WO2010093011A1 - 銅研磨用研磨剤及びそれを用いた研磨方法 - Google Patents

銅研磨用研磨剤及びそれを用いた研磨方法 Download PDF

Info

Publication number
WO2010093011A1
WO2010093011A1 PCT/JP2010/052069 JP2010052069W WO2010093011A1 WO 2010093011 A1 WO2010093011 A1 WO 2010093011A1 JP 2010052069 W JP2010052069 W JP 2010052069W WO 2010093011 A1 WO2010093011 A1 WO 2010093011A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
component
acid
abrasive
copper
Prior art date
Application number
PCT/JP2010/052069
Other languages
English (en)
French (fr)
Inventor
小野 裕
隆 篠田
悠平 岡田
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2010/050806 external-priority patent/WO2010092865A1/ja
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to KR1020127005402A priority Critical patent/KR101400585B1/ko
Priority to KR1020117019004A priority patent/KR101153510B1/ko
Priority to CN201080007580.7A priority patent/CN102318042B/zh
Priority to SG2011048501A priority patent/SG172829A1/en
Priority to US13/201,529 priority patent/US8889555B2/en
Priority to JP2010550557A priority patent/JP4930641B2/ja
Publication of WO2010093011A1 publication Critical patent/WO2010093011A1/ja
Priority to US13/412,893 priority patent/US8859429B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/7684Smoothing; Planarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate

Definitions

  • the present invention relates to a polishing agent for polishing copper and a polishing method using the same.
  • the present invention also relates to a high polishing rate and high smoothness after polishing, and a polishing method using the same, particularly suitable for use in a chemical mechanical polishing (CMP) process.
  • CMP chemical mechanical polishing
  • a general method of CMP for a metal such as a copper alloy is to apply a polishing cloth (polishing pad) on a circular polishing platen (platen), immerse the surface of the polishing cloth with a metal abrasive, and form a metal film on the substrate.
  • the formed surface is pressed against the surface of the polishing cloth, and a predetermined pressure (hereinafter referred to as “polishing pressure”) is applied to the metal film from the back surface, and the polishing platen is rotated to remove the abrasive and the metal on the raised portion.
  • the metal film on the raised portion is removed by mechanical friction with the film.
  • a metal abrasive used in CMP generally contains an oxidizing agent and solid abrasive grains (hereinafter simply referred to as “abrasive grains”), and further contains a metal oxide dissolving agent and a protective film forming agent as required. .
  • the basic mechanism of CMP using an abrasive containing an oxidizing agent is that the surface of the metal film is first oxidized by the oxidizing agent to form an oxide layer, and the oxidized layer is scraped off by the abrasive grains. It is thought to be polished.
  • the oxide layer on the surface of the metal film in the groove portion of the insulating film does not touch the polishing cloth so much and the effect of scraping off by the abrasive grains is not exerted, so the metal film on the raised portion is removed with the progress of CMP.
  • the surface of the substrate is flattened (for example, see Non-Patent Document 1 below).
  • an abrasive that has a copper alloy film to be polished having a thickness of about 1 ⁇ m and a polishing rate of about 5000 ⁇ / min is used (for example, see Patent Document 2 below).
  • Patent Document 3 discloses an abrasive capable of polishing a copper alloy film at a higher polishing rate (about 22,000 to 29000 mm / min) than before.
  • Patent Document 3 Although the abrasive described in Patent Document 3 can be applied as an abrasive for TSV, there is a demand for an abrasive capable of polishing a copper alloy film smoothly at a higher polishing rate in order to improve productivity. .
  • the present invention has been made in view of such circumstances, and can smoothly polish a copper film at a high polishing rate, and it is necessary to polish a thick metal film such as a high-performance wiring board or TSV.
  • the purpose of the present invention is to provide a polishing agent for copper polishing that can be polished in a short time and can secure sufficient productivity, and a polishing method using the same.
  • the present inventors controlled the copper film at a high polishing rate by controlling the contents of a divalent or higher inorganic acid (hereinafter simply referred to as “inorganic acid”), an amino acid, and a protective film forming agent to a predetermined amount or more. It has been found that an abrasive that can be polished smoothly is obtained. Furthermore, the present inventors control the contents of the inorganic acid, the amino acid, and the protective film forming agent to a predetermined amount or more and satisfy at least one of the following conditions (i) and (ii), thereby achieving high performance.
  • inorganic acid divalent or higher inorganic acid
  • amino acid amino acid
  • a protective film forming agent a protective film forming agent
  • abrasive capable of obtaining a high polishing rate for copper (for example, a polishing rate exceeding 30000 mm / min), which is useful for wiring board applications and TSV applications, can be obtained.
  • Condition (i) The ratio of the content (mol / kg) of the inorganic acid to the content (mol / kg) of the protective film forming agent (the content of the inorganic acid / the content of the protective film forming agent) is 2.00 or more.
  • the abrasive contains at least one selected from organic acids and acid anhydrides thereof.
  • the present invention provides, as a first embodiment, (A) an inorganic acid, (B) an amino acid, (C) a protective film forming agent, (D) abrasive grains, (E) an oxidizing agent, F) water, the content of component (A) is 0.08 mol / kg or more, the content of component (B) is 0.20 mol / kg or more, and the content of component (C) is 0.
  • a polishing slurry for copper polishing which is 0.02 mol / kg or more and the ratio of the content of the component (A) to the content of the component (C) is 2.00 or more.
  • the present invention provides, as a second embodiment, (A) an inorganic acid, (B) an amino acid, (C) a protective film forming agent, (D) abrasive grains, (E) an oxidizing agent, (F) Water and at least one selected from (G) an organic acid and its acid anhydride, the content of the component (A) is 0.08 mol / kg or more, and the content of the component (B) is 0.20 mol.
  • a polishing slurry for copper polishing which is not less than / kg and the content of component (C) is not less than 0.02 mol / kg.
  • “copper” includes not only pure copper but also a metal containing copper (for example, copper alloy, copper oxide, and copper alloy oxide).
  • the “copper polishing abrasive” refers to a metal film made of pure copper, a metal film containing copper (for example, a copper alloy film), or those metal films and other metals. An abrasive for polishing the laminated film.
  • the above polishing agent for polishing copper can polish a copper film smoothly at a high polishing rate, and can be used in a short time even in applications requiring polishing of thick metal films such as high performance wiring boards and TSVs. Polishing treatment is possible and sufficient productivity can be secured. Moreover, since such a polishing slurry for copper is a pH buffer solution containing (A) an inorganic acid and (B) an amino acid having a strong dissolving action, even if copper as the object to be polished is dissolved in the polishing agent. pH fluctuation is unlikely to occur. For this reason, it is considered that a high polishing rate can be stably maintained without depending on the progress of polishing.
  • the copper polishing abrasive of the first embodiment (excluding the pH adjusting agent when the copper polishing abrasive contains an acidic component such as aqueous hydrochloric acid or an alkaline component such as aqueous ammonia as a pH adjusting agent).
  • the amount of potassium hydroxide required to increase the pH to 4 is preferably 0.10 mol or more per kg of polishing slurry for copper. According to such an abrasive, the copper film can be polished more smoothly at a higher polishing rate, and even in applications where a thick metal film such as a high performance wiring board or TSV needs to be polished, Polishing can be performed in a short time, and sufficient productivity can be ensured.
  • the present invention provides (A) an inorganic acid, (B) an amino acid, (C) a protective film forming agent, (D) abrasive grains, (E) an oxidizing agent, ( F) water and (G) at least one selected from organic acids and acid anhydrides thereof, the content of component (A) is 0.08 mol / kg or more, and the content of component (B) is 0.
  • the content of component (C) is 0.02 mol / kg or more, and the ratio of the content of component (A) to the content of component (C) is 2.00 or more.
  • an abrasive for polishing copper is provided.
  • the polishing abrasive for copper of the second and third embodiments is a composition obtained by removing the component (G) from the polishing abrasive for copper (the polishing abrasive for copper is an acidic component such as an aqueous hydrochloric acid solution, an aqueous ammonia solution, etc.
  • the amount of potassium hydroxide required to increase the pH of the alkaline component to 4) is preferably 0.10 mol or more per kg of the composition. . According to such an abrasive, the copper film can be polished more smoothly at a higher polishing rate, and even in applications where a thick metal film such as a high performance wiring board or TSV needs to be polished, Polishing can be performed in a short time, and sufficient productivity can be ensured.
  • the content of the component (G) is preferably 0.02 mol / kg or more.
  • the component (G) has two carboxyl groups and an organic acid having a pKa of 2.7 or less, its acid anhydride, and three carboxyl groups.
  • the organic acid is preferably at least one selected from two or more organic acids.
  • organic acids having two carboxyl groups those having a pKa of 2.7 or less have a stronger interaction with the copper surface than organic acids having a pKa of more than 2.7.
  • Such organic acids and acid anhydrides thereof Is considered to be highly effective in improving the polishing rate.
  • the organic acid having 3 or more carboxyl groups must have 3 or more carboxyl groups even if the pKa value exceeds 2.7. Therefore, it is considered that the interaction with copper is strong and the effect of improving the polishing rate is high.
  • pKa means the acid dissociation constant of the first dissociable acidic group, and is the negative common logarithm of the equilibrium constant Ka of the group.
  • the component (G) is preferably at least one selected from oxalic acid, maleic acid, maleic anhydride, malonic acid, and citric acid. These (G) components significantly improve the polishing rate as compared with the case where the same amount of organic acid other than these and acid anhydride thereof are added.
  • the pH of the abrasive for polishing copper of the present invention is preferably 1.5 to 4.0. In this case, it tends to have a function as a pH buffer solution, and it becomes easy to stably maintain a high polishing rate.
  • the component (A) is preferably at least one selected from sulfuric acid and phosphoric acid. In this case, it is possible to make the polishing rate and smoothness more compatible.
  • the copper polishing abrasive of the present invention preferably contains an amino acid having a pKa of 2 to 3 as the component (B).
  • the pH of the polishing slurry for copper polishing can be easily set to a desired value.
  • the component (C) is preferably a triazole compound, and the triazole compound is more preferably at least one selected from benzotriazole and its derivatives.
  • the polishing rate can be further improved, and an abrasive having an excellent balance between the polishing rate and the corrosion resistance can be obtained.
  • the component (D) is at least one selected from colloidal silica and colloidal alumina, and the average particle size of the component (D) is preferably 100 nm or less.
  • the component (E) is preferably at least one selected from hydrogen peroxide, persulfuric acid and persulfate. These components (E) are suitable as oxidizing agents because of their particularly high polishing promoting action.
  • the present invention also provides a polishing method in which a metal film containing copper is polished using the above-described abrasive for polishing copper to remove at least a part of the metal film.
  • the above polishing method can achieve both high polishing rate and smooth polishing, it can be suitably applied to the metal film having a maximum thickness of 5 ⁇ m or more, particularly 10 ⁇ m or more.
  • the “maximum thickness of the metal film” refers to the maximum thickness of the metal film in the portion to be polished, and the thickness of the metal film in the recess when the metal film is formed on the recess in the substrate. Does not include.
  • the polishing rate for the metal film can be set to 30000 mm / min or more.
  • the copper polishing abrasive of the present invention exhibits a significantly faster polishing rate for copper than a normal abrasive.
  • an abrasive having a polishing rate for copper exceeding 30000 mm / min can be obtained, so it is optimal for applications that polish copper in a large amount in a short time, such as high-performance wiring board applications and TSV applications.
  • An abrasive for polishing copper and a polishing method using the same can be provided.
  • polishing agent for copper polishing of this invention while being able to grind
  • FIG. 5 is a first process diagram showing a method of using the abrasive according to one embodiment of the present invention when used for VIA-LAST.
  • FIG. 6 is a second process diagram showing a method of using the abrasive according to one embodiment of the present invention when used for VIA-LAST.
  • FIG. 6 is a third process diagram showing a method of using the abrasive according to one embodiment of the present invention when used for VIA-LAST.
  • the polishing slurry for copper polishing (hereinafter simply referred to as “polishing agent”) according to the first embodiment of the present invention satisfies the condition (i). That is, the abrasive according to the first embodiment includes (A) an inorganic acid, (B) an amino acid, (C) a protective film forming agent, (D) abrasive grains, (E) an oxidizing agent, and (F ) Water, the content of the component (A) is 0.08 mol / kg or more, the content of the component (B) is 0.20 mol / kg or more, and the content of the component (C) is 0.00. The ratio of the content (mol / kg) of the component (A) to the content (mol / kg) of the component (C) is 2.00 or more.
  • the polishing rate can be improved to some extent even when each of the component (A) or the component (B) is used alone, in this case, the effect of improving the polishing rate commensurate with the content cannot be obtained.
  • polishing agent which concerns on 1st Embodiment, (A) component and (B) component are used together, and also by making those content into the said specific amount, the grinding
  • the abrasive according to the first embodiment is necessary for obtaining a predetermined polishing rate improvement effect as compared with the case where the component (A) or the component (B) is used alone. It has the effect that content of (A) component and (B) component which can be reduced can be reduced.
  • the use of the component (C) has the effect of suppressing the etching of copper by forming a protective film on the copper surface, but in general, the polishing rate may be suppressed. It was.
  • rate is made into the high level by using together the specific amount of the said (A) component and (B) component, and using (C) component specific amount. While maintaining, the effect of suppressing the etching rate can be obtained.
  • polishing agent according to the first embodiment can improve the polishing rate is not necessarily clear, but the present inventors speculate as follows. That is, a “reaction layer” containing the component (C) and copper ions is formed on the copper surface by the action of the component (C) and the component (A). Furthermore, it is considered that the component (B) is chelated to copper ions so that the reaction layer is more easily removed and polishing is promoted.
  • the pH of the abrasive according to the first embodiment is preferably in the range of 1.5 to 4.0 in that the polishing rate for copper by CMP is large and the copper film is not corroded. If the pH is 1.5 or more, the surface roughness of the copper film tends to be reduced, and from the same viewpoint, the pH is more preferably 2.0 or more. When the pH is 4.0 or less, there is a tendency that the polishing rate by CMP increases to become a more practical abrasive. From the same viewpoint, the pH is more preferably 3.5 or less, and 3.0 or less. Further preferred.
  • the abrasive according to the first embodiment is a pH buffer solution containing an inorganic acid as the component (A).
  • Inorganic acids are generally strong acids, and if a large amount of inorganic acid is contained, the pH is lowered, and it is difficult to adjust the pH to a predetermined range (for example, a range of 1.5 to 4.0).
  • the abrasive according to the first embodiment contains an amino acid as the component (B) in addition to the inorganic acid, and the abrasive is adjusted by adjusting the contents of the components (A) and (B).
  • a pH buffer solution having a pH within a predetermined range for example, a range of 1.5 to 4.0
  • the pH may be adjusted by the amount of constituents of the abrasive (for example, inorganic acid or amino acid) added.
  • examples of such a pH adjuster include monovalent inorganic acids such as hydrochloric acid and nitric acid, bases such as ammonia, sodium hydroxide, and tetramethylammonium hydroxide. These can be used alone or in combination of two or more.
  • the pH is in the desired range without including the pH adjusting agent, it is not necessary to contain the pH adjusting agent.
  • the said monovalent inorganic acid as a pH adjuster is not contained in the said (A) component.
  • the pH of the abrasive according to the first embodiment can be measured with a pH meter (for example, model number PH81 manufactured by Yokogawa Electric Corporation). The pH was calibrated at two points using a standard buffer (phthalate pH buffer pH: 4.01 (25 ° C.), neutral phosphate pH buffer pH 6.86 (25 ° C.)). The value after the electrode is put into an abrasive and stabilized after 2 minutes or more is adopted.
  • a pH meter for example, model number PH81 manufactured by Yokogawa Electric Corporation
  • the component (A) is a divalent or higher valent inorganic acid (non-monovalent inorganic acid), and any known one can be used without particular limitation.
  • Divalent acids such as sulfurous acid, thiosulfuric acid, selenic acid, telluric acid, telluric acid, tungstic acid, phosphonic acid, trivalent acids such as phosphoric acid, phosphomolybdic acid, phosphotungstic acid, vana
  • a strong acid (defined as an acid having a pKa of 0 or less; the same shall apply hereinafter) is preferable in that the polishing rate by CMP is further increased.
  • the strong acid include sulfuric acid, chromic acid, phosphomolybdic acid, silicomolybdic acid, phosphotungstic acid, and silicotungstic acid, and the polishing rate by CMP is further increased, and it is easier to obtain. Sulfuric acid is more preferable.
  • a weak acid (defined as an acid having a pKa exceeding 0. The same shall apply hereinafter) is preferable.
  • weak acids include carbonic acid, molybdic acid, hydrogen sulfide, sulfurous acid, thiosulfuric acid, selenic acid, telluric acid, telluric acid, tungstic acid, phosphonic acid, phosphoric acid, pyrophosphoric acid, tripolyphosphoric acid, and vanadic acid.
  • phosphoric acid is preferred. In terms of achieving both a high polishing rate and a high surface roughness, it is preferable to use the strong acid and the weak acid in combination. In this respect, a mixture of sulfuric acid and phosphoric acid is particularly preferable.
  • the content of the component (A) is 0.08 mol / kg or more, preferably 0.09 mol / kg or more, more preferably 0.1 mol / kg or more with respect to the total amount of the abrasive, in terms of further excellent polishing rate. It is more preferable that The content of the component (A) is 1.0 mol / kg or less in terms of suppressing the increase in the content of the component (A) because the polishing rate tends not to increase even if the component (A) is added more than a certain amount. It is preferable that it is 0.8 mol / kg or less.
  • the component (B) is an amino acid used for the purpose of adjusting pH and dissolving copper.
  • a component (B) is not particularly limited as long as it is an amino acid that is slightly soluble in water.
  • glycine, alanine, valine, leucine, isoleucine, serine, threonine, cysteine, cystine, methionine, aspartic acid examples thereof include at least one selected from glutamic acid, lysine, arginine, phenylalanine, tyrosine, histidine, tryptophan, proline, and oxyproline. These can be used alone or in combination of two or more.
  • an amino acid having a pKa of 2 to 3 because it is easy to adjust the pH of the abrasive (for example, 1.5 to 4.0).
  • glycine, alanine, valine, leucine, isoleucine, serine, threonine, methionine, aspartic acid, glutamic acid, lysine, arginine, tryptophan and the like are preferable.
  • glycine is more preferable in that the effect of improving the polishing rate is high and the cost is low.
  • pKa refer to the Chemical Handbook, Basic Edition II (5th revised edition, Maruzen Co., Ltd.).
  • the content of the component (B) is 0.20 mol / kg or more and preferably 0.25 mol / kg or more with respect to the total amount of the abrasive in terms of further improving the polishing rate.
  • the content of the component (B) is 2.0 mol / kg or less in that the increase in the content of the component (B) is suppressed because the polishing rate does not increase even when the component (B) is added in a certain amount or more. It is preferable that it is 1.8 mol / kg or less.
  • the protective film forming agent as the component (C) refers to a substance having an action of forming a protective film on the copper surface, and is also a substance called an anticorrosive or an inhibitor.
  • the protective film forming agent is considered to constitute a “reaction layer” that is removed during polishing, and forms a “protective film” to prevent copper from being polished. Not limited to.
  • component (C) As long as it has the water solubility effective in order to exhibit the addition effect of a protective film formation agent, a conventionally well-known substance can be especially used without a restriction
  • the component (C) include nitrogen-containing compounds such as quinaldic acid, anthonylic acid, salicylaldoxime, triazole compounds, imidazole compounds, pyrazole compounds, and tetrazole compounds.
  • a nitrogen-containing heterocyclic compound is preferable, and a triazole compound is particularly preferable. These can be used alone or in combination of two or more.
  • triazole compound examples include triazole derivatives such as 1,2,3-triazole, 1,2,4-triazole, 3-amino-1H-1,2,4-triazole; benzotriazole; 1-hydroxybenzotriazole, 1-dihydroxypropylbenzotriazole, 2,3-dicarboxypropylbenzotriazole, 4-hydroxybenzotriazole, 4-carboxyl (-1H-) benzotriazole, 4-carboxyl (-1H-) benzotriazole methyl ester, 4-carboxyl (-1H-) benzotriazole butyl ester, 4-carboxyl (-1H-) benzotriazole octyl ester, 5-hexylbenzotriazole, [1,2,3-benzotriazolyl-1-methyl] [1,2, 4-to Azotril-1-methyl] [2-ethylhexyl] amine, tolyltriazole, naphthotriazole, bis [(1-benzotriazo
  • imidazole compound examples include 2-methylimidazole, 2-ethylimidazole, 2-isopropylimidazole, 2-propylimidazole, 2-butylimidazole, 4-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-4- Examples include methylimidazole, 2-undecylimidazole, 2-aminoimidazole and the like.
  • Examples of the pyrazole compound include 3,5-dimethylpyrazole, 3-amino-5-methylpyrazole, 4-methylpyrazole, 3-amino-5-hydroxypyrazole and the like.
  • tetrazole compounds include 1H-tetrazole, 5-amino-1H-tetrazole, 5-methyl-1H-tetrazole, 5-phenyl-1H-tetrazole, 1- (2-diaminoethyl) -5-mercaptotetrazole and the like. Can be mentioned.
  • the content of the component (C) is 0.02 mol / kg or more, preferably 0.025 mol / kg or more with respect to the total amount of the abrasive, in that the surface roughness of the metal can be further reduced. More preferably, it is 0.03 mol / kg or more.
  • the content of the component (C) is 0.3 mol / kg or less in terms of suppressing the increase in the content of the component (C) because the polishing rate tends not to increase even if the component (C) is added in a certain amount or more. It is preferable that it is 0.25 mol / kg or less.
  • the ratio of the content (mol / kg) of the component (A) to the content (mol / kg) of the component (C) is excellent in the polishing rate. In that respect, it is 2.00 or more. Furthermore, from the viewpoint of obtaining an abrasive having an excellent polishing rate, the ratio is preferably 2.30 or more, more preferably 2.50 or more, and even more preferably 2.80 or more. The ratio is preferably 12 or less, and more preferably 10 or less, from the viewpoint of further suppressing an increase in surface roughness.
  • the component (D) component is not particularly limited, and examples thereof include inorganic abrasive grains such as silica, alumina, zirconia, ceria, titania and silicon carbide, and organic abrasive grains such as polystyrene, polyacryl and polyvinyl chloride. .
  • silica and alumina are preferable because the dispersion stability in the abrasive is good, and the number of scratches (scratches) generated by CMP is small, and the particle size can be easily controlled. In view of excellent polishing characteristics, colloidal silica and colloidal alumina are more preferable.
  • Colloidal silica is known for its production by hydrolysis of silicon alkoxide or ion exchange of sodium silicate.
  • a method for producing colloidal alumina by hydrolysis of aluminum nitrate is known.
  • the said (D) component can be used individually or in combination of 2 or more types.
  • abrasive grains having an average particle size of 100 nm or less are preferable in that the polishing rate is further excellent and the surface roughness after polishing is low, and colloidal silica having an average particle size of 100 nm or less and More preferred is at least one abrasive selected from colloidal alumina.
  • the “average particle size” of the particles refers to the value of D50 (median diameter of volume distribution, cumulative median value) when a copper polishing abrasive is measured with a laser diffraction particle size distribution meter.
  • the content of the component (D) is preferably 0.1% by mass or more with respect to the total amount of the abrasive in terms of sufficiently obtaining a physical grinding action and further increasing the polishing rate, and 0.2% by mass. % Or more is more preferable. Further, from the viewpoint of suppressing the increase in the polishing rate even when the polishing rate is saturated and the component (D) is added more than a certain amount, the component (D) is suppressed from the viewpoint of suppressing the aggregation of abrasive grains and the increase in polishing scratches.
  • the content of is preferably 10% by mass or less, and more preferably 5% by mass or less.
  • any oxidizing agent having an oxidizing action on copper can be used without particular limitation.
  • the component (E) include hydrogen peroxide (H 2 O 2 ), persulfates such as persulfuric acid, ammonium persulfate, and potassium persulfate, periodic acid, potassium periodate, and the like. In view of further excellent speed, at least one selected from hydrogen peroxide, persulfuric acid and persulfate is preferable.
  • the said oxidizing agent can be used individually or in combination of 2 or more types.
  • the content of the component (E) is preferably 0.1% by mass or more, more preferably 0.2% by mass or more with respect to the total amount of the abrasive, in that a better polishing rate is easily obtained. preferable.
  • the content of the component (E) is 20% by mass or less. It is preferably 15% by mass or less.
  • the oxidizing agent may reduce the stability of the polishing agent, when it is necessary to store the polishing agent for a long period (for example, one month or more), an oxidizing agent aqueous solution and an oxidizing agent other than the oxidizing agent may be used. It is preferable to store separately from the component abrasive material and mix on the polishing platen immediately before or during polishing.
  • ((F) component water
  • polishing agent Deionized water, ion-exchange water, ultrapure water, etc. are preferable.
  • the content of the component (F) in the abrasive may be the remainder of the content of other components, and is not particularly limited as long as it is contained in the abrasive.
  • the abrasive may contain, in addition to the above-described components, materials generally used for CMP abrasives such as dispersants and colorants, as long as the effects of the abrasive are not impaired.
  • the abrasive according to the first embodiment includes (A) inorganic acid, (B) amino acid, (C) protective film forming agent, (D) abrasive grains, (E) oxidizing agent, and (F) water.
  • the amount of potassium hydroxide required to increase the pH of the abrasive containing at least 4 to 4 is 0.10 mol or more per kg of abrasive. Is preferably added.
  • the reason why the neutralization titration equivalent of inorganic acid with potassium hydroxide is specified is as follows. That is, copper contained in the metal film polished by the abrasive according to the first embodiment dissolves as cations in the abrasive when polished.
  • the amount of the inorganic acid added is small and the polishing agent does not have a pH buffering action, it is considered that hydrogen ions are consumed due to dissolution of copper and the pH of the polishing agent is increased, resulting in a decrease in the polishing rate.
  • the amount of inorganic acid in the polishing agent is equivalent to 0.10 mol / kg or more by neutralization titration with potassium hydroxide, although there are some variations depending on the polishing rate and the polishing agent flow rate during polishing.
  • the amount is preferably 0.12 mol / kg or more, more preferably 0.15 mol / kg or more, and particularly preferably 0.20 mol / kg or more.
  • the upper limit of the neutralization titration equivalent with potassium hydroxide can be set to, for example, 2.0 mol / kg.
  • the neutralization titration equivalent of the abrasive can be determined as follows. That is, a “neutralization titration measurement test solution” having a composition obtained by removing a pH adjuster (for example, an acidic component such as an aqueous hydrochloric acid solution or an alkaline component such as an aqueous ammonia solution) from the composition of the abrasive is prepared. Next, 50 ml of the test solution is put into a beaker of about 100 ml, and a 20% strength aqueous potassium hydroxide solution is dropped while stirring at 80 rpm with a stirrer. When the pH value becomes 4.0, potassium hydroxide is added. The neutralization titration equivalent can be calculated from the added amount of the aqueous solution.
  • a pH adjuster for example, an acidic component such as an aqueous hydrochloric acid solution or an alkaline component such as an aqueous ammonia solution
  • the composition of the abrasive is unknown, the composition and concentration of the abrasive can be examined by ion chromatography analysis with a measurement accuracy of 10 ⁇ 8 g or more. Therefore, the test solution can be prepared from the measured value, and the neutralization titer can be measured.
  • the above-mentioned abrasive can be polished at a high speed, for example, when an 8 inch (20.3 cm) disk-shaped substrate is set at a flow rate of the abrasive of around 200 ml / min.
  • neutralization titration equivalent of inorganic acid with potassium hydroxide 1 kg of a test solution having a composition in which an alkali component and an organic acid described later are removed from an abrasive is prepared separately, and the pH value of this test solution is 4 Defined as the number of moles of potassium hydroxide required to increase to
  • the abrasive for polishing copper (hereinafter simply referred to as “abrasive”) according to the second embodiment satisfies the condition (ii). That is, the abrasive according to the second embodiment includes (A) inorganic acid, (B) amino acid, (C) protective film forming agent, (D) abrasive grains, (E) oxidizing agent, and (F ) Water and (G) at least one selected from organic acids and acid anhydrides thereof, the content of component (A) is 0.08 mol / kg or more, and the content of component (B) is 0.00. 20 mol / kg or more, and the content of component (C) is 0.02 mol / kg or more.
  • the ratio of the content (mol / kg) of the component (A) to the content (mol / kg) of the component (C) is not necessarily 2.00 or more.
  • the abrasive having the ratio of 2.00 or more will be described later as an abrasive according to the third embodiment.
  • the polishing rate can be improved to some extent even if the component (A), the component (B) and the component (G) are used alone or two of them can be selected and used. It is not possible to obtain an effect of improving the polishing rate commensurate with.
  • polishing agent which concerns on 2nd Embodiment, combining (A) component, (B) component, and (G) component, and also making those content into the said specific amount, The polishing rate can be dramatically improved.
  • the abrasive according to the second embodiment is compared with the case where the component (A), the component (B) and the component (G) are used alone or two of them are selected and used. And it has the effect that the total content of the said chemical component required in order to acquire the improvement effect of a predetermined
  • polishing agent when the abrasive
  • the use of the protective film forming agent as component (C) has the effect of suppressing the etching of copper by forming a protective film on the copper surface, but generally suppresses the polishing rate.
  • polishing agent which concerns on 2nd Embodiment, it polishes by using together the specific amount of the said (A) component, (B) component, and (G) component, and (C) component using specific amount. While maintaining the speed at a high level, the effect of suppressing the etching speed can be obtained.
  • the polishing agent according to the second embodiment can improve the polishing rate is not necessarily clear, but the present inventors speculate as follows. That is, the “reaction layer” containing the (C) component and the copper ions is formed on the copper surface by the action of the (A) component, the (C) component, and the (G) component. Furthermore, it is considered that the component (B) is chelated to copper ions so that the reaction layer is more easily removed and polishing is promoted.
  • each polishing process proceeds in conjunction with other polishing processes. Therefore, even if only one type of component (A), (B), (C) and (G) is increased, the polishing process by other components becomes a bottleneck (rate-limiting process), It is considered that the polishing rate is not improved efficiently.
  • each polishing process is promoted by using specific amounts of the (A) component, the (B) component, the (C) component, and the (G) component, and the polishing rate is made efficient. It is thought that it can be improved.
  • polishing agent which concerns on 2nd Embodiment contains at least 1 type chosen from an organic acid and its acid anhydride as (G) component.
  • the component (G) component for example, formic acid, acetic acid, glyoxylic acid, pyruvic acid, lactic acid, mandelic acid, vinyl acetic acid, 3-hydroxy entangling acid, oxalic acid, maleic acid, malonic acid, methylmalonic acid, dimethylmalonic acid, Phthalic acid, tartaric acid, fumaric acid, malic acid, succinic acid, glutaric acid, oxaloacetic acid, citric acid, hemimellitic acid, trimellitic acid, trimesic acid, melittic acid, isocitric acid, aconitic acid, oxalosuccinic acid, propionic acid, butyric acid, Isobutyric acid, valeric acid, isovaleric acid, pi
  • the component (G) at least one selected from an organic acid having two carboxyl groups and an acid anhydride having a pKa of 2.7 or less, and an organic acid having three or more carboxyl groups is preferable. .
  • a higher polishing rate can be obtained by strengthening the interaction with copper and efficiently chelating with copper ions.
  • the organic acid having two carboxyl groups conventionally known substances can be used without particular limitation as long as they have effective water solubility in order to exert their effects.
  • the pKa of the organic acid having two carboxyl groups is 2.7 or less, preferably 2.6 or less, and more preferably 2.5 or less.
  • pKa refer to the Chemical Handbook, Basic Edition II (5th revised edition, Maruzen Co., Ltd.).
  • Examples of the organic acid having two carboxyl groups and having a pKa of 2.7 or less include oxalic acid, maleic acid, malonic acid, and oxaloacetic acid.
  • Examples of the acid anhydride of an organic acid having two carboxyl groups and a pKa of 2.7 or less include maleic anhydride.
  • these organic acids and acid anhydrides thereof oxalic acid, maleic acid, malonic acid, and maleic anhydride are preferable in that the polishing rate by CMP can be further improved.
  • organic acid having three or more carboxyl groups examples include citric acid, hemimellitic acid, trimellitic acid, trimesic acid, melittic acid, isocitric acid, aconitic acid, oxalosuccinic acid and the like.
  • citric acid is preferable in that not only the polishing rate of copper is further improved, but also coloring of the polishing cloth after polishing can be suppressed.
  • organic acids and acid anhydrides thereof can be used alone or in combination of two or more.
  • the content of the component (G) is preferably 0.02 mol / kg or more and more preferably 0.03 mol / kg or more with respect to the total amount of the polishing agent in that the polishing rate is further improved.
  • the content of the component (G) is 1.0 mol / kg in that the polishing rate tends not to increase even if the component (G) is added in a certain amount or more, so that the increase in the content of the component (G) is suppressed. Or less, more preferably 0.8 mol / kg or less.
  • the abrasive according to the second embodiment has an amount of potassium hydroxide required to increase the pH of the composition obtained by removing the component (G) from the abrasive to 4. It is preferable to add an inorganic acid such that the neutralization titration equivalent) is 0.10 mol or more per kg of the composition.
  • polishing agent containing an organic acid can be calculated
  • a pH adjuster for example, an acidic component such as a hydrochloric acid aqueous solution or an alkaline component such as an aqueous ammonia solution
  • the neutralization titration equivalent can be calculated from the added amount of the aqueous solution.
  • the reason for prescribing the neutralization titration equivalent of inorganic acid with potassium hydroxide and the neutralization titration equivalent of potassium hydroxide are the same as in the first embodiment.
  • the abrasive for polishing copper (hereinafter simply referred to as “abrasive”) according to the third embodiment satisfies both the above conditions (i) and (ii). That is, the abrasive
  • the present inventors include at least one component (G) selected from an organic acid having two carboxyl groups and a pKa of 2.7 or less, an acid anhydride thereof, and an organic acid having three or more carboxyl groups.
  • an abrasive containing (A) component, (B) component, (C) component (hereinafter, the generic name of these four components is sometimes referred to as “chemical (chemical) component”), It was found that an abrasive capable of polishing copper more smoothly at a higher speed can be obtained by controlling the type and content.
  • the present inventors increase the content of each of the above chemical components (for example, increase about twice or more of the conventional amount), and at least one selected from a specific organic acid and acid anhydride thereof. By using it, it discovered that the polishing rate with respect to copper improved more than expected, maintaining smoothness.
  • the component (G) is selected from an organic acid having two carboxyl groups and a pKa of 2.7 or less and an acid anhydride thereof, and an organic acid having three or more carboxyl groups. It is preferable to use at least one kind.
  • the other components of the abrasive according to the third embodiment are the same as those of the abrasive according to the first and second embodiments, and a description thereof will be omitted.
  • the neutralization titration equivalent with potassium hydroxide is measured in the same manner as in the second embodiment.
  • Abrasive storage method There is no restriction
  • it may be stored as a one-component abrasive containing all of the components, and at least the components of the abrasive are mixed with each other so as to be the CMP abrasive according to each of the above embodiments (the first solution).
  • additive liquid second liquid
  • the first embodiment is a two-component abrasive, for example, a slurry containing (D) abrasive grains and (F) water, (A) an inorganic acid, (B) an amino acid, and (C) a protective film forming agent. And (F) an additive solution containing water.
  • the polishing method according to the present embodiment is characterized in that a metal film containing copper is polished using the abrasive according to each of the above embodiments, and at least a part of the metal film is removed. More specifically, the polishing method according to the present embodiment polishes the metal film containing copper using the laminating step of laminating the metal film containing copper on the substrate and the abrasive according to each of the above embodiments. And a polishing step for removing a part of the metal film.
  • the “metal film containing copper” may be a metal film made of pure copper, a metal film containing copper (for example, a copper alloy film), a laminated film of these metal films and other metals, or the like. .
  • the polishing agent according to each of the above embodiments has a feature that the polishing rate for a metal film containing copper is extremely high compared to a conventional polishing agent for copper polishing. It can be particularly suitably used for polishing a thick metal film in a production process of a representative high performance / fine wiring board. More specifically, the metal film containing copper to be polished can be particularly preferably used when polishing a substrate having a thickness of, for example, 4 ⁇ m or more. Moreover, since the abrasive
  • a through silicon via (TSV) forming process can be exemplified.
  • TSV through silicon via
  • Various methods for forming a TSV have been proposed.
  • VIA-LAST in which a via is formed after an element is formed.
  • a method of using the abrasive according to each of the above embodiments for VIA-LAST will be described with reference to process diagrams (schematic cross-sectional views) of FIGS.
  • FIG. 1 is a schematic cross-sectional view showing a process of forming a copper layer 4 on a silicon substrate 1.
  • an element 2 is formed at a predetermined position on the silicon substrate 1.
  • a recess 3 for forming a through via is formed by a method such as plasma etching.
  • a copper layer 4 is formed by laminating copper so as to fill the recess 3 by a method such as sputtering or electrolytic plating, thereby obtaining a substrate 100 having a structure as shown in FIG.
  • FIG. 2 is a schematic cross-sectional view showing a process of polishing the substrate 100 thus formed and forming bumps 5 on one side. While supplying the above-described abrasive between the surface of the copper layer 4 in FIG. 2A and a polishing cloth (not shown), the copper layer until the element 2 is exposed as shown in FIG. 2B. 4 is polished.
  • the copper layer 4 is polished by relatively moving the polishing platen and the substrate 100.
  • a metal or resin brush may be used instead of the polishing cloth.
  • a polishing platen that is connected to a motor or the like that can change the number of rotations and can be attached to the polishing cloth, and a holder that can hold a substrate to be polished
  • a general polishing apparatus can be used.
  • the polishing conditions are not limited, but the rotation speed of the polishing surface plate is preferably a low rotation of 200 rpm or less so that the substrate does not jump out.
  • the pressing pressure (polishing pressure) of the substrate having the surface to be polished to the polishing cloth is preferably 1 to 100 kPa. In order to satisfy the uniformity of the CMP rate within the surface to be polished and the flatness of the pattern, More preferably, it is 5 to 50 kPa.
  • an abrasive is continuously supplied to the polishing cloth with a pump or the like. Although there is no restriction
  • the substrate after polishing is preferably washed in running water and then dried after removing water droplets adhering to the substrate using spin drying or the like.
  • a conditioning process of the polishing cloth before polishing For example, the polishing cloth is conditioned with a liquid containing at least water using a dresser with diamond particles. Subsequently, it is preferable to perform a CMP polishing process using the polishing method according to the present embodiment, and further add a substrate cleaning process.
  • bumps 5 are formed on the exposed surface portion of the copper layer 4 by a method such as electrolytic plating to obtain a substrate 200 having the bumps 5 on one side.
  • Examples of the material of the bump 5 include copper.
  • FIG. 3 is a schematic cross-sectional view showing a process of forming bumps 6 on the other surface.
  • the surface of the silicon substrate 1 where the bumps 5 are not formed is polished by a method such as CMP to obtain a copper layer. 4 is exposed (FIG. 3B).
  • bumps 6 are formed by a method similar to the method for forming bumps 5 to obtain a substrate 300 on which TSVs are formed (FIG. 3C).
  • Experimental Examples 1-7 to 1-8 correspond to the first embodiment of the present invention
  • Experimental Example 1-6 corresponds to the second embodiment of the present invention
  • Experimental Examples 1-1 to 1-5 and 1-9 correspond to the third embodiment of the present invention.
  • Example 1-1 Colloidal with an average particle size of 70 nm prepared by hydrolysis of 10 g of sulfuric acid with a concentration of 96%, 10 g of phosphoric acid with a concentration of 85%, 50 g of glycine, 10 g of benzotriazole (BTA), 10 g of oxalic acid, and tetraethoxysilane in an ammonia solution.
  • 50 g of silica solid content 20%
  • a 25% aqueous ammonia solution was added to adjust the pH of the solution to 2.6, and pure water was further added to make the total amount 700 g.
  • Example 1-2 An abrasive 1-2 was produced in the same manner as in Example 1-1 except that 10 g of malonic acid was added instead of oxalic acid.
  • Example 1-3 An abrasive 1-3 was produced in the same manner as in Example 1-1 except that 10 g of maleic acid was added instead of oxalic acid.
  • Example 1-4 Abrasive agent 1-4 was produced in the same manner as in Experimental Example 1-1, except that 50 g of alanine was added instead of glycine.
  • Example 1-5 An abrasive 1-5 was produced in the same manner as in Example 1-1 except that 50 g of serine was added instead of glycine.
  • Example 1-6 An abrasive 1-6 was produced in the same manner as in Example 1-1, except that the amounts of sulfuric acid and phosphoric acid to be added were each 5 g.
  • Example 1-7 Abrasive 1-7 was prepared in the same manner as in Example 1-1 except that oxalic acid was not added.
  • Example 1-8 In addition to not adding oxalic acid, abrasive 1-8 was prepared in the same manner as in Example 1-1, except that the amount of sulfuric acid was increased to 20 g.
  • Example 1-9 Abrasive 1-9 was produced in the same manner as in Experimental Example 1-1, except that malic acid was added instead of oxalic acid.
  • Example 1-10 Abrasive X1-1 was prepared in the same manner as in Experimental Example 1-1 except that sulfuric acid and phosphoric acid were not added and the amount of oxalic acid was 30 g.
  • Example 1-11 An abrasive X1-2 was produced in the same manner as in Example 1-1 except that the amount of sulfuric acid added was 1 g and the amount of phosphoric acid was 5 g.
  • the neutralization titration equivalent was determined as follows. That is, 50 ml of the test solution is placed in a 100 ml beaker, and a 20% strength aqueous potassium hydroxide solution is added dropwise while stirring at 80 rpm with a stirrer. The neutralization titration equivalent was calculated from the amount.
  • a substrate purchased from Advantech in which a copper film having a thickness of 20 ⁇ m was formed on a silicon substrate having a diameter of 8 inches (20.3 cm) ( ⁇ ) was prepared. Using this substrate, CMP polishing was performed while dripping the polishing agents 1-1 to 1-9 and the polishing agents X1-1 to X1-2 onto a polishing cloth affixed to a surface plate of a polishing apparatus.
  • polishing conditions are as follows. Polishing equipment: Surface plate size is 600mm ( ⁇ ), Rotary type Polishing cloth: Polyurethane resin with closed cells (IC-1010, manufactured by Rohm and Haas) Polishing pressure: 32kPa Surface plate / head rotation speed: 93/87 rpm Abrasive flow rate: 200ml / min
  • polishing rate The difference in film thickness before and after CMP of the substrate was calculated from the change in sheet resistance.
  • a resistivity measuring device Model RT-7 manufactured by Napson Co. As a measuring device, a resistivity measuring device Model RT-7 manufactured by Napson Co. was used. As the resistance value, an average value of 77 points in the diameter direction of the wafer (excluding a portion of 5 mm from the edge) was used.
  • Surface roughness (arithmetic average roughness Ra): The surface roughness of the copper film after polishing was measured with an AFM (atomic force microscope: SPA-400, manufactured by SII Nano Technology). The measurement was performed in a 5 ⁇ m ⁇ 5 ⁇ m area range at a location 50 mm away from the center of the substrate in the radial direction.
  • Table 1 shows the constituents of abrasives 1-1 to 1-9 and X1-1 to X1-2, the pH of each abrasive, the neutralization titration equivalent with potassium hydroxide, and the evaluation results of the polishing test.
  • the "total chemical component” in the table means the total content of the component (A), the component (B), the component (C), and the component (G).
  • each of the abrasives in Experimental Examples 1-1 to 1-9 exhibited good polishing rate and surface roughness.
  • the abrasive 1-1 of Experimental Example 1-1 which has a composition obtained by adding oxalic acid to the abrasive of Experimental Example 1-7, has a polishing rate while maintaining the surface roughness as compared with Experimental Example 1-7.
  • the polishing agent X1-1 of Experimental Example 1-10 which has a composition obtained by replacing sulfuric acid and phosphoric acid with oxalic acid in the polishing agent of Experimental Example 1-1, maintains the surface roughness as compared with Experimental Example 1-1. However, the polishing rate was greatly reduced.
  • the polishing agent 1-1 of Experimental Example 1-1 which has a composition in which a part of sulfuric acid in the polishing agent of Experimental Example 1-8 is replaced with oxalic acid, has surface roughness and polishing compared to Experimental Example 1-8. Increased speed. In Experimental Example 1-8, the speed exceeded 30000 kg / min as in Experimental Example 1-7.
  • the polishing agent of Experimental Example 1-8 in which 10 g of sulfuric acid is further added to Experimental Example 1-7, has a polishing rate of 37000 g / min
  • Experimental Example 1-7 in contrast, the polishing agent of Experimental Example 1-1, which was a system to which 10 g of oxalic acid was added, achieved a polishing rate of 60000 ⁇ / min. Thereby, it can confirm that combining (A) component and (G) component is effective for polishing rate improvement.
  • the abrasive X1-2 of Experimental Example 1-11 in which the neutralization titration equivalent is less than 0.10 mol / kg because the amount of the component (A) is small relative to the abrasive 1-1 of Experimental Example 1-1, The polishing rate was significantly reduced as compared with Experimental Example 1-1.
  • the type of component (A) and the amounts of component (A) and component (G) are the same as in Experimental Example 1-9, but Experimental Example 1-1 in which the pKa of Component (G) is 2.7 or less.
  • the polishing agent 1-1 improved the polishing rate while maintaining the surface roughness as compared with Experimental Example 1-9.
  • an abrasive having a polishing rate for copper of more than 30000 / min, more preferably more than 50000 / min, is optimal for use in polishing copper in a large amount in a short time, for example, TSV formation.
  • Example 2-2 Abrasive agent 2--similar to Experimental Example 2-1, except that the amount of sulfuric acid was 7.7 g, the amount of phosphoric acid was 8.6 g, the amount of glycine was 30.8 g, and the amount of benzotriazole was 6.0 g. 2 was produced.
  • Example 2-3 Abrasive agent 2-in the same manner as in Experimental Example 2-1, except that the amount of sulfuric acid was 10.2 g, the amount of phosphoric acid was 11.5 g, the amount of glycine was 40.5 g, and the amount of benzotriazole was 8.0 g. 3 was produced.
  • Example 2-4 An abrasive 2-4 was produced in the same manner as in Experimental Example 2-1, except that 28.4 g of serine was used instead of glycine.
  • Example 2-5 Abrasive X2-like in the same manner as in Experimental Example 2-1, except that the amount of sulfuric acid was 2.6 g, the amount of phosphoric acid was 2.9 g, the amount of glycine was 10.5 g, and the amount of benzotriazole was 2.0 g. 1 was produced.
  • Example 2-6 Abrasive X2-2 was prepared in the same manner as in Experimental Example 2-1, except that the amount of glycine was 10.5 g and the amount of benzotriazole was 2.0 g.
  • Example 2--7 Abrasive X2-like in the same manner as in Experimental Example 2-1, except that the amount of sulfuric acid was 10.2 g, the amount of phosphoric acid was 11.5 g, the amount of glycine was 10.5 g, and the amount of benzotriazole was 2.0 g. 3 was produced.
  • Experimental Example 2-8) Experimental Example 2-1 except that the amount of sulfuric acid was 2.6 g, the amount of phosphoric acid was 2.9 g, the amount of benzotriazole was 2.0 g, and 36% hydrochloric acid was used instead of the aqueous ammonia solution for pH adjustment. Similarly, abrasive X2-4 was produced.
  • Example 2-9 Abrasive X2-5 was prepared in the same manner as in Experimental Example 2-1, except that the amount of sulfuric acid was 2.6 g, the amount of phosphoric acid was 2.9 g, and the amount of glycine was 10.5 g.
  • Example 2-10 Abrasive X2-6 was prepared in the same manner as in Experimental Example 2-1, except that the amount of sulfuric acid was 2.6 g, the amount of phosphoric acid was 2.9 g, and 36% hydrochloric acid was used instead of the aqueous ammonia solution for pH adjustment. Produced.
  • Example 2-11 Abrasive X2-7 was prepared in the same manner as in Experimental Example 2-1, except that the amount of glycine was changed to 0 g.
  • Example 2-12 Abrasive X2-8 was prepared in the same manner as in Experimental Example 2-1, except that the amount of glycine was 10.5 g and the amount of benzotriazole was 4.0 g.
  • Example 2-13 Abrasive X2-9 was produced in the same manner as in Experimental Example 2-1, except that the amount of benzotriazole was 2.0 g.
  • Example 2-14 Abrasive X2-10 was produced in the same manner as in Experimental Example 2-1, except that the amount of benzotriazole was 8.0 g.
  • Test solutions for measuring neutralization titration were conducted in the same manner as in Experimental Examples 2-1 to 2-14 except that no 25% aqueous ammonia solution was added. To X2-10) were prepared. About each test liquid, the pH meter (Yokogawa Electric Corporation PH81) was used and the neutralization titration equivalent by potassium hydroxide was measured in a 25 degreeC thermostat.
  • the neutralization titration equivalent was determined as follows. That is, 50 ml of the test solution is placed in a 100 ml beaker, and a 20% strength aqueous potassium hydroxide solution is added dropwise while stirring at 80 rpm with a stirrer. The neutralization titration equivalent was calculated from the amount.
  • a substrate purchased from Advantech in which a copper film having a thickness of 20 ⁇ m was formed on a silicon substrate having a diameter of 8 inches (20.3 cm) ( ⁇ ) was prepared. Using this substrate, CMP polishing was performed while dripping the polishing agents 2-1 to 2-4 and the polishing agents X2-1 to X2-10 onto a polishing cloth affixed to a surface plate of a polishing apparatus.
  • polishing conditions are as follows. Polishing equipment: Surface plate size is 600mm ( ⁇ ), Rotary type Polishing cloth: Polyurethane resin with closed cells (IC-1010, manufactured by Rohm and Haas) Polishing pressure: 32kPa Polishing surface plate / head rotation speed: 93/87 rpm Abrasive flow rate: 200ml / min
  • polishing rate The difference in film thickness before and after CMP of the substrate was calculated from the change in sheet resistance.
  • a resistivity measuring device Model RT-7 manufactured by Napson Co. was used as a measuring device.
  • the average value of 77 points in the diameter direction of the wafer (excluding the 5 mm portion from the edge) was taken as the resistance value.
  • Tables 2 and 3 show the constituents of the abrasives 2-1 to 2-4 and X2-1 to X2-10, the pH of each abrasive, the neutralization titration equivalent with potassium hydroxide, and the evaluation results of the polishing test. .
  • the abrasive X2- of Experimental Example 2-5 in which the content of the component (A), the component (B), and the component (C) is smaller than the value of the present invention with respect to the abrasive 2-1 of Experimental Example 2-1.
  • the polishing rate of 1 decreased.
  • the abrasive X2-2 of Experimental Example 2-6 and Experimental Example 2-6 were the same as Experimental Example 2-5 except that only the content of component (A) was the same as that of Experimental Example 2-1.
  • the polishing agent X2-3 of Experimental Example 2-7 in which the content of the component (A) was increased, although the polishing rate was slightly improved, the polishing rate was lower than that of Experimental Example 2-1. That is, it has been found that even if only the content of the component (A) is increased, the effect of improving the polishing rate is not great.
  • the abrasive X2-4 and the protective film forming agent of Experimental Example 2-8 were the same as Experimental Example 2-5 except that only the content of glycine, an amino acid, was the same as that of Experimental Example 2-1.
  • the polishing agent X2-5 in Experimental Example 2-9 which was the same as Experimental Example 2-5 except that only a certain benzotriazole was changed to the same content as in Experimental Example 2-1, was polished as compared with Experimental Example 2-5. The speed decreased, and the polishing speed also decreased for Experimental Example 2-1.
  • the content of the component (B) and the component (C) is the same as the abrasive 2-1 of Experimental Example 2-1, but the content of the (A) component is smaller than the value of the present invention Experimental Example 2
  • the polishing rate of ⁇ 10 abrasive X2-6 decreased.
  • the content of the component (A) and the component (C) is the same as the abrasive 2-1 of Experimental Example 2-1, but the content of the (B) component is smaller than the value of the present invention Experimental Example 2
  • the polishing rate of the polishing agent X2-7 of ⁇ 11 and the polishing agent X2-8 of Experimental Example 2-12 were decreased.
  • the content of the component (A) and the component (B) is the same as the abrasive 2-1 of Experimental Example 2-1, but the content of the (C) component is smaller than the value of the present invention Experimental Example 2
  • the polishing rate of ⁇ 13 abrasive X2-9 decreased.
  • component (A), component (B), and component (C) are all higher than those of Experimental Example 2-5, but the content of component (A) (mol / kg) / component content of (C) The value of (mol / kg) was 1.49, and the polishing rate of the abrasive X2-10 in Experimental Example 2-14, which was lower than 2.00, was lower than that in Experimental Example 2-1.
  • the polishing rates of Experimental Examples 2-6, 2-8, and 2-9 were increased or decreased as follows.
  • the polishing rate increased by 3000 ⁇ / min.
  • the decrease was 3000 kg / min, and only the content of the component (C) was made equivalent to that of Experimental Example 2-1.
  • it decreased by 3000 kg / min.
  • an abrasive exhibiting a significantly faster polishing rate than copper is obtained for copper.
  • an abrasive having a polishing rate for copper exceeding 30000 mm / min is optimal for use in polishing copper in a large amount in a short time, for example, TSV formation.
  • Experimental Example 3-8 corresponds to the first embodiment of the present invention
  • Experimental Example 3-7 corresponds to the second embodiment of the present invention
  • Experimental Examples 3-1 to 3-6, 3-9 to 3-10 correspond to the third embodiment of the present invention.
  • Example 3-1 5.1 g of sulfuric acid with a concentration of 96%, 5.8 g of phosphoric acid with a concentration of 85%, 20.3 g of glycine, 4.0 g of benzotriazole (BTA), 5.4 g of oxalic acid, and colloidal with an average particle size of 70 nm as abrasive grains 50 g of silica (solid content: 20%) was added to 600 g of pure water to dissolve components other than colloidal silica. Further, a 25% aqueous ammonia solution was added to adjust the pH of the solution to 2.6, and pure water was further added to make the total amount 700 g. To this, 300 g of hydrogen peroxide solution (special grade reagent, 30% aqueous solution) was added to obtain a total amount of 1000 g of abrasive 3-1.
  • BTA benzotriazole
  • Example 3-2 An abrasive 3-2 was produced in the same manner as in Experimental Example 3-1, except that the content of oxalic acid was 14.0 g and the total amount of pure water was adjusted to 1000 g.
  • Example 3-3 An abrasive 3-3 was prepared in the same manner as in Experimental Example 3-1, except that 7.0 g of maleic acid was used instead of 5.4 g of oxalic acid and the amount of pure water added was adjusted to 1000 g.
  • Example 3-4 Abrasive 3-4 was prepared in the same manner as in Experimental Example 3-1, except that 5.9 g of maleic anhydride was used instead of 5.4 g of oxalic acid, and the amount of pure water added was adjusted to 1000 g.
  • Example 3-5 An abrasive 3-5 was prepared in the same manner as in Experimental Example 3-1, except that 6.2 g of malonic acid was used instead of 5.4 g of oxalic acid, and the total amount of pure water was adjusted to 1000 g by adjusting the amount of pure water added.
  • Example 3-6 Abrasive 3-6 was prepared in the same manner as in Experimental Example 3-1, except that 11.5 g of citric acid was used instead of 5.4 g of oxalic acid, and the total amount of pure water was adjusted to 1000 g.
  • Example 3-7 Abrasive 3-7 was prepared in the same manner as in Experimental Example 3-1, except that the content of benzotriazole was 7.9 g and the amount of pure water was adjusted to a total amount of 1000 g.
  • Example 3-8) Abrasive 3-8 was prepared in the same manner as in Experimental Example 3-1, except that oxalic acid was not added and the amount of pure water was adjusted to a total amount of 1000 g.
  • Example 3-9 Abrasive 3-9 was prepared in the same manner as in Experimental Example 3-1, except that 9.0 g of tartaric acid was used instead of 5.4 g of oxalic acid and the total amount of pure water was adjusted to 1000 g.
  • Example 3-10 Abrasive 3-10 was prepared in the same manner as in Experimental Example 3-1, except that malic acid was replaced with oxalic acid of 5.4 g and the amount of pure water was adjusted to 8.0 g and the total amount was adjusted to 1000 g.
  • an abrasive X3-3 was produced.
  • Abrasive X3-4 was produced in the same manner as in Experimental Example 3-11 except that the content of benzotriazole was 4.0 g and the total amount of pure water was adjusted to 1000 g by adjusting the amount of pure water added.
  • An abrasive X3-5 was prepared in the same manner as in Experimental Example 3-11 except that 5.4 g of oxalic acid was further added as an organic acid, and the amount of pure water added was adjusted to a total amount of 1000 g.
  • Test solutions for neutralization titration measurement were conducted in the same manner as in Experimental Examples 3-1 to 3-15 except that an organic acid and a 25% aqueous ammonia solution were not added.
  • X3-1 to X3-5 were prepared. About each test liquid, the pH meter (Yokogawa Electric Corporation PH81) was used and the neutralization titration equivalent by potassium hydroxide was measured in a 25 degreeC thermostat.
  • the neutralization titration equivalent was determined as follows. That is, 50 ml of the test solution is placed in a 100 ml beaker, and a 20% strength aqueous potassium hydroxide solution is added dropwise while stirring at 80 rpm with a stirrer. The neutralization titration equivalent was calculated from the amount.
  • a substrate made by Global Net Co., Ltd. was prepared by forming a copper film having a thickness of 20 ⁇ m on a silicon substrate having a diameter of 12 inches (30.5 cm) ( ⁇ ). Using this substrate, CMP polishing was performed while dripping the polishing agents 3-1 to 3-10 and the polishing agents X3-1 to X3-5 onto a polishing cloth affixed to a surface plate of a polishing apparatus.
  • polishing machine Polishing machine for CMP (product name: Reflexion, manufactured by Applied Materials)
  • Polishing cloth Expanded polyurethane resin with closed cells (trade name: IC-1010, manufactured by Rohm and Haas) Polishing pressure: 32kPa Surface plate / head rotation speed: 60/55 rpm Abrasive flow rate: 300ml / min
  • the polishing rate was calculated as follows. First, using a metal film thickness measuring instrument VR-120 (trade name) manufactured by Hitachi Kokusai Electric Engineering Co., Ltd., sheet resistance was measured at each of 81 locations on the copper film surface in the diameter direction of the substrate, and CMP Average values were calculated before and after polishing. And it converted from the difference of the average value before and behind grinding
  • Tables 4 and 5 show the evaluation results of the constituents of abrasives 3-1 to 3-10 and abrasives X3-1 to X3-5, pH of each abrasive, neutralization titration equivalent with potassium hydroxide, and polishing rate. Shown in
  • the polishing agent X3-2 is the same as the polishing agent X3-1 except that the content of the component (A) is the same as that of the polishing agent 3-1, and a slight polishing rate relative to the polishing agent X3-1. Although the improvement was observed, the polishing rate decreased with respect to the abrasive 3-1.
  • the content of the component (B) is the same as that in the abrasive 3-1, and the same as that of the abrasive X3-1 except that the substance used for pH adjustment was changed. -1 and polishing agent X3-1, the polishing rate decreased.
  • the content of the component (C) was the same as that in the abrasive X3-1 except that the content of the component (C) was the same as that in the abrasive 3-1, and the abrasive 3-1 and the abrasive X3-1 In contrast, the polishing rate decreased.
  • the content of the component (G) was the same as that of the abrasive X3-1 except that the content of the component (G) was the same as that of the abrasive 3-1, but the polishing rate was higher than that of the abrasive 3-1. Declined.
  • the polishing rate is 3000 ⁇ / min compared with the polishing agent X3-1. Increased.
  • the polishing agent X3-3 that is the same as the polishing agent X3-1 except that the content of the component (B) is the same as that of the polishing agent 3-1, the polishing rate is 3000 min / min compared with the polishing agent X3-1. Diminished.
  • the polishing rate is 3000 ⁇ / min compared with the polishing agent X3-1. Diminished.
  • the polishing agent X3-5 that is the same as the polishing agent X3-1 except that the content of the component (D) is the same as that of the polishing agent 3-1, the polishing rate is 7000 ⁇ / min compared with the polishing agent X3-1. Increased.
  • the polishing rate for the abrasive X3-1 when the contents of the component (A), the component (B), the component (C), and the component (G) are all equal to the abrasive 3-1, the polishing rate for the abrasive X3-1.
  • the amount of increase is normally expected to be about 4000 kg / min, which is the sum of the increase / decrease of the polishing rate of the polishing agents X3-2 to X3-5 with respect to the polishing agent X3-1.
  • the polishing rate of the abrasive 3-1 is increased by 23000 ⁇ / min with respect to the abrasive X3-1, and the contents of the components (A), (B), (C) and (D) are simultaneously increased.
  • the polishing rate is improved by setting the content of the component (A) (mol / kg) / the content of the component (C) (mol / kg) to 2.00 or more while keeping within the predetermined range of the present invention. It was confirmed that the effect was high.
  • the content of the component (A), the component (B) and the component (C) is within the predetermined range of the present invention, the content of the component (A) (mol / kg) / the content of the component (C) ( The polishing rate of the abrasive 3-1 was improved with respect to the abrasive 3-7 having a mol / kg) of less than 2.00.
  • the content of the component (A), the component (B), and the component (C) is about twice that of the abrasive X3-1, but the abrasive 3-8 that does not contain the component (G) is polished.
  • Agent 3-1 improved the polishing rate.
  • the abrasive 3-9 containing tartaric acid having a pKa of 2.82 and the abrasive 3-10 containing malic acid having a pKa of 3.46 were used.
  • the polishing rate was improved with the abrasive 3-1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

 (A)二価以上の無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水とを含み、(A)成分の含有量が0.08mol/kg以上であり、(B)成分の含有量が0.20mol/kg以上であり、(C)成分の含有量が0.02mol/kg以上であり、下記(i)及び(ii)の少なくとも一方を満たす銅研磨用研磨剤。 (i)(C)成分の含有量に対する(A)成分の含有量の比率が2.00以上である。 (ii)(G)有機酸及びその酸無水物から選ばれる少なくとも一種を更に含む。

Description

銅研磨用研磨剤及びそれを用いた研磨方法
 本発明は、銅研磨用研磨剤及びそれを用いた研磨方法に関する。また本発明は、特にケミカル・メカニカル・ポリッシング(CMP)工程での使用に適する、高研磨速度かつ研磨後の平滑性の高い銅研磨用研磨剤及びそれを用いた研磨方法に関する。
 LSIを高性能化するために、配線材料として従来のアルミニウム合金に替わって銅合金の利用が進んでいる。銅合金は、従来のアルミニウム合金配線の形成で頻繁に用いられたドライエッチング法による微細加工が困難である。そこで、あらかじめ溝部(凹部)及び隆起部(凸部)が形成された絶縁膜上に銅合金薄膜を堆積して溝部に銅合金を埋め込み、次いで、隆起部上に堆積した銅合金薄膜(溝部以外の銅合金薄膜)をCMPにより除去して埋め込み配線を形成する、いわゆるダマシン法が、銅合金の微細加工に主に採用されている(例えば、下記特許文献1参照)。
 銅合金等の金属に対するCMPの一般的な方法は、円形の研磨定盤(プラテン)上に研磨布(研磨パッド)を貼り付け、研磨布表面を金属用研磨剤で浸し、基体の金属膜が形成された面を研磨布表面に押し付けて、その裏面から所定の圧力(以下、「研磨圧力」という。)を金属膜に加えた状態で研磨定盤を回し、研磨剤と隆起部上の金属膜との機械的摩擦によって隆起部上の金属膜を除去するものである。
 CMPに用いられる金属用研磨剤は、一般には酸化剤及び固体砥粒(以下、単に「砥粒」という。)を含有し、必要に応じて更に酸化金属溶解剤、保護膜形成剤を含有する。酸化剤を含有する研磨剤を用いたCMPの基本的なメカニズムは、まず酸化剤によって金属膜表面が酸化されて酸化層が形成され、その酸化層が砥粒によって削り取られることにより、金属膜が研磨されると考えられている。
 このような研磨方法では、絶縁膜の溝部の金属膜表面の酸化層は研磨布にあまり触れず、砥粒による削り取りの効果が及ばないので、CMPの進行とともに隆起部上の金属膜が除去されて基体表面は平坦化される(例えば、下記非特許文献1参照)。
 一般にLSIの製造において、研磨される銅合金膜の膜厚は1μm程度であり、研磨速度が5000Å/min程度となる研磨剤が使用されている(例えば、下記特許文献2参照)。
 一方、近年では銅合金に対するCMP処理は、パッケージ基板等の高性能・微細配線板の製造や、新しい実装方法として注目されているシリコン貫通ビア(TSV:Through Silicon Vias)形成にも適用されようとしている。
 しかし、これらの用途においてはLSIに比べて金属膜の膜厚が厚いため、従来のLSI用の研磨剤では研磨速度が低く生産性が低下するという課題があった。特にTSV用では通常5μm以上、場合によっては10μm以上の膜厚の銅合金膜を研磨する必要があるため、より高速の研磨が可能な研磨剤が求められている。
 これに対して、下記特許文献3には、従来よりも高い研磨速度(22000~29000Å/min程度)で銅合金膜を研磨することが可能な研磨剤が開示されている。
特開平2-278822号公報 特開2003-124160号公報 特開2007-150263号公報
ジャーナル・オブ・エレクトロケミカルソサエティ誌、第138巻11号(1991年発行) 3460~3464頁
 特許文献3に記載の研磨剤はTSV用の研磨剤として適用し得るが、生産性の向上のために、更に高い研磨速度でかつ平滑に銅合金膜を研磨可能な研磨剤が求められている。
 本発明は、このような実情に鑑みてなされたものであり、銅膜を高研磨速度でかつ平滑に研磨することが可能であり、高性能配線板やTSV等の厚い金属膜の研磨が必要とされる用途においても、短時間で研磨処理が可能で充分な生産性を確保できる銅研磨用研磨剤及びそれを用いた研磨方法を提供することを目的とする。
 本発明者らは、二価以上の無機酸(以下、単に「無機酸」という)、アミノ酸及び保護膜形成剤の含有量を所定量以上に制御することによって、銅膜を高研磨速度でかつ平滑に研磨できる研磨剤が得られることを見いだした。さらに、本発明者らは、無機酸、アミノ酸及び保護膜形成剤の含有量を所定量以上に制御した上で、下記条件(i)、(ii)のうち少なくとも一方を満たすことにより、高性能配線板用途、TSV用途として有用となる、銅に対する高い研磨速度(例えば30000Å/minを超える研磨速度)が得られる研磨剤が得られることを見いだした。
 条件(i)保護膜形成剤の含有量(mol/kg)に対する無機酸の含有量(mol/kg)の比率(無機酸の含有量/保護膜形成剤の含有量)が、2.00以上であること。
 条件(ii)研磨剤中に有機酸及びその酸無水物から選ばれる少なくとも一種を含むこと。
 すなわち、本発明は、第1の実施形態として、(A)無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水とを含み、(A)成分の含有量が0.08mol/kg以上であり、(B)成分の含有量が0.20mol/kg以上であり、(C)成分の含有量が0.02mol/kg以上であり、(C)成分の含有量に対する(A)成分の含有量の比率が2.00以上である、銅研磨用研磨剤を提供する。
 本発明は、第2の実施形態として、(A)無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水と、(G)有機酸及びその酸無水物から選ばれる少なくとも一種とを含み、(A)成分の含有量が0.08mol/kg以上であり、(B)成分の含有量が0.20mol/kg以上であり、(C)成分の含有量が0.02mol/kg以上である、銅研磨用研磨剤を提供する。
 なお、本発明において、特に断りがない限り、「銅」とは、純銅の他、銅を含む金属(例えば銅合金、銅の酸化物及び銅合金の酸化物)を含むものとする。また、本発明において、特に断りのない限り、「銅研磨用研磨剤」とは、純銅からなる金属膜、銅を含む金属膜(例えば銅合金膜)、又はそれらの金属膜と他の金属との積層膜を研磨するための研磨剤をいう。
 上記銅研磨用研磨剤は、銅膜を高研磨速度でかつ平滑に研磨することが可能であり、高性能配線板やTSV等の厚い金属膜の研磨が必要とされる用途においても、短時間で研磨処理が可能で充分な生産性を確保できる。また、このような銅研磨用研磨剤は、溶解作用の強い(A)無機酸及び(B)アミノ酸を含むpH緩衝溶液であるため、被研磨物である銅が研磨剤中に溶解してもpH変動が起こりにくい。このため、研磨の進行の程度に依存せず、安定して高い研磨速度を維持することができると考えられる。
 第1の実施形態の銅研磨用研磨剤(該銅研磨用研磨剤が塩酸水溶液等の酸性成分や、アンモニア水溶液等のアルカリ成分をpH調整剤として含む場合には該pH調整剤を除く)のpHを4まで増加させるために要する水酸化カリウムの量は、銅研磨用研磨剤1kg当たり0.10mol以上であることが好ましい。このような研磨剤によれば、銅膜を更に高研磨速度でかつ更に平滑に研磨することができ、高性能配線板やTSV等の厚い金属膜の研磨が必要とされる用途においても、更に短時間で研磨処理が可能で充分な生産性を確保することができる。
 また、本発明では、前記条件(i)及び(ii)の両方を満たすことにより、銅膜を更に高研磨速度でかつ更に平滑に研磨することが可能であり、高性能配線板やTSV等の厚い金属膜の研磨が必要とされる用途においても、更に短時間で研磨処理が可能で充分な生産性を確保できる。すなわち、本発明は、第3の実施形態として、(A)無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水と、(G)有機酸及びその酸無水物から選ばれる少なくとも一種とを含み、(A)成分の含有量が0.08mol/kg以上であり、(B)成分の含有量が0.20mol/kg以上であり、(C)成分の含有量が0.02mol/kg以上であり、(C)成分の含有量に対する(A)成分の含有量の比率が2.00以上である、銅研磨用研磨剤を提供する。
 第2及び第3の実施形態の銅研磨用研磨剤は、該銅研磨用研磨剤から(G)成分を除いた組成物(銅研磨用研磨剤が塩酸水溶液等の酸性成分や、アンモニア水溶液等のアルカリ成分をpH調整剤として含む場合には該pH調整剤も除く)のpHを4まで増加させるために要する水酸化カリウムの量が、前記組成物1kg当たり0.10mol以上であることが好ましい。このような研磨剤によれば、銅膜を更に高研磨速度でかつ更に平滑に研磨することができ、高性能配線板やTSV等の厚い金属膜の研磨が必要とされる用途においても、更に短時間で研磨処理が可能で充分な生産性を確保することができる。
 第2及び第3の実施形態の銅研磨用研磨剤では、(G)成分の含有量が0.02mol/kg以上であることが好ましい。
 第2及び第3の実施形態の銅研磨用研磨剤では、(G)成分が、カルボキシル基を2つ有しかつpKaが2.7以下である有機酸及びその酸無水物並びにカルボキシル基を3つ以上有する有機酸から選択される少なくとも一種であることが好ましい。
 カルボキシル基を2つ有する有機酸のうちpKaが2.7以下であるものは、pKaが2.7を超える有機酸よりも銅表面に対する相互作用が強く、このような有機酸及びその酸無水物は、研磨速度の向上効果が高いものと考えられる。また、カルボキシル基を3つ以上有する有機酸は、pKaが2.7以下の場合に加えて、pKaの値が2.7を超える場合であってもカルボキシル基を3つ以上有していることにより、銅に対する相互作用が強く、研磨速度の向上効果が高いものと考えられる。
 ここで、「pKa」とは、第1解離可能酸性基の酸解離定数を意味し、該基の平衡定数Kaの負の常用対数である。
 第2及び第3の実施形態の銅研磨用研磨剤では、(G)成分がシュウ酸、マレイン酸、無水マレイン酸、マロン酸及びクエン酸から選択される少なくとも一種であることが好ましい。これらの(G)成分は、これら以外の有機酸及びその酸無水物を同量添加した場合と比較して、顕著に研磨速度が向上する。
 本発明の銅研磨用研磨剤のpHは1.5~4.0であることが好ましい。この場合、pH緩衝溶液としての機能を有し易く、安定して高い研磨速度を維持することが容易になる。
 本発明の銅研磨用研磨剤では、(A)成分が硫酸及びリン酸から選択される少なくとも一種であることが好ましい。この場合、研磨速度及び平滑性を更に高度に両立することが可能である。
 本発明の銅研磨用研磨剤は、(B)成分としてpKaが2~3のアミノ酸を含むことが好ましい。この場合、銅研磨用研磨剤のpHを容易に所望の値とすることができる。
 本発明の銅研磨用研磨剤では、(C)成分がトリアゾール化合物であることが好ましく、トリアゾール化合物がベンゾトリアゾール及びその誘導体から選ばれる少なくとも一種であることがより好ましい。これらの場合、研磨速度を更に向上させることができると共に、研磨速度と防食性とのバランスに優れた研磨剤とすることができる。
 本発明の銅研磨用研磨剤では、(D)成分がコロイダルシリカ及びコロイダルアルミナから選択される少なくとも一種であり、該(D)成分の平均粒径が100nm以下であることが好ましい。
 本発明の銅研磨用研磨剤では、(E)成分が過酸化水素、過硫酸及び過硫酸塩から選択される少なくとも一種であることが好ましい。これらの(E)成分は研磨促進作用が特に高いことから酸化剤として好適である。
 また、本発明は、上記銅研磨用研磨剤を用いて銅を含む金属膜を研磨し、金属膜の少なくとも一部を除去する、研磨方法を提供する。
 このような研磨方法によれば、高い研磨速度と、研磨終了後の金属膜の表面状態が粗くなることを抑制する効果との両立が可能であり、高性能配線板やTSV等の厚い金属膜の研磨が必要とされる用途においても、生産性の向上と製品歩留まりの向上とを両立できる。
 上記研磨方法では、高い研磨速度及び平滑な研磨を両立できるので、上記金属膜の最大厚みが5μm以上であるもの、特に10μm以上であるものに好適に適用することができる。なお、「金属膜の最大厚み」とは、研磨すべき部分の金属膜の厚みのうち最大であるものをいい、金属膜が基板の凹部上に形成されている場合における凹部の金属膜の厚さは含まない。
 さらに、上記研磨方法では、高い研磨速度及び平滑な研磨を両立できるので、金属膜に対する研磨速度を30000Å/min以上とすることができる。
 本発明の銅研磨用研磨剤では、銅に対して、通常の研磨剤よりも格段に速い研磨速度を示す。特に、本発明によれば、銅に対する研磨速度が30000Å/minを超えるような研磨剤が得られるため、高性能配線板用途、TSV用途等の、短時間で大量に銅を研磨する用途に最適な銅研磨用研磨剤及びそれを用いた研磨方法を提供することができる。また、本発明の銅研磨用研磨剤では、銅膜を高研磨速度で研磨することが可能であると共に、銅膜を平滑に研磨することも可能である。
本発明の一実施形態に係る研磨剤をVIA-LASTに用いた場合の使用方法を示す第1の工程図である。 本発明の一実施形態に係る研磨剤をVIA-LASTに用いた場合の使用方法を示す第2の工程図である。 本発明の一実施形態に係る研磨剤をVIA-LASTに用いた場合の使用方法を示す第3の工程図である。
(第1実施形態)
 本発明の第1実施形態に係る銅研磨用研磨剤(以下、単に「研磨剤」という。)は、前記条件(i)を満たす。すなわち、第1実施形態に係る研磨剤は、(A)無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水とを含み、(A)成分の含有量が0.08mol/kg以上であり、(B)成分の含有量が0.20mol/kg以上であり、(C)成分の含有量が0.02mol/kg以上であり、(C)成分の含有量(mol/kg)に対する(A)成分の含有量(mol/kg)の比率が2.00以上である。
 なお、(A)成分又は(B)成分をそれぞれ単独で使用してもある程度研磨速度を向上させることはできるが、この場合には含有量に見合う研磨速度の向上効果を得ることができない。これに対して第1実施形態に係る研磨剤によれば、(A)成分及び(B)成分を併用し、更にそれらの含有量を上記特定量とすることで、研磨剤の研磨速度を飛躍的に向上させることができる。また、別の側面として、第1実施形態に係る研磨剤は、(A)成分又は(B)成分をそれぞれ単独で使用する場合と比較して、所定の研磨速度の向上効果を得るために必要な(A)成分及び(B)成分の含有量を低減することができるという効果を有する。
 また、従来の研磨剤において、(C)成分の使用は、銅表面に保護膜を形成することによる銅のエッチングの抑制効果がある一方、一般的には研磨速度を抑制してしまう場合があった。これに対して第1実施形態に係る研磨剤によれば、上記特定量の(A)成分及び(B)成分の併用や、(C)成分を特定量用いることで、研磨速度を高水準に維持しつつ、エッチング速度の抑制効果を得ることができる。
 なお、第1実施形態に係る研磨剤によって研磨速度の向上効果が得られる理由は必ずしも明確ではないが、本発明者らは以下のように推察する。すなわち、(C)成分と(A)成分の作用により、銅表面に、(C)成分及び銅イオンを含む「反応層」が形成される。更に、(B)成分が銅イオンにキレート化することで、反応層がより除去しやすい状態となり、研磨が促進されるものと考えられる。
 このような複数の研磨プロセスは、それぞれが独立して同時並行に進むのではなく、個々の研磨プロセスが他の研磨プロセスと連関して進行すると考えられる。そのため、(A)成分、(B)成分及び(C)成分のうちの一種の成分のみを増やしても、他の成分による研磨プロセスがボトルネック(律速過程)になり、全体としての研磨速度は効率的に向上しないと考えられる。一方、第1実施形態に係る研磨剤では、それぞれの成分を特定量用いることで、各研磨プロセスが促進され、研磨速度を効率的に向上させることができると考えられる。
 以下、第1実施形態に係る研磨剤の各構成成分について、より具体的に説明する。
(pH)
 第1実施形態に係る研磨剤のpHは、CMPによる銅に対する研磨速度が大きく、銅膜に腐食を生じさせないという点で、1.5~4.0の範囲であることが好ましい。pHが1.5以上であると、銅膜の表面粗さを低減しやすくなる傾向があり、同様の観点から、pHは2.0以上がより好ましい。pHが4.0以下であると、CMPによる研磨速度が増加してより実用的な研磨剤となる傾向があり、同様の観点から、pHは3.5以下がより好ましく、3.0以下が更に好ましい。
 第1実施形態に係る研磨剤は、(A)成分として無機酸を含むpH緩衝溶液である。無機酸は一般に強酸であり、無機酸を多量に含有するとpHが低下してしまい、pHを所定の範囲(例えば1.5~4.0の範囲)に調整するのは困難である。しかし、第1実施形態に係る研磨剤では、無機酸に加えて(B)成分としてアミノ酸を含有しており、(A)成分及び(B)成分の含有量を調整することにより、研磨剤を容易に所定の範囲(例えば1.5~4.0の範囲)のpHを有するpH緩衝溶液とすることができる。
 第1実施形態に係る研磨剤のpHは、所望のpHに調整するために、研磨剤の構成成分(例えば無機酸やアミノ酸)の添加量により調整してもよく、酸性成分又はアルカリ成分をpH調整剤として添加してもよい。このようなpH調整剤としては、例えば、塩酸、硝酸等の一価の無機酸、アンモニア、水酸化ナトリウム、テトラメチルアンモニウムヒドロキシド等の塩基などを挙げることができる。これらは単独で又は二種類以上を組み合わせて使用することができる。もちろん、pH調整剤を含まずにpHが所望の範囲である場合には、pH調整剤を含有する必要はない。また、pH調整剤としての上記の一価の無機酸は、上記(A)成分には含まれない。
 第1実施形態に係る研磨剤のpHは、pHメータ(例えば、横河電機株式会社製の型番PH81)で測定することができる。pHとしては、標準緩衝液(フタル酸塩pH緩衝液pH:4.01(25℃)、中性りん酸塩pH緩衝液pH6.86(25℃))を用いて、2点校正した後、電極を研磨剤に入れて、2分以上経過して安定した後の値を採用する。
((A)成分:無機酸)
 (A)成分は、二価以上の無機酸(一価でない無機酸)であり、公知のものを特に制限なく使用することができ、例えば、硫酸、クロム酸、炭酸、モリブデン酸、硫化水素、亜硫酸、チオ硫酸、セレン酸、テルル酸、亜テルル酸、タングステン酸、ホスホン酸等の二価の酸、リン酸、リンモリブデン酸、リンタングステン酸、バナジン酸等の三価の酸、ケイモリブデン酸、ケイタングステン酸、ピロリン酸、トリポリリン酸等の四価以上の酸などが挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。
 上記の(A)成分の中でも、CMPによる研磨速度が更に大きくなる点では、強酸(pKaが0以下である酸と定義する。以下同じ)が好ましい。強酸としては、具体的には、硫酸、クロム酸、リンモリブデン酸、ケイモリブデン酸、リンタングステン酸、ケイタングステン酸が挙げられ、CMPによる研磨速度が更に大きくなり、さらに入手が容易である点で、硫酸がより好ましい。
 銅膜の表面粗さを更に低減できるという点では、弱酸(pKaが0を超える酸と定義する。以下同じ)が好ましい。弱酸としては、具体的には、炭酸、モリブデン酸、硫化水素、亜硫酸、チオ硫酸、セレン酸、テルル酸、亜テルル酸、タングステン酸、ホスホン酸、リン酸、ピロリン酸、トリポリリン酸、バナジン酸が挙げられ、リン酸が好ましい。
 研磨速度と表面粗さとを更に高度に両立できる点では、上記強酸と上記弱酸とを組み合わせて使用することが好ましく、この観点で、硫酸及びリン酸の混合物が特に好ましい。
 (A)成分の含有量は、更に研磨速度に優れる点で、研磨剤全量に対して0.08mol/kg以上であり、0.09mol/kg以上であることが好ましく、0.1mol/kg以上であることがより好ましい。(A)成分の含有量は、(A)成分を一定以上加えても研磨速度が増加しない傾向があることから(A)成分の含有量の増加を抑制する点で、1.0mol/kg以下であることが好ましく、0.8mol/kg以下であることがより好ましい。
((B)成分:アミノ酸)
 (B)成分は、pHを調整し、かつ銅を溶解させる目的で使用されるアミノ酸である。このような(B)成分としては、わずかでも水に溶解するアミノ酸であれば特に制限はなく、例えば、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、システイン、シシチン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン、オキシプロリンから選択される少なくとも一種が挙げられる。これらは単独で又は二種類以上を組み合わせて使用することができる。
 上記(B)成分の中でも、研磨剤のpHを調整(例えば1.5~4.0)し易いという点で、pKaが2~3のアミノ酸を使用することが好ましい。このようなアミノ酸としては、上記の例示化合物の中では、具体的には、グリシン、アラニン、バリン、ロイシン、イソロイシン、セリン、トレオニン、メチオニン、アスパラギン酸、グルタミン酸、リシン、アルギニン、トリプトファン等が好ましい。(B)成分としては、研磨速度の向上効果が高くかつ安価である点でグリシンがより好ましい。なお、「pKa」の値については、化学便覧、基礎編II(改訂5版、丸善(株))を参照することができる。
 (B)成分の含有量は、研磨速度に更に優れる点で、研磨剤全量に対して0.20mol/kg以上であり、0.25mol/kg以上であることが好ましい。(B)成分の含有量は、(B)成分を一定以上加えても研磨速度が増加しない傾向があることから(B)成分の含有量の増加を抑制する点で、2.0mol/kg以下であることが好ましく、1.8mol/kg以下であることがより好ましい。
((C)成分:保護膜形成剤)
 (C)成分である保護膜形成剤とは、銅表面に対して保護膜を形成する作用を有する物質をいい、防食剤やインヒビターとも呼ばれる物質である。ただし、上述のように保護膜形成剤は、研磨進行時に除去される「反応層」を構成していると考えられ、必ずしも銅が研磨されるのを防ぐための「保護膜」を形成するものに限られない。
 (C)成分としては、保護膜形成剤の添加効果を発揮するために有効な水溶性を有していればよく、従来公知の物質を特に制限なく使用することができる。(C)成分としては、例えば、キナルジン酸、アントニル酸、サリチルアルドキシム、トリアゾール化合物、イミダゾール化合物、ピラゾール化合物、テトラゾール化合物等の含窒素化合物が挙げられる。上記(C)成分の中でも含窒素複素環化合物が好ましく、トリアゾール化合物が特に好ましい。これらは単独で又は二種類以上を組み合わせて使用することができる。
 トリアゾール化合物としては、例えば、1,2,3-トリアゾール、1,2,4-トリアゾール、3-アミノ-1H-1,2,4-トリアゾール等のトリアゾール誘導体;ベンゾトリアゾール;1-ヒドロキシベンゾトリアゾール、1-ジヒドロキシプロピルベンゾトリアゾール、2,3-ジカルボキシプロピルベンゾトリアゾール、4-ヒドロキシベンゾトリアゾール、4-カルボキシル(-1H-)ベンゾトリアゾール、4-カルボキシル(-1H-)ベンゾトリアゾールメチルエステル、4-カルボキシル(-1H-)ベンゾトリアゾールブチルエステル、4-カルボキシル(-1H-)ベンゾトリアゾールオクチルエステル、5-ヘキシルベンゾトリアゾール、[1,2,3-ベンゾトリアゾリル-1-メチル][1,2,4-トリアゾリル-1-メチル][2-エチルヘキシル]アミン、トリルトリアゾール、ナフトトリアゾール、ビス[(1-ベンゾトリアゾリル)メチル]ホスホン酸、3-アミノトリアゾール等のベンゾトリアゾール誘導体;などが挙げられ、中でも研磨速度と防食性のバランスに優れるという点でベンゾトリアゾール及びベンゾトリアゾール誘導体から選択される少なくとも一種を使用することが好ましい。
 イミダゾール化合物としては、例えば、2-メチルイミダゾール、2-エチルイミダゾール、2-イソプロピルイミダゾール、2-プロピルイミダゾール、2-ブチルイミダゾール、4-メチルイミダゾール、2、4-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-ウンデシルイミダゾール、2-アミノイミダゾール等が挙げられる。
 ピラゾール化合物としては、例えば、3,5-ジメチルピラゾール、3-アミノ-5-メチルピラゾール、4-メチルピラゾール、3-アミノ-5-ヒドロキシピラゾール等が挙げられる。
 テトラゾール化合物としては、例えば、1H-テトラゾール、5-アミノ-1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、1-(2-ジアミノエチル)-5-メルカプトテトラゾール等が挙げられる。
 (C)成分の含有量は、金属の表面粗さを更に小さくできる点で、研磨剤全量に対して、0.02mol/kg以上であり、0.025mol/kg以上であることが好ましく、0.03mol/kg以上であることがより好ましい。(C)成分の含有量は、(C)成分を一定以上加えても研磨速度が増加しない傾向があることから(C)成分の含有量の増加を抑制する点で、0.3mol/kg以下であることが好ましく、0.25mol/kg以下であることがより好ましい。
 (C)成分の含有量(mol/kg)に対する(A)成分の含有量(mol/kg)の比率((A)成分の含有量/(C)成分の含有量)は、研磨速度に優れる点で、2.00以上である。更に研磨速度に優れる研磨剤を得ることができる観点から、前記比率は2.30以上であることが好ましく、2.50以上であることがより好ましく、2.80以上であることが更に好ましい。上記比率は、表面粗さの増大を更に抑えるという点で、12以下であることが好ましく、10以下であることがより好ましい。
((D)成分:砥粒)
 (D)成分としては、特に制限はなく、例えば、シリカ、アルミナ、ジルコニア、セリア、チタニア、炭化珪素等の無機物砥粒、ポリスチレン、ポリアクリル、ポリ塩化ビニル等の有機物砥粒を挙げることができる。これらの(D)成分の中でも、研磨剤中での分散安定性が良く、CMPにより発生する研磨傷(スクラッチ)の発生数が少ない点で、シリカ及びアルミナが好ましく、粒径の制御が容易であり、研磨特性により優れる点で、コロイダルシリカ、コロイダルアルミナがより好ましい。コロイダルシリカは、シリコンアルコキシドの加水分解又は珪酸ナトリウムのイオン交換による製造方法が知られている。コロイダルアルミナは、硝酸アルミニウムの加水分解による製造方法が知られている。上記(D)成分は単独で又は二種類以上を組み合わせて使用することができる。
 また、(D)成分としては、研磨速度に更に優れると共に研磨後の表面粗さが低い点で、平均粒径が100nm以下である砥粒が好ましく、平均粒径が100nm以下であるコロイダルシリカ及びコロイダルアルミナから選ばれる少なくとも一種の砥粒がより好ましい。なお、粒子の「平均粒径」とは、銅研磨用研磨剤をレーザ回折式粒度分布計で測定したときのD50の値(体積分布のメジアン径、累積中央値)をいう。
 (D)成分の含有量は、物理的な研削作用が充分に得られ研磨速度が更に高くなる点で、研磨剤全量に対して0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。また、研磨速度が飽和し(D)成分を一定以上加えても研磨速度の増加が認められなくなることを抑制すると共に、砥粒の凝集や研磨傷の増加を抑制する観点から、(D)成分の含有量は10質量%以下であることが好ましく、5質量%以下であることがより好ましい。
((E)成分:酸化剤)
 (E)成分としては、銅に対する酸化作用を有する酸化剤であれば特に制限なく使用することができる。(E)成分としては、例えば、過酸化水素(H)、過硫酸、過硫酸アンモニウム、過硫酸カリウム等の過硫酸塩、過ヨウ素酸、過ヨウ素酸カリウム等が挙げられ、その中でも研磨速度に更に優れる点で過酸化水素、過硫酸及び過硫酸塩から選択される少なくとも一種が好ましい。上記酸化剤は単独で又は二種類以上組み合わせて使用することができる。
 (E)成分の含有量は、更に良好な研磨速度が得られやすい点で、研磨剤全量に対して0.1質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。また、(E)成分を過剰に含有しても研磨速度が向上しない場合、又は、かえって低下する場合となることを抑制する観点から、(E)成分の含有量は、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。
 また、前記酸化剤は、研磨剤の安定性を低下させる場合があるので、研磨剤を長期(例えば1ヶ月以上)保管する必要がある等の場合は、酸化剤の水溶液と、酸化剤以外の成分の研磨剤材料とに分けて保存し、研磨直前に又は研磨中に研磨定盤上で混合することが好ましい。
((F)成分:水)
 研磨剤の媒体である(F)成分としては、特に制限されないが、脱イオン水、イオン交換水、超純水等が好ましい。研磨剤における(F)成分の含有量は、他の構成成分の含有量の残部でよく、研磨剤中に含有されていれば特に限定されない。
 研磨剤は、上記成分の他に、分散剤や着色剤等のように一般にCMP研磨剤に使用される材料を、研磨剤の作用効果を損なわない範囲で含有してもよい。
(中和滴定量)
 適用される基板や用途によっては、銅に対する更に高い研磨速度(例えば50000Å/minを超えるような研磨速度)が求められる場合がある。このような場合、第1実施形態に係る研磨剤は、(A)無機酸、(B)アミノ酸、(C)保護膜形成剤、(D)砥粒、(E)酸化剤及び(F)水を少なくとも含む研磨剤のpHを4まで増加させるために要する水酸化カリウムの量(無機酸の水酸化カリウムによる中和滴定等量)が、研磨剤1kg当たり0.10mol以上となるように無機酸を添加することが好ましい。
 第1実施形態に係る研磨剤において、無機酸の水酸化カリウムによる中和滴定等量を規定する理由は次の通りである。すなわち、第1実施形態に係る研磨剤により研磨される金属膜に含まれる銅は、研磨されると研磨剤中に陽イオンとして溶解する。ここで無機酸の添加量が少なく、pH緩衝作用を有さない研磨剤であると、銅の溶解により水素イオンが消費され研磨剤のpHが上昇してしまい、研磨速度が低下すると考えられる。一方、充分な量の無機酸を含有し、pH緩衝作用のある研磨剤を使用した場合は、銅イオン等の金属イオンが多量に溶解しても、pHの上昇は抑制され、安定した研磨が可能になる。
 そのために必要な研磨剤中の無機酸の量は、研磨速度、研磨中における研磨剤流量によって多少のバラツキはあるものの、水酸化カリウムによる中和滴定等量で0.10mol/kg以上に相当する量が好ましく、0.12mol/kg以上であるとより好ましく、0.15mol/kg以上であると更に好ましく、0.20mol/kg以上であると特に好ましい。水酸化カリウムによる中和滴定等量の上限値は、例えば2.0mol/kgとすることができる。
 なお、研磨剤の中和滴定等量は、次のようにして求めることができる。すなわち、研磨剤の組成から、pH調整剤(例えば、塩酸水溶液等の酸性成分、アンモニア水溶液等のアルカリ成分)を除いた組成の「中和滴定量測定用の試験液」を調製する。次に、100ミリリットル程度のビーカーに試験液50ミリリットルを入れ、撹拌子により80rpmで撹拌しながら濃度20%水酸化カリウム水溶液を滴下し、pHの値が4.0となったときの水酸化カリウム水溶液の添加量から中和滴定等量を算出することができる。
 また、研磨剤の組成が不明な場合は、測定精度10-8g以上のイオンクロマトグラフィーによる分析で研磨剤の組成と濃度を調べることができる。従って、その測定値から上記試験液を作製し、中和滴定量を測定することができる。
 上述の研磨剤であれば、例えば8インチ(20.3cm)の円盤状の基板を、研磨剤の流量を200ml/min付近と設定した場合に、高速で研磨できることが確認されている。なお、「無機酸の水酸化カリウムによる中和滴定等量」は、研磨剤からアルカリ成分及び後述する有機酸を除いた組成である試験液1kgを別途用意し、この試験液のpH値を4まで増加するのに必要な水酸化カリウムのモル数として定義する。
(第2実施形態)
 第2実施形態に係る銅研磨用研磨剤(以下、単に「研磨剤」という。)は、前記条件(ii)を満たす。すなわち、第2実施形態に係る研磨剤は、(A)無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水と、(G)有機酸及びその酸無水物から選ばれる少なくとも一種とを含み、(A)成分の含有量が0.08mol/kg以上であり、(B)成分の含有量が0.20mol/kg以上であり、(C)成分の含有量が0.02mol/kg以上である。
 第2実施形態に係る研磨剤では、(C)成分の含有量(mol/kg)に対する(A)成分の含有量(mol/kg)の比率は必ずしも2.00以上である必要はない。第2実施形態に係る研磨剤において前記比率が2.00以上である研磨剤については、第3実施形態に係る研磨剤として後述する。
 なお、(A)成分、(B)成分及び(G)成分をそれぞれ単独又はこれらの中の2種を選択し使用してもある程度研磨速度を向上させることはできるが、この場合には含有量に見合う研磨速度の向上効果を得ることができない。これに対して第2実施形態に係る研磨剤によれば、(A)成分、(B)成分及び(G)成分を組み合わせ、更にそれらの含有量を上記特定量とすることで、研磨剤の研磨速度を飛躍的に向上させることができる。
 また、別の側面として、第2実施形態に係る研磨剤は、(A)成分、(B)成分及び(G)成分をそれぞれ単独又はこれらの中の2種を選択して使用する場合と比較して、所定の研磨速度の向上効果を得るために必要な上記化学成分の総含有量を低減することができるという効果を有する。更に、従来の研磨剤では、研磨剤に、(A)成分、(B)成分及び(G)成分から選ばれる少なくとも一種が、溶解可能な含有量以上含有されると、研磨剤の保存安定性が低下してしまうが、第2実施形態に係る研磨剤は、このような保存安定性の低下を抑制することができる。
 また、従来の研磨剤において、(C)成分である保護膜形成剤の使用は、銅表面に保護膜を形成することによる銅のエッチングの抑制効果がある一方、一般的には研磨速度を抑制してしまう場合があった。これに対して第2実施形態に係る研磨剤によれば、上記特定量の(A)成分、(B)成分及び(G)成分の併用や、(C)成分を特定量用いることで、研磨速度を高水準に維持しつつ、エッチング速度の抑制効果を得ることができる。
 なお、第2実施形態に係る研磨剤によって研磨速度の向上効果が得られる理由は必ずしも明確ではないが、本発明者らは以下のように推察する。すなわち、(A)成分、(C)成分及び(G)成分の作用により、銅表面に(C)成分及び銅イオンを含む「反応層」が形成される。更に、(B)成分が銅イオンにキレート化することで、反応層がより除去しやすい状態となり、研磨が促進されるものと考えられる。
 このような複数の研磨プロセスは、それぞれが独立して同時並行に進むのではなく、個々の研磨プロセスが他の研磨プロセスと連関して進行すると考えられる。そのため、(A)成分、(B)成分、(C)成分及び(G)成分のうちの一種の成分のみを増やしても、他の成分による研磨プロセスがボトルネック(律速過程)になり、全体としての研磨速度は効率的に向上しないと考えられる。一方、第2実施形態に係る研磨剤では、(A)成分、(B)成分、(C)成分及び(G)成分をそれぞれ特定量用いることにより、各研磨プロセスが促進され、研磨速度を効率的に向上させることができると考えられる。
 以下、第2実施形態に係る研磨剤の構成成分について具体的に説明する。なお、第2実施形態に係る研磨剤については、第1実施形態に係る研磨剤との相違点を説明し、重複する部分の説明は省略する。
((G)成分:有機酸及びその酸無水物)
 第2実施形態に係る研磨剤は、(G)成分として有機酸及びその酸無水物から選ばれる少なくとも一種を含有する。(G)成分としては、例えば、ギ酸、酢酸、グリオキシル酸、ピルビン酸、乳酸、マンデル酸、ビニル酢酸、3-ヒドロキシ絡酸、シュウ酸、マレイン酸、マロン酸、メチルマロン酸、ジメチルマロン酸、フタル酸、酒石酸、フマル酸、リンゴ酸、コハク酸、グルタル酸、オキサロ酢酸、クエン酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メリト酸、イソクエン酸、アコニット酸、オキサロコハク酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ピバル酸、カプロン酸、オクタン酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、アクリル酸、プロピオール酸、メタクリル酸、クロトン酸、イソクロトン酸、安息香酸、ケイヒ酸、イソフタル酸、テレフタル酸、フランカルボン酸、チオフェンカルボン酸、ニコチン酸、イソニコチン酸、グリコール酸、サリチル酸、クレオソート酸、バニリン酸、シリング酸、ピロカテク酸、レソルシル酸、ゲンチジン酸、プロカテク酸、オルセリン酸、没食子酸、タルトロン酸、ロイシン酸、メバロン酸、パントイン酸、リシノール酸、リシネライジン酸、セレブロン酸、シトラマル酸、キナ酸、シキミ酸、マンデル酸、ベンジル酸、アトロラクチン酸,メリロト酸、フロレト酸、クマル酸、ウンベル酸、カフェー酸、フェルラ酸、イソフェルラ酸、シナピン酸等の有機酸、及び、無水マレイン酸、無水プロピオン酸、無水コハク酸、無水フタル酸等の有機酸の酸無水物から選ばれる少なくとも一種が挙げられる。なお、(G)成分としては(B)成分のアミノ酸を除く。
 (G)成分としては、カルボキシル基を2つ有しかつpKaが2.7以下である有機酸及びその酸無水物、並びに、カルボキシル基を3つ以上有する有機酸から選択される少なくとも一種が好ましい。このような(G)成分を使用することにより、銅との相互作用を強め効率的に銅イオンとキレート化することにより、更に高い研磨速度を得ることができる。
 カルボキシル基を2つ有する有機酸は、効果を発揮するために有効な水溶性を有している限り、従来公知の物質を特に制限なく使用することができる。カルボキシル基を2つ有する有機酸のpKaは、2.7以下であり、2.6以下が好ましく、2.5以下がより好ましい。なお、「pKa」の値については、化学便覧、基礎編II(改訂5版、丸善(株))を参照することができる。
 カルボキシル基を2つ有しかつpKaが2.7以下である有機酸としては、例えばシュウ酸、マレイン酸、マロン酸、オキサロ酢酸が挙げられる。カルボキシル基を2つ有しかつpKaが2.7以下である有機酸の酸無水物としては、例えば無水マレイン酸が挙げられる。これらの有機酸及びその酸無水物の中でも、CMPによる研磨速度を更に向上させることができるという点で、シュウ酸、マレイン酸、マロン酸、無水マレイン酸が好ましい。
 カルボキシル基を3つ以上有する有機酸としては、例えばクエン酸、ヘミメリト酸、トリメリト酸、トリメシン酸、メリト酸、イソクエン酸、アコニット酸、オキサロコハク酸等が挙げられる。これらの中でも、クエン酸は、銅の研磨速度に更に優れるだけでなく、研磨後の研磨布着色が抑制できる点で好ましい。
 上記有機酸及びその酸無水物は、単独で又は二種類以上を組み合わせて使用することができる。
 (G)成分の含有量は、研磨速度に更に優れるという点で、研磨剤全量に対して0.02mol/kg以上であることが好ましく、0.03mol/kg以上であることがより好ましい。(G)成分の含有量は、(G)成分を一定量以上加えても研磨速度が増加しない傾向があることから(G)成分の含有量の増加を抑制する点で、1.0mol/kg以下であることが好ましく、0.8mol/kg以下であることがより好ましい。
(中和滴定量)
 適用される基板や用途によっては、銅に対する更に高い研磨速度(例えば50000Å/minを超えるような研磨速度)が求められる場合がある。このような場合、第2実施形態に係る研磨剤は、研磨剤から(G)成分を除いた組成物のpHを4まで増加させるために要する水酸化カリウムの量(無機酸の水酸化カリウムによる中和滴定等量)が、前記組成物1kg当たり0.10mol以上となるように無機酸を添加することが好ましい。
 なお、有機酸を含有する研磨剤の中和滴定等量は、次のようにして求めることができる。すなわち、研磨剤の組成から、有機酸及びpH調整剤(例えば、塩酸水溶液等の酸性成分、アンモニア水溶液等のアルカリ成分)を除いた組成の「中和滴定量測定用の試験液」を調製する。次に、100ミリリットル程度のビーカーに試験液50ミリリットルを入れ、撹拌子により80rpmで撹拌しながら濃度20%水酸化カリウム水溶液を滴下し、pHの値が4.0となったときの水酸化カリウム水溶液の添加量から中和滴定等量を算出することができる。無機酸の水酸化カリウムによる中和滴定等量を規定する理由や、水酸化カリウムによる中和滴定等量は第1実施形態と同様である。
(第3実施形態)
 第3実施形態に係る銅研磨用研磨剤(以下、単に「研磨剤」という。)は、前記条件(i)及び(ii)の両方を満たす。すなわち、第3実施形態に係る研磨剤は、(A)無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水と、(G)有機酸及びその酸無水物から選ばれる少なくとも一種とを含み、(A)成分の含有量が0.08mol/kg以上であり、(B)成分の含有量が0.20mol/kg以上であり、(C)成分の含有量が0.02mol/kg以上であり、(C)成分の含有量に対する(A)成分の含有量の比率が2.00以上である。
 本発明者らは、カルボキシル基を2つ有しかつpKaが2.7以下である有機酸及びその酸無水物並びにカルボキシル基を3つ以上有する有機酸から選択される少なくとも一種の(G)成分と、(A)成分と、(B)成分と、(C)成分と(以下、場合により、これら四成分の総称を「ケミカル(化学)成分」という。)を含む研磨剤において、当該ケミカル成分の種類や含有量を制御することによって、銅を更に高速かつ平滑に研磨できる研磨剤が得られることを見出した。具体的には、本発明者らは、上記ケミカル成分の各含有量を増量(例えば、従来の約2倍以上増量)すると共に、特定の有機酸及びその酸無水物から選択される少なくとも一種を使用することにより、平滑性を維持しつつ、予想される以上に銅に対する研磨速度が向上することを見出した。
 すなわち、第3実施形態に係る研磨剤では、(A)成分、(B)成分、(C)成分の含有量、及び、(C)成分の含有量に対する(A)成分の含有量の比率を上記範囲とした上で、(G)成分としてカルボキシル基を2つ有しかつpKaが2.7以下である有機酸及びその酸無水物、並びに、カルボキシル基を3つ以上有する有機酸から選択される少なくとも一種を用いることが好ましい。
 その他、第3実施形態に係る研磨剤の構成成分については第1,2実施形態に係る研磨剤と同様であるため説明は省略する。なお、水酸化カリウムによる中和滴定等量は第2実施形態と同様に測定される。
(研磨剤の保存方法)
 上記各実施形態に係る研磨剤の保存方法に特に制限はない。例えば、構成成分を全て含む1液式研磨剤として保存しても良く、互いに混合して上記各実施形態に係るCMP研磨剤となるように該研磨剤の構成成分を少なくともスラリー(第1の液)と添加液(第2の液)とに分ける2液式研磨剤として保存しても良い。上記第1実施形態が2液式研磨剤の場合、例えば、(D)砥粒及び(F)水を含有するスラリーと、(A)無機酸、(B)アミノ酸、(C)保護膜形成剤及び(F)水を含有する添加液とに分けられる。(E)酸化剤は、スラリーと添加液とを混合する際に添加される。スラリーと添加剤とを混合せずに保管すると、研磨剤の保存安定性を向上させることが可能であり、研磨速度の低下を更に抑制し安定した研磨速度で研磨することが可能である。
(研磨方法)
 本実施形態に係る研磨方法は、上記各実施形態に係る研磨剤を用いて銅を含む金属膜を研磨し、金属膜の少なくとも一部を除去することを特徴とする。本実施形態に係る研磨方法は、より具体的には、基板上に、銅を含む金属膜を積層する積層ステップと、上記各実施形態に係る研磨剤を用いて銅を含む金属膜を研磨し、当該金属膜の一部を除去する研磨ステップ、を有することを特徴とする。ここで、「銅を含む金属膜」とは、純銅からなる金属膜、銅を含む金属膜(例えば銅合金膜)、又はそれらの金属膜と他の金属との積層膜等であってもよい。
 上記各実施形態に係る研磨剤は、従来の銅研磨用研磨剤と比較して、銅を含む金属膜に対する研磨速度が極めて速いという特徴を有しており、例えば、LSI等のパッケージ基板等に代表される高性能・微細配線板の製造工程における厚い金属膜を研磨するのに特に好適に使用することができる。より具体的には、研磨されるべき銅を含む金属膜の厚みが例えば4μm以上である基板を研磨する場合に特に好適に使用することができる。また、上記各実施形態に係る研磨剤は、高い研磨速度及び平滑な研磨を両立できるので、上記金属膜の最大厚みが5μm以上であるもの、特に10μm以上であるものに好適に適用することができる。
 このように、非常に厚い金属膜を研磨する必要がある工程として、シリコン貫通ビア(TSV:Through Silicon Vias)形成工程を挙げることができる。TSVの形成方法は様々な方法が提案されているが、具体例として、素子を形成した後にビアを形成するVIA-LASTといわれる方法がある。以下、図1~3の工程図(模式断面図)を参照しながら、上記各実施形態に係る研磨剤をVIA-LASTに用いた場合の使用方法を説明する。
 図1は、シリコン基板1上に銅層4を形成する工程を示す模式断面図である。図1(a)に示すように、シリコン基板1上の所定の位置に、素子2を形成する。次に、図1(b)に示すように、貫通ビアとするための凹部3をプラズマエッチング等の方法により形成する。次に、スパッタリングや電解メッキ等の方法により、凹部3を埋め込むように銅を積層して銅層4を形成し、図1(c)に示すような構造の基板100を得る。
 図2は、このように形成した基板100を研磨し、片面にバンプ5を形成する工程を示す模式断面図である。図2(a)における銅層4の表面と、研磨布(図示せず)との間に上記研磨剤を供給しながら、図2(b)に示すように、素子2が露出するまで銅層4を研磨する。
 より具体的には、基板100の銅層4と研磨定盤の研磨布の表面との間に上記研磨剤を供給しながら、基板100の銅層4を研磨布の表面に押圧した状態で、研磨定盤と基板100とを相対的に動かすことによって銅層4を研磨する。研磨布の代わりに、金属製又は樹脂製のブラシを使用しても良い。
また、研磨剤を所定の圧力で吹きつけることで研磨しても良い。
 研磨装置としては、例えば研磨布により研磨する場合、回転数が変更可能なモータ等に接続されていると共に研磨布を貼り付けることができる研磨定盤と、研磨される基板を保持できるホルダとを有する一般的な研磨装置を使用できる。研磨布の材質としては、特に制限はなく、一般的な不織布、発泡ポリウレタン、多孔質フッ素樹脂等が使用できる。
 研磨条件には制限はないが、研磨定盤の回転速度は、基板が飛び出さないように200rpm以下の低回転が好ましい。被研磨面を有する基板の研磨布への押し付け圧力(研磨圧力)は、1~100kPaであることが好ましく、CMP速度の被研磨面内の均一性及びパターンの平坦性を満足するためには、5~50kPaであることがより好ましい。研磨している間、研磨布には研磨剤をポンプ等で連続的に供給する。この供給量に制限はないが、研磨布の表面が常に研磨剤で覆われていることが好ましい。
 研磨終了後の基板は、流水中でよく洗浄後、スピンドライ等を用いて基板上に付着した水滴を払い落としてから乾燥させることが好ましい。研磨布の表面状態を常に同一にしてCMPを行うために、研磨の前に研磨布のコンディショニング工程を入れるのが好ましい。例えば、ダイヤモンド粒子のついたドレッサを用いて少なくとも水を含む液で研磨布のコンディショニングを行う。続いて本実施形態に係る研磨方法を用いたCMP研磨工程を実施し、更に、基板洗浄工程を加えるのが好ましい。
 続いて、図2(c)に示すように、露出した銅層4の表面部分に、電解メッキ等の方法によりバンプ5を形成し、片面にバンプ5を有する基板200を得る。バンプ5の材質としては、銅等を挙げることができる。
 図3は、もう一方の面にバンプ6を形成する工程を示す模式断面図である。図3(a)に示す状態の基板200において、シリコン基板1におけるバンプ5の形成されていない面(バンプ5が形成されている面の反対面)を、CMP等の方法により研磨し、銅層4を露出させる(図3(b))。次に、上記バンプ5の形成方法と同様の方法により、バンプ6を形成し、TSVが形成された基板300を得る(図3(c))。
 以下、実施例(実験例)により本発明を説明するが、本発明はこれらの実施例に制限されるものではない。なお、特に限定しない限り、「%」とは「質量%」を意味するものとする。
<実験例1-1~1-11>
(研磨剤の作製)
 以下、実験例1-1~1-11の研磨剤について説明する。なお、実験例1-7~1-8は、本発明の上記第1実施形態に相当し、実験例1-6は、本発明の上記第2実施形態に相当し、実験例1-1~1-5、1-9は、本発明の上記第3実施形態に相当する。
(実験例1-1)
 濃度96%の硫酸10g、濃度85%のリン酸10g、グリシン50g、ベンゾトリアゾール(BTA)10g、シュウ酸10g、及びテトラエトキシシランのアンモニア溶液中での加水分解により作製した平均粒径70nmのコロイダルシリカ(固形分20%)50gを水550gに加えて、コロイダルシリカ以外の成分を溶解させた。さらに25%のアンモニア水溶液を添加して液のpHを2.6に調整した後、純水をさらに加えて全量を700gとした。これに、過酸化水素水(試薬特級、30%水溶液)300gを加えて、全量1000gの研磨剤1-1を得た。
(実験例1-2)
 シュウ酸の代わりにマロン酸を10g添加した以外は実験例1-1と同様にして研磨剤1-2を作製した。
(実験例1-3)
 シュウ酸の代わりにマレイン酸を10g添加した以外は実験例1-1と同様にして研磨剤1-3を作製した。
(実験例1-4)
 グリシンの代わりにアラニンを50g添加した以外は実験例1-1と同様にして研磨剤1-4を作製した。
(実験例1-5)
 グリシンの代わりにセリンを50g添加した以外は実験例1-1と同様にして研磨剤1-5を作製した。
(実験例1-6)
 添加する硫酸とリン酸の量をそれぞれ5gとした以外は実験例1-1と同様にして研磨剤1-6を作製した。
(実験例1-7)
 シュウ酸を加えないこと以外は実験例1-1と同様にして研磨剤1-7を作製した。
(実験例1-8)
 シュウ酸を加えないことに加えて、硫酸の量を20gに増量した以外は実験例1-1と同様にして研磨剤1-8を作製した。
(実験例1-9)
 シュウ酸の代わりにリンゴ酸を添加したこと以外は実験例1-1と同様にして研磨剤1-9を作製した。
(実験例1-10)
 硫酸及びリン酸を加えず、シュウ酸の量を30gとした以外は実験例1-1と同様にして研磨剤X1-1を作製した。
(実験例1-11)
 添加する硫酸の量を1g、リン酸の量を5gとした以外は実験例1-1と同様にして研磨剤X1-2を作製した。
(研磨剤のpH測定)
 上記研磨剤1-1~1-9、X1-1~X1-2のpHを横河電機株式会社製の型番PH81を用いて測定した。表1に記載のpHはこの測定値である。
(中和滴定量測定)
 有機酸及び25%のアンモニア水溶液を添加しないこと以外は実験例1-1~1-11と同様にして、中和滴定量測定用の試験液(試験液1-1~1-9及び試験液X1-1~X1-2)を作製した。それぞれの試験液について、pHメータ(横河電機株式会社製 PH81)を使用し、25℃の恒温水槽中で、水酸化カリウムによる中和滴定等量を測定した。なお、実験例1-10については、シュウ酸及びアンモニア水を添加しない状態でのpHが4.0を超えていたため、中和滴定量を0(mol/kg)とした。
 なお、上記中和滴定等量は、次のようにして求めた。すなわち、100ミリリットルビーカーに試験液50ミリリットルを入れ、撹拌子により80rpmで撹拌しながら濃度20%水酸化カリウム水溶液を滴下し、pHの値が4.0となったときの水酸化カリウム水溶液の添加量から中和滴定等量を算出した。
(基板の研磨)
 直径8インチ(20.3cm)(φ)サイズのシリコン基板上に厚み20μmの銅膜を製膜した基板(アドバンテック社より購入)を用意した。この基板を使用し、上記研磨剤1-1~1-9及び研磨剤X1-1~X1-2を、研磨装置の定盤に貼り付けた研磨布に滴下しながら、CMP研磨を行った。
 なお、研磨条件は下記の通りである。
 研磨装置:定盤寸法は直径600mm(φ)、ロータリータイプ
 研磨布:独立気泡を持つ発泡ポリウレタン樹脂(IC-1010、ロームアンドハース社製)
 研磨圧力:32kPa
 定盤/ヘッド回転速度:93/87rpm
 研磨剤流量:200ml/min
(評価項目及び評価方法)
 上述のようにして研磨した基板について、CMPによる銅の研磨速度(以下、単に「研磨速度」という)及び表面粗さを測定した。
 研磨速度:基板のCMP前後での膜厚差をシート抵抗変化から換算して求めた。測定装置はナプソン社製抵抗率測定器Model RT-7を用いた。なお、抵抗値としては、ウエハの直径方向77点(エッジから5mm部分除外)の平均値を用いた。
 表面粗さ(算術平均粗さRa):研磨後の銅膜表面粗さをAFM(原子間力顕微鏡:SPA-400,エスアイアイナノテクノロジー社製)で測定した。測定は基板中央部から半径方向に50mm離れた箇所において、5μm×5μmの面積範囲で行った。
 研磨剤1-1~1-9、X1-1~X1-2の構成成分、各研磨剤のpH、水酸化カリウムによる中和滴定等量及び研磨試験の評価結果を表1に示す。なお、表中の「ケミカル成分合計」とは、(A)成分、(B)成分、(C)成分及び(G)成分の含有量の合計を意味する。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果より下記のことがわかる。すなわち、実験例1-1~1-9におけるそれぞれの研磨剤は、良好な研磨速度及び表面粗さを示した。
 実験例1-7の研磨剤にシュウ酸を加えた組成である実験例1-1の研磨剤1-1は、実験例1-7と比較して表面粗さが維持されつつ、研磨速度が向上した。
 実験例1-1の研磨剤において硫酸及びリン酸をシュウ酸に置き換えた組成である実験例1-10の研磨剤X1-1は、実験例1-1と比較して、表面粗さは維持したものの、研磨速度は大幅に低下した。
 実験例1-8の研磨剤において硫酸の一部をシュウ酸に置き換えた組成である実験例1-1の研磨剤1-1は、実験例1-8と比較して、表面粗さ及び研磨速度が向上した。実験例1-8は、実験例1-7と同様に30000Å/minを上回る速度であった。
 また、研磨速度に着目すると、実験例1-7に対して10gの硫酸を更に追加した実験例1-8の研磨剤では、研磨速度が37000Å/minであるのに対し、実験例1-7に対して10gのシュウ酸を加えた系である実験例1-1の研磨剤では、研磨速度が60000Å/minを達成した。これにより、(A)成分と(G)成分を組み合わせることが研磨速度向上に有効であることが確認できる。
 実験例1-1の研磨剤1-1に対して、(A)成分の量が少ないため中和滴定等量が0.10mol/kgを下回る実験例1-11の研磨剤X1-2は、実験例1-1と比較して研磨速度は大幅に低下した。
 一方、(A)成分の種類、(A)成分及び(G)成分の量は実験例1-9と同じであるが、(G)成分のpKaが2.7以下である実験例1-1の研磨剤1-1は、実験例1-9と比較して表面粗さが維持されつつ、研磨速度が向上した。
 以上より、(A)成分及び(G)成分の量、組合せを最適化することによって、表面粗さを低く保ちつつ、銅に対して、通常の研磨剤よりも格段に速い研磨速度を示す研磨剤が得られることがわかる。特に、銅に対する研磨速度が30000Å/min、より好適には50000Å/minを超えるような研磨剤は、短時間で大量に銅を研磨する用途、例えばTSV形成用途に最適である。
<実験例2-1~2-14>
(研磨剤の作製)
 以下、実験例2-1~2-14の研磨剤について説明する。なお、実験例2-1~2-4は、本発明の上記第1実施形態に相当する。
(実験例2-1)
 濃度96%の硫酸5.1g、濃度85%のリン酸5.8g、グリシン20.3g、ベンゾトリアゾール(BTA)4.0g、及び、砥粒としてテトラエトキシシランのアンモニア溶液中での加水分解により作製した平均粒径70nmのコロイダルシリカ(固形分20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させた。更に25%のアンモニア水溶液を添加して液のpHを2.6に調整した後、純水を更に加えて全量を700gとした。これに、過酸化水素水(試薬特級、30%水溶液)300gを加えて、全量1000gの研磨剤2-1を得た。
(実験例2-2)
 硫酸の量を7.7g、リン酸の量を8.6g、グリシンの量を30.8g、ベンゾトリアゾールの量を6.0gとした以外は実験例2-1と同様にして研磨剤2-2を作製した。
(実験例2-3)
 硫酸の量を10.2g、リン酸の量を11.5g、グリシンの量を40.5g、ベンゾトリアゾールの量を8.0gとした以外は実験例2-1と同様にして研磨剤2-3を作製した。
(実験例2-4)
 グリシンのかわりにセリンを28.4g用いた以外は実験例2-1と同様にして研磨剤2-4を作製した。
(実験例2-5)
 硫酸の量を2.6g、リン酸の量を2.9g、グリシンの量を10.5g、ベンゾトリアゾールの量を2.0gとした以外は実験例2-1と同様にして研磨剤X2-1を作製した。
(実験例2-6)
 グリシンの量を10.5g、ベンゾトリアゾールの量を2.0gとした以外は実験例2-1と同様にして研磨剤X2-2を作製した。
(実験例2-7)
 硫酸の量を10.2g、リン酸の量を11.5g、グリシンの量を10.5g、ベンゾトリアゾールの量を2.0gとした以外は実験例2-1と同様にして研磨剤X2-3を作製した。
(実験例2-8)
 硫酸の量を2.6g、リン酸の量を2.9g、ベンゾトリアゾールの量を2.0gとし、pH調整にアンモニア水溶液にかえて36%の塩酸を使用した以外は実験例2-1と同様にして研磨剤X2-4を作製した。
(実験例2-9)
 硫酸の量を2.6g、リン酸の量を2.9g、グリシンの量を10.5gとした以外は実験例2-1と同様にして研磨剤X2-5を作製した。
(実験例2-10)
 硫酸の量を2.6g、リン酸の量を2.9gとし、pH調整にアンモニア水溶液にかえて36%の塩酸を使用した以外は実験例2-1と同様にして研磨剤X2-6を作製した。
(実験例2-11)
 グリシンの量を0gとした以外は実験例2-1と同様にして研磨剤X2-7を作製した。
(実験例2-12)
 グリシンの量を10.5g、ベンゾトリアゾールの量を4.0gとした以外は実験例2-1と同様にして研磨剤X2-8を作製した。
(実験例2-13)
 ベンゾトリアゾールの量を2.0gとした以外は実験例2-1と同様にして研磨剤X2-9を作製した。
(実験例2-14)
 ベンゾトリアゾールの量を8.0gとした以外は実験例2-1と同様にして研磨剤X2-10を作製した。
(研磨剤のpH測定)
 上記研磨剤2-1~2-4、X2-1~X2-10のpHを横河電機株式会社製の型番PH81を用いて測定した。表2,3に記載のpHはこの測定値である。
(中和滴定量測定)
 25%のアンモニア水溶液を添加しないこと以外は実験例2-1~2-14と同様にして、中和滴定量測定用の試験液(試験液2-1~2-4及び試験液X2-1~X2-10)を作製した。それぞれの試験液について、pHメータ(横河電機株式会社製 PH81)を使用し、25℃の恒温水槽中で、水酸化カリウムによる中和滴定等量を測定した。
 なお、上記中和滴定等量は、次のようにして求めた。すなわち、100ミリリットルビーカーに試験液50ミリリットルを入れ、撹拌子により80rpmで撹拌しながら濃度20%水酸化カリウム水溶液を滴下し、pHの値が4.0となったときの水酸化カリウム水溶液の添加量から中和滴定等量を算出した。
(基板の研磨)
 直径8インチ(20.3cm)(φ)サイズのシリコン基板上に20μm厚さの銅膜を製膜した基板(アドバンテック社より購入)を用意した。この基板を使用し、上記研磨剤2-1~2-4及び研磨剤X2-1~X2-10を、研磨装置の定盤に貼り付けた研磨布に滴下しながら、CMP研磨を行った。
 なお、研磨条件は下記の通りである。
 研磨装置:定盤寸法は直径600mm(φ)、ロータリータイプ
 研磨布:独立気泡を持つ発泡ポリウレタン樹脂(IC-1010、ロームアンドハース社製)
 研磨圧力:32kPa
 研磨定盤/ヘッド回転速度:93/87rpm
 研磨剤流量:200ml/min
(評価項目及び評価方法)
 上述のようにして研磨した基板について、CMPによる銅の研磨速度(以下、単に「研磨速度」という。)及び表面粗さを測定した。
 研磨速度:基板のCMP前後での膜厚差をシート抵抗変化から換算して求めた。測定装置はナプソン社製抵抗率測定器Model RT-7を用いた。ウエハの直径方向77点(エッジから5mm部分除外)の平均値を抵抗値とした。
 表面粗さ(算術平均粗さRa):研磨後の銅膜の表面粗さをAFM(原子間力顕微鏡:SPA-400、エスアイアイナノテクノロジー社製)で測定した。測定は、基板中央から半径方向に50mm離れた箇所において、5μm×5μmの面積範囲で行った。
 研磨剤2-1~2-4、X2-1~X2-10の構成成分、各研磨剤のpH、水酸化カリウムによる中和滴定等量及び研磨試験の評価結果を表2及び表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2~表3に示す結果より下記のことがわかる。すなわち、実験例2-1~2-4におけるそれぞれの研磨剤は、良好な研磨速度を示した。また、表面粗さも良好であった。
 実験例2-1の研磨剤2-1に対して(A)成分、(B)成分、(C)成分の含有量がそれぞれ本発明の値よりも小さい実験例2-5の研磨剤X2-1の研磨速度は低下した。
 (A)成分の含有量のみを実験例2-1と同含有量とした以外は実験例2-5と同様にした実験例2-6の研磨剤X2-2、及び、実験例2-6の(A)成分の含有量を増した実験例2-7の研磨剤X2-3については、若干の研磨速度の向上は見られたものの実験例2-1に対して研磨速度は低下した。つまり、(A)成分の含有量のみを増しても研磨速度の向上効果は大きくないことが分かった。
 アミノ酸であるグリシンの含有量のみを実験例2-1と同含有量とした以外は実験例2-5と同様にした実験例2-8の研磨剤X2-4、及び、保護膜形成剤であるベンゾトリアゾールのみを実験例2-1と同含有量とした以外は実験例2-5と同様にした実験例2-9の研磨剤X2-5については、実験例2-5と比べて研磨速度が低下し、実験例2-1に対しても研磨速度が低下した。
 実験例2-1の研磨剤2-1に対して(B)成分、(C)成分の含有量は同じであるが、(A)成分の含有量が本発明の値よりも小さい実験例2-10の研磨剤X2-6の研磨速度は低下した。
 実験例2-1の研磨剤2-1に対して(A)成分、(C)成分の含有量は同じであるが、(B)成分の含有量が本発明の値よりも小さい実験例2-11の研磨剤X2-7、実験例2-12の研磨剤X2-8の研磨速度は低下した。
 実験例2-1の研磨剤2-1に対して(A)成分、(B)成分の含有量は同じであるが、(C)成分の含有量が本発明の値よりも小さい実験例2-13の研磨剤X2-9の研磨速度は低下した。
 (A)成分、(B)成分、(C)成分の含有量が全て実験例2-5より高含有量であるが、(A)成分含有量(mol/kg)/(C)成分含有量(mol/kg)の値が1.49であり、2.00より低い値である実験例2-14の研磨剤X2-10の研磨速度は、実験例2-1と比べて低下した。
 上記実験例2-1と実験例2-5の関係から、(A)成分、(B)成分、(C)成分が一定含有量に達していない場合は研磨速度が不充分であることが分かる。
 実験例2-1と実験例2-6、2-8、2-9の関係から(A)成分、(B)成分、(C)成分のうち1成分のみの含有量を同程度にし、他の成分の含有量が本発明の値より小さい場合は、研磨速度が不充分であることが分かる。
 実験例2-1と実験例2-10~2-14の関係から(A)成分、(B)成分、(C)成分のうち2成分の含有量を同程度にし、他の成分の含有量が本発明の値より小さい場合は、研磨速度が不充分であることが分かる。
 以上の結果より同時に(A)成分、(B)成分、(C)成分の3成分を一定量以上にすることで効率良く研磨速度を向上させることができることが分かる。
 また、実験例2-5の研磨速度を基準として、実験例2-6、2-8、2-9の研磨速度は以下のように増減した。(A)成分の含有量のみを実験例2-1と同等にした場合(実験例2-6)の研磨速度は3000Å/min増加した。(B)成分の含有量のみを実験例2-1と同等にした場合(実験例2-8)は3000Å/minの減少、(C)成分含有量のみを実験例2-1と同等にした場合(実験例2-9)は3000Å/min減少した。これらの実験例2-6,2-8,2-9の研磨速度の変化から、3成分の含有量をすべて実験例2-1と同じとした場合の研磨速度は、実験例2-5に対する実験例2-6,2-8,2-9の研磨速度の増減を足し合わせた3000Å/min減少するとも予想することができる。しかし、実際は実験例2-1の結果から分かるように11000Å/minの増加となっており、3成分の含有量を同時に増加させることにより、研磨速度が向上する効果が高いことが確認された。
 以上より、(A)成分、(B)成分及び(C)成分の含有量を最適化することによって、銅に対して、通常の研磨剤よりも格段に速い研磨速度を示す研磨剤が得られることがわかる。特に、銅に対する研磨速度が30000Å/minを超えるような研磨剤は、短時間で大量に銅を研磨する用途、例えばTSV形成用途に最適である。
<実験例3-1~3-15>
(研磨剤の作製)
 以下、実験例3-1~3-15の研磨剤について説明する。なお、実験例3-8は、本発明の上記第1実施形態に相当し、実験例3-7は、本発明の上記第2実施形態に相当し、実験例3-1~3-6、3-9~3-10は、本発明の上記第3実施形態に相当する。
(実験例3-1)
 濃度96%の硫酸5.1g、濃度85%のリン酸5.8g、グリシン20.3g、ベンゾトリアゾール(BTA)4.0g、シュウ酸5.4g、及び、砥粒として平均粒径70nmのコロイダルシリカ(固形分20%)50gを純水600gに加えて、コロイダルシリカ以外の成分を溶解させた。更に25%のアンモニア水溶液を添加して液のpHを2.6に調整した後、純水を更に加えて全量を700gとした。これに、過酸化水素水(試薬特級、30%水溶液)300gを加えて、全量1000gの研磨剤3-1を得た。
(実験例3-2)
 シュウ酸の含有量を14.0gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-2を作製した。
(実験例3-3)
 シュウ酸5.4gの代わりにマレイン酸7.0gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-3を作製した。
(実験例3-4)
 シュウ酸5.4gの代わりに無水マレイン酸5.9gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-4を作製した。
(実験例3-5)
 シュウ酸5.4gの代わりにマロン酸6.2gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-5を作製した。
(実験例3-6)
 シュウ酸5.4gの代わりにクエン酸11.5gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-6を作製した。
(実験例3-7)
 ベンゾトリアゾールの含有量を7.9gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-7を作製した。
(実験例3-8)
 シュウ酸を添加せず、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-8を作製した。
(実験例3-9)
 シュウ酸5.4gの代わりに酒石酸9.0gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-9を作製した。
(実験例3-10)
 シュウ酸5.4gの代わりにリンゴ酸8.0gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-1と同様にして研磨剤3-10を作製した。
(実験例3-11)
 濃度96%の硫酸2.6g、濃度85%のリン酸2.9g、グリシン10.2g、ベンゾトリアゾール2.0g、砥粒として平均粒径70nmのコロイダルシリカ(固形分20%)50gを水600gに加えて、コロイダルシリカ以外の成分を溶解させた。更に25%のアンモニア水溶液を添加して液のpHを2.6に調整した後、純水を更に加えて全量を700gとした。これに、過酸化水素水(試薬特級、30%水溶液)300gを加えて、全量1000gの研磨剤X3-1を得た。
(実験例3-12)
 硫酸の含有量を5.1gとし、リン酸の含有量を5.8gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-11と同様にして研磨剤X3-2を作製した。
(実験例3-13)
 グリシンの含有量を20.3gとし、pH調整にアンモニア水溶液にかえて36%の塩酸を使用し、純水の添加量を調整して全量1000gとしたこと以外は実験例3-11と同様にして研磨剤X3-3を作製した。
(実験例3-14)
 ベンゾトリアゾールの含有量を4.0gとし、純水の添加量を調整して全量1000gとしたこと以外は実験例3-11と同様にして研磨剤X3-4を作製した。
(実験例3-15)
 有機酸としてシュウ酸を5.4g更に加え、純水の添加量を調整して全量1000gとしたこと以外は実験例3-11と同様にして研磨剤X3-5を作製した。
(研磨剤のpH測定)
 上記研磨剤3-1~3-10、X3-1~X3-5のpHを横河電機株式会社製の型番PH81を用いて測定した。表4,5に記載のpHはこの測定値である。
(中和滴定量測定)
 有機酸及び25%のアンモニア水溶液を添加しないこと以外は実験例3-1~3-15と同様にして、中和滴定量測定用の試験液(試験液3-1~3-10及び試験液X3-1~X3-5)を作製した。それぞれの試験液について、pHメータ(横河電機株式会社製 PH81)を使用し、25℃の恒温水槽中で、水酸化カリウムによる中和滴定等量を測定した。
 なお、上記中和滴定等量は、次のようにして求めた。すなわち、100ミリリットルビーカーに試験液50ミリリットルを入れ、撹拌子により80rpmで撹拌しながら濃度20%水酸化カリウム水溶液を滴下し、pHの値が4.0となったときの水酸化カリウム水溶液の添加量から中和滴定等量を算出した。
(研磨速度測定)
 直径12インチ(30.5cm)(φ)サイズのシリコン基板上に厚さ20μmの銅膜を製膜した基板(グローバルネット社製)を用意した。この基板を使用し、上記研磨剤3-1~3-10及び研磨剤X3-1~X3-5を、研磨装置の定盤に貼り付けた研磨布に滴下しながら、CMP研磨を行った。
 なお、研磨条件は下記の通りである。
 研磨装置:CMP用研磨機(アプライドマテリアルズ製、商品名:Reflexion)
 研磨布:独立気泡を持つ発泡ポリウレタン樹脂(商品名:IC-1010、ロームアンドハース社製)
 研磨圧力:32kPa
 定盤/ヘッド回転速度:60/55rpm
 研磨剤流量:300ml/min
 以下のようにして研磨速度を算出した。まず、日立国際電気エンジニアリング社製の金属膜厚測定器VR-120型(商品名)を用いて、銅膜表面における基板の直径方向に並んだ81か所のそれぞれでシート抵抗を測定し、CMP研磨前後でそれぞれ平均値を算出した。そして、研磨前後の平均値の差から換算してCMP研磨前後での銅膜の膜厚差を求め、更に研磨速度を算出した。
 研磨剤3-1~3-10及び研磨剤X3-1~X3-5の構成成分、各研磨剤のpH、水酸化カリウムによる中和滴定等量及び研磨速度の評価結果を表4及び表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4及び表5に示す結果より下記のことが確認された。すなわち、実験例3-1~3-10におけるそれぞれの研磨剤3-1~3-10は、良好な研磨速度を示した。また、研磨後のシリコン基板の表面を観察したところ、平滑に研磨されていることが確認された。
 一方、研磨剤X3-1では、(A)成分、(B)成分及び(C)成分の含有量がそれぞれ本発明の所定の範囲外であるため、研磨速度が低下した。研磨剤X3-2では、(A)成分の含有量を研磨剤3-1と同様にしたこと以外は研磨剤X3-1と同様にしており、研磨剤X3-1に対して若干の研磨速度の向上は見られたものの、研磨剤3-1に対して研磨速度は低下した。研磨剤X3-3では、(B)成分の含有量を研磨剤3-1と同様にし、pH調整に用いた物質を変更したこと以外は研磨剤X3-1と同様にしており、研磨剤3-1及び研磨剤X3-1に対して研磨速度が低下した。研磨剤X3-4では、(C)成分の含有量を研磨剤3-1と同様にしたこと以外は研磨剤X3-1と同様にしており、研磨剤3-1及び研磨剤X3-1に対して研磨速度が低下した。研磨剤X3-5では、(G)成分の含有量を研磨剤3-1と同様にしたこと以外は研磨剤X3-1と同様にしているが、研磨剤3-1に対して研磨速度が低下した。
 (A)成分の含有量を研磨剤3-1と同等にしたことを除き研磨剤X3-1と同様にした研磨剤X3-2では、研磨速度は研磨剤X3-1に比べて3000Å/min増加した。(B)成分の含有量を研磨剤3-1と同等にしたことを除き研磨剤X3-1と同様にした研磨剤X3-3では、研磨速度は研磨剤X3-1に比べて3000Å/min減少した。(C)成分の含有量を研磨剤3-1と同等にしたことを除き研磨剤X3-1と同様にした研磨剤X3-4では、研磨速度は研磨剤X3-1に比べて3000Å/min減少した。(D)成分の含有量を研磨剤3-1と同等にしたことを除き研磨剤X3-1と同様にした研磨剤X3-5では、研磨速度は研磨剤X3-1に比べて7000Å/min増加した。
 以上の結果から、(A)成分、(B)成分、(C)成分及び(G)成分の含有量を全て研磨剤3-1と同等とした場合には、研磨剤X3-1に対する研磨速度の増加量は、研磨剤X3-2~X3-5の研磨速度の研磨剤X3-1に対する増減を足し合わせた4000Å/min程度となることが通常予想される。しかし、研磨剤3-1の研磨速度は、研磨剤X3-1に対して23000Å/min増加し、(A)成分、(B)成分、(C)成分及び(D)成分の含有量を同時に本発明の所定の範囲内とすると共に、(A)成分の含有量(mol/kg)/(C)成分の含有量(mol/kg)を2.00以上とすることにより、研磨速度の向上効果が高くなることが確認された。
 (A)成分、(B)成分及び(C)成分の含有量が本発明の所定の範囲内であるものの、(A)成分の含有量(mol/kg)/(C)成分の含有量(mol/kg)が2.00未満である研磨剤3-7に対して、研磨剤3-1では研磨速度が向上した。
 (A)成分、(B)成分及び(C)成分の含有量が研磨剤X3-1の約2倍であるが、(G)成分を含有していない研磨剤3-8に対して、研磨剤3-1では研磨速度が向上した。
 カルボキシル基の数が2つである有機酸に関して、pKaが2.82である酒石酸を含有した研磨剤3-9、及び、pKaが3.46であるリンゴ酸を含有した研磨剤3-10に対して、研磨剤3-1では研磨速度が向上した。
 以上より、(A)成分、(B)成分及び(C)成分の含有量を本発明の所定の範囲内とすると共に、(A)成分と(C)成分との含有量の関係を特定のものとすることによって、銅のCMP研磨において、従来の研磨剤よりも格段に優れた研磨速度を示す研磨剤が得られることが確認された。このように銅に対する研磨速度が30000Å/minを超えるような研磨剤は、特に、短時間で大量に銅を研磨する用途、例えばTSV形成用途に最適である。
 1…シリコン基板、2…素子、4…銅層、5,6…バンプ、100,200,300…基板。

Claims (19)

  1.  (A)二価以上の無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水とを含み、
     前記(A)成分の含有量が0.08mol/kg以上であり、
     前記(B)成分の含有量が0.20mol/kg以上であり、
     前記(C)成分の含有量が0.02mol/kg以上であり、
     前記(C)成分の含有量に対する前記(A)成分の含有量の比率が2.00以上である、銅研磨用研磨剤。
  2.  pHを4まで増加させるために要する水酸化カリウムの量が銅研磨用研磨剤1kg当たり0.10mol以上である、請求項1に記載の銅研磨用研磨剤。
  3.  (A)二価以上の無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水と、(G)有機酸及びその酸無水物から選ばれる少なくとも一種とを含み、
     前記(A)成分の含有量が0.08mol/kg以上であり、
     前記(B)成分の含有量が0.20mol/kg以上であり、
     前記(C)成分の含有量が0.02mol/kg以上である、銅研磨用研磨剤。
  4.  (A)二価以上の無機酸と、(B)アミノ酸と、(C)保護膜形成剤と、(D)砥粒と、(E)酸化剤と、(F)水と、(G)有機酸及びその酸無水物から選ばれる少なくとも一種とを含み、
     前記(A)成分の含有量が0.08mol/kg以上であり、
     前記(B)成分の含有量が0.20mol/kg以上であり、
     前記(C)成分の含有量が0.02mol/kg以上であり、
     前記(C)成分の含有量に対する前記(A)成分の含有量の比率が2.00以上である、銅研磨用研磨剤。
  5.  銅研磨用研磨剤から前記(G)成分を除いた組成物のpHを4まで増加させるために要する水酸化カリウムの量が、前記組成物1kg当たり0.10mol以上である、請求項3又は4に記載の銅研磨用研磨剤。
  6.  前記(G)成分の含有量が0.02mol/kg以上である、請求項3~5のいずれか一項に記載の銅研磨用研磨剤。
  7.  前記(G)成分が、カルボキシル基を2つ有しかつpKaが2.7以下である有機酸及びその酸無水物並びにカルボキシル基を3つ以上有する有機酸から選択される少なくとも一種である、請求項3~6のいずれか一項に記載の銅研磨用研磨剤。
  8.  前記(G)成分がシュウ酸、マレイン酸、無水マレイン酸、マロン酸及びクエン酸から選択される少なくとも一種である、請求項3~7のいずれか一項に記載の銅研磨用研磨剤。
  9.  pHが1.5~4.0である、請求項1~8のいずれか一項に記載の銅研磨用研磨剤。
  10.  前記(A)成分が硫酸及びリン酸から選択される少なくとも一種である、請求項1~9のいずれか一項に記載の銅研磨用研磨剤。
  11.  前記(B)成分としてpKaが2~3のアミノ酸を含む、請求項1~10のいずれか一項に記載の銅研磨用研磨剤。
  12.  前記(C)成分がトリアゾール化合物である、請求項1~11のいずれか一項に記載の銅研磨用研磨剤。
  13.  前記トリアゾール化合物がベンゾトリアゾール及びその誘導体から選択される少なくとも一種である、請求項12に記載の銅研磨用研磨剤。
  14.  前記(D)成分がコロイダルシリカ及びコロイダルアルミナから選択される少なくとも一種であり、該(D)成分の平均粒径が100nm以下である、請求項1~13のいずれか一項に記載の銅研磨用研磨剤。
  15.  前記(E)成分が過酸化水素、過硫酸及び過硫酸塩から選択される少なくとも一種である、請求項1~14のいずれか一項に記載の銅研磨用研磨剤。
  16.  請求項1~15のいずれか一項に記載の銅研磨用研磨剤を用いて銅を含む金属膜を研磨し、前記金属膜の少なくとも一部を除去する、研磨方法。
  17.  前記金属膜の最大厚みが5μm以上である、請求項16に記載の研磨方法。
  18.  前記金属膜の最大厚みが10μm以上である、請求項16に記載の研磨方法。
  19.  前記金属膜に対する研磨速度が30000Å/min以上である、請求項16~18のいずれか一項に記載の研磨方法。
PCT/JP2010/052069 2009-02-16 2010-02-12 銅研磨用研磨剤及びそれを用いた研磨方法 WO2010093011A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020127005402A KR101400585B1 (ko) 2009-02-16 2010-02-12 구리 연마용 연마제 및 이를 이용한 연마 방법
KR1020117019004A KR101153510B1 (ko) 2009-02-16 2010-02-12 구리 연마용 연마제 및 이를 이용한 연마 방법
CN201080007580.7A CN102318042B (zh) 2009-02-16 2010-02-12 铜研磨用研磨剂和使用了其的研磨方法
SG2011048501A SG172829A1 (en) 2009-02-16 2010-02-12 Polishing agent for copper polishing and polishing method using same
US13/201,529 US8889555B2 (en) 2009-02-16 2010-02-12 Polishing agent for copper polishing and polishing method using same
JP2010550557A JP4930641B2 (ja) 2009-02-16 2010-02-12 銅研磨用研磨剤及びそれを用いた研磨方法
US13/412,893 US8859429B2 (en) 2009-02-16 2012-03-06 Polishing agent for copper polishing and polishing method using same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009-032635 2009-02-16
JP2009032635 2009-02-16
JP2009121144 2009-05-19
JP2009-121144 2009-05-19
JP2009290563 2009-12-22
JP2009-290563 2009-12-22
JPPCT/JP2010/050806 2010-01-22
PCT/JP2010/050806 WO2010092865A1 (ja) 2009-02-16 2010-01-22 研磨剤及び研磨方法

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/201,529 A-371-Of-International US8889555B2 (en) 2009-02-16 2010-02-12 Polishing agent for copper polishing and polishing method using same
US13/412,893 Continuation US8859429B2 (en) 2009-02-16 2012-03-06 Polishing agent for copper polishing and polishing method using same

Publications (1)

Publication Number Publication Date
WO2010093011A1 true WO2010093011A1 (ja) 2010-08-19

Family

ID=42561851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/052069 WO2010093011A1 (ja) 2009-02-16 2010-02-12 銅研磨用研磨剤及びそれを用いた研磨方法

Country Status (7)

Country Link
US (2) US8889555B2 (ja)
JP (2) JP4930641B2 (ja)
KR (2) KR101153510B1 (ja)
CN (3) CN102703027A (ja)
SG (2) SG172829A1 (ja)
TW (1) TWI535834B (ja)
WO (1) WO2010093011A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545277A (ja) * 2010-10-04 2013-12-19 インターナショナル・ビジネス・マシーンズ・コーポレーション フィンfetデバイスの製造のための化学機械平坦化プロセス
US20140131615A1 (en) * 2011-07-04 2014-05-15 Mitsubishi Gas Chemical Company, Inc. Etching solution for copper or a compound comprised mainly of copper
WO2017208667A1 (ja) * 2016-06-03 2017-12-07 富士フイルム株式会社 研磨液、及び化学的機械的研磨方法
US10858585B2 (en) 2018-01-03 2020-12-08 Ecolab Usa Inc. Benzotriazole derivatives as corrosion inhibitors

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845915B2 (en) 2009-02-16 2014-09-30 Hitachi Chemical Company, Ltd. Abrading agent and abrading method
CN102703027A (zh) * 2009-02-16 2012-10-03 日立化成工业株式会社 铜研磨用研磨剂的应用
KR101380098B1 (ko) * 2009-07-16 2014-04-01 히타치가세이가부시끼가이샤 팔라듐 연마용 cmp 연마액 및 연마 방법
JP5533889B2 (ja) 2010-02-15 2014-06-25 日立化成株式会社 Cmp研磨液及び研磨方法
KR102137293B1 (ko) * 2012-08-30 2020-07-23 히타치가세이가부시끼가이샤 연마제, 연마제 세트 및 기체의 연마 방법
JP6222907B2 (ja) * 2012-09-06 2017-11-01 株式会社フジミインコーポレーテッド 研磨用組成物
KR101526006B1 (ko) 2012-12-31 2015-06-04 제일모직주식회사 구리 연마용 cmp 슬러리 조성물 및 이를 이용한 연마 방법
KR102225154B1 (ko) 2013-06-12 2021-03-09 쇼와덴코머티리얼즈가부시끼가이샤 Cmp용 연마액 및 연마 방법
JP6366308B2 (ja) * 2014-03-12 2018-08-01 株式会社ディスコ 加工方法
JP6405776B2 (ja) * 2014-08-07 2018-10-17 日立化成株式会社 タングステン用研磨剤、研磨剤用貯蔵液及び研磨方法
EP3237563B1 (en) * 2014-12-22 2019-02-20 Basf Se Use of a chemical mechanical polishing (cmp) composition for polishing of cobalt and / or co-balt alloy comprising substrates
CN108621033B (zh) * 2017-03-21 2020-04-07 中芯国际集成电路制造(上海)有限公司 研磨垫的研磨方法
KR102190916B1 (ko) * 2018-08-31 2020-12-15 씨제이제일제당 주식회사 점착 조성물, 및 이의 제조방법
US20200102475A1 (en) * 2018-09-28 2020-04-02 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mecahnical polishing composition and method of polishing silcon dioxide over silicon nitiride
TWI749287B (zh) * 2019-01-22 2021-12-11 達興材料股份有限公司 酸性過氧化氫水溶液組成物
US10781343B2 (en) * 2019-01-24 2020-09-22 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Acid polishing composition and method of polishing a substrate having enhanced defect inhibition
CN110064973A (zh) * 2019-03-21 2019-07-30 林德谊 一种铜或铜合金的表面抛光处理工艺
ES2837489B2 (es) * 2019-12-31 2022-02-28 Primalchit Solutions S L Mezcla de componentes organicos no polimericos con capacidad retardante de llama, metodo de preparacion y uso
CA3110390A1 (en) * 2021-02-25 2022-08-25 Sixring Inc. Modified sulfuric acid and uses thereof
WO2023034131A1 (en) * 2021-09-01 2023-03-09 Fujifilm Electronic Materials U.S.A., Inc. Polishing compositions and methods of using the same
CN113981450A (zh) * 2021-10-28 2022-01-28 兰溪市同力铝业股份有限公司 一种铝合金氧化工艺用二酸化抛物及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302968A (ja) * 2005-04-15 2006-11-02 Hitachi Chem Co Ltd 磁性金属膜および絶縁材料膜複合材料用研磨材および研磨方法
JP2007103485A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 研磨方法及びそれに用いる研磨液
JP2007150264A (ja) * 2005-10-27 2007-06-14 Hitachi Chem Co Ltd 有機絶縁材料膜及び銅膜複合材料用研磨材及び研磨方法
JP2008270826A (ja) * 2008-06-02 2008-11-06 Hitachi Chem Co Ltd 研磨液及び研磨方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954142A (en) 1989-03-07 1990-09-04 International Business Machines Corporation Method of chemical-mechanical polishing an electronic component substrate and polishing slurry therefor
US5575885A (en) * 1993-12-14 1996-11-19 Kabushiki Kaisha Toshiba Copper-based metal polishing solution and method for manufacturing semiconductor device
US6217416B1 (en) 1998-06-26 2001-04-17 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper/tantalum substrates
EP1137056B1 (en) * 1998-08-31 2013-07-31 Hitachi Chemical Company, Ltd. Abrasive liquid for metal and method for polishing
JP4053165B2 (ja) * 1998-12-01 2008-02-27 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
JP4164941B2 (ja) * 1999-05-27 2008-10-15 日立化成工業株式会社 金属用研磨液及び研磨方法
TWI296006B (ja) * 2000-02-09 2008-04-21 Jsr Corp
TWI268286B (en) 2000-04-28 2006-12-11 Kao Corp Roll-off reducing agent
US6551935B1 (en) * 2000-08-31 2003-04-22 Micron Technology, Inc. Slurry for use in polishing semiconductor device conductive structures that include copper and tungsten and polishing methods
EP1211024A3 (en) * 2000-11-30 2004-01-02 JSR Corporation Polishing method
US7128825B2 (en) * 2001-03-14 2006-10-31 Applied Materials, Inc. Method and composition for polishing a substrate
US7160432B2 (en) * 2001-03-14 2007-01-09 Applied Materials, Inc. Method and composition for polishing a substrate
US20040159050A1 (en) * 2001-04-30 2004-08-19 Arch Specialty Chemicals, Inc. Chemical mechanical polishing slurry composition for polishing conductive and non-conductive layers on semiconductor wafers
JP3899456B2 (ja) 2001-10-19 2007-03-28 株式会社フジミインコーポレーテッド 研磨用組成物およびそれを用いた研磨方法
WO2003094216A1 (fr) * 2002-04-30 2003-11-13 Hitachi Chemical Co., Ltd. Fluide de polissage et procede de polissage
US6803353B2 (en) * 2002-11-12 2004-10-12 Atofina Chemicals, Inc. Copper chemical mechanical polishing solutions using sulfonated amphiprotic agents
US7300601B2 (en) * 2002-12-10 2007-11-27 Advanced Technology Materials, Inc. Passivative chemical mechanical polishing composition for copper film planarization
US20040175942A1 (en) * 2003-01-03 2004-09-09 Chang Song Y. Composition and method used for chemical mechanical planarization of metals
US7736405B2 (en) * 2003-05-12 2010-06-15 Advanced Technology Materials, Inc. Chemical mechanical polishing compositions for copper and associated materials and method of using same
TW200427827A (en) * 2003-05-30 2004-12-16 Sumitomo Chemical Co Metal polishing composition
KR20070104479A (ko) * 2003-06-06 2007-10-25 어플라이드 머티어리얼스, 인코포레이티드 전도성 물질을 폴리싱하기 위한 폴리싱 조성물 및 방법
US7186653B2 (en) * 2003-07-30 2007-03-06 Climax Engineered Materials, Llc Polishing slurries and methods for chemical mechanical polishing
JP4707311B2 (ja) 2003-08-08 2011-06-22 花王株式会社 磁気ディスク用基板
US20050090104A1 (en) * 2003-10-27 2005-04-28 Kai Yang Slurry compositions for chemical mechanical polishing of copper and barrier films
TWI288046B (en) * 2003-11-14 2007-10-11 Showa Denko Kk Polishing composition and polishing method
TW200521217A (en) * 2003-11-14 2005-07-01 Showa Denko Kk Polishing composition and polishing method
US7390744B2 (en) 2004-01-29 2008-06-24 Applied Materials, Inc. Method and composition for polishing a substrate
JP5412706B2 (ja) * 2005-11-01 2014-02-12 日立化成株式会社 銅膜及び絶縁材料膜用研磨材及び研磨方法
JP2007270826A (ja) * 2006-03-07 2007-10-18 Denso Corp 燃料ポンプ
JPWO2007138975A1 (ja) * 2006-05-31 2009-10-08 旭硝子株式会社 研磨剤組成物および研磨方法
JP2008181955A (ja) * 2007-01-23 2008-08-07 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法
JP2008186898A (ja) 2007-01-29 2008-08-14 Nissan Chem Ind Ltd 研磨用組成物
JP2008235481A (ja) * 2007-03-19 2008-10-02 Nippon Chem Ind Co Ltd 半導体ウエハ研磨用組成物、その製造方法、及び研磨加工方法
JP2008270584A (ja) * 2007-04-23 2008-11-06 Nippon Chem Ind Co Ltd 半導体ウエハ研磨用組成物及び研磨加工方法
KR101472617B1 (ko) * 2007-07-30 2014-12-15 히타치가세이가부시끼가이샤 금속용 연마액 및 연마 방법
JP5275595B2 (ja) * 2007-08-29 2013-08-28 日本化学工業株式会社 半導体ウエハ研磨用組成物および研磨方法
WO2009047203A1 (en) * 2007-10-08 2009-04-16 Basf Se ETCHANT COMPOSITIONS AND ETCHING METHOD FOR METALS Cu/Mo
CN102703027A (zh) * 2009-02-16 2012-10-03 日立化成工业株式会社 铜研磨用研磨剂的应用
KR101666516B1 (ko) * 2009-11-27 2016-10-17 삼성전자주식회사 구리 식각용 조성물 및 이를 이용한 반도체 장치의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006302968A (ja) * 2005-04-15 2006-11-02 Hitachi Chem Co Ltd 磁性金属膜および絶縁材料膜複合材料用研磨材および研磨方法
JP2007103485A (ja) * 2005-09-30 2007-04-19 Fujifilm Corp 研磨方法及びそれに用いる研磨液
JP2007150264A (ja) * 2005-10-27 2007-06-14 Hitachi Chem Co Ltd 有機絶縁材料膜及び銅膜複合材料用研磨材及び研磨方法
JP2008270826A (ja) * 2008-06-02 2008-11-06 Hitachi Chem Co Ltd 研磨液及び研磨方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545277A (ja) * 2010-10-04 2013-12-19 インターナショナル・ビジネス・マシーンズ・コーポレーション フィンfetデバイスの製造のための化学機械平坦化プロセス
US20140131615A1 (en) * 2011-07-04 2014-05-15 Mitsubishi Gas Chemical Company, Inc. Etching solution for copper or a compound comprised mainly of copper
US9644274B2 (en) * 2011-07-04 2017-05-09 Mitsubishi Gas Chemical Company, Inc. Etching solution for copper or a compound comprised mainly of copper
WO2017208667A1 (ja) * 2016-06-03 2017-12-07 富士フイルム株式会社 研磨液、及び化学的機械的研磨方法
JPWO2017208667A1 (ja) * 2016-06-03 2019-05-16 富士フイルム株式会社 研磨液、及び化学的機械的研磨方法
US10858585B2 (en) 2018-01-03 2020-12-08 Ecolab Usa Inc. Benzotriazole derivatives as corrosion inhibitors

Also Published As

Publication number Publication date
CN102703027A (zh) 2012-10-03
KR101153510B1 (ko) 2012-06-11
US8859429B2 (en) 2014-10-14
JPWO2010093011A1 (ja) 2012-08-16
KR20110112429A (ko) 2011-10-12
JP5472271B2 (ja) 2014-04-16
TW201035301A (en) 2010-10-01
SG196817A1 (en) 2014-02-13
US8889555B2 (en) 2014-11-18
JP2012104835A (ja) 2012-05-31
US20120160804A1 (en) 2012-06-28
KR20120037509A (ko) 2012-04-19
CN102318042B (zh) 2015-07-01
CN102318042A (zh) 2012-01-11
JP4930641B2 (ja) 2012-05-16
CN102690605A (zh) 2012-09-26
CN102690605B (zh) 2015-01-21
TWI535834B (zh) 2016-06-01
KR101400585B1 (ko) 2014-05-27
SG172829A1 (en) 2011-08-29
US20120024818A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5472271B2 (ja) 銅研磨用研磨剤及びそれを用いた研磨方法
JP5516734B2 (ja) 銅研磨用研磨液及びそれを用いた研磨方法
KR20120023712A (ko) Cmp 연마액 및 연마 방법
JP5880524B2 (ja) 研磨剤及び研磨方法
JP2013004660A (ja) 銅研磨用研磨剤及びそれを用いた研磨方法
WO2011077973A1 (ja) 銅研磨用研磨剤及びそれを用いた研磨方法
JP6379764B2 (ja) 研磨液及び研磨方法
JP2018157164A (ja) 研磨用組成物、研磨用組成物の製造方法、研磨方法および半導体基板の製造方法
JP2012028516A (ja) 銅研磨用研磨液及びそれを用いた研磨方法
TWI833935B (zh) 研磨用組合物、研磨方法及基板之製造方法
JP2013004670A (ja) 金属用研磨液及び金属用研磨液を用いた研磨方法
JP2015028968A (ja) 化学機械研磨用水系分散体および化学機械研磨方法、ならびに化学機械研磨用水系分散体調製用キット
JP2022028258A (ja) 研磨剤、2液式研磨剤及び研磨方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080007580.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741288

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550557

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13201529

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117019004

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741288

Country of ref document: EP

Kind code of ref document: A1