WO2010094583A1 - Verfahren zur herstellung halbleitender indiumoxid-schichten, nach dem verfahren hergestellte indiumoxid-schichten und deren verwendung - Google Patents

Verfahren zur herstellung halbleitender indiumoxid-schichten, nach dem verfahren hergestellte indiumoxid-schichten und deren verwendung Download PDF

Info

Publication number
WO2010094583A1
WO2010094583A1 PCT/EP2010/051432 EP2010051432W WO2010094583A1 WO 2010094583 A1 WO2010094583 A1 WO 2010094583A1 EP 2010051432 W EP2010051432 W EP 2010051432W WO 2010094583 A1 WO2010094583 A1 WO 2010094583A1
Authority
WO
WIPO (PCT)
Prior art keywords
indium
alkoxide
indium oxide
och
iii
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/EP2010/051432
Other languages
German (de)
English (en)
French (fr)
Inventor
Arne Hoppe
Alexey Merkulov
Jürgen STEIGER
Duy Vu Pham
Yvonne Damaschek
Heiko Thiem
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
Evonik Degussa GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Degussa GmbH filed Critical Evonik Degussa GmbH
Priority to US13/201,107 priority Critical patent/US9194046B2/en
Priority to KR1020117019061A priority patent/KR101738175B1/ko
Priority to CN201080003638.0A priority patent/CN102257177B/zh
Priority to JP2011550512A priority patent/JP5797561B2/ja
Priority to EP10703058.7A priority patent/EP2398934B1/de
Publication of WO2010094583A1 publication Critical patent/WO2010094583A1/de
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02697Forming conducting materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/103Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO

Definitions

  • the present invention relates to processes for the preparation of semiconductive indium oxide layers, to indium oxide layers which can be prepared by the process according to the invention and to their use.
  • Indium oxide indium (III) oxide, In 2 Os
  • Indium (III) oxide, In 2 Os is between 3.6 and 3.75 eV (measured for evaporated layers) due to the large band gap [HS Kim, PD Byrne, A. Facchetti, TJ. Marks; J. Am.
  • Chem. Soc. 2008, 130, 12580-12581] is a promising semiconductor.
  • thin films of a few hundred nanometers in thickness can have a high transparency in the visible spectral range of greater than 90% at 550 nm.
  • charge carrier mobilities of up to 160 cm 2 A / s. So far, however, such values can not be reached by solution processing [H. Nakazawa, Y. Ito, E. Matsumoto, K. Adachi, N. Aoki, Y. Ochiai; J. Appl. Phys. 2006, 100, 093706. and A. Gupta, H. Cao, Parekh, KKV Rao, AR Raju, UV Waghmare; J. Appl. Phys. 2007, 101, 09N513].
  • Indium oxide is often used together with tin (IV) oxide (SnO 2 ) as semiconducting mixed oxide ITO. Due to the relatively high conductivity of ITO layers with simultaneous transparency in the visible spectral range, it is used, inter alia, in the field of liquid crystal displays (LCDs), in particular as “transparent electrodes.” These mostly doped metal oxide layers are industrially predominantly through Due to the great economic interest in ITO-coated substrates, there are now a number of coating processes based on sol-gel techniques for indium oxide-containing layers.
  • indium oxide semiconductors there are two possibilities for the production of indium oxide semiconductors via printing processes: 1) particle concepts in which (nano) particles are present in printable dispersion and are converted by sintering processes into the desired semiconductor layer after the printing process, and 2) precursor concepts in which at least one soluble precursor is converted to an indium oxide-containing layer after printing.
  • the particle concept has two significant disadvantages compared to the use of precursors. Firstly, the particle dispersions have a colloidal instability which necessitates the use of dispersing additives (which are detrimental to the later layer properties) and, secondly Many of the usable particles (eg due to passivation layers) only incompletely form layers by sintering, so that partially particulate structures still occur in the layers. At the particle boundary there is a considerable particle-particle resistance, which reduces the mobility of the charge carriers and increases the general sheet resistance.
  • indium oxide layers There are different precursors for the production of indium oxide layers.
  • indium salts e.g. Indium alkoxides are used as precursors for the production of indium oxide-containing layers.
  • indium alkoxide solutions offer the advantage that they can be converted to indium oxide-containing coatings at lower temperatures.
  • Bradley et al. report a similar reaction as Mehrotra et al. and obtained at approximately identical reactants (InCl 3 , isopropyl-Nathum) and reaction conditions an indium oxo cluster with oxygen as the central atom [DC Bradley, H. Chudzynska, DM Frigo, ME Hammond, MB Hursthouse, MA Mazid; Polyhedron 1990, 9, 719].
  • JP 11-106934 A (Fuji Photo Film Co. Ltd.) describes a method for producing a transparent conductive metal oxide film on a transparent substrate via a sol-gel process, wherein below 0 0 C, a metal alkoxide or a metal salt, preferably an indium alkoxide or indium salt, is hydrolyzed in solution and then the hydrolyzate is heated.
  • JP 06-136162 A (Fujimori Kogyo KK) describes a process for producing a metal oxide film from solution on a substrate, in which a metal-alkoxide solution, in particular an indium-isopropoxide solution, is converted into a metal oxide gel , is applied to a substrate, dried and treated with heat, wherein before, during or after the drying and heat treatment step is irradiated with UV radiation.
  • a metal-alkoxide solution in particular an indium-isopropoxide solution
  • JP 09-157855 A (Kansai Shin Gijutsu Kenkyusho KK) describes the preparation of metal oxide films from metal-alkoxide solutions via a metal-oxide-sol-intermediate, which is applied to the substrate and converted by UV radiation into the respective metal oxide become.
  • the resulting metal oxide may be indium oxide.
  • CN 1280960 A describes the preparation of an indium-tin oxide layer from solution via a sol-gel process in which a mixture of metal alkoxides dissolved in a solvent, hydrolyzed and then used to coat a substrate with subsequent drying and curing becomes.
  • the sol-gel methods have in common that their gels either because of the high viscosity are not suitable for use in printing processes and / or, especially in the case of low concentration solutions, the resulting indium oxide-containing layers inhomogeneities and thus poor film parameters exhibit.
  • This roughness has a disadvantageous effect on the layer properties of the indium oxide-containing layer (above all, too low charge carrier mobilities for semiconductor applications) and on the other disadvantageous for the application of further layers for the production of a component.
  • JP 11-106935 A (Fuji Photo Film Co. Ltd.) describes a method for producing a conductive metal-oxide film on a transparent substrate in which curing temperatures are achieved below 250 ° C., preferably below 100 ° C., a coating composition comprising a metal alkoxide and / or a metal salt is thermally dried on a transparent substrate and subsequently converted with UV or VIS radiation.
  • JP 2007-042689 A describes metal alkoxide solutions which necessarily contain zinc alkoxides and may furthermore contain indium alkoxides, as well as processes for the production of semiconductor components which use these metal alkoxide solutions.
  • the metal alkoxide films are thermally treated and converted to the oxide layer.
  • pure indium oxide films can not be produced by the metal alkoxide solutions and processes described in JP 2007-042689A.
  • pure indium oxide layers tend to the already mentioned (partial) crystallization, which leads to a reduced charge carrier mobility.
  • a process for the preparation of semiconducting indium oxide layers in which a substrate with a liquid, anhydrous composition a) at least one indium alkoxide and b) coating comprising at least one solvent, optionally dried and at temperatures greater than 250 0 C. is thermally treated.
  • an indium oxide layer is to be understood as meaning a metal-containing layer which can be produced from the abovementioned indium alkoxides and which has essentially indium atoms or ions, the indium atoms or ions being substantially oxidic.
  • the indium oxide layer may also still have carbene or alkoxide shares from an incomplete conversion.
  • These semiconducting indium oxide layers which can be produced according to the invention have charge carrier mobilities between 1 and 50 cm 2 A / s (measured at 50 V gate-source voltage, 50 V drain-source voltage, 1 cm channel width and 20 ⁇ m channel length)
  • the model of the "Gradual Channel Approximation" can be determined using the formulas known from classical MOSFETs.
  • I D is the drain current
  • U D s is the drain-source voltage
  • U G s is the gate-source voltage
  • W the width of the transistor channel
  • L the channel length of the transistor
  • ⁇ the Carrier mobility and U T are the threshold voltage.
  • liquid water-free compositions according to the present invention are those containing less than 200 ppm H 2 O. Appropriate drying steps necessary for the adjustment correspondingly lower water contents of the solvents, are known to the person skilled in the art.
  • the indium alkoxide is preferably an indium (III) alkoxide. More preferably, the indium (III) alkoxide is an alkoxide having at least one C 1 to C 15 alkoxy or oxyalkylalkoxy group, more preferably at least one C 1 to C 10 alkoxy or oxyalkylalkoxy group. Most preferably, the indium (III) alkoxide is an alkoxide of the general formula In (OR) 3 in which R is a C 1 to C 15 alkyl or alkyloxyalkyl group, even more preferably a C 1 to C 10 alkyl or Alkyloxyalkyl group represents.
  • this indium (III) alkoxide is In (OCHs) 3 , In (OCH 2 CHs) 3 , In (OCH 2 CH 2 OCHs) 3 , In (OCH (CH 3 ) 2 ) 3 or ln (O (CH 3 ) 3 ) 3 . Still more preferably, ln (OCH (CH 3 ) 2 ) 3 (indium isopropoxide) is used.
  • the indium alkoxide is preferably present in proportions of from 1 to 15% by weight, more preferably from 2 to 10% by weight, most preferably from 2.5 to 7.5% by weight, based on the total weight of the composition.
  • the formulation also contains at least one solvent, ie the formulation may contain both a solvent or a mixture of different solvents.
  • aprotic and weakly protic solvents ie those selected from the group of aprotic nonpolar solvents, ie alkanes, substituted alkanes, alkenes, alkynes, aromatics with or without aliphatic or aromatic substituents, halogenated hydrocarbons, tetramethylsilane Group of aprotic polar solvents, ie the ethers, aromatic ethers, substituted ethers, esters or acid anhydrides, ketones, tertiary amines, nitromethane, DMF (dimethylformamide), DMSO (dimethylsulfoxide) or propylene carbonate and the weak protic solvent, ie the alcohols, the primary and secondary amines and formamide.
  • aprotic and weakly protic solvents ie those selected from the group of aprotic nonpolar solvents,
  • Particularly preferably usable solvents are alcohols and also toluene, xylene, anisole, mesitylene, n-hexane, n-heptane, tris (3,6-dioxaheptyl) -amine (TDA), 2-aminomethyltetrahydrofuran, phenetole, 4-methylanisole, 3 Methylanisole, methyl benzoate, N-methyl-2-pyrrolidone (NMP), tetralin, ethyl benzoate and diethyl ether.
  • Very particularly preferred solvents are isopropanol, tetrahydrofurfuryl alcohol, tert-butanol and toluene and their mixtures.
  • the composition used in the process according to the invention preferably has a viscosity of from 1 nnPa.s to 10 Pa.s, in particular from 1 to 10 rnPa.s determined in accordance with DIN 53019 parts 1 to 2 and measured at room temperature to achieve particularly good printability , Corresponding viscosities may be obtained by adding polymers, cellulose derivatives, or e.g. can be adjusted under the trade name Aerosil available SiO2, and in particular by PMMA, polyvinyl alcohol, urethane or Polyacrylatverdicker.
  • the substrate used in the method according to the invention is preferably a substrate consisting of glass, silicon, silicon dioxide, a metal or transition metal oxide, a metal or a polymeric material, in particular PE or PET.
  • the process according to the invention is particularly advantageously a coating process selected from printing processes (in particular flexographic / gravure printing, inkjet printing, offset printing, digital offset printing and screen printing), spraying processes, spin-coating processes and dip processes (dip -coating ").
  • printing processes in particular flexographic / gravure printing, inkjet printing, offset printing, digital offset printing and screen printing
  • spraying processes spin-coating processes and dip processes (dip -coating ").
  • the printing process of the invention is a printing process.
  • the coated substrate After coating and before conversion, the coated substrate can continue to be dried. Corresponding measures and conditions for this are known to the person skilled in the art.
  • the conversion to indium oxide is carried out according to the invention by temperatures of greater than 250 0 C. However, particularly good results can be achieved if temperatures of 250 0 C to 360 0 C are used for the conversion. It typically uses conversion times from a few seconds to several hours.
  • the conversion can also be assisted by irradiating UV, IR or VIS radiation during the thermal treatment or by treating the coated substrate with air or oxygen. It is also possible to bring the layer obtained after the coating step in contact with water and / or hydrogen peroxide before the thermal treatment and to first convert this to a metal hydroxide in an intermediate step before the thermal conversion takes place.
  • the quality of the layer produced by the process according to the invention can furthermore be determined by a combined temperature and gas treatment (with H 2 or O 2 ) following the conversion step, plasma treatment (Ar, N 2 , O 2 or H 2 plasma), laser Treatment (with wavelengths in the UV, VIS or IR range) or an ozone treatment can be further improved.
  • a combined temperature and gas treatment with H 2 or O 2
  • plasma treatment Ar, N 2 , O 2 or H 2 plasma
  • laser Treatment with wavelengths in the UV, VIS or IR range
  • an ozone treatment can be further improved.
  • the invention furthermore relates to indium oxide layers which can be prepared by the process according to the invention.
  • the indium oxide layers which can be produced by the process according to the invention are furthermore advantageously suitable for the production of electronic components, in particular the production of (thin film) transistors, diodes or solar cells.
  • Example 1 Influence of water
  • a doped silicon substrate having an edge length of about 15 mm and having an approximately 200 nm thick silicon oxide coating and ITO / gold finger structures was coated with 100 ⁇ l of a 5% by weight solution of indium (III) isopropoxide in isopropanol by spin-coating. Coating (2000 rpm) coated. To exclude water, dry solvents (less than 200 ppm water) were used and the coating was still carried out in a glove box (less than 10 ppm H 2 O).
  • the coated substrate was annealed in air at a temperature of 350 ° C. for one hour.
  • a doped silicon substrate having an edge length of about 15 mm and an approximately 200 nm thick silicon oxide coating and finger structures of ITO / gold was prepared under the same conditions as above with 100 ⁇ l of a 5% by weight solution of indium (III). -Isopropoxid in isopropanol by spin coating (2000 rpm) coated, with the difference that no dried solvents were used (water content> 1000 ppm) and the coating was carried out not in the glove box, but in air.
  • the coated substrate was annealed in air at a temperature of 350 ° C. for one hour.
  • Figure 1 shows an SEM image of the resulting In 2 ⁇ 3 layer of the coating according to the invention
  • Figure 2 shows a corresponding SEM image of the comparative example.
  • the coating according to the invention shows a charge carrier mobility of 2.2 cm 2 A / s (at 50 V gate-source voltage, 50 V source-drain voltage, 1 cm channel width and 20 ⁇ m channel length).
  • the charge carrier mobility in the layer of the comparative example is only 0.02 cm 2 A / s (at 50 V gate-source voltage, 50 V source-drain voltage, 1 cm channel width and 20 ⁇ m channel length).
  • the coated substrate was annealed in air at various temperatures for one hour. This results in different charge carrier mobilities (measured at 50 V drain-gate voltage, 50 V source-drain voltage, 1 cm channel width and 20 ⁇ m channel length), which are listed in Table 1 below:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Thin Film Transistor (AREA)
  • Chemically Coating (AREA)
  • Paints Or Removers (AREA)
  • Formation Of Insulating Films (AREA)
PCT/EP2010/051432 2009-02-17 2010-02-05 Verfahren zur herstellung halbleitender indiumoxid-schichten, nach dem verfahren hergestellte indiumoxid-schichten und deren verwendung Ceased WO2010094583A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/201,107 US9194046B2 (en) 2009-02-17 2010-02-05 Method for producing semiconducting indium oxide layers, indium oxide layers produced according to said method and their use
KR1020117019061A KR101738175B1 (ko) 2009-02-17 2010-02-05 반도전성 산화인듐 층의 제조 방법, 상기 방법에 의해 제조된 산화인듐 층 및 그의 용도
CN201080003638.0A CN102257177B (zh) 2009-02-17 2010-02-05 制造半导体氧化铟-层的方法,按照该方法制造的氧化铟-层及其应用
JP2011550512A JP5797561B2 (ja) 2009-02-17 2010-02-05 半導体の酸化インジウム膜の製造法、該方法に従って製造された酸化インジウム膜及び該膜の使用
EP10703058.7A EP2398934B1 (de) 2009-02-17 2010-02-05 Verfahren zur herstellung halbleitender indiumoxid-schichten, nach dem verfahren hergestellte indiumoxid-schichten und deren verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009009337.0 2009-02-17
DE102009009337A DE102009009337A1 (de) 2009-02-17 2009-02-17 Verfahren zur Herstellung halbleitender Indiumoxid-Schichten, nach dem Verfahren hergestellte Indiumoxid-Schichten und deren Verwendung

Publications (1)

Publication Number Publication Date
WO2010094583A1 true WO2010094583A1 (de) 2010-08-26

Family

ID=42289507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/051432 Ceased WO2010094583A1 (de) 2009-02-17 2010-02-05 Verfahren zur herstellung halbleitender indiumoxid-schichten, nach dem verfahren hergestellte indiumoxid-schichten und deren verwendung

Country Status (8)

Country Link
US (1) US9194046B2 (enExample)
EP (1) EP2398934B1 (enExample)
JP (2) JP5797561B2 (enExample)
KR (1) KR101738175B1 (enExample)
CN (1) CN102257177B (enExample)
DE (1) DE102009009337A1 (enExample)
TW (1) TWI607810B (enExample)
WO (1) WO2010094583A1 (enExample)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020781A1 (de) * 2009-08-21 2011-02-24 Evonik Degussa Gmbh Verfahren zur herstellung indiumoxid-haltiger schichten
WO2011020792A1 (de) * 2009-08-21 2011-02-24 Evonik Degussa Gmbh Verfahren zur herstellung metalloxid-haltiger schichten
DE102011084145A1 (de) 2011-10-07 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von hochperformanten und elektrisch stabilen, halbleitenden Metalloxidschichten, nach dem Verfahren hergestellte Schichten und deren Verwendung
EP2874187A1 (en) 2013-11-15 2015-05-20 Evonik Industries AG Low contact resistance thin film transistor
US9115422B2 (en) 2009-02-17 2015-08-25 Evonik Degussa Gmbh Compositions containing indium alkoxide, method for the production thereof, and use thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007018431A1 (de) * 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenes Zinkoxid enthaltender Verbund von Schichten und diesen Verbund aufweisender Feldeffekttransistor
DE102008058040A1 (de) * 2008-11-18 2010-05-27 Evonik Degussa Gmbh Formulierungen enthaltend ein Gemisch von ZnO-Cubanen und sie einsetzendes Verfahren zur Herstellung halbleitender ZnO-Schichten
DE102009054998A1 (de) 2009-12-18 2011-06-22 Evonik Degussa GmbH, 45128 Verfahren zur Herstellung von Indiumchlordialkoxiden
DE102009054997B3 (de) 2009-12-18 2011-06-01 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102010031895A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010031592A1 (de) 2010-07-21 2012-01-26 Evonik Degussa Gmbh Indiumoxoalkoxide für die Herstellung Indiumoxid-haltiger Schichten
DE102010043668B4 (de) 2010-11-10 2012-06-21 Evonik Degussa Gmbh Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
DE102011054615A1 (de) * 2011-10-19 2013-04-25 Nano-X Gmbh Verfahren zum Herstellen von härtbaren Werkstoffen
DE102012209918A1 (de) 2012-06-13 2013-12-19 Evonik Industries Ag Verfahren zur Herstellung Indiumoxid-haltiger Schichten
DE102013212019A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Formulierungen zur Herstellung Indiumoxid-haltiger Schichten, Verfahren zu ihrer Herstellung und ihre Verwendung
DE102013212018A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Metalloxid-Prekursoren, sie enthaltende Beschichtungszusammensetzungen, und ihre Verwendung
DE102013212017A1 (de) 2013-06-25 2015-01-08 Evonik Industries Ag Verfahren zur Herstellung von Indiumalkoxid-Verbindungen, die nach dem Verfahren herstellbaren Indiumalkoxid-Verbindungen und ihre Verwendung
DE102014202718A1 (de) 2014-02-14 2015-08-20 Evonik Degussa Gmbh Beschichtungszusammensetzung, Verfahren zu ihrer Herstellung und ihre Verwendung

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136162A (ja) 1992-10-21 1994-05-17 Fujimori Kogyo Kk 金属酸化物薄膜の形成方法
JPH09157855A (ja) 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk 金属酸化物薄膜の形成方法
JPH11106935A (ja) 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd 金属酸化物薄膜の製造方法及び金属酸化物薄膜
JPH11106934A (ja) 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd 金属酸化物薄膜の製造方法及び金属酸化物薄膜
CN1280960A (zh) 2000-07-15 2001-01-24 昆明理工大学 铟锡氧化物薄膜溶胶-凝胶制备方法
JP2007042689A (ja) 2005-07-29 2007-02-15 Fujifilm Holdings Corp 金属アルコキシド溶液、それを用いた半導体デバイスの製造方法及び半導体デバイス
WO2008113632A1 (de) * 2007-03-20 2008-09-25 Evonik Degussa Gmbh Transparente, elektrisch leitfähige schicht, ein verfahren zur herstellung der schicht sowie die verwendung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992019564A1 (en) * 1991-05-01 1992-11-12 The Regents Of The University Of California Amorphous ferroelectric materials
US5972527A (en) * 1992-12-15 1999-10-26 Idemitsu Kosan Co., Ltd. Transparent electrically conductive layer, electrically conductive transparent substrate and electrically conductive material
KR0149293B1 (ko) * 1995-05-10 1998-10-01 윤종용 투명 도전성 코팅 조성물
WO1998054094A1 (en) * 1997-05-26 1998-12-03 Kri International, Inc. PROCESS FOR PREPARING In2O3-SnO2 PRECURSOR SOL AND PROCESS FOR PREPARING THIN FILM OF In2O3-SnO¿2?
JP4684889B2 (ja) * 2003-04-15 2011-05-18 日本曹達株式会社 有機薄膜の製造方法
JP4807933B2 (ja) * 2003-12-17 2011-11-02 株式会社アルバック 透明導電膜の形成方法及び透明電極
US7381633B2 (en) * 2005-01-27 2008-06-03 Hewlett-Packard Development Company, L.P. Method of making a patterned metal oxide film
WO2008007451A1 (fr) 2006-07-13 2008-01-17 Central Japan Railway Company Solution de revêtement, couche mince d'oxyde de titane formée en utilisant la solution de revêtement et procédé de formation de la couche mince
JP5116290B2 (ja) * 2006-11-21 2013-01-09 キヤノン株式会社 薄膜トランジスタの製造方法
JP4662075B2 (ja) * 2007-02-02 2011-03-30 株式会社ブリヂストン 薄膜トランジスタ及びその製造方法
DE102007018431A1 (de) 2007-04-19 2008-10-30 Evonik Degussa Gmbh Pyrogenes Zinkoxid enthaltender Verbund von Schichten und diesen Verbund aufweisender Feldeffekttransistor
DE102008058040A1 (de) 2008-11-18 2010-05-27 Evonik Degussa Gmbh Formulierungen enthaltend ein Gemisch von ZnO-Cubanen und sie einsetzendes Verfahren zur Herstellung halbleitender ZnO-Schichten
DE102009028801B3 (de) 2009-08-21 2011-04-14 Evonik Degussa Gmbh Verfahren zur Herstellung Indiumoxid-haltiger Schichten, nach dem Verfahren herstellbare Indiumoxid-haltige Schicht und deren Verwendung
DE102009028802B3 (de) 2009-08-21 2011-03-24 Evonik Degussa Gmbh Verfahren zur Herstellung Metalloxid-haltiger Schichten, nach dem Verfahren herstellbare Metalloxid-haltige Schicht und deren Verwendung
DE102009050703B3 (de) 2009-10-26 2011-04-21 Evonik Goldschmidt Gmbh Verfahren zur Selbstassemblierung elektrischer, elektronischer oder mikromechanischer Bauelemente auf einem Substrat und damit hergestelltes Erzeugnis

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06136162A (ja) 1992-10-21 1994-05-17 Fujimori Kogyo Kk 金属酸化物薄膜の形成方法
JPH09157855A (ja) 1995-12-06 1997-06-17 Kansai Shin Gijutsu Kenkyusho:Kk 金属酸化物薄膜の形成方法
JPH11106935A (ja) 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd 金属酸化物薄膜の製造方法及び金属酸化物薄膜
JPH11106934A (ja) 1997-09-30 1999-04-20 Fuji Photo Film Co Ltd 金属酸化物薄膜の製造方法及び金属酸化物薄膜
CN1280960A (zh) 2000-07-15 2001-01-24 昆明理工大学 铟锡氧化物薄膜溶胶-凝胶制备方法
JP2007042689A (ja) 2005-07-29 2007-02-15 Fujifilm Holdings Corp 金属アルコキシド溶液、それを用いた半導体デバイスの製造方法及び半導体デバイス
WO2008113632A1 (de) * 2007-03-20 2008-09-25 Evonik Degussa Gmbh Transparente, elektrisch leitfähige schicht, ein verfahren zur herstellung der schicht sowie die verwendung

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A. GUPTA; H. CAO; PAREKH, K.K.; V. RAO; A.R. RAJU; U.V. WAGHMARE, J. APPL. PHYS., vol. 101, 2007, pages 09N513
D.C. BRADLEY; H. CHUDZYNSKA; D.M. FRIGO; M.E. HAMMOND; M.B. HURSTHOUSE; A. MAZID, POLYHEDRON, vol. 9, 1990, pages 719
H. NAKAZAWA; Y. ITO; E. MATSUMOTO; K. ADACHI; N. AOKI; Y. OCHIAI, J. APPL. PHYS., vol. 100, 2006, pages 093706
H.S. KIM; P.D. BYRNE; A. FACCHETTI; T.J. MARKS, J. AM. CHEM. SOC., vol. 130, 2008, pages 12580 - 12581
S. CHATTERJEE; S. R. BINDAL; R.C. MEHROTRA, J. INDIAN CHEM. SOC., vol. 53, 1976, pages 867
S. SUH; D. M. HOFFMAN, J. AM. CHEM. SOC., vol. 122, 2000, pages 9396 - 9404

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9115422B2 (en) 2009-02-17 2015-08-25 Evonik Degussa Gmbh Compositions containing indium alkoxide, method for the production thereof, and use thereof
WO2011020781A1 (de) * 2009-08-21 2011-02-24 Evonik Degussa Gmbh Verfahren zur herstellung indiumoxid-haltiger schichten
WO2011020792A1 (de) * 2009-08-21 2011-02-24 Evonik Degussa Gmbh Verfahren zur herstellung metalloxid-haltiger schichten
US9309595B2 (en) 2009-08-21 2016-04-12 Evonik Degussa Gmbh Method for the production of metal oxide-containing layers
US9315901B2 (en) 2009-08-21 2016-04-19 Evonik Degussa Gmbh Method for the production of layers containing indium oxide
DE102011084145A1 (de) 2011-10-07 2013-04-11 Evonik Degussa Gmbh Verfahren zur Herstellung von hochperformanten und elektrisch stabilen, halbleitenden Metalloxidschichten, nach dem Verfahren hergestellte Schichten und deren Verwendung
WO2013050221A1 (de) 2011-10-07 2013-04-11 Evonik Degussa Gmbh Verfahren zur herstellung von hochperformanten und elektrisch stabilen, halbleitenden metalloxidschichten, nach dem verfahren hergestellte schichten und deren verwendung
EP2874187A1 (en) 2013-11-15 2015-05-20 Evonik Industries AG Low contact resistance thin film transistor

Also Published As

Publication number Publication date
JP5797561B2 (ja) 2015-10-21
TW201041662A (en) 2010-12-01
TWI607810B (zh) 2017-12-11
JP6141362B2 (ja) 2017-06-07
EP2398934A1 (de) 2011-12-28
EP2398934B1 (de) 2017-06-21
JP2015228503A (ja) 2015-12-17
DE102009009337A1 (de) 2010-08-19
KR101738175B1 (ko) 2017-05-19
CN102257177B (zh) 2014-06-18
JP2012518088A (ja) 2012-08-09
CN102257177A (zh) 2011-11-23
US20110315982A1 (en) 2011-12-29
KR20110131180A (ko) 2011-12-06
US9194046B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
EP2398934B1 (de) Verfahren zur herstellung halbleitender indiumoxid-schichten, nach dem verfahren hergestellte indiumoxid-schichten und deren verwendung
EP2398935B1 (de) Indiumalkoxid-haltige zusammensetzungen, verfahren zu ihrer herstellung und ihre verwendung
DE102009054997B3 (de) Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
EP2467514B1 (de) Verfahren zur herstellung indiumoxid-haltiger schichten
EP2467513B1 (de) Verfahren zur herstellung metalloxid-haltiger schichten
EP2748857B1 (de) Verfahren zur herstellung von hochperformanten und elektrisch stabilen, halbleitenden metalloxidschichten, nach dem verfahren hergestellte schichten und deren verwendung
DE102010043668B4 (de) Verfahren zur Herstellung von Indiumoxid-haltigen Schichten, nach dem Verfahren hergestellte Indiumoxid-haltige Schichten und ihre Verwendung
EP2595999B1 (de) Indiumoxoalkoxide für die herstellung indiumoxid-haltiger schichten
EP2595998B1 (de) Indiumoxoalkoxide für die herstellung indiumoxid-haltiger schichten
EP2861782B1 (de) Verfahren zur herstellung indiumoxid-haltiger schichten
EP3013837B1 (de) Formulierungen zur herstellung indiumoxid-haltiger schichten, verfahren zu ihrer herstellung und ihre verwendung
WO2014206634A1 (de) Verfahren zur herstellung von indiumalkoxid-verbindungen, die nach dem verfahren herstellbaren indiumalkoxid-verbindungen und ihre verwendung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003638.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10703058

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010703058

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010703058

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117019061

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011550512

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13201107

Country of ref document: US