WO2010089953A1 - プラズマディスプレイパネル - Google Patents

プラズマディスプレイパネル Download PDF

Info

Publication number
WO2010089953A1
WO2010089953A1 PCT/JP2010/000162 JP2010000162W WO2010089953A1 WO 2010089953 A1 WO2010089953 A1 WO 2010089953A1 JP 2010000162 W JP2010000162 W JP 2010000162W WO 2010089953 A1 WO2010089953 A1 WO 2010089953A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma display
display panel
pdp
protective layer
panel according
Prior art date
Application number
PCT/JP2010/000162
Other languages
English (en)
French (fr)
Inventor
井上修
浅野洋
奥井やよい
奥山浩二郎
白石誠吾
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010549369A priority Critical patent/JPWO2010089953A1/ja
Priority to CN2010800031565A priority patent/CN102217027A/zh
Priority to US13/125,282 priority patent/US20110193474A1/en
Publication of WO2010089953A1 publication Critical patent/WO2010089953A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J17/00Gas-filled discharge tubes with solid cathode
    • H01J17/38Cold-cathode tubes
    • H01J17/48Cold-cathode tubes with more than one cathode or anode, e.g. sequence-discharge tube, counting tube, dekatron
    • H01J17/49Display panels, e.g. with crossed electrodes, e.g. making use of direct current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers

Definitions

  • the present invention relates to a plasma display panel (PDP).
  • PDP plasma display panel
  • PDPs Plasma display panels
  • two glass substrates which are a front substrate and a back substrate, are arranged to face each other, and a pair of regularly arranged electrodes are provided to cover these electrodes.
  • Is provided with a dielectric layer such as low melting point glass.
  • a phosphor layer is provided on the dielectric layer of the rear substrate, and the dielectric layer of the front substrate is made of MgO to protect the dielectric layer from ion bombardment and improve secondary electron emission properties.
  • a protective layer is provided.
  • a gas mainly composed of an inert gas such as Ne or Xe is sealed between the two substrates.
  • Such a PDP performs display by applying a voltage between the electrodes to generate a discharge and causing the phosphor to emit light.
  • Patent Documents 1 and 2 instead of MgO, the same alkaline earth metal oxide is used, but CaO, SrO, BaO having a higher secondary electron emission coefficient is used, or a solid solution of these compounds is used. It has been studied to form a protective layer using the same. JP-A-52-63663 JP 2007-95436 A
  • CaO, SrO, BaO and the like are chemically unstable as compared with MgO and easily react with moisture and carbon dioxide in the air to form hydroxides and carbonates.
  • the secondary electron emission coefficient of the protective layer is lowered, and the discharge start voltage and sustain voltage cannot be reduced as expected, or the aging time required for voltage reduction is extremely high.
  • rare earth metal oxides such as La 2 O 3 should originally have a high secondary electron emission coefficient, but they are chemically unstable like CaO and are practically used even if they are used as a protective film. Characteristics are not obtained.
  • MgO is the only protective layer material that has been put into practical use even though the use of a material having a high secondary electron emission coefficient has been studied.
  • an object of the present invention is to increase the efficiency of a PDP by providing a material suitable for improving the secondary electron emission coefficient of the PDP.
  • Ca, Sr, Ba, and rare earth metal are formed in a region facing the discharge space.
  • One or more selected compounds, and a compound mainly composed of In and O (oxygen) were arranged.
  • the “region facing the discharge space” is a region irradiated with charged particles or the like as a result of the discharge in the discharge space.
  • the surface of the protective layer, the surface of the phosphor layer, the surface of the partition wall In addition, the inside of the protective layer, the inside of the phosphor layer, and the inside of the partition wall also correspond to this.
  • the compound is preferably a crystalline material, specifically, MIn 2 O 4 (M is one or more selected from Ca, Sr, Ba), MInO 3 (M is one or more rare earth metals). ), (M1 1-x M2 x ) InO 3 - ⁇ (M1 is one or more rare earth metals, M2 is one or more selected from Sr and Ca), M1 (In 1/2 M2 1/2 ) O 3 It is desirable that it is at least one (M1 is one or more of Ca, Sr and Ba and M2 is one or more selected from Nb and Ta).
  • represents the amount of oxygen deficiency and is a value smaller than 1.
  • the compound having one or more kinds selected from Ca, Sr, Ba, and rare earth metals, and In and O (oxygen) as main components is chemically stable.
  • the secondary electron emission coefficient is high. Therefore, by disposing this compound in a place facing the discharge space in the PDP, the driving voltage of the PDP can be lowered and there is practicality.
  • a MgO film having high ion bombardment resistance is used as the protective layer and the above compound is used as an electron emission material, a PDP having a low driving voltage and a long poisoning life can be provided.
  • the inventors have reacted In 2 O 3 with CaO, SrO, BaO, and rare earth metal oxides that have a high secondary electron emission efficiency but are chemically unstable, and thus Ca, Sr, Ba. It has been found that the chemical stability can be improved without reducing the secondary electron emission efficiency so much by using a compound containing at least one kind of rare earth metal and In and O. Then, it was found that by using this electron-emitting material for the protective layer of the PDP, the driving voltage can be lowered as compared with the PDP using only MgO for the protective layer.
  • the electron-emitting material used for the PDP in the present invention is a compound mainly composed of any one or more selected from Ca, Sr, Ba, and rare earth metals, and In and O.
  • This compound may be in an amorphous state, but is preferably a crystalline compound in order to further improve the stability.
  • preferred crystalline compounds include MIn 2 O 4 (M is one or more selected from Ca, Sr, Ba), MInO 3 (M is one or more rare earth metals), (M1 1-x M2 x ) InO 3 - ⁇ (M1 is one or more rare earth metals, M2 is one or more selected from Sr and Ca), M1 (In 1/2 M2 1/2 ) O 3 (M1 is Ca, Sr, One or more types selected from Ba, and M2 is one or more types selected from Nb and Ta).
  • M is one or more selected from Ca, Sr, Ba
  • MInO 3 M is one or more rare earth metals
  • M1 1-x M2 x InO 3 - ⁇
  • M1 is one or more rare earth metals
  • M2 is one or more selected from Sr and Ca
  • M1 (In 1/2 M2 1/2 ) O 3 M1 is Ca, Sr, One or more types selected from Ba, and M2 is one or more types selected from Nb and Ta).
  • the compound containing CaO has higher secondary electron emission efficiency than the compound containing rare earth metal oxide, and the compound containing SrO than the compound containing CaO.
  • the secondary electron emission efficiency is higher, and the compound containing BaO tends to have higher secondary electron emission efficiency than the compound containing SrO.
  • chemical stability tends to be in the reverse order.
  • Examples of the method for synthesizing a compound mainly composed of one or more of Ca, Sr, Ba, and rare earth metals and In and O include a solid phase method, a liquid phase method, and a vapor phase method. .
  • the solid phase method is a method in which raw material powders (metal oxide, metal carbonate, etc.) containing each metal are mixed and heat-treated at a temperature of a certain level or more to react.
  • a solution containing each metal is prepared, and a solid phase is precipitated from the solution.
  • the solution is applied onto a substrate and then dried, and then subjected to heat treatment at a certain temperature or more to obtain a solid phase. Is the method.
  • the vapor phase method is a method such as vapor deposition, sputtering, or CVD, and a film-like solid phase can be obtained.
  • the vapor phase method in addition to the above-described crystalline oxide in which Ca, Sr, Ba, rare earth metal and In have a specific ratio, one or more selected from Ca, Sr, Ba, and rare earth metal It is also possible to obtain an amorphous compound mainly composed of In and O (oxygen).
  • This amorphous film is also chemically more stable than CaO, SrO, BaO, and rare earth metal oxides, and has a higher secondary electron emission efficiency than MgO, so that the driving voltage of the PDP can be reduced. I can do it.
  • the crystalline compound has higher chemical stability, and as a synthesis method, the vapor phase method is more expensive than the solid phase method, and therefore the crystalline compound is more desirable.
  • What part of the PDP panel is formed with the electron-emitting material may be disposed at least in a region facing the discharge space, and is generally formed on a dielectric layer covering the electrodes on the front plate. Just do it.
  • the effect of lowering the driving voltage is recognized even if it is formed in another part, for example, a position such as a phosphor part or a rib surface, as long as at least a part thereof is in a region facing the discharge space, compared to the part not formed. .
  • the form of disposing the electron-emitting material for example, in the case where it is formed on a dielectric layer covering the electrodes of the front plate, instead of the MgO film that is usually formed on the dielectric layer as a protective film, A method of forming a film with these compounds, spraying these powders, or forming a film of these compounds on top of forming an MgO film, or spraying powders of these compounds. Take it.
  • the particle diameter in the case of using soot powder may be selected in accordance with the cell size or the like within a range of about 0.1 ⁇ m to 10 ⁇ m.
  • Ca, Sr, Ba, and rare earth metals can be partially substituted with other metal elements, but the main component is one or more selected from Ca, Sr, Ba, and rare earth metals, and In. And O, these small amounts of substitution may be used as long as they do not inherently detract from the properties (chemically stable and high secondary electron emission efficiency) of the compounds of the present invention.
  • the main component is a composition range necessary for the secondary electron emission characteristics to be expressed with good chemical stability even if it is substituted with other elements.
  • the approximate range is 80% or more, more preferably 90% or more in terms of the total element ratio of the cation elements, and it is sufficient if one or more selected from Ca, Sr, Ba, and rare earth metals is In. .
  • FIG. 1 and 2 show an example of a PDP 100 according to an embodiment of the present invention.
  • FIG. 1 is an exploded perspective view of the PDP 100
  • FIG. 2 is a longitudinal sectional view of the PDP 100 (FIGS. 1 and I). -I line sectional view).
  • the PDP 100 has a front panel 1 and a back panel 8.
  • a discharge space 14 is formed between the front panel 1 and the back panel 8.
  • This PDP is an AC surface discharge type, and has the same configuration as the PDP according to the conventional example, except that the electron-emitting material described above is arranged in the protective layer.
  • the front plate 1 is formed so as to cover the front glass substrate 2, the display electrode 5 composed of the transparent conductive film 3 and the bus electrode 4 formed on the inner side surface (the surface facing the discharge space 14), and the display electrode 5.
  • the display electrode 5 is formed by laminating a bus electrode 4 made of Ag or the like on a transparent conductive film 3 made of ITO or tin oxide in order to ensure good conductivity.
  • the back plate 8 includes a back glass substrate 9, an address electrode 10 formed on one side thereof, a dielectric layer 11 formed so as to cover the address electrode 10, and a partition wall 12 provided on the top surface of the dielectric layer 11. And each color phosphor layer 13 formed between the partition walls 12.
  • Each color phosphor layer 13 includes a red phosphor layer 13 (R), a green phosphor layer 13 (G), and a blue phosphor layer 13 (B) arranged in this order.
  • BaMgAl 10 O 17 : Eu is used as a blue phosphor
  • Zn 2 SiO 4 : Mn is used as a green phosphor
  • Y 2 O 3 : Eu is used as a red phosphor.
  • the front plate 1 and the back plate 8 are arranged so that the longitudinal directions of the display electrodes 5 and the address electrodes 10 are orthogonal to each other and face each other, and are joined using a sealing member (not shown).
  • the discharge space 14 is filled with a discharge gas composed of a rare gas component such as He, Xe, or Ne.
  • the display electrode 5 and the address electrode 10 are each connected to an external drive circuit (not shown), and a discharge is generated in the discharge space 14 by a voltage applied from the drive circuit, and a short wavelength (wavelength generated by the discharge).
  • the phosphor layer 13 is excited by ultraviolet rays of 147 nm and emits visible light.
  • the electron-emitting material faces the discharge space 14 and has an effect of reducing the driving voltage.
  • the PDP 200 shown in FIGS. 3 and 4 is according to another embodiment.
  • FIG. 3 is an exploded perspective view of the PDP 200
  • FIG. 4 is a longitudinal sectional view of the PDP 200 (a sectional view taken along line II in FIG. 3).
  • This PDP 200 has the same structure as the PDP 100, but the protective layer 7 is made of MgO, and particles made of the above-described electron-emitting material are dispersed on the protective layer 7 to form the electron-emitting layer 20. Yes.
  • the electron emission layer 20 faces the discharge space 14, and the effect of reducing the drive voltage is achieved.
  • the PDP on which the electron-emitting material is disposed is not limited to the surface discharge type, but may be a counter discharge type.
  • the PDP is not necessarily limited to a PDP having a front plate, a back plate, and a partition wall, and may be a PDP that emits light by applying a voltage between electrodes to discharge in a discharge space and converting it into visible light with a phosphor. That's fine.
  • a driving voltage can be obtained. Can be reduced.
  • PDP manufacturing method As for the method for manufacturing the PDP, first, a case where an MgO film is formed as the protective layer 7 as in the PDP 200 and the powder of the electron-emitting material is dispersed thereon will be described.
  • a plurality of line-shaped transparent electrodes are formed on one main surface of the flat front glass substrate. Subsequently, after applying the silver paste on the transparent electrode, the entire front glass substrate is heated to baked the silver paste to form the display electrode 5.
  • a glass paste containing glass for a dielectric layer is applied to the main surface of the front glass substrate 2 by a blade coater method so as to cover the display electrodes. Thereafter, the entire front glass substrate is held at 90 ° C. for 30 minutes to dry the glass paste, and then baked at a temperature of about 580 ° C. for 10 minutes.
  • a magnesium oxide (MgO) film is formed on the dielectric layer 6 by an electron beam evaporation method, and is baked to form the protective layer 7.
  • the firing temperature at this time is around 500 ° C.
  • a protective layer 7 is prepared by mixing a powdered electron-emitting material in a vehicle such as ethyl cellulose with a paste, and applying the paste by a printing method or the like, followed by drying and a temperature of about 500 ° C.
  • the electron-emitting layer 20 is formed by baking.
  • a plurality of silver pastes are applied in a line on one main surface of a flat back glass substrate, and then the back glass substrate is heated to fire the silver paste to form address electrodes.
  • a partition wall is formed by applying a glass paste between adjacent address electrodes and firing the glass paste by heating the entire back glass substrate.
  • phosphor inks of R, G, and B colors By applying phosphor inks of R, G, and B colors between adjacent barrier ribs, and heating the back glass substrate to about 500 ° C. and baking the phosphor ink, a resin component in the phosphor ink (Binder) and the like are removed to form a phosphor layer.
  • the temperature at this time is around 500 ° C.
  • a PDP is manufactured as described above.
  • the protective layer 7 made of an electron-emitting material on the dielectric layer 6 as in the PDP 100 a normal thin film process such as electron beam evaporation is performed in the same manner as the MgO protective layer is formed. It can be formed as appropriate.
  • the powder of the electron-emitting material is mixed with a vehicle or a solvent to form a paste having a relatively high powder content, and this paste is thinly spread on the dielectric layer 6 by a method such as a printing method.
  • a thin or thick film made of an electron-emitting material can also be formed by firing.
  • a paste having a relatively low powder content is prepared and a printing method is used, or the powder is dispersed in a solvent. It can be sprayed or a spin coater or the like can be used.
  • Example 1 In this example, CaO, SrO, BaO, rare earth metal oxides were reacted with In 2 O 3 by a solid-phase powder method to synthesize an electron-emitting material (crystalline compound), and the chemical stability improvement effect was achieved. An experiment to confirm was conducted.
  • a portion of the crushed powder was analyzed using X-ray diffractometry to identify the product phase.
  • No. according to the example. Nos. 7 to 15 contain nos. Ca, Sr, Ba and some rare earth metals. It is much more stable than 1-5. Compared with 16 MgO, the rate of weight increase was small, and even in the X-ray diffraction after the treatment, only the respective diffraction peaks were observed, and the stabilization effect by the compound formation could be confirmed.
  • no. The (M1 1-x M2 x ) InO 3 - ⁇ type compounds of 10a and 10b are no.
  • No. 10 MInO 3 type compound La was partially substituted with Sr and Ca, respectively. 10 was obtained, and the stabilization effect was the same.
  • the upper limit of the amount of Sr and Ca substitution for this La element was 10% according to the study by the inventors.
  • the inventors conducted the same experiment on various rare earth metal oxides other than La and Y, but all of them were confirmed to be stabilized by reacting with In 2 O 3 to form a compound.
  • PDP production and discharge voltage measurement Using the crystalline compounds according to the examples and comparative examples described above, a PDP was produced as follows and the discharge voltage was measured.
  • a front glass substrate made of flat soda-lime glass having a thickness of about 2.8 mm was prepared.
  • an ITO (transparent electrode) material was applied in a predetermined pattern and dried.
  • a plurality of silver pastes which are a mixture of silver powder and an organic vehicle, were applied in a line shape, and then the front glass substrate was heated, whereby the silver paste was baked to form display electrodes.
  • a glass paste is applied to the front panel on which the display electrode is manufactured by using a blade coater method, and the glass paste is dried by holding at 90 ° C. for 30 minutes, and then baked at a temperature of 585 ° C. for 10 minutes. A 30 ⁇ m dielectric layer was formed.
  • Magnesium oxide (MgO) was deposited on the dielectric layer by an electron beam deposition method, and then baked at 500 ° C. to form a protective layer.
  • No. 8 was used as representatives of the compounds 1 to 4 and 6 and the MIn 2 O 4 type compound of the present invention.
  • No. 8 was used as a representative of MInO 3 type compounds.
  • No. 10 as a representative of the (M1 1-x M2 x ) InO 3 - ⁇ type compound.
  • No. 10a as a representative of the M1 (In 1/2 M2 1/2 ) O 3 type compound.
  • an address electrode mainly composed of silver was formed in a stripe shape on a rear glass substrate made of soda lime glass by screen printing, and then a dielectric layer having a thickness of about 8 ⁇ m was formed in the same manner as the front plate. .
  • partition walls were formed on the dielectric layer using glass paste between adjacent address electrodes.
  • the partition was formed by repeating screen printing and baking.
  • the phosphor layer of red (R), green (G), and blue (B) is applied to the surface of the dielectric layer exposed between the wall surfaces of the barrier ribs and the barrier ribs, and then dried and fired to phosphor layer Was made.
  • the produced front plate and back plate were bonded at 500 ° C. using sealing glass. And after exhausting the inside of discharge space, Xe was enclosed as discharge gas, and PDP was produced.
  • the produced PDP was connected to a drive circuit to emit light, and kept in the light emitting state for 100 hours for aging, and then the discharge sustaining voltage was measured.
  • the aging treatment is performed in order to clean the surface of the MgO film and the sprayed powder to some extent by sputtering, and is normally performed in the manufacturing process of the PDP. Regardless, the discharge voltage is high.
  • Table 2 shows the discharge voltage (drive voltage) measured after aging.
  • No. 0 is the result for only the MgO undercoating film on which no powder is dispersed.
  • Drive voltage and No. This is a difference from a driving voltage of zero.
  • the discharge characteristics can be improved and the driving voltage can be reduced in the PDP, it is useful for realizing a PDP that can be driven with low power consumption.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

 PDPの二次電子放出係数を向上させるのに適した材料を提供することによって、PDPの高効率化を図ることを目的とする。 そのため、PDP(200)において、保護層(7)がMgOで形成され、結晶性化合物からなる電子放出性の粒子が、保護層(7)上に散布されて電子放出層(20)が形成されている。 この電子放出性の粒子は、Ca、Sr、Ba、希土類金属より選ばれた一種類以上と、Inと、O(酸素)とを主成分とする結晶性化合物である。

Description

プラズマディスプレイパネル
 本発明は、プラズマディスプレイパネル(PDP)に関する。
 プラズマディスプレィパネル(以下PDPと略す)は、薄型ディスプレィパネルの中で、大型化が容易、高速表示が可能、低コストといった特徴から、実用化され、急速に普及している。
 現在実用化されている一般的なPDPの構造は、前面基板及び背面基板となる2枚のガラス基板を対向配置し、それぞれ規則的に配列した一対の電極を設け、これらの電極を被覆するように低融点ガラス等の誘電体層を設けている。そして、背面基板の誘電体層上には蛍光体層を設け、前面基板の誘電体層上には、誘電体層をイオン衝撃から保護するとともに二次電子放出性を向上させるためにMgOからなる保護層が設けられている。そして2枚の基板間には、Ne、Xe等の不活性ガスを主体とするガスを封入している。
 このようなPDPは、電極間に電圧を印加して放電を発生させて蛍光体を発光させることによって表示を行う。
 PDPにおいて、従来から発光効率を高めることが強く要求されており、その手段として、誘電体層を低誘電率化する方法や、放電ガスのXe分圧を上げる方法が知られている。しかしながら、このような手段を用いると、放電開始電圧や維持電圧が上昇してしまう問題点があった。
 そして、このような課題に対して、二次電子放出係数の高い材料を保護層に用いることによって、放電開始電圧や維持電圧を下げる事が可能であって、高効率化並びに耐圧の低い素子を用いる事による低コスト化を実現できることが知られている。
 例えば、特許文献1,2においては、MgOの代わりに、同じアルカリ土類金属酸化物であるが、より二次電子放出係数の高い、CaO,SrO,BaOを用いたり、これら化合部の固溶体を用いて保護層を形成する事が検討されている。
特開昭52-63663号公報 特開2007-95436号公報
 しかしながら、CaO、SrO、BaOなどは、MgOに比べて化学的に不安定であって、空気中の水分や炭酸ガスと容易に反応して水酸化物や炭酸化物を形成する。このような化合物が形成されると、保護層の二次電子放出係数が低下して、期待どおりに放電開始電圧や維持電圧を低減できなくなったり、あるいは電圧低減に必要とされるエージング時間が非常に長くなってしまうため、実用的ではなくなるといった問題がある。
 またLa23等の希土類金属酸化物も、本来は二次電子放出係数が高いはずであるが、CaO等と同様に化学的に不安定であり、これらを保護膜として用いても、実用的な特性が得られていない。
 こうしたCaO、SrO、BaOなどの化学反応による劣化は、実験室レベルで少量を作製する場合には、作業の雰囲気ガスを制御するといった方法で回避可能であるが、製造工場での全ての工程の雰囲気を管理するのは困難であり、また可能であっても高コスト化につながる。
 そのため、従来から二次電子放出係数の高い材料の使用が検討されてきたにも関わらず、未だに実用化されている保護層材料はMgOのみである。
 本発明は、上記課題に鑑み、PDPの二次電子放出係数を向上させるのに適した材料を提供することによって、PDPの高効率化を図ることを目的とする。
 本発明は、電極間に電圧を印加して放電空間内で放電させ、蛍光体で可視光に変換することによって発光するPDPにおいて、放電空間に臨む領域に、Ca、Sr、Ba、希土類金属より選ばれた一種類以上と、Inと、O(酸素)とを主成分とする化合物を配設することとした。
 ここで「放電空間に臨む領域」は、放電空間での放電に伴って荷電粒子などが照射される領域であって、具体的には、保護層の表面、蛍光体層の表面、隔壁の表面をはじめとして、保護層の内部、蛍光体層の内部、隔壁の内部もこれに該当する。
 前記化合物は、結晶性物質である事が望ましく、具体的には、MIn24(MはCa、Sr、Baから選ばれた一種類以上)、MInO3(Mは希土類金属の一種類以上)、(M11-xM2x)InO3-δ(M1は希土類金属の一種類以上、M2はSr、Caから選ばれた一種類以上)、M1(In1/2M21/2)O3(M1はCa、Sr、Baの一種類以上、M2はNb,Taから選ばれた一種類以上)の一種類以上である事が望ましい。δは酸素欠損量を表し、1より小さい値である。
 詳しくは実施の形態のところで説明するが、Ca、Sr、Ba、希土類金属より選ばれた一種類以上と、Inと、O(酸素)とを主成分とする化合物は、化学的に安定であって、且つ二次電子放出係数が高い。従って、この化合物をPDPにおける放電空間に臨むところに配設することによって、PDPの駆動電圧を低くでき、実用性もある。
 また、保護層としては従来どおり、イオン衝撃耐性の高いMgO膜を用い、上記化合物を電子放出材料として用いれば、駆動電圧が低く且つ長毒命のPDPを提供できる。
本発明の実施形態にかかるPDPの斜視図である。 図1に示したPDPの縦断面図である。 本発明の実施形態にかかるPDPの斜視図である。 図3に示したPDPの縦断面図である。
 まず、本発明にかかるPDPに用いる電子放出性材料について説明する。
 発明者等は、詳細な検討の結果、二次電子放出効率は高いが化学的に不安定なCaO、SrO、BaO、希土類金属酸化物に、In23を反応させ、Ca、Sr、Ba、希土類金属のいずれか一種類以上とInとOとを含む化合物とする事により、その二次電子放出効率をあまり低下させることなく、化学的な安定性を高めることが出来ることを見出した。そして、この電子放出性材料をPDPの保護層に用いる事によって、MgOだけを保護層に用いたPDPと比べて、駆動電圧を低下できる事を見出した。
 (電子放出性材料の組成)
 本発明でPDPに用いる電子放出性材料は、Ca、Sr、Ba、希土類金属から選ばれるいずれか一種類以上と、Inと、Oとを主成分とする化合物である。
 この化合物は、アモルファス状態のものでもかまわないが、より安定性を高めるためには、結晶性化合物であることが望ましい。
 基本的に好ましい結晶性化合物としては、MIn24(MはCa、Sr、Baから選ばれた一種類以上)、MInO3(Mは希土類金属の一種類以上)、(M11-xM2x)InO3-δ(M1は希土類金属の一種類以上、M2はSr、Caから選ばれた一種類以上)、M1(In1/2M21/2)O3(M1はCa、Sr、Baから選ばれた一種類以上、M2はNb,Taから選ばれた一種類以上)が挙げられる。
 これらの結晶性化合物の間で二次電子放出効率を比較すると、希土類金属酸化物を含む化合物よりもCaOを化合物の方が二次電子放出効率が高く、CaOを含む化合物よりもSrOを含む化合物の方が二次電子放出効率が高く、SrOを含む化合物よりもBaOを含む化合物の方が二次電子放出効率が高くなる傾向がある。しかしながら、化学的安定性はその逆の順序になる傾向がある。
 必要とされる化学的安定性は、実際にPDPの製造を行う工程条件により様々であるので、一概にどの化合物が良いと決めることは難しいが、これらの化合物の中で、SrInは、二次電子放出係数が大きく、それでいて化学的安定性も高いので、望ましい。
 (電子放出性材料の合成方法)
 Ca、Sr、Ba、希土類金属のいずれか一種類以上とInとOとを主成分とする化合物を合成する方法としては、その形態として、固相法、液相法、気相法が挙げられる。
 固相法は、それぞれの金属を含む原料粉末(金属酸化物、金属炭酸塩等)を混合し、ある程度以上の温度で熱処理して反応させる方法である。
 液相法は、それぞれの金属を含む溶液を作り、これより固相を沈殿させたり、あるいは基板上にこの溶液を塗布後、乾燥し、ある程度以上の温度で熱処理等を行って固相とする方法である。
 気相法は、蒸着、スパッタリング、CVD等の方法であって、膜状の固相を得ることができる。
 気相法によれば、上述した、Ca、Sr、Ba、希土類金属とInが特定の比率となる結晶性酸化物以外にも、Ca、Sr、Ba、希土類金属より選ばれた一種類以上と、InとO(酸素)とを主成分とするアモルファス状態の化合物を得ることも出来る。
 このアモルファス状態の膜も、CaO、SrO、BaO、希土類金属酸化物と比較すれば化学的により安定であり、かつMgOよりも高い二次電子放出効率を持つため、PDPの駆動電圧を低減する事が出来る。しかし、化学的安定性は結晶性化合物の方が高く、また合成法として、気相法は固相法等よりも高コストとなるため、結晶性化合物の方が望ましい。
 (電子放出性材料を配設する位置および形態)
 上記の電子放出性材料をPDPパネルのどの部分に形成するかについては、少なくとも放電空間に臨む領域に配設すればよく、一般的には、前面板の電極を覆う誘電体層の上に形成すれば良い。
 しかしながら、他の部位、例えば蛍光体部やリブ表面等の位置に形成しても、少なくとも一部が放電空間に臨む領域にあれば、形成しないものに比べて、駆動電圧低下の効果は認められる。
 電子放出性材料を配設する形態については、例えば前面板の電極を覆う誘電体層の上に形成する場合を考えると、誘電体層の上に通常保護膜として形成されるMgO膜の代わりに、これらの化合物で膜を形成したり、これらの粉末を散布する、あるいはMgO膜を形成したさらに上に、これらの化合物の膜を形成したり、これらの化合物の粉末を散布する、といった方法をとれば良い。
 粉末で用いる場合の粒子径は、0.1μm~10μm程度の範囲内で、セルサイズ等に合わせて選択すれば良い。
 また、Ca、Sr、Ba、希土類金属は、他の金属元素で部分的に置換可能な場合が考えられるが、主成分が、Ca、Sr、Ba、希土類金属から選ばれた1種類以上とInとOでありさえすれば、これらの少量の置換は、本発明の化合物の特性(化学的に安定かつ二次電子放出効率が高い)を本質的に損なうものでない限り、かまわない。
 ここで、主成分とは、他の元素で置換されても良好な化学的安定性のもとに二次電子放出特性が発現されるのに必要な組成範囲であって、一概に決める事は難しいが、おおよその範囲としては、陽イオン元素の合計元素比で8割以上、より望ましくは9割以上が、Ca、Sr、Ba、希土類金属から選ばれた1種類以上とInであれば良い。
 (PDPの構成)
 上記電子放出性材料を適用したPDPの具体例について、図を用いて説明する。
 図1および図2は、本発明の一実施形態にかかるPDP100の一例を示すものであって、図1は、PDP100の分解斜視図、図2は、当該PDP100の縦断面図(図1、I-I線断面図)である。
 図1および2に示すように、PDP100は、前面パネル1と背面パネル8とを有している。前面パネル1と背面パネル8との間には、放電空間14が形成されている。このPDPは、AC面放電型であって、保護層に上述した電子放出性材料が配されている以外は従来例にかかるPDPと同様の構成を有する。
 前面板1は、前面ガラス基板2と、その内側面(放電空間14に臨む面)に形成された透明導電膜3およびバス電極4からなる表示電極5と、表示電極5を覆うように形成された誘電体層6と、誘電体層6上に形成された保護層7とを備えている。上記表示電極5は、ITOまたは酸化スズからなる透明導電膜3に、良好な導電性を確保するためAg等からなるバス電極4が積層されて形成されている。
 背面板8は、背面ガラス基板9と、その片面に形成したアドレス電極10と、アドレス電極10を覆うように形成された誘電体層11と、誘電体層11の上面に設けられた隔壁12と、隔壁12どうしの間に形成された各色蛍光体層13とを備えている。各色蛍光体層13は、赤色蛍光体層13(R)、緑色蛍光体層13(G)および青色蛍光体層13(B)がこの順に配列されている。
 上記蛍光体層13を構成する蛍光体としては、例えば、青色蛍光体としてBaMgAl1017:Eu、緑色蛍光体としてZn2SiO4:Mn、赤色蛍光体としてY23:Euを用いることができる。
 前面板1および背面板8は、表示電極5とアドレス電極10の各々の長手方向が互いに直交し、かつ互いに対向するように配置し、封着部材(図示せず)を用いて接合される。
 放電空間14には、He、Xe、Ne等の希ガス成分からなる放電ガスが封入されている。
 表示電極5とアドレス電極10は、それぞれ外部の駆動回路(図示せず)と接続され、駆動回路から印加される電圧によって放電空間14で放電が発生し、放電に伴って発生する短波長(波長147nm)の紫外線で蛍光体層13が励起されて可視光を発光する。
 このようなPDP100において、上述したように電子放出性材料を用いて保護層7を形成することよって、電子放出性材料が放電空間14に臨み、駆動電圧を低減する効果を奏する。
 図3,4に示すPDP200は、別の実施形態にかかるものである。
 図3は、PDP200の分解斜視図であり、図4は、当該PDP200の縦断面図(図3、I-I線断面図)である。
 このPDP200は、PDP100と同様の構造を有するが、保護層7がMgOで形成され、上述した電子放出性材料からなる粒子が、当該保護層7上に散布されて電子放出層20が形成されている。
 このようなPDP200においても、電子放出層20が放電空間14に面しており、駆動電圧を低減する効果を奏する。
 なお、本発明において、電子放出性材料を配設するPDPは、面放放電型に限らず、対向放電型でもよい。また、必ずしも前面板、背面板、及び隔壁を備えたPDPには限られず、電極間に電圧を印加して放電空間内で放電させ、蛍光体で可視光に変換することによって発光するPDPであればよい。例えば、内部に蛍光体を配設した放電チューブを複数
配列し、各放電チューブ内で放電して発光するタイプのPDPにおいても、放電チューブ内に電子放出性材料を配設することによって、駆動電圧を低減することができる。
 (PDPの製造方法)
 PDPの作製方法について、ここではまず、上記PDP200のように、保護層7としてMgO膜を形成し、その上に、電子放出性材料の粉末を散布する場合を説明する。
 まず前面板を作製する。
 この工程では、平坦な前面ガラス基板の一主面に、複数のライン状の透明電極を形成する。引き続き、透明電極上に銀ペーストを塗布した後、前面ガラス基板全体を加熱することによって、銀ペーストを焼成し、表示電極5を形成する。
 表示電極を覆うように、前面ガラス基板2の主面に、誘電体層用のガラスを含むガラスペーストをブレードコーター法によって塗布する。その後、前面ガラス基板全体を90℃で30分間保持してガラスペーストを乾燥させ、次いで、580℃前後の温度で10分間焼成を行う。
 誘電体層6上に酸化マグネシウム(MgO)を電子ビーム蒸着法によって成膜し、焼成を行い、保護層7を形成する。この時の焼成温度は500℃前後である。
 保護層7上に、エチルセルロース等のビヒクルに、粉末状の電子放出性材料を混合してペースト状としたものを準備し、このペーストを印刷法等により塗布し、乾燥し、500℃前後の温度で焼成することによって、電子放出層20を形成する。
 次に、背面板を作製する。
 この工程では、平坦な背面ガラス基板の一主面に、銀ペーストをライン状に複数本塗布した後、背面ガラス基板全体を加熱して銀ペーストを焼成することによって、アドレス電極を形成する。
 隣り合うアドレス電極の間にガラスペーストを塗布し、背面ガラス基板全体を加熱してガラスペーストを焼成することによって、隔壁を形成する。
 隣り合う隔壁同士の間に、R、G、B各色の蛍光体インクを塗布し、背面ガラス基板を約500℃に加熱して上記蛍光体インクを焼成することによって、蛍光体インク内の樹脂成分(バインダー)等を除去して蛍光体層を形成する。
 次に、こうして得た前面板と背面板とを封着ガラスを用いて貼り合わせる。この時の温度は500℃前後である。
 その後、封止された内部を高真空排気した後、希ガスを封入する。以上のようにしてPDPが作製される。
 一方、上記PDP100のように、誘電体層6上に電子放出性材料からなる保護層7を形成するには、MgO保護層を形成するのと同様に、電子ビーム蒸着等、通常の薄膜プロセスを適宜用いて形成することができる。
 あるいは、電子放出性材料の粉末をビヒクルや溶媒等と混合して、比較的粉末含有率の高いペースト状にし、このペーストを印刷法等の方法で、誘電体層6上に薄く広げた後、焼成することによっても、電子放出性材料からなる薄膜状あるいは厚膜状の膜を形成することができる。
 電子放出性材料の粉末を誘電体層6上に散布することによって保護層7を形成する方法としては、比較的粉末含有率の低いペーストを用意して印刷法を用いたり、溶媒に粉末を分散させて散布したり、スピンコーター等を用いたりすれば良い。
 なお、以上説明したPDPの構成および製造方法は一例であって、本発明はこれに限定されるものではない。
 以下、実施例に基づいて本発明をさらに詳細に説明する。
 [実施例1]
 本実施例では、CaO、SrO、BaO、希土類金属酸化物にIn23を固相粉末法により反応させて、電子放出性材料(結晶性化合物)を合成し、化学的安定性改善効果を確認する実験を行った。
 (結晶性化合物の合成)
 出発原料として、試薬特級以上のCaCO3、SrCO3、BaCO3、希土類金属酸化物の代表としてLa23とY23、およびIn23を用いた。これらの原料を、各金属イオンのモル比が、表1に示す値となるように秤量し、ボールミルを用いて湿式混合した後、乾燥し、混合粉末を得た。ただし、No.6はIn23のみであるので、特に混合処理等は行わず、次の焼成も行わなかった。
 これらの混合粉末をアルミナ坩堝に入れ、電気炉にて、空気中で1000~1300℃で2時間焼成した。得られた粉末の平均粒径を測定し、粒径の大きいものについては、脱水エタノールを溶媒に用いて湿式ボールミル粉砕し、いずれの組成においても、平均粒径約3μmとした。
 粉砕粉末の一部を、X線回折法を用いて分析し、生成相を同定した。
 (重量増加率の測定)
 次に粉砕粉末の一部を秤量し、吸湿性のない多孔質のセルに充填し、このセルを温度35℃湿度60%空気中の恒温恒湿槽に入れて12時間放置し、放置後再度重量を測定し、重量増加率を測定した。その後、さらに温度65℃湿度80%空気中の恒温恒湿槽に入れて12時間放置し、放置後再度重量を測定し、重量増加率(積算値)を算出した。この重量増加率が低いほど、化合物が、化学的な安定性に優れていることを意味する。一部の試料に対しては、恒温恒湿槽処理後のX線回折測定も行った。また比較のため、試料No.16として、MgOの粉末を用いて、同様の重量増加率を測定した。
Figure JPOXMLDOC01-appb-T000001
 (試験結果についての考察)
 表1において、生成相のX線回折による分析では、Inの存在しないNo.1~5の内、No.1ではCaOの生成が認められたが、No.2はSrOに一部Sr(OH)2が混在しており、No.3ではBaO自体は観察されず、Ba(OH)2とBaCO3の混合物であった。このような結果が生じたのは、CaOよりSrO、SrOよりBaOとなるほど化学的に不安定となるため、焼成後の冷却中に空気中の水分や炭酸ガスと反応し、水酸化物や炭酸塩となったものと考えられる。
 No.3では、既にBaOが存在しなかったので最も不安定である事は明白であり、恒温恒湿槽での重量増加率測定は行わなかった。一方、No.4~15については、それぞれ目的とする結晶性化合物の生成が認められた。
 次に恒温恒湿処理における重量増加率測定では、比較例にかかるNo.1、2のCaOやSrOでは、35℃60%12h放置でも増加率が非常に大きく、処理後の試料のX線回折では、酸化物の回折ピークは消失し、水酸化物と炭酸塩の生成が認められた。従って、これらが不安定である事は明白であり、65℃80%12hの追加条件は行わなかった。また、比較例にかかるNo.4、5については、No.1~3よりは重量増加率が遥かに少ないものの、No.16のMgOと比べれば、明らかに大きな重量増加が認められた。
 これに対して、実施例にかかるNo.7~15は、Ca、Sr、Ba、希土類金属を一部含むにもかかわらず、No.1~5よりはるかに安定であり、No.16のMgOと比べても重量増加率が小さく、処理後のX線回折でも、それぞれの回折ピークのみが認められ、化合物形成による安定化効果が確認出来た。ここでNo.10a、10bの(M11-xM2x)InO3-δ型化合物は、No.10のMInO3型化合物のLaを、それぞれSr、Caで部分的に置換したものであるが、結晶構造はNo.10と同じものが得られ、安定化効果も同様であった。このLa元素に対するSr、Ca置換量の上限は、発明者等の検討によると10%であった。
 なお、発明者等は、LaとY以外の各種希土類金属の酸化物についても同様の実験を行ったが、全てIn2O3と反応させて化合物を形成する事によって、安定化する事が確認
出来た。
 (PDPの製造と放電電圧測定)
 以上説明した実施例及び比較例にかかる結晶性化合物を用いて以下のようにPDPを作製し、放電電圧を測定した。
 厚さ約2.8mmの平坦なソーダライムガラスからなる前面ガラス基板を用意した。この前面ガラス基板の面上に、ITO(透明電極)の材料を所定のパターンで塗布し、乾燥した。次いで、銀粉末と有機ビヒクルとの混合物である銀ペーストをライン状に複数本塗布した後、上記前面ガラス基板を加熱することにより、上記銀ペーストを焼成して表示電極を形成した。
 表示電極を作製したフロントパネルに、ガラスペーストをブレードコーター法を用いて塗布し、90℃で30分間保持してガラスペーストを乾燥させ、585℃の温度で10分間焼成することによって、厚さ約30μmの誘電体層を形成した。
 上記誘電体層上に酸化マグネシウム(MgO)を電子ビーム蒸着法によって蒸着した後、500℃で焼成することによって保護層を形成した。
次に、表1の比較例のNo.1~4,6の化合物、および本発明のMIn24型化合物の代表としてNo.8の化合物、MInO3型化合物の代表としてNo.10の化合物、(M11-xM2x)InO3-δ型化合物の代表としてNo.10aの化合物、M1(In1/2M21/2)O3型化合物の代表としてNo.14の化合物について、各化合物の粉末約3重量部を、エチルセルロース系のビヒクル100重量部と混合し、3本ロールを通してペーストとし、印刷法により、MgO層上に薄く塗布し、90℃で乾燥させた後、500℃、空気中で焼成した。この際、ペーストの濃度調整によって、焼成後のMgO膜が粉末によって被覆される割合(被覆率)を20%弱程度とした。比較のため、ペースト印刷を行わないものも作製した。
 一方、以下の方法で背面板を作製した。
 まず、ソーダライムガラスからなる背面ガラス基板上にスクリーン印刷によって銀を主体とするアドレス電極をストライプ状に形成し、引き続き、前面板と同様の方法で、厚さ約8μmの誘電体層を形成した。
 次に、誘電体層上に、隣り合うアドレス電極の間に、ガラスペーストを用いて隔壁を形成した。当該隔壁は、スクリーン印刷および焼成を繰り返すことによって形成した。
 引き続き、隔壁の壁面と隔壁間で露出している誘電体層の表面に、赤(R)、緑(G)、青(B)の蛍光体ペーストを塗布し、乾燥および焼成して蛍光体層を作製した。
 作製した前面板、背面板を封着ガラスを用いて500℃で貼り合わせた。そして、放電空間の内部を排気した後、放電ガスとしてXeを封入することによって、PDPを作製した。
 作製したPDPを駆動回路に接続して発光させ、発光状態で100時間保持してエージングした後、放電維持電圧を測定した。ここでエージング処理は、MgO膜や散布粉末の表面を、スパッタリングにより、ある程度清浄化するために行うものであり、PDPの製造工程では普通に実施され、これを行わないパネルは、粉末散布の有無にかかわらず、放電電圧が高いものとなる。
 エージング後に測定した放電電圧(駆動電圧)を表2に示す。なお、No.0は、粉末散布を行わないMgO下地膜のみについて結果であり、下地膜電圧差は、各No.についての駆動電圧とNo.0の駆動電圧との差である。
Figure JPOXMLDOC01-appb-T000002
 (放電電圧測定結果に基づく考察)
 No.1、2、3、4の粉末を散布した比較例にかかるPDPでは、MgO薄膜のみのNo.0と比較して、放電電圧の低下は認められなかった。また、In23粉末を散布した比較例にかかるNo.6のPDPは、理由は不明であるが、エージング途中で発光しなくなった。
 一方、No.8、10、10a、14の各粉末を散布した実施例にかかるPDPでは、いずれも放電電圧の低下が認められ、特にSrIn24を散布したNo.8のPDPでは、放電電圧低下幅が大きく、本発明による改善効果を確認する事が出来た。また、No.10aは、No.10のLaを部分的にSrで置換したものであるが、この置換により電圧低下幅が大きくなった。
 本発明によれば、PDPにおいて、その放電特性を改善し、駆動電圧を低減できるので、低消費電力で駆動できるPDPを実現する上で有用である。
 1  前面板
 2  前面ガラス基板
 3  透明導電膜
 4  バス電極
 5  表示電極
 6  誘電体層
 7  保護層
 8  背面板
 9  背面ガラス基板
 10  アドレス電極
 11  誘電体層
 12  隔壁
 13  蛍光体層
 14  放電空間
 20  電子放出層

Claims (13)

  1.  電極間に電圧を印加して放電空間内で放電させ、蛍光体で可視光に変換することによって発光するプラズマディスプレイパネルにおいて、前記放電空間に臨む領域に、Ca、Sr、Ba、希土類金属から選ばれた一種類以上と、Inと、Oとを主成分とする化合物が配されているプラズマディスプレイパネル。
  2.  前記化合物は、結晶性物質である請求項1記載のプラズマディスプレイパネル。
  3.  前記結晶性物質は、MIn24(MはCa、Sr、Baから選ばれた一種類以上)である請求項2記載のプラズマディスプレイパネル。
  4.  前記結晶性物質は、MInO3(Mは希土類金属の一種類以上)である請求項2記載のプラズマディスプレイパネル。
  5.  前記結晶性物質は、(M11-xM2x)InO3-δ(M1は希土類金属の一種類以上、M2はSr、Caから選ばれた一種類以上、0<x≦0.1)である請求項2記載のプラズマディスプレイパネル。
  6.  前記結晶性物質は、M1(In1/2M21/2)O3(M1はCa,Sr,Baから選ばれた一種類以上、M2はNb,Taから選ばれた一種類以上)である請求項2記載のプラズマディスプレイパネル。
  7.  前記プラズマディスプレイパネルは、第1基板上に、第1電極、当該第1電極を覆う第1の誘電体層とが形成された第1パネルと、第2基板上に、第2電極、当該第2電極を覆う第2誘電体層、蛍光体層が形成された第2パネルとが、対向配置され、
     前記第1パネルと前記第2パネルとの間に前記放電空間が形成されている請求項1~6のいずれか記載のプラズマディスプレイパネル。
  8.  前記結晶性物質は、粒子および膜から選択される少なくとも1つの形態で配置されている請求項7記載のプラズマディスプレイパネル。
  9.  前記結晶性物質は、前記第1パネルおよび第2パネルから選ばれる少なくとも1つのパネル上に配されている請求項7記載のプラズマディスプレイパネル。
  10.  前記第1の誘電体層上に保護層が形成されている請求項7記載のプラズマディスプレイパネル。
  11.  前記保護層は、主成分がMg0からなる請求項10記載のプラズマディスプレイパネル。
  12.  前記結晶性物質は、前記保護層上に配されている請求項10記載のプラズマディスプレイパネル。
  13.  前記結晶性物質は、前記保護層内に含まれている請求項10記載のプラズマディスプレイパネル。
PCT/JP2010/000162 2009-02-06 2010-01-14 プラズマディスプレイパネル WO2010089953A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010549369A JPWO2010089953A1 (ja) 2009-02-06 2010-01-14 プラズマディスプレイパネル
CN2010800031565A CN102217027A (zh) 2009-02-06 2010-01-14 等离子体显示面板
US13/125,282 US20110193474A1 (en) 2009-02-06 2010-01-14 Plasma display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-026006 2009-02-06
JP2009026006 2009-02-06

Publications (1)

Publication Number Publication Date
WO2010089953A1 true WO2010089953A1 (ja) 2010-08-12

Family

ID=42541867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000162 WO2010089953A1 (ja) 2009-02-06 2010-01-14 プラズマディスプレイパネル

Country Status (5)

Country Link
US (1) US20110193474A1 (ja)
JP (1) JPWO2010089953A1 (ja)
KR (1) KR20110112800A (ja)
CN (1) CN102217027A (ja)
WO (1) WO2010089953A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436925A (ja) * 1990-05-31 1992-02-06 Sony Corp 酸化物陰極の製造方法
JPH05282994A (ja) * 1992-03-31 1993-10-29 Nec Kansai Ltd 含浸型カソード及びその製造方法
JP2004273158A (ja) * 2003-03-05 2004-09-30 Noritake Co Ltd 放電表示装置の保護膜材料
JP2007128894A (ja) * 2005-11-03 2007-05-24 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
JP2007154122A (ja) * 2005-12-08 2007-06-21 Pioneer Electronic Corp 蛍光体およびガス放電表示装置
JP2008300127A (ja) * 2007-05-30 2008-12-11 Pioneer Electronic Corp プラズマディスプレイパネル
WO2009081589A1 (ja) * 2007-12-26 2009-07-02 Panasonic Corporation プラズマディスプレイパネル

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5263663A (en) * 1975-11-19 1977-05-26 Fujitsu Ltd Gas electric discharge panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0436925A (ja) * 1990-05-31 1992-02-06 Sony Corp 酸化物陰極の製造方法
JPH05282994A (ja) * 1992-03-31 1993-10-29 Nec Kansai Ltd 含浸型カソード及びその製造方法
JP2004273158A (ja) * 2003-03-05 2004-09-30 Noritake Co Ltd 放電表示装置の保護膜材料
JP2007128894A (ja) * 2005-11-03 2007-05-24 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
JP2007154122A (ja) * 2005-12-08 2007-06-21 Pioneer Electronic Corp 蛍光体およびガス放電表示装置
JP2008300127A (ja) * 2007-05-30 2008-12-11 Pioneer Electronic Corp プラズマディスプレイパネル
WO2009081589A1 (ja) * 2007-12-26 2009-07-02 Panasonic Corporation プラズマディスプレイパネル

Also Published As

Publication number Publication date
KR20110112800A (ko) 2011-10-13
CN102217027A (zh) 2011-10-12
JPWO2010089953A1 (ja) 2012-08-09
US20110193474A1 (en) 2011-08-11

Similar Documents

Publication Publication Date Title
WO2009081589A1 (ja) プラズマディスプレイパネル
JP2003082344A (ja) プラズマディスプレイ装置
JP2003082343A (ja) プラズマディスプレイ装置
KR20010074772A (ko) 발광특성이 뛰어난 플라즈마 디스플레이 패널의 제조방법
JP4860555B2 (ja) プラズマディスプレイパネルおよびその製造方法
WO2010137247A1 (ja) 蛍光体及びその製造方法ならびに発光装置
JP4607255B2 (ja) プラズマディスプレイパネル
JP3818285B2 (ja) プラズマディスプレイ装置
US7531961B2 (en) Plasma display with phosphors containing a β-alumina crystal structure
WO2010089953A1 (ja) プラズマディスプレイパネル
JP2005100890A (ja) プラズマディスプレイ装置
JP2012009368A (ja) プラズマディスプレイパネル
WO2011064959A1 (ja) プラズマディスプレイパネル
WO2010143345A1 (ja) プラズマディスプレイパネル
KR100904808B1 (ko) 플라즈마 디스플레이 장치 및 플라즈마 디스플레이 장치용 녹색 형광체 재료의 제조 방법
WO2011021327A1 (ja) プラズマディスプレイパネル
JP2011198733A (ja) 交流型プラズマディスプレイ素子
KR100901948B1 (ko) 플라즈마 디스플레이 장치 및 플라즈마 디스플레이 장치용녹색 형광체 재료의 제조 방법
JP4556908B2 (ja) プラズマディスプレイ装置
JP2010033807A (ja) プラズマディスプレイパネル
JP2010033813A (ja) プラズマディスプレイパネル
JP2010267402A (ja) プラズマディスプレイパネル
WO2010137225A1 (ja) 結晶性化合物、その製造方法及びプラズマディスプレイパネル
JP2011238383A (ja) プラズマディスプレイパネル用の保護層形成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080003156.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10738297

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13125282

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117009660

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2010549369

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10738297

Country of ref document: EP

Kind code of ref document: A1