WO2011064959A1 - プラズマディスプレイパネル - Google Patents

プラズマディスプレイパネル Download PDF

Info

Publication number
WO2011064959A1
WO2011064959A1 PCT/JP2010/006681 JP2010006681W WO2011064959A1 WO 2011064959 A1 WO2011064959 A1 WO 2011064959A1 JP 2010006681 W JP2010006681 W JP 2010006681W WO 2011064959 A1 WO2011064959 A1 WO 2011064959A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
pdp
protective layer
plasma display
display panel
Prior art date
Application number
PCT/JP2010/006681
Other languages
English (en)
French (fr)
Inventor
井上 修
浅野 洋
奥山 浩二郎
裕介 福井
洋介 本多
全弘 坂井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2011064959A1 publication Critical patent/WO2011064959A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J2211/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/40Layers for protecting or enhancing the electron emission, e.g. MgO layers

Definitions

  • the present invention relates to a plasma display panel (PDP), and more particularly to a technique for improving materials around a protective layer.
  • PDP plasma display panel
  • Plasma display panels have been put into practical use and are rapidly spreading due to the features of being easy to enlarge, capable of high-speed display, and low cost among thin display panels.
  • the general PDP structure currently in practical use has a front panel and a back panel arranged opposite to each other.
  • a plurality of regularly arranged electrodes are provided on the surface of the glass substrate, respectively, and a dielectric layer such as low-melting glass is provided so as to cover these electrodes.
  • a phosphor layer is further provided on the dielectric layer of the back panel.
  • an MgO layer is provided as a protective layer for protecting the dielectric layer against ion bombardment during discharge and for secondary electron emission.
  • the two panels are internally sealed via the discharge space, and a gas mainly composed of an inert gas such as Ne or Xe is sealed in the discharge space.
  • a voltage is applied between the electrodes to generate discharge, thereby causing the phosphor to emit light and display.
  • CaO, SrO, BaO, rare earth oxides and the like are chemically unstable as compared with MgO, and react relatively easily with moisture or carbon dioxide remaining in the air or in the panel, and thus hydroxides. And forms carbonates.
  • the secondary electron emission characteristics of the protective layer are deteriorated, and there is a problem in that the expected voltage reduction effect cannot be obtained.
  • the present invention has been made in view of the above problems, and provides a PDP that can be expected to exhibit excellent image display performance with low voltage drive by using a compound having good secondary electron emission characteristics.
  • the purpose is to do.
  • the present invention provides a first dielectric layer formed on a first substrate on which a first electrode is disposed so as to cover the first electrode, and further on the first dielectric layer.
  • a second dielectric layer is formed on the first panel having a protective layer formed thereon and a second substrate on which the second electrode is disposed so as to cover the second electrode, and on the second dielectric layer.
  • a discharge space is formed between the first panel and the second panel by a partition wall, and a region facing the discharge space includes at least Ce,
  • a PDP in which one or more rare earth metals other than Ce and a compound each containing oxygen are arranged.
  • the compound is a crystalline compound having a fluorite structure. Furthermore, it is desirable that the rare earth metal other than Ce is La.
  • the compound contains at least one alkaline earth metal.
  • the atomic ratio M / Ce of the metal element other than Ce and Ce is preferably 0.25 or more and 1.5 or less.
  • the atomic ratio M / Ce of the metal element other than Ce and Ce is preferably 0.406 or more and 0.860 or less.
  • the main component of the protective layer may be MgO, and the compound may be dispersed and arranged in the form of powder particles on the protective layer.
  • the coverage of the compound dispersed in the form of powder particles on the protective layer with respect to the protective layer may be 1% or more and 20% or less.
  • the protective layer may be configured with the compound.
  • a PDP capable of driving a good image display at a low voltage by using a predetermined compound having a high secondary electron emission coefficient that is chemically stabilized as compared with conventional MgO. Can provide.
  • MgO which has high ion bombardment resistance
  • the compound is used as an electron emission material.
  • a long-life PDP can be provided.
  • the inventors of the present invention synthesized various compounds by reacting raw materials of rare earth oxides such as La 2 O 3 , which have high secondary electron emission characteristics but are chemically unstable, and various metal oxides.
  • rare earth oxides such as La 2 O 3
  • various metal oxides As a result of examining the chemical stability and secondary electron emission characteristics in detail, when the same rare earth metal oxide CeO 2 is reacted with the rare earth oxide, the secondary electron emission characteristics are not much.
  • Each compound which can improve chemical stability without reducing was obtained. And when these compounds were used, it discovered that PDP which can reduce a drive voltage was obtained rather than the case where MgO was used.
  • rare earth is a general term for Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, but isotope. Pm in which only the body exists is outside the scope of the present invention.
  • the compound mainly composed of one or more of Ce and rare earths other than Ce and O may be in an amorphous state containing them. However, a crystalline compound is desirable in order to increase stability.
  • the meaning of the above-mentioned “main component” means that impurities or property improving substances may be mixed as long as the properties are not impaired.
  • Ce 2 O 3 which is a trivalent oxide of Ce is very unstable and is usually a tetravalent oxide.
  • This CeO 2 has a fluorite structure as a crystal and is chemically stable compared to La 2 O 3 , which is an element next to Ce in the periodic table, but secondary electron emission characteristics ( ⁇ ) Is low.
  • this rare earth metal oxide such as La 2 O 3
  • the atomic ratio La / Ce is preferably in the range of 0.25 to 1.50.
  • a range of 0.25 or more and less than 1.0 is good, and 0.406 or more and 0.86 or less are more preferable. If high ⁇ is regarded as important, the range from 0.75 to the solid solution limit is good, but considering the balance, the range from 0.5 to 1.2 is good.
  • the Ce site is partially substituted with a tetravalent metal such as Zr or Sn, a pentavalent metal such as Nb or Ta, a trivalent metal such as In or Al, or the like. Can be replaced. It is also possible to partially replace rare earth sites with alkaline earths. Furthermore, two or more kinds of such substitutions can be performed simultaneously. However, when such a substitution amount increases, the original characteristics are impaired. Even in the substitution composition, the main components need to be Ce, rare earth metal other than Ce, and O.
  • Substitutable alkaline earth metals are Mg, Ca, Sr, and Ba.
  • Ca has a wide substitutable composition range, followed by Sr.
  • examples of the method for synthesizing the compound of the present invention include a solid phase method, a liquid phase method, and a gas phase method.
  • the solid phase method is a method in which raw material powders (metal oxide, metal carbonate, etc.) containing each metal are mixed and heat-treated at a temperature of a certain level or more to react.
  • a solution containing each metal is prepared, and a solid phase is precipitated from the solution.
  • the solution is applied onto a substrate and then dried, and then subjected to heat treatment at a certain temperature or more to obtain a solid phase. Is the method.
  • the vapor phase method is a method for obtaining a film-like solid phase by a method such as vapor deposition, sputtering, or CVD.
  • any of the above-described methods can be used. If the compound is used in a powder form, a solid phase method is generally suitable because it is relatively low in production cost and can be easily produced in large quantities. In the case of the solid phase method, a crystalline compound is usually obtained.
  • part of the PDP the compound may be disposed at least in a region facing the discharge space.
  • the present invention is not limited to this, and it may be formed in another part, for example, a position such as a phosphor part or a rib surface, or may be mixed with the phosphor. In this way, it has been experimentally confirmed that by arranging the compound so as to face the discharge space, the driving voltage can be reduced as compared with a PDP not using the compound.
  • the protective layer 7 is composed of the above-described compound of the present invention, and the powder of the above-mentioned compound is dispersed on the dielectric layer 6 (a dispersal layer is disposed).
  • a structure in which a protective layer 7 film made of MgO is formed and a film of the above compound is further formed or powder of these compounds is dispersed can be exemplified.
  • the above compound is a stable compound having a high melting point, the sputtering resistance is slightly inferior and the transparency is slightly inferior to MgO. Further, in the case of a configuration in which the compound powder is dispersed, it is conceivable that a slight decrease in luminance occurs due to a further decrease in transparency. Therefore, a protective layer can be formed by using the above compound in place of MgO, but more preferably, a MgO film is used as a protective layer as usual, and the above compound powder is used at a level where the transmittance does not become a problem. It can be said that the configuration of dispersing and dispersing is ideal.
  • a suitable particle size (average particle size) when the above compound is used as a powder may be selected within the range of about 0.1 ⁇ m to 10 ⁇ m according to the cell size and the like.
  • the thickness is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less so that the powder does not move or drop on the protective layer 7 made of MgO. Note that if the particle size is too large, it may fall to the discharge space 14 side depending on the mass of the particle.
  • the high melting point MgO film plays a role as before, and the compound of the present invention plays a good role in secondary electron emission. To bear. Moreover, since the coverage of the compound is low, there is very little possibility of causing a decrease in luminance, and a low voltage and long-life PDP can be obtained.
  • crystalline MgO powder having good initial electron emission efficiency is dispersed and dispersed on a protective layer made of MgO. Things have been done.
  • a method is used in which an organic component is mixed with MgO powder to form a paste, printed on the MgO protective layer, and then heat-treated at an appropriate temperature to remove the organic component.
  • the compound powder of the present invention can also be dispersed and dispersed in exactly the same process, the MgO powder and the compound powder may be disposed on a protective layer made of MgO.
  • each paste containing the two types of powders may be printed.
  • a paste containing both the crystalline oxide powder of the present invention and the crystalline MgO powder is prepared, printed on the MgO protective layer, and then heat-treated at an appropriate temperature to remove organic components. Can be formed in a single process.
  • the MgO powder may contain impurities and property improving substances as long as the properties are not impaired.
  • impurities and property improving substances are not impaired.
  • the total components of the MgO powder 90% or more is MgO, and more preferably 99% or more.
  • the meaning of “powder mainly composed of MgO” mentioned in the present application is MgO” referred to in the present application also means that impurities or characteristic improving substances may be mixed within a range in which the characteristics of the protective layer are not impaired.
  • the protective layer made of MgO has the three functions that the MgO film has conventionally played, namely, the protective function of the dielectric layer 6, the function of reducing the voltage drive, and the function of eliminating the discharge delay.
  • the compound powder and the crystalline MgO powder according to the present invention each fulfill the respective requirements, making it possible to use the optimum powders and to obtain a PDP having good characteristics.
  • FIG. 1 is an exploded perspective view of the PDP 100.
  • FIG. 2 is a longitudinal sectional view of the PDP 100 (a sectional view taken along line II in FIG. 1).
  • the PDP 100 has a front panel 1 and a back panel 8.
  • a discharge space 14 is formed between the front panel 1 and the back panel 8 by disposing partition walls 12.
  • This PDP 100 is an AC surface discharge type, and has the same configuration as a conventional PDP except that the protective layer 7 is formed by using the above-described compound as an electron emission material.
  • the front panel 1 covers the front glass substrate 2, the display electrode 5 composed of the transparent conductive film (transparent electrode) 3 and the bus electrode 4 formed on the inner surface (surface facing the discharge space 14), and the display electrode 5.
  • a dielectric layer 6 formed as described above and a protective layer 7 formed on the dielectric layer 6 are provided.
  • the display electrode 5 is formed by laminating a bus electrode 4 made of Ag or the like for ensuring good conductivity on a transparent conductive film 3 made of ITO or tin oxide.
  • the back panel 8 includes a back glass substrate 9, an address electrode 10 formed on the inner surface thereof, a dielectric layer 11 formed so as to cover the address electrode 10, and a partition wall 12 provided on the top surface of the dielectric layer 11. And a phosphor layer formed between the barrier ribs 12.
  • the phosphor layer is formed so that the red phosphor layer 13 (R), the green phosphor layer 13 (G), and the blue phosphor layer 13 (B) are arranged in this order.
  • BaMgAl 10 O 17 : Eu is used as a blue phosphor
  • Zn 2 SiO 4 : Mn is used as a green phosphor
  • Y 2 O 3 : Eu is used as a red phosphor. it can.
  • the front panel 1 and the back panel 8 are arranged so that the longitudinal directions of the display electrodes 5 and the address electrodes 10 are orthogonal to each other and face each other, and are joined using a sealing member (not shown).
  • the discharge space 14 is filled with a discharge gas composed of a rare gas component such as He, Xe, or Ne.
  • the display electrode 5 and the address electrode 10 are each connected to an external drive circuit (not shown), and a discharge is generated in the discharge space 14 by a voltage applied from the drive circuit, and a short wavelength (wavelength generated by the discharge).
  • the phosphor layer 13 is excited by ultraviolet rays of 147 nm and emits visible light.
  • the protective layer 7 is a region facing the discharge space 14 in the PDP 100, and has a characteristic constituted by the above-described compound.
  • the protective layer 7 may be composed of only the above compound, or may be composed of the above compound mixed with MgO.
  • the protective layer 7 is chemically more stable than the conventional one and exhibits excellent secondary electron emission characteristics. Therefore, good image display performance can be exhibited with low power drive.
  • FIGS. 3 is an exploded perspective view of the PDP 200.
  • FIG. 4 is a longitudinal sectional view of the PDP 200 (a sectional view taken along line II in FIG. 3).
  • the PDP 200 is mainly characterized in that the protective layer 7 is made of MgO, and the above-described compound powder 20 is arranged on the protective layer 7 in the form of particles. Other configurations have the same structure as the PDP 100. Also in the PDP 200, the compound powder 20 faces the discharge space 14 and is disposed in a region on the protective layer 7 so as to face the discharge space 14.
  • the PDP 200 having such a configuration by adopting the compound powder 20, the effect of achieving both excellent image display performance and low power driving can be exhibited as in the case of the PDP 100.
  • the protective layer 7 made of MgO various characteristics of the protective layer 7 (protective effect of the dielectric layer 6 due to good ion bombardment resistance and long life, etc.) are also exhibited.
  • Has the advantage of being ⁇ Manufacturing method of PDP> a method for producing a PDP using the compound of the present invention will be described with an example.
  • the following PDP manufacturing method is merely an example, and can be appropriately changed within the scope of the same invention.
  • the front panel 1 is manufactured.
  • a plurality of line-shaped transparent electrodes 3 are formed on one main surface of the flat front glass substrate 2.
  • the silver paste is baked by heating the entire substrate to form the bus electrode 4 to obtain the display electrode 5.
  • the glass paste containing the dielectric layer glass is applied to the main surface of the front glass substrate 2 by a blade coater method so as to cover the display electrode 5. Thereafter, the entire substrate is held at 90 ° C. for 30 minutes to dry the glass paste, and then baked at a temperature of about 580 ° C. for 10 minutes. Thereby, the dielectric layer 6 was obtained.
  • the above-described compound is formed as a thick film instead of MgO to form the protective layer 7.
  • the compound powder is mixed with a vehicle, a solvent, or the like to form a paste having a relatively high compound powder content, and this is spread thinly on the surface of the dielectric layer 6 by a method such as a printing method. Thereafter, it is fired to form a thick film.
  • the protective layer 7 is formed on the dielectric layer 6 using MgO, and the compound powder 20 is dispersed on the surface thereof.
  • magnesium oxide (MgO) is formed on the dielectric layer 6 by an electron beam evaporation method, and the protective layer 7 is formed.
  • the compound powder 20 is disposed on the surface of the MgO protective layer 7.
  • the compound powder is prepared by a method in which a paste having a relatively low compound powder content is prepared and applied by a printing method, a method in which the compound powder is dispersed and dispersed in a solvent, a method using a spin coater, etc. After disposing on the protective layer 7, any of the methods of firing at a temperature around 500 ° C. can be exemplified.
  • the compound powder 20 of the present invention is mixed with a vehicle such as ethyl cellulose to prepare a paste. This is applied onto the protective layer 7 made of MgO by a printing method or the like. After applying the paste, it is dried and baked at a temperature of around 500 ° C. Thereby, the spreading layer which consists of the predetermined compound powder 20 is formed.
  • the front panel 1 is manufactured.
  • the rear panel 8 is produced in a process different from the process of the front panel 1 described above. After a plurality of silver pastes are applied in a line on one main surface of the flat back glass substrate 9, the entire back glass substrate 9 is heated and baked to form address electrodes.
  • a partition 12 is formed by applying a glass paste between adjacent address electrodes 10 and heating the entire back glass substrate 9 to fire the glass paste.
  • the front panel 1 and the back panel 8 thus obtained are bonded together using sealing glass.
  • the temperature at this time is around 500 ° C.
  • the sealed interior is evacuated to high vacuum, and then a predetermined discharge gas made of a rare gas is sealed.
  • CeO 2 shows a diffraction pattern of a fluorite structure. This was reacted with La 2 O 3 No. 3, 5, 8, and 9 also show substantially the same diffraction pattern, and it can be confirmed that the peak is gradually shifted to the lower angle side as La increases. From this, La increases the addition amount of CeO 2 to the fluorite-type structure of CeO 2 , expanding the lattice and increasing the number of oxygen vacancies, so that both compounds are also fluorite-type as a whole. It turns out that it becomes a structure.
  • XPS X-ray Photoelectron Spectroscopy measurement
  • the secondary electron emission coefficient is generally considered to increase as the sum of the band gap width and electron affinity decreases. Since the band gap width decreases as the energy position of the valence band edge is on the lower energy side, the secondary electron emission coefficient increases.
  • the amount of carbon derived from carbonate on the sample surface is an indicator of chemical stability. If the sample is chemically unstable, it reacts with carbon dioxide in the air and the amount of surface carbon increases. If the amount of surface carbon is more than a certain level, the particle surface is completely covered with a carbonate having a secondary electron emission coefficient, and a high secondary electron emission coefficient cannot be obtained.
  • each synthesized powder was evaluated by XPS.
  • Table 1 also shows a paste obtained by mixing these powders with organic components, printing them on a substrate, firing them in the atmosphere at 500 ° C. to form a film, collecting them, and measuring the XPS. Peak intensity is also shown. This condition is the same as when actually forming on the front panel. By this processing, No. 10 La 2 O 3 further increased the amount of C, but in the material of the present invention, the amount of increase was relatively small, and the difference was further widened.
  • the materials (Nos. 2 to 9 and 11) of the present invention are stabilized because the amount of surface C is less than La 2 O 3 , and the valence band edge position is CeO 2 or La 2 O. Since it is clearly on the lower energy side than 3 , the secondary electron emission efficiency is considered to have increased.
  • a front glass substrate made of flat soda lime glass having a thickness of about 2.8 mm was prepared.
  • an ITO (transparent electrode) material was applied in a predetermined pattern and dried.
  • a plurality of silver pastes which are a mixture of silver powder and an organic vehicle, were applied in a line shape, and then the front glass substrate was heated, whereby the silver paste was baked to form display electrodes.
  • a glass paste is applied to the front panel on which the display electrode is manufactured by using a blade coater method, and the glass paste is dried by holding at 90 ° C. for 30 minutes, and then baked at a temperature of 585 ° C. for 10 minutes. A 30 ⁇ m dielectric layer was formed.
  • a protective layer was formed by depositing magnesium oxide (MgO) on the dielectric layer by an electron beam evaporation method and firing at 500 ° C.
  • MgO magnesium oxide
  • a back panel was produced by the following method. First, an address electrode mainly composed of silver was formed in a stripe shape on a rear glass substrate made of soda lime glass by screen printing, and then a dielectric layer having a thickness of about 8 ⁇ m was formed in the same manner as the front panel. .
  • partition walls were formed on the dielectric layer using glass paste between adjacent address electrodes.
  • the partition was formed by repeating screen printing and baking.
  • the phosphor layer of red (R), green (G), and blue (B) is applied to the surface of the dielectric layer exposed between the wall surfaces of the barrier ribs and the barrier ribs, and then dried and fired to phosphor layer Was made.
  • the prepared front panel and back panel were bonded at 500 ° C. using sealing glass. Then, after exhausting the inside of the discharge space, a Ne—Xe-based gas was sealed as a discharge gas to produce a PDP.
  • Each produced PDP was connected to a drive circuit to emit light, held in the light emitting state for 20 hours and aged, and then the sustaining voltage was measured.
  • the aging treatment is performed in order to clean the surface of the MgO film and the sprayed powder to some extent by sputtering, and is normally performed in the manufacturing process of the PDP. Regardless, the drive voltage is high.
  • Table 2 The measurement results are shown in Table 2.
  • CeO 2 and Ln 2 O 3 powders of reagent grade or better (La is used as Ln this time because there are many kinds of rare earth metals) were used. These raw materials were weighed so that the atomic ratio of each metal was a predetermined ratio, wet-mixed using a ball mill, and then dried to obtain a mixed powder.
  • the compound powder was packed in a mold and subjected to pressure molding, and the molded body was put in an alumina crucible and baked in an electric furnace at 1400 ° C. for 2 hours to obtain a target material for the compound.
  • Examples (Sample Nos. 15 and 16) of the present invention having a film thickness of about 800 nm were obtained by EB vapor deposition.
  • the raw material powder before mixing and the MgO powder were treated in the same manner to produce thin films of comparative examples (Sample Nos. 14, 17, and 18).
  • the list is shown in Table 3 (in the table, “actual” indicates an example and “ratio” indicates a comparative example).
  • XPS X-ray photoelectron spectroscopy
  • sample no. XPS spectra obtained for 14, 15, 17, 18 are shown in FIG. In this figure, background noise is subtracted. Furthermore, each sample NO. Table 3 shows the film composition ratios of 14 to 18 and the peak intensity values confirmed in the XPS measurement.
  • the amount of carbon derived from carbonate on the sample surface is an indicator of chemical stability. If the sample is chemically unstable, it reacts with water and carbon dioxide in the air, increasing the amount of surface carbon. If the surface carbon amount is more than a certain level, the surface of the thin film is completely covered with a carbonate having a low secondary electron emission coefficient, and a high secondary electron emission coefficient cannot be obtained.
  • sample No. 15 as an example can suppress the surface carbon amount to a level close to that of Comparative Example 1.
  • Sample No. 16 as an example is not shown in FIG.
  • Sample No. with a film composition of La100% Compared with 17, sample Nos. 15 and 16 both have a surface carbon content reduced to about 3/7.
  • the films of Samples Nos. 15 and 16 are chemically stable against carbonate-derived carbon, compared to any of La oxide, Ce oxide, and MgO. It can be said that.
  • At least the atomic ratio La / Ce in the film is determined as Sample No. 15 and no. It is considered that a high secondary electron emission characteristic can be exhibited if it is set in the range of 0.406 or more and 0.860 or less, which is between 16 film composition ratios.
  • a front glass substrate made of flat soda lime glass having a thickness of about 2.8 mm was prepared.
  • an ITO (transparent electrode) material was applied in a predetermined pattern and dried.
  • a plurality of silver pastes which are a mixture of silver powder and an organic vehicle, were applied in a line shape, and then the front glass substrate was heated, whereby the silver paste was baked to form display electrodes.
  • a glass paste is applied to the front panel on which the display electrode is manufactured by using a blade coater method, and the glass paste is dried by holding at 90 ° C. for 30 minutes, and then baked at a temperature of 585 ° C. for 10 minutes. A 30 ⁇ m dielectric layer was formed.
  • a back panel was produced by the following method. First, an address electrode mainly composed of silver was formed in a stripe shape on a rear glass substrate made of soda lime glass by screen printing, and then a dielectric layer having a thickness of about 8 ⁇ m was formed in the same manner as the front panel. .
  • partition walls were formed on the dielectric layer using glass paste between adjacent address electrodes.
  • the partition was formed by repeating screen printing and baking.
  • the phosphor layer of red (R), green (G), and blue (B) is applied to the surface of the dielectric layer exposed between the wall surfaces of the barrier ribs and the barrier ribs, and then dried and fired to phosphor layer Was made.
  • the produced front panel and back panel were bonded at 500 ° C. using sealing glass. Then, after the inside of the discharge space was evacuated, Ne—Xe was sealed as a discharge gas to produce a PDP.
  • Each produced PDP was connected to a drive circuit to emit light, held in the light emitting state for 7 hours and aged, and then the discharge sustaining voltage was measured.
  • the aging treatment is performed in order to clean the surface of the protective layer to some extent by sputtering, and is normally performed in the manufacturing process of the PDP.
  • a PDP that does not perform this process has a high driving voltage. .
  • Table 4 Each sample No. in Table 4 PDP of each sample No. in Table 3 It is the structure which has a protective layer shown as.
  • the protective layer No. No. 14 has a protective layer of MgO. Compared to 18, low voltage driving is realized, but the discharge sustaining voltage is higher than that of the protective layer of the present invention in which the atomic ratio La / Ce is 0.406 or more and 0.860 or less.
  • No. 17 was a No. 17 with MgO as a protective layer. There is almost no difference with 18.
  • La 2 O 3 originally had a high secondary electron emission efficiency and was expected to have a low voltage, but such a low voltage could not be confirmed.
  • the surface of the protective layer has a large amount of C, so that the surface could not be sufficiently cleaned by aging for about 7 hours and sufficient secondary electron emission characteristics were not exhibited. From this result, it was confirmed that the compound of the present invention has a good chemical stability in addition to the effect of reducing the discharge sustaining voltage. Thus, the effect by the protective layer of this invention was clear.
  • the protective layer disposed in the PDP of the present invention the Ce site is partially substituted with a tetravalent metal such as Zr or Sn, a pentavalent metal such as Nb or Ta, a trivalent metal such as In or Al, or the like. , O can be partially substituted with F.
  • the main components need to be Ce, rare earth metal other than Ce, and O.
  • Substitutable alkaline earth metals are Mg, Ca, Sr, and Ba.
  • Ca has a wide substitutable composition range, followed by Sr.
  • the present invention can be widely used in public facilities, home televisions, and the like, and in this case, a plasma display panel with improved discharge characteristics can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

良好な2次電子放出特性を有する化合物を用いることにより、比較的低い駆動電圧でありながら良好な画像表示性能を発揮することが期待できるプラズマディスプレイパネルを提供する。具体的にはPDP200において、放電空間14に臨む保護層7の表面に対し、少なくともCe、Ce以外の一種類以上の希土類金属、酸素をそれぞれ含む化合物を、電子放出材料(化合物粉末20)として分散配置する。これにより、駆動時に保護層7付近における2次電子放出特性を良好に発揮させ、PDP200の駆動電圧を低減するとともに、製造時やその後において、不純物ガスや水分等と接触して変質するのを防止する。

Description

プラズマディスプレイパネル
 本発明は、プラズマディスプレイパネル(PDP)に関し、特に保護層周辺の材料の改良技術に関する。
 プラズマディスプレイパネル(以下、「PDP」と略す)は、薄型ディスプレイパネルの中で、大型化が容易、高速表示が可能、低コストといった特徴から、実用化され、急速に普及している。
 現在実用化されている一般的なPDPの構造は、前面パネル及び背面パネルを対向配置させてなる。各パネルでは、それぞれガラス基板の表面に、それぞれ規則的に配列した複数の電極(表示電極対またはアドレス電極)を設け、これらの各電極を被覆するように低融点ガラス等の誘電体層を設ける。背面パネルの誘電体層上にはさらに蛍光体層を設ける。前面パネルの誘電体層上には、誘電体層を放電時のイオン衝撃に対して保護し、かつ2次電子放出を目的とした保護層として、MgO層を設ける。そして2枚のパネルを放電空間を介して内部封止するとともに、放電空間にNe、Xe等の不活性ガスを主体とするガスを封入する。駆動時には、電極間に電圧を印加して放電を発生させることにより蛍光体を発光させて表示を行う。
 PDPにおいては高効率化が強く要求されている。その手段としては誘電体層を低誘電率化する方法や、放電ガスのXe分圧を上げる方法が知られている。しかしながら、このような手段を用いると放電開始電圧や維持電圧が上昇してしまう問題点があった。
 一方、保護層の材料として2次電子放出係数(γ)の高い材料を用いれば、放電開始電圧や維持電圧の低減が可能であることが知られている。これにより高効率化や、耐圧の低い素子を用いることによる低コスト化が実現可能となる。このため、MgOの代わりに同じアルカリ土類金属酸化物であるが、より2次電子放出係数の高い、CaO、SrO、BaOを用いたり、これら同士の固溶体を用いることが検討されている(特許文献1、2参照)。また、希土類酸化物も保護膜材料として検討されている。
特開昭52-63663号公報 特開2007-95436号公報
 しかしながら、CaO、SrO、BaO、希土類酸化物などは、MgOに比べて化学的に不安定であり、空気中またはパネル内に残留する水分や炭酸ガスと比較的容易に反応して、水酸化物や炭酸化物を形成する。このような化合物が形成されると、保護層の2次電子放出特性が低下して、期待した程度の低電圧化の効果が得られないという問題点があった。
 こうした化学反応による劣化は、実験室レベルで少量かつ小型のPDPを作製する場合には、作業の雰囲気ガスを制御するといった方法で回避可能である。しかしながら、現実的に製造工場で全ての製造工程を雰囲気管理するのは困難であり、また可能であっても高コスト化につながる。特に大型のPDPを製造する場合は、この問題は顕著になる。このため、従来より2次電子放出係数の高い材料の使用が検討されてきたにもかかわらず、未だに実用化されているのはMgOのみであり、充分な低電圧化や高効率化が実現されていなかった。
 また、MgO以外の材料を保護層として用いた場合、イオン衝撃耐性が低いために、PDP駆動時のガスによるスパッタリング量が大きくなる。これにより、PDPの寿命が短くなるという問題点があった。
 本発明は以上の課題に鑑みてなされたものであって、良好な2次電子放出特性を有する化合物を用いることにより、優れた画像表示性能を低電圧駆動で発揮することが期待できるPDPを提供することを目的とする。
 上記課題を解決するために、本発明は、第一電極を配した第一基板上に、前記第一電極を覆うように第一の誘電体層が形成され、さらに前記第一誘電体層上に保護層が形成された第一パネルと、第二電極を配した第二基板上に、前記第二電極を覆うように第二の誘電体層が形成され、前記第二の誘電体層上に蛍光体層が形成された第二パネルとが対向配置され、前記第一パネル及び前記第二パネルの間には隔壁によって放電空間が形成され、前記放電空間に臨む領域には、少なくともCe、Ce以外の一種類以上の希土類金属、酸素をそれぞれ含む化合物が配されているPDPとした。
 上記構成においては、前記化合物が、蛍石型の構造をもつ結晶性化合である事が望ましい。さらに、前記Ce以外の希土類金属がLaであることが望ましい。
 さらに、前記化合物がアルカリ土類金属を一種類以上含むことが望ましい。
 また、前記Ce以外の金属元素をMとした時に、CeとCe以外の金属元素の原子比M/Ceが、0.25以上1.5以下であることが望ましい。
 また、前記Ce以外の金属元素をMとした時に、CeとCe以外の金属元素の原子比M/Ceが、0.406以上0.860以下であることが望ましい。
 また、前記保護層の主成分がMgOからなり、前記化合物が、前記保護層上に、粉末粒子の状態で分散配置されている構成とすることもできる。
 また、前記保護層上に、粉末粒子の状態で分散配置されている前記化合物の、前記保護層に対する被覆率が1%以上20%以下である構成とすることもできる。
 また、前記保護層が前記化合物で構成されている構成とすることもできる。
 また、前記保護層上に、さらに、MgOを主成分とする粉末が、粒子の状態で分散配置されている構成とすることもできる。
 本発明によれば、従来のMgOに比べて、化学的に安定化された2次電子放出係数の高い所定の化合物を用いることにより、良好な画像表示を低電圧で駆動することが可能なPDPを提供できる。
 或いは、保護層としては従来どおり、イオン衝撃耐性の高いMgOをベースとして用い、これに併せて前記化合物を電子放出材料として用いることにより、駆動電圧が低くて良好な画像表示性能が発揮されるとともに、長寿命のPDPを提供できる。
本発明の実施の形態1のPDPの構成について説明するための分解斜視図である。 図1に示したPDPの縦断面図である。 本発明の実施の形態2のPDPの構成について説明するための分解斜視図である。 図3に示したPDPの縦断面図である。 生成相のX線回折の測定例である。 実施例1のXPSによる価電子帯スペクトルの測定例である。 実施例1のXPSによるC1sスペクトルの測定例である。 実施例3のXPSによるC1sスペクトルの測定例である。
 <本発明の化合物について>
 本願発明者等は、2次電子放出特性は高いが化学的に不安定なLa等の希土類酸化物の原料と各種の金属の酸化物を反応させて、多種にわたる化合物を合成した。そして、その化学的安定性と2次電子放出特性を詳細に検討した結果、前記希土類酸化物に対し、同じ希土類金属酸化物であるCeOを反応させた場合に、2次電子放出特性をあまり低下させずに化学的な安定性を高めることができる各化合物を得た。そして、これらの化合物を用いれば、MgOを用いた場合よりも駆動電圧を低減できるPDPが得られることを見出した。ここで、「希土類」とは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの総称であるが、放射性同位体しか存在しないPmは、本発明の範囲外である。
 Ceと、Ce以外の希土類のいずれか一種類以上とOを主成分とする化合物としては、これらを含むアモルファス状態のものでもかまわない。しかし、より安定性を高めるためには、結晶性化合物が望ましい。上記した「主成分」の意味は、特性が損なわれない範囲で、不純物や特性改善物質が混入していても構わないという意味である。
 希土類金属の多くが3価陽イオンの酸化物となって安定であるのに対して、Ceの3価の酸化物であるCeは非常に不安定で、通常4価の酸化物、CeOとなる。このCeOは結晶として蛍石型構造を採り、周期律表でCeの隣の元素であるLaの酸化物、Laと比較すると化学的に安定であるが2次電子放出特性(γ)は低い。
 しかし発明者らの検討によると、このCeOに他の希土類金属酸化物、例えばLaを反応させると、蛍石型構造を保ったまま、広い組成範囲で固溶体を形成し、その範囲はLaとCeの原子比、La/Ce=0~1.4付近まで、蛍石型構造のまま、単相のものが得られた。そして、原子比La/Ceが大きくなるほど高γとなり、安定性は低下するものの、La自体よりは、遥かに安定で、PDPの実用に供する事が可能であった。
 なお、原子比La/Ceとしては、あまり小さいと、CeOと大差なくなって、電圧を下げる効果が乏しくなる。逆に、原子比La/Ceが余り大きいと、固溶範囲を越えて、Laが余ってしまう。従って原子比La/Ceは、0.25~1.50の範囲が良い。この範囲のうち、安定性を重視すれば、0.25以上1.0未満の範囲が良く、さらに、0.406以上0.86以下が好ましい。高γを重視すれば、0.75以上固溶限界までの範囲が良いが、バランスを考えると、0.5以上1.2以下の範囲が良い。
 Ce以外の希土類金属のどれを選ぶかについては、Sc、Yを用いたものは、2次電子放出効率がそれほど高くならず、またScは高価である。また、価電子帯端にf電子が位置するものは2次電子放出効率が高くなりにくく、重希土は一般に高価である。これらの観点から、La、Eu、Gdが好ましく、特にLaが良い。
 本発明の化合物は、CeのサイトをZrやSnといった4価金属や、NbやTa等の5価の金属、InやAl等の3価の金属等で部分置換したり、OをFで部分置換することができる。また希土類のサイトをアルカリ土類で部分置換する事も可能である。さらにこうした置換は、2種類以上を同時に行うことも可能である。しかしながら、こうした置換量が多くなると、本来の特性が損なわれてしまう。置換組成においても、あくまで主成分はCeと、Ce以外の希土類金属とOである必要がある。
 ただし、希土類のアルカリ土類による置換は、アルカリ土類酸化物も2次電子放出係数が高い(高γ)ので、特性を損なう事が少ない。置換可能なアルカリ土類金属は、Mg、Ca、Sr、Baであるが、特にCaは置換可能な組成範囲が広く、次いでSrが良い。
 次に本発明の化合物を合成する方法としては、その形態として、固相法、液相法、気相法が挙げられる。
 固相法は、それぞれの金属を含む原料粉末(金属酸化物、金属炭酸塩等)を混合し、ある程度以上の温度で熱処理して反応させる方法である。
 液相法は、それぞれの金属を含む溶液を作り、これより固相を沈殿させたり、あるいは基板上にこの溶液を塗布後、乾燥し、ある程度以上の温度で熱処理等を行って固相とする方法である。
 気相法は、蒸着、スパッタリング、CVD等の方法によって膜状の固相を得る方法である。
 本発明では、上記したいずれの方法を用いることも可能である。前記化合物を粉末形態で用いるのであれば、通常は、比較的製造コストが低く、大量に製造することも容易な固相法が好適である。そして固相法の場合、通常は結晶性化合物が得られる。
 次に、前記化合物をPDPのどの部分に配設するかについては、少なくとも放電空間に臨む領域に配設すればよい。一般的には、前面パネルの電極を覆う誘電体層の上に配設するのが好適である。しかしながらこれに限定するものではなく、他の部位、例えば蛍光体部やリブ表面等の位置に形成したり、蛍光体に混合してもよい。このように化合物を放電空間に臨むように配設することによって、前記化合物を用いないPDPに比べると駆動電圧の低減効果があることが実験により確認されている。
 なお、蛍光体層に前記化合物を配設する場合には、蛍光体の発光特性を損なわないように、配設量を適切に制御することが望ましい。
 次に、これらの化合物の形態については、例えば前面パネルの電極を覆う誘電体層の上に形成する場合を考えると、図1、2に示すように誘電体層6の上に通常のMgOの代わりに本発明の上記化合物で保護層7を構成したり、誘電体層6の上に上記化合物の粉末を散布する(散布層を配設する)形態が挙げられる。あるいは図3、4に示すように、MgOからなる保護層7膜を形成した上に、さらに上記化合物の膜を形成したり、これらの化合物の粉末を散布する構成が例示できる。
 ただし、上記化合物は高融点で安定な化合物ではあるが、MgOに比べると、スパッタリング耐性はやや劣り、透明性もやや劣る。また、化合物粉末を散布する構成の場合は、さらに透明性低下によって、多少の輝度低下が生じることも考えられる。よって、上記化合物をMgOの代わりに用いて保護層を形成することもできるが、より好ましくは保護層としては従来どおりMgO膜を用い、その上に、透過率が問題とならないレベルで上記化合物粉末を分散散布する構成が理想的と言える。
 透過率が問題とならない被覆率のレベルとしては20%以下が良い。上記化合物を粉末で用いる場合の好適な粒子径(平均粒径)は、0.1μm~10μm程度の範囲内で、セルサイズ等にあわせて選択すれば良い。例えば、分散配置させる場合は、MgOからなる保護層7上での粉末の移動や落下が生じないように、3μm以下、より望ましくは1μm以下が良い。粒径が大きすぎると粒子の質量によっては放電空間14側に落下する場合があるので注意する。
 このようにMgO膜と上記化合物とを併用した構成とすると、保護層7としては従来どおり、高融点のMgO膜がその役割を果たし、2次電子放出は、本発明の化合物がその役割を良好に担う。また、前記化合物の被覆率が低いために輝度低下を招くおそれも極めて小さく、低電圧で、かつ長寿命なPDPを得ることができる。
 また、最近になって、PDPの高精細化に伴う放電遅れの問題を解決するために、初期の電子放出効率が良い、結晶性のMgO粉末を、MgOからなる保護層の上に分散散布することが行われている。この場合、MgO粉末に有機成分を混合してペースト状とし、MgO保護層上に印刷した後、適当な温度で熱処理して、有機成分を除去するといった方法が用いられる。本発明の化合物粉末も、全く同じプロセスで分散散布可能であるので、MgO粉末と前記化合物粉末をそれぞれMgOからなる保護層の上に配設してもよい。具体的には、上記2種類の粉末を含む各ペーストをそれぞれ印刷しても良い。例えば、本発明の結晶性酸化物の粉末と結晶性のMgO粉末をともに含むペーストを作製し、MgO保護層上に印刷した後、適当な温度で熱処理して、有機成分を除去すれば、一回のプロセスで形成できる。
 初期の電子放出効率を高めるために少量のフッ素をMgO粉末に含ませるのが好ましい。また、MgO粉末は、特性が損なわれない範囲で不純物や特性改善物質が混入していても構わない。MgO粉末は、全体の成分の内、90%以上がMgOで、さらに99%以上がより好ましい。これが本願で言及する「MgOを主成分とする粉末」の意味である。また、本願で言及する「保護層の主成分がMgO」の意味も、保護層の特性が損なわれない範囲で不純物や特性改善物質が混入していても構わないという意味である。
 このようにすれば、従来MgO膜が担っていた3つの機能、すなわち、誘電体層6の保護機能と低電圧駆動化の機能、並びに放電遅れを解消させる機能の役割を、MgOからなる保護層、本発明の化合物粉末、結晶性MgO粉末が、それぞれ果たすことになり、それぞれ最適のものを用いることが可能となって、良好な特性のPDPとすることができる。
 <実施の形態1>
 次に、本発明のPDPの具体例を図を用いて説明する。
 本発明によるPDPの一例(実施の形態1)を図1および2に示す。図1は、当該PDP100の分解斜視図である。図2は、当該PDP100の縦断面図(図1、I-I線断面図)である。
 図1および2に示すように、PDP100は、前面パネル1と背面パネル8とを有している。前面パネル1と背面パネル8との間には、隔壁12を配することで放電空間14が形成されている。このPDP100は、AC面放電型であって、保護層7が上述した化合物を電子放出材料として用いることで形成されている以外は、従来のPDPと同様の構成を有する。
 前面パネル1は、前面ガラス基板2と、その内側表面(放電空間14に臨む表面)に形成された透明導電膜(透明電極)3およびバス電極4からなる表示電極5と、表示電極5を覆うように形成された誘電体層6と、誘電体層6上に形成された保護層7とを備えている。表示電極5は、ITOまたは酸化スズからなる透明導電膜3に、良好な導電性を確保するためのAg等からなるバス電極4が積層されて形成されている。
 背面パネル8は、背面ガラス基板9と、その内側表面に形成したアドレス電極10と、アドレス電極10を覆うように形成された誘電体層11と、誘電体層11の上面に設けられた隔壁12と、隔壁12の間に形成された蛍光体層とを備えている。蛍光体層は、赤色蛍光体層13(R)、緑色蛍光体層13(G)および青色蛍光体層13(B)がこの順に配列するように配列するように形成される。
 上記蛍光体層を構成する蛍光体としては、例えば、青色蛍光体としてBaMgAl1017:Eu、緑色蛍光体としてZnSiO:Mn、赤色蛍光体としてY:Euを用いることができる。
 前面パネル1および背面パネル8は、表示電極5とアドレス電極10の各々の長手方向が互いに直交し、かつ互いに対向するように配置し、封着部材(図示せず)を用いて接合される。
 放電空間14には、He、Xe、Ne等の希ガス成分からなる放電ガスが封入されている。
 表示電極5とアドレス電極10は、それぞれ外部の駆動回路(図示せず)と接続され、駆動回路から印加される電圧によって放電空間14で放電が発生し、放電に伴って発生する短波長(波長147nm)の紫外線で蛍光体層13が励起されて可視光を発光する。ここで保護層7は、PDP100において放電空間14に臨む領域であり、上述した化合物により構成された特徴を有している。
 なお、保護層7は上記化合物のみで構成してもよいし、上記化合物をMgOと混在させて構成してもよい。
 このような構成を持つPDP100では、保護層7が従来に比べて化学的に安定であり、かつ、優れた2次電子放出特性を発揮する。したがって、良好な画像表示性能を低電力駆動で発揮できるようになっている。
 また、このPDP100は、製造工程のすべてを雰囲気管理しなくても製造できるため、比較的低コストで実現できるメリットを有する。
<実施の形態2>
 次に、本発明によるPDPの他の一例(実施の形態2)を、図3および図4に示す。図3は、当該PDP200の分解斜視図である。図4は、当該PDP200の縦断面図(図3、I-I線断面図)である。
 PDP200は、保護層7がMgOからなり、上述した化合物の粉末20が保護層7上に粒子の形態で配置されていることが主たる特徴部分である。これ以外の構成は、PDP100と同様の構造を有する。PDP200においても、化合物粉末20は、放電空間14に面しており、当該放電空間14に臨むように保護層7上の領域に配置されている。
 このような構成を持つPDP200においても、化合物粉末20の採用によって、PDP100と同様に優れた画像表示性能の発揮と低電力駆動の両立効果が発揮される。これに加え、MgOからなる保護層7を利用していることにより、当該保護層7の諸特性(良好な耐イオン衝撃性による誘電体層6の保護効果と長寿命化等)が併せて発揮されるメリットを有している。
<PDPの製造方法>
 次に、本発明の化合物を用いたPDPの作製方法について、一例を挙げて説明する。なお、以下のPDPの製造方法は例示に過ぎず、同一の発明の範囲内において適宜変更が可能である。
 まず、前面パネル1を作製する。平坦な前面ガラス基板2の一主面に、複数のライン状の透明電極3を形成する。引き続き、各々の透明電極3上に銀ペーストを塗布した後、当該基板全体を加熱することによって銀ペーストを焼成し、バス電極4を形成して表示電極5を得る。
 表示電極5を覆うように、前面ガラス基板2の上記主面に誘電体層用ガラスを含むガラスペーストをブレードコーター法によって塗布する。その後、当該基板全体を90℃で30分間保持してガラスペーストを乾燥させ、次いで、580℃前後の温度で10分間焼成を行う。これにより誘電体層6を得た。
 次に、実施の形態1の構成を得る場合には、MgOの代わりに、上述した化合物を厚膜として形成し、保護層7とする。具体的には化合物粉末をビヒクルや溶媒等と混合して、比較的化合物粉末含有率の高いペースト状とし、これを印刷法等の方法で誘電体層6の表面に薄く広げて塗布する。その後は焼成して厚膜状とする。
 或いは実施の形態2の構成を得る場合には、誘電体層6の上にMgOを用いて保護層7を形成し、その表面に化合物粉末20を散布する。まず、誘電体層6上に酸化マグネシウム(MgO)を電子ビーム蒸着法によって成膜し、保護層7を形成する。続いて、MgO保護層7の表面に化合物粉末20を配設する。その配設方法としては、比較的化合物粉末含有率の低いペーストを用意して印刷法等により塗布する方法、溶媒に化合物粉末を分散させて散布する方法、スピンコーター等を用いる方法等で化合物粉末を保護層7上に配置した後、これを500℃前後の温度で焼成する方法のいずれかを例示できる。
 このうち、印刷法に基づく場合には、エチルセルロース等のビヒクルに本発明の化合物粉末20を混合し、ペースト状としたものを調整する。これをMgOからなる保護層7上に印刷法等により塗布する。ペースト塗布後はこれを乾燥させ、500℃前後の温度で焼成する。これにより、所定の化合物粉末20からなる散布層が形成される。
 以上で前面パネル1が作製される。
 上記前面パネル1の工程とは別工程で、背面パネル8を作製する。平坦な背面ガラス基板9の一主面に、銀ペーストをライン状に複数本塗布した後、背面ガラス基板9の全体を加熱して銀ペーストを焼成することによって、アドレス電極を形成する。
 隣り合うアドレス電極10の間にガラスペーストを塗布し、背面ガラス基板9の全体を加熱してガラスペーストを焼成することによって、隔壁12を形成する。
 隣り合う隔壁12同士の間に、R、G、B各色の蛍光体インクを塗布し、背面ガラス基板9を約500℃に加熱して上記蛍光体インクを焼成することによって、蛍光体インク内の樹脂成分(バインダー)等を除去して蛍光体層13(R)、13(G)、13(B)をそれぞれ形成する。
 こうして得た前面パネル1と背面パネル8とを封着ガラスを用いて貼り合わせる。この時の温度は500℃前後である。その後、封止された内部を高真空排気した後、希ガスからなる所定の放電ガスを封入する。
 以上の各製造工程を経ると、本発明のPDP100又はPDP200が得られる。
<実施例の性能評価実験>
 以下、本発明の実施例を作製して行った性能評価について、さらに詳細に説明する。
 [化合物の合成とXPSによる化学的安定性の評価]
 本実施例では、酸化セリウムの原料粉末と希土類金属酸化物の原料粉末とを用いた、固相法による本発明の化合物の合成と、その特性評価について述べる。
 出発原料として、市販されている試薬特級以上のCeOとLn粉末(希土類金属は種類が多いため、Ln(ランタノイド)として、今回はLa、Euを用いた)を用いた。これらの原料を、各金属の原子比が表1に示す各サンプルNo.の比率となるようにそれぞれ秤量し、ボールミルを用いて湿式混合した後、乾燥することにより、各サンプルNo.の混合粉末を得た。
 これらの混合粉末をアルミナ製坩堝に入れ、電気炉にて、空気中で1200℃~1400℃で2時間焼成した。比較のため、原料粉末の一部、およびMgO粉末を同様に処理した。得られた各粉末をX線回折法を用いてそれぞれ分析した。
 例として、結果の一部(表1のNo.1、3、5、8、9)を図5に示す。No.1のCeOは蛍石型構造の回折パターンを示す。これにLaを反応させたNo.3、5、8、9もほぼ同じ回折パターンを示し、かつLaの増加に伴って、ピークは徐々に低角側にシフトしているのが確認できる。このことから、Laはその添加量の増加に伴って、CeOの蛍石型構造に、格子を押し広げ、酸素欠陥を増加させながら固溶していき、両者の化合物も全体として蛍石型構造となる事が分かる。
 一方、No.9の、原子比La/Ce=2.0の場合には、30度付近等に第2相のピークが見られるが、これは反応残りのLaの回折ピークである。このピークは、No.8の、原子比La/Ce=1.5の場合にも極僅かながら認められた。ここには示していないが、No.7の原子比La/Ce=1.3の場合には、このピークは認められず、固相法におけるCeOに対するLaの固溶の限界が原子比La/Ce=1.3~1.5の間にある事が分かる。
 このようにして生成相を同定した結果を表1に示した。表1中、「比」は比較例、「実」は実施例をそれぞれ示す。また、表1中の「F型」という記載は、蛍石型構造を示すものである。なお、希土類としてEuを用いた場合にも、同様の結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 次にPDPにおける2次電子放出係数を測定する必要があるが、粉末に対して直接測定する事は容易ではない。間接的な証拠としては、PDPの放電電圧が低下するのを確認すれば良いが、全ての材料に対してPDPを作製するのも容易ではない。
 発明者等は詳細な検討の結果、X-ray Photoelectron Spectroscopy測定(以下、「XPS」と略す)により、価電子帯端のエネルギー位置と、炭酸塩起因のカーボン量を測定比較する事によって、PDPの放電電圧を低下させえる材料の選別が、ある程度可能である事を見出した。XPSは、試料表面にX線を照射して放出される電子のスペクトルを測定するものであり、その分析深さは、通常数原子~十数原子層とされており、PDPにおける2次電子放出特性と比較的近い、試料の表面の情報が得られる。
 2次電子放出係数は、一般にバンドギャップ幅と電子親和力の和が小さいほど大きくなるとされている。価電子帯端のエネルギー位置が低エネルギー側にあるほどバンドギャップ幅は小さくなるので、2次電子放出係数は大きくなることとなる。
 一方、試料表面の炭酸塩起因のカーボン量は、化学的安定性の指標である。試料が化学的に不安定であれば、空気中の炭酸ガスと反応して、表面カーボン量は増加する。表面カーボン量がある程度以上多いと、粒子表面が、2次電子放出係数の炭酸塩で完全に覆われてしまうことになって、高い2次電子放出係数は得られない。
 よってXPSを利用すれば、価電子帯端のエネルギー位置と、炭酸塩起因のカーボン量を測定比較することにより、PDPの放電電圧を低下できる材料の選別が、ある程度可能であった。
 そこで合成した各粉末をXPSにより評価した。図6に、表1の試料No.1、5、10、12、すなわち本発明のLaCe(原子比La/Ce=1.0)と、比較例のCeO、La、MgOの価電子帯端のXPS測定結果を示す。当図では、バックグラウンドノイズは差し引いて示している。
 図6に示す結果から、MgO、La、CeO、LaCeの順に価電子帯端位置が低エネルギーシフトしていることが確認できる。またここでは省略しているが、本発明の材料間(No.2~9)では、価電子帯端位置に、余り差が見られなかった。
 次に図7に、表1の試料No.1、3、5、7、10のC1s軌道のXPSスペクトルを示す。当図では、バックグラウンドノイズは差し引いて示している。図7において、炭酸化合物起因のCのピークは289~290eV付近に現れるが、LaはCeOよりも遥かにピークが高く、本発明のNo.3、5、7は、その間にある。表1には、このようにして求めたピーク高さを示した。本発明の材料では、原子比La/Ceを大きくするに従って、C量が多くなり、特に1.0を越えると顕著となるが、それでもLaよりは少なかった。
 また表1には、これらの粉末を有機成分と混ぜてペーストとし、これを基板上に印刷した後、大気中500℃焼成して膜状とした後、回収して、XPS測定した場合のCピーク強度も示す。この条件は、実際に前面パネル上に形成する場合と等しい。この処理によって、No.10のLaは、さらにC量が増加したが、本発明の材料では、増加量は比較的少なく、その差はより広がった。
 Laは、本来2次電子放出効率がかなり高いはずなので、図6の価電子帯端位置は、より低エネルギー側に出るはずである。しかし実験結果がそうならないのは、図7のように、表面C量が非常に多く、表面は既にLaではなくなっているためと考えられる。
 これに対して本発明の材料(No.2~9、11)は、表面C量が、Laより少ないことから安定化されており、価電子帯端位置がCeOやLaより明瞭に低エネルギー側にあることから、2次電子放出効率が高くなったものと考えられる。
[PDPの作製]
 本実施例では、本発明の化学的安定性が改善された化合物を用いたPDPについて示す。
 厚さ約2.8mmの平坦なソーダライムガラスからなる前面ガラス基板を用意した。この前面ガラス基板の面上に、ITO(透明電極)の材料を所定のパターンで塗布し、乾燥した。次いで、銀粉末と有機ビヒクルとの混合物である銀ペーストをライン状に複数本塗布した後、上記前面ガラス基板を加熱することにより、上記銀ペーストを焼成して表示電極を形成した。
 表示電極を作製した前面パネルに、ガラスペーストをブレードコーター法を用いて塗布し、90℃で30分間保持してガラスペーストを乾燥させ、585℃の温度で10分間焼成することによって、厚さ約30μmの誘電体層を形成した。
 上記誘電体層上に酸化マグネシウム(MgO)を電子ビーム蒸着法によって蒸着した後、500℃で焼成することによって保護層が形成された。
 次に、表1に示した粉末のうち、No.1、2、3、5、7、8、10の約1重量部を、エチルセルロース系のビヒクル99重量部と混合し、3本ロールを通してペーストとした。当該ペーストを印刷法により、MgO層上に薄く塗布し、120℃で乾燥させた後、500℃、空気中で焼成した。この際、ペーストの濃度調整によって、焼成後のMgO膜が粉末によって被覆される割合を10%程度とした。また、比較のため、表1のNo.1と10の粉末を、LaとCeの原子比が1:1となるように混合したものも(No.13)、および、下地MgO膜のみで、ペースト印刷を行わないもの(No.0)も同様に作製した。
 一方、以下の方法で背面パネルを作製した。まず、ソーダライムガラスからなる背面ガラス基板上にスクリーン印刷によって銀を主体とするアドレス電極をストライプ状に形成し、引き続き、前面パネルと同様の方法で、厚さ約8μmの誘電体層を形成した。
 次に、誘電体層上に、隣り合うアドレス電極の間に、ガラスペーストを用いて隔壁を形成した。隔壁は、スクリーン印刷および焼成を繰り返すことによって形成した。
 引き続き、隔壁の壁面と隔壁間で露出している誘電体層の表面に、赤(R)、緑(G)、青(B)の蛍光体ペーストを塗布し、乾燥および焼成して蛍光体層を作製した。
 作製した前面パネル、背面パネルを封着ガラスを用いて500℃で貼り合わせた。そして、放電空間の内部を排気した後、放電ガスとしてNe-Xe系ガスを封入し、PDPを作製した。
 作製した各PDPを駆動回路に接続して発光させ、発光状態で20時間保持してエージングした後、放電維持電圧を測定した。ここでエージング処理は、MgO膜や散布粉末の表面を、スパッタリングにより、ある程度清浄化するために行うものであり、PDPの製造工程では普通に実施され、これを行わないPDPは、粉末散布の有無にかかわらず、駆動電圧が高いものとなる。測定の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 MgO薄膜のみを用いたNo.0のPDPと比較して、本発明の酸化物を散布したパネルNo.2、3、5、7、8では明らかな駆動電圧の低電圧化が見られた。
 一方、CeOを散布したNo.1、Laを散布したNo.10、CeOとLaを混合して散布したNo.13の各PDPは、下地膜のみのNo.0と、ほとんど差が見られなかった。Laは本来2次電子放出効率が高く、これを用いたPDPでは駆動電圧が低電圧化するはずである。しかし実際には表面のC量が多く、20時間程度のエージングではその表面が十分清浄化出来ず、PDPの駆動電圧は低電圧化しなかったものと考えられる。よって本発明の化合物を用いたことによる、PDPの駆動電圧の低電圧化の効果は明らかであった。
 
 [XPSを用いた保護層の化学的安定性に関する評価]
 本実験では、酸化セリウムの原料粉末と希土類金属酸化物の原料粉末とを用いて、固相法により合成した化合物をターゲット原料とした。以下、そのターゲット原料を使用して成膜した本発明の保護層と、その特性評価について述べる。
 出発原料として、試薬特級以上のCeOとLn粉末(希土類金属は種類が多いため、Lnとして、今回はLaを用いた)を用いた。これらの原料を、各金属の原子比が所定の比率となるように秤量し、ボールミルを用いて湿式混合した後、乾燥し、混合粉末を得た。
 これらの混合粉末をアルミナ製坩堝に入れ、電気炉にて、空気中で1200℃~1400℃で2時間焼成し、化合物粉末を得た。
 この化合物粉末を金型に詰めて加圧成形し、成型体をアルミナ製坩堝に入れて、電気炉にて、空気中で1400℃で2時間焼成し、化合物のターゲット原料を得た。
 このターゲット原料を用いてEB蒸着法により膜厚800nm程度の本発明の実施例(サンプルNo.15、16)を得た。比較のため、混合前の原料粉末、およびMgO粉末を同様に処理し、比較例の薄膜を作製した(サンプルNo.14、17、18)。一覧を表3に示す(表中、「実」は実施例、「比」は比較例をそれぞれ示す)。
 上記作製した各サンプルの膜組成を定量分析するため、XPSを行った。ここではCe3dに対応するエネルギー領域のXPSスペクトルとLa3dに対応するエネルギー領域のXPSスペクトルから定量分析を行って、膜中のCeとLaの組成比を求めた。
 また、化学的安定性を比較するために、同じくXPSにより、炭酸塩起因のカーボン量を測定比較した。このうちサンプルNo.14、15、17、18について得られたXPSスペクトルを図8に示す。当図ではバックグラウンドノイズを差し引いて示している。さらに、各サンプルNO.14~18の膜組成比及びXPS測定において確認されたピーク強度の値を表3に示す。
 ここで、サンプル表面の炭酸塩起因のカーボン量は、化学的安定性の指標である。サンプルが化学的に不安定であれば、空気中の水や炭酸ガスと反応して、表面カーボン量が増加する。表面カーボン量がある程度以上多いと、薄膜表面が、二次電子放出係数の低い炭酸塩で完全に覆われてしまうことになって、高い二次電子放出係数は得られない。
Figure JPOXMLDOC01-appb-T000003
 まず図8及び表3に示すように、XPS測定の結果から、実施例であるサンプルNo.15は比較例1に近い程度にまで表面カーボン量が抑えられることが分かった。また、実施例であるサンプルNo.16は図8に図示していないが、サンプルNo.15と同様にXPSによる測定を行った結果、サンプル2と同様に優れた表面カーボン量の抑制効果が確認され、良好な表面安定性を有することが明らかになった。特に、膜組成がLa100%で構成されたサンプルNo.17と比較すると、サンプルNo15、16ではいずれも3/7程度まで表面カーボン量が低減されている。このようなことから、サンプルNo.15、16の膜は、La単体の酸化物、Ce単体の酸化物、MgOのいずれと比較しても、炭酸塩起因のカーボンに対して化学的に安定していると言える。
 次に、サンプルNo.14~18について全体的に考察する。図8のXPSスペクトルに示されるように、炭酸化合物起因のピークは289eV付近に現れるが、サンプルNo.17のLaのピークはサンプルNo.1のCeOのピークよりも遥かに高い。実施例のNo.15、16の各ピーク(No.3のピークは不図示)は、サンプルNo.14とNo.17のピークの間に存在する。サンプルNo.18のピークはこの中で最も低い。
 従って、以上の測定結果によれば、少なくとも膜中の原子比La/Ceを、サンプルNo.15及びNo.16の膜組成比の間である0.406以上0.860以下の範囲に設定すれば、高い二次電子放出特性を発揮できるものと考えられる。
 [PDPの性能評価]
 本実施例では、本発明の化学的安定性が改善された化合物を保護層として用いた場合のPDPの性能評価実験について示す。
 厚さ約2.8mmの平坦なソーダライムガラスからなる前面ガラス基板を用意した。この前面ガラス基板の面上に、ITO(透明電極)の材料を所定のパターンで塗布し、乾燥した。次いで、銀粉末と有機ビヒクルとの混合物である銀ペーストをライン状に複数本塗布した後、上記前面ガラス基板を加熱することにより、上記銀ペーストを焼成して表示電極を形成した。
 表示電極を作製した前面パネルに、ガラスペーストをブレードコーター法を用いて塗布し、90℃で30分間保持してガラスペーストを乾燥させ、585℃の温度で10分間焼成することによって、厚さ約30μmの誘電体層を形成した。
 上記誘電体層上に表3のサンプルNo.15、16の本発明の保護層を電子ビーム蒸着法によって作製した。また、比較のため、表3のサンプルNo.14、17、18の保護層も同様に作製した。
 一方、以下の方法で背面パネルを作製した。まず、ソーダライムガラスからなる背面ガラス基板上にスクリーン印刷によって銀を主体とするアドレス電極をストライプ状に形成し、引き続き、前面パネルと同様の方法で、厚さ約8μmの誘電体層を形成した。
 次に、誘電体層上に、隣り合うアドレス電極の間に、ガラスペーストを用いて隔壁を形成した。隔壁は、スクリーン印刷および焼成を繰り返すことによって形成した。
 引き続き、隔壁の壁面と隔壁間で露出している誘電体層の表面に、赤(R)、緑(G)、青(B)の蛍光体ペーストを塗布し、乾燥および焼成して蛍光体層を作製した。
 作製した前面パネル及び背面パネルを封着ガラスを用いて500℃で貼り合わせた。そして、放電空間の内部を排気した後、放電ガスとしてNe-Xeを封入し、PDPを作製した。
 作製した各PDPを駆動回路に接続して発光させ、発光状態で7時間保持してエージングした後、放電維持電圧を測定した。ここでエージング処理は、保護層の表面を、スパッタリングにより、ある程度清浄化するために行うものであり、PDPの製造工程では普通に実施され、これを行わないPDPは、駆動電圧が高いものとなる。結果を表4に示した。表4中の各サンプルNo.のPDPは、表3中の各サンプルNo.として示した保護層を有する構成である。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から、MgOを保護層としたNo.18と比較して、本発明の保護層を使用したNo.15、16のPDPでは明らかに放電維持電圧が低減されており、低電圧駆動化の効果を確認できた。
 一方、CeOを保護層としたNo.14はMgOを保護層としたNo.18に比べると低電圧駆動が実現されているが、原子比La/Ceが、0.406以上0.860以下である本発明の保護層と比べると放電維持電圧は高い。また、Laを保護層としたNo.17は、MgOを保護層としたNo.18とほとんど差が見られない。Laは本来二次電子放出効率が高く、低電圧化するはずと予想されたが、それほどの低電圧化は確認できなかった。これは保護層の表面にC量が多く存在するため、7時間程度のエージングではその表面が十分清浄化出来ず、十分な二次電子放出特性が発揮されなかったためと考えられる。この結果から、本発明の化合物が放電維持電圧の低減効果を有することに加え、化学的にも良好な安定性を有することを確認できた。このように、本発明の保護層による効果は明らかであった。
<その他の事項>
 本発明のPDPに配設する保護層では、CeのサイトをZrやSnといった4価金属や、NbやTa等の5価の金属、InやAl等の3価の金属等で部分置換したり、OをFで部分置換することができる。また希土類のサイトをアルカリ土類で部分置換する事も可能である。さらにこうした置換は、2種類以上を同時に行ことも可能である。しかしながら、こうした置換量が多くなると、本来の特性が損なわれてしまう。置換組成においても、あくまで主成分はCeと、Ce以外の希土類金属とOである必要がある。
 ただし、希土類のアルカリ土類による置換は、アルカリ土類酸化物も高γなので、特性を損なう事が少ない。置換可能なアルカリ土類金属は、Mg、Ca、Sr、Baであるが、特にCaは置換可能な組成範囲が広く、次いでSrが良い。
 本発明は、公共施設や家庭用テレビ等に幅広く利用でき、この場合に放電特性が改善されたプラズマディスプレイパネルを提供できるなど、その利用可能性は極めて広いといえる。
 1  前面パネル
 2  前面ガラス基板
 3  透明導電膜(透明電極)
 4  バス電極
 5  表示電極
 6  誘電体層
 7  保護層
 8  背面パネル
 9  背面ガラス基板
 10  アドレス電極
 11  誘電体層
 12  隔壁
 13  蛍光体層
 14  放電空間
 20  化合物
 100、200  プラズマディスプレイパネル(PDP)

Claims (10)

  1.  第一電極を配した第一基板上に、前記第一電極を覆うように第一の誘電体層が形成され、さらに前記第一誘電体層上に保護層が形成された第一パネルと、第二電極を配した第二基板上に、前記第二電極を覆うように第二の誘電体層が形成され、前記第二の誘電体層上に蛍光体層が形成された第二パネルとが対向配置され、
     前記第一パネル及び前記第二パネルの間には隔壁によって放電空間が形成され、
     前記放電空間に臨む領域には、少なくともCe、Ce以外の一種類以上の希土類金属、酸素をそれぞれ含む化合物が配されているプラズマディスプレイパネル。
  2.  前記化合物が、蛍石型の構造をもつ結晶性化合物である請求項1に記載のプラズマディスプレイパネル。
  3.  前記Ce以外の希土類金属がLaである請求項1記載のプラズマディスプレイパネル。
  4.  さらに、前記化合物がアルカリ土類金属を一種類以上含む請求項1に記載のプラズマディスプレイパネル。
  5.  前記Ce以外の金属元素をMとした時に、CeとCe以外の金属元素の原子比M/Ceが、0.25以上1.5以下である請求項1記載のプラズマディスプレイパネル。
  6.  前記Ce以外の金属元素をMとした時に、CeとCe以外の金属元素の原子比原子比M/Ceが、0.406以上0.860以下である請求項1記載のプラズマディスプレイパネル。
  7.  前記保護層の主成分がMgOからなり、
     前記化合物が、前記保護層上に、粉末粒子の状態で分散配置されている請求項1に記載のプラズマディスプレイパネル。
  8.  前記保護層上に、粉末粒子の状態で分散配置されている前記化合物の、前記保護層に対する被覆率が1%以上20%以下である請求項7に記載のプラズマディスプレイパネル。
  9.  前記保護層が前記化合物で構成されている請求項1に記載のプラズマディスプレイパネル。
  10.  前記保護層上に、さらに、MgOを主成分とする粉末が、粒子の状態で分散配置されている請求項7に記載のプラズマディスプレイパネル。
PCT/JP2010/006681 2009-11-26 2010-11-12 プラズマディスプレイパネル WO2011064959A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-268722 2009-11-26
JP2009268722 2009-11-26
JP2010057315 2010-03-15
JP2010-057315 2010-03-15

Publications (1)

Publication Number Publication Date
WO2011064959A1 true WO2011064959A1 (ja) 2011-06-03

Family

ID=44066074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006681 WO2011064959A1 (ja) 2009-11-26 2010-11-12 プラズマディスプレイパネル

Country Status (1)

Country Link
WO (1) WO2011064959A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077306A1 (ja) * 2010-12-09 2012-06-14 パナソニック株式会社 プラズマディスプレイパネル

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173738A (ja) * 2001-12-05 2003-06-20 Hitachi Ltd プラズマディスプレイパネル用保護膜
JP2005163040A (ja) * 2003-11-29 2005-06-23 Samsung Sdi Co Ltd プラズマディスプレイパネル用緑色蛍光体,及びプラズマディスプレイパネル
JP2006207014A (ja) * 2004-07-14 2006-08-10 Mitsubishi Materials Corp MgO蒸着材
JP2009140617A (ja) * 2007-12-03 2009-06-25 Tateho Chem Ind Co Ltd プラズマディスプレイパネル用酸化マグネシウム蒸着材及び保護膜
JP2009259436A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003173738A (ja) * 2001-12-05 2003-06-20 Hitachi Ltd プラズマディスプレイパネル用保護膜
JP2005163040A (ja) * 2003-11-29 2005-06-23 Samsung Sdi Co Ltd プラズマディスプレイパネル用緑色蛍光体,及びプラズマディスプレイパネル
JP2006207014A (ja) * 2004-07-14 2006-08-10 Mitsubishi Materials Corp MgO蒸着材
JP2009140617A (ja) * 2007-12-03 2009-06-25 Tateho Chem Ind Co Ltd プラズマディスプレイパネル用酸化マグネシウム蒸着材及び保護膜
JP2009259436A (ja) * 2008-04-11 2009-11-05 Hitachi Ltd プラズマディスプレイパネルおよびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012077306A1 (ja) * 2010-12-09 2012-06-14 パナソニック株式会社 プラズマディスプレイパネル

Similar Documents

Publication Publication Date Title
WO2009081589A1 (ja) プラズマディスプレイパネル
JP2003336061A (ja) プラズマディスプレイ装置
KR100535430B1 (ko) 플라즈마 디스플레이 장치 및 형광체 및 형광체의 제조 방법
JP2003082344A (ja) プラズマディスプレイ装置
JP2003082343A (ja) プラズマディスプレイ装置
WO2003097768A1 (fr) Ecran plasma, phosphore et procede de production de phosphore
JP4860555B2 (ja) プラズマディスプレイパネルおよびその製造方法
WO2010137247A1 (ja) 蛍光体及びその製造方法ならびに発光装置
JP4607255B2 (ja) プラズマディスプレイパネル
WO2011064959A1 (ja) プラズマディスプレイパネル
JP2012009368A (ja) プラズマディスプレイパネル
EP1480247B1 (en) Plasma display
WO2011118152A1 (ja) プラズマディスプレイパネルの製造方法
WO2010143345A1 (ja) プラズマディスプレイパネル
WO2011021327A1 (ja) プラズマディスプレイパネル
JP2005100890A (ja) プラズマディスプレイ装置
WO2010089953A1 (ja) プラズマディスプレイパネル
KR101792263B1 (ko) 적층체 및 리튬 함유 산화마그네슘 분말
JP4672231B2 (ja) プラズマディスプレイパネル
WO2010137225A1 (ja) 結晶性化合物、その製造方法及びプラズマディスプレイパネル
JP2010267402A (ja) プラズマディスプレイパネル
JP2010033807A (ja) プラズマディスプレイパネル
JP2010033813A (ja) プラズマディスプレイパネル
JPWO2011138850A1 (ja) プラズマディスプレイパネル
JP2011238383A (ja) プラズマディスプレイパネル用の保護層形成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10832815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10832815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP