WO2010092663A1 - センサ機構体及びそれを用いた電子天秤 - Google Patents

センサ機構体及びそれを用いた電子天秤 Download PDF

Info

Publication number
WO2010092663A1
WO2010092663A1 PCT/JP2009/052214 JP2009052214W WO2010092663A1 WO 2010092663 A1 WO2010092663 A1 WO 2010092663A1 JP 2009052214 W JP2009052214 W JP 2009052214W WO 2010092663 A1 WO2010092663 A1 WO 2010092663A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever
movable column
column
sub
load
Prior art date
Application number
PCT/JP2009/052214
Other languages
English (en)
French (fr)
Inventor
哲朗 楠本
敏寛 小出
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to US13/148,542 priority Critical patent/US8766113B2/en
Priority to EP09839985.0A priority patent/EP2397824B1/en
Priority to PCT/JP2009/052214 priority patent/WO2010092663A1/ja
Priority to CN200980156511XA priority patent/CN102317744B/zh
Priority to JP2010550361A priority patent/JP5195936B2/ja
Publication of WO2010092663A1 publication Critical patent/WO2010092663A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • G01G3/1414Arrangements for correcting or for compensating for unwanted effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G21/00Details of weighing apparatus
    • G01G21/24Guides or linkages for ensuring parallel motion of the weigh-pans
    • G01G21/244Guides or linkages for ensuring parallel motion of the weigh-pans combined with flexure-plate fulcrums
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • G01G3/1402Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • G01G3/1412Special supports with preselected places to mount the resistance strain gauges; Mounting of supports the supports being parallelogram shaped

Definitions

  • the present invention relates to a sensor mechanism that functions as a load sensor and an electronic balance using the same, and more particularly to a sensor mechanism that is configured to perform calibration using a built-in weight and an electronic balance that uses the sensor mechanism.
  • an electromagnetic force is generated by an electromagnetic force generator or the like against the displacement of the movable member of the sensor mechanism body due to the load of the object to be measured, thereby reducing the displacement of the movable member of the sensor mechanism body to 0. Therefore, the load of the object to be measured is measured from the magnitude of the electromagnetic force generated.
  • the sensor mechanism that causes the displacement of the movable member due to the load of the object to be measured include a fixed column fixed to the electronic balance base and a movable column (movable column) that transmits the load of the object to be measured placed on the weighing pan.
  • the displacement of the movable column due to the load of the object to be measured can be regulated in the vertical direction, and the deviation caused by the mounting position of the object to be measured on the weighing pan is also possible.
  • the placement error (so-called “four corner error”) can be eliminated.
  • the sensor mechanism body includes a lever that is swingably supported by a fulcrum to transmit the displacement of the movable column of the Roverval mechanism to the electromagnetic force generator with a large lever ratio, and is provided at one end of the lever. The displacement of the movable column of the coupled Roverval mechanism is transmitted to the electromagnetic force generator coupled to the other end of the lever.
  • FIG. 8 is a side view showing an example of an electronic balance including the sensor mechanism body shown in FIG. 7, and FIG. It is a figure which shows schematic structure of the electronic balance shown.
  • the sensor mechanism body 201 is a rectangular parallelepiped block body made of aluminum alloy, and includes a Roverval mechanism R, a first lever 231, a second lever 232, a Roverval mechanism R, a first lever 231, and a second lever 232. Are formed by providing holes, slits, or the like penetrating in the Y direction (thickness direction).
  • the Roverval mechanism R includes a fixed column 210 fixed to an electronic balance base (not shown) via a mounting member 7 made of a separate member, a movable column 211 to which the plate receiver 2a is fixed to the upper surface, and both ends. It comprises two beams 212 and 213 having flexible portions (hinge portions) 212a and 213a.
  • the movable column 211 and the fixed column 210 are connected by two parallel beams 212 and 213.
  • the weighing pan 2 on which the object to be measured is placed is placed on the tray receiver 2a. Thereby, the displacement of the movable column 211 due to the load of the object to be measured is restricted in the Z direction (vertical direction).
  • the first lever 231 is tiltable about the elastic first fulcrum 231a
  • the second lever 232 is tiltable about the elastic second fulcrum 232a.
  • the movable column 211 of the Roverval mechanism R is connected to the other end of the first lever 231 via the connecting member 241, and the other end of the first lever 231 is connected to the second lever 232 via the connecting member 242. It is connected to the vicinity of the second fulcrum 232a at the other end.
  • a proximal end portion of the take-out member 6 made of another member is fixed to the far end of the second fulcrum 232a of the other end portion of the second lever 232 with a screw or the like.
  • the load of the object to be measured placed on the weighing pan 2 is transferred to the take-out member 6 via the movable column 211, the connecting member 241, the first lever 231, the connecting member 242, and the second lever 232.
  • the tip is tilted.
  • Such displacement of the tip of the take-out member 6 is detected by a displacement sensor 9 fixed to the electronic balance base.
  • a force coil 3 a of the electromagnetic force generator 3 is fixed to the tip of the take-out member 6.
  • the magnitude of the current flowing through the force coil 3a of the electromagnetic force generator 3 is based on the detection signal from the displacement sensor 9 so that the displacement of the tip of the carry-out member 6 becomes zero. (Not shown).
  • the load of the object to be measured is measured from the magnitude of the current passed by the servo mechanism.
  • the magnitude of the current balanced with a predetermined load may vary from day to day due to, for example, changes in daily temperature.
  • an error occurs in the load (measurement result) of the measured object.
  • calibration is automatically performed appropriately by an operator's button operation or by a signal from a timer, a temperature sensor, or the like.
  • FIG. 10 is a diagram showing a schematic configuration of an electronic balance in which a built-in weight is installed.
  • the electronic balance 110 includes a main Roverval mechanism R1 for transmitting the load of the object to be measured placed on the weighing pan 2 in the Z direction (vertical direction), and a load of the built-in weight 4 placed on the locking portion 5.
  • Connection members 41, 142, and 143 that connect the second lever 32 and an electromagnetic force generator 3 that generates electromagnetic force are provided.
  • the second movable column 21 of the sub-rober mechanism R2 is coupled via a coupling member 143.
  • the sub-robal mechanism R2 includes a common fixed column 10 fixed to the electronic balance base, a second movable column 21 to which the engaging portion 5 is fixed, and flexible portions (hinge portions) 22a and 23a at both ends. It consists of the second beams 22 and 23 of the book.
  • the second movable column 21 and the common fixed column 10 are connected by two second beams 22 and 23 that are parallel to each other. Thereby, the displacement of the second movable column 21 due to the load of the built-in weight 4 is restricted in the Z direction (vertical direction).
  • FIG. 11 is a side view showing an example of an electronic balance including the sensor mechanism body shown in FIG. 13A is a cross-sectional view taken along the line HH shown in FIG. 11, FIG. 13B is a cross-sectional view taken along the line II shown in FIG. 11, and FIG. FIG. 12 is a sectional view taken along line JJ shown in FIG. 11.
  • the sensor mechanism body 101 is a rectangular parallelepiped block body made of an aluminum alloy, and includes a main Roverval mechanism R1, a Sub Roverval mechanism R2, a first lever 31, a second lever 32, a main Roverval mechanism R1, and a sub Rover.
  • the connecting members 41, 142, and 143 that connect the Roverval mechanism R2, the first lever 31, and the second lever 32 are formed by providing holes, slits, or the like that penetrate in the Y direction (thickness direction).
  • the main roval mechanism R1 includes a common fixed column 10 fixed to an electronic balance base via a mounting member 7, a first movable column 11 having a tray receiver 2a fixed to the upper surface, and flexible portions 12a and 13a at both ends.
  • the two first beams 12 and 13 having The first movable column 11 and the common fixed column 10 are connected by two first beams 12 and 13 that are parallel to each other. Thereby, the displacement of the first movable column 11 due to the load of the object to be measured is restricted in the Z direction (vertical direction).
  • the sub-robal mechanism R2 includes a common fixed column 10, a second movable column 21 to which the locking portion 5 is fixed by a screw or the like, and two second beams 22, 23 having flexible portions 22a, 23a at both ends.
  • the second movable column 21 and the common fixed column 10 are connected by two second beams 22 and 23 that are parallel to each other.
  • the built-in weight 4 is placed on the locking portion 5 fixed to the second movable column 21. Thereby, the displacement of the second movable column 21 due to the load of the built-in weight 4 is restricted in the Z direction (vertical direction).
  • the first lever 31 is tiltable about the first fulcrum 31a
  • the second lever 32 is tiltable about the second fulcrum 32a.
  • the first movable column 11 of the main Roverval mechanism R1 is connected to one end of the first lever 31 via the connecting member 41
  • the other end of the first lever 31 is connected to the second lever via the connecting member 142.
  • the other end of 32 is connected to the vicinity of the second fulcrum 32a.
  • the proximal end portion of the take-out member 6 is fixed to the far end of the second fulcrum 32a of the other end portion of the second lever 32 with a screw or the like.
  • the load of the object to be measured placed on the weighing pan 5 is taken out through the first movable column 11, the connecting member 41, the first lever 31, the connecting member 142, and the second lever 32.
  • the tip of 6 is tilted.
  • the second movable column 21 of the sub-robber mechanism R ⁇ b> 2 is connected to one end portion of the second lever 32 via the connecting member 143.
  • the load of the built-in weight 4 placed on the locking portion 5 causes the tip end portion of the take-out member 6 to tilt through the second movable column 21, the connecting member 143, and the second lever 32. It has become.
  • the main roval mechanism R1 can eliminate the four corner error in a state where the parallelism of the two first beams 12 and 13 is precisely adjusted, and is the first necessary for eliminating the four corner error.
  • the accuracy of the parallelism of the beams 12 and 13 is not achieved only by the accuracy of processing, but is adjusted by changing the mounting position of the object to be measured on the weighing pan 2 after processing or assembly, so-called four corners. Error adjustment work is required.
  • the four-corner error adjustment operation is performed by changing one of the flexible portions 12 a and 13 a formed at both ends of the first beams 12 and 13 while changing the placement position of the object to be measured on the weighing pan 2.
  • the inventors of the present invention can eliminate the four-corner error even if the four-corner error adjustment operation is performed when the sub-robal mechanism R2 for transmitting the load of the internal weight 4 is formed.
  • the cause of disappearance was examined.
  • one end of the second lever 32 is connected to the fixed common fixed column (second fixed column) 10 via the connecting member 143, the second movable column 21, and the second beams 22 and 23. Therefore, it has been found that the twist of the path from the auxiliary Roverval mechanism R2 acts on the second lever 32.
  • the second fixed column of the secondary robust column is connected to the second lever via a thin connecting portion in which cuts are formed from both sides in the Y direction (thickness direction), so that the second fixed column is connected to the second lever. It was found that the amount of torsional deformation acting on the material is adjusted.
  • the sensor mechanism body of the present invention includes a first fixed column fixed to or integrated with the electronic balance base, a first movable column that transmits the load of the object to be measured placed on the weighing pan, and the first A main Roverval mechanism comprising two parallel first beams connecting the first movable column to the first fixed column so that the movable column transmits the load of the object to be measured in the vertical direction; A second fixed column that is fixed or integrated, a second movable column that transmits the load of the built-in weight placed on the locking portion, and the second movable column that transmits the load of the built-in weight in the vertical direction.
  • a secondary Roverval mechanism having two parallel second beams connecting the second movable column to the second fixed column, and a pivotal support supported by the first fulcrum, and one end of the main Roverval mechanism.
  • a first lever coupled to the first movable column and a second lever coupled to the other end;
  • the second fulcrum is supported so as to be swingable, and the second movable column of the auxiliary Roverval mechanism is connected to one end, the electromagnetic force generator is connected to the other end, and the other end of the first lever is
  • the second fixed column of the sub-rover valve mechanism is thinned with notches formed from both sides in the thickness direction. Since it is connected to the second lever through the connecting portion, the thin connecting portion itself is flexibly deformed, so that the torsional deformation amount of the path from the first lever and the torsional deformation amount of the path from the auxiliary Roverval mechanism are They can be matched on the lever, and the posture of the second lever can be maintained in the same state as when no torsional torque is applied. Therefore, it is possible to eliminate the four-corner error caused by the torsional deformation from the auxiliary robust mechanism.
  • connection member that connects the second movable column and the second lever
  • the thin connection portion includes a first attachment portion that connects the connection member and the second movable column, a connection member, and a first member. You may make it form in the connection member part between the 2nd attaching part which attaches two levers, or a 1st attaching part and a 2nd attaching part.
  • the second beam has flexible portions at both ends, and the thin connection portion is formed on the flexible portion or the second beam portion between the flexible portions. It may be.
  • the first fixed column and the second fixed column may be common. Furthermore, in the above invention, the main and sub-loval mechanisms, the first lever and the second lever are integrated by providing a plurality of through holes and slits penetrating in the thickness direction in a rectangular parallelepiped block. You may make it form in this.
  • the electronic balance of the present invention is configured such that the sensor mechanism as described above, the built-in weight, the electromagnetic force generation device, and the load of the built-in weight are placed on the locking portion of the sub-roverval mechanism, or And a switching mechanism that can be switched so that the load of the built-in weight is not placed on the engaging portion of the sub-robal mechanism.
  • FIG. 3 is a side view illustrating an example of a single block type sensor mechanism according to the first embodiment.
  • It is sectional drawing shown in FIG. 6 is a side view illustrating an example of a single block type sensor mechanism according to Embodiment 2.
  • FIG. It is sectional drawing shown in FIG. FIG. 10 is a side view showing an example of a single block type sensor mechanism according to a third embodiment.
  • It is sectional drawing shown in FIG. It is a side view showing an example of a single block type sensor mechanism.
  • It is a side view which shows an example of an electronic balance provided with the sensor mechanism body shown in FIG.
  • Electromagnetic force generator 4 Built-in weight 5 Locking portion 10 Common fixed column (first fixed column, second fixed column) 11 First movable column 12, 13 First beam 21 Second movable column 22, 23, 62, 63 Second beam 31 First lever 31a First fulcrum 32 Second lever 32a Second fulcrum 42a, 42b, 43a, 43b R1 Rover main mechanism R2 Sub-robal mechanism
  • FIG. 1 is a side view showing an example of a single block type sensor mechanism body according to Embodiment 1
  • FIG. 2 (a) is a cross-sectional view taken along the line AA shown in FIG. ) Is a cross-sectional view taken along the line BB shown in FIG. 1, and
  • FIG. 2C is a cross-sectional view taken along the line CC shown in FIG.
  • symbol is attached
  • the sensor mechanism body 1 is a rectangular parallelepiped block body made of an aluminum alloy, and includes a main Roverval mechanism R1, a Sub-Rover valve mechanism R2, a first lever 31, a second lever 32, a main Roverval mechanism R1, and a sub-barrel mechanism.
  • the connecting members 41, 42, 43 for connecting the Roverval mechanism R2, the first lever 31, and the second lever 32 are formed by providing a hole, a slit, or the like penetrating in the Y direction (thickness direction).
  • the torsional deformation amount of the path from the sub-loval mechanism R2 is considerably larger than the torsional deformation amount of the path from the first lever 31, so that the notch portions 43a, 43b are not formed without forming the notch portions 42a, 42b. Only 43b may be formed.
  • the amount of twist deformation of the path from the first lever 31 and the amount of twist deformation of the path from the auxiliary Roverval mechanism R2 can be matched on the second lever 32. It is possible to maintain the posture of the second lever 32 in the same state as in the case where the torsional torque does not act. Therefore, it is possible to eliminate the four-corner error caused by the torsional deformation from the secondary robust mechanism R2.
  • FIG. 3 is a side view showing an example of a single block type sensor mechanism body according to the second embodiment
  • FIG. 4A is a cross-sectional view taken along the line DD shown in FIG.
  • FIG. 4C is a cross-sectional view taken along line FF shown in FIG.
  • symbol is attached
  • the sensor mechanism body 51 is a rectangular parallelepiped block body made of aluminum alloy, and includes a main Roverval mechanism R1, a Sub-Rover valve mechanism R2, a first lever 31, a second lever 32, a main Roverval mechanism R1, and a sub-barrel mechanism.
  • the connecting members 41, 52, 53 for connecting the Roverval mechanism R2, the first lever 31, and the second lever 32 are formed by providing holes, slits, or the like so as to penetrate in the Y direction (thickness direction). Yes.
  • cut portions 52a, 52b, 53a, and 53b cut from both sides in the Y direction (thickness direction) are formed.
  • the size of the notches 52a, 52b, 53a, 53b is such that the amount of twist deformation of the path from the first lever 31 and the amount of twist deformation of the path from the sub-robber mechanism R2 are matched on the second lever 32. As such, it is determined by calculation or adjustment work.
  • the torsional deformation amount of the path from the sub-loval mechanism R2 is considerably larger than the torsional deformation amount of the path from the first lever 31, so that the notch parts 53a, 52b are formed without forming the notch parts 52a, 52b. Only 53b may be formed.
  • the common fixed pillar 10 of the sub-Roberval mechanism R2 linked to a second beam 22, the second movable column 21, the second lever 32 via a connecting member 52 of thickness D Y of the central portion Therefore, the amount of twist deformation of the path from the first lever 31 and the amount of twist deformation of the path from the auxiliary Roverval mechanism R2 can be matched on the second lever 32 by flexibly deforming the connecting member itself.
  • the posture of the second lever 32 can be maintained in the same state as when no torsional torque is applied. Therefore, it is possible to eliminate the four-corner error caused by the torsional deformation from the secondary robust mechanism R2.
  • FIG. 5 is a side view showing an example of a single block type sensor mechanism according to the third embodiment
  • FIG. 6 is a cross-sectional view taken along the line GG shown in FIG.
  • symbol is attached
  • the sensor mechanism 61 is a rectangular parallelepiped block body made of an aluminum alloy, and includes a main Roverval mechanism R1, a Sub-Rovervalle mechanism R2, a first lever 31, a second lever 32, a main Roverval mechanism R1, and a sub-rotary mechanism.
  • the connecting members 41, 142, and 143 that connect the Roverval mechanism R2, the first lever 31, and the second lever 32 are formed by providing a hole, a slit, or the like so as to penetrate in the Y direction (thickness direction). Yes.
  • the sub-robal mechanism R2 includes a common fixed column 10, a second movable column 21 to which the locking portion 5 is fixed by screws or the like, and two second beams 62 and 63 having flexible portions 62a and 63a at both ends. It consists of.
  • the second movable column 21 and the common fixed column 10 are connected by two second beams 62 and 63 that are parallel to each other. In the vicinity of the center between the flexible portions 62a and 63a of the second beams 62 and 63, cut portions 62c, 62d, 63c, and 63d cut from both sides in the Y direction (thickness direction) are formed.
  • the sizes of the notches 62c, 62d, 63c, and 63d are such that the amount of twist deformation of the path from the first lever 31 and the amount of twist deformation of the path from the auxiliary Roverval mechanism R2 are matched on the second lever 32. As such, it is determined by calculation or adjustment work.
  • the sensor mechanism and the electronic balance of the present invention are used, for example, as those configured to perform calibration by using a built-in weight.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)
  • Combined Means For Separation Of Solids (AREA)

Abstract

 主ロバーバル機構R1と、電子天秤ベースに固定又は一体化される第二固定柱10と、係止部5に載置された内蔵分銅4の荷重を伝達する第二可動柱21と、第二可動柱21を第二固定柱10に連結する互いに平行な2本の第二梁22、23とを備える副ロバーバル機構R2と、第一支点31aにより揺動可能に支持され、かつ、一端部に主ロバーバル機構R1の第一可動柱11が連結され、他端部に第二レバー32が連結される第一レバー31と、第二支点32aにより揺動可能に支持され、かつ、一端部に副ロバーバル機構R2の第二可動柱21が連結され、他端部に電磁力発生装置3が連結されるとともに、第一レバー31の他端部が連結される第二レバー32とを備えるセンサ機構体1であって、副ロバーバル機構R2の第二固定柱10は、厚さ方向において両側から切り込みが形成された肉薄連結部分を介して第二レバー32と連結されることを特徴とする。

Description

センサ機構体及びそれを用いた電子天秤
 本発明は、荷重センサとして働くセンサ機構体及びそれを用いた電子天秤に関し、特に内蔵分銅により校正を行うように構成されたセンサ機構体及びそれを用いた電子天秤に関する。
 電子天秤においては、一般に、被測定物の荷重によるセンサ機構体の可動部材の変位に抗して、電磁力発生装置等によって電磁力を発生させることにより、センサ機構体の可動部材の変位を0とするために発生させた電磁力の大きさから被測定物の荷重を計測している。
 被測定物の荷重により可動部材の変位を生じるセンサ機構体としては、例えば、電子天秤ベースに固定される固定柱と、計量皿に載置された被測定物の荷重を伝達する可動柱(可動部材)と、可動柱を固定柱に連結する互いに平行な2本の梁とを備えるロバーバル機構(「パラレルガイド」とも称される)が形成されたものがある。このようなロバーバル機構が形成されたセンサ機構体では、被測定物の荷重による可動柱の変位を鉛直方向に規制することができ、さらに計量皿上における被測定物の載置位置に起因する偏置誤差(いわゆる、「四隅誤差」)を解消することができる。
 さらに、センサ機構体は、ロバーバル機構の可動柱の変位を電磁力発生装置に大きな梃子(テコ)比で伝達するために、支点により揺動可能に支持されたレバーを備え、レバーの一端部に連結されたロバーバル機構の可動柱の変位を、レバーの他端部に連結された電磁力発生装置に伝達している。
 このようなロバーバル機構とレバーとを含むメカニズムを、一つの金属製の直方体形状のブロックによって一体的に形成したセンサ機構体(いわゆる、「単体ブロックタイプのセンサ機構体」)を備える電子天秤が知られている(例えば、特許文献1参照)。
 図7は、単体ブロックタイプのセンサ機構体の一例を示す側面図であり、図8は、図7に示すセンサ機構体を備える電子天秤の一例を示す側面図であり、図9は、図7に示す電子天秤の概略構成を示す図である。
 センサ機構体201は、一つのアルミニウム合金製の直方体形状のブロック体であり、ロバーバル機構Rと、第一レバー231と、第二レバー232と、ロバーバル機構Rと第一レバー231と第二レバー232とを連結する連結部材241、242とが、Y方向(厚さ方向)に貫通する孔やスリット等を設けることによって形成されている。
 ロバーバル機構Rは、電子天秤ベース(図示せず)に、別部材からなる取付部材7を介して固定される固定柱210と、皿受け2aが上面に固着される可動柱211と、両端部に可撓部(ヒンジ部)212a、213aを有する2本の梁212、213とから構成される。そして、可動柱211と固定柱210とを、互いに平行な2本の梁212、213によって連結した構造となっている。なお、被測定物が載置される計量皿2は、皿受け2a上に載せられることになる。これにより、被測定物の荷重による可動柱211の変位をZ方向(鉛直方向)に規制している。
 第一レバー231は、弾性な第一支点231aを中心として傾動自在となり、第二レバー232は、弾性な第二支点232aを中心として傾動自在となっている。
 そして、ロバーバル機構Rの可動柱211は、連結部材241を介して第一レバー231の他端部に連結され、第一レバー231の他端部は、連結部材242を介して第二レバー232の他端部の第二支点232a近傍に連結される。第二レバー232の他端部の第二支点232a遠方には、別部材からなる持出部材6の基端部がネジ等によって固定される。これにより、計量皿2上に載置された被測定物の荷重は、可動柱211と連結部材241と第一レバー231と連結部材242と第二レバー232とを介して、持出部材6の先端部を傾動させるようになっている。
 このような持出部材6の先端部の変位は、電子天秤ベースに固定された変位センサ9によって検出される。また、持出部材6の先端部には、電磁力発生装置3のフォースコイル3aが固着されている。これにより、電磁力発生装置3のフォースコイル3aに流される電流の大きさは、変位センサ9からの検出信号に基づいて、持出部材6の先端部の変位が0となるようにサーボ機構(図示せず)によって制御される。そして、サーボ機構によって流された電流の大きさから被測定物の荷重が計測されることになる。
 一方、電子天秤では、例えば、日々の温度の変化等により、日ごとに所定の荷重と平衡させる電流の大きさが変動することがある。その結果、計測された被測定物の荷重(測定結果)に誤差が生じる。このため、温度の変化等により測定結果に誤差が生じないように、被測定物の荷重を計測する前に、校正用の分銅を用いて校正を行う必要がある。
 そこで、校正用の分銅を用いて校正を行う場合に、校正用の分銅の取り扱いや保管等に注意を要するので、内蔵分銅が予め設置された電子天秤がある(例えば、特許文献2参照)。このような内蔵分銅が設置された電子天秤では、操作者のボタン操作等により適宜に、或いは、タイマや温度センサ等の信号により自動的に校正が行われるようになっている。
 図10は、内蔵分銅が設置された電子天秤の概略構成を示す図である。電子天秤110は、計量皿2に載置された被測定物の荷重をZ方向(鉛直方向)に伝達するための主ロバーバル機構R1と、係止部5に載置された内蔵分銅4の荷重をZ方向(鉛直方向)に伝達するための副ロバーバル機構R2と、内蔵分銅4を係止部5に載置したり載置しないように切替可能である切替機構(図示せず)と、第一支点31aにより揺動可能に支持される第一レバー31と、第二支点32aにより揺動可能に支持される第二レバー32と、主ロバーバル機構R1と副ロバーバル機構R2と第一レバー31と第二レバー32とを連結する連結部材41、142、143と、電磁力を発生させる電磁力発生装置3とを備える。
 このような電子天秤110では、内蔵分銅4を用いて校正を行うために、電磁力発生装置3に連結された第二レバー32の他端部と反対側となる第二レバー32の一端部に、副ロバーバル機構R2の第二可動柱21が連結部材143を介して連結されている。副ロバーバル機構R2は、電子天秤ベースに固定される共通固定柱10と、係止部5が固着された第二可動柱21と、両端部に可撓部(ヒンジ部)22a、23aを有する2本の第二梁22、23とから構成される。そして、第二可動柱21と共通固定柱10とを、互いに平行な2本の第二梁22、23によって連結した構造となっている。これにより、内蔵分銅4の荷重による第二可動柱21の変位をZ方向(鉛直方向)に規制している。
 そして、被測定物の荷重を計測するときには、内蔵分銅4を切替機構により係止部5に載置せず、一方、校正を行うときには、内蔵分銅4を切替機構により係止部5に載置することで、内蔵分銅4の荷重を第二可動柱21に伝達する。内蔵分銅4の荷重が第二可動柱21に伝達されたときには、連結部材143を介して第二レバー232を傾動させるようになっている。
特開2004―61257号公報 特許第3645372号
 そこで、本件発明者らは、図10に示すような内蔵分銅4が設置された電子天秤110の構成を、単体ブロックタイプのセンサ機構体で形成するために、図11に示すような単体ブロックタイプのセンサ機構体101を作製した。また、図12は、図11に示すセンサ機構体を備える電子天秤の一例を示す側面図である。なお、図13(a)は、図11に示すH-H線の断面図であり、図13(b)は、図11に示すI-I線の断面図であり、図13(c)は、図11に示すJ―J線の断面図である。
 センサ機構体101は、一つのアルミニウム合金製の直方体形状のブロック体であり、主ロバーバル機構R1と、副ロバーバル機構R2と、第一レバー31と、第二レバー32と、主ロバーバル機構R1と副ロバーバル機構R2と第一レバー31と第二レバー32とを連結する連結部材41、142、143とが、Y方向(厚さ方向)に貫通する孔やスリット等を設けることによって形成されている。
 主ロバーバル機構R1は、電子天秤ベースに取付部材7を介して固定される共通固定柱10と、皿受け2aが上面に固着された第一可動柱11と、両端部に可撓部12a、13aを有する2本の第一梁12、13とから構成される。そして、第一可動柱11と共通固定柱10とを、互いに平行な2本の第一梁12、13によって連結した構造となっている。これにより、被測定物の荷重による第一可動柱11の変位をZ方向(鉛直方向)に規制している。
 副ロバーバル機構R2は、共通固定柱10と、係止部5がネジ等によって固着された第二可動柱21と、両端部に可撓部22a、23aを有する2本の第二梁22、23とから構成される。そして、第二可動柱21と共通固定柱10とを、互いに平行な2本の第二梁22、23によって連結した構造となっている。なお、内蔵分銅4は、第二可動柱21に固着された係止部5上に載せられることになる。これにより、内蔵分銅4の荷重による第二可動柱21の変位をZ方向(鉛直方向)に規制している。
 第一レバー31は、第一支点31aを中心として傾動自在となり、第二レバー32は、第二支点32aを中心として傾動自在となっている。
そして、主ロバーバル機構R1の第一可動柱11は、連結部材41を介して第一レバー31の一端部に連結され、第一レバー31の他端部は、連結部材142を介して第二レバー32の他端部の第二支点32a近傍に連結される。第二レバー32の他端部の第二支点32a遠方には、持出部材6の基端部がネジ等によって固着されている。これにより、計量皿5上に載置された被測定物の荷重は、第一可動柱11と連結部材41と第一レバー31と連結部材142と第二レバー32とを介して、持出部材6の先端部を傾動させるようになっている。
 また、副ロバーバル機構R2の第二可動柱21は、連結部材143を介して第二レバー32の一端部に連結される。これにより、係止部5上に載置された内蔵分銅4の荷重は、第二可動柱21と連結部材143と第二レバー32とを介して、持出部材6の先端部を傾動させるようになっている。
 ところで、主ロバーバル機構R1は、2本の第一梁12、13の平行度が精密に調整された状態において、四隅誤差を解消できるものであって、四隅誤差を解消するために必要な第一梁12、13の平行度の精度は、加工の精度のみにより達成されるものではなく、加工や組立後に実際に計量皿2上における被測定物の載置位置を変化させながらの調整、いわゆる四隅誤差の調整作業を必要としている。具体的には、四隅誤差の調整作業は、計量皿2上における被測定物の載置位置を変化させながら、第一梁12、13の両端部に形成された可撓部12a、13aの一部をヤスリ等で削り取り、各可撓部12a、13aの有効中心及び各可撓部12a、13aの剛性そのものを変化させることによって行っている。
 しかしながら、内蔵分銅4の荷重を伝達するための副ロバーバル機構R2を形成した場合、計量皿2上における被測定物の載置位置を変化させながら、可撓部12a、13aの一部をヤスリ等で削り取るような四隅誤差の調整作業を実行しても、計量皿2上におけるセンサ幅方向(Y方向)での端部に被測定物の荷重を負荷して、大きな捻りトルクが加わった場合に四隅誤差を解消できなくなった。
 本件発明者らは、上記課題を解決するために、内蔵分銅4の荷重を伝達するための副ロバーバル機構R2を形成した場合に、四隅誤差の調整作業を実行しても、四隅誤差を解消できなくなった原因について検討を行った。その結果、第二レバー32の一端部が、連結部材143と第二可動柱21と第二梁22、23とを介して、固定されている共通固定柱(第二固定柱)10と連結されているため、副ロバーバル機構R2からの経路の捻りが第二レバー32に作用することがわかった。そこで、副ロバーバル機構の第二固定柱を、Y方向(厚さ方向)において両側から切り込みが形成された肉薄連結部分を介して第二レバーと連結することにより、第二固定柱から第二レバーに作用する捻り変形量を調整することを見出した。
 すなわち、本発明のセンサ機構体は、電子天秤ベースに固定又は一体化される第一固定柱と、計量皿に載置された被測定物の荷重を伝達する第一可動柱と、当該第一可動柱が被測定物の荷重を鉛直方向に伝達するように第一可動柱を第一固定柱に連結する互いに平行な2本の第一梁とを備える主ロバーバル機構と、前記電子天秤ベースに固定又は一体化される第二固定柱と、係止部に載置された内蔵分銅の荷重を伝達する第二可動柱と、当該第二可動柱が内蔵分銅の荷重を鉛直方向に伝達するように第二可動柱を第二固定柱に連結する互いに平行な2本の第二梁とを備える副ロバーバル機構と、第一支点により揺動可能に支持され、かつ、一端部に主ロバーバル機構の第一可動柱が連結され、他端部に第二レバーが連結される第一レバーと、第二支点により揺動可能に支持され、かつ、一端部に副ロバーバル機構の第二可動柱が連結され、他端部に電磁力発生装置が連結されるとともに、第一レバーの他端部が連結される第二レバーとを備えるセンサ機構体であって、前記副ロバーバル機構の第二固定柱は、前記鉛直方向と垂直となる厚さ方向において両側から切り込みが形成された肉薄連結部分を介して第二レバーと連結されるようにしている。
 本発明のセンサ機構体によれば、内蔵分銅の荷重を伝達するための副ロバーバル機構を形成したとしても、副ロバーバル機構の第二固定柱を、厚さ方向において両側から切り込みが形成された肉薄連結部分を介して第二レバーと連結するので、肉薄連結部分自体がフレキシブルに変形することによって、第一レバーからの経路の捻り変形量と副ロバーバル機構からの経路の捻り変形量とを第二レバー上で一致させる事ができ、捻りトルクが作用した場合にも作用していない場合と同様な状態に第二レバーの姿勢を保つ事ができる。よって、副ロバーバル機構からの捻り変形に起因する四隅誤差を解消できる。
 また、上記発明において、前記第二可動柱と第二レバーとを連結する連結部材を備え、前記肉薄連結部分は、前記連結部材と第二可動柱とを取り付ける第一取付部、連結部材と第二レバーとを取り付ける第二取付部、又は、第一取付部と第二取付部との間の連結部材部分に形成されているようにしてもよい。
 また、上記発明において、前記第二梁は、両端部に可撓部を有し、前記肉薄連結部分は、前記可撓部、又は、可撓部間の第二梁部分に形成されているようにしてもよい。
 また、上記発明において、前記第一固定柱と第二固定柱とは、共通のものであるようにしてもよい。
 さらに、上記発明において、前記主ロバーバル機構と副ロバーバル機構と第一レバーと第二レバーとは、直方体形状のブロックにおいて厚さ方向に貫通する複数の貫通孔とスリットとが設けられることによって一体的に形成されているようにしてもよい。
 そして、本発明の電子天秤は、上述したようなセンサ機構体と、前記内蔵分銅と、前記電磁力発生装置と、前記内蔵分銅の荷重を副ロバーバル機構の係止部に載置するか、或いは、前記内蔵分銅の荷重を副ロバーバル機構の係止部に載置しないかのいずれかとなるように切替可能である切替機構とを備えるようにしている。
実施形態1に係る単体ブロックタイプのセンサ機構体の一例を示す側面図である。 図1に示す断面図である。 実施形態2に係る単体ブロックタイプのセンサ機構体の一例を示す側面図である。 図3に示す断面図である。 実施形態3に係る単体ブロックタイプのセンサ機構体の一例を示す側面図である。 図5に示す断面図である。 単体ブロックタイプのセンサ機構体の一例を示す側面図である。 図7に示すセンサ機構体を備える電子天秤の一例を示す側面図である。 図7に示す電子天秤の概略構成を示す図である。 内蔵分銅が設置された電子天秤の概略構成を示す図である。 単体ブロックタイプのセンサ機構体の一例を示す側面図である。 図11に示すセンサ機構体を備える電子天秤の一例を示す側面図である。 図11に示す断面図である。
符号の説明
1、51、61、101、201 センサ機構体
 3 電磁力発生装置
 4 内蔵分銅
 5 係止部
10 共通固定柱(第一固定柱、第二固定柱)
11 第一可動柱
12、13 第一梁
21 第二可動柱
22、23、62、63 第二梁
31 第一レバー
31a 第一支点
32 第二レバー
32a 第二支点
42a、42b、43a、43b 切込部
R1 主ロバーバル機構
R2 副ロバーバル機構
 以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
(実施形態1)
 図1は、実施形態1に係る単体ブロックタイプのセンサ機構体の一例を示す側面図であり、図2(a)は、図1に示すA-A線の断面図であり、図2(b)は、図1に示すB-B線の断面図であり、図2(c)は、図1に示すC―C線の断面図である。なお、上述したセンサ機構体101と同様のものについては、同じ符号を付して、説明を省略することとする。
 センサ機構体1は、一つのアルミニウム合金製の直方体形状のブロック体であり、主ロバーバル機構R1と、副ロバーバル機構R2と、第一レバー31と、第二レバー32と、主ロバーバル機構R1と副ロバーバル機構R2と第一レバー31と第二レバー32とを連結する連結部材41、42、43とが、Y方向(厚さ方向)に貫通する孔やスリット等を設けることによって形成されている。
 連結部材42、43と、連結部材42、43と第二レバー32とを取り付ける第二取付部と、連結部材42、43と第一レバー31とを取り付ける第一取付部とには、Y方向(厚さ方向)において、可撓部及び連結部材に両側から切り込まれた切込部42a、42b、43a、43bが形成されている。
 なお、切込部42a、42b、43a、43bの大きさは、第一レバー31からの経路の捻り変形量と副ロバーバル機構R2からの経路の捻り変形量とを第二レバー32上で一致させるように、計算や調整作業等によって決定される。このとき、副ロバーバル機構R2からの経路の捻り変形量が、第一レバー31からの経路の捻り変形量よりもかなり大きいので、切込部42a、42bを形成せずに、切込部43a、43bのみを形成することとしてもよい。
 これにより、副ロバーバル機構R2の共通固定柱10を、第二梁22、23と、第二可動柱21と、厚さDの連結部材43とを介して第二レバー32と連結するので、可撓部及び連結部材自体がフレキシブルに変形することにより、第一レバー31からの経路の捻り変形量と副ロバーバル機構R2からの経路の捻り変形量とを第二レバー32上で一致させる事ができ、捻りトルクが作用した場合にも作用していない場合と同様な状態に、第二レバー32の姿勢を保つ事ができる。よって、副ロバーバル機構R2からの捻り変形に起因する四隅誤差を解消できる。
(実施形態2)
 図3は、実施形態2に係る単体ブロックタイプのセンサ機構体の一例を示す側面図であり、図4(a)は、図3に示すD-D線の断面図であり、図4(b)は、図3に示すE-E線の断面図であり、図4(c)は、図3に示すF―F線の断面図である。なお、上述したセンサ機構体101と同様のものについては、同じ符号を付して、説明を省略することとする。
 センサ機構体51は、一つのアルミニウム合金製の直方体形状のブロック体であり、主ロバーバル機構R1と、副ロバーバル機構R2と、第一レバー31と、第二レバー32と、主ロバーバル機構R1と副ロバーバル機構R2と第一レバー31と第二レバー32とを連結する連結部材41、52、53とが、Y方向(厚さ方向)に貫通するように孔やスリット等を設けることによって形成されている。
 連結部材52、53の中央部には、Y方向(厚さ方向)において両側から切り込まれた切込部52a、52b、53a、53bが形成されている。
 なお、切込部52a、52b、53a、53bの大きさは、第一レバー31からの経路の捻り変形量と副ロバーバル機構R2からの経路の捻り変形量とを第二レバー32上で一致させるように、計算や調整作業等によって決定される。このとき、副ロバーバル機構R2からの経路の捻り変形量が、第一レバー31からの経路の捻り変形量よりもかなり大きいので、切込部52a、52bを形成せずに、切込部53a、53bのみを形成することとしてもよい。
 これにより、副ロバーバル機構R2の共通固定柱10を、第二梁22、23と、第二可動柱21と、中央部の厚さDの連結部材52とを介して第二レバー32と連結するので、連結部材自体がフレキシブルに変形することにより、第一レバー31からの経路の捻り変形量と副ロバーバル機構R2からの経路の捻り変形量とを第二レバー32上で一致させる事ができ、捻りトルクが作用した場合にも作用していない場合と同様な状態に、第二レバー32の姿勢を保つ事ができる。よって、副ロバーバル機構R2からの捻り変形に起因する四隅誤差を解消できる。
(実施形態3)
 図5は、実施形態3に係る単体ブロックタイプのセンサ機構体の一例を示す側面図であり、図6は、図5に示すG-G線の断面図である。なお、上述したセンサ機構体101と同様のものについては、同じ符号を付して、説明を省略することとする。
 センサ機構体61は、一つのアルミニウム合金製の直方体形状のブロック体であり、主ロバーバル機構R1と、副ロバーバル機構R2と、第一レバー31と、第二レバー32と、主ロバーバル機構R1と副ロバーバル機構R2と第一レバー31と第二レバー32とを連結する連結部材41、142、143とが、Y方向(厚さ方向)に貫通するように孔やスリット等を設けることによって形成されている。
 副ロバーバル機構R2は、共通固定柱10と、係止部5がネジ等によって固着された第二可動柱21と、両端部に可撓部62a、63aを有する2本の第二梁62、63とから構成される。そして、第二可動柱21と共通固定柱10とを、互いに平行な2本の第二梁62、63によって連結した構造となっている。
 第二梁62、63の可撓部62a、63a間の中央付近には、Y方向(厚さ方向)において両側から切り込まれた切込部62c、62d、63c、63dが形成されている。
 なお、切込部62c、62d、63c、63dの大きさは、第一レバー31からの経路の捻り変形量と副ロバーバル機構R2からの経路の捻り変形量とを第二レバー32上で一致させるように、計算や調整作業等によって決定される。
 これにより、副ロバーバル機構R2の共通固定柱10を、中央部の厚さDの第二梁62と、中央部の厚さDの第二梁63と、第二可動柱21と、連結部材143とを介して第二レバー32と連結するので、副ロバーバル機構R2の第二梁62、63自体がフレキシブルに変形することにより、第一レバー31からの経路の捻り変形量と副ロバーバル機構R2からの経路の捻り変形量とを第二レバー32上で一致させる事ができ、捻りトルクが作用した場合にも作用していない場合と同様な状態に、第二レバー32の姿勢を保つ事ができる。よって、副ロバーバル機構R2からの捻り変形に起因する四隅誤差を解消できる。
 本発明のセンサ機構体及び電子天秤は、例えば、内蔵分銅が用いられることにより校正を行うように構成されたものとして、利用される。

Claims (6)

  1.  電子天秤ベースに固定又は一体化される第一固定柱と、計量皿に載置された被測定物の荷重を伝達する第一可動柱と、当該第一可動柱が被測定物の荷重を鉛直方向に伝達するように第一可動柱を第一固定柱に連結する互いに平行な2本の第一梁とを備える主ロバーバル機構と、
     前記電子天秤ベースに固定又は一体化される第二固定柱と、係止部に載置された内蔵分銅の荷重を伝達する第二可動柱と、当該第二可動柱が内蔵分銅の荷重を鉛直方向に伝達するように第二可動柱を第二固定柱に連結する互いに平行な2本の第二梁とを備える副ロバーバル機構と、
     第一支点により揺動可能に支持され、かつ、一端部に主ロバーバル機構の第一可動柱が連結され、他端部に第二レバーが連結される第一レバーと、
     第二支点により揺動可能に支持され、かつ、一端部に副ロバーバル機構の第二可動柱が連結され、他端部に電磁力発生装置が連結されるとともに、第一レバーの他端部が連結される第二レバーとを備えるセンサ機構体であって、
     前記副ロバーバル機構の第二固定柱は、前記鉛直方向と垂直となる厚さ方向において両側から切り込みが形成された肉薄連結部分を介して第二レバーと連結されることを特徴とするセンサ機構体。
  2.  前記第二可動柱と第二レバーとを連結する連結部材を備え、
     前記肉薄連結部分は、前記連結部材と第二可動柱とを取り付ける第一取付部、連結部材と第二レバーとを取り付ける第二取付部、又は、第一取付部と第二取付部との間の連結部材部分に形成されていることを特徴とする請求項1に記載のセンサ機構体。
  3.  前記第二梁は、両端部に可撓部を有し、
     前記肉薄連結部分は、前記可撓部、又は、可撓部間の第二梁部分に形成されていることを特徴とする請求項1に記載のセンサ機構体。
  4.  前記第一固定柱と第二固定柱とは、共通のものであることを特徴とする請求項1~請求項3のいずれかに記載のセンサ機構体。
  5.  前記主ロバーバル機構と副ロバーバル機構と第一レバーと第二レバーとは、直方体形状のブロックにおいて厚さ方向に貫通する複数の貫通孔とスリットとが設けられることによって一体的に形成されていることを特徴とする請求項1~請求項4のいずれかに記載のセンサ機構体。
  6.  請求項1~請求項5のいずれかに記載のセンサ機構体と、
     前記内蔵分銅と、
     前記電磁力発生装置と、
     前記内蔵分銅の荷重を副ロバーバル機構の係止部に載置するか、或いは、前記内蔵分銅の荷重を副ロバーバル機構の係止部に載置しないかのいずれかとなるように切替可能である切替機構とを備えることを特徴とする電子天秤。
PCT/JP2009/052214 2009-02-10 2009-02-10 センサ機構体及びそれを用いた電子天秤 WO2010092663A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/148,542 US8766113B2 (en) 2009-02-10 2009-02-10 Sensor mechanism body comprising two roberval mechanisms and electronic balance using the same
EP09839985.0A EP2397824B1 (en) 2009-02-10 2009-02-10 Sensor mechanism body and electronic balance using the same
PCT/JP2009/052214 WO2010092663A1 (ja) 2009-02-10 2009-02-10 センサ機構体及びそれを用いた電子天秤
CN200980156511XA CN102317744B (zh) 2009-02-10 2009-02-10 传感器机构体及使用该传感器机构体的电子秤
JP2010550361A JP5195936B2 (ja) 2009-02-10 2009-02-10 センサ機構体及びそれを用いた電子天秤

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/052214 WO2010092663A1 (ja) 2009-02-10 2009-02-10 センサ機構体及びそれを用いた電子天秤

Publications (1)

Publication Number Publication Date
WO2010092663A1 true WO2010092663A1 (ja) 2010-08-19

Family

ID=42561516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/052214 WO2010092663A1 (ja) 2009-02-10 2009-02-10 センサ機構体及びそれを用いた電子天秤

Country Status (5)

Country Link
US (1) US8766113B2 (ja)
EP (1) EP2397824B1 (ja)
JP (1) JP5195936B2 (ja)
CN (1) CN102317744B (ja)
WO (1) WO2010092663A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5937456B2 (ja) * 2012-08-07 2016-06-22 東京エレクトロン株式会社 基板洗浄装置および基板洗浄ユニット
EP2860501B1 (de) * 2013-10-10 2016-09-14 Mettler-Toledo GmbH Wägezelle mit einer Vorrichtung zur Korrektur exzentrischer Belastungsfehler und Verfahren zur Korrektur exzentrischer Belastungsfehler
CN106461476B (zh) * 2014-06-11 2019-01-25 尼尔斯·奥格·尤尔·艾勒森 具有弹性体的负荷传感器
WO2016188960A1 (en) 2015-05-26 2016-12-01 Mettler-Toledo Gmbh Weigh module with parallel-guiding mechanism module
KR101804297B1 (ko) 2016-02-23 2017-12-04 (주)아이투에이시스템즈 변위증폭 메카니즘을 이용한 힘센서 및 이를 포함하는 중량측정장치
US11698309B2 (en) * 2020-03-05 2023-07-11 Delta Electronics, Inc. Linear actuator
EP4009013A1 (de) 2020-12-04 2022-06-08 Mettler-Toledo GmbH Strukturkörper eines wägesensors
EP4063806A1 (en) 2021-03-25 2022-09-28 Mettler-Toledo GmbH Monoblock sensor body and method of its manufacturing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735601A (ja) * 1993-07-16 1995-02-07 Tec Corp ロードセル秤
JP2004061257A (ja) 2002-07-29 2004-02-26 Shimadzu Corp 電子天びん
JP3593954B2 (ja) * 2000-05-31 2004-11-24 株式会社島津製作所 電子天びん
WO2008026378A1 (fr) * 2006-08-29 2008-03-06 Shimadzu Corporation Balance électronique

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0291258A3 (en) * 1987-05-09 1990-03-28 Shimadzu Corporation Electronic balance
DE4119734A1 (de) * 1991-06-14 1992-12-17 Mettler Toledo Ag Vorrichtung zur kraftuntersetzung in einer kraftmesseinrichtung, insbesondere einer waage
GB9219074D0 (en) * 1992-09-09 1992-10-21 Gec Avery Technology Improvements in or relating to weighing machines
JP3645372B2 (ja) 1996-09-18 2005-05-11 株式会社エー・アンド・デイ 電子天秤
DE10054847C2 (de) * 2000-11-04 2002-10-17 Sartorius Gmbh Wägeaufnehmer mit Justiergewicht
DE10326699B3 (de) * 2003-06-13 2005-01-13 Sartorius Ag Kompaktes Wägesystem
JP4203737B2 (ja) * 2003-07-28 2009-01-07 株式会社島津製作所 ロードセル式重量測定装置
ATE349000T1 (de) * 2004-02-12 2007-01-15 Mettler Toledo Ag Wägezellenmodul
US7091428B2 (en) * 2004-06-24 2006-08-15 Shinko Denshi Co., Ltd. Weighing apparatus with Roberval mechanism
DE502004003701D1 (de) * 2004-09-30 2007-06-14 Mettler Toledo Ag Kraftübertragungsvorrichtung für eine Waage
DE102006002711C5 (de) * 2006-01-19 2009-11-12 Wipotec Wiege- Und Positioniersysteme Gmbh Wägeaufnehmer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0735601A (ja) * 1993-07-16 1995-02-07 Tec Corp ロードセル秤
JP3593954B2 (ja) * 2000-05-31 2004-11-24 株式会社島津製作所 電子天びん
JP2004061257A (ja) 2002-07-29 2004-02-26 Shimadzu Corp 電子天びん
WO2008026378A1 (fr) * 2006-08-29 2008-03-06 Shimadzu Corporation Balance électronique

Also Published As

Publication number Publication date
US20110315458A1 (en) 2011-12-29
CN102317744B (zh) 2013-09-04
EP2397824A1 (en) 2011-12-21
EP2397824A4 (en) 2011-12-21
CN102317744A (zh) 2012-01-11
US8766113B2 (en) 2014-07-01
EP2397824B1 (en) 2019-10-09
JPWO2010092663A1 (ja) 2012-08-16
JP5195936B2 (ja) 2013-05-15

Similar Documents

Publication Publication Date Title
JP5195936B2 (ja) センサ機構体及びそれを用いた電子天秤
JP3908256B2 (ja) 荷重トランスデューサ及び計量器の取付構造
US8839655B2 (en) Test stand with an apparatus for calibrating a force-measuring device
JP3423578B2 (ja) 力測定装置用衝撃防護装置
JP6130895B2 (ja) 坪量器用の平行四辺形リンケージ構造
CN110849450B (zh) 称重传感器及包括其的称重秤
US5962818A (en) Top scale balance
US6307165B1 (en) Electronic balance
EP1593943B1 (en) Load measuring mechanism
EP1160547A2 (en) Electronic balance
JP4168275B2 (ja) 重量測定装置
JPH0611381A (ja) 負荷測定装置特に重量計
JPH0229179B2 (ja) Denshibakari
US9116032B2 (en) Weighing device measuring sum forces coupled together from two or more weighbridges
JP2003247886A (ja) はかり
JPH032413B2 (ja)
JP6128021B2 (ja) センサ機構体及び電子天秤
JP3931937B2 (ja) 電子天びん
US20050023048A1 (en) Load cell
JP2004028750A (ja) 電子天びん
JP4667765B2 (ja) 計量機構
JPWO2005031286A1 (ja) 荷重測定機構
JPH0222652Y2 (ja)
JP2002357491A (ja) ロードセル

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980156511.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09839985

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010550361

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13148542

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009839985

Country of ref document: EP