WO2010095507A1 - 歯車駆動ターボ圧縮機 - Google Patents
歯車駆動ターボ圧縮機 Download PDFInfo
- Publication number
- WO2010095507A1 WO2010095507A1 PCT/JP2010/051387 JP2010051387W WO2010095507A1 WO 2010095507 A1 WO2010095507 A1 WO 2010095507A1 JP 2010051387 W JP2010051387 W JP 2010051387W WO 2010095507 A1 WO2010095507 A1 WO 2010095507A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- gear
- bearing
- impeller
- seal
- Prior art date
Links
- 239000000314 lubricant Substances 0.000 claims abstract description 9
- 238000004891 communication Methods 0.000 claims abstract description 3
- 239000011888 foil Substances 0.000 claims description 18
- 238000007789 sealing Methods 0.000 claims description 3
- 238000012423 maintenance Methods 0.000 abstract description 6
- 239000000463 material Substances 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 190
- 239000003921 oil Substances 0.000 description 29
- 239000010687 lubricating oil Substances 0.000 description 25
- 244000309464 bull Species 0.000 description 8
- 238000009434 installation Methods 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 5
- 230000007613 environmental effect Effects 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000004323 axial length Effects 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/16—Combinations of two or more pumps ; Producing two or more separate gas flows
- F04D25/163—Combinations of two or more pumps ; Producing two or more separate gas flows driven by a common gearing arrangement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D17/00—Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
- F04D17/08—Centrifugal pumps
- F04D17/10—Centrifugal pumps for compressing or evacuating
- F04D17/12—Multi-stage pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/05—Shafts or bearings, or assemblies thereof, specially adapted for elastic fluid pumps
- F04D29/056—Bearings
- F04D29/057—Bearings hydrostatic; hydrodynamic
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/06—Lubrication
- F04D29/063—Lubrication specially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/08—Sealings
- F04D29/10—Shaft sealings
- F04D29/102—Shaft sealings especially adapted for elastic fluid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/02—Sliding-contact bearings for exclusively rotary movement for radial load only
- F16C17/024—Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C33/00—Parts of bearings; Special methods for making bearings or parts thereof
- F16C33/72—Sealings
- F16C33/74—Sealings of sliding-contact bearings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C2360/00—Engines or pumps
- F16C2360/23—Gas turbine engines
- F16C2360/24—Turbochargers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C32/00—Bearings not otherwise provided for
- F16C32/06—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
- F16C32/0603—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
- F16C32/0614—Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
Definitions
- the present invention relates to a gear-driven turbo compressor that increases the speed by a gear speed increaser and rotationally drives the turbo compressor at a high speed.
- the turbo compressor is a "direct connection type” in which the impeller of the turbo compressor is directly connected to the rotating shaft of the electric motor, and the speed of the motor, engine, turbine, etc. is increased with a gear speed increaser, and the impeller of the turbo compressor is increased at high speed. It can be broadly divided into “gear speed increasing type” which is driven to rotate.
- the gear-accelerated turbo compressor is referred to as “gear-driven turbo compressor”.
- a gear-driven turbo compressor can drive a multi-stage turbo compressor of three or more stages with a single drive source (such as an electric motor), and can easily increase the capacity compared to a direct-coupled turbo compressor, and It has features such as high reliability, compression efficiency, mechanical efficiency, and easy maintenance.
- the direct-coupled turbo compressor is disclosed in, for example, Patent Documents 1 to 5, and the gear drive turbo compressor is disclosed in, for example, Patent Documents 6 and 7.
- “Foil bearings” related to the present invention are disclosed in, for example, Patent Documents 8 to 10 and Non-Patent Document 1, and “Dry Seal” is disclosed in, for example, Patent Documents 11 and 12.
- FIG. 1 is a partial cross-sectional view of a conventional gear-driven turbo compressor.
- the gear-driven turbo compressor is a four-stage compressor, and the target gas is sequentially compressed by four (only two are shown in the figure) impellers 16 (hereinafter referred to as “impellers”). To get to.
- impellers 16 hereinafter referred to as “impellers”. To get to.
- the compressor housing and the gas flow path surrounding the impeller are not shown.
- 12 is a large gear (bull gear)
- 14 is a small gear (pinion gear)
- the large gear 12 is rotationally driven by a drive device (electric motor, engine, turbine, etc.) not shown, and this rotation causes the small gear 14 to rotate.
- the speed is increased, and the impellers 16 attached to both ends thereof are rotated at a high speed.
- the speed increase ratio of the gear speed increaser composed of the large gear 12 and the small gear 14 is normally about 10 times, and each impeller rotates at a high speed of about 10,000 to tens of thousands of rotations per minute.
- reference numeral 18 denotes a thrust collar fixed to the small gear shaft 13 (pinion shaft) with the small gear 14 interposed therebetween
- reference numeral 20 denotes a thrust bearing that supports the thrust of the large gear shaft 11.
- the thrust force acting on each impeller and the thrust force generated by the meshing of the large gear and the small gear are transmitted to and supported by the thrust bearing 20 via the thrust collar 18 and the large gear 12 slidably supported therebetween.
- 15 is a gear box (casing)
- 22 is a radial bearing
- 23 is a gas seal
- 24 is an oil seal (oil seal).
- the conventional gear-driven turbo compressor rotates a large gear 12 (bull gear) by motor power, and a small gear 14 (pinion gear) and a small gear shaft 13 (pinion shaft) arranged on the outer periphery of the bull gear.
- a small gear 14 pinion gear
- a small gear shaft 13 pinion shaft
- an impeller 16 impeller
- a large radial load radial force
- the small gear shaft 13 is supported by an oil-lubricated radial bearing 22 capable of withstanding the above-described radial load caused by high-speed rotation (tens of thousands of rpm) and gear driving force, and the thrust force generated when compressing gas is small gear shaft. 13 is transmitted to the bull gear 12 through a thrust collar 18 provided at 13.
- the small gear shaft 13 is provided with an oil drain 24 for isolating the oil in the radial bearing 22 and a gas seal 23 (labyrinth seal, dry gas seal, etc.) for sealing the compressed gas fluid.
- the gas bearing has a smaller load capacity than the oil lubricated radial bearing and cannot support the gear driving force (radial load) acting on the small gear shaft of the gear driven turbo compressor. Therefore, conventionally, a gas bearing cannot be applied to a gear-driven turbo compressor.
- the conventional gear-driven turbo compressor has the following problems due to the oil-lubricated radial bearing 22 that holds the small gear shaft 13.
- the radial bearing 22 is an oil-lubricated type, and this bearing requires the same amount of lubricating oil as the gears (the bull gear 12 and the pinion gear 14). large.
- the oil drainer 24 has a configuration in which a convex portion is provided on the surface of the small gear shaft 13 and a concave and convex portion that covers the convex portion is provided on the stationary side (casing). Is separated by centrifugal force. (4) Further, in order to prevent the lubricating oil from being mixed into the compressed gas, the gas seal 23 must be provided outside the bearing and the oil drainer (close to the impeller), and the overhang (the length from the radial bearing to the shaft end). ) Becomes longer. This reduces the critical speed and makes shaft design difficult.
- the present invention has been developed to solve the above-described problems. That is, the object of the present invention is to increase the natural frequency of the shaft by shortening the overhang length from the radial bearing to the shaft end, thereby making it easier to avoid dangerous speed and increasing the operating speed.
- Gear drive turbo compressor that can greatly reduce the amount of lubricating oil and reduce the labor and environmental burden of replacing the lubricating oil, and reduce the need for maintenance by reducing radial bearing troubles due to deteriorated lubricating oil Is to provide.
- a large gear rotated around the axis of the large gear shaft by an external drive device A small gear that meshes with the large gear and rotates at high speed around the axis of the small gear shaft; An impeller fixed at an end of the small gear shaft and rotating at high speed around the axis; A thrust collar fixed to the small gear shaft and slidably supporting a side surface of the large gear and transmitting a thrust force of the small gear shaft to the large gear;
- a gear-driven turbo compressor comprising a thrust bearing for supporting a thrust force acting on the large gear shaft, A gas bearing communicating with the pressurized gas compressed by the impeller and rotatably supporting both ends of the small gear shaft; An inner side that is located between the gas bearing and the thrust collar, holds the gas bearing in a pressurized state pressurized with the pressurized gas, and prevents the gear lubricant from entering the pressurized gas.
- a gear-driven turbocompressor characterized by comprising a gas seal is provided.
- the gas bearing is in direct communication with the pressurized gas via the back surface of the impeller.
- the gas bearing is a foil bearing that communicates with the gas compressed by the impeller
- the inner gas seal is a dry gas seal having a sliding plate urged in an axial direction on an end face of the thrust collar.
- An outer gas seal located between the gas bearing and the impeller;
- a pressurized gas supply line for supplying pressurized gas to an intermediate position between the outer gas seal and the inner gas seal;
- the outer gas seal has a seal portion for sealing so that pressurized gas does not leak from the gas bearing side to the impeller side when the pressure on the gas bearing side is higher than the pressure on the impeller side.
- the seal portion is opened.
- the gas bearing that rotatably supports the both ends of the small gear shaft communicates with the pressurized gas compressed by the impeller, and the gas bearing is pressurized with the pressurized gas by the inner gas seal. Since the pressurized state is maintained, the load capacity of the gas bearing can be greatly increased according to the pressure of the pressurized gas (for example, 0.1 MPa or more). Even in the case of a gas bearing, a gear-driven turbo compressor The gear driving force (radial load) acting on the small gear shaft can be supported.
- gas bearings have less loss than oil-lubricated bearings, efficiency can be improved and energy consumption can be reduced.
- the inner gas seal located between the gas bearing and the thrust collar prevents the gear lubricant from entering due to the pressurized gas supplied from the gas bearing side. It is possible to reliably prevent the lubricating oil from being mixed into the compressed gas.
- the gas bearing communicates with the pressurized gas compressed by the impeller and is maintained in a dry state
- an oil drain or an oil seal is provided between the gas bearing and the impeller to prevent intrusion of lubricating oil. This eliminates the need to shorten the overhang length from the radial bearing to the shaft end, thereby increasing the natural frequency of the shaft, increasing the operating speed and expanding the operating range.
- the radial bearing is a gas bearing and does not require lubricating oil
- the amount of lubricating oil can be greatly reduced (about half), and the labor and environmental burden of replacing the lubricating oil can be reduced.
- the installation space is reduced by downsizing the oil lubrication system (oil tank, pump, filter, etc.) and downsizing the shaft length.
- the manufacturing cost can be reduced.
- a low-viscosity lubricating oil is used in accordance with the radial bearing, but a high-viscosity oil dedicated to gears can be used, and a longer life of the gear can be expected.
- the radial bearing is a gas bearing and does not use lubricating oil, troubles of the radial bearing due to deteriorated lubricating oil can be reduced, and the need for maintenance can be reduced.
- FIG. 1 is a partial cross-sectional view showing a first embodiment of a gear-driven turbo compressor according to the present invention.
- FIG. 3 is a partially enlarged view of FIG. 2.
- FIG. 2nd Embodiment of the gear drive turbo compressor by this invention It is the elements on larger scale of FIG. It is a relationship figure of the load capacity coefficient of a foil bearing, and pressure.
- FIG. 2 is a partial cross-sectional view showing a first embodiment of a gear-driven turbo compressor according to the present invention.
- FIG. 3 is a partially enlarged view of FIG.
- the gear driven turbo compressor 10 of the present invention includes a large gear 12 (bull gear), a small gear 14 (pinion gear), an impeller 16 (impeller), a thrust collar 18, and a thrust bearing 20.
- the gear-driven turbo compressor 10 of the present invention is a four-stage compressor, but the present invention is not limited to this, and a single-stage compressor, a compressor having two, three, or more stages is also used. It may be.
- the large gear 12 is rotationally driven around the axis of the large gear shaft 11 by an external drive device (electric motor, engine, turbine, etc.) not shown.
- the large gear 12 is preferably a spur gear, a helical gear, or a yamaba gear having a number of teeth about 10 times that of the small gear 14 so as to increase the speed of the small gear 14, but the present invention is not limited thereto.
- Other gears may be used as long as they have a speed increasing function.
- the small gear 14 meshes with the large gear 12 and rotates at high speed around the axis of the small gear shaft 13 (pinion shaft). Only one small gear 14 is shown on the left side of the figure, but in the case of a four-stage compressor, another small gear may be provided on the right side of the figure.
- Lubricating oil is supplied to the meshing portion of the large gear 12 and the small gear 14 by a lubricating oil supply device (not shown). This lubricating oil accumulates at the bottom of the gear box 15 (casing) and is recirculated.
- the impeller 16 is fixed to the small gear shaft 13 and rotates at high speed around its axis.
- the impeller 16 is provided at both ends of the small gear shaft 13, but only one of them may be provided.
- reference numeral 17 denotes a compressor housing surrounding the impeller, and the gas flow path is not shown.
- the gas pressurized by the impeller 16 is preferably air, nitrogen, or an inert gas, but may be oxygen, hydrogen, or the like.
- the thrust collar 18 is fixed around the small gear shaft 13, slidably supports the side surface of the large gear 12, and transmits the thrust force of the small gear shaft 13 to the large gear 12.
- the two thrust collars 18 sandwich the teeth of the large gear 12 in the axial direction.
- the number of the thrust collars 18 may be one.
- the clearance between the thrust collar 18 and the teeth of the large gear 12 is set to a sufficiently small clearance (for example, 0.1 to 0.2 mm) as long as it can slide with low resistance by oil lubrication.
- the thrust bearing 20 supports the thrust force acting on the large gear shaft 11.
- the thrust bearing 20 can also support the radial force acting on the large gear shaft 11, but the present invention is not limited to this.
- the gear-driven turbo compressor 10 of the present invention further includes a gas bearing 32 and an inner gas seal 34.
- pressurized gas means a high-pressure gas of, for example, 0.1 MPa or more, preferably 0.1 to 7 MPa
- high-pressure gas space means a space filled with a pressurized gas
- the gas bearing 32 is disposed so as to directly communicate with the pressurized gas compressed by the impeller 16 via the back surface of the impeller 16.
- directly means that there is no pressure loss member (oil seal or labyrinth seal) between the rear surface of the impeller 16 and the gas bearing 32, and the pressurized gas on the rear surface of the impeller 16 has a low pressure loss.
- attains to the gas bearing 32 through this flow path is meant.
- the gas bearing 32 is a dynamic pressure type gas bearing in which the load capacity of the gas bearing increases in accordance with the pressure of the pressurized gas (for example, 0.1 MPa or more), and more preferably a foil bearing (foil type). Gas bearing).
- FIG. 6 is a relationship diagram between the load capacity coefficient and the pressure of the foil bearing disclosed in Non-Patent Document 1.
- the horizontal axis is the pressure (atm)
- the vertical axis is the load capacity coefficient D
- the two curves in the figure show the experimental results at 25 ° C. and 500 ° C.
- the load capacity W (load capacity) of the foil bearing is represented by the following formula (1).
- W D (L ⁇ d) (d ⁇ N) (1)
- D the load capacity coefficient described above
- L the length of the bearing
- d the inner diameter of the bearing
- N the rotational speed.
- FIG. 6 and formula (1) show that the load capacity of the foil type gas bearing is improved in the pressurized space. Although the maximum pressure in FIG. 6 is about 2.5 atm, this relationship can be applied to a pressurized gas of 0.1 MPa or more, for example.
- the load capacity coefficient D is a proportional coefficient for calculating the load capacity W when using a foil type gas bearing having a bearing inner diameter d and a length L at the rotation speed N.
- the capacity coefficient D can be regarded as being proportional to the load capacity W. Therefore, it can be said that FIG. 6 shows that the load capacity increases as the pressure increases.
- the inner gas seal 34 is located between the gas bearing 32 and the thrust collar 18, and prevents the gear lubricant from entering by the pressurized gas.
- the inner gas seal 34 seals leakage of pressurized gas from the pressurized space where the gas bearing 32 is located, and holds the gas bearing 32 in a pressurized state pressurized with the pressurized gas. Yes.
- the inner gas seal 34 is a dry gas seal having a sliding plate 35 urged in the axial direction on the end face of the thrust collar 18.
- a rotating seal plate required for a normal dry gas seal can be omitted, and the axial length of the inner gas seal 34 can be halved.
- an inner gas seal 34 other than the dry gas seal may be used.
- a foil type gas bearing 32 having excellent load capacity is used as a radial bearing, and the foil type gas bearing 32 is moved by bringing the dry gas seal 34 toward the thrust collar side. It is placed in a high-pressure gas space.
- the gas bearing 32 can be held in a pressurized state pressurized with pressurized gas while the impeller 16 is rotating.
- the gas bearing 32 (particularly the foil type gas bearing) is placed in the high-pressure gas space pressurized with the pressurized gas, so that the load capacity is greatly increased, and various radial loads (the weight of the small gear shaft, the gear) Power, unbalance force, etc.).
- the thrust force generated when the impeller 16 compresses the gas is transmitted to a thrust collar 18 provided on the small gear shaft 13. Since the gears 12 and 14 are oil-lubricated, an oil film is formed between the thrust collar 18 and the large gear 12 (bull gear), and the force transmitted to the thrust collar 18 acts on the large gear 12 via the oil film. It will be.
- the thrust force acting on the small gear shaft 13 is supported by the thrust bearing 20 (oil lubrication type) for the large gear 12 through the thrust collar 18. Therefore, the bearing of the present invention is a hybrid type using both a gas bearing and an oil lubricated thrust bearing.
- the inner gas seal 34 serves to seal high pressure gas and prevent oil from the gears 12 and 14 from entering the installation space of the gas bearing 32.
- the gas compressed by the impeller 16 passes through the gas bearing portion and slightly leaks from the inner gas seal 34.
- the gas bearing needs to be cooled, and this outflow gas contributes to cooling of the bearing. Become.
- FIG. 4 is a partial sectional view showing a second embodiment of the gear-driven turbo compressor according to the present invention.
- FIG. 5 is a partially enlarged view of FIG.
- the gear-driven turbo compressor 10 of the present invention further includes an outer gas seal 36 and a pressurized gas supply line 38.
- the outer gas seal 36 is located between the gas bearing 32 and the impeller 16, and seals the high pressure gas in the installation space of the gas bearing 32 so as not to leak to the impeller 16 side when the impeller 16 stops rotating.
- the gas bearing 32 is held in a pressurized state pressurized with a pressurized gas.
- the outer gas seal 36 has a seal portion 36a that seals the pressurized gas from leaking from the gas bearing side to the impeller side when the pressure on the gas bearing side is higher than the pressure on the impeller side. Further, the outer gas seal 36 also functions as a check valve. When the impeller 16 rotates and the pressure on the impeller side exceeds the pressure on the gas bearing side, the seal portion 36a is opened and compressed by the impeller 16. The pressurized gas communicates directly with the rear surface of the impeller 16.
- the outer gas seal 36 is a dry gas seal having a sliding plate 37 urged in the axial direction on the end face of the impeller 16. By urging the sliding plate 37 to the end face of the impeller 16, a rotary seal plate necessary for a normal dry gas seal can be omitted, and the axial length of the outer gas seal 36 can be reduced by half.
- the outer gas seal 36 is not limited to this example, and other than the dry gas seal may be used as long as the outer gas seal 36 can be maintained in a pressurized state pressurized with a pressurized gas and can also function as the check valve described above. it can.
- the pressurized gas supply line 38 includes a flow path 38 a provided in the gear box 15 (casing) and a gas pipe (not shown) communicating with the flow path 38 a, and is provided at an intermediate position between the outer gas seal 36 and the inner gas seal 34.
- Supply pressurized gas is preferably provided with a valve (not shown) (for example, a check valve or an on-off valve) so that the pressure on the gas bearing side does not flow backward.
- the pressurized gas supply line 38 communicates with an external pressure source (not shown), and supplies high-pressure gas from the external pressure source to the installation space of the gas bearing 32 when the bearing load capacity is insufficient at the time of starting. It is like that. In this case, if the gas compressed during operation is stored in, for example, a reservoir tank, it can be used as a substitute for an external pressure source.
- the pressure of the pressurized gas supplied from the pressurized gas supply line 38 is set lower than the gas pressure compressed by the impeller 16 in the steady state as long as the bearing load capacity required at the start can be obtained. Further, as the gas pressure compressed by the impeller 16 increases, the seal portion of the outer gas seal 36 is opened, and the high-pressure gas compressed by the impeller 16 passes through the outer gas seal 36 to the position of the gas bearing.
- the gas bearing 32 flows in and is held in a pressurized state pressurized with a pressurized gas.
- Other configurations are the same as those of the first embodiment.
- the gas bearing can be held in a pressurized state pressurized with pressurized gas when the impeller 16 is stopped and rotated.
- the gas bearing 32 that rotatably supports both ends of the small gear shaft 13 communicates with the pressurized gas compressed by the impeller 16, and the gas bearing 32 is provided by the inner gas seal 34. Is maintained in a pressurized state pressurized with a pressurized gas, so that the load capacity of the gas bearing 32 can be greatly increased according to the pressure of the pressurized gas (for example, 0.1 MPa or more). Even if it exists, the gear drive force (radial load) which acts on the small gear shaft 13 of a gear drive turbocompressor can be supported. Further, since the gas bearing 32 has a smaller loss than the oil lubricated bearing, the gas bearing 32 can be made highly efficient and the energy consumption can be reduced.
- the inner gas seal 34 positioned between the gas bearing 32 and the thrust collar 18 prevents the gear lubricant from entering due to the pressurized gas supplied from the gas bearing side. While being held, mixing of the lubricating oil into the compressed gas can be reliably prevented.
- the gas bearing 32 communicates with the pressurized gas compressed by the impeller 16 and is maintained in a dry state, the oil drainage for preventing the intrusion of the lubricating oil between the gas bearing 32 and the impeller 16. And no oil seal is required, the overhang length from the radial bearing to the shaft end can be shortened to increase the natural frequency of the shaft, the speed can be increased, and the operating range is expanded.
- the radial bearing is the gas bearing 32 and does not require lubricating oil
- the amount of lubricating oil can be greatly reduced (about half), and the labor and environmental burden of replacing the lubricating oil can be reduced.
- the installation space is reduced by downsizing the oil lubrication system (oil tank, pump, filter, etc.) and downsizing the shaft length.
- the manufacturing cost can be reduced.
- a low-viscosity lubricating oil is used in accordance with the radial bearing, but a high-viscosity oil dedicated to gears can be used, and a longer life of the gear can be expected.
- the radial bearing is a gas bearing and does not use lubricating oil, troubles of the radial bearing due to deteriorated lubricating oil can be reduced and the need for maintenance can be reduced.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
歯車駆動ターボ圧縮機は、単一の駆動源(電動機等)で、3段以上の多段ターボ圧縮機を駆動することができ、直結式ターボ圧縮に比較して大容量化が容易であり、かつ信頼性、圧縮効率、機械効率が高く、メンテナンスが容易である、等の特徴を有する。
また、本発明に関連する「フォイル軸受」は、例えば特許文献8~10及び非特許文献1に開示され、「ドライシール」は、例えば特許文献11,12に開示されている。
この例において、歯車駆動ターボ圧縮機は4段圧縮機であり、4つ(図には2つのみ示す)のインペラ16(以下、「羽根車」と呼ぶ)で対象ガスを順次圧縮し高圧ガスを得るようになっている。なおこの図において、羽根車を囲むコンプレッサハウジングとガス流路は図示を省略している。
なおこの図において、15は歯車箱(ケーシング)、22はラジアル軸受、23はガスシール、24は油切(オイルシール)である。
また、小歯車軸13にはラジアル軸受22の油を隔離するための油切り24や、圧縮したガス流体を密封するためのガスシール23(ラビリンスシールやドライガスシール等)が設けられている。
すなわち、ガス軸受は油潤滑式のラジアル軸受と比較して負荷能力が小さく、歯車駆動ターボ圧縮機の小歯車軸に作用する歯車駆動力(ラジアル負荷)を支持できなかった。そのため、従来、歯車駆動ターボ圧縮機ではガス軸受は適用できなかった。
(1) ラジアル軸受22は油潤滑式であり、この軸受は歯車(ブルギヤ12とピニオンギヤ14)と同程度の潤滑油量を必要とするため、潤滑油の交換に手間が掛かる上、環境負荷が大きい。
(2) 潤滑油の劣化物がラジアル軸受22に溜まり、異常振動が発生する等のトラブルが起こり得るため、定期的なメンテナンスを要する。
(3) ラジアル軸受22とインペラ16の間に必要に応じて油切り24を設ける必要があり、軸長が長くなる。油切り24は、小歯車軸13の表面に凸部を設け、その凸部を覆うような凹凸部を静止側(ケーシング)に設けた構成になっており、小歯車軸13の表面の潤滑油を遠心力で分離する機能を有する。
(4) また、圧縮ガス中に潤滑油が混入しないように、ガスシール23を軸受及び油切りの外側(インペラ寄り)に設けざるを得ず、オーバーハング(ラジアル軸受から軸端までの長さ)が長くなる。このため、危険速度が低下し、軸設計が難しくなる。
該大歯車と歯合し小歯車軸の軸心を中心に高速回転する小歯車と、
前記小歯車軸の端部に固定されその軸心を中心に高速回転する羽根車と、
前記小歯車軸に固定され前記大歯車の側面を摺動可能に支持し小歯車軸のスラスト力を大歯車に伝達するスラストカラーと、
前記大歯車軸に作用するスラスト力を支持するスラスト軸受とを備えた歯車駆動ターボ圧縮機であって、
前記羽根車で圧縮された加圧ガスと連通し、前記小歯車軸の両端部を回転可能に支持するガス軸受と、
該ガス軸受と前記スラストカラーの間に位置し、前記ガス軸受を前記加圧ガスで加圧された加圧状態に保持し、かつ、該加圧ガスにより歯車用潤滑油の浸入を防止する内側ガスシールとを備える、ことを特徴とする歯車駆動ターボ圧縮機が提供される。
前記内側ガスシールは、前記スラストカラーの端面に軸方向に付勢された摺動プレートを有するドライガスシールである。
該外側ガスシールと内側ガスシールの中間位置に加圧ガスを供給する加圧ガス供給ラインとを備える。
また、油潤滑系(油タンク、ポンプ、フィルター等)の小型化と軸長短縮による小型化により、設置スペースが小さくなる。また、製造コストも削減できる。
また、従来はラジアル軸受に合わせて低粘度の潤滑油を使用しているが、歯車専用の高粘度油が使用可能になり、歯車の長寿命化が期待できる。
図2において、本発明の歯車駆動ターボ圧縮機10は、大歯車12(ブルギヤ)、小歯車14(ピニオンギヤ)、羽根車16(インペラ)、スラストカラー18、及びスラスト軸受20を備える。
この図において、本発明の歯車駆動ターボ圧縮機10は、4段圧縮機であるが、本発明はこれに限定されず、1段圧縮機でも、2、3段、又は5段以上の圧縮機であってもよい。
大歯車12と小歯車14の噛合部には、図示しない潤滑油供給装置により、潤滑油が供給される。この潤滑油は、歯車箱15(ケーシング)の底部に溜まり、再循環するようになっている。
なお、羽根車16で加圧するガスは、空気、窒素、又は不活性ガスであるのが好ましいが、酸素、水素等であってもよい。
スラストカラー18と大歯車12の歯部との隙間は、油潤滑により低抵抗で摺動可能な限りで十分小さい隙間(例えば、0.1~0.2mm)に設定する。
この図において、横軸は圧力(atm)、縦軸は負荷容量係数Dであり、図中の2本の曲線は、25℃と500℃における実験結果を示している。
W=D(L×d)(d×N)・・・(1)
ここで、Dは上述した負荷容量係数、Lは軸受の長さ、dは軸受の内径、Nは回転速度である。
従って、図6は、圧力上昇に応じて負荷能力が上がることを示しているといえる。
なお、ガス軸受32を加圧ガスで加圧された加圧状態に保持できる限りで、内側ガスシール34としてドライガスシール以外を用いてもよい。
ガス軸受32(特にフォイル式ガス軸受)は上述したように加圧ガスで加圧された高圧ガス空間に置かれることにより負荷能力が大幅に高められ、各種ラジアル荷重(小歯車軸の自重、歯車動力、アンバランス力等)を支えることができる。
一方、インペラ16がガスを圧縮する際に発生するスラスト力は小歯車軸13に設けたスラストカラー18に伝達される。歯車12、14は油潤滑されているためスラストカラー18と大歯車12(ブルギヤ)の間には油膜が形成されており、スラストカラー18に伝わった力は油膜を介して大歯車12に作用することになる。
なお外側ガスシール36は、この例に限定されず、加圧ガスで加圧された加圧状態に保持でき、かつ上述した逆止弁としても機能する限りで、ドライガスシール以外を用いることができる。
なお、加圧ガス供給ライン38には、ガス軸受側の圧力が逆流しないように、好ましくは、図示しない弁(例えば逆止弁又は開閉弁)が設けられている。
この加圧ガス供給ライン38は、外部圧力源(図示せず)に連通しており、始動時に軸受負荷能力が不足する場合に、外部圧力源から高圧ガスをガス軸受32の設置空間に供給するようになっている。なお、この場合、稼働中に圧縮したガスを例えばリザーバタンクに蓄えておけば、外部圧力源の代用にすることができる。
また、羽根車16で圧縮されたガス圧の上昇に伴い、外側ガスシール36のシール部が開放され、外側ガスシール36を介して、羽根車16で圧縮された高圧ガスがガス軸受の位置に流入し、ガス軸受32を加圧ガスで加圧された加圧状態に保持するようになっている。
その他の構成は、第1実施形態と同様である。
また、ガス軸受32は油潤滑式軸受と比較して損失が小さいので、高効率化することができ、エネルギー消費量を少なくできる。
また、油潤滑系(油タンク、ポンプ、フィルター等)の小型化と軸長短縮による小型化により、設置スペースが小さくなる。また、製造コストも削減できる。
また、従来はラジアル軸受に合わせて低粘度の潤滑油を使用しているが、歯車専用の高粘度油が使用可能になり、歯車の長寿命化が期待できる。
11 大歯車軸、12 大歯車(ブルギヤ)、
13 小歯車軸(ピニオン軸)、14 小歯車(ピニオンギヤ)、
15 歯車箱(ケーシング)、16 羽根車(インペラ)、
17 コンプレッサハウジング、18 スラストカラー、
20 スラスト軸受、22 ラジアル軸受、
23 ガスシール、24 油切り(オイルシール)、
32 ガス軸受(フォイル式ガス軸受)、
34 内側ガスシール(ドライガスシール)、
35 摺動プレート、
36 外側ガスシール(ドライガスシール)、
36a シール部、
37 摺動プレート、
38 加圧ガス供給ライン
Claims (5)
- 外部駆動装置により大歯車軸の軸心を中心に回転駆動される大歯車と、
該大歯車と歯合し小歯車軸の軸心を中心に高速回転する小歯車と、
前記小歯車軸の端部に固定されその軸心を中心に高速回転する羽根車と、
前記小歯車軸に固定され前記大歯車の側面を摺動可能に支持し小歯車軸のスラスト力を大歯車に伝達するスラストカラーと、
前記大歯車軸に作用するスラスト力を支持するスラスト軸受とを備えた歯車駆動ターボ圧縮機であって、
前記羽根車で圧縮された加圧ガスと連通し、前記小歯車軸の両端部を回転可能に支持するガス軸受と、
該ガス軸受と前記スラストカラーの間に位置し、前記ガス軸受を前記加圧ガスで加圧された加圧状態に保持し、かつ、該加圧ガスにより歯車用潤滑油の浸入を防止する内側ガスシールとを備える、ことを特徴とする歯車駆動ターボ圧縮機。 - 前記ガス軸受は、前記羽根車の背面を介して前記加圧ガスに直接連通している、ことを特徴とする請求項1に記載の歯車駆動ターボ圧縮機。
- 前記ガス軸受は、フォイル軸受であり、
前記内側ガスシールは、前記スラストカラーの端面に軸方向に付勢された摺動プレートを有するドライガスシールである、ことを特徴とする請求項1に記載の歯車駆動ターボ圧縮機。 - 前記ガス軸受と羽根車の間に位置する外側ガスシールと、
該外側ガスシールと内側ガスシールの中間位置に加圧ガスを供給する加圧ガス供給ラインとを備える、ことを特徴とする請求項1に記載の歯車駆動ターボ圧縮機。 - 前記外側ガスシールは、ガス軸受側の圧力が羽根車側の圧力より高いときにガス軸受側から羽根車側に加圧ガスが漏れないようにシールするシール部を有し、羽根車側の圧力がガス軸受側の圧力より高いときに、前記シール部を開放する、ことを特徴とする請求項4に記載の歯車駆動ターボ圧縮機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/202,506 US8827634B2 (en) | 2009-02-19 | 2010-02-02 | Gear-driven turbo compressor |
JP2011500554A JP5382626B2 (ja) | 2009-02-19 | 2010-02-02 | 歯車駆動ターボ圧縮機 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-036659 | 2009-02-19 | ||
JP2009036659 | 2009-02-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010095507A1 true WO2010095507A1 (ja) | 2010-08-26 |
Family
ID=42633792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/051387 WO2010095507A1 (ja) | 2009-02-19 | 2010-02-02 | 歯車駆動ターボ圧縮機 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8827634B2 (ja) |
JP (1) | JP5382626B2 (ja) |
WO (1) | WO2010095507A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144995A (ja) * | 2011-01-07 | 2012-08-02 | Ihi Corp | 遠心圧縮機 |
JP2014531553A (ja) * | 2011-09-07 | 2014-11-27 | ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ | 回転機械用シール |
JP2019157634A (ja) * | 2018-03-07 | 2019-09-19 | アネスト岩田株式会社 | 往復動式圧縮機 |
JP2023543873A (ja) * | 2020-10-30 | 2023-10-18 | プラクスエア・テクノロジー・インコーポレイテッド | 水素遠心圧縮機 |
JP7572546B2 (ja) | 2020-10-30 | 2024-10-23 | プラクスエア・テクノロジー・インコーポレイテッド | 水素遠心圧縮機 |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2584188A1 (en) * | 2011-10-19 | 2013-04-24 | Cryostar SAS | Cryogenic liquid expansion turbine |
US20150267948A1 (en) * | 2014-03-24 | 2015-09-24 | Richard D. Taylor | System and method for operating an air conditioning compressor from alternative sources |
KR102002564B1 (ko) * | 2014-10-23 | 2019-10-01 | 한화파워시스템 주식회사 | 압축기 |
US10982713B2 (en) * | 2018-03-23 | 2021-04-20 | General Electric Company | Closed cycle heat engine |
US20190353543A1 (en) * | 2018-05-21 | 2019-11-21 | Hanwha Power Systems Co., Ltd. | Axial thrust force balancing apparatus for an integrally geared compressor |
CN109184824B (zh) * | 2018-09-05 | 2020-09-11 | 北京航空航天大学 | 一种气浮轴承结构的逆布雷顿循环低温制冷膨胀机 |
JP7221727B2 (ja) * | 2019-02-22 | 2023-02-14 | 三菱重工コンプレッサ株式会社 | ギアド圧縮機の位相調整システム、ギアド圧縮機の位相調整治具、及びギアド圧縮機の位相調整方法 |
JP2022068479A (ja) * | 2020-10-22 | 2022-05-10 | 三菱重工コンプレッサ株式会社 | 回転機械及びギアド圧縮機 |
CN112728041A (zh) * | 2020-12-25 | 2021-04-30 | 中国船舶重工集团公司第七0三研究所 | 一种可用于平衡高速对构斜齿轮轴向力的推力结构 |
DE202021101195U1 (de) | 2021-03-10 | 2021-05-27 | 3W Turbo Gmbh | Gasgelagerte Mikro-Turbomaschine |
DE102021105732A1 (de) | 2021-03-10 | 2022-09-15 | 3W Turbo Gmbh | Gasgelagerte Mikro-Turbomaschine |
JP2024018551A (ja) * | 2022-07-29 | 2024-02-08 | 三菱重工コンプレッサ株式会社 | 遠心圧縮機 |
CN116753186B (zh) * | 2023-06-13 | 2024-03-22 | 湖北三峰透平装备股份有限公司 | 一种多功能齿轮增速型离心压缩机 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08232885A (ja) * | 1995-02-23 | 1996-09-10 | Mitsubishi Heavy Ind Ltd | 軸受ガス供給装置 |
JP2001263291A (ja) * | 2000-03-15 | 2001-09-26 | Ishikawajima Harima Heavy Ind Co Ltd | 高速モータ駆動圧縮機の回転支持構造 |
JP2004190783A (ja) * | 2002-12-11 | 2004-07-08 | Mitsubishi Heavy Ind Ltd | ドライガスシール式回転機械の起動方法およびドライガスシール式回転機械 |
JP2008232289A (ja) * | 2007-03-20 | 2008-10-02 | Jtekt Corp | 軸受装置及び軸受装置を備えた回転駆動装置 |
JP2008231933A (ja) * | 2007-03-16 | 2008-10-02 | Ihi Corp | 歯車駆動ターボ圧縮機 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07208456A (ja) | 1994-01-20 | 1995-08-11 | Mitsubishi Heavy Ind Ltd | 遠心圧縮機 |
DE4416497C1 (de) | 1994-05-10 | 1995-01-12 | Gutehoffnungshuette Man | Getriebe-Mehrwellenturbokompressor und Getriebe-Mehrwellenradialexpander |
US5887576A (en) * | 1995-04-20 | 1999-03-30 | Wheeler, Jr.; Floyd James | Centrifugal air compressor |
JP4287021B2 (ja) | 2000-04-10 | 2009-07-01 | 本田技研工業株式会社 | フォイル式流体軸受 |
US7299792B1 (en) * | 2000-09-22 | 2007-11-27 | Accessible Technologies, Inc. | Centrifugal compressor with improved lubrication system for gear-type transmission |
US6524081B2 (en) * | 2001-06-01 | 2003-02-25 | Chiang Fu. Wu | One-stage transmissible turbocharger |
DE10232100A1 (de) | 2001-07-25 | 2003-02-13 | Mohawk Innovative Tech Inc | Ölfreier Kompressor |
JP2004044954A (ja) | 2002-07-12 | 2004-02-12 | Mitsubishi Heavy Ind Ltd | ガス軸受付き圧縮機を備えたターボ冷凍機及びその運転方法 |
JP2004263781A (ja) | 2003-02-28 | 2004-09-24 | Toshiba Corp | フォイル軸受およびフォイル軸受の使用方法 |
JP4857766B2 (ja) | 2005-12-28 | 2012-01-18 | 株式会社日立プラントテクノロジー | 遠心圧縮機およびそれに用いるドライガスシールシステム |
JP5286955B2 (ja) | 2008-06-12 | 2013-09-11 | 株式会社Ihi | フォイル軸受 |
-
2010
- 2010-02-02 US US13/202,506 patent/US8827634B2/en not_active Expired - Fee Related
- 2010-02-02 WO PCT/JP2010/051387 patent/WO2010095507A1/ja active Application Filing
- 2010-02-02 JP JP2011500554A patent/JP5382626B2/ja not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08232885A (ja) * | 1995-02-23 | 1996-09-10 | Mitsubishi Heavy Ind Ltd | 軸受ガス供給装置 |
JP2001263291A (ja) * | 2000-03-15 | 2001-09-26 | Ishikawajima Harima Heavy Ind Co Ltd | 高速モータ駆動圧縮機の回転支持構造 |
JP2004190783A (ja) * | 2002-12-11 | 2004-07-08 | Mitsubishi Heavy Ind Ltd | ドライガスシール式回転機械の起動方法およびドライガスシール式回転機械 |
JP2008231933A (ja) * | 2007-03-16 | 2008-10-02 | Ihi Corp | 歯車駆動ターボ圧縮機 |
JP2008232289A (ja) * | 2007-03-20 | 2008-10-02 | Jtekt Corp | 軸受装置及び軸受装置を備えた回転駆動装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012144995A (ja) * | 2011-01-07 | 2012-08-02 | Ihi Corp | 遠心圧縮機 |
JP2014531553A (ja) * | 2011-09-07 | 2014-11-27 | ヌオーヴォ ピニォーネ ソシエタ ペル アチオニ | 回転機械用シール |
US9951637B2 (en) | 2011-09-07 | 2018-04-24 | Matteo BERTI | Seal for a rotary machine |
JP2019157634A (ja) * | 2018-03-07 | 2019-09-19 | アネスト岩田株式会社 | 往復動式圧縮機 |
JP7058523B2 (ja) | 2018-03-07 | 2022-04-22 | アネスト岩田株式会社 | 往復動式圧縮機 |
JP2023543873A (ja) * | 2020-10-30 | 2023-10-18 | プラクスエア・テクノロジー・インコーポレイテッド | 水素遠心圧縮機 |
JP7572546B2 (ja) | 2020-10-30 | 2024-10-23 | プラクスエア・テクノロジー・インコーポレイテッド | 水素遠心圧縮機 |
Also Published As
Publication number | Publication date |
---|---|
US8827634B2 (en) | 2014-09-09 |
JP5382626B2 (ja) | 2014-01-08 |
JPWO2010095507A1 (ja) | 2012-08-23 |
US20110305558A1 (en) | 2011-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5382626B2 (ja) | 歯車駆動ターボ圧縮機 | |
KR101764158B1 (ko) | 일체형 압축기-팽창기 | |
JP5036734B2 (ja) | デュアルエンド形歯車式流体駆動スタータ | |
JP5157501B2 (ja) | 冷凍機 | |
EP3450701B1 (en) | Turbomachine systems with magnetic bearing | |
JP5846967B2 (ja) | 遠心式水蒸気圧縮機およびそれに用いる軸封システム | |
CN106168212B (zh) | 涡旋式压缩机 | |
JP4564971B2 (ja) | オイルフリースクリュー圧縮機 | |
US20140110945A1 (en) | Waste heat power generator | |
JP2011256828A (ja) | 無給油式スクリュー圧縮機 | |
JP5197116B2 (ja) | スクリュ流体機械 | |
CN101963160B (zh) | 涡轮压缩机及冷冻机 | |
KR101013124B1 (ko) | 터보압축기 누설 방지 구조. | |
JP2000104698A (ja) | 圧縮装置 | |
JP2006177299A (ja) | 電動ポンプ | |
JP4062443B2 (ja) | スクリュー圧縮装置 | |
JP2007211639A (ja) | オイルフリースクリュー圧縮機 | |
CA3224839A1 (en) | Compressor assembly | |
JP2009203970A (ja) | スクロール式流体機械 | |
JP2012211521A (ja) | 密閉形スクリュー圧縮機 | |
JP2016176450A (ja) | 回転機械 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10743636 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011500554 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13202506 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10743636 Country of ref document: EP Kind code of ref document: A1 |