類、サイズ又は分散濃度を変化させることにより、太陽光(熱)吸収・調光能力を容易に変更することができる。また、農業・園芸施設や住宅・建築物に利用することにより、不要な冷暖房のエネルギーを節約することができ、化石燃料の節約や地球環境の保全にも大きな効果を奏する。
本発明の吸熱・蓄熱構造体の一実施形態を示す模式的な断面図である。 本発明の冷房システムを示す図である。 本発明の太陽光(熱)吸収・調光資材の一実施形態を示す概略図であり、(a)は透視図、(b)は上面図、(c)は正面図、(d)は側面図である。 実施例2における擬似太陽吸収試験の方法を示す模式的な図である。 実施例3における吸収特性試験の結果を示す図である。 実施例4における温度上昇試験の結果を示す図である。 実施例5における各炭化温度によるバガス炭のSEM写真であり、(a)300℃、(b)400℃、(c)500℃、(d)600℃、(e)700℃、(f)800℃である。。 実施例5における、バガス炭の炭化温度とUV-VIS領域での透過率との関係を示す図である。 実施例6におけるバガス炭分散濃度とUV-VIS領域での透過率との関係を示す図である。 実施例7における疑似太陽光の照射時間と吸収材の温度上昇率との関係を示す図である。 実施例7におけるバガス分散濃度と太陽光(熱)吸収材の温度上昇率との関係を示す図である。 実施例8における擬似太陽光の強度と太陽光(熱)吸収材の透過率との関係を示す図である。 実施例8において、外気照度が変化した場合にハウス内の照度を300μmol/sec/mに保つために必要なバガス炭分散濃度を示す図である。 実施例9において、太陽光(熱)吸収・調光資材を戸建て住宅の断熱材として使用した例を示す模式図である。 実施例10において、太陽光(熱)吸収・調光資材を戸建て住宅の断熱材として使用した場合の冷房負荷の低減状況を示す図である。
 本発明の太陽光(熱)吸収材は、比熱が0.4~1.4cal/g/℃であり、融点が5℃以下の液体の媒体中にCIE-Lab標色系(光源D65)で測定したL値が30以下である粒子を分散させたものである。
 本発明で用いる媒体(分散液)は、比熱が0.4~1.4cal/g/℃であり、融点が5℃以下の常温で液体のものであり、このような比熱、融点の範囲とすることにより、使用媒体の量も適正化が可能で且つコスト的にも有利となる。又、融点は5℃以下とすることによって多くの場所、時間帯で使用可能とすることができる。具体的には、水、脂肪族モノアルコール、脂肪族ジアルコールおよび炭化水素等が例示できる。水は、そのままでも良好に使用できるが、融点を下げるためまたは細菌等の増殖を抑えるために、塩化カルシウム、塩化ナトリウム、塩化マグネシウム、塩化カリウム、塩化ストロンチウム、塩化リチウム、塩化アンモニウム、塩化バリウム、塩化鉄、塩化アルミニウム等の金属塩化物或いは同系列の臭化物等の無機化合物やエタノール、エチレングリコール、プロピレングリコール、グリセリン、蔗糖、ブドウ糖、酢酸、蓚酸、コハク酸、乳酸等の有機化合物を分散・溶解して用いてもよい。脂肪族モノアルコールとしては、エチルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコール、ヘキサンアルコール等が挙げられる。脂肪族ジアルコールとしては、エチレングリコール、ポロピレングリコール、ポリエチレングリコール、ポリプロピレングリコールが例示できる。炭化水素としては、パラフィンやベンゼン、キシレン、クロルベンゼン等の芳香族炭化水素または塩素化芳香族炭化水素が挙げられる。これらの中でも、安全性や取り扱い容易さ、腐食性のなさ、低価格という点から水が最も好ましいが、高温の熱が必要な場合は沸点の高いエチレングリコール、グリセリン、或いはこれらと水の混合溶液等が用いられる。
 一方、粒子は、太陽光(熱)を吸収するために色は黒いほうが良く、物体の色調を表現する国際規格であるCIE-Lab表色系で表せば、物体の白さと黒さの基準であるL値(L-値)が30以下であり、好ましくは28以下、更に好ましくは3~25である。L値は、0が黒体を表しすべての光を吸収する基準であり最も好ましいが、この値を0にするには非常にコストもかかり、且つ、歩留まりも悪い。そのL値からわかるように、粒子自体でも太陽光の吸収はできるが吸収の程度の調整や吸収した熱の利用には不適当である。そこで、本発明では吸収の程度の調整や吸収した熱の利用を可能にするため、粒子を上記媒体に分散して使用する。具体的には、バイオマスの炭化物、市販されているカーボンブラック、カーボンナノチューブ、鉄黒、銅-鉄黒、その他の有機顔料や無機顔料等が例示できる。しかし、鉄黒、銅-鉄黒、その他の有機顔料や無機顔料等を使用する場合は安全性や媒体への分散性などに十分に留意することが重要である。一方、バイオマスの炭化物は安全性に優れるとともに、上記媒体に対する分散性に優れ、また環境に対する負荷が小さいために好適に用いられ、例えば、さとうきびの絞り粕、コーヒーの絞り粕、豆乳の絞り粕、籾殻、米ぬか、酒等の発酵後の絞り粕(もろみ)、各種天然繊維、木材等の炭化物が挙げられる。こうしたバイオマスは人工のものと異なり、生命現象に起因する微細な空孔(ボイド)構造を有する。このボイド構造は炭化後も残り、嵩比重を低下させ媒体中への分散性や太陽光(熱)吸収・蓄熱特性を向上させる。ボイド(微多孔)の大きさは、バイオマスの種類によってもまた炭化条件によっても調整可能であるが、本発明の用途に使用する場合は、孔の開口部の長径が高々100μm、好ましくは5~50μmである。ボイド(微多孔)の比率(面積比)は少なくとも10%、好ましくは20~70%である。このようなバイオマスの炭化物は、公知の方法に従って製造することができ、例えば、さとうきびの搾り粕であるバガス(bagasse)の炭化物の粒子は以下の方法によって製造することができる。
 サトウキビ畑から収穫されたサトウキビは根、葉、頭部分が切り落とされた形で製糖工場へ入荷される。その後、熱水や蒸気をかけながら、金属ローラーを数回通してサトウキビを圧搾し砂糖汁を絞る。そうするとほぼ糖分のない絞り粕(バガス)が出来てくる。このバガスは水分を含んでいるので、炭化の前に100℃以上の温度で乾燥する。乾燥時には、バガスの変質を抑えるために窒素等非酸化性の雰囲気中で行う方が好ましい。乾燥後は、通常の電気炉などでやはり窒素雰囲気で加熱炭化する。炭化の熱源としては外部加熱の熱源やバガスの一部を燃焼させて発熱させる自己燃焼熱源などを利用する。実験室で行う場合は、マッフル型の電気炉で窒素ガスを流しながら、常温から5~50℃程度の昇温速度で加熱しながら所定の温度、通常200℃以上、好ましくは300~1000℃、更に好ましくは400~900℃まで加熱する。昇温速度が50℃より速い場合は、不均一な温度分布になりやすく、又、5℃より遅い場合は経済的に不利である。所定の温度に到達したら、その温度で一定時間、例えば少なくとも1時間、好ましくは2~5時間加熱を続ける。加熱時間が1時間よりも短い場合は加熱の部分的な斑がある場合が多く、長すぎると経済的に不利なるばかりか品質的な劣化が見られる。加熱後も窒素を流しながら自然冷却で室温まで冷却することが好ましく、このようにしてバガスを原料とした黒色の炭が得られる(バガス炭)。このバガス炭を、ブレンダー等で粉砕処理し、必要に応じ分級することにより、バガス炭化物の粒子が得られる。
 上記粒子は、媒体への分散性の点から、嵩比重が0.3以下、好ましくは0.05~0.2g/ml程度であることが好ましい。なお、嵩比重は、JISK7365-1999(規定漏斗から注ぐことが出来る材料の見掛け密度の求め方:ISO60:1977)により測定した値である。
 また、上記粒子は、粒子径が3mm以下であることが好ましく、より好ましくは0.01~1mmであり、この範囲であると媒体への分散性が良好となる。このような粒子径を持つ粒子は、篩で分級することによって得られる。つまり、3mm以下の粒子は6メッシュの篩で通過したものを集めることによって得られ、又、0.01~1mmの粒子は、16メッシュの篩を通過して170メッシュの篩の上に回収されたものを集めることによって得ることが出来る。正確な個々の粒子の粒子サイズは顕微鏡によって観察できるが、形状の多様性によって誤差が生じる場合があるため、実用上は上記の篩を使って適したサイズの粒子を回収して使用することが好ましい。
 本発明の太陽光(熱)吸収材においては、媒体に対して、粒子を通常0.01~5質量%、好ましくは0.1~1質量%程度、更に好ましくは0.3~0.7質量%(以下、単に「%」で示す)分散させればよい。本発明の特徴は、バイオマス炭粒子であれば、極めて低濃度の分散でも十分な太陽熱吸収・蓄熱効果および太陽光(熱)吸収・調光効果が見られることである。媒体中に粒子を分散させるにあたっては、常法に従って行うことができ、例えば、各種の攪拌羽を有する回転羽式攪拌機、振動板を有する振動式攪拌機、回転することによって攪拌する回転式攪拌機、液流を起こす或いは衝突させることによって攪拌する液流式攪拌機、ボールミル、回転スクリューを有するエクストルーダーなどの攪拌機等を用いて分散させることができる。一般に、粒子の分散密度が大きく媒体の粘度が大きい場合は、回転羽式攪拌機、エクストルーダーなどを使用するが、粒子の分散密度が低く媒体の粘度が低い場合は、エクストルーダー以外の攪拌機ならばすべて使用可能である。また分散の程度は分散体の外観によって容易に判断可能である。
 本発明の太陽光(熱)吸収材には、さらに50~120℃の温度域に相転移温度を有する物質を媒体とは直接接触しない状態で存在させることもできる。例えば、太陽光(熱)吸収材を吸熱・蓄熱材として太陽熱温水器などに使用する場合、日射による集熱時間と給湯・冷暖房の必要な時間が必ずしも一致しない場合がある。そのような場合に、例えば、50~120℃、好ましくは70~120℃の温度域に相転移温度を有する物質を媒体とは直接接触しない状態で存在させると、これらの物質に蓄熱された熱を夜間に利用することが可能となる。このような物質として、所謂蓄熱材を使用することができ、例えば、パラフィン、ポリエチレンワックス、ポリエチレン、アルファオレフィンコポリマー、エチレンメタクリレートコポリマー、エチレンビニルアルコールコポリマー、変性ポリエステル、ポリカプロラクトン、ポリブチルサクシネート、ポリエチレンサクシネート、或いはこうしたポリマーの2種以上のアロイ、或いは上記の温度域に融点を持つ低分子化合物が上げられるが、成形性や操作性、安全性の点でポリマー、オリゴマー領域の分子量を有する物質、例えば、ポリエチレン、アルファオレフィン、エチレンビニルアルコールコポリマー、変性ポリエステル等を使用するのが好ましい。これらの物質を媒体中に直接接触しない状態で存在させるためには、上記物質の融点より高い物質に含有する方法、例えばカプセル化法、チューブに詰める方法、袋に詰める方法などに色々な方法が採用できる。また、蓄熱材の種類や量は、用途や性能によって適宜決めることが出来る。例えば、夜間に多くの熱を使用する場合は使用量を多くし、高温の熱が必要な場合は高温の融点を持つ蓄熱材を使用する。
 本発明の吸熱・蓄熱材は、上記太陽光(熱)吸収材からなるものであり、上記比熱が0.4~1.4cal/g/℃であり、融点が5℃以下の液体の媒体中に上記CIE-Lab標色系(光源D65)で測定したL値が30以下である粒子を分散させたものである。このように吸熱材の粒子が蓄熱材の液体媒体中に分散しており、吸熱材の温度上昇に伴い、直接吸熱材の周りに存在する蓄熱材に伝熱されるため、伝熱過程での損失が少ない。また従来であれば、吸熱材は吸熱による温度上昇に伴い、吸熱材自体からの黒体放射による熱の散逸が避けられなかったが、本発明は吸熱材が蓄熱材の中に分散しているため、吸熱材からの放熱も全て蓄熱材に吸収されることになり、外部への無駄な熱の散逸がないため吸収効率が高い。
 本発明の吸熱・蓄熱構造体は、上記吸熱・蓄熱材が開口部を光透過体によって被覆された容器に充填された構造となっている。図1は本発明の吸熱・蓄熱構造体の一実施形態を示す模式的な断面図である。1は吸熱・蓄熱構造体全体、2は容器、3は光透過体、4は断熱材、5は吸熱・蓄熱材である。容器2の材質は金属、ガラス、樹脂等であり、発泡スチレン、発泡ウレタン、等の有機発泡材やガラス繊維、無機繊維等の断熱材で被覆されていることが好ましい。また、光透過体3としては、ガラス等が使用され、容器2に気密的に取り付けられ、その内部に吸熱・蓄熱材5が満たされている。勿論、蓄熱した媒体から放射される熱線を反射する選択透過膜を付けていても良い。吸熱・蓄熱層の厚み(液深)は、550nmの光の透過率が10%以下となる厚みとすればよく、好ましくは5%以下となる厚み、更に好ましくは1%以下となる厚みである。例えば、バガス炭粒子を水に分散した場合、0.3質量%程度の分散濃度でも、厚さが10mmあれば、ほぼ99%以上の太陽光(熱)を吸収することが可能である。光の透過率が10%を超えると、太陽光(熱)の吸収にはほぼ問題はないものの、設置された架台や屋根が加熱されるなどの問題が生じる場合がある。本発明の吸熱・蓄熱構造体においては、蓄熱温度は吸熱・蓄熱材料層の厚みを薄くするほど高くなるため、簡便かつ低コストに蓄熱温度の調整を行うことが可能である。
 上記吸熱・蓄熱構造体で蓄熱された熱を種々の太陽熱利用装置に利用することができる。例えば、上記媒体として水を使用した場合には、加熱された吸熱・蓄熱材から粒子を濾過等の公知の分離手段によって取り除くことにより、太陽熱温水器としてそのままシャワーや風呂などに利用することができる。
 また、蓄熱した熱を吸収式冷凍機または吸着式冷凍機の熱源とすることによって冷房システムとして利用することができる。図2は本発明の太陽熱吸収・蓄熱材によって集熱された温水等の熱媒を高温側熱源として利用した吸収式冷凍機の一形態を示す図である。11は本発明の吸熱・蓄熱構造体、12は熱媒体管、13は再生器、14は凝縮器、15は熱交換器、16は吸収器、17は蒸発器、18は吸収剤ポンプ、19は冷媒ポンプ、20は冷却水管、21は媒体、22は吸収剤、23は冷媒液を表す。要求される高温側の熱源温度は、吸収式冷凍機の方式によっても変わるが、少なくとも65℃、好ましくは70℃程度である。上限は特に制限されない。例えば、図2のような方式の多段効用方式であれば、熱源温度が高温であれば2段効用、3段効用・・・とより効率的な冷凍機にすることができる。
 さらに蓄熱した熱を温度差発電の熱源として利用することによって太陽熱を利用した発電システムとすることができる。温度差発電は、例えば、海洋温度差発電のように高温側の熱源で低沸点の溶媒を蒸発・膨張させてその機械エネルギーでタービンを回して発電をおこなう方式である。
 本発明の太陽光(熱)吸収・調光資材は、上記太陽光(熱)吸収材が、中空部を備えた板状物の中空部に充填されてなるものである。図3に、本発明の太陽光(熱)吸収・調光資材30の一実施形態の概略図を示す。図3(a)は本発明の太陽光(熱)吸収・調光資材30の透視図、図3(b)は同上面図、図3(c)は同正面図、図3(d)は同側面図である。太陽光(熱)吸収・調光資材30は、板状物31の中空部に太陽光(熱)吸収材32が充填された構造であり、上面31aおよび下面31bのうち、少なくとも一方は透光性を有する。
 太陽光(熱)吸収材32が充填される中空部の厚さd(上面と下面の距離)は目的や要求性能によって任意に設定できるが、太陽光の吸収には通常高々20mm、好ましくは3~10mmである。空間の厚みが厚ければ、それだけ重量が大きくなり設置などに負担になる。また、余りに薄ければ粒子の分散状態が不均一になることがある。
 板状物31は、ガラス板や、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリ塩化ビニル、ポリアセタール、ポリフェニレンオキサイド、ポリビニルブチラール、ポリ4-メチルペンテン-1等の熱可塑性ポリマーまたはメラミン樹脂、エポキシ樹脂、フェノール樹脂、ウレタン樹脂、ジアリルフタレート樹脂、不飽和ポリエステル樹脂等の熱硬化性樹脂等から形成される樹脂板などから構成される。板状物31を構成するガラス板や樹脂板の厚みは薄い程、小型・軽量化、低コスト化できるが、強度や耐久性等の関連もあるので、通常1mm以上20mm以下、好ましくは2mm以上10mm以下、特に面積が、例えば1m以下のような場合は2mm以上5mm以下でも十分である。尚、板状物31の中空部の厚さを維持するために、部分的に強化材(リブ)を使用することも好ましい。このリブは内部に充填した分散液の流路を制御することにもなり好ましい。板状物31の上面31aおよび下面31bのうち、少なくとも一方は、透光性を有することが必要であるが、両方に透光性を有する板状物31を設置すれば、透過光を得ることが可能である。板状物31は、常法に従って、構成するガラス板や樹脂板を接合したり、樹脂原料から一体成型することにより得られる。太陽光(熱)吸収材32を板状物31に充填するにあたっては、板状物31を構成するガラス板等の一面を残して成形し、そこから太陽光(熱)吸収材32を充填した後、残りのガラス板等を接合して密封したり、一体成型された板状物31に開口部を設け、そこから太陽光(熱)吸収材32を充填した後、開口部を閉塞する方法などが挙げられる。
 このような構造の本発明の太陽光(熱)吸収・調光資材30は、粒子を媒体中に分散させることによって、太陽光(熱)の効率的な吸収が可能となり、且つ吸収した粒子からの黒体放射による熱の放出が粒子を分散している媒体に吸収されるために外部への熱の放出を極力抑えることができ、太陽光(熱)吸収効率が極めて高くなる。例えば、バガス炭粒子を0.5質量%分散したエチレングリコール液では、太陽光(熱)吸収材が充填される空間の厚さが5mmあれば、擬似太陽光として多用されているメタルハライドランプの光を99%以上吸収することがわかっている。これは、図4に示す方法で測定できる。
 本発明の太陽光(熱)吸収・調光資材において、太陽光(熱)吸収材32中の粒子の分散濃度は、太陽光(熱)を吸収或いは透過率の制御ができるものであれば良く、また、対向する板状物31の空間の厚さによっても異なるので、一律に限定できないが、通常、太陽光(熱)を99%以上吸収する場合は、少なくとも0.5質量%が必要である。
 本発明の太陽光(熱)吸収・調光資材は、これと接する外気の状況に基づいて、太陽光(熱)吸収材の吸光度を調整することもできる。ここでいう外気の状況としては気温、日射量などが挙げられるが、これらに限定されるものではない。気温、日射量は、パソコンに自動入力可能な記録計付きの温度計や日射量計などで検知することができる。太陽光(熱)吸収材の吸光度を調整するためには、粒子の分散濃度や厚さを変化させればよいが、分散濃度を変化させるほうが現実的である。具体的には、粒子の濃度を数段階に変化させた調整用の太陽光(熱)吸収材と希釈用の水の貯槽を用意しておき、これらの貯槽にそれぞれ付設した送液ポンプの流量を変えることで、粒子の分散濃度を変化させることができる。すなわち、外部の照度が大きいとき(明るいとき)には、分散濃度の高い太陽光(熱)吸収材の送液量を増やして粒子の分散濃度を大きくすることにより、太陽光(熱)吸収・調光資材を透過する透過光の量を減少させる。一方、外部の照度が不足する場合には、添加する水の量を増やして粒子の分散濃度を小さくすることにより、太陽光(熱)吸収・調光資材を透過する透過光の量を増加させる。なお、粒子の分散濃度の測定は一定の流路幅(例えば、10mm)を有する透明部分を作り、所定の波長(例えば、550nm)の光を通してその吸光度を測定することによって求めることができる。このようにして、外気の状況に基づいて太陽光(熱)吸収材の吸光度を調整することにより、太陽光(熱)吸収・調光資材を透過する日射量を一定にすることができる。
 本発明の太陽光(熱)吸収・調光資材は、窓ガラス、瓦または屋根材の形態とすることができる。具体的には、光を通す二重構造の窓ガラスの中間に太陽光(熱)吸収材を含有せしめて窓ガラスとして使用できる。このことによって、透明性の調整、日射量の調整や室内温度の調整が可能となる。これは、従来知られているホトクロミック材料よりも安価で且つ駆動電力を必要としないなど多くの特徴をもつ。また、瓦や屋根材の形態とする場合、例えば、光を通す瓦や平板式の屋根材の中間層に本発明の太陽光(熱)吸収材を含有させることも可能である。それによって、屋根からの日射量の調整や、温度の調整が可能となる。従来は、例えば、屋根から太陽光を入れる場合は、固定式のガラス板を使っていたが、これでは夏の暑い日でも太陽光が部屋に入り屋内の温度が上がるという問題があるが、本発明では、太陽光(熱)吸収材中の粒子の含有率を調整し、吸光度を制御することが出来るため、夏場は日射を遮り、冬場は日射を入れることが容易に可能となる。
 また、本発明の太陽光(熱)吸収・調光資材は、農業・園芸施設の壁、天井等に設置することができ、あるいは農業・園芸施設の天井材や壁材の形態とすることもできる。太陽光(熱)吸収材は太陽光(熱)の吸収効果や制御調整効果を持つため、農業・園芸施設に入射する太陽光(熱)を制御して、例えば、施設内部の高温化を抑制したり、光の量を調整することができる。沖縄では、夏場の日中の太陽光線の量は2500μmol/m/sec(マイクロモル/平方m/秒)になるが、夏野菜の必要日射量は200~300μmol/m/secであり、日中の日差しが強すぎて夏野菜が殆ど栽培できない。しかし、本発明の太陽光(熱)吸収・調光資材を農業・園芸施設の天井材や壁材としたり、外壁、屋根等に設置することにより、日射量の調整ができれば、十分に栽培が可能になる。また、太陽光(熱)吸収材の内部に分散した粒子の量を変化させ吸光度を調整することによって、太陽光の透過率の調整が可能であることは前述したが、この機能を利用すれば、朝夕の日射量の少ない場合は、分散濃度を薄くして太陽光線の透過量を上げて、日中の日射量の大きい日中では分散濃度を上げて透過量を下げることによって、内部に到達する太陽光の量を適度な量に調整できるという大きな特徴を有する(図12参照)。
 本発明の太陽光(熱)吸収・調光資材は、一般住宅や建築物の窓、壁、屋根、または屋上に設置することもでき、このことによって、太陽光(熱)による住宅や建築物の加熱を大幅に抑えることができる。例えば、窓に設置することによって、日差しの量の調整が可能となる。また、壁、屋根または屋上に設置すれば、極めて高性能の断熱材として機能する。
すなわち、上記したように、粒子を分散液中に分散させ、その濃度を任意に調整し吸光度を制御できるようにしたことによって、太陽光(熱)の透過率を調整できるという大きな機能を発現させることができる。この調整機能を日中の日射量と連動させると、日射量の調整や日射時間を任意に調整することができるようになる。これは、農業・園芸施設や一般住宅、建築物の新しい日射量、日射時間或いは室内環境調整方法である。
 本発明の太陽光(熱)吸収・調光資材における太陽光(熱)吸収材は、板状物の中空部内に留めておくことも可能であるが、タンクなどの外部機器との間で循環させることも可能である。循環には、通常はポンプを使うが、太陽光(熱)を吸収して温度上昇した媒体の比重の変化を利用した自然循環も可能である。循環させることによって、太陽光(熱)吸収材に吸収蓄熱した太陽熱を別途利用できる。
 また、本発明の太陽光(熱)吸収・調光資材に含まれる太陽光(熱)吸収材に吸収した太陽熱を温水・温風に変換し、そのまま家庭やオフィスビル、工場などの温水や暖房として利用することは勿論であるが、冷水・冷風に変換することも可能である。例えば、吸収式冷凍機、吸着式冷凍機の高温熱源として使用することによって、室内の冷房ができる。より具体的には、太陽熱から変換された温水を、そのまま高温の熱源にした吸収式冷温水機に使用しても良いし、或いは排熱投入型ガス吸着冷温水機の主要な熱源として利用することにより冷風を生成することができる。このようにバイオマス由来の炭化物粒子を利用した太陽光(熱)吸収・調光資材と、排熱投入型ガス吸着冷温水機とを組み合わせることにより、再生可能エネルギーを有効活用した省エネルギー性の高い冷暖房システムを実現することが可能となる。
 次に実施例を挙げて本発明を更に詳しく説明するが、本発明はこれら実施例に何ら制約されるものではない。尚、%単位は特に表示しない限り質量%とする。
 実施例1
  バガス炭化物の調製(1):
 平成20年に沖縄県宮古島で生産されたサトウキビの絞り粕(バガス)を用いた。先ず、バガスを窒素気流下で100℃、12時間かけてバガスを乾燥させた。得られたバガスは乳白色のきれいな10mm以下の粒状であった。このバガスを電気炉に入れて窒素気流下で常温から毎分5℃で昇温して、500℃または700℃まで加熱した。所定の温度に達したら、その温度で5時間保持して炭化処理を行った。その後は窒素を流しながら自然冷却で室温まで冷却した。バガスはいずれも黒色の炭になっていた(バガス炭)。このバガス炭をステンレス製の実験用のブレンダーで14000回転で10分間粉砕した。粉砕後、100メッシュのステンレス製篩(目開き:150μm)にかけて通過した粒子を回収した。いずれも、均一な粒子状であり流動性も良好であった。それぞれの、(L値、嵩比重)は次の通りであった。500℃(27.2、0.077)、700℃(29.0,0.0863)。尚、嵩比重はJISK7365-1999(規定漏斗から注ぐことが出来る材料の見掛け密度の求め方:ISO60:1977)に準じて評価した。
 実施例2
  疑似太陽光吸収試験(1):
 直径10cmのシャーレに、実施例1で得られたバガス炭(500℃)を0%、0.5%の濃度で分散したエチレングリコール(EG)液を深さ1cmになるように入れ、疑似太陽光として市販のハロゲンランプ(東芝製)を用い、光量を2800μmol/m/secの強さ(夏場の那覇市の日射量に相当する)になるように出力を調整して照射し、シャーレを透過する光量を測定した。光量は市販の光量子測定器(Quantum meter)にて測定した。バガス炭を入れていないEG液(比較例)では2660μmol/m/secの光量子が測定され、照射光が殆ど吸収されないことがわかる。一方、バガス炭を0.5%分散したEG液を通過した光量子は0.9μmol/m/secであり、これは99.97%の光が吸収されたことを示す。実験方法を図4に示す。
 上記試験によって、バガス炭を媒体にわずか0.5%分散するだけで媒体の厚さ1cmで太陽光(熱)を完全に吸収できることが判明した。分散濃度が上がればこの厚さは更に薄くても完全に吸収することが出来る。又、この時に太陽光(熱)を吸収するバガス炭は媒体中に分散している為に吸収した熱は直ちに周りの媒体に伝熱されることになる。これは、従来の太陽熱集熱器が媒体を間接的に加熱する方式であるのに対して直接加熱といえ、効率は非常に高くなる。従って、非常に薄型でも集熱効率は100%にすることが可能となり、さらに薄型であるために軽量となり大面積での設置も容易になる。
 実施例3
  吸収特性試験(1):
 バガス分散液の光吸収特性を詳細に観察するために、実施例1で得られた500℃で炭化して100メッシュの篩を通過したバガス炭の分散濃度を0%(比較例)、0.1%、0.5%と変えたEG媒体の紫外-可視吸収スペクトルを観察した。測定セルは幅10mm厚さ10mmの石英セルを使用した。測定のレファランスはバガス炭をいれないEG液とした。測定は200nmから近赤外領域の1100nm迄の光の透過率スペクトルを測定した。結果を図5に示す。
 図5から、0.1%の分散濃度では全波長領域で30~35%の透過率があるが、0.3%以上になると殆ど1%未満の透過率しか示さず、殆どの光を吸収することが示された。尚、350nmでのグラフの不連続は光源の変更による機械的なものである。この結果は、実施例2の結果と同様の意味を有する。又、0.1%で中程度の透過率を示すことは、本発明が例えば、窓などに使用された場合、光や日射量の調整機能を有することも示している。
 実施例4
  温度上昇試験:
 実施例1で得られたバガス炭(500℃)を0.5%の濃度になるようにEG液に分散した。バガス炭を添加しないEG液をコントロールとした。この分散液を実施例2と同様に疑似太陽光を1997μmol/m/secの強さ(夏場に近い那覇市の日射量に相当)で照射し、内部の液温の温度上昇率の経時変化を記録した。結果を図6に示す。
 この結果より、バガス炭0.5%分散EG液はコントロールに比べて内部の液温の上昇は高いことがわかる。曲線の切片も図に示すが、この傾きは、バガス炭0.5%分散EG液で9.5℃/分、コントロールで2.7℃/分である。即ち、本発明では5分で50℃の温度上昇が見込めるということを示し、これは従来の報告にない極めて高い温度上昇である。バガス炭の分散媒体としてEG液を使用したがEGを使うことによって、水では達成できない100℃以上の温度を容易に生産できることがわかった。なお、バガス炭を入れていないEG液そのものの温度が上がっているのは、EGが1200nm以上の赤外線を吸収するからである。
 実施例5
  バガス炭化物の調製(2):
 製糖工場(宮古島)から、頂いたバガスを300~800℃にて炭化した。具体的には、以下の方法・条件でバガスの炭化処理を行った。まず、製糖工場より入手したバガスをそのまま先ずN中100℃で24時間乾燥し、絶乾状態とした。次いで、マッフル炉に入れて、N気流中で室温から5℃/分の昇温速度で所定の温度(300~800℃)まで昇温する。所定の温度に昇温できたら、その温度で3時間維持して炭化した。その後は自然冷却で室温まで戻し、バガス炭を得た。得られたバガス炭の性状を観察した結果を表1、2に示す。いずれも良好な炭化物であるが、a,b-値からもわかるように300℃以下での炭化物は幾分色調や炭化率(全炭素量)が他の物とは異なった。しかし、L値は30以下であり、本発明には十分に使用可能である。また、得られた炭化物のSEM写真を図7に示す。(a)は300℃の炭化温度で得られた炭化物のSEM写真を、(b)は400℃の炭化温度で得られた炭化物のSEM写真を、(c)は500℃の炭化温度で得られた炭化物のSEM写真を、(d)は600℃の炭化温度で得られた炭化物のSEM写真を、(e)は700℃の炭化温度で得られた炭化物のSEM写真を、(f)は800℃の炭化温度で得られた炭化物のSEM写真を示す。全ての炭化物で良好な微多孔状態を有することがわかる。写真から、孔のサイズはほぼ10μm前後であることがわかった。又、嵩比重(密度)はいずれも非常に低く、表2の例では高々96.3(mg/cc)であった。こうした、微多孔性や低比重の為に良好な分散性を示すことがわかった。又、多数の微多孔は太陽光(光)の吸収に大きな効果を有するものであった。ついで、得られたバガス炭を、ブレンダー(HB250S、Hamilton社製)にて微粉砕し、次いでステンレス網の100メッシュの篩にてふるい通過した粒子サイズ(150μm以下)を回収した。
 このバガス炭の微粒子をEG(エチレングリコール)0.1%の濃度で分散液に分散したバガス分散液の紫外-可視(UV-VIS)領域での透過率を図8に示す。尚、対照品はEGそのものを使用した。図の右側の数字は炭化温度を示す。これにより、炭化条件が変わると透過率が変わるが波長によって透過率が大きく変動することはないことがわかった。炭化温度については、400、500、600、800℃のものが透過率が低くこの範囲での光を良く吸収することがわかった。
 尚、色差はミノルタ製の色差計(CR-300)を用いた。光を通さないプラスチックの容器にバガス炭を入れて、色差計をバガス炭に密着させて測定した。使用した光はD65(6500℃の光温度で昼色光に相当する)を使用した。色差表示はCIE表色系のL-値,a-値,b-値を使用した。嵩比重はJISK7365-1999(規定漏斗から注ぐことが出来る材料の見掛け密度の求め方:ISO60:1977)により評価した。また、全炭素量(TC)の測定は、乾燥した分級前のサンプルを,燃焼法(NC-90A,島津製作所)を用いてNOおよびCOを測定し,それより全窒素率,全炭素率を算出した。比表面積の測定は、真空条件で24時間脱気したサンプルに液体窒素雰囲気下でNを吸着させ,比表面積/細孔分布測定装置(Trister3000、島津製作所)を用いて測定した。バガス炭の微細構造はSEMにより観察した。SEM観察は、島津製作所製イオンコーター(SS-500)にて金を定法通りコーティングした後観察した。UV-VIS測定は、島津製作所製分光光度計(UV-1600PC)にて定法により測定した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例6
  吸収特性試験(2):
 実施例5で作成した600℃炭化バガス炭を用いて、EGへの分散濃度を0.1%、0.5%、1%と変えて、実施例5と同様にUV-VIS領域での光の透過率を測定した。UV-VIS測定は、島津製作所製分光光度計(UV-1600PC)にて定法により測定した。バガス炭分散濃度とUV-VIS領域での透過率との関係を図9に示す。0.1%では全波長領域で約30%程度の透過率を示すが0.5%以上の分散濃度になると殆ど光の透過率はなくなった。即ち、バガス炭の分散濃度を調整すれば太陽光の良好な調光材になることがわかった。
 実施例7
  疑似太陽光吸収試験(2):
 実施例5で作成した炭化物の内600℃で炭化したバガス炭と、媒体としてEGとを用いてバガス分散液を調製し、実施例2と同じ方法による疑似太陽光での光透過率の評価とバガス分散液の温度上昇試験を行った。疑似太陽光(メタルハライドランプ:500wを4個)の光の強度を2800μmol/sec/mに調整した。この値は、那覇市の夏場の日中の太陽光の強さに相当する。疑似太陽光源とセンサー(光量子カウンター)との間にバガス炭分散液(液深5mm)を置き、そこを透過してくる光をセンサーで測定した。バガス炭なし(EGのみ)では、95%の光を通すが、バガス炭を0.5%分散したものでは99.97%の光を吸収した(0.03%の光を通した)ことがわかった。同様の実験系で、バガス炭の濃度を0%、0.1%、0.3%、0.5%と変えて疑似太陽光の元に置き、バガス分散液の温度の上昇を熱電対で測定した。結果を図10に示す。バガス炭なしでも一定の温度上昇は見られるが、バガス炭を分散させると分散濃度に依存した温度上昇が見られた。照射時間0分での温度上昇カーブの切片の傾きを温度上昇率とすると、0%では2.7℃/分、0.1%では5.4℃/分、0.3%では7.5℃/分、0.5%では9.5℃/分となり、バガス炭を多く分散させることにより疑似太陽光(熱)吸収性能が大きくなることがわかった。この傾向を図11に示す。図11の外挿値から、例えばバガス炭を1%分散させると15℃/分、2%分散で27℃/分という大きな昇温速度が得られることがわかった。
 実施例8
  粒子の分散濃度の変化:
 本発明は、媒体に分散させる粒子の添加量を変えることによって、太陽光(熱)吸収材の太陽光(熱)吸収・調光能力を容易に自由に変えることが出来ることが大きな特徴である。疑似太陽光の光量を約500,1000,1500,2000,3000μmol/sec/mと変えて、且つ、バガス炭の分散濃度を0-0.5%まで0.1%刻みで変えた太陽光(熱)吸収材(バガス分散液)を調整した。それぞれの光量での農業ハウス内部の照度(Lx)をシミュレーションすることを目的として、図4に示す装置にて光量子カウンターの脇から光が入らないように十分に注意して太陽光(熱)吸収材(液深5mm)を通過した光量子数を測定した。この結果を表3に示す。また、表3のデータにおいてバガス炭濃度0%での値を100としたときの他の照度比及び透過率をそれぞれ表4及び図12に示す。幾分ばらつきはあるが、殆ど同様の光透過率-バガス炭濃度曲線を示した。これにより、光量が大きく変化してもバガス炭の疑似太陽光(熱)吸収性能には差がないことがわかった。また、この曲線から、変化する太陽光の下で常に一定の太陽光(熱)を通過させる為に、バガス炭分散濃度をどのように変化させたらよいかがわかる。例えば、一日の太陽光の強さは日の出と共に強くなり、日中で最大になり、日暮れと共に0になる。農業の一日はこの繰り返しである。しかし、日中の強い日差しを制御しなければ、野菜などの作物はうまく育たない。例えば、ハウス内で太陽光を常に一定の強さ(例えば、200μmol/sec/m)にすることはこの結果を利用すれば容易である。図13には、疑似太陽光を0-3000μmol/sec/mまで変化させた場合に、バガス炭分散液のバガス炭の分散濃度をどのように変化させれば、透過した疑似太陽光の強さを200μmol/sec/mに制御できるかを示したものである。例えば、500μmol/sec/mの疑似太陽光の強さの時はバガス炭の分散濃度は約0.06%、1500μmol/sec/mの疑似太陽光の強さの時はバガス炭の分散濃度は約0.15%、3000μmol/sec/mの疑似太陽光の強さの時はバガス炭の分散濃度は約0.21%が必要であればよいことがわかる。こうして、屋外の農業ハウスでも、屋内の光の強さを常に一定に制御することが可能になる。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例9
  冷房負荷シミュレーション:
 実施例5で調製したバガス炭(600℃)の0.5%分散液で作った太陽光(熱)吸収材を用いて作製した太陽光(熱)吸収・調光資材(集熱板:液深5mm)を、屋根或いは外壁に設置した時の沖縄県での一般的なコンクリート製戸建て住宅(建築面積64m、総2階建)の夏場の冷房負荷の変化のシミュレーションを行った。図14は、Case-0~3において、住宅に太陽光(熱)吸収・調光資材を設置した状態を示す図である。シミュレーションを簡単化する為に窓はもうけていない。結果を図15に示す。比較例(Case-0)はこのような太陽光(熱)吸収・調光資材を設置しない場合であるが、日中の一番日差しが強い時には11.5kwh程度の電力が必要となる。一方、屋根の一部(20m)に本発明の太陽光(熱)吸収・調光資材を設置した場合(Case-1)は冷房電力は9.7kwh迄低下し、屋根全面(64m)に設置した場合(Case-2)は冷房電力は6kwhに低下する。更に、屋根全面と東西の外壁(各48m)に設置した場合(Case-3)は4.6kwh程度まで低下する。即ち、本発明の太陽光(熱)吸収・調光資材を戸建て住宅の屋根や外壁に設置した場合、冷房負荷を大幅に低減できることがわかる。
 本発明によれば、簡易な構造で、低コストかつ高性能の吸熱・蓄熱材が得られ、太陽熱を利用した温水器、冷房システムまたは発電システム等の太陽熱利用装置に利用可能である。また、本発明の太陽光(熱)吸収・調光資材は、窓ガラスや屋根材として、住宅・建築物に利用したり、農業・園芸施設に利用することもできる。
1  吸熱・蓄熱構造体
2  容器
3  光透過体
4  断熱材
5  吸熱・蓄熱材
10 吸収式冷凍機
11 吸熱・蓄熱構造体
12 熱媒体管
13 再生器
14 凝縮器
15 熱交換器
16 吸収器
17 蒸発器
18 吸収剤ポンプ
19 冷媒ポンプ
20 冷却水管
21 媒体
22 吸収剤
23 冷媒液
30 太陽光(熱)吸収・調光資材
31 板状物
31a 上面
31b 下面
31c 側面
32 太陽光(熱)吸収材

Claims (25)

  1.  比熱が0.4~1.4cal/g/℃であり、融点が5℃以下の液体の媒体中にCIE-Lab標色系(光源D65)で測定したL値が30以下である粒子を分散してなる太陽光(熱)吸収材。
  2.  媒体が水、脂肪族モノアルコール、脂肪族ジアルコールおよび炭化水素よりなる群から選ばれたものである請求項1記載の太陽光(熱)吸収材。
  3.  脂肪族モノアルコールが、エチルアルコール、プロピルアルコール、ブチルアルコール、アミルアルコールおよびヘキサンアルコールよりなる群から選ばれたものである請求項2記載の太陽光(熱)吸収材。
  4.  脂肪族ジアルコールが、エチレングリコール、ポロピレングリコール、ポリエチレングリコールおよびポリプロピレングリコールよりなる群から選ばれたものである請求項2記載の太陽光(熱)吸収材。
  5.  炭化水素が、パラフィン、ベンゼン、キシレンおよびクロルベンゼンよりなる群から選ばれたものである請求項2記載の太陽光(熱)吸収材。
  6.  粒子がバイオマスの炭化物である請求項1ないし5のいずれかの項記載の太陽光(熱)吸収材。
  7.  バイオマスの炭化物が微多孔を有するものである請求項6記載の太陽光(熱)吸収材。
  8.  バイオマスがバガスである請求項6または7記載の太陽光(熱)吸収材。
  9.  粒子の粒子径が3mm以下である請求項1ないし8のいずれかの項記載の太陽光(熱)吸収材。
  10.  媒体中に50~120℃の温度域に相転移温度を有する物質を媒体とは直接接触しない状態で存在させる請求項1ないし9のいずれかの項記載の太陽光(熱)吸収材。
  11.  請求項1ないし10のいずれかの項記載の太陽光(熱)吸収材からなる吸熱・蓄熱材。
  12.  請求項11記載の吸熱・蓄熱材を開口部が光透過体で被覆された容器に充填されてなる吸熱・蓄熱構造体。
  13.  吸熱・蓄熱材層の厚みが、550nmの光の透過率が10%以下となる厚みである請求項12記載の吸熱・蓄熱構造体。
  14.  太陽熱を吸収し、蓄熱するものである請求項12または13記載の吸熱・蓄熱構造体。
  15.  請求項12ないし14のいずれかの項に記載された吸熱・蓄熱構造体を含み、該吸熱・蓄熱構造体に充填された吸熱・蓄熱材の媒体が水である太陽熱温水器。
  16.  請求項12ないし14のいずれかの項記載の吸熱・蓄熱構造体で蓄熱した熱を吸収式冷凍機または吸着式冷凍機の熱源とした冷房システム。
  17.  請求項12ないし14のいずれかの項記載の吸熱・蓄熱構造体で蓄熱した熱を温度差発電の熱源とした発電システム。
  18.  中空部を備え、上面及び下面のうち少なくとも一面が透光性を有する板状体の中空部に請求項1ないし10のいずれかの項記載の太陽光(熱)吸収材が充填されてなる太陽光(熱)吸収・調光資材。
  19.  太陽光(熱)吸収材が外部機器との間で循環する請求項18記載の太陽光(熱)吸収・調光資材。
  20.  外気の状況を検知する検知手段と、該外気の状況に基づいて太陽光(熱)吸収材の吸光度を調整する調整手段とをさらに備えた請求項18または19記載の太陽光(熱)吸収・調光資材。
  21.  外気の状況が照度及び/又は温度である請求項20記載の太陽光(熱)吸収・調光資材。
  22.  太陽光(熱)吸収材が吸収した太陽熱を温水・温風又は冷水・冷風に変換する変換手段をさらに備えた請求項18ないし21のいずれかの項記載の太陽光(熱)吸収・調光資材。
  23.  窓ガラス、瓦または屋根材のいずれかである請求項18ないし21のいずれかの項記載の太陽光(熱)吸収・調光資材。
  24.  請求項18ないし22のいずれかの項記載の太陽光(熱)吸収・調光資材を壁及び/又は天井に使用したことを特徴とする農業・園芸施設。
  25.  請求項18ないし22のいずれかの項記載の太陽光(熱)吸収・調光資材を壁、窓、屋根又は屋上の少なくとも一部に使用したことを特徴とする住宅・建築物。
PCT/JP2010/053624 2009-03-06 2010-03-05 太陽光(熱)吸収材およびこれを利用した吸熱・蓄熱材並びに太陽光(熱)吸収・調光資材 WO2010101239A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/254,345 US20120017622A1 (en) 2009-03-06 2010-03-05 Solar Light (Heat) Absorption Material and Heat Absorption/Accumulation Material and Solar Light (Heat) Absorption/Control Building Component Using the Same
EP10748832.2A EP2404973B1 (en) 2009-03-06 2010-03-05 Solar light (heat) absorbing material, and heat absorber/storage material and solar light (heat) absorber/control material each comprising the solar light (heat) absorbing material
JP2011502816A JP5199454B2 (ja) 2009-03-06 2010-03-05 太陽光(熱)吸収材およびこれを利用した吸熱・蓄熱材並びに太陽光(熱)吸収・調光資材
US14/464,205 US10018377B2 (en) 2009-03-06 2014-08-20 Solar light (heat) absorption material and heat absorption/accumulation material and solar light (heat) absorption/control building component using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009053818 2009-03-06
JP2009-053818 2009-03-06
JP2009252587 2009-11-04
JP2009-252587 2009-11-04

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/254,345 A-371-Of-International US20120017622A1 (en) 2009-03-06 2010-03-05 Solar Light (Heat) Absorption Material and Heat Absorption/Accumulation Material and Solar Light (Heat) Absorption/Control Building Component Using the Same
US14/464,205 Continuation US10018377B2 (en) 2009-03-06 2014-08-20 Solar light (heat) absorption material and heat absorption/accumulation material and solar light (heat) absorption/control building component using the same

Publications (1)

Publication Number Publication Date
WO2010101239A1 true WO2010101239A1 (ja) 2010-09-10

Family

ID=42709792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053624 WO2010101239A1 (ja) 2009-03-06 2010-03-05 太陽光(熱)吸収材およびこれを利用した吸熱・蓄熱材並びに太陽光(熱)吸収・調光資材

Country Status (4)

Country Link
US (2) US20120017622A1 (ja)
EP (1) EP2404973B1 (ja)
JP (1) JP5199454B2 (ja)
WO (1) WO2010101239A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963621A (zh) * 2015-07-02 2015-10-07 河北工业大学 耦合太阳能热源的蓄热节能窗装置

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377246B2 (en) * 2010-01-18 2016-06-28 King Saud University High temperature solar thermal systems and methods
US10094219B2 (en) 2010-03-04 2018-10-09 X Development Llc Adiabatic salt energy storage
US20130126123A1 (en) * 2010-07-16 2013-05-23 Architectural Applications P.C. Architectural heat and moisture exchange
WO2014052927A1 (en) 2012-09-27 2014-04-03 Gigawatt Day Storage Systems, Inc. Systems and methods for energy storage and retrieval
DE102016104096A1 (de) * 2016-03-07 2017-09-07 Paxos Consulting & Engineering GmbH & Co. KG Photovoltaikdachpfanne mit längenveränderlicher Stromleitung
CN105888501B (zh) * 2016-04-12 2018-01-02 东北石油大学 基于石蜡调控窗户太阳能吸收的实验装置
DE102016107016B4 (de) * 2016-04-15 2017-11-02 Paxos Consulting & Engineering GmbH & Co. KG Solarenergiedachpfanne mit längenveränderlichem Verbindungselement
US10233787B2 (en) 2016-12-28 2019-03-19 Malta Inc. Storage of excess heat in cold side of heat engine
US11053847B2 (en) 2016-12-28 2021-07-06 Malta Inc. Baffled thermoclines in thermodynamic cycle systems
US10458284B2 (en) 2016-12-28 2019-10-29 Malta Inc. Variable pressure inventory control of closed cycle system with a high pressure tank and an intermediate pressure tank
US10233833B2 (en) 2016-12-28 2019-03-19 Malta Inc. Pump control of closed cycle power generation system
US10221775B2 (en) 2016-12-29 2019-03-05 Malta Inc. Use of external air for closed cycle inventory control
US10801404B2 (en) 2016-12-30 2020-10-13 Malta Inc. Variable pressure turbine
US10436109B2 (en) 2016-12-31 2019-10-08 Malta Inc. Modular thermal storage
CN107443823B (zh) * 2017-08-11 2020-06-09 中国林业科学研究院林产化学工业研究所 一种用于水处理的农林剩余物基光热转化材料、制备方法及其应用
CA3088184A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible datacenter using unutilized energy sources
JP6843809B2 (ja) 2018-10-03 2021-03-17 日本特殊陶業株式会社 スパークプラグ
US10900694B2 (en) * 2018-10-18 2021-01-26 Commercial Energy Saving Plus, LLC Recoverable and renewable heat recovery system and related methods
WO2021097413A1 (en) 2019-11-16 2021-05-20 Malta Inc. Pumped heat electric storage system
US11286804B2 (en) 2020-08-12 2022-03-29 Malta Inc. Pumped heat energy storage system with charge cycle thermal integration
US11396826B2 (en) 2020-08-12 2022-07-26 Malta Inc. Pumped heat energy storage system with electric heating integration
US11480067B2 (en) 2020-08-12 2022-10-25 Malta Inc. Pumped heat energy storage system with generation cycle thermal integration
US11486305B2 (en) 2020-08-12 2022-11-01 Malta Inc. Pumped heat energy storage system with load following
US11454167B1 (en) 2020-08-12 2022-09-27 Malta Inc. Pumped heat energy storage system with hot-side thermal integration
WO2022036122A1 (en) 2020-08-12 2022-02-17 Malta Inc. Pumped heat energy storage system with district heating integration
CN115092983B (zh) * 2022-07-28 2023-08-11 福建农林大学 一种兼具水伏发电功能的太阳能蒸发器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095832A (ja) * 1973-12-26 1975-07-30
JPS58174486A (ja) * 1982-04-07 1983-10-13 Dainichi Seika Kogyo Kk 吸熱用液体
JPS6174677U (ja) * 1984-10-23 1986-05-20
JPH0450285A (ja) * 1990-06-16 1992-02-19 Hiitec Service Kk 蓄熱暖房装置用蓄熱材
JP2000502416A (ja) * 1996-10-06 2000-02-29 ノルスク ハイドロ アー エス アー 建物の外壁構造、特にパネル
JP2002089972A (ja) * 2000-09-21 2002-03-27 Takeo Saito マイクロ複合放物面集光(cpc)型ソーラーコレクタ
JP3120001U (ja) * 2005-11-29 2006-03-23 ベンテンス有限会社 可変反射板を用いた太陽光集熱暖房システム
JP2006204206A (ja) * 2005-01-28 2006-08-10 Tooteku Kk 粉粒状マルチ資材及びマルチ敷設方法
JP2006300492A (ja) * 2005-04-25 2006-11-02 Mitsubishi Chemicals Corp 熱輸送システム
JP2008037733A (ja) * 2006-08-10 2008-02-21 Sangyo Gijutsu Kenkyusho:Kk 活性炭および電気二重層キャパシタの製造方法
JP2008201834A (ja) * 2007-02-16 2008-09-04 Honda Motor Co Ltd 熱輸送流体
JP2008297503A (ja) * 2007-06-04 2008-12-11 Matsumoto Yushi Seiyaku Co Ltd 蓄熱マイクロカプセル、その製造方法および用途

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1951403A (en) * 1930-10-30 1934-03-20 Robert H Goddard Heat absorbing apparatus for use with solar energy
US4047518A (en) * 1974-03-11 1977-09-13 John Harland Anderson Solar heating cell
AU3659378A (en) * 1977-05-30 1979-12-06 Giess H J Solar energy collection
US4221210A (en) * 1977-08-01 1980-09-09 Heliotherme, Inc. System and method for collecting energy from the sun
US4239035A (en) * 1978-05-24 1980-12-16 The Chemithon Corporation Solar heating method
DE2829708A1 (de) * 1978-07-06 1980-01-17 Degussa Absorber fuer einen sonnenkollektor
US4283914A (en) * 1979-04-17 1981-08-18 Allen Leonard W Solar energy system
US4482467A (en) 1981-07-14 1984-11-13 Dainichiseika Colour & Chemicals Mfg. Co., Ltd. Liquid for absorption of solar heat
FR2536159B3 (fr) * 1982-11-17 1985-09-20 Advanced Technology Transfer I Installation et procede pour collecter l'energie solaire
US4598009A (en) * 1984-09-13 1986-07-01 Armstrong World Industries, Inc. Embossed material and method for producing the same from a photocrosslinkable polyurethane
US5456093A (en) * 1989-07-28 1995-10-10 Uop Adsorbent composites for sorption cooling process and apparatus
JPH0552427A (ja) 1991-08-21 1993-03-02 Shiroki Corp 太陽熱温水装置における真空二重集熱管
JP3087929B2 (ja) 1992-10-26 2000-09-18 日本電気硝子株式会社 真空式太陽熱集熱器
JP3194064B2 (ja) 1993-11-18 2001-07-30 守口鍍金工業株式会社 太陽熱吸収体
JPH11512173A (ja) 1995-09-07 1999-10-19 メッサー グリースハイム ゲゼルシャフト ミット ベシュレンクテル ハフツング 太陽熱エネルギ捕集装置
DE19532993A1 (de) 1995-09-07 1997-03-13 Messer Griesheim Gmbh Sonnenkollektor mit einer für Sonnenstrahlung durchlässigen, gasgedämmten Röhre
IL124830A0 (en) 1998-06-09 1999-01-26 Solel Solar Systems Ltd Solar collector
JP2000088359A (ja) 1998-09-10 2000-03-31 Shiroki Corp 太陽熱集熱器
JP2001099497A (ja) 1999-09-30 2001-04-13 Nisshin Steel Co Ltd 太陽熱集熱板
JP2001287291A (ja) 2000-04-10 2001-10-16 Dainippon Printing Co Ltd 断熱材および断熱部材
JP2004065004A (ja) 2002-08-01 2004-03-04 Sumitomo Metal Mining Co Ltd 農園芸施設用断熱資材
JP3830439B2 (ja) 2002-09-30 2006-10-04 京セラ株式会社 太陽熱集熱管およびそれを用いた温水装置
JP4027212B2 (ja) 2002-11-26 2007-12-26 日本板硝子株式会社 太陽熱温水器
US20050196336A1 (en) * 2004-03-05 2005-09-08 Chatterjee Arup K. Activated graphitic carbon and metal hybrids thereof
JP2005265251A (ja) 2004-03-17 2005-09-29 Nippon Sheet Glass Co Ltd 太陽熱温水器
US20060107993A1 (en) 2004-11-19 2006-05-25 General Electric Company Building element including solar energy converter
GB0426311D0 (en) * 2004-12-01 2005-01-05 Mcgilvray Ian W Solar collector
JP2006214654A (ja) 2005-02-03 2006-08-17 Nippon Electric Glass Co Ltd 太陽熱集熱板、選択吸収膜及び太陽熱温水器
NL1029168C2 (nl) 2005-06-02 2006-12-05 Econcern B V Zonnecollector met geïntegreerde warmteopslag II.
JP2006336960A (ja) 2005-06-03 2006-12-14 Yazaki Corp 太陽熱利用集熱器の選択吸収面およびその製造方法
JP4507993B2 (ja) 2005-06-10 2010-07-21 住友金属鉱山株式会社 農園芸用覆土フィルム
JP2008133991A (ja) 2006-11-28 2008-06-12 Matsushita Electric Ind Co Ltd 太陽熱集熱器
JP2008138899A (ja) 2006-11-30 2008-06-19 Matsushita Electric Ind Co Ltd 太陽熱集熱器
JP2009045027A (ja) 2007-08-22 2009-03-05 Sekisui Film Kk 遮光性農業用フィルム
JP5266767B2 (ja) 2008-01-18 2013-08-21 日立化成株式会社 調光材料、調光フィルム、及び調光材料の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5095832A (ja) * 1973-12-26 1975-07-30
JPS58174486A (ja) * 1982-04-07 1983-10-13 Dainichi Seika Kogyo Kk 吸熱用液体
JPS6174677U (ja) * 1984-10-23 1986-05-20
JPH0450285A (ja) * 1990-06-16 1992-02-19 Hiitec Service Kk 蓄熱暖房装置用蓄熱材
JP2000502416A (ja) * 1996-10-06 2000-02-29 ノルスク ハイドロ アー エス アー 建物の外壁構造、特にパネル
JP2002089972A (ja) * 2000-09-21 2002-03-27 Takeo Saito マイクロ複合放物面集光(cpc)型ソーラーコレクタ
JP2006204206A (ja) * 2005-01-28 2006-08-10 Tooteku Kk 粉粒状マルチ資材及びマルチ敷設方法
JP2006300492A (ja) * 2005-04-25 2006-11-02 Mitsubishi Chemicals Corp 熱輸送システム
JP3120001U (ja) * 2005-11-29 2006-03-23 ベンテンス有限会社 可変反射板を用いた太陽光集熱暖房システム
JP2008037733A (ja) * 2006-08-10 2008-02-21 Sangyo Gijutsu Kenkyusho:Kk 活性炭および電気二重層キャパシタの製造方法
JP2008201834A (ja) * 2007-02-16 2008-09-04 Honda Motor Co Ltd 熱輸送流体
JP2008297503A (ja) * 2007-06-04 2008-12-11 Matsumoto Yushi Seiyaku Co Ltd 蓄熱マイクロカプセル、その製造方法および用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2404973A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104963621A (zh) * 2015-07-02 2015-10-07 河北工业大学 耦合太阳能热源的蓄热节能窗装置
CN104963621B (zh) * 2015-07-02 2016-06-29 河北工业大学 耦合太阳能热源的蓄热节能窗装置

Also Published As

Publication number Publication date
EP2404973A1 (en) 2012-01-11
US20140352237A1 (en) 2014-12-04
US10018377B2 (en) 2018-07-10
EP2404973A4 (en) 2014-07-16
EP2404973B1 (en) 2018-09-12
US20120017622A1 (en) 2012-01-26
JPWO2010101239A1 (ja) 2012-09-10
JP5199454B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5199454B2 (ja) 太陽光(熱)吸収材およびこれを利用した吸熱・蓄熱材並びに太陽光(熱)吸収・調光資材
Cuce et al. Renewable and sustainable energy saving strategies for greenhouse systems: A comprehensive review
Saxena et al. Design and performance of a solar air heater with long term heat storage
US20070113500A1 (en) Method to Regulate temperature and Reduce Heat Island Effect
CN102776959A (zh) 一种蓄能太阳能结合模块化分体式相变房屋节能系统
CN108925309B (zh) 一种农业大棚自给水系统
CN102980238A (zh) 太阳能空气集热采暖系统和方法
Yu et al. Thermal, electrical and purification performance of a novel thermal-catalytic CdTe double-layer breathing window in winter
Kasaeian et al. Solar energy systems: An approach to zero energy buildings
CN106034844A (zh) 采用太阳能板式天窗的阳光房
CN106403316A (zh) 智能温室太阳能真空管式储能加热器
Behera et al. Recent advances in solar drying technologies: A Comprehensive review
CN203036757U (zh) 太阳能空气集热采暖系统
CN106258624A (zh) 一种自调温式温室
Asif et al. Solar thermal technologies
CN201047121Y (zh) 接触性多孔介质集热组合墙
CN212179256U (zh) 一种空气源热泵节能阳光房
NASSAMU DEVELOPMENT AND PERFOMANCE EVALUATION OF A SOLAR-POWERED OVEN WITH PHASE CHANGE MATERIAL AS THERMAL STORAGE TO DRY VEGETABLES
CN203640341U (zh) 太阳能烟囱电站内部的温室建筑
Bansal et al. Energy Requirements and Alternate Energy Uses in the Residential Sector of India
CN110130476A (zh) 一种多功能的太阳能建筑及建筑小区
CN201187100Y (zh) 分隔型多孔介质太阳能集热组合墙
Asif et al. Thermal Energy: Solar Technologies
CN207083617U (zh) 一种多功能农业大棚
Musunuri et al. Solar thermal energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10748832

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011502816

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010748832

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13254345

Country of ref document: US