WO2010097971A1 - 薄膜の検査装置及び検査方法 - Google Patents

薄膜の検査装置及び検査方法 Download PDF

Info

Publication number
WO2010097971A1
WO2010097971A1 PCT/JP2009/062118 JP2009062118W WO2010097971A1 WO 2010097971 A1 WO2010097971 A1 WO 2010097971A1 JP 2009062118 W JP2009062118 W JP 2009062118W WO 2010097971 A1 WO2010097971 A1 WO 2010097971A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
thin film
haze ratio
inspected
light receiving
Prior art date
Application number
PCT/JP2009/062118
Other languages
English (en)
French (fr)
Inventor
智嗣 坂井
浩平 川添
賢剛 山口
暁巳 ▼高▲野
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US13/120,319 priority Critical patent/US8497991B2/en
Priority to CN200980138478.8A priority patent/CN102165282B/zh
Priority to EP09840818A priority patent/EP2402713A1/en
Publication of WO2010097971A1 publication Critical patent/WO2010097971A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/8422Investigating thin films, e.g. matrix isolation method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N2021/8928Haze defects, i.e. with a part of diffracted light

Definitions

  • the present invention relates to an inspection apparatus and an inspection method for a thin film formed on a glass substrate, for example, a thin film for inspecting the film quality of a transparent conductive film formed on a transparent glass substrate of a solar cell.
  • a transparent conductive film is formed on a transparent glass substrate such as soda glass.
  • the transparent conductive film is actively formed with irregularities on the surface for the purpose of light confinement effect.
  • the degree of unevenness for example, the unevenness is about 0.3 ⁇ m with respect to a film thickness of 0.8 ⁇ m.
  • a haze ratio is used as a feature value for evaluating the surface irregularities of such a transparent conductive film.
  • Patent Document 1 discloses that the transparent conductive film is irradiated with light, the reflected light is dispersed into at least two wavelengths, and the haze ratio of the transparent conductive film is calculated by calculating the light intensity of these wavelengths. Has been. Further, Patent Document 1 discloses that a device for calculating a haze ratio can be incorporated in a production line, and that all solar cells having a transparent conductive film can be inspected.
  • interference fringes appear in the reflection spectrum. There is a possibility that the desired accuracy will not be satisfied.
  • the present invention has been made in view of such circumstances, and provides a thin film inspection apparatus and inspection method capable of reducing the influence of film thickness fluctuation in the substrate surface of the thin film and improving measurement accuracy.
  • the purpose is to provide.
  • the present invention employs the following means.
  • a light source for irradiating a single-wavelength light from a glass substrate side onto a substrate to be inspected having a thin film formed on a glass substrate, and an optical axis of illumination light emitted from the light source.
  • the light receiving axis is arranged so as to intersect at a predetermined inclination angle with respect to the light receiving portion for receiving the diffusely transmitted light transmitted through the substrate to be inspected, and the thin film based on the intensity of the light received by the light receiving portion.
  • a processing unit for obtaining a haze ratio and the processing unit has a haze ratio characteristic in which a haze ratio and a light intensity of diffuse transmitted light are associated with each other, and the haze ratio characteristic and the light receiving unit receive light. It is a thin film inspection apparatus which calculates
  • the single-wavelength light is irradiated from the glass substrate side of the substrate to be inspected, the diffuse transmitted light at that time is received by the light receiving unit, and the haze ratio of the thin film is obtained based on the intensity of the received light.
  • the haze ratio can be obtained without being affected by the film thickness as in the prior art. Thereby, the measurement error by the film thickness fluctuation
  • the “single wavelength light” refers to light having a full width at half maximum of about 100 nm or less, preferably 50 nm or less, including light output from a light emitting element such as an LED.
  • the light source may be arranged such that an optical axis of illumination light emitted from the light source coincides with a normal direction of the substrate to be inspected.
  • the light source may emit any wavelength of 350 nm to 760 nm, preferably any wavelength of 350 nm to 590 nm. By using such a wavelength, it is possible to ensure stable measurement accuracy of the haze rate.
  • the inclination angle of the light receiving unit with respect to the substrate surface of the substrate to be inspected is 54 ° or more and 65 ° or less. Is preferred. By doing in this way, the measurement precision of a haze rate can further be raised.
  • a first light shielding unit may be attached to the light source, and a second light shielding unit may be attached to the light receiving unit.
  • the thin film inspection apparatus a plurality of test pieces in which thin films having different haze ratios are formed on a glass substrate are prepared, and the test pieces are moved up and down by a predetermined amount with respect to the optical axis direction of the illumination light.
  • the light receiving unit is arranged at an inclination angle such that the relationship with the light intensity is monotonously increased or monotonically decreased, and the amount of change in the haze rate characteristic due to vertical fluctuation of the installation position of the test piece is equal to or less than a predetermined value. It is preferable that
  • the substrate is used even when incorporated in an actual production line. A highly reliable measurement result can be obtained without being affected by the vertical movement of.
  • the inclination angle of the light receiving portion, the size of the opening on the light emission side of the first light shielding portion and the length from the light source tip to the light emission end, and the light reception at the second light shielding portion The light receiving surface of the light receiving unit from the size of the opening on the side opposite to the light receiving unit, the length from the light receiving surface of the light receiving unit to the tip of the opening, and the position of the upper surface of the substrate to be inspected through which the optical axis of the illumination light passes.
  • these arrangement parameters are prepared by preparing a plurality of test pieces in which thin films having different haze ratios are formed on a glass substrate, and the test pieces are arranged in the optical axis direction of the illumination light.
  • a haze ratio characteristic in which the light intensity and the haze ratio are related is created.
  • the relationship between the ratio of light intensity and the light intensity is represented by monotonically increasing or monotonically decreasing, and the maximum value of the light intensity change amount due to the vertical fluctuation of the test piece installation position is determined to be a predetermined value or less. It is preferable.
  • the thin film inspection apparatus may be incorporated in a thin film production line, and the light source may be disposed at a position where illumination light is irradiated from the glass substrate side to the substrate to be inspected conveyed on the production line.
  • a thin film manufacturing system including any one of the above-described thin film inspection apparatuses, wherein the light source emits light from the glass substrate side with respect to the substrate to be inspected conveyed on a manufacturing line.
  • a thin film manufacturing system arranged to irradiate and inspecting a thin film on the substrate to be inspected.
  • the third aspect of the present invention has a haze ratio characteristic that associates the light intensity of diffused transmitted light with the haze ratio of the thin film in advance, and the substrate to be inspected has a thin film formed on the glass substrate.
  • the thin film is irradiated with light of a single wavelength from the glass substrate side, diffused and transmitted light transmitted through the substrate to be inspected is received, and the haze ratio of the thin film is obtained using the intensity of the received light and the haze ratio characteristics. Inspection method.
  • a measurement system arrangement determining method applied to the thin film inspection apparatus wherein the wavelength of the light source, the installation inclination angle of the light receiving unit, and the light emission side of the first light shielding unit.
  • the size of the opening and the length from the light source tip to the light exit end, the size of the opening on the opposite side of the light receiving portion in the second light shielding portion, and the light receiving surface of the light receiving portion to the tip of the opening When the length and the distance from the position of the upper surface of the substrate to be inspected through which the optical axis of the illumination light passes to the light receiving surface of the light receiving unit are used as arrangement parameters, thin films having different haze ratios are formed on the glass substrate.
  • the test pieces are arranged with respect to the optical axis direction of the illumination light. Diffuse transmitted light when moved up and down a predetermined amount
  • the haze ratio characteristic is created by relating the second step of receiving light by the light receiving portion and the light intensity of the diffusely transmitted light obtained in the second step and the haze ratio, and the haze ratio characteristic and the haze ratio characteristic are In the range of the haze ratio of the thin film to be inspected, from among the plurality of haze ratio characteristics created in the third process and the third process that associates each parameter setting value of the measurement system when obtained, A haze ratio characteristic is extracted in which the relationship between the haze ratio and the light intensity is represented by a monotone increase or a monotonic decrease, and the maximum value of the change in the light intensity due to the vertical fluctuation of the installation position of the test piece is equal to or less than a predetermined
  • the present invention it is possible to reduce the influence of the film thickness variation in the substrate surface of the thin film and to improve the measurement accuracy.
  • FIG. 4 is a diagram showing diffuse transmission spectra (wavelength range of 300 nm to 1500 nm) of test pieces having different haze ratios. It is a figure for demonstrating the structure and arrangement
  • FIG. 1 is a diagram showing an overall configuration of a thin film inspection apparatus according to an embodiment of the present invention.
  • the thin film inspection apparatus according to the present embodiment is provided in a manufacturing line of a solar cell manufacturing apparatus.
  • a substrate to be inspected W to be inspected by a thin film inspection apparatus is a transparent glass substrate of about 1 m square, a transparent conductive film (TCO: ITO (Indium Tin Oxide), zinc oxide (ZnO), tin oxide (SnO 2 ), etc.).
  • TCO transparent conductive film
  • ITO Indium Tin Oxide
  • ZnO zinc oxide
  • SnO 2 tin oxide
  • Transparent This is a glass substrate with a transparent conductive film on which Conductive Oxide) is formed.
  • the substrate W to be inspected is transported so that the transparent conductive film is on the upper surface.
  • An SiO 2 film or the like may be formed as a base film between the transparent conductive film and the glass substrate to prevent diffusion at the glass substrate interface.
  • a light irradiation device 3 is disposed below the transport conveyor 1 that transports the substrate W to be inspected, and a light receiving device 2 is disposed above.
  • the light irradiation device 3 includes, for example, a plurality of light sources 3a (see FIG. 2) arranged in a line in the width direction of the substrate W to be inspected. In the present embodiment, eight light sources 3a are provided.
  • the light source 3a it is possible to use a single wavelength LED, a white LED combined with a filter, or the like. Moreover, it is not restricted to LED, It is good also as using other light sources, for example, the light source unit etc. which combined the filter with the lamp light source and the lamp light source.
  • the wavelength of light emitted from the light irradiation device 3 uses a wavelength selected by a parameter setting method described later.
  • the light irradiation device 3 is configured to control light amount adjustment and on / off of the light source by operating the light source power source 4 based on a signal sent from a computer 7 described later.
  • the light receiving device 2 receives the diffuse transmitted light L2 diffused by the irradiation light L1 emitted from each light source 3a included in the light irradiation device 3 being transmitted through the substrate W to be inspected.
  • the light receiving device 2 has, for example, a plurality of light receiving elements (light receiving portions) 2a (see FIG. 2) arranged in a line in the width direction of the substrate W to be inspected. In the present embodiment, eight light receiving elements 2a are provided.
  • the light receiving element 2a and the light source 3a are paired, and diffused and transmitted light of illumination light emitted from the corresponding light source 3a is received by the light receiving element 2a.
  • the light receiving element 2a may be an element having sensitivity to the wavelength of light to be measured.
  • the light receiving element 2a has a simple and inexpensive configuration. be able to. At this time, it is desirable to adjust so as to show substantially uniform detection sensitivity in a state where there is no substrate W to be inspected. Further, for example, the light receiving element 2a is calibrated so that the signal intensity in the state where there is no inspection target substrate W becomes substantially zero, or the position of the light receiving element 2a is arranged on the optical axis of the illumination light. In this state, the illumination light is received, and calibration is preferably performed so that the signal intensity at this time becomes 100%.
  • FIG. 2 shows an arrangement relationship between the light source 3a and the light receiving element 2a.
  • the illumination light L1 emitted from the light source 3a is incident on the substrate surface of the inspected substrate W perpendicularly, in other words, from the normal direction of the substrate surface.
  • the illumination light L1 is diffused in the film of the substrate to be inspected W and on the film surface, and a part of the diffused transmitted light is received by the light receiving element 2a.
  • the light receiving element 2a is arranged so that the light receiving axis intersects the optical axis of the illumination light L1 emitted from the light source 3a at a predetermined inclination angle (90 ° ⁇ ), and transmitted through the substrate W to be inspected.
  • the diffuse transmitted light L2 is received. Note that the inclination angle ⁇ selected by the parameter setting method described later is used as the inclination angle ⁇ of the light receiving element 2a.
  • a photoelectric switch 5 and a rotary encoder 6 are arranged on the conveyor 1.
  • the photoelectric switch 5 generates an inspection start signal S and transmits the inspection start signal S to the computer 7 when it is detected that the leading end portion of the substrate W to be inspected has reached the incident position of the illumination light L1.
  • the rotary encoder 6 generates a pulse signal P and sends it to the computer 7 for each set rotation angle, that is, every time the inspected substrate W moves a set distance.
  • the computer (processing unit) 7 After receiving the inspection start signal S, the computer (processing unit) 7 sends a trigger signal T to the light receiving device 2 every time it receives a pulse signal P. Each time the light receiving element 2a of the light receiving device 2 receives the trigger signal T, the light receiving element 2a receives the diffuse transmitted light L2 transmitted through the substrate W to be inspected, and sends a light receiving signal C corresponding to the light intensity to the computer 7.
  • FIG. 3 shows an example of the haze ratio characteristic.
  • the horizontal axis indicates signal intensity (light intensity of diffuse transmitted light), and the vertical axis indicates haze ratio.
  • FIG. 3 shows a case where each light receiving element has a haze ratio characteristic.
  • the horizontal axis indicates the light intensity and the vertical axis indicates the haze ratio, but the horizontal axis may indicate the haze ratio and the vertical axis may indicate the light intensity.
  • the haze ratio characteristic refers to a characteristic indicating the relationship between the haze ratio and the light intensity of the diffuse transmitted light. For the haze ratio, for example, in JIS K 7136, “diffuse transmittance ⁇ with respect to total light transmittance ⁇ t ” defined as the ratio of d ”.
  • the haze rate characteristics as shown in FIG. 3 possessed by the computer 7 are prepared by preparing a plurality of test pieces with known haze ratios, and in the same measurement system as the actual inspection apparatus shown in FIG.
  • the diffuse transmitted light when the light is irradiated is received by each light receiving element 2a, and the light intensity received by each light receiving element 2a is associated with the known haze rate at that time.
  • the inspection on the inspected substrate W is performed from the timing at which each light receiving element 2a receives the diffuse transmitted light.
  • the position and the haze rate are associated with each other and stored in a storage unit (not shown).
  • the haze ratio at each inspection position stored in the storage unit is read to obtain a two-dimensional distribution image of the haze ratio as shown in FIG. Can be created and displayed on the display device 8.
  • reports an error when the tolerance
  • a case where the haze ratio of the transparent conductive film is inspected by the thin film inspection apparatus shown in FIG. 1 will be described.
  • a case will be described in which the substrate W is irradiated with light having a wavelength ⁇ 1 and the haze ratio of the transparent conductive film is calculated.
  • a haze ratio characteristic corresponding to the wavelength ⁇ 1 is stored in advance in a storage unit (not shown) of the computer 7.
  • the computer 7 transports the inspected substrate W placed on the transport conveyor 1 in the transport direction Y in a state where each light source of the light irradiation device 3 is turned on. Accordingly, the illumination light L1 emitted from the light illumination device 3 is diffused by passing through the substrate W to be inspected, and a part of the diffuse transmission light L2 is guided to the light receiving device 2.
  • a pulse signal P is sent from the rotary encoder 6 to the computer 7 in accordance with the movement of the inspected substrate W.
  • the computer 7 receives this pulse signal P, it sends a trigger signal T to the light receiving device 2.
  • the diffusely transmitted light L2 is received by each light receiving element 2a of the light receiving device 2 in accordance with the movement of the substrate to be inspected W, and a received light signal C corresponding to the light intensity is sent to the computer 7.
  • the computer 7 receives the light reception signal C from each light receiving element 2
  • the computer 7 obtains the haze ratio from the light reception signal C and the haze ratio characteristic, and stores the haze ratio in the storage unit.
  • the haze ratio can be calculated at each measurement point on the inspected substrate W, and the haze ratio distribution on the inspected substrate W can be obtained.
  • test pieces in which transparent conductive films having different haze rates are formed on a glass substrate are prepared.
  • the test piece prepared at this time is preferably substantially the same as the film structure of the substrate W to be inspected in actual haze ratio measurement.
  • test pieces having a haze ratio of 18%, 20%, and 29% were prepared.
  • FIG. 5 shows the relationship between the wavelength and the diffuse transmittance of each test piece.
  • the diffuse transmittance shows a peak in the vicinity of a wavelength of 350 nm, and then gradually decreases exponentially as the wavelength becomes longer.
  • a high diffuse transmittance means that in the apparatus shown in FIG. 1, the light intensity detected by the light receiving element 2a is high, so that stable detection accuracy is easily obtained. Therefore, the wavelength used as the light source should be high in light intensity.
  • visible light is preferable from the viewpoint of workability. From these viewpoints, it can be seen in FIG.
  • LEDs having a wavelength in the range of 350 nm to 760 nm may be used. Moreover, it is known that the peak near 350 nm shifts depending on the characteristics of the transparent glass substrate to be used. Commercially available LEDs are inexpensive and are advantageous in terms of convenience. Therefore, for example, LEDs of 450 nm, 470 nm, 530 nm, 560 nm, 570 nm, 590 nm, 644 nm, 660 nm, 700 nm, etc. may be used as the light source.
  • photopic visual standard luminous efficiency V ( ⁇ ) equal to the color matching function y ( ⁇ ) according to ISO / CIE 10527”. Therefore, it is also beneficial to use 550 nm light as illumination light. Furthermore, when the adaptability was evaluated using 590 nm illumination light in the test described later, an appropriate haze ratio characteristic can be obtained even when 590 nm illumination light is used, and highly reliable measurement should be performed. Proved.
  • the wavelength used as the light source is preferably set to 300 nm, preferably about 350 nm or more and about 590 nm or less where the peak of diffuse transmittance appears.
  • this wavelength band as shown in FIG. 5, since a relatively high diffuse transmittance can be obtained, stable measurement accuracy can be ensured.
  • the thin film inspection apparatus inspects a substrate W to be inspected that is incorporated in a production line and conveyed. Accordingly, the substrate W to be inspected is expected to vibrate up and down, and it is important to build a measurement system that is robust against such vertical movement. Therefore, in this embodiment, 470 nm, 530 nm, and 590 nm are selected as representative wavelengths among wavelengths that match the wavelengths of commercially available LEDs that can be obtained inexpensively from the wavelength band of 350 nm or more and 760 nm or less. The arrangement parameters of the measurement system that are resistant to vertical vibration of the inspection substrate W were obtained.
  • the cylindrical light shielding hood is attached to the light source (LED) 3a and the light receiving element 2a.
  • the shape of the light shielding hood is not particularly limited. As shown in FIG. 6, the arrangement parameters of the measurement system are: the height La of the cylindrical light shielding hood of the light source 3a, the cylinder diameter Da of the light shielding hood of the light source 3a, and the film surface of the transparent conductive film through which the optical axis of the illumination light passes.
  • the distance L from the point to the light receiving surface of the light receiving element 2a, the length Lb of the cylindrical light shielding hood of the light receiving element 2a, the cylinder diameter Db of the cylindrical light shielding hood of the light receiving element 2a, and the inclination angle ⁇ of the light receiving element 2a Six were set.
  • the change range of each placement parameter was set as shown in the following table.
  • test pieces each having a transparent conductive film having a different haze ratio formed on a transparent substrate were prepared (specifically, haze ratios of 7.9%, 10.6%, 15.3%, 17 10 specimens of 4%, 20.5%, 22.8%, 24.5%, 26.1%, 29.8%, 35.1% were prepared), and these specimens were used as the light source 3a. 5 mm from the tip of the light shielding hood (this position is referred to as “reference position”), and the illumination light emitted from the light source 3a is vertically incident, and in this state, the above placement parameters are changed.
  • the light intensity detected by the light receiving element 2a was measured while changing within the range, and a plurality of haze ratio characteristics were created by associating the light intensity with the known haze ratio of the test piece.
  • the vertical axis represents the haze ratio
  • the horizontal axis represents the signal intensity (light intensity).
  • Z + 1.
  • (1) the light intensity with respect to the haze ratio monotonously increases
  • the maximum value of the change in light intensity due to the vertical fluctuation of the installation position of the test piece is the first threshold value.
  • a haze ratio characteristic as described below is extracted, and an arrangement parameter when the extracted haze ratio characteristic is obtained is determined as an arrangement parameter used at the time of inspection.
  • the first threshold is a value that can be arbitrarily set according to the required measurement accuracy.
  • FIG. 12 shows the haze ratio characteristics when light having a wavelength of 590 nm is used, but the light intensity with respect to the haze ratio increases substantially monotonically, and due to vertical fluctuations in the position where the test piece is installed. It can be said that the amount of change in light intensity is small. Therefore, it was proved from FIG. 12 that a predetermined measurement accuracy can be secured even when the wavelength of 590 nm is used in the inspection apparatus shown in FIG.
  • the tube diameter Da of the light shielding hood attached to the light source 3a the smaller the tube diameter is, the more the light from the outside is blocked as much as possible to reduce noise and the directivity of illumination light is increased. It can be said that it is preferable.
  • the length La of the light shielding hood is preferably determined according to the installation position of the light source 3a because the light source 3a is desired to be installed at a certain distance from the substrate W to be inspected.
  • Such a condition is a condition that can be derived based on the principle of the measurement system without being limited to the vertical fluctuation of the substrate W to be inspected.
  • the length Lb of the light shielding hood attached to the light receiving element 2a is preferably set to a large value as much as possible in order to enhance the light shielding effect because it is desired to block light from the outside as much as possible.
  • Fig. 13 shows the haze ratio characteristics.
  • the inclination ⁇ 1 is calculated for each wavelength, and each is compared.
  • the characteristic is approximated to a linear curve, and the slope at that time is obtained.
  • the optimum inclination angle ⁇ of the light receiving element 2a in the measurement system shown in FIG. 6 is determined within a predetermined range.
  • light having a wavelength of 470 nm derived from FIG. 13 is used as illumination light, and other measurement system parameters are as described above.
  • the inclination angle ⁇ was changed to three values of 54 °, 57 °, and 60 °, and respective haze ratio characteristics were obtained.
  • FIG. 14 shows the haze ratio characteristics. Further, the slope ⁇ 1 of the haze ratio characteristic at this time was obtained. As a result, it was found that the inclination ⁇ 1 when the inclination angle is 54 ° is the largest.
  • the distance L from the film surface of the transparent conductive film through which the optical axis of the illumination light passes to the light receiving surface of the light receiving element is used as a variable, and an appropriate distance L is determined within a predetermined range in the measurement system shown in FIG.
  • the illumination light light having a wavelength of 470 nm derived from FIG. 13 is used, and the inclination angle ⁇ of the light receiving element 2a is 54 ° derived from FIG.
  • the other measurement system parameters are as described above.
  • the distance L was changed to three values of 30 mm, 35 mm, and 40 mm, and respective haze ratio characteristics were obtained.
  • FIG. 15 shows the haze ratio characteristics.
  • the slope ⁇ 1 of the haze ratio characteristic at this time was obtained. As a result, it was found that the slope ⁇ 1 when the distance L was 40 mm was the largest.
  • FIG. 16 shows the haze ratio characteristics. As shown in FIG. 16, even if the position of the test piece is moved by a predetermined amount along the optical axis of the illumination light, the haze ratio characteristic hardly changes, and the slope ⁇ 1 is larger than the haze ratio characteristic shown as the comparative example. It has been found that it has high measurement sensitivity.
  • positioning parameters were used for the measurement system when obtaining the comparative example.
  • single-wavelength light is irradiated from the glass substrate side of the substrate to be inspected, and diffused transmission light at that time is irradiated by the light receiving element. Since light is received and the haze ratio of the transparent conductive film is obtained based on the intensity of the received light, the haze ratio can be obtained without being affected by the film thickness as in the prior art.
  • FIG. 17 shows the result of measuring the in-plane distribution of the haze rate while transporting the substrate to be inspected while being incorporated in the production line by the thin film inspection apparatus shown in FIG.
  • the substrate S to be inspected a thin film was formed on a transparent glass substrate, and the thin film had an in-plane distribution (distribution width; about ⁇ 30%).
  • the haze ratio has an in-plane distribution.
  • the substrate to be inspected after measurement was collected, divided into small areas, and the haze ratio at the measurement point was obtained with a commercially available haze meter.
  • ⁇ Hz is the standard deviation (1 sigma) of the difference between the haze rate obtained by the haze meter at the same measurement point and the haze rate obtained by the thin film inspection apparatus of the present application, and the N number is 64 points.
  • the arrangement of the measurement system of the thin film inspection apparatus is set to a value that takes into account the vibration of the substrate to be inspected.
  • a highly reliable measurement result can be obtained without being affected by vertical movement.
  • the haze ratio characteristic used in the computer 7 has a large slope ⁇ 1, as shown in FIG. 16, for example, high measurement sensitivity can be obtained.
  • a thin film inspection device on the production line, it is possible to inspect all the substrates on which the transparent conductive film has been formed without time delay, and when a defective product is detected, an intermediate step is performed.
  • the defective substrate can be lined out and the film forming conditions of the transparent conductive film can be adjusted as necessary.
  • a determination can be made immediately and a quick repair can be made.
  • by monitoring the film formation status of the transparent conductive film online it is possible to maintain the production status of solar cells with high power generation efficiency and to line out defective substrates in a very short time when defects occur. The formation quality is stabilized and the yield is improved. Thereby, manufacturing efficiency can be improved.
  • the thin film inspection apparatus of the present invention is not limited to the field of thin film solar cells, but can be widely applied in fields where transparent conductive films and transparent optical films are used, such as liquid crystal panels and semiconductor devices.
  • the light emitter 3 described above is arranged at a position where light can be irradiated from the glass substrate side to the transparent conductive film or the transparent optical film formed on the substrate conveyed in each manufacturing process.
  • the diffuse transmitted light may be received by the light receiving device 2.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 薄膜の基板面内における膜厚変動の影響を低減でき、計測精度の向上を図ることを目的とする。ガラス基板上に薄膜が製膜された被検査基板(W)に、該ガラス基板側から単波長の光を照射する光源と、光源から射出された照明光の光軸に対して所定の傾斜角度で受光軸が交差するように配置され、被検査基板Wを透過した拡散透過光を受光する受光素子と、受光素子によって受光された光の強度に基づいて薄膜のヘイズ率を求めるコンピュータ(7)とを備える。コンピュータ(7)は、ヘイズ率と拡散透過光の光強度とが関連付けられたヘイズ率特性を有しており、該ヘイズ率特性と前記受光素子によって受光された光強度とを用いてヘイズ率を求める。

Description

薄膜の検査装置及び検査方法
 本発明は、ガラス基板上に製膜された薄膜、例えば、太陽電池の透明ガラス基板上に製膜される透明導電膜の膜質を検査する薄膜の検査装置及び検査方法に関するものである。
 例えば、太陽電池には、ソーダガラス等の透明ガラス基板上に透明導電膜が製膜されている。透明導電膜は、光閉じ込め効果を狙って、積極的に凹凸が表面に形成される。凹凸の程度としては、例えば、0.8μmの膜厚に対して、0.3μm程度の凹凸となっている。このような透明導電膜の表面凹凸を評価する特徴量として、従来、ヘイズ率が用いられている。
 このヘイズ率を測定する方法として、例えば、特許文献1に開示されている技術が知られている。特許文献1には、光を透明導電膜に照射し、反射した光を少なくとも2つの波長に分光し、これらの波長の光強度を演算することによって透明導電膜のヘイズ率を算出することが開示されている。
 また、特許文献1には、製造ラインにヘイズ率を算出する装置を組み込むことが可能であり、透明導電膜を有する太陽電池の全数検査が可能であることが開示されている。
特開2005-134324号公報
 ところで、透明導電膜の膜厚が均一ではなく、膜面内において膜厚が変化しているような場合、上述した従来の装置で透明導電膜を評価しようとすると、反射スペクトルに干渉縞(干渉フリンジ)がのってしまい、所望の精度を満足できない可能性がある。
 本発明は、このような事情に鑑みてなされたものであって、薄膜の基板面内における膜厚変動の影響を低減でき、計測精度の向上を図ることのできる薄膜の検査装置及び検査方法を提供することを目的とする。
 上記課題を解決するために、本発明は以下の手段を採用する。
 本発明の第1の態様は、ガラス基板上に薄膜が製膜された被検査基板に、該ガラス基板側から単波長の光を照射する光源と、前記光源から射出された照明光の光軸に対して所定の傾斜角度で受光軸が交差するように配置され、前記被検査基板を透過した拡散透過光を受光する受光部と、受光部によって受光された光の強度に基づいて前記薄膜のヘイズ率を求める処理部とを備え、前記処理部は、ヘイズ率と拡散透過光の光強度とが関連付けられたヘイズ率特性を有しており、該ヘイズ率特性と前記受光部によって受光された光強度とを用いて前記ヘイズ率を求める薄膜の検査装置である。
 本態様によれば、単波長の光を被検査基板のガラス基板側から照射し、そのときの拡散透過光を受光部によって受光し、受光した光の強度に基づいて薄膜のヘイズ率を求めるので、従来のように膜厚による影響を受けずに、ヘイズ率を求めることが可能となる。
 これにより、膜厚変動による計測誤差を抑制でき、ヘイズ率の計測精度を向上させることができる。
 上記「単波長の光」とは、基本波長の波長幅が、半値全幅で約100nm以下、望ましくは50nm以下の光をいい、LED等の発光素子から出力される光も含まれる。
 上記薄膜の検査装置において、前記光源は、前記光源から射出される照明光の光軸が前記被検査基板の法線方向と一致するように配置されているとよい。
 上記薄膜の検査装置において、前記光源は、350nm以上760nm以下のいずれかの波長、好ましくは、350nm以上590nm以下のいずれかの波長を射出するとよい。このような波長にすることで、安定したヘイズ率の計測精度を確保することが可能となる。
 上記薄膜の検査装置において、光源が470nm以上590nm以下のいずれかの波長を射出する場合に、前記被検査基板の基板面に対する前記受光部の傾斜角度が54°以上65°以下とされていることが好ましい。
 このようにすることで、ヘイズ率の計測精度を更に高めることができる。
 上記薄膜の検査装置において、前記光源には、第1遮光部が取り付けられており、前記受光部には、第2遮光部が取り付けられていてもよい。
 このように第1遮光部、第2遮光部が取り付けられていることにより、外部からの光の進入を抑制することができ、良好な検査環境を得ることができる。
 上記薄膜の検査装置において、ヘイズ率が異なる薄膜がガラス基板上に製膜された複数の試験片を用意し、該試験片を前記照明光の光軸方向に対して所定量上下に移動させたときの拡散透過光を前記受光部にて受光し、その光強度とヘイズ率とを関係付けたヘイズ率特性を作成した場合に、検査対象とされる薄膜のヘイズ率の範囲において、ヘイズ率と光強度との関係が単調増加または単調減少で表わされ、かつ、試験片の設置位置の上下変動による前記ヘイズ率特性の変化量が所定値以下となるような傾斜角度で前記受光部が配置されていることが好ましい。
 製造ラインにヘイズ率を算出する装置を組み込む場合、全数検査を時間遅れなく実現するためには、薄膜が製膜された被検査基板を搬送しながらヘイズ率を計測する必要があることから、搬送による被検査基板の上下変動(ワークの変動)に対してロバストな計測系を組むことが重要となる。これは、上述のように、ヘイズ率は光強度を演算することにより求められることから、基板の上下変動による信号レベルの変動が、そのままヘイズ率の計測誤差につながり、測定精度を低下させることが考えられるからである。
 上述のような態様によれば、このような被検査基板の上下振動を考慮して、受光部の傾斜角度が決められるので、実際の製造ラインに組み込まれて使用される場合であっても基板の上下動による影響を受けずに、信頼性の高い計測結果を得ることができる。
 上記薄膜の検査装置において、前記受光部の傾斜角度、前記第1遮光部の光射出側の開口部の大きさ及び前記光源先端から光射出端までの長さ、前記第2遮光部において前記受光部と反対側における開口部の大きさ及び受光部の受光面から該開口部先端までの長さ、並びに、前記照明光の光軸が通る被検査基板の上面の位置から前記受光部の受光面までの距離をそれぞれ配置パラメータとした場合、これらの配置パラメータは、ヘイズ率が異なる薄膜がガラス基板上に製膜された複数の試験片を用意し、該試験片を前記照明光の光軸方向に対して所定量上下に移動させたときの拡散透過光を前記受光部にて受光し、その光強度とヘイズ率とを関係付けたヘイズ率特性を作成した場合に、検査対象とされる薄膜のヘイズ率の範囲において、ヘイズ率と光強度との関係が単調増加または単調減少で表わされ、かつ、試験片の設置位置の上下変動による光強度の変化量の最大値が所定値以下となるように決定されていることが好ましい。
 このような態様によれば、被検査基板の上下振動を考慮して、各配置パラメータの値が決定されるので、実際の製造ラインに組み込まれて使用される場合であっても被検査基板の上下動による影響を受けずに、信頼性の高い計測結果を得ることができる。
 上記薄膜の検査装置は薄膜の製造ラインに組み込まれ、製造ライン上を搬送される前記被検査基板に対して該ガラス基板側から照明光を照射する位置に前記光源が配置されていてもよい。
 本発明の第2の態様は、上記いずれかの薄膜の検査装置を備える薄膜製造システムであって、前記光源が、製造ライン上を搬送される前記被検査基板に対してガラス基板側から光を照射するように配置されて該被検査基板の薄膜を検査する薄膜製造システムである。
 本発明の第3の態様は、拡散透過光の光強度と薄膜のヘイズ率とを関係付けたヘイズ率特性を予め保有しており、ガラス基板上に薄膜が製膜された被検査基板に該ガラス基板側から単波長の光を照射し、前記被検査基板を透過した拡散透過光を受光し、受光した光の強度と前記ヘイズ率特性とを用いて、前記薄膜のヘイズ率を求める薄膜の検査方法である。
 本発明の第4の態様は、上記薄膜の検査装置に適用される計測系の配置決定方法であって、前記光源の波長、前記受光部の設置傾斜角度、前記第1遮光部の光射出側の開口部の大きさ及び前記光源先端から光射出端までの長さ、前記第2遮光部において前記受光部と反対側における開口部の大きさ及び受光部の受光面から該開口部先端までの長さ、並びに、前記照明光の光軸が通る被検査基板の上面の位置から前記受光部の受光面までの距離を配置パラメータとした場合に、ヘイズ率の異なる薄膜がガラス基板上に製膜された複数の試験片を用意する第1工程と、前記パラメータを該パラメータ毎に決められた所定の範囲内で変化させた計測系において、該試験片を前記照明光の光軸方向に対して所定量上下に移動させたときの拡散透過光を前記受光部で受光する第2工程と、第2工程で得られた拡散透過光の光強度とヘイズ率とを関係付けてヘイズ率特性を作成するとともに、このヘイズ率特性と該ヘイズ率特性が得られたときの該計測系の各パラメータ設定値とを対応付ける第3工程と、第3工程において作成された複数のヘイズ率特性の中から、検査対象とされる薄膜のヘイズ率の範囲において、ヘイズ率と光強度との関係が単調増加または単調減少で表わされ、かつ、試験片の設置位置の上下変動による光強度の変化量の最大値が所定値以下であるヘイズ率特性を抽出する第4工程と、前記第4工程で抽出されたヘイズ率特性が得られたときのパラメータを検査時における計測系の配置パラメータとして採用する第5工程とを含む計測系の配置決定方法である。
 このような計測系の配置決定方法を用いて計測系の各配置パラメータを決定することにより、薄膜の検査装置が製造ラインに組み込まれた場合でも、被検査基板の上下振動にロバストな計測系を組むことができる。
 本発明によれば、薄膜の基板面内における膜厚変動の影響を低減でき、計測精度の向上を図ることができるという効果を奏する。
本発明の一実施形態に係る薄膜の検査装置の全体構成を示した図である。 光源と受光素子の配置関係を示した図である。 コンピュータが保有しているヘイズ率特性の一例を示した図である。 計測結果として表示されるヘイズ率の二次元分布画像の一例を示した図である。 ヘイズ率の異なる試験片の拡散透過スペクトル(波長範囲300nm~1500nm)を示した図である。 計測系の構成と配置パラメータについて説明するための図である。 配置パラメータを決定するために行った事前試験で得られたヘイズ率特性を示した図である。 配置パラメータを決定するために行った事前試験で得られたヘイズ率特性を示した図である。 配置パラメータを決定するために行った事前試験で得られたヘイズ率特性を示した図である。 配置パラメータを決定するために行った事前試験で得られたヘイズ率特性を示した図である。 配置パラメータを決定するために行った事前試験で得られたヘイズ率特性を示した図である。 配置パラメータを決定するために行った事前試験で得られたヘイズ率特性を示した図である。 照明光の波長を変数とし、他の配置パラメータを固定としたときの各波長に対するヘイズ率特性を示した図である。 受光素子の傾斜角度を変数とし、他の配置パラメータを固定としたときの各傾斜角度に対するヘイズ率特性を示した図である。 膜面から受光素子までの距離を変数とし、他の配置パラメータを固定としたときの各距離に対するヘイズ率特性を示した図である。 配置パラメータを決定する事前試験において最適であると決定付けられた配置パラメータを用いて組まれた計測系を用いて作成されたヘイズ率特性を示した図である。 本発明の一実施形態に係る薄膜の検査装置の効果を示した図である。
 以下に、本発明に係る薄膜の検査装置及びその方法を太陽電池の透明導電膜の評価に適用する場合についての実施形態について、図面を参照して説明する。
 図1は、本発明の一実施形態に係る薄膜の検査装置の全体構成を示した図である。図1に示すように、本実施形態に係る薄膜の検査装置は、太陽電池の製造装置の製造ラインに設けられて利用されるものである。薄膜の検査装置によって検査される被検査基板Wは、約1m角の透明ガラス基板に、ITO(Indium Tin Oxide)、酸化亜鉛(ZnO)、酸化錫(SnO)等の透明導電膜(TCO:Transparent
Conductive Oxide)が製膜された透明導電膜付きガラス基板である。この被検査基板Wは、透明導電膜が上面となるように搬送される。なお、透明導電膜とガラス基板との間に、ガラス基板界面における拡散防止のため、下地膜としてSiO膜等が製膜されていてもよい。
 被検査基板Wを搬送する搬送コンベア1の下方には光照射装置3が、上方には受光装置2が配置されている。光照射装置3は、例えば、被検査基板Wの幅方向に一列に配置された複数の光源3a(図2参照)を備えている。本実施形態において、光源3aは、8つ設けられている。ここで、光源3aとしては、単一波長のLED、或いはフィルタを組み合わせた白色LED等を使用することが可能である。また、LEDに限られず、他の光源、例えば、ランプ光源、ランプ光源にフィルタを組み合わせた光源ユニット等を使用することとしてもよい。光照射装置3から照射する光の波長は後述するパラメータ設定方法により選定された波長を使用する。
 光照射装置3は、後述するコンピュータ7から送られる信号に基づいて光源用電源4が作動することにより、光量調整並びに光源のオン/オフが制御されるようになっている。
 受光装置2は、光照射装置3が備える各光源3aから射出された照射光L1が被検査基板Wを透過することで拡散された拡散透過光L2を受光する。受光装置2は、例えば、被検査基板Wの幅方向に一列に並んで配置された複数の受光素子(受光部)2a(図2参照)を有している。本実施形態において、受光素子2aは、8つ設けられている。受光素子2aと光源3aとは一対となっており、対応する光源3aから射出された照明光の拡散透過光が受光素子2aによって受光されるようになっている。受光素子2aは、計測すべき光の波長に対して感度を有している素子等であればよく、例えば、フォトダイオード、光電子増倍管等を使用することにより、簡易で廉価な構成とすることができる。このとき、被検査基板Wがない状態では略均一な検出感度を示すよう調整されていることが望ましい。また、例えば、受光素子2aは、被検査基板Wがない状態における信号強度が実質的にゼロとなるようにキャリブレーションされている、或いは、受光素子2aの位置を照明光の光軸上に配置させた状態で照明光を受光し、このときの信号強度が100%となるように、キャリブレーションされているとよい。
 図2に、光源3aと受光素子2aの配置関係を示す。図2に示すように、光源3aから射出された照明光L1は、被検査基板Wの基板面に対して垂直に、換言すると、基板面の法線方向から入射する。この照明光L1は、被検査基板Wの膜内、膜面において拡散され、その拡散透過光の一部が受光素子2aによって受光される。受光素子2aは、光源3aから射出された照明光L1の光軸に対して所定の傾斜角度(90°-θ)で受光軸が交差するように配置されており、被検査基板Wを透過した拡散透過光L2を受光する。
 なお、受光素子2aの傾斜角度θについては、後述するパラメータ設定方法により選定された傾斜角度θを使用する。
 図1に戻り、搬送コンベア1には、光電スイッチ5とロータリエンコーダ6とが配置されている。光電スイッチ5は、搬送されてきた被検査基板Wの先端部分が照明光L1の入射位置に到達したことを検出した場合に、検査スタート信号Sを発生してコンピュータ7に送信する。ロータリエンコーダ6は、設定回転角毎、即ち、被検査基板Wが設定距離移動する毎に、パルス信号Pを発生してコンピュータ7に送る。
 コンピュータ(処理部)7は、検査スタート信号Sを受信した後において、パルス信号Pを受信する毎に、トリガ信号Tを受光装置2に送るようになっている。受光装置2の各受光素子2aは、トリガ信号Tを受ける毎に、被検査基板Wを透過した拡散透過光L2を受光し、その光強度に応じた受光信号Cをそれぞれコンピュータ7に送る。
 コンピュータ7は、受光装置2の各受光素子2aから受光信号Cを受信すると、これら各受光信号Cで示される拡散透過光の光強度と予め保有しているヘイズ率特性(ヘイズ率と光強度との検量特性)とを用いて、被検査基板Wのヘイズ率の算出を行う。
 図3に、ヘイズ率特性の一例を示す。図3において、横軸は信号強度(拡散透過光の光強度)、縦軸はヘイズ率を示している。図3では、受光素子毎にヘイズ率特性を有している場合を示している。このように、各受光素子に応じたヘイズ率特性を有していることで、各受光素子の特性を加味したヘイズ率を求めることができ、検出精度をより向上させることが可能となる。また、図3では、横軸に光強度、縦軸にヘイズ率を示しているが、横軸にヘイズ率、縦軸に光強度が示されていてもよい。ヘイズ率特性は、ヘイズ率と拡散透過光の光強度との関係を示している特性をいい、ヘイズ率については、例えば、JIS K 7136には、「全光線透過率τに対する拡散透過率τの比として定義される」と記載されている。
 コンピュータ7が保有している図3に示すようなヘイズ率特性は、ヘイズ率が既知の試験片を複数用意し、図1に示した実際の検査装置と同じ計測系において、これらの試験片に対して光を照射したときの拡散透過光を各受光素子2aで受信し、各受光素子2aによって受光された光強度とそのときの既知のヘイズ率とを関連付けることで作成される。
 コンピュータ7は、保有しているヘイズ率特性を用いて各受光素子2aで受光された光強度からヘイズ率を求めると、各受光素子2aが拡散透過光を受光したタイミングから被検査基板Wにおける検査位置とヘイズ率とを対応付けて記憶部(図示略)に記憶する。これにより、1枚の被検査基板Wにおける検査が終了した場合には、記憶部に格納されている各検査位置におけるヘイズ率を読み出すことにより、図4に示すようなヘイズ率の二次元分布画像を作成し、表示装置8に表示することが可能となる。また、予めヘイズ率の許容範囲を保有しており、この許容範囲外となるヘイズ率が検出された場合に、エラーを報知するような態様としても良い。
 次に、図1に示す薄膜の検査装置により、透明導電膜のヘイズ率を検査する場合について説明する。ここでは、波長λ1の光を被検査基板Wに照射し、透明導電膜のヘイズ率を算出する場合について説明する。この場合、コンピュータ7が有する記憶部(図示略)には、波長λ1に対応するヘイズ率特性が予め記憶されている。
 まず、コンピュータ7は、光照射装置3の各光源を点灯させた状態において、搬送コンベア1上に載置された被検査基板Wを搬送方向Yに搬送させる。これにより、光照明装置3から射出された照明光L1は、被検査基板Wを透過することで拡散し、その一部の拡散透過光L2が受光装置2に導かれる。
 一方、この被検査基板Wの移動に応じてロータリエンコーダ6からパルス信号Pがコンピュータ7に送られる。コンピュータ7は、このパルス信号Pを受信する毎に、トリガ信号Tを受光装置2に送る。これにより、被検査基板Wの移動に応じて受光装置2の各受光素子2aにより拡散透過光L2が受光され、光強度に応じた受光信号Cがコンピュータ7へ送られることとなる。コンピュータ7は、各受光素子2からの受光信号Cを受信すると、この受光信号C及びヘイズ率特性からヘイズ率を求め、このヘイズ率を記憶部に記憶する。これにより、被検査基板Wにおける各計測点でヘイズ率を算出し、被検査基板Wにおけるヘイズ率分布を求めることが可能となる。
 次に、図1に示す薄膜の検査装置において、ヘイズ率の計測に用いられる光の波長を選択する波長選択方法について説明する。
 まず、ヘイズ率がそれぞれ異なる透明導電膜がガラス基板上に製膜された複数の試験片を用意する。なお、このとき用意する試験片は、実際のヘイズ率計測における被検査基板Wの膜構造と略同一にすることが望ましい。本実施形態では、ヘイズ率が18%、20%、29%の試験片をそれぞれ用意した。
 次に、用意した試験片に対して300nmから1500nmの波長の光をガラス基板側からガラス基板の膜面に対して垂直入射させ、そのときの拡散透過光を積分球により検出し、透過光束の計測を行った。この計測は、日立製作所製の分光光度計U-3500に60mmφの積分球を取り付けた計測装置で実施した。最初に、積分球の光出射位置に白板を設置し、100%ベースラインのキャリブレーションを実施した。次に、白板を取り外し、積分球の光入射位置に、光入射面がガラス基板側となるように試験片を設置した。この状態で、分光した光を試験片に照射し、垂直透過光を含まない前方散乱光だけを積分球に内蔵されている光受光器で計測し、拡散透過率を求めた。
 図5に各試験片における波長と拡散透過率との関係を示す。
 図5に示すように、拡散透過率は波長350nm付近においてピークを示し、その後波長が長くなるにつれ指数関数的に緩やかに減少する。拡散透過率が高いということは、図1に示した装置において、受光素子2aにて検出される光強度が高いということになるので、安定した検出精度が得られやすいということを意味する。従って、光源として使用する波長は、光強度が高いものがよい。また、光源や受光素子等の据付・調整作業は、作業員による目視により行われることから、作業性の面から可視光が好ましい。
 これらの観点から図5において、350nm以上760nm以下の範囲の波長の光を使用するとよいことがわかる。また、350nm付近のピークは、使用する透明ガラス基板の特性に応じてシフトすることがわかっている。また、市販のLEDは廉価であり、また、利便性の面において優位である。従って、光源として、例えば、450nm、470nm、530nm、560nm、570nm、590nm、644nm、660nm、700nm等のLEDを用いるとよい。
 また、JIS K 7136に規定されているヘイズ率の測定に関しては、実質的に中心波長が550nm程度となるyフィルタを透過させた白色光を照明光として使用している。yフィルタは、JIS K 7136にて、「ISO/CIE 10527による等色関数y(λ)と等しい明所視標準視感効率V(λ)」と規定されている。
 従って、550nmの光を照明光として使用することも有益である。また、更に、後述する試験において、590nmの照明光を使用してその適応性を評価したところ、590nmの照明光を用いても適切なヘイズ率特性が得られ、信頼性の高い計測を行うことが証明された。このことから、例えば、光源として使用する波長は、300nm、好ましくは、拡散透過率のピークが現れる約350nm以上約590nm以下に設定することがより好ましいといえる。この波長帯域であれば、図5に示されるように、比較的高い拡散透過率が得られることから、安定した計測精度を確保することができる。
〔第1のパラメータ設定方法〕
 次に、本実施形態に係る薄膜の検査装置は、図1に示したように、製造ラインに組み込まれ、搬送されてくる被検査基板Wを検査するものである。従って、被検査基板Wは、上下に振動することが予想され、このような上下運動に対してロバストな計測系を組むことが重要となる。
 そこで、本実施形態では、350nm以上760nm以下の波長帯域の中から安価に手に入れることの出来る市販のLEDの波長に一致する波長のうち、470nm、530nm、590nmを代表波長として選定し、被検査基板Wの上下振動に強い計測系の配置パラメータを求めた。
 また、本実施形態では、外部からの光の進入を抑えるために、光源(LED)3a及び受光素子2aに、筒状の遮光フードを取り付けている。遮光フードの形状については特に限定されない。図6に示すように、計測系の配置パラメータは、光源3aの筒状の遮光フードの高さLa、光源3aの遮光フードの筒径Da、照明光の光軸が通る透明導電膜の膜面の点から受光素子2aの受光面までの距離L、受光素子2aの筒状の遮光フードの長さLb、受光素子2aの筒状の遮光フードの筒径Db、受光素子2aの傾斜角度θの6つに設定した。
 また、各配置パラメータの変更範囲を以下の表のように設定した。
Figure JPOXMLDOC01-appb-T000001
 次に、それぞれヘイズ率の異なる透明導電膜が透明基板上に製膜された試験片をそれぞれ用意し(具体的には、ヘイズ率7.9%、10.6%、15.3%、17.4%、20.5%、22.8%、24.5%、26.1%、29.8%、35.1%の10個の試験片を用意した)、これら試験片を光源3aの遮光フードの先端から5mmの位置(この位置を「基準位置」とする。)、かつ、光源3aから射出される照明光が垂直入射するように配置し、この状態で上記配置パラメータをそれぞれ変更範囲内で変化させて、受光素子2aによって検出される光強度を計測し、光強度と試験片の既知のヘイズ率とを関連付けることにより複数のヘイズ率特性を作成した。
 次に、図6に示した計測系において、試験片の位置を基準位置から基板面に垂直な方向に-1mm、+1mmそれぞれずらした場合において、受光素子2aにおいて受光される光の強度を計測し、光強度と試験片の既知のヘイズ率とを関連付けたヘイズ率特性を作成した。
 図7に、Da=5,θ=54°,波長λ=470nm,L=25mm,La=5mm,Lb=5mm,Db=5mmのときのヘイズ率特性を、図8に、Da=5mm,θ=65°,波長λ=470nm,L=40mm,La=10mm,Lb=5mm,Db=7mmのときのヘイズ率特性を、図9に、Da=7mm,θ=65°,波長λ=470nm,L=30mm,La=15mm,Lb=10mm,Db=5mmのときのヘイズ率特性を、図10に、Da=5mm,θ=60°,波長λ=530nm,L=40mm,La=15mm,Lb=5mm,Db=5mmのときのヘイズ率特性を、図11に、Da=7mm,θ=54°,波長λ=530nm,L=40mm,La=5mm,Lb=15mm,Db=7mmのときのヘイズ率特性を、図12に、Da=5mm,θ=65°,波長λ=590nm,L=25mm,La=5mm,Lb=10mm,Db=7mmのときのヘイズ率特性を代表例としてそれぞれ示す。
 図7から図12において、縦軸はヘイズ率、横軸は信号強度(光強度)である。また、各図においてZ=0は試験片を基準位置に置いたときのヘイズ率特性、Z=-1は試験片を基準位置から光源3a側に1mm近づけたときのヘイズ率特性、Z=+1は基準位置にある試験片を光源3aから離れる方向に1mm移動させたときのヘイズ率特性である。
 このようなヘイズ率特性の中から(1)ヘイズ率に対する光強度が単調増加しており、かつ、(2)試験片の設置位置の上下変動による光強度の変化量の最大値が第1閾値以下となるようなヘイズ率特性を抽出し、抽出したヘイズ率特性が得られたときの配置パラメータを検査時に使用する配置パラメータとして決定する。
 ここで、上記第1閾値は、要求される計測精度に応じて任意に設定できる値である。また、試験片の設置位置の上下変動による光強度の変化量の最大値Pmaxは、例えば、図7に示すようなヘイズ率特性において、z=+1,0,-1にそれぞれ対応するヘイズ率特性において信号強度に最も開きのあるヘイズ率を特定し、そのヘイズ率における最大信号強度と最小信号強度との差分を算出することで得られる。
 図7から図12に示したヘイズ率特性において、いずれの配置パラメータも上記(1)及び(2)の条件を満たしていることが確認された。この中で最も適切な配置パラメータを決定するためには、それぞれのヘイズ率特性において、SN比及び特性の傾きβ1を求め、SN比及び傾きが最も大きい値を示した配置パラメータを選定すればよい。特に、傾きβ1が大きいほど、より高い計測感度を確保することができる。
 なお、図12は、波長590nmの光を使用したときのヘイズ率特性を示したものであるが、ヘイズ率に対する光強度が略単調増加しており、かつ、試験片の設置位置の上下変動による光強度の変化量も少ないといえる。従って、図12から波長590nmを図1に示した検査装置に使用した場合でも所定の計測精度を確保できることが証明された。
〔第2のパラメータ設定方法〕
 上述した第1のパラメータ設定方法では、全ての配置パラメータを変化させてデータを取得しなければならないため、データ量が膨大になる。従って、データ量を低減させるために、上記配置パラメータの中から特に基板の上下変動に対して敏感な配置パラメータを求め、この配置パラメータについてのみ所定範囲で値を変化させることにより、適切なパラメータ設定値を得ることを考える。
 例えば、光源3aに取り付けられている遮光フードの筒径Daについては、外部からの光を出来るだけ遮断してノイズを低減させるとともに、照明光の指向性を高めるために、筒径は小さい方が好ましいといえる。また、この遮光フードの長さLaについては、光源3aを被検査基板Wからある程度離して設置したいということから、この光源3aの設置位置に応じて決定するのが好ましい。このような条件は、被検査基板Wの上下変動に限らずに計測系の原理に基づいて導き出せる条件である。
 また、受光素子2aに取り付けられている遮光フードの長さLbについても、できるだけ外部からの光を遮断したいことから、遮光効果を高めるために可能な範囲で大きな値を設定した方が好ましいといえる。
 このように考えると、光源3a及び受光素子2aの遮光フードの長さ及び筒径については、上述したような条件に基づいて適切な値を決定した方が好ましく、従って、受光素子2aの傾斜角度θ、光源3aの波長λ、膜面から受光素子までの距離Lに関する配置パラメータについて具体的な試験を行うことにより決定することが好ましいといえる。
 そこで、本実施形態では、まず、計測系の原理に基づいて導き出せる各配置パラメータの値をそれぞれ以下のように設定する。
 光源3aの筒状の遮光フードの高さLa=15mm
 LEDの筒状の遮光フードの筒径Da=5mm
 受光素子の筒状の遮光フードの長さLb=15mm
 受光素子の筒状の遮光フードの筒径Db=7mm
 また、透明導電膜の膜面から受光素子までの距離L、受光素子の傾斜角度θについて仮の設定値、例えば、距離L=40mm、θ=54°に設定し、この計測系で上記試験片を基準位置に設置し、光源の波長λを470nm、500nm、530nm、560nm、590nmと切り替えたときのヘイズ率特性をそれぞれ求める。
 図13に、ヘイズ率特性を示す。ここで、ヘイズ率を高い精度で求める場合、ヘイズ率と光強度とが比例関係にあることが望ましく、また、その傾きβ1が大きいほど好ましい。従って、図13において、波長毎に傾きβ1を算出し、それぞれを比較した。例えば、傾きβ1は、特性を一次曲線に近似し、そのときの傾きを求めた。この結果、波長470nmの照明光を使用したときの傾きβ1が最も大きく、検出精度の観点から波長470nmの光を使用することが好ましいことがわかった。
 次に、受光素子2aの傾斜角度θを変数とし、図6に示した計測系において最適な受光素子2aの傾斜角度θを所定範囲内で決定する。ここで、照明光としては、図13から導出された470nmの波長の光を使用し、その他の計測系のパラメータに関しては、上述の通りである。当該試験では、傾斜角度θを54°,57°,60°の3つの値に変化させ、それぞれのヘイズ率特性を得た。図14に、ヘイズ率特性を示す。また、このときのヘイズ率特性の傾きβ1を求めた。この結果、傾斜角度が54°のときの傾きβ1が最も大きいことがわかった。
 次に、照明光の光軸が通る透明導電膜の膜面から受光素子の受光面までの距離Lを変数とし、図6に示した計測系において適切な距離Lを所定範囲内で決定する。ここで、照明光としては、図13から導出された470nmの波長の光を使用し、受光素子2aの傾斜角度θについては図14から導出された54°を採用する。また、その他の計測系のパラメータについては、上述の通りである。
 当該試験では、距離Lを30mm,35mm,40mmの3つの値に変化させ、それぞれのヘイズ率特性を得た。図15に、ヘイズ率特性を示す。また、このときのヘイズ率特性の傾きβ1を求めた。この結果、距離Lが40mmのときの傾きβ1が最も大きいことがわかった。
 以上のことから、計測系の各配置パラメータを以下のように設定した場合に、高い計測精度が得られることがわかった。
 光源の筒状の遮光フードの高さLa=15mm
 LEDの筒状の遮光フードの筒径Da=5mm
 透明導電膜の膜面から受光素子までの距離L=40mm
 受光素子の筒状の遮光フードの長さLb=15mm
 受光素子の筒状の遮光フードの筒径Db=7mm
 受光素子の傾斜角度θ=54°
 照明光の波長λ=470nm
 次に、上記配置パラメータを採用して組まれた図6に示す計測系において、試験片を基準位置から1mm上下に変動させ、そのときのヘイズ率特性を得た。図16にヘイズ率特性を示す。図16に示すように、試験片の位置を照明光の光軸に沿って所定量移動させてもヘイズ率特性は殆ど変わらず、かつ、比較例として示したヘイズ率特性よりも大きな傾きβ1を持つことから、高い計測感度を有することがわかった。なお、比較例を得たときの計測系は、以下の配置パラメータを用いた。
 光源の筒状の遮光フードの高さLa=10mm
 LEDの筒状の遮光フードの筒径Da=7mm
 透明導電膜の膜面から受光素子までの距離L=30mm
 受光素子の筒状の遮光フードの長さLb=10mm
 受光素子の筒状の遮光フードの筒径Db=7mm
 受光素子の傾斜角度θ=60°
 照明光の波長λ=530nm
 以上、説明してきたように、本実施形態に係る薄膜の検査装置及び検査方法によれば、単波長の光を被検査基板のガラス基板側から照射し、そのときの拡散透過光を受光素子によって受光し、受光した光の強度に基づいて透明導電膜のヘイズ率を求めるので、従来のように膜厚による影響を受けずに、ヘイズ率を求めることが可能となる。
 図17に、図1に示した薄膜の検査装置によって、製造ラインに組み込んだ状態で、被検査基板を搬送しながら、ヘイズ率の面内分布を計測した結果を示す。ここでは、4枚の被検査基板Sを対象とし、各被検査基板Sにはそれぞれ格子状に8×8=64ポイントの計測ポイントを設定した。被検査基板Sは、透明ガラス基板上に薄膜が製膜されており、薄膜の膜厚は面内分布(分布幅;±30%程度)を有しているものを用いた。また、ヘイズ率も面内分布を有しているものとした。
 また、薄膜の検査装置の精度検証用に、計測後の被検査基板を回収し、小面積に分割し、市販のヘイズ計で上記計測ポイントのヘイズ率を求めた。ヘイズ計は、JIS K 7136に準拠したものを用いた。
 本実施形態に係る薄膜の検査装置によれば、図17に示すように、透明導電膜の膜厚にムラがある場合でも、ヘイズ率の計測誤差ΔHzの4枚の平均値は1.4%であり、信頼性の高い計測結果が得られることがわかった。ここで、ΔHzは、同一計測ポイントにおけるヘイズ計で求めたヘイズ率と本願の薄膜の検査装置で求めたヘイズ率の差分の標準偏差(1シグマ)であり、N数は64点である。
 本実施形態によれば、薄膜の検査装置の計測系の配置は、被検査基板の振動を考慮した値に設定されているので、実際の製造ラインに組み込まれて使用される場合に、基板の上下動による影響を受けずに、信頼性の高い計測結果を得ることができる。更に、コンピュータ7において用いられるヘイズ率特性は、例えば、図16に示したように、傾きβ1が大きいため、高い計測感度を得ることができる。
 また、製造ライン上に薄膜の検査装置を配置することによって、透明導電膜が製膜された全数の基板を、時間遅れなく、検査することができ、不具合品が検出された場合には途中工程にて不具合基板をラインアウトし、必要に応じて透明導電膜の製膜条件などを調整することができる。また製膜装置自体が感知できないトラブルで膜形成が不良となった場合も即刻に判断がつき、素早い修復対応が可能となる。また、透明導電膜の製膜状況をオンラインで監視することで、発電効率が高い太陽電池の生産状況を維持し、不良発生時には極めて短時間で不具合基板をラインアウトすることができるので、製膜形成の品質が安定し、歩留まりが向上する。これにより製造効率を向上させることができる。
 本発明の薄膜の検査装置は、薄膜太陽電池の分野に限られることなく、液晶パネル、半導体デバイス等、透明導電膜や透明光学膜が利用される分野において幅広く適用することができる。この場合には、各製造工程において搬送される基板上に製膜された透明導電膜や透明光学膜に対してガラス基板側から光を照射可能な位置に、上述した光射出器3を配置し、この拡散透過光を受光装置2にて受光すればよい。
1 搬送コンベア
2 受光装置
2a 受光素子
3 光照射装置
3a 光源
4 光源用電源
7 コンピュータ
8 表示装置

Claims (12)

  1.  ガラス基板上に薄膜が製膜された被検査基板に、該ガラス基板側から単波長の光を照射する光源と、
     前記光源から射出された照明光の光軸に対して所定の傾斜角度で受光軸が交差するように配置され、前記被検査基板を透過した拡散透過光を受光する受光部と、
     受光部によって受光された光の強度に基づいて前記薄膜のヘイズ率を求める処理部と
    を備え、
     前記処理部は、ヘイズ率と拡散透過光の光強度とが関連付けられたヘイズ率特性を有しており、該ヘイズ率特性と前記受光部によって受光された光強度とを用いて前記ヘイズ率を求める薄膜の検査装置。
  2.  前記光源は、前記光源から射出される照明光の光軸が前記被検査基板の法線方向と一致するように配置されている請求項1に記載の薄膜の検査装置。
  3.  前記光源は、350nm以上760nm以下のいずれかの波長を射出する請求項1または請求項2に記載の薄膜の検査装置。
  4.  前記光源は、350nm以上590nm以下のいずれかの波長を射出する請求項1または請求項2に記載の薄膜の検査装置。
  5.  前記光源が470nm以上590nm以下のいずれかの波長を射出する場合に、前記被検査基板の基板面に対する前記受光部の傾斜角度が54°以上65°以下とされている請求項1または請求項2に記載の薄膜の検査装置。
  6.  前記光源には、第1遮光部が取り付けられており、
     前記受光部には、第2遮光部が取り付けられている請求項1から請求項5のいずれかに記載の薄膜の検査装置。
  7.  ヘイズ率が異なる薄膜がガラス基板上に製膜された複数の試験片を用意し、該試験片を前記照明光の光軸方向に対して所定量上下に移動させたときの拡散透過光を前記受光部にて受光し、その光強度とヘイズ率とを関係付けたヘイズ率特性を作成した場合に、検査対象とされる薄膜のヘイズ率の範囲において、ヘイズ率と光強度との関係が単調増加または単調減少で表わされ、かつ、試験片の設置位置の上下変動による光強度の変化量の最大値が所定値以下となるような傾斜角度で前記受光部が配置されている請求項1から請求項5のいずれかに記載の薄膜の検査装置。
  8.  前記受光部の傾斜角度、前記第1遮光部の光射出側の開口部の大きさ及び前記光源先端から光射出端までの長さ、前記第2遮光部において前記受光部と反対側における開口部の大きさ及び受光部の受光面から該開口部先端までの長さ、並びに、前記照明光の光軸が通る被検査基板の上面の位置から前記受光部の受光面までの距離をそれぞれ配置パラメータとした場合、これらの配置パラメータは、
     ヘイズ率が異なる薄膜がガラス基板上に製膜された複数の試験片を用意し、該試験片を前記照明光の光軸方向に対して所定量上下に移動させたときの拡散透過光を前記受光部にて受光し、その光強度とヘイズ率とを関係付けたヘイズ率特性を作成した場合に、検査対象とされる薄膜のヘイズ率の範囲において、ヘイズ率と光強度との関係が単調増加または単調減少で表わされ、かつ、試験片の設置位置の上下変動による光強度の変化量の最大値が所定値以下となるように決定されている請求項6に記載の薄膜の検査装置。
  9.  薄膜の製造ラインに組み込まれ、製造ライン上を搬送される前記被検査基板に対して該ガラス基板側から照明光を照射する位置に前記光源が配置されている請求項1から請求項8のいずれかに記載の薄膜の検査装置。
  10.  請求項1から請求項8のいずれかに記載の薄膜の検査装置を備える薄膜製造システムであって、
     前記光源が、製造ライン上を搬送される前記被検査基板に対してガラス基板側から光を照射するように配置された薄膜製造システム。
  11.  拡散透過光の光強度と薄膜のヘイズ率とを関係付けたヘイズ率特性を予め保有しており、
     ガラス基板上に薄膜が製膜された被検査基板に該ガラス基板側から単波長の光を照射し、
     前記被検査基板を透過した拡散透過光を受光し、
     受光した光の強度と前記ヘイズ率特性とを用いて、前記薄膜のヘイズ率を求める薄膜の検査方法。
  12.  請求項6に記載の薄膜の検査装置に適用される計測系の配置決定方法であって、
     前記光源の波長、前記受光部の設置傾斜角度、前記第1遮光部の光射出側の開口部の大きさ及び前記光源先端から光射出端までの長さ、前記第2遮光部において前記受光部と反対側における開口部の大きさ及び受光部の受光面から該開口部先端までの長さ、並びに、前記照明光の光軸が通る被検査基板の上面の位置から前記受光部の受光面までの距離を配置パラメータとした場合に、
     ヘイズ率の異なる薄膜がガラス基板上に製膜された複数の試験片を用意する第1工程と、
     前記パラメータを該パラメータ毎に決められた所定の範囲内で変化させた計測系において、該試験片を前記照明光の光軸方向に対して所定量上下に移動させたときの拡散透過光を前記受光部で受光する第2工程と、
     第2工程で得られた拡散透過光の光強度とヘイズ率とを関係付けてヘイズ率特性を作成するとともに、このヘイズ率特性と該ヘイズ率特性が得られたときの該計測系の各パラメータ設定値とを対応付ける第3工程と、
     第3工程において作成された複数のヘイズ率特性の中から、検査対象とされる薄膜のヘイズ率の範囲において、ヘイズ率と光強度との関係が単調増加または単調減少で表わされ、かつ、試験片の設置位置の上下変動による光強度の変化量の最大値が所定値以下であるヘイズ率特性を抽出する第4工程と、
     前記第4工程で抽出されたヘイズ率特性が得られたときのパラメータを検査時における計測系の配置パラメータとして採用する第5工程と
    を含む計測系の配置決定方法。
PCT/JP2009/062118 2009-02-27 2009-07-02 薄膜の検査装置及び検査方法 WO2010097971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/120,319 US8497991B2 (en) 2009-02-27 2009-07-02 Thin-film inspection apparatus and inspection method
CN200980138478.8A CN102165282B (zh) 2009-02-27 2009-07-02 薄膜的检查装置和检查方法
EP09840818A EP2402713A1 (en) 2009-02-27 2009-07-02 Device and method for examining thin film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009047359A JP4796160B2 (ja) 2009-02-27 2009-02-27 薄膜の検査装置及び検査方法
JP2009-047359 2009-02-27

Publications (1)

Publication Number Publication Date
WO2010097971A1 true WO2010097971A1 (ja) 2010-09-02

Family

ID=42665193

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062118 WO2010097971A1 (ja) 2009-02-27 2009-07-02 薄膜の検査装置及び検査方法

Country Status (5)

Country Link
US (1) US8497991B2 (ja)
EP (1) EP2402713A1 (ja)
JP (1) JP4796160B2 (ja)
CN (1) CN102165282B (ja)
WO (1) WO2010097971A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8184294B2 (en) * 2009-03-09 2012-05-22 Honeywell International Inc. Apparatus and method for measuring haze of sheet materials or other materials
WO2013179444A1 (ja) * 2012-05-31 2013-12-05 三洋電機株式会社 テクスチャサイズの測定装置、太陽電池の製造システム、及び太陽電池の製造方法
KR102025704B1 (ko) * 2012-09-14 2019-09-27 삼성디스플레이 주식회사 필름 검사 장치
US9689912B2 (en) * 2012-12-07 2017-06-27 Taiwan Semiconductor Manufacturing Co., Ltd. Rapid analysis of buffer layer thickness for thin film solar cells
CN103076307A (zh) * 2012-12-28 2013-05-01 北京汇冠触摸技术有限公司 一种透光率检测装置
US20170109895A1 (en) * 2015-10-19 2017-04-20 Honeywell International Inc. Apparatus and method for measuring haze of sheet materials or other materials using off-axis detector
JP6805484B2 (ja) * 2015-10-28 2020-12-23 東洋製罐株式会社 ずれ検出装置及びずれ修正装置、並びにずれ検出方法及びずれ修正方法
WO2018085237A1 (en) * 2016-11-02 2018-05-11 Corning Incorporated Method and apparatus for inspecting defects on transparent substrate and method of emitting incident light
US10480935B2 (en) * 2016-12-02 2019-11-19 Alliance For Sustainable Energy, Llc Thickness mapping using multispectral imaging
CN107153079B (zh) * 2017-05-18 2024-03-29 金华职业技术学院 一种测量薄膜导热系数的方法
JP6285597B1 (ja) * 2017-06-05 2018-02-28 大塚電子株式会社 光学測定装置および光学測定方法
DE102018103171A1 (de) * 2017-11-23 2019-05-23 Tdk Electronics Ag Verfahren zum Bestimmen von Eigenschaften einer Beschichtung auf einer transparenten Folie, Verfahren zur Herstellung einer Kondensatorfolie und Einrichtung zum Bestimmen von Eigenschaften einer Beschichtung auf einer transparenten Folie
CN108844500B (zh) * 2018-04-10 2020-11-20 苏州久越金属科技有限公司 一种镭射自动化高效测量方法
IT201800005143A1 (it) * 2018-05-08 2019-11-08 Metodo per il controllo di un oggetto in materiale trasparente e relativo sistema di controllo
CN108985962A (zh) * 2018-07-17 2018-12-11 惠科股份有限公司 基板加工方法
CN109001162A (zh) * 2018-08-10 2018-12-14 浙江亚欣包装材料有限公司 一种预测纸张表面哑光程度的方法
JP7078520B2 (ja) * 2018-11-15 2022-05-31 アンリツ株式会社 物質特性検査装置
JP2021136780A (ja) * 2020-02-27 2021-09-13 三星ダイヤモンド工業株式会社 太陽電池の検査装置
CN113567459A (zh) 2020-04-28 2021-10-29 宝山钢铁股份有限公司 一种连铸坯表面二维三维组合成像检测系统及其方法
CN116533419B (zh) * 2023-06-06 2023-10-20 广东汇发塑业科技有限公司 一种多层共挤制膜机的冷风机控制方法
CN117705721B (zh) * 2024-02-06 2024-04-09 深圳市宇辉光学科技有限公司 一种基于视觉智能识别的光学膜生产用检测设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143830A (ja) * 1986-12-08 1988-06-16 Hitachi Electronics Eng Co Ltd ヘイズ欠陥検出方法
JPH03163334A (ja) * 1989-11-22 1991-07-15 I C I Japan Kk 光散乱測定装置
JPH07294429A (ja) * 1994-04-27 1995-11-10 Aretsuku Denshi Kk 濁度計及び濁色度計
JPH09273987A (ja) * 1996-04-03 1997-10-21 Fuji Electric Co Ltd 液体中の微粒子の粒径、個数濃度または濁度の測定方法およびその測定装置
JP2001356092A (ja) * 2000-06-15 2001-12-26 Suga Test Instr Co Ltd ヘーズ値測定装置及び測定方法
JP2008203090A (ja) * 2007-02-20 2008-09-04 Mitsubishi Heavy Ind Ltd 波長選択方法、膜厚計測方法、膜厚計測装置、及び薄膜シリコン系デバイスの製造システム
JP2008205188A (ja) * 2007-02-20 2008-09-04 Mitsubishi Heavy Ind Ltd 膜厚計測方法及びその装置ならびに薄膜製造システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3814946A (en) * 1972-12-04 1974-06-04 Asahi Glass Co Ltd Method of detecting defects in transparent and semitransparent bodies
US5539514A (en) * 1991-06-26 1996-07-23 Hitachi, Ltd. Foreign particle inspection apparatus and method with front and back illumination
JP2795595B2 (ja) * 1992-06-26 1998-09-10 セントラル硝子株式会社 透明板状体の欠点検出方法
FR2697086B1 (fr) * 1992-10-20 1994-12-09 Thomson Csf Procédé et dispositif d'inspection de matériau transparent.
JP3178644B2 (ja) * 1995-02-10 2001-06-25 セントラル硝子株式会社 透明板状体の欠点検出方法
JP3330089B2 (ja) * 1998-09-30 2002-09-30 株式会社大協精工 ゴム製品の検査方法及び装置
JP2003084106A (ja) 2001-09-10 2003-03-19 Nippon Sheet Glass Co Ltd 無機材料からなる凸状膜及びその形成方法
JP4544846B2 (ja) * 2003-10-31 2010-09-15 三菱重工業株式会社 透明導電膜分析方法および透明導電膜品質管理方法ならびに太陽電池
JP4175475B2 (ja) 2004-02-16 2008-11-05 三菱重工業株式会社 太陽電池用透明導電膜評価方法およびその装置
JP5243697B2 (ja) 2006-04-19 2013-07-24 株式会社カネカ 光電変換装置用透明導電膜とその製造方法
KR101209857B1 (ko) * 2009-02-20 2012-12-10 삼성코닝정밀소재 주식회사 유리 표면 이물 검사 장치 및 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143830A (ja) * 1986-12-08 1988-06-16 Hitachi Electronics Eng Co Ltd ヘイズ欠陥検出方法
JPH03163334A (ja) * 1989-11-22 1991-07-15 I C I Japan Kk 光散乱測定装置
JPH07294429A (ja) * 1994-04-27 1995-11-10 Aretsuku Denshi Kk 濁度計及び濁色度計
JPH09273987A (ja) * 1996-04-03 1997-10-21 Fuji Electric Co Ltd 液体中の微粒子の粒径、個数濃度または濁度の測定方法およびその測定装置
JP2001356092A (ja) * 2000-06-15 2001-12-26 Suga Test Instr Co Ltd ヘーズ値測定装置及び測定方法
JP2008203090A (ja) * 2007-02-20 2008-09-04 Mitsubishi Heavy Ind Ltd 波長選択方法、膜厚計測方法、膜厚計測装置、及び薄膜シリコン系デバイスの製造システム
JP2008205188A (ja) * 2007-02-20 2008-09-04 Mitsubishi Heavy Ind Ltd 膜厚計測方法及びその装置ならびに薄膜製造システム

Also Published As

Publication number Publication date
CN102165282B (zh) 2013-07-10
EP2402713A1 (en) 2012-01-04
US20110194113A1 (en) 2011-08-11
JP2010203813A (ja) 2010-09-16
US8497991B2 (en) 2013-07-30
CN102165282A (zh) 2011-08-24
JP4796160B2 (ja) 2011-10-19

Similar Documents

Publication Publication Date Title
JP4796160B2 (ja) 薄膜の検査装置及び検査方法
JP4279322B2 (ja) 波長選択方法、膜厚計測方法、膜厚計測装置、及び薄膜シリコン系デバイスの製造システム
US8902428B2 (en) Process and apparatus for measuring the crystal fraction of crystalline silicon casted mono wafers
US8259294B2 (en) Method and device for measuring optical characteristic variables of transparent, scattering measurement objects
JP2008076126A (ja) 測光装置及び測光方法
US7956999B2 (en) Resistivity testing method and device therefor
JP4241843B2 (ja) 膜質評価方法およびその装置ならびに薄膜製造システム
KR101954300B1 (ko) 투과 및/또는 반사 특성을 판단하기 위한 측정방법 및 측정기기
KR20100025496A (ko) 유리 시트 형태 결정 시스템 및 방법
WO2014089377A1 (en) Reflective surfaces for surface features of an article
US20120044346A1 (en) Apparatus and method for inspecting internal defect of substrate
JP6038434B2 (ja) 欠陥検査装置
GB2380258A (en) Measurement of thickness and optical characteristics of multi-layer films
US20110292373A1 (en) Thin film monitoring device and method
CN106415241A (zh) Atr红外线光谱仪
CN117110309A (zh) 一种玻璃薄膜缺陷检测方法、装置及其系统
JP4630945B1 (ja) 欠陥検査装置
CN108603847A (zh) 片状物的检查装置及片状物的检查方法
JP2009212148A (ja) 結晶質シリコン膜の膜質計測装置、結晶質シリコン膜の膜質計測方法、及び結晶質シリコン膜の膜質評価方法
Zhou et al. A new spatial integration method for luminous flux determination of light-emitting diodes
US7633612B2 (en) Apparatus and method for determining surface properties
KR20150091920A (ko) 기판의 에지 검사장치 및 이를 이용한 검사방법
KR102271311B1 (ko) 유리 기판 브로큰 검사 장치 및 이를 이용한 검사 방법
TWI425202B (zh) Infrared lens penetration measurement device
JP2012047615A (ja) フィルムの検査装置、検査方法及び製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138478.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09840818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009840818

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13120319

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE