WO2011021327A1 - プラズマディスプレイパネル - Google Patents

プラズマディスプレイパネル Download PDF

Info

Publication number
WO2011021327A1
WO2011021327A1 PCT/JP2010/003652 JP2010003652W WO2011021327A1 WO 2011021327 A1 WO2011021327 A1 WO 2011021327A1 JP 2010003652 W JP2010003652 W JP 2010003652W WO 2011021327 A1 WO2011021327 A1 WO 2011021327A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma display
display panel
compound
pdp
rare earth
Prior art date
Application number
PCT/JP2010/003652
Other languages
English (en)
French (fr)
Inventor
井上修
浅野洋
奥山浩二郎
福井裕介
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2010546975A priority Critical patent/JPWO2011021327A1/ja
Priority to CN201080001970.3A priority patent/CN102084453A/zh
Publication of WO2011021327A1 publication Critical patent/WO2011021327A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space

Definitions

  • the present invention relates to a plasma display panel (PDP), and more particularly to a technology for improving materials around a protective layer.
  • PDP plasma display panel
  • PDPs plasma display panels
  • the structure of a general PDP currently put to practical use is that a plurality of electrodes (display electrode pairs or address electrodes) regularly arranged on two opposing glass substrates respectively serving as a front substrate and a back substrate. And providing a dielectric layer such as low melting point glass so as to cover each of the electrodes on the glass substrate. A phosphor layer is provided on the dielectric layer of the back substrate. On the dielectric layer of the front substrate, an MgO layer is provided as a protective layer for protecting the dielectric layer against ion bombardment during discharge and for secondary electron emission. Then, the two substrates are internally sealed through the discharge space, and the discharge space is filled with a gas mainly composed of an inert gas such as Ne and Xe. At the time of driving, a voltage is applied between the electrodes to generate a discharge to cause the phosphor to emit light and display.
  • a gas mainly composed of an inert gas such as Ne and Xe.
  • CaO, SrO, BaO, rare earth oxides, etc. are chemically unstable compared to MgO, and react relatively easily with moisture and carbon dioxide gas remaining in the air or in the panel, resulting in hydroxides. And form carbonated oxides.
  • the secondary electron emission coefficient of the protective layer is lowered, and there is a problem that the effect of lowering the voltage as expected can not be obtained.
  • the present invention has been made in view of the above problems, and provides a PDP which can be expected to exhibit excellent image display performance at low voltage drive by using a compound having good secondary electron emission characteristics.
  • the purpose is to
  • the present invention is a PDP which emits light by applying a voltage between a plurality of electrodes to cause discharge in a discharge space and converting the discharge into visible light with a phosphor, In the region facing the discharge space, a compound containing one or more kinds of rare earth metals, Sn and oxygen is disposed as an electron emission material.
  • the compound containing one or more kinds of rare earth metals and Sn and oxygen is preferably a crystalline compound, and is further represented by Ln 2 Sn 2 O 7 (Ln is one or more kinds of rare earth metals) It is desirable that it is a compound.
  • the rare earth metal is preferably at least one selected from La, Eu, Gd, Yb and Lu, particularly La. Furthermore, it is preferable that the compound is dispersedly disposed in the form of particles on the MgO protective layer.
  • a first electrode (display electrode), a first dielectric layer covering the first electrode, and a protective layer are formed on the first substrate (front glass substrate).
  • a second electrode (address electrode), a second dielectric layer covering the second electrode, and a phosphor layer formed on the first panel (front panel) and the second substrate (rear glass substrate)
  • the electron emitting material of any of the present invention described above is included in the protective layer.
  • a PDP in which a second electrode, a second dielectric layer covering the second electrode, and a second panel on which a phosphor layer is formed are disposed opposite to each other across the discharge space. Any electron emitting material was dispersed and arranged in the form of powder particles on the protective layer.
  • a material containing MgO as a main component may be dispersed and disposed in the form of powder particles on the protective layer.
  • a compound containing one or more kinds of rare earth metals, Sn and oxygen is disposed as an electron emitting material in a region facing the discharge space, and this compound is a conventional MgO and In comparison, they are chemically stabilized and have a high secondary electron emission coefficient, so that a PDP capable of driving a good image display at a low voltage can be provided.
  • MgO having high ion bombardment resistance is used as a base, and the compound is used as an electron emitting material in combination with this, so that the driving voltage is low and good image display performance is exhibited.
  • FIG. 1 is an exploded perspective view for describing a configuration of a PDP of a first embodiment. It is a longitudinal cross-sectional view of PDP shown in FIG.
  • FIG. 16 is an exploded perspective view for describing a configuration of a PDP of a second embodiment.
  • FIG. 4 is a longitudinal sectional view of the PDP shown in FIG. 3; It is an example of measurement of the valence band spectrum by XPS. It is an example of measurement of the C1s spectrum by XPS.
  • the inventors of the present application have synthesized various compounds by reacting a raw material of rare earth oxide such as La 2 O 3 having high secondary electron emission efficiency but being chemically unstable with oxides of various metals. And as a result of examining the chemical stability and the secondary electron emission ability in detail, when SnO 2 is reacted, the chemical stability can be enhanced without significantly reducing the secondary electron emission efficiency. Then, it has been found that, when these compounds are used, a PDP having a lower driving voltage than that obtained using MgO can be obtained.
  • the rare earth is a generic name of Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, but only radioactive isotopes Pm not present is outside the scope of the present invention.
  • an amorphous state containing these may be used.
  • the crystalline compound include Ln 2 Sn 2 O 7 phase.
  • Ln one or more rare earth metals may be contained.
  • rare earth metal those using Sc and Y do not have very high secondary electron emission efficiency, and Sc is expensive. Ce is less likely to be trivalent and the synthesis of the compound with Sn is not easy. In addition, secondary electron emission efficiency is not likely to be high if the f electron is located at the valence band edge, and heavy rare earth is generally expensive.
  • La, Pr, Nd, Sm, Eu and Gd are preferable, and La is particularly preferable.
  • the Ln 2 Sn 2 O 7 phase is a complex oxide having a fluorite crystal structure, but the sites of rare earths are partially substituted with alkaline earths, the sites of Sn are tetravalent metals such as Zr and Ce,
  • the partial substitution can be performed with a pentavalent metal such as Nb or Ta, or the trivalent metal such as In or Al, or the partial substitution of O with F can be performed.
  • Two or more such permutations can be performed simultaneously.
  • partial replacement of the rare earth site with alkaline earths Ca, Sr, and Ba is desirable because the secondary electron emission efficiency can be further improved.
  • the crystal structure can not be maintained, and the second phase may precipitate and separate or the original characteristics may be lost.
  • the main components need to be rare earth, Sn and O.
  • the total amount of Ln and the blending molar ratio Ln / Sn of Sn be 0.995 or less . This is because even if the ratio is 1.000, the rare earth oxide remains in a very small amount in the reaction process of the rare earth oxide raw material and the Sn oxide raw material due to the heterogeneity of the composition, and the atmosphere adjustment is not performed. Under the conditions, this is considered to be carbonation to cover the surface and to lower the secondary electron emission coefficient.
  • the ratio of the total of the substitution elements may be 0.995 or less. Further, if this ratio is further reduced, SnO 2 will be surplus and precipitate below a certain level, but in such a state, it can be prevented that the composition has a large amount of alkaline earth as described above, so SnO 2 It is good that it is a mixture of
  • Examples of the method of synthesizing an oxide containing one or more types of rare earth metals and Sn include a solid phase method, a liquid phase method, and a gas phase method.
  • the solid phase method is a method in which raw material powders (metal oxides, metal carbonates, etc.) containing the respective metals are mixed and heat-treated at a certain temperature or higher to cause a reaction.
  • liquid phase method a solution containing each metal is prepared, a solid phase is precipitated from this, or this solution is coated on a substrate and then dried and heat treated at a certain temperature or higher to form a solid phase. It is a method.
  • the gas phase method is a method of obtaining a film-like solid phase by a method such as vapor deposition, sputtering, or CVD.
  • any of the methods described above can be used. If the above-mentioned compounds are used in the form of powder, it is usually preferable to use a solid phase method which is relatively low in production cost and easy to mass-produce.
  • the above compound may be disposed at least in the region facing the discharge space.
  • the present invention is not limited to this, and it may be formed at another site, for example, at a position of a phosphor portion or a rib surface, or may be mixed with the phosphor.
  • these compounds when formed on the dielectric layer covering the electrodes of the front plate, they are usually formed as a protective layer on the dielectric layer as shown in FIGS.
  • a film of these compounds is formed, or these powders are dispersed, or a MgO film is formed as shown in FIGS. 3 and 4 and a film of these compounds is further formed. Or by spraying powders of these compounds.
  • these compounds are also stable compounds with high melting points, but their sputtering resistance is slightly inferior and their transparency is somewhat inferior as compared to MgO. In the case of powder dispersion, there may also be a problem of luminance deterioration due to transparency reduction.
  • MgO film as a protective layer as in the prior art, and to disperse the powder at a level at which the transmittance does not matter.
  • the coverage of the compound powder for covering the protective layer should be 20% or less.
  • the particle diameter of the powder may be selected in accordance with the cell size and the like within the range of about 0.1 ⁇ m to 10 ⁇ m.
  • the particle diameter is preferably 3 ⁇ m or less, more preferably 1 ⁇ m or less so that the powder does not move or fall on the MgO film. If the particle size is too large, it may fall to the discharge space side depending on the mass of the particle, so be careful.
  • the MgO film having a high melting point plays a role as a protective layer as in the prior art, and the secondary electron emission plays a role in the compound of the present invention and the coverage is low.
  • a low voltage and long life PDP can be obtained without any decrease in luminance.
  • the powder of the crystalline oxide of the present invention can also be dispersed and dispersed in the same process, so the above two types of paste may be printed respectively, but the powder of the crystalline oxide of the present invention and crystalline MgO A paste containing both powders is prepared and printed on a MgO protective layer, followed by heat treatment at an appropriate temperature to remove organic components, which is more desirable because it can be formed in a single process.
  • the MgO film, the crystalline oxide powder of the present invention, and the crystalline MgO powder perform the three functions conventionally performed by the MgO film, namely, protection, lowering the voltage, and eliminating discharge delay. Each can be achieved, and an optimum one can be used, so that a PDP with good characteristics can be obtained.
  • the compound is described as Ln 2 Sn 2 O 7 .
  • rare earth metals may be partially divalent or tetravalent in addition to trivalent, in which case excess or deficiency of oxygen will occur. Therefore, it should be described more precisely as Ln 2 Sn 2 O 7 ⁇ ⁇ , but this ⁇ varies depending on the kind of rare earth, manufacturing conditions and the like, and is not necessarily a constant value. Therefore, although it is described as Ln 2 Sn 2 O 7 for convenience, this does not deny the case of oxygen excess / deficiency.
  • Embodiment 1 Next, a specific example of the PDP according to the present invention will be described with reference to the drawings.
  • FIG. 1 and 2 show the PDP 100 according to the first embodiment, and FIG. 1 is an exploded perspective view of the PDP 100. As shown in FIG. FIG. 2 is a longitudinal sectional view of the PDP 100 (FIG. 1, a sectional view taken along the line II).
  • the PDP 100 has a front plate 1 and a back plate 8.
  • a discharge space 14 is formed between the front plate 1 and the back plate 8.
  • This PDP is an AC surface discharge type, and has the same configuration as the PDP according to the conventional example except that the protective layer 7 is formed by using the above-described compound as an electron emission material.
  • the front plate 1 is formed to cover the display electrode 5 and the display electrode 5 including the front glass substrate 2, the transparent conductive film 3 formed on the inner side surface (the surface facing the discharge space 14) and the bus electrode 4. And a protective layer 7 formed on the dielectric layer 6.
  • the display electrode 5 is formed by laminating a bus electrode 4 made of Ag or the like for securing good conductivity on a transparent conductive film 3 made of ITO or tin oxide.
  • the back plate 8 has a back glass substrate 9, an address electrode 10 formed on one side thereof, a dielectric layer 11 formed to cover the address electrode 10, and a partition 12 provided on the top surface of the dielectric layer 11. And a phosphor layer formed between the partition walls 12.
  • the phosphor layer is formed such that the red phosphor layer 13 (R), the green phosphor layer 13 (G) and the blue phosphor layer 13 (B) are arranged in this order.
  • the phosphor constituting the above-mentioned phosphor layer for example, it is possible to use BaMgAl 10 O 17 : Eu as a blue phosphor, Zn 2 SiO 4 : Mn as a green phosphor, and Y 2 O 3 : Eu as a red phosphor. it can.
  • the front plate 1 and the back plate 8 are disposed such that the longitudinal directions of the display electrode 5 and the address electrode 10 are orthogonal to each other and opposite to each other, and are joined using a sealing member (not shown).
  • the discharge space 14 is filled with a discharge gas composed of rare gas components such as He, Xe, Ne and the like.
  • the display electrode 5 and the address electrode 10 are each connected to an external drive circuit (not shown), and discharge is generated in the discharge space 14 by a voltage applied from the drive circuit, and a short wavelength (wavelength The phosphor layer 13 is excited by the ultraviolet light of 147 nm) to emit visible light.
  • the protective layer 7 contains the above-described compound.
  • the protective layer 7 may be formed of only the above compound, or the above compound and MgO may be mixed to form the protective layer 7.
  • the protective layer 7 is chemically stable as compared with the prior art, and exhibits excellent secondary electron emission characteristics. Therefore, good image display performance can be exhibited by low power driving.
  • FIG. 3 and FIG. 4 show the PDP 200 according to the second embodiment, and FIG. 3 is an exploded perspective view of the PDP 200.
  • FIG. 4 is a longitudinal cross-sectional view of the PDP 200 (FIG. 3, a cross-sectional view taken along the line II).
  • the PDP 200 has the same structure as the PDP 100 except that the protective layer 7 is made of MgO and the above-described compound powder 20 is disposed on the protective layer 7 in the form of particles. Also in the PDP 200, the compound powder 20 faces the discharge space 14 and is disposed to face the discharge space 14.
  • the front plate is manufactured.
  • a plurality of linear transparent electrodes 3 are formed on one main surface of the flat front glass substrate 2.
  • a silver paste is applied onto the transparent electrode 3 and then the entire substrate is heated to bake the silver paste, thereby forming the bus electrode 4 and obtaining the display electrode 5.
  • a glass paste containing glass for a dielectric layer is applied to the main surface of the front glass substrate 2 by a blade coater method so as to cover the display electrodes 5. Thereafter, the entire substrate is held at 90 ° C. for 30 minutes to dry the glass paste, and then firing is performed at a temperature of about 580 ° C. for 10 minutes. Thereby, the dielectric layer 6 is obtained.
  • the above-described compound is formed as a thick film without forming the MgO protective layer on the dielectric layer 6.
  • the compound powder is mixed with a vehicle, a solvent or the like to form a paste having a relatively high content of the compound powder, which is spread thinly on the surface of the dielectric layer 6 by a method such as a printing method. After that, it is fired to form a thick film.
  • the MgO protective layer 7 is formed on the dielectric layer 6, and the compound powder is dispersed on the surface.
  • magnesium oxide (MgO) is deposited on the dielectric layer by electron beam evaporation to form the protective layer 7.
  • the compound powder 20 is disposed on the surface of the MgO protective layer 7.
  • the compound powder is prepared by a method of preparing a paste having a relatively low content of compound powder and applying it by a printing method, a method of dispersing the powder in a solvent and dispersing it, a method of using a spin coater, etc. After disposing on the protective layer 7, a method of firing this at a temperature around 500 ° C. can be exemplified.
  • the compound powder 20 of the present invention is mixed with a vehicle such as ethyl cellulose to prepare a paste.
  • a paste is applied onto the MgO protective layer 7 by a printing method or the like. After paste application, this is dried and fired at a temperature of around 500 ° C. As a result, a spray layer composed of a predetermined compound powder 20 is formed.
  • the front plate is manufactured.
  • the back plate is manufactured in a process separate from the front plate.
  • a plurality of silver pastes are applied in a line shape on one main surface of a flat rear glass substrate, and then the entire rear glass substrate is heated to bake the silver paste, thereby forming address electrodes.
  • a glass paste is applied between adjacent address electrodes, and the entire back glass substrate is heated to fire the glass paste, thereby forming barrier ribs.
  • the phosphor ink of each color of R, G and B is applied between adjacent partition walls, and the back glass substrate is heated to about 500 ° C. to bake the phosphor ink, thereby the resin component in the phosphor ink
  • the (binder) and the like are removed to form a phosphor layer.
  • the front plate and the back plate thus obtained are pasted together using sealing glass.
  • the temperature at this time is around 500.degree.
  • the sealed interior is evacuated to a high vacuum, and then a predetermined discharge gas consisting of a rare gas is sealed.
  • Example 1 Compound synthesis and evaluation by XPS
  • synthesis of the compound of the present invention by a solid phase method using a raw material powder of a rare earth metal oxide and a raw material powder of tin oxide will be described.
  • Ln 2 O 3 powder of special grade or higher than the reagent special grade because there are many kinds of rare earth metals, Y, La, Pr, Eu, Gd, Yb, Lu are used this time
  • SnO 2 , CaCO 3 , SrCO 3 and BaCO 3 were used. These raw materials were weighed so that the molar ratio of each metal ion was as shown in Table 1, wet mixed using a ball mill, and then dried to obtain a mixed powder.
  • the mixed powders were placed in an alumina crucible and fired at 1200 ° C. to 1300 ° C. for 2 hours in air in an electric furnace. For comparison, some of the raw powder and MgO powder were treated similarly. The resulting powder was analyzed using X-ray diffraction to identify the product phase. The results are shown in Table 1.
  • XPS X-ray Photoelectron Spectroscopy measurement
  • the secondary electron emission coefficient is generally considered to increase as the sum of the band gap width and the electron affinity decreases. As the energy position of the valence band edge is on the lower energy side, the band gap width becomes smaller, and the secondary electron emission coefficient becomes larger.
  • the amount of carbon derived from carbonate on the sample surface is an indicator of chemical stability. If the sample is chemically unstable, it reacts with carbon dioxide in the air and the amount of surface carbon increases. If the amount of surface carbon is more than a certain amount, the particle surface will be completely covered with carbonate having a secondary electron emission coefficient. And, even if the energy position of the valence band edge is on the low energy side, a high secondary electron emission coefficient can not be obtained.
  • the powder synthesized there was evaluated by XPS.
  • FIG. 6 shows XPS spectra of C1s orbits of these samples. In the figure, background noise is shown subtracted.
  • La 2 Sn 2 O 7 is stabilized because its surface C content is less than that of La 2 O 3 and of course MgO, and the valence band edge position is clearly on the lower energy side than MgO. From this, it is considered that the secondary electron emission efficiency becomes high.
  • XPS is measured for various compounds (samples No. 1 to 12), and in order to show the valence band edge position and the amount of C semiquantitatively, the XPS Intensity at 3 eV and 2 eV (the larger the energy, the lower the energy The secondary electron emission characteristics can be expected to be excellent by shift) and the intensity of the C1s peak derived from a carbonic acid compound (the smaller the chemical stability is, the more stable it appears) appearing near 288 to 290 eV is shown. These values are all minus the background value.
  • a flat soda lime glass front glass substrate having a thickness of about 2.8 mm was prepared.
  • a material of ITO (transparent electrode) was applied in a predetermined pattern on the surface of the front glass substrate and dried.
  • a plurality of silver pastes, which are a mixture of silver powder and an organic vehicle, were applied in a line, and then the front glass substrate was heated to bake the silver paste to form a display electrode.
  • Glass paste is applied to the front panel on which the display electrode is made using a blade coater method, held at 90 ° C. for 30 minutes to dry the glass paste, and fired at a temperature of 585 ° C. for 10 minutes. A 30 ⁇ m dielectric layer was formed.
  • Magnesium oxide (MgO) was vapor-deposited on the dielectric layer by electron beam evaporation, and then baked at 500 ° C. to form a protective layer.
  • the paste was thinly applied onto the MgO layer by a printing method, dried at 120 ° C., and fired in air at 500 ° C. Under the present circumstances, the ratio by which the MgO film
  • a back plate was produced by the following method. First, on the back glass substrate made of soda lime glass, the address electrodes consisting mainly of silver were formed in stripes by screen printing, and subsequently, a dielectric layer of about 8 ⁇ m in thickness was formed in the same manner as the front plate. .
  • the partition wall was formed by repeating screen printing and baking.
  • a phosphor paste of red (R), green (G) and blue (B) is applied to the surface of the dielectric layer exposed between the wall surfaces of the partition walls and between the partition walls, dried and fired to form a phosphor layer.
  • R red
  • G green
  • B blue
  • the produced front plate and back plate were bonded at 500 ° C. using sealing glass. Then, after evacuating the inside of the discharge space, Ne-Xe was sealed as a discharge gas to fabricate a PDP.
  • Each of the manufactured PDPs was connected to a drive circuit to emit light, and held in the light emission state for 3 hours for aging, and then the discharge maintaining voltage was measured.
  • the aging treatment is carried out in order to clean the surface of the MgO film and the sprayed powder to some extent by sputtering, and is usually carried out in the manufacturing process of PDP, and the panel without this is subjected to the presence or absence of the sprayed powder.
  • the drive voltage is high regardless of
  • the PDP according to the present invention can be widely used in public facilities, home televisions, etc., and has the advantage of being able to provide one with improved discharge characteristics, the availability can be said to be extremely wide.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

比較的低い駆動電圧でありながら良好な画像表示性能を発揮することが期待できるプラズマディスプレイパネルを提供する。 そのために、PDP200において、放電空間14に臨む保護層7の表面に対し、希土類金属の一種類以上と、Snと酸素を含む化合物を、電子放出材料(化合物粉末20)として分散配置する。分散配置する化合物は、その安定性を高めるために、結晶性化合物が望ましい。結晶性化合物としては、LnSn相が挙げられる(Lnとしては、希土類金属一種類でも良いし、複数含んでもかまわない)。 これにより、駆動時に良好な2次電子放出特性を発揮させ、PDP200の駆動電圧を低減する。

Description

プラズマディスプレイパネル
 本発明は、プラズマディスプレイパネル(PDP)に関し、特に保護層周辺の材料の改良技術に関する。
 プラズマディスプレイパネル(以下PDPと略す)は、薄型ディスプレイパネルの中で、大型化が容易、高速表示が可能、低コストといった特徴から、実用化され、急速に普及している。
 現在実用化されている一般的なPDPの構造は、それぞれ前面基板と背面基板となる、2枚の対向するガラス基板に、それぞれ規則的に配列した複数の電極(表示電極対またはアドレス電極)を設け、これらの各電極を前記ガラス基板上で被覆するように低融点ガラス等の誘電体層を設ける。背面基板の誘電体層上には蛍光体層を設ける。前面基板の誘電体層上には、誘電体層を放電時のイオン衝撃に対して保護し、かつ2次電子放出を目的とした保護層として、MgO層が設けられる。そして2枚の基板を放電空間を介して内部封止するとともに、放電空間にNe、Xe等の不活性ガスを主体とするガスを封入する。駆動時には、電極間に電圧を印加して放電を発生させることにより蛍光体を発光させて表示を行う。
 PDPにおいては高効率化が強く要求されている。その手段としては誘電体層を低誘電率化する方法や、放電ガスのXe分圧を上げる方法が知られている。しかしながら、このような手段を用いると放電開始電圧や維持電圧が上昇してしまう問題点があった。
 一方、保護層の材料として2次電子放出係数の高い材料を用いれば、放電開始電圧や維持電圧の低減が可能であることが知られている。これにより高効率化や、耐圧の低い素子を用いることによる低コスト化が実現可能となる。このため、MgOの代わりに同じアルカリ土類金属酸化物であるが、より2次電子放出係数の高い、CaO、SrO、BaOを用いたり、これら同士の固溶体を用いることが検討されている(特許文献1、2参照)。また、希土類酸化物も保護膜材料として検討されている。
特開昭52-63663号公報 特開2007-95436号公報
 しかしながら、CaO、SrO、BaO、希土類酸化物などは、MgOに比べて化学的に不安定であり、空気中またはパネル内に残留する水分や炭酸ガスと比較的容易に反応して、水酸化物や炭酸化物を形成する。このような化合物が形成されると、保護層の2次電子放出係数が低下して、期待した程度の低電圧化の効果が得られないという問題点がある。
 こうした化学反応による劣化は、実験室レベルで少量かつ小型のPDPを作製する場合には、作業の雰囲気ガスを制御するといった方法で回避可能である。しかしながら、現実的に製造工場で全ての製造工程を雰囲気管理するのは困難であり、また可能であっても高コスト化につながる。特に大型のPDPを製造する場合は、この問題は顕著になる。このため、従来より2次電子放出係数の高い材料の使用が検討されてきたにもかかわらず、未だに実用化されているのはMgOのみであり、充分な低電圧化や高効率化が実現されてい
ない。
 また、MgO以外の材料を保護層として用いた場合、イオン衝撃耐性が低いために、PDP駆動時のガスによるスパッタリング量が大きくなる。これにより、PDPの寿命が短くなるという問題点がある。
 本発明は以上の課題に鑑みてなされたものであって、良好な2次電子放出特性を有する化合物を用いることにより、優れた画像表示性能を低電圧駆動で発揮することが期待できるPDPを提供することを目的とする。
 上記課題を解決するために、本発明は、複数の電極間に電圧を印加して放電空間内で放電させ、当該放電を蛍光体で可視光に変換することによって発光するPDPであって、前記放電空間に臨む領域に、希土類金属の一種類以上と、Snと酸素とを含む化合物を、電子放出材料として配した構成とした。
 上記構成において、希土類金属の一種類以上とSnと酸素を含む化合物が、結晶性化合物であることが望ましく、さらに、LnSn(Lnは希土類金属の一種類以上)で表される化合物であることが望ましい。
 また、希土類金属は、La、Eu、Gd、Yb、Luより選ばれた一種類以上、特にLaであることが望ましい。さらに、MgO保護層の上に、前記化合物を、粒子の状態で、分散配置していることが望ましい。
 さらに本発明は、第一基板(前面ガラス基板)上に第一電極(表示電極)、当該第一電極を覆う第一の誘電体層、前記第1の誘電体層上に保護層が形成されてなる第一パネル(前面パネル)と、第二基板(背面ガラス基板)上に第二電極(アドレス電極)、当該第二電極を覆う第二誘電体層、蛍光体層が形成されてなる第二パネル(背面パネル)とが、放電空間を挟んで対向配置されたPDPにおいて、上記した本発明のいずれかの電子放出材料を、前記保護層に含ませることとした。
 あるいは本発明は、第一基板上に第一電極、当該第一電極を覆う第一の誘電体層、前記第1の誘電体層上に保護層が形成されてなる第一パネルと、第二基板上に第二電極、当該第二電極を覆う第二誘電体層、蛍光体層が形成されてなる第二パネルとが、放電空間を挟んで対向配置されたPDPにおいて、上記した本発明のいずれかの電子放出材料を、前記保護層上に粉末粒子の状態で分散配置した。
 また前記保護層上には、さらにMgOを主成分とする材料が、粉末粒子の状態で分散配置されている構成とすることもできる。
 本発明によれば、PDPにおいて、希土類金属の一種類以上と、Snと酸素とを含む化合物が、放電空間に臨む領域に電子放出材料として配設されており、この化合物は、従来のMgOと比べて化学的に安定化され、且つ2次電子放出係数が高いので、良好な画像表示を低電圧で駆動することが可能なPDPを提供できる。
 或いは、保護層としては従来どおり、イオン衝撃耐性の高いMgOをベースとして用い、これに併せて前記化合物を電子放出材料として用いることにより、駆動電圧が低くて良好な画像表示性能が発揮されるとともに、長寿命のPDPを提供できる。
実施の形態1のPDPの構成について説明するための分解斜視図である。 図1に示したPDPの縦断面図である。 実施の形態2のPDPの構成について説明するための分解斜視図である。 図3に示したPDPの縦断面図である。 XPSによる価電子帯スペクトルの測定例である。 XPSによるC1sスペクトルの測定例である。
 <本発明の化合物について>
 本願発明者等は、2次電子放出効率は高いが化学的に不安定なLa等の希土類酸化物の原料と各種の金属の酸化物を反応させて、多種にわたる化合物を合成した。そして、その化学的安定性と2次電子放出能を詳細に検討した結果、SnOを反応させた場合に、2次電子放出効率をあまり低下させずに化学的な安定性を高めることができた。そして、これらの化合物を用いれば、MgOを用いた場合よりも駆動電圧が低下したPDPが得られることを見出した。ここで、希土類とは、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luの総称であるが、放射性同位体しか存在しないPmは、本発明の範囲外である。
 希土類のいずれか一種類以上とSnとOを主成分とする化合物としては、これらを含むアモルファス状態のものでもかまわない。
 ただし、より安定性を高めるためには、結晶性化合物であることが望ましい。
結晶性化合物としては、LnSn相が挙げられる。Lnとしては、希土類金属一種類でも良いし、複数含んでもかまわない。
 希土類金属のどれを選ぶかについては、Sc、Yを用いたものは、2次電子放出効率がそれほど高くならず、またScは高価である。Ceは3価になりにくく、Snとの化合物の合成が容易ではない。また、価電子帯端にf電子が位置するものは2次電子放出効率が高くなりにくく、重希土は一般に高価である。
 これらの観点から、La、Pr、Nd、Sm、Eu、Gdが好ましく、特にLaが良い。
 このLnSn相は、蛍石型の結晶構造を持つ複合酸化物であるが、希土類のサイトをアルカリ土類で部分置換したり、SnのサイトをZrやCeといった4価金属や、NbやTa等の5価の金属、InやAl等の3価の金属等で部分置換したり、OをFで部分置換することができる。
 こうした置換は、2種類以上を同時に行ことも可能である。このうち、希土類のサイトをアルカリ土類であるCa、Sr、Baで部分置換すると、2次電子放出効率を、より改善できるために望ましい。
 ただし、こうした置換量が多くなると、結晶構造が維持出来なくなって第2相が析出分離したり、本来の特性が損なわれてしまう場合がある。置換組成においても、あくまで主成分は希土類とSnとOである必要がある。
 さらに、LnSn相を、雰囲気調整を行わない、通常の製造プロセスで用いる場合、Lnの合計量と、Snの配合モル比Ln/Snが、0.995以下であることが望ましい。これは、比率が1.000の場合でも、組成の不均一性により、希土類酸化物原料とSn酸化物原料の反応過程で、希土類酸化物が極微量ながら残存してしまい、雰囲気調整を行わない条件下では、これが炭酸化して表面を覆ってしまい、2次電子放出係数が低下してしまうためと考えられる。
 なお、希土類類サイトやSnのサイトを前述した部分置換を行っている場合は、それら置換元素を合わせた合計の比率を0.995以下とすれば良い。また、この比率をさらに低下させると、ある程度以下ではSnOが余剰となって析出するが、このような状態では、前述したようなアルカリ土類の多い組成となるのを防止できるため、SnOとの混合物となっているのも良い。
 希土類金属の一種類以上と、Snとを含む酸化物を合成する方法としては、その形態として、固相法、液相法、気相法が挙げられる。
 固相法は、それぞれの金属を含む原料粉末(金属酸化物、金属炭酸塩等)を混合し、ある程度以上の温度で熱処理して反応させる方法である。
 液相法は、それぞれの金属を含む溶液を作り、これより固相を沈殿させたり、あるいは基板上にこの溶液を塗布後、乾燥し、ある程度以上の温度で熱処理等を行って固相とする方法である。
 気相法は、蒸着、スパッタリング、CVD等の方法によって膜状の固相を得る方法である。
 本発明では、上記したいずれの方法を用いることも可能である。上記化合物を粉末形態で用いるのであれば、通常は、比較的製造コストが低く、大量に製造することも容易な固相法が好適である。
 次に、上記化合物をPDPのどの部分に配設するかについては、少なくとも放電空間に臨む領域に配設すればよい。一般的には、前面板の電極を覆う誘電体層の上に配設するのが好適である。しかしながら、これに限定されるものではなく、他の部位、例えば蛍光体部やリブ表面等の位置に形成したり、蛍光体に混合してもよい。このように化合物を放電空間に臨むように配設することによって、上記化合物を用いないPDPに比べると駆動電圧の減低効果があることが実験により確認されている。
 なお、蛍光体層に上記化合物を配設する場合には、蛍光体の発光特性を損なわないように、配設量を適切に制御することが望ましい。
 次に、これらの化合物の形態については、例えば前面板の電極を覆う誘電体層の上に形成する場合を考えると、図1、2に示すように誘電体層の上に通常保護層として形成されるMgO膜の代わりに、これらの化合物の膜を形成したり、これらの粉末を散布する、あるいは図3、4に示すようにMgO膜を形成した上に、これらの化合物の膜をさらに形成したり、これらの化合物の粉末を散布する、といった方法をとれば良い。
 ただし、これら化合物を保護層の代わりに形成した場合、これらの化合物も高融点で安定な化合物ではあるが、MgOに比べると、スパッタリング耐性はやや劣り、透明性もやや劣る。粉末散布の場合は、さらに透明性低下による輝度劣化が問題となることもある。
 よって、保護層としては従来どおりMgO膜を用い、その上に、透過率が問題とならないレベルで粉末を分散散布する方法が望ましい。
 透過率が問題とならないレベルにするため、化合物の粉末が保護層を被覆する被覆率を20%以下とするのが良い。また、粉末の粒子径は、0.1μm~10μm程度の範囲内で、セルサイズ等に合わせて選択すれば良い。例えば、分散配置させる場合は、MgO膜上での粉末の移動や落下が生じないように、粒子径は3μm以下、より望ましくは1μm以下が良い。粒径が大きすぎると粒子の質量によっては放電空間側に落下する場合があるので注意する。
 このような構成とすると、保護層としては従来どおり、高融点のMgO膜がその役割をはたし、2次電子放出は、本発明の化合物がその役割を担い、かつその被覆率が低いために輝度低下もなく、低電圧で、かつ長寿命なPDPを得ることができる。
 また、最近になって、PDPの高精細化に伴う放電遅れの問題を解決するために、初期の電子放出効率が良い、結晶性のMgO粉末を、MgO保護層の上に分散散布することが行われている。この場合、MgO粉末に有機成分を混合してペースト状とし、MgO保護層上に印刷した後、適当な温度で熱処理して、有機成分を除去するといった方法が用いられる。
本発明の結晶性酸化物の粉末も、全く同じプロセスで分散散布可能であるので、上記2種類のペーストをそれぞれ印刷しても良いが、本発明の結晶性酸化物の粉末と結晶性のMgO粉末をともに含むペーストを作製し、MgO保護層上に印刷した後、適当な温度で熱処
理して、有機成分を除去すれば、一回のプロセスで形成できるため、より望ましい。
 このようにすれば、従来MgO膜が担っていた3つの機能、すなわち、保護と低電圧化と放電遅れ解消の役割を、MgO膜、本発明の結晶性酸化物粉末、結晶性MgO粉末が、それぞれ果たすことになり、それぞれ最適のものを用いることが可能となって、良好な特性のPDPとすることができる。
 なお、本明細書においては、化合物をLnSnと記載している。しかしながら、希土類金属は、その種類によっては3価以外に、その一部が2価となったり、4価となる事があり、その場合には酸素の過不足が生じる。従って、より正確にはLnSn7±δと記載すべきであるが、このδは、希土類の種類や製造条件等によって変動し、必ずしも一定値とはならない。よって便宜上LnSnのように記載しているが、これは、酸素過不足の場合を否定しているものではない。
 〈実施の形態1〉
 次に、本発明にかかるPDPの具体例を、図を用いて説明する。
 図1および2は、実施の形態1にかかるPDP100を示すものであって、図1は、当該PDP100の分解斜視図である。図2は、当該PDP100の縦断面図(図1、I-I線断面図)である。
 図1および2に示すように、PDP100は、前面板1と背面板8とを有している。前面板1と背面板8との間には、放電空間14が形成されている。このPDPは、AC面放電型であって、保護層7が上述した化合物を電子放出材料として用いることで形成されている以外は、従来例にかかるPDPと同様の構成を有する。
 前面板1は、前面ガラス基板2と、その内側面(放電空間14に臨む面)に形成された透明導電膜3およびバス電極4からなる表示電極5と、表示電極5を覆うように形成された誘電体層6と、誘電体層6上に形成された保護層7とを備えている。表示電極5は、ITOまたは酸化スズからなる透明導電膜3に、良好な導電性を確保するためのAg等からなるバス電極4が積層されて形成されている。
 背面板8は、背面ガラス基板9と、その片面に形成したアドレス電極10と、アドレス電極10を覆うように形成された誘電体層11と、誘電体層11の上面に設けられた隔壁12と、隔壁12の間に形成された蛍光体層とを備えている。蛍光体層は、赤色蛍光体層13(R)、緑色蛍光体層13(G)および青色蛍光体層13(B)がこの順に配列するように形成されている。
 上記蛍光体層を構成する蛍光体としては、例えば、青色蛍光体としてBaMgAl1017:Eu、緑色蛍光体としてZnSiO:Mn、赤色蛍光体としてY:Euを用いることができる。
 前面板1および背面板8は、表示電極5とアドレス電極10の各々の長手方向が互いに直交し、かつ互いに対向するように配置し、封着部材(図示せず)を用いて接合される。
 放電空間14には、He、Xe、Ne等の希ガス成分からなる放電ガスが封入されている。
 表示電極5とアドレス電極10は、それぞれ外部の駆動回路(図示せず)と接続され、駆動回路から印加される電圧によって放電空間14で放電が発生し、放電に伴って発生する短波長(波長147nm)の紫外線で蛍光体層13が励起されて可視光を発光する。
保護層7には上述した化合物が含まれている。ここで、保護層7は上記化合物のみで形成してもよいし、上記化合物とMgOとを混在させて保護層7を形成してもよい。
 このような構成を持つPDP100では、保護層7が従来に比べて化学的に安定であり、かつ、優れた2次電子放出特性を発揮する。したがって、良好な画像表示性能を低電力駆動で発揮することができるようになっている。
 また、このPDP100は、製造工程のすべての雰囲気を管理しなくても製造できるため、比較的低コストで実現できるメリットを有する。
<実施の形態2>
 次に、図3および図4は、実施の形態2にかかるPDP200を示すものであって、図3は、当該PDP200の分解斜視図である。図4は、当該PDP200の縦断面図(図3、I-I線断面図)である。
 PDP200は、保護層7がMgOからなり、上述した化合物粉末20が保護層7上に粒子の形態で配置されていること以外は、PDP100と同様の構造を有する。PDP200においても、化合物粉末20は、放電空間14に面しており、当該放電空間14に臨むように配置されている。
 このような構成を持つPDP200においても、PDP100と同様に優れた画像表示性能の発揮と低電力駆動の両立効果が発揮される。これに加え、MgOからなる層7が存在していることにより、当該層7の諸特性(良好な耐イオン衝撃性による誘電体層6の保護効果と長寿命化等)が併せて発揮されるメリットを有している。
<PDPの製造方法>
 次に、上記実施の形態1,2で説明した化合物粉末を散布したPDP100,200を作製する方法について、一例を挙げて説明する。なお、以下に説明するPDPの製造方法は例示に過ぎず、同一の発明の範囲内において適宜変更が可能である。
 まず、前面板を作製する。平坦な前面ガラス基板2の一主面に、複数のライン状の透明電極3を形成する。引き続き、透明電極3上に銀ペーストを塗布した後、当該基板全体を加熱することによって銀ペーストを焼成し、バス電極4を形成して表示電極5を得る。
 表示電極5を覆うように、前面ガラス基板2の上記主面に誘電体層用ガラスを含むガラスペーストをブレードコーター法によって塗布する。その後、当該基板全体を90℃で30分間保持してガラスペーストを乾燥させ、次いで、580℃前後の温度で10分間焼成を行う。これにより誘電体層6を得る。
 次に、PDP100の構成を得る場合には、誘電体層6上にMgO保護層を形成することなく、上述した化合物を厚膜として形成する。具体的には化合物粉末をビヒクルや溶媒等と混合して、比較的化合物粉末含有率の高いペースト状とし、これを印刷法等の方法で誘電体層6の表面に薄く広げて塗布する。その後は焼成して厚膜状とする。
 一方、PDP200の構成を得る場合には、誘電体層6の上にMgO保護層7を形成し、その表面に化合物粉末を散布する。まず、誘電体層上に酸化マグネシウム(MgO)を電子ビーム蒸着法によって成膜し、保護層7を形成する。続いて、MgO保護層7の表面に化合物粉末20を配設する。その配設方法としては、比較的化合物粉末含有率の低いペーストを用意して印刷法等により塗布する方法、溶媒に粉末を分散させて散布する方法、スピンコーター等を用いる方法等で化合物粉末を保護層7上に配置した後、これを500℃前後の温度で焼成する方法が例示できる。
 このうち、印刷法に基づく場合には、エチルセルロース等のビヒクルに本発明の化合物粉末20を混合し、ペースト状としたものを調整する。これをMgO保護層7上に印刷法等により塗布する。ペースト塗布後はこれを乾燥させ、500℃前後の温度で焼成する。これにより、所定の化合物粉末20からなる散布層が形成される。
 以上で前面板が作製される。
 上記前面板とは別工程で、背面板を作製する。平坦な背面ガラス基板の一主面に、銀ペーストをライン状に複数本塗布した後、背面ガラス基板全体を加熱して銀ペーストを焼成
することによって、アドレス電極を形成する。
 隣り合うアドレス電極の間にガラスペーストを塗布し、背面ガラス基板全体を加熱してガラスペーストを焼成することによって、隔壁を形成する。
 隣り合う隔壁同士の間に、R、G、B各色の蛍光体インクを塗布し、背面ガラス基板を約500℃に加熱して上記蛍光体インクを焼成することによって、蛍光体インク内の樹脂成分(バインダー)等を除去して蛍光体層を形成する。
 こうして得た前面板と背面板とを封着ガラスを用いて貼り合わせる。この時の温度は500℃前後である。その後、封止された内部を高真空排気した後、希ガスからなる所定の放電ガスを封入する。
 以上の各製造工程を経ると、上記実施の形態1,2で説明した構成のPDP100,200が得られる。
<実施例の性能評価実験>
 実施例にかかる化合物、およびPDPを作製して、性能評価を行った。以下にその内容を詳細に説明する。
(実施例1)
 [化合物の合成とXPSによる評価]
 本実施例では、希土類金属酸化物の原料粉末と酸化錫の原料粉末を用いた、固相法による本発明の化合物の合成について述べる。
 出発原料として、試薬特級以上のLn粉末(希土類金属は種類が多いため、Lnとして、今回はY、La、Pr、Eu、Gd、Yb、Luを用いた)およびSnO、CaCO、SrCO、BaCOを用いた。これらの原料を、各金属イオンのモル比が表1の比率となるように秤量し、ボールミルを用いて湿式混合した後、乾燥し、混合粉末を得た。
 これらの混合粉末をアルミナ製坩堝に入れ、電気炉にて、空気中で1200℃~1300℃で2時間焼成した。比較のため、原料粉末の一部、およびMgO粉末を同様に処理した。得られた粉末を、X線回折法を用いて分析し、生成相を同定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 LnとSnOを1:1のモル比で反応させた場合、いずれもLnSn相が生成している事が確認出来た。また、LnとしてLaを用い、その一部をCaO、SrO、BaOで置換した形で配合したNo.10-11についても、No.2のLaSnと同じ回折パターンが得られ、Laの一部がCa、Sr、Baで置換された相の生成が確認できた。
 次に、PDPにおける2次電子放出係数を測定する必要があるが、粉末に対して2次電子放出係数を直接測定する事は容易ではない。間接的な証拠としては、PDPの放電電圧が低下するのを確認すれば良いが、全ての材料に対してPDPを作製するのも容易ではない。
 そこで発明者等は詳細な検討の結果、X-ray Photoelectron Spectroscopy測定(以下XPSと略す)により、価電子帯端のエネルギー位置と、炭酸塩起因のカーボン量を測定比較する事により、PDPの放電電圧を低下させる材料を選別することが、ある程度可能である事を見出した。XPSは、試料表面にX線を照射して放出される電子のスペクトルを測定するものであり、その分析深さは、通常数原子~十数原子層とされており、PDPにおける2次電子放出と比較的近い、試料の表面の情報が得られる。
 2次電子放出係数は、一般にバンドギャップ幅と電子親和力の和が小さいほど大きくなるとされている。価電子帯端のエネルギー位置が低エネルギー側にあるほど、バンドギャップ幅は小さくなるので、2次電子放出係数は大きくなることとなる。
 一方、試料表面の炭酸塩起因のカーボン量は、化学的安定性の指標である。試料が化学的に不安定であれば、空気中の炭酸ガスと反応して、表面カーボン量は増加する。表面カーボン量がある程度以上多いと、粒子表面が、2次電子放出係数の炭酸塩で完全に覆われてしまうことになる。そして、たとえ価電子帯端のエネルギー位置が低エネルギー側にあっても、高い2次電子放出係数は得られない。
 よってXPSを利用すれば、価電子帯端のエネルギー位置と、炭酸塩起因のカーボン量を測定比較することにより、PDPの放電電圧を低下させることのできる材料の選別が、ある程度可能である。
 そこで合成した粉末をXPSにより評価した。
 図5に、表1の試料No.2、7、8、9、すなわち本発明にかかるLaSnと、比較例にかかるLa、SnO、MgOについて、価電子帯端のXPSスペクトルを示す。また図6には、これら試料のC1s軌道のXPSスペクトルを示す。当図では、バックグラウンドノイズは差し引いて示している。
 図5より、MgOに比較して、SnOは、価電子帯端位置が同程度にあり、Laは価電子帯端位置が若干低エネルギー側にあるのに対して、LaSnは価電子帯端位置が明瞭に低エネルギー側にあることが分かる。
 一方、図6において、炭酸化合物起因のCのピークは288~290eV付近に現れるが、LaはMgOよりも遥かにCのピークが高く、SnOはMgOよりもずっとCのピークが低い。LaSnは、SnOよりはCのピークが高いが、MgOよりもCのピークが低い。
 Laは、本来MgOよりも二次電子放出効率が高いはずなので、図5において価電子帯端位置は、より明瞭に低エネルギー側に出るはずである。しかし実験結果がそうならないのは、図6のように、表面C量が非常に多く、表面は既にLaではなくなっているためと考えられる。一方、SnOは、C量は少ないが価電子帯端位置はMgOと大差ない。
 これらに対してLaSnは、表面C量は、LaはもちろんMgOより少ないことから安定化されており、価電子帯端位置がMgOより明瞭に低エネルギー側にあることから、2次電子放出効率が高くなると考えられる。
 表1には、各種化合物(試料No.1~12)についてXPSを測定し、価電子帯端位置とC量を半定量的に示すために、3eVおよび2eVにおけるXPSのIntensity(大きいほど低エネルギーシフトで2次電子放出特性が優れる事が期待できる)と、288~290eV付近に現れる、炭酸化合物起源のC1sピークのIntensity(小さいほど化学的に安定)を併せて示した。この値は、いずれもバックグラウンド値を差し引いたものである。
 表1に示す結果より、本発明の化合物(試料No.1~6、10~12)は、いずれも3eVおよび2eVのXPS Intensityが大きく、かつC量が少ないことが確認できた。また、No.2のLaの一部をCa、Sr、Baで置換したNo.10~12は、No.2に比べて3eVおよび2eVのXPS Intensityがより大きかった。
 なお、他の組成系に対しても希土類のCa、Sr、Baによる置換を検討したところ、同様の効果が得られた。Ca、Sr、Baで置換するときの置換量については、希土類の10%を超えると、CaSnO、SrSnO、BaSnOが別相として生成し始めるため、10%が上限であった。
[PDPの作製と駆動電圧測定]
 上記の化学的安定性が改善された化合物を用いて以下のようにPDPを製造し、駆動電圧を測定した。
 厚さ約2.8mmの平坦なソーダライムガラスからなる前面ガラス基板を用意した。この前面ガラス基板の面上に、ITO(透明電極)の材料を所定のパターンで塗布し、乾燥した。次いで、銀粉末と有機ビヒクルとの混合物である銀ペーストをライン状に複数本塗布した後、上記前面ガラス基板を加熱することにより、上記銀ペーストを焼成して表示電極を形成した。
 表示電極を作製したフロントパネルに、ガラスペーストをブレードコーター法を用いて塗布し、90℃で30分間保持してガラスペーストを乾燥させ、585℃の温度で10分間焼成することによって、厚さ約30μmの誘電体層を形成した。
 上記誘電体層上に酸化マグネシウム(MgO)を電子ビーム蒸着法によって蒸着した後、500℃で焼成することによって保護層を形成した。
 次に、表1に示した粉末のうち、No.2及びNo.3の粉末を約1重量部とって、エチルセルロース系のビヒクル99重量部と混合し、3本ロールを通してペーストとした。当該ペーストを、印刷法によりMgO層上に薄く塗布し、120℃で乾燥させた後、500℃、空気中で焼成した。この際、ペーストの濃度調整によって、焼成後のMgO膜が粉末によって被覆される割合を10%程度とした。なお比較のため、No.7、8のLa2O3およびSnO2粉末を同様にペースト化して印刷、焼成したもの、および下地MgO膜のみで、ペースト印刷を行わないものも作製した。
 一方、以下の方法で背面板を作製した。まず、ソーダライムガラスからなる背面ガラス基板上にスクリーン印刷によって銀を主体とするアドレス電極をストライプ状に形成し、引き続き、前面板と同様の方法で、厚さ約8μmの誘電体層を形成した。
 次に、誘電体層上に、隣り合うアドレス電極の間に、ガラスペーストを用いて隔壁を形成した。隔壁は、スクリーン印刷および焼成を繰り返すことによって形成した。
 引き続き、隔壁の壁面と隔壁間で露出している誘電体層の表面に、赤(R)、緑(G)、青(B)の蛍光体ペーストを塗布し、乾燥および焼成して蛍光体層を作製した。
 作製した前面板、背面板を封着ガラスを用いて500℃で貼り合わせた。そして、放電空間の内部を排気した後、放電ガスとしてNe-Xeを封入し、PDPを作製した。
 作製した各PDPを駆動回路に接続して発光させ、発光状態で3時間保持してエージングした後、放電維持電圧を測定した。ここでエージング処理は、MgO膜や散布粉末の表面を、スパッタリングにより、ある程度清浄化するために行うものであり、PDPの製造工程では普通に実施され、これを行わないパネルは、粉末散布の有無にかかわらず、駆動電圧が高いものとなる。
 結果を表2に示す。なお、No.0は、粉末散布を行わずMgO下地膜のみを有するPDPについて行った測定結果である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、MgO薄膜のみのNo.0と比較して、実施例の酸化物を散布したパネルNo.2、3、11では明らかに駆動電圧の低下が見られた。また、No.2と11を比較すると、No.11の方が若干であるが、駆動電圧はより低い。この結果から、希土類をCa、Sr、Baで部分置換する事による効果が確認できた。
一方比較例のLaO3を散布したNo.7は、下地膜のみのNo.0と、ほとんど駆動電圧に差が見られなかった。Laは、本来二次電子放出効率が高く、低電圧化するはずであるが、表面のC量が多く、通常行われる3時間程度のエージングではその表面が十分清浄化出来ず、低電圧化しなかったものと考えられる。
 また、SnOを散布したNo.8では、理由は明らかではないが、エージング途中に発光しなくなった。
 以上より、PDPにおいて、本発明の化合物を放電空間に臨むように配設する事によって、駆動電圧が低下する効果が得られることは明らかである。
 本発明によるPDPは、公共施設や家庭用テレビ等に幅広く利用でき、放電特性が改善されたものを提供できるなどの利点を有するので、その利用可能性は極めて広いといえる。
 1  前面板
 2  前面ガラス基板
 3  透明導電膜
 4  バス電極
 5  表示電極
 6  誘電体層
 7  保護層
 8  背面板
 9  背面ガラス基板
 10  アドレス電極
 11  誘電体層
 12  隔壁
 13  蛍光体層
 14  放電空間
 20  化合物
 100、200  プラズマディスプレイパネル(PDP)

Claims (10)

  1.  複数の電極間に電圧を印加して放電空間内で放電させ、当該放電を蛍光体で可視光に変換することによって発光するプラズマディスプレイパネルであって、
     前記放電空間に臨む領域に、希土類金属の一種類以上と、Snと酸素とを含む化合物を配したプラズマディスプレイパネル。
  2.  前記化合物が、結晶性化合物である請求項1に記載のプラズマディスプレイパネル。
  3.  前記結晶性化合物が、LnSnで表される化合物である請求項2に記載のプラズマディスプレイパネル(ここで、Lnは、希土類金属の一種類以上を示す)。
  4.  前記希土類金属が、La、Eu、Gd、Yb、Luより選ばれた一種類以上である請求項1~3のいずれかに記載のプラズマディスプレイパネル。
  5.  前記希土類金属がLaである請求項1~3のいずれかに記載のプラズマディスプレイパネル。
  6.  前記希土類金属の一部が、Ca、Sr、Baのいずれか一種類以上で部分的に置換されている、請求項1~3のいずれかに記載のプラズマディスプレイパネル。
  7.  前記プラズマディスプレイパネルは、第一基板上に第一電極、当該第一電極を覆う第一の誘電体層、前記第1の誘電体層上に保護層が形成されてなる第一パネルと、第二基板上に第二電極、当該第二電極を覆う第二誘電体層、蛍光体層が形成されてなる第二パネルとが、放電空間を挟んで対向配置されて構成され、
    前記化合物が、前記保護層に含まれている、請求項1~3のいずれかに記載のプラズマディスプレイパネル。
  8.  前記保護層上にはさらに、MgOを主成分とする材料が、粉末粒子の状態で分散配置されている請求項7に記載のプラズマディスプレイパネル。
  9.  前記プラズマディスプレイパネルは、第一基板上に第一電極、当該第一電極を覆う第一の誘電体層、前記第1の誘電体層上に保護層が形成されてなる第一パネルと、第二基板上に第二電極、当該第二電極を覆う第二誘電体層、蛍光体層が形成されてなる第二パネルとが、放電空間を挟んで対向配置されて構成され、
    前記化合物が、前記保護層上に粉末粒子の状態で分散配置されている請求項1~3のいずれかに記載のプラズマディスプレイパネル。
  10.  前記保護層上にはさらに、MgOを主成分とする材料が、粉末粒子の状態で分散配置されている請求項9に記載のプラズマディスプレイパネル。
PCT/JP2010/003652 2009-08-18 2010-06-01 プラズマディスプレイパネル WO2011021327A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010546975A JPWO2011021327A1 (ja) 2009-08-18 2010-06-01 プラズマディスプレイパネル
CN201080001970.3A CN102084453A (zh) 2009-08-18 2010-06-01 等离子体显示面板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-189029 2009-08-18
JP2009189029 2009-08-18

Publications (1)

Publication Number Publication Date
WO2011021327A1 true WO2011021327A1 (ja) 2011-02-24

Family

ID=43606789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003652 WO2011021327A1 (ja) 2009-08-18 2010-06-01 プラズマディスプレイパネル

Country Status (4)

Country Link
JP (1) JPWO2011021327A1 (ja)
KR (1) KR20120052140A (ja)
CN (1) CN102084453A (ja)
WO (1) WO2011021327A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150245653A1 (en) * 2012-10-05 2015-09-03 British American Tobacco (Investments) Limited Smoking article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095436A (ja) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2007146102A (ja) * 2005-11-07 2007-06-14 Kyushu Institute Of Technology 無機酸化物蛍光体
JP2007184264A (ja) * 2006-01-04 2007-07-19 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
WO2007126061A1 (ja) * 2006-04-28 2007-11-08 Panasonic Corporation プラズマディスプレイパネルとその製造方法
JP2008038234A (ja) * 2006-08-10 2008-02-21 Idemitsu Kosan Co Ltd 酸化ランタン含有酸化物ターゲット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095436A (ja) * 2005-09-28 2007-04-12 Matsushita Electric Ind Co Ltd プラズマディスプレイパネル
JP2007146102A (ja) * 2005-11-07 2007-06-14 Kyushu Institute Of Technology 無機酸化物蛍光体
JP2007184264A (ja) * 2006-01-04 2007-07-19 Lg Electronics Inc プラズマディスプレイパネル及びその製造方法
WO2007126061A1 (ja) * 2006-04-28 2007-11-08 Panasonic Corporation プラズマディスプレイパネルとその製造方法
JP2008038234A (ja) * 2006-08-10 2008-02-21 Idemitsu Kosan Co Ltd 酸化ランタン含有酸化物ターゲット

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150245653A1 (en) * 2012-10-05 2015-09-03 British American Tobacco (Investments) Limited Smoking article
US9532595B2 (en) * 2012-10-05 2017-01-03 British American Tobacco (Investments) Limited Smoking article

Also Published As

Publication number Publication date
CN102084453A (zh) 2011-06-01
JPWO2011021327A1 (ja) 2013-01-17
KR20120052140A (ko) 2012-05-23

Similar Documents

Publication Publication Date Title
WO2009081589A1 (ja) プラズマディスプレイパネル
KR100535430B1 (ko) 플라즈마 디스플레이 장치 및 형광체 및 형광체의 제조 방법
JP2003082344A (ja) プラズマディスプレイ装置
JP2003082343A (ja) プラズマディスプレイ装置
WO2010137247A1 (ja) 蛍光体及びその製造方法ならびに発光装置
JP4860555B2 (ja) プラズマディスプレイパネルおよびその製造方法
JP4607255B2 (ja) プラズマディスプレイパネル
WO2011021327A1 (ja) プラズマディスプレイパネル
JP3818285B2 (ja) プラズマディスプレイ装置
US7531961B2 (en) Plasma display with phosphors containing a β-alumina crystal structure
JP2012009368A (ja) プラズマディスプレイパネル
WO2011064959A1 (ja) プラズマディスプレイパネル
WO2010143345A1 (ja) プラズマディスプレイパネル
JP2006059629A (ja) プラズマディスプレイ装置
JP5212553B2 (ja) プラズマディスプレイパネル
WO2010089953A1 (ja) プラズマディスプレイパネル
KR100901948B1 (ko) 플라즈마 디스플레이 장치 및 플라즈마 디스플레이 장치용녹색 형광체 재료의 제조 방법
WO2010137225A1 (ja) 結晶性化合物、その製造方法及びプラズマディスプレイパネル
JP2010267402A (ja) プラズマディスプレイパネル
JP2010033807A (ja) プラズマディスプレイパネル
JP2010033813A (ja) プラズマディスプレイパネル
JP2006253154A (ja) プラズマディスプレイ装置
JP2011086426A (ja) プラズマディスプレイパネル
KR20120132302A (ko) 플라즈마 디스플레이 패널의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080001970.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010546975

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20107027354

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809675

Country of ref document: EP

Kind code of ref document: A1