WO2010087684A2 - 태양전지 백시트 및 이의 제조방법 - Google Patents

태양전지 백시트 및 이의 제조방법 Download PDF

Info

Publication number
WO2010087684A2
WO2010087684A2 PCT/KR2010/000633 KR2010000633W WO2010087684A2 WO 2010087684 A2 WO2010087684 A2 WO 2010087684A2 KR 2010000633 W KR2010000633 W KR 2010000633W WO 2010087684 A2 WO2010087684 A2 WO 2010087684A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
back sheet
layer
cell back
meth
Prior art date
Application number
PCT/KR2010/000633
Other languages
English (en)
French (fr)
Other versions
WO2010087684A3 (ko
Inventor
정붕군
김동렬
고명근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US13/147,166 priority Critical patent/US10038110B2/en
Priority to EP10736075.2A priority patent/EP2393124B1/en
Priority to CN201080006255.9A priority patent/CN102301492B/zh
Priority to JP2011547812A priority patent/JP2012516565A/ja
Publication of WO2010087684A2 publication Critical patent/WO2010087684A2/ko
Publication of WO2010087684A3 publication Critical patent/WO2010087684A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31551Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
    • Y10T428/31573Next to addition polymer of ethylenically unsaturated monomer
    • Y10T428/31583Nitrile monomer type [polyacrylonitrile, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31681Next to polyester, polyamide or polyimide [e.g., alkyd, glue, or nylon, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31721Of polyimide

Definitions

  • the present invention is a solar cell back sheet comprising a fluorine-based resin layer and a base layer, the solar cell back sheet with improved heat resistance, durability, etc., a manufacturing method of the solar cell back sheet, and a solar cell comprising the solar cell back sheet It is about.
  • the solar cell constitutes the heart of a photovoltaic system that directly converts the energy of sunlight into electricity and is made from a single crystal or polycrystalline or amorphous silicon based semiconductor.
  • various packaging is performed and unitized. Is called a solar cell module.
  • the solar cell covers the surface hit by sunlight with a glass surface, fills the gap with a filler composed of a thermoplastic (especially, ethylene-vinylacetate copolymer, EVA), the rear surface is a heat-resistant, weather-resistant plastic It has a configuration protected by a white sheet made of.
  • a filler composed of a thermoplastic (especially, ethylene-vinylacetate copolymer, EVA)
  • EVA ethylene-vinylacetate copolymer
  • fluorine-based resins Since solar cells need to maintain their performance for about 20 years, fluorine-based resins have been used as the back protective sheet for durability, weather resistance, and the like. However, the fluorine-based resin has a weak mechanical strength and has a disadvantage in that it is softened by heat of 140-150 ° C. when the solar cell module is manufactured. Has been.
  • PVDF polyvinylidene fluoride
  • acrylic resin 30% by weight
  • PVDF / acrylic blend resins generally have weaker hardness, abrasion, and the like than PVDF resins.
  • An object of the present invention is to provide a solar cell back sheet capable of improving heat resistance, weather resistance, productivity, and the like of the solar cell.
  • an object of the present invention is to provide a method for producing the solar cell back sheet and a solar cell comprising the solar cell back sheet.
  • the present invention is a.
  • It provides a method of manufacturing a solar cell back sheet comprising a.
  • It provides a method of manufacturing a solar cell back sheet comprising a.
  • the present invention provides a solar cell comprising the solar cell back sheet.
  • the solar cell backsheet and the solar cell using the same use a mixed composition of a (meth) acrylic copolymer resin and a fluorine resin containing a maleimide monomer, the heat resistance of the solar cell backsheet and the solar cell using the same and In addition to increasing mechanical properties, there is an advantage that can lower the raw material price.
  • FIG. 1 is a view showing any one structure of a solar cell back sheet according to the present invention.
  • the solar cell backsheet according to the present invention is a (meth) acrylic copolymer formed on 1) a substrate layer, and 2) at least one side of the substrate layer and containing a fluorine resin, a (meth) acrylic monomer, and a maleimide monomer. It is characterized by including the blended resin layer of resin.
  • said 1) base material layer can be selected according to a function, a use, etc. which are requested
  • the polyester-based resin layer may be formed from polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), and the like, but more preferably polyethylene terephthalate (PET), but is not limited thereto. It doesn't happen.
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PBT polybutylene terephthalate
  • PET polyethylene terephthalate
  • the fluorine-based resin of 2) can be selected according to a required function, use, or the like, and specifically, polyvinylidene fluoride resin (PVDF) is more preferable.
  • PVDF polyvinylidene fluoride resin
  • the (meth) acrylic monomer of 2) should be understood to mean not only (meth) acrylate but also (meth) acrylate derivatives.
  • the (meth) acrylic monomers include methyl methacrylate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, benzyl methacrylate, and the like. It is not limited only. In particular, it is most preferred to use methyl methacrylate (MMA).
  • MMA methyl methacrylate
  • the maleimide monomer of 2 As the maleimide monomer of 2), N-cyclohexyl maleimide, N-phenyl maleimide, N-methyl maleimide, N-butyl maleimide, N-benzyl maleimide Although mead, N-pyrenyl maleimide, etc. are mentioned, It is not limited only to this, Especially, N-cyclohexyl maleimide is most preferable.
  • the content of the (meth) acrylic monomer in the (meth) acrylic copolymer is preferably 50 to 99% by weight, more preferably 70 to 99% by weight, and even more preferably 70 to 98% by weight.
  • the content of the maleimide monomer is preferably 1 to 50% by weight, more preferably 1 to 30% by weight, even more preferably 2 to 30% by weight.
  • the (meth) acrylic copolymer may be prepared by a method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization, using a (meth) acrylic monomer and a maleimide monomer.
  • the content of the fluorine-based resin in the 2) blend resin layer is preferably 50 to 99% by weight, more preferably 60 to 80% by weight, and 2) the blended resin layer
  • the content of the internal (meth) acrylic copolymer resin is preferably 1 to 50% by weight, and more preferably 20 to 40% by weight.
  • the thickness of the 2) blend resin layer is preferably 10 micrometers to 250 micrometers, and more preferably 20 micrometers to 100 micrometers.
  • the 2) blend resin layer may be formed on either side of the 1) base material layer, and may be formed on both sides of the 1) base material layer.
  • the solar cell backsheet according to the present invention may include an additional adhesive layer between the 1) base layer and the 2) blend resin layer.
  • the adhesive layer may be formed from an adhesive for dry laminate. More specifically, the adhesive layer preferably comprises a polyurethane (polyurethane) adhesive.
  • the adhesive layer including the polyurethane adhesive can prevent the adhesive sheet from deteriorating the adhesive strength, delamination, etc. due to long-term use of the solar cell back sheet, and can also reduce yellowing of the adhesive layer.
  • the 1) base layer or 2) blend resin layer may further include a white pigment.
  • the white pigment may further improve the power generation efficiency of the solar cell device, and specific examples include white additives such as titanium oxide (TiO 2 ), silica, alumina, calcium carbonate, and barium sulfate. .
  • the 2) blend resin layer may further include one or more light stabilizers.
  • the light stabilizer is a component that absorbs ultraviolet rays, and more specifically, hydroxybenzophenones, hydroxybenzotriazoles, HALS (hindered amine light stabilizers), antioxidants, heat stabilizers, and the like. have.
  • the 2) blend resin layer may further include barrier particles.
  • the barrier particles are preferably plate-shaped particles, and since these particles can improve the moisture barrier property of the fluorine-based resin layer in the solar cell module, they may play a role of further improving the protection performance of the solar cell.
  • the barrier particles include mica particles, glass flake particles, stainless steel flake particles, aluminum flake particles, and the like. More preferred are mica particles. Do.
  • the mica particles may generally be coated with an oxide layer, such as iron oxide, titanium oxide, or the like.
  • the method for manufacturing a solar cell backsheet according to the present invention comprises the steps of 1) preparing a base layer, and 2) at least one side of the base layer, a fluorine resin, a (meth) acrylic monomer and a maleimide monomer. Coating a blend resin composition of the (meth) acrylic copolymer resin.
  • step 2) may further comprise the step of drying the coated composition at a temperature of 25 ⁇ 250 °C, preferably at 200 °C 3 minutes or more. .
  • the method for manufacturing a solar cell backsheet according to the present invention comprises the steps of 1) preparing a base layer, and 2) at least one side of the base layer, a fluorine resin, a (meth) acrylic monomer and a maleimide monomer. And laminating a blend resin layer of (meth) acrylic copolymer resin.
  • An additional adhesive layer may be included between the blended resin layer and the base layer when the blended resin layer and the base layer are laminated in the step 2).
  • the base layer, the fluorine resin and the blend resin, adhesive layer, etc. of the (meth) acrylic copolymer resin containing a (meth) acrylic monomer and a maleimide monomer Since it is the same as the above, specific details thereof will be omitted.
  • the present invention provides a solar cell comprising the solar cell back sheet.
  • a solar cell disposed in series or in parallel is filled with a filler composed of a thermoplastic (ethylene-vinylacetate copolymer), and a glass surface is disposed on a side where sunlight hits, and a rear side of the present invention. It may have a configuration to protect the solar cell back sheet according to, but is not limited thereto.
  • a filler composed of a thermoplastic (ethylene-vinylacetate copolymer), and a glass surface is disposed on a side where sunlight hits, and a rear side of the present invention. It may have a configuration to protect the solar cell back sheet according to, but is not limited thereto.
  • the solar cell may be manufactured by a method known in the art, except for including the solar cell backsheet according to the present invention.
  • the solar cell backsheet and the solar cell using the same use a mixed composition of a (meth) acrylic copolymer resin and a fluorine resin containing a maleimide monomer, the heat resistance of the solar cell backsheet and the solar cell using the same In addition to increasing, there is an advantage that can lower the raw material price.
  • PVDF polyvinylidene fluoride
  • DMAc dimethylacetamide
  • TiO 2 titanium oxide
  • DuPont TM Light Stabilizer 210 titanium oxide
  • the PET film used PET (SKC, SH82) of 100 micrometers thick, is a biaxially stretched film that is acrylic-treated primer on both sides.
  • the coating thickness was adjusted to 30-40 micrometers using a doctor bleed, and the coating speed was carried out at 6 mm / sec. After coating, the film was dried at room temperature for 5 minutes and then dried at room temperature for 30 minutes, and mounted on a frame and finally dried at 200 ° C for 3 minutes. After coating on one side of the PET film, the other side was coated in the same manner.
  • the raw material pellets were prepared by supplying a nitrogen-substituted 16 ⁇ extruder and melting at 230 ° C. 15 parts by weight of titanium oxide (TiO 2 , DuPont TM Light Stabilizer 210) was added to 100 parts by weight of the total resin so as to serve as a white pigment and UV absorption during pellet production.
  • PVDF was used by Solvey's SOLEF® 1010, and the poly (N-cyclohexylmaleimide-co-methylmethacrylate) resin had an NMR content of 6.5 wt% based on NMR analysis.
  • the obtained raw material pellets were vacuum-dried, melted with an extruder at 230 degreeC, and passed through the T-die of a coat hanger type, and 50 micrometers-thick film was produced through a chrome plating casting roll, a drying roll, etc.
  • Lamination was performed using a GMP company's EXCELAM-PLUS655RM laminator.
  • Polyurethane (PU) adhesive was used to laminate the fluorine-based film and PET film.
  • the composition of the PU adhesive used is shown in Table 1 below.
  • HDDI hexane-1,6-diisocyanate (hexane-1,6-diisocyanate)
  • Corona discharge was performed 15 times on the PET film, and the adhesive was applied and then dried at 80 ° C. for 2 minutes. After performing corona discharge 15 times on PVDF-830HR extruded film, the two films were laminated by laminator at 110 ° C (3 round trips). Then, after curing for 10 minutes at 80 °C and at least 12 hours at room temperature.
  • Example 1 a film was prepared by the same method except that polymethylmethacrylate resin was used instead of poly (N-cyclohexylmaleimide-co-methylmethacrylate).
  • Example 2 a film was prepared by the same method except that polymethylmethacrylate resin was used instead of poly (N-cyclohexylmaleimide-co-methylmethacrylate).
  • the water vapor transmission rate (WVTR) characteristics were measured under conditions of 90% RH and 38 ° C. using L80-5000 manufactured by PBI Dansensor.
  • Example 1 and Comparative Example 1 the coated PVDF mixed resin layer was peeled off to measure the glass transition temperature (Tg) as data indicating heat resistance.
  • the glass transition temperature (Tg) of the PVDF mixed film was measured. was measured.
  • the glass transition temperature (Tg) was measured by a differential scanning calorimeter (DSC2010) manufactured by TA instrument. It was analyzed at a temperature increase rate of 10 ° C./min under a nitrogen atmosphere, and the measured glass transition temperature was determined as the middle temperature of the heat capacity sudden change section in the second scan.
  • DSC2010 differential scanning calorimeter
  • glass transition temperature (Tg) is 10 degreeC or more higher than what used poly (N-cyclohexyl maleimide-co-methylmethacrylate) resin than using polymethylmethacrylate.
  • the adhesion between PET and PVDF-830HR layer is a major factor in determining the durability of the backsheet.
  • adhesion between the backsheet, encapsulated EVA, and encapsulated EVA and glass is also important, but only the adhesion between the layers of the backsheet is discussed here.
  • the backsheet sample was prepared by coating and laminating and the peel strength was measured.
  • One of the main functions of the solar cell backsheet is to insulate the cell sealed with EVA from the outside.
  • a breakdown voltage which is a voltage at which insulation breaks when a voltage is applied to a film, is used.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Photovoltaic Devices (AREA)

Abstract

본 발명은 1) 기재층, 및 2) 상기 기재층의 적어도 한 면에 형성되고, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지층을 포함하는 태양전지 백시트, 상기 태양전지 백시트의 제조방법, 및 상기 태양전지 백시트를 포함하는 태양전지에 관한 것이다. 본 발명에 따른 태양전지 백시트는 태양전지 셀 내의 온도를 낮출 수 있으므로, 태양전지의 내열성, 내후성 등을 향상시킬 수 있다.

Description

태양전지 백시트 및 이의 제조방법
본 발명은 불소계 수지층 및 기재층을 포함하는 태양전지 백시트에 있어서, 내열성, 내구성 등이 향상된 태양전지 백시트, 상기 태양전지 백시트의 제조방법, 및 상기 태양전지 백시트를 포함하는 태양전지에 관한 것이다.
본 출원은 2009년02월02일에 한국특허청에 제출된 한국특허출원 제10-2009-0008103호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
근래 지구 온난화 문제에 대하여 각 방면의 관심이 높아지고 있고, 이산화탄소의 배출 억제를 위해 여러 가지 노력이 계속되고 있다. 화석 연료의 소비량의 증대는 대기 중의 이산화탄소의 증가를 가져오고, 이로 인한 온실 효과에 의하여 지구의 기온이 상승하며, 지구 환경에 중대한 영향을 미치게 된다. 이러한 문제를 해결하기 위하여, 다양한 검토가 행해지고 있는데, 특히 태양광 발전에 있어서는 클린(clean)성, 무공해성 등의 특징으로 인하여 기대가 높아지고 있다.
태양전지는 태양광의 에너지를 직접 전기로 바꾸는 태양광 발전 시스템의 심장부를 구성하고, 단결정 또는 다결정 또는 비정질 실리콘(amorphous silicon)계의 반도체로부터 제조된다. 그 구조로는 태양전지 소자를 직렬 또는 병렬로 배치하고, 장기간(약 20년)에 걸쳐 셀(cell)을 보호하기 위하여, 여러 가지 팩키징(packaging)이 수행되고, 유닛화되는데 이 유닛(unit)을 태양전지 모듈이라 한다.
일반적으로 상기 태양전지는 태양광이 부딪히는 면을 유리(glass) 면으로 덮고, 열가소성 플라스틱(특히, 에틸렌-비닐아세테이트 공중합체, EVA)으로 구성되는 충전재로 간격을 메우며, 이면을 내열, 내후성 플라스틱으로 이루어진 백색 시트로 보호하는 구성을 갖는다.
태양전지는 약 20년간 그 성능을 유지할 필요가 있으므로, 내구성, 내후성 등을 위하여 이면 보호 시트로서 불소계 수지가 사용되어 왔다. 그러나, 상기 불소계 수지는 기계적 강도가 약하고, 태양전지 모듈 제조시에 140 ~ 150℃의 열 플레스의 열에 의하여 연화되는 단점이 있으며, 동시에 고가의 수지이므로 태양전지 모듈의 저가격화에 장애의 원인이 되어왔다.
상기 불소계 수지로서 폴리비닐리덴플루오라이드(PVDF) 수지는 약 30 중량%의 아크릴 수지와 혼합되었을 때, 접착력, 강인성(toughness), 광학적 투명성 등의 기준에서 최적의 물성을 나타낼 수 있는 것으로 알려져 있다. 그러나, PVDF/아크릴 블렌드 수지는 일반적으로 PVDF 수지에 비하여 경도(hardness), 마모성(abrasion) 등이 약한 문제점이 있다.
이에, 당 기술분야에서는 저가이면서도 내열성, 내후성 등이 더욱 우수한 백시트의 개발이 요구되고 있다.
본 발명은 태양전지의 내열성, 내후성, 생산성 등을 향상시킬 수 있는 태양전지 백시트를 제공하는 것을 목적으로 한다.
또한, 본 발명은 상기 태양전지 백시트의 제조방법 및 상기 태양전지 백시트를 포함하는 태양전지를 제공하는 것을 목적으로 한다.
본 발명은
1) 기재층, 및
2) 상기 기재층의 적어도 한 면에 형성되고, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지층
을 포함하는 태양전지 백시트를 제공한다.
또한, 본 발명은
1) 기재층을 준비하는 단계, 및
2) 상기 기재층의 적어도 한 면에, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지 조성물을 코팅하는 단계
를 포함하는 태양전지 백시트의 제조방법을 제공한다.
또한, 본 발명은
1) 기재층을 준비하는 단계, 및
2) 상기 기재층의 적어도 한 면에, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지층을 적층하는 단계
를 포함하는 태양전지 백시트의 제조방법을 제공한다.
또한, 본 발명은 상기 태양전지 백시트를 포함하는 태양전지를 제공한다.
본 발명에 따른 태양전지 백시트 및 이를 이용한 태양전지는 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지와 불소계 수지의 혼합 조성물을 이용하므로, 태양전지 백시트 및 이를 이용한 태양전지의 내열성 및 기계적 물성을 높일 수 있을 뿐 아니라, 원료 가격을 낮출 수 있는 장점이 있다.
도 1은 본 발명에 따른 태양전지 백시트의 어느 하나의 구조를 나타낸 도이다.
본 발명에 따른 태양전지 백시트는 1) 기재층, 및 2) 상기 기재층의 적어도 한 면에 형성되고, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지층을 포함하는 것을 특징으로 한다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 1) 기재층은 요구되는 기능, 용도 등에 따라 선정할 수 있고, 구체적으로는 금속 기재, 폴리에스테르계 수지층 등을 들 수 있다.
상기 폴리에스테르계 수지층은 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN), 폴리부틸렌 테레프탈레이트(PBT) 등으로부터 형성할 수 있으며, 폴리에틸렌 테레프탈레이트(PET)가 보다 바람직하나, 이에만 한정되는 것은 아니다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2)의 불소계 수지는 요구되는 기능, 용도 등에 따라 선정할 수 있고, 구체적으로는 폴리비닐리덴플루오라이드 수지(PVDF)가 보다 바람직하다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2)의 (메타)아크릴계 단량체는 (메타)아크릴레이트 뿐 아니라 (메타)아크릴레이트 유도체를 포함하는 것을 의미하는 것으로 이해되어야 한다.
구체적으로 상기 (메타)아크릴계 단량체로는 메틸 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 부틸 아크릴레이트, 2-에틸헥실 메타크릴레이트, 라우릴 메타크릴레이트, 벤질 메타크릴레이트 등이 있으나, 이에만 한정되는 것은 아니다. 특히, 메틸 메타크릴레이트(MMA)를 사용하는 것이 가장 바람직하다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2)의 말레이미드계 단량체로는 N-시클로헥실말레이미드, N-페닐말레이미드, N-메틸말레이미드, N-부틸말레이미드, N-벤질말레이미드, N-파이레닐말레이미드 등을 들 수 있으나, 이에만 한정되는 것은 아니며, 특히 N-시클로헥실말레이미드를 사용하는 것이 가장 바람직하다.
상기 (메타)아크릴계 공중합체 내 (메타)아크릴계 단량체의 함량은 50 ~ 99 중량%인 것이 바람직하고, 70 ~ 99중량%인 것이 보다 바람직하며, 70 ~ 98중량%인 것이 보다 더 바람직하다. 또한, 말레이미드계 단량체의 함량은 1 ~ 50 중량%인 것이 바람직하고, 1 ~ 30중량%인 것이 보다 바람직하며, 2 ~ 30중량%인 것이 보다 더 바람직하다.
상기 (메타)아크릴계 공중합체는 (메타)아크릴계 단량체 및 말레이미드계 단량체를 이용하고, 괴상 중합, 용액 중합, 현탁 중합, 유화 중합 등의 방법으로 제조될 수 있다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2) 블렌드 수지층 내 불소계 수지의 함량은 50 ~ 99 중량%인 것이 바람직하고, 60 ~ 80 중량%인 것이 보다 바람직하며, 상기 2) 블렌드 수지층 내 (메타)아크릴계 공중합체 수지의 함량은 1 ~ 50 중량%인 것이 바람직하고, 20 ~ 40 중량%인 것이 보다 바람직하다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2) 블렌드 수지층의 두께는 10마이크로미터 ~ 250마이크로미터인 것이 바람직하고, 20마이크로미터 ~ 100마이크로미터인 것이 보다 바람직하다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2) 블렌드 수지층은 상기 1) 기재층의 어느 한 면에 형성될 수 있고, 상기 1) 기재층의 양면에 모두 형성될 수도 있다.
본 발명에 다른 태양전지 백시트는 상기 1) 기재층과 상기 2) 블렌드 수지층 사이에 추가의 접착층을 포함할 수 있다.
상기 접착층은 드라이 라미네이트(dry laminate) 용 접착제로부터 형성될 수 있다. 보다 구체적으로, 상기 접착층은 폴리우레탄(polyurethane) 접착제를 포함하는 것이 바람직하다. 상기 폴리우레탄 접착제를 포함하는 접착층은 태양전지 백시트의 옥외에서의 장기간 사용에 기인하는 배리어 시트의 접착 강도 저하, 층갈라짐(delamination) 등을 방지할 수 있고, 접착층의 황변도 또한 줄일 수 있다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 1) 기재층 또는 2) 블렌드 수지층은 백색 안료를 추가로 포함할 수 있다. 상기 백색 안료는 태양 전지 소자의 발전 효율을 보다 향상시킬 수 있고, 구체적인 예로는 산화 티탄(TiO2), 실리카(silica), 알루미나(alumina), 탄산칼슘, 황산바륨 등의 백색 첨가물을 들 수 있다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2) 블렌드 수지층은 1종 이상의 광 안정제(light stabilizer)를 추가로 포함할 수 있다. 상기 광 안정제는 자외선을 흡수하는 성분으로서, 보다 구체적으로는 하이드록시벤조페논계(hydroxybenzophenones), 하이드록시벤조트리아졸계(hydroxybenzotriazoles), HALS(hindered amine light stabilizers), 산화 방지제, 열 안정제 등을 들 수 있다.
본 발명에 따른 태양전지 백시트에 있어서, 상기 2) 블렌드 수지층은 배리어 입자를 추가로 포함할 수 있다. 상기 배리어 입자는 판형 입자가 주로 선호되는데, 이러한 입자들은 태양전지 모듈에서 불소계 수지층의 수분 배리어 특성을 향상시킬 수 있으므로, 태양 전지의 보호 성능을 보다 향상시키는 역할을 할 수 있다.
상기 배리어 입자로는 운모(mica) 입자, 글래스 플레이크(glass flake) 입자, 스테인리스강 플레이크(stainless steel flake) 입자, 알루미늄 플레이크(aluminium flake) 입자 등을 들 수 있고, 운모(mica) 입자가 보다 바람직하다. 상기 운모(mica) 입자는 일반적으로 철 산화물, 티타늄 산화물 등과 같은 산화물층으로 코팅될 수 있다.
또한, 본 발명에 따른 태양전지 백시트의 제조방법은 1) 기재층을 준비하는 단계, 및 2) 상기 기재층의 적어도 한 면에, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지 조성물을 코팅하는 단계를 포함한다.
본 발명에 따른 태양전지 백시트의 제조방법에 있어서, 상기 2) 단계 이후에 코팅된 조성물을 25 ~ 250℃의 온도, 바람직하게는 200℃에서 3분 이상 건조시키는 단계를 추가로 포함할 수 있다.
또한, 본 발명에 따른 태양전지 백시트의 제조방법은 1) 기재층을 준비하는 단계, 및 2) 상기 기재층의 적어도 한 면에, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지층을 적층하는 단계를 포함한다.
상기 2) 단계에서 블렌드 수지층과 기재층의 적층시 블렌드 수지층과 기재층 사이에는 추가의 접착층이 포함될 수 있다.
본 발명에 따른 태양전지 백시트의 제조방법에 있어서, 상기 기재층, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지, 접착층 등에 대한 내용은 전술한 바와 동일하므로, 이에 대한 구체적인 내용은 생략하기로 한다.
또한, 본 발명은 상기 태양전지 백시트를 포함하는 태양전지를 제공한다.
본 발명에 따른 태양전지는 직렬 또는 병렬로 배치된 태양전지 셀을 열가소성 플라스틱(에틸렌-비닐아세테이트 공중합체)으로 구성된 충전재로 간격을 메우고, 태양광이 부딪히는 면에는 유리면이 배치되며, 이면은 본 발명에 따른 태양전지 백시트로 보호하는 구성을 가질 수 있으나, 이에만 한정되는 것은 아니다.
상기 태양전지는 본 발명에 따른 태양전지 백시트를 포함하는 것을 제외하고, 당 기술분야에 알려진 방법으로 제조할 수 있다.
본 발명에 따른 태양전지 백시트 및 이를 이용한 태양전지는 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지와 불소계 수지의 혼합 조성물을 이용하므로, 태양전지 백시트 및 이를 이용한 태양전지의 내열성을 높일 수 있을 뿐 아니라, 원료 가격을 낮출 수 있는 장점이 있다.
이하에서는 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 이하의 실시예는 본 발명을 예시하기 위한 것이며, 하기 실시예에 의하여 본 발명의 범위가 한정될 것을 의도하는 것은 아니다.
<실시예>
<실시예 1> 불소계 수지층을 PET 층에 코팅
폴리비닐리덴플루오라이드(PVDF) 수지와 폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트) 수지를 75:25의 중량비로 디메틸아세트아미드(DMAc)에 녹여서 TSC 18 중량%의 용액을 제조하였다. 여기에 백색 안료 및 UV 흡수 역할을 하도록 산화티탄(TiO2, DuPontTM Light Stabilizer 210)을 전체 수지 100 중량부에 대하여 15 중량부를 투입하였다. 이 용액을 5마이크로미터 필터로 여과한 후 폴리에틸렌테레프탈레이트(PET) 필름에 코팅을 하였다. 상기 PET 필름은 100마이크로미터 두께의 PET(SKC, SH82)를 사용하였고, 양면에 아크릴 고분자가 프라이머 처리되어 있는 이축연신 필름이다. 닥터 블레이트를 사용하여 코팅 두께를 30 ~ 40마이크로미터로 조절하였으며, 코팅 속도는 6 mm/sec로 실시하였다. 코팅 후, 필름의 건조는 실온에서 5분 건조 후 120℃로 승온하여 30분 건조시켰으며, 프레임에 장착하여 200℃에서 3분 동안 최종 건조하였다. PET 필름의 한 쪽 면에 코팅한 후, 다른 쪽 면을 같은 방법으로 코팅하였다.
제조된 백시트 필름의 특성을 하기 표 2에 나타내었다.
<실시예 2> 불소계 수지층을 PET 층에 적층
1) PVDF와 폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트)의 혼합 필름 제조
폴리비닐리덴플루오라이드(PVDF) 수지와 폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트) 수지를 75:25의 중량비로 균일하게 혼합한 수지 조성물을 원료 호퍼(hoper)로부터 압출기까지를 질소 치환한 16Ф의 압출기에 공급하여 230℃에서 용융하여 원료 펠렛(pellet)을 제조하였다. 펠렛 제조시 백색 안료 및 UV 흡수 역할을 하도록 산화티탄(TiO2, DuPontTM Light Stabilizer 210)을 전체 수지 100 중량부에 대하여 15 중량부를 투입하였다. PVDF는 Solvey 사의 SOLEF® 1010을 사용하였고, 폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트) 수지는 NMR 분석 결과 N-시클로헥실말레이미드의 함량이 6.5 중량%이었다. 얻어진 원료 펠렛을 진공 건조하고 230℃에서 압출기로 용융, 코트 행거 타입의 티-다이(T-die)에 통과시키고, 크롬 도금 캐스팅 롤 및 건조 롤 등을 거쳐 두께 50마이크로미터의 필름을 제조하였다.
2) PVDF 혼합 필름과 PET의 적층
GMP 사의 EXCELAM-PLUS655RM 적층기(laminator)를 이용하여 적층하였다.
폴리우레탄(Polyurethane, PU) 접착제를 사용하여 불소계 필름과 PET 필름을 적층하였다. 사용된 PU 접착제의 조성은 하기 표 1과 같다.
표 1
Figure PCTKR2010000633-appb-T000001
폴리올: Desmophen 670 Bayer
HDDI: 헥산-1,6-디이소시아네이트(hexane-1,6-diisocyanate)
반응촉매: 1% THF, 디-n-부틸틴 디라우레이트(Di-n-butyltin dilaurate, > 94%(typically 98+%))
PET 필름에 코로나(corona) 방전을 15회 실시하고, 상기 접착제를 도포한 후 80℃에서 2분 동안 건조하였다. PVDF-830HR 압출 필름에 코로나(corona) 방전을 15회 실시한 후 110℃에서 두 필름을 라미네이터로 합지하였다(3회 왕복). 그리고, 80℃에서 10분 동안 경화한 후 상온에서 12시간 이상 경화하였다.
제조된 백시트 필름의 특성을 하기 표 2에 나타내었다.
<비교예 1>
상기 실시예 1에서, 폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트) 대신에 폴리메틸메타크릴레이트 수지를 사용한 것을 제외하고는 동일한 방법에 의하여 필름을 제조하였다.
제조된 백시트 필름의 특성을 하기 표 2에 나타내었다
<비교예 2>
상기 실시예 2에서, 폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트) 대신에 폴리메틸메타크릴레이트 수지를 사용한 것을 제외하고는 동일한 방법에 의하여 필름을 제조하였다.
제조된 백시트 필름의 특성을 하기 표 2에 나타내었다.
표 2
Figure PCTKR2010000633-appb-T000002
상기 WVTR(water vapor transmission rate) 특성은 PBI Dansensor 사의 L80-5000을 사용하여, 90% RH, 38℃의 조건에서 측정하였다.
내열성을 나타내는 데이터로서 실시예 1과 비교예 1에서는 코팅된 PVDF 혼합 수지층을 박리하여 유리 전이 온도(Tg)를 측정하였고, 실시예 2와 비교예 2에서는 PVDF 혼합 필름의 유리 전이 온도(Tg)를 측정하였다. 상기 유리 전이 온도(Tg)는 TA instrument 사의 시차주사형 열량계(DSC2010)에 의하여 측정하였다. 질소분위기 하에서 10℃/min의 승온속도로 분석하였는데, 측정된 유리 전이 온도는 제2스캔에서 열용량 급변 구간의 중간 온도로 결정하였다.
폴리(N-시클로헥실말레이미드-co-메틸메타크릴레이트) 수지를 사용한 것이 폴리메틸메테크릴레이트를 사용한 것보다 유리 전이 온도(Tg)가 10℃ 이상 높은 것을 알 수 있다.
<실험예> 백시트의 특성 평가
1. 180o peel strength
Lab에서 제조하는 백시트는 PET에 PVDF-830HR 층을 적층하여 제조하기 때문에 PET와 PVDF-830HR 층과의 접착력(adhesion)이 백시트의 내구성을 결정하는 주요 인자가 된다. 물론 백시트와 봉지된(encapsulated) EVA, 그리고 봉지된(encapsulated) EVA와 글래스(glass)의 접착력(adhesion)도 중요하지만 여기서는 백시트의 각 층간의 접착력(adhesion)만 살펴보았다.
유리판에 양면 테이프를 사용하여 백시트를 고정한 후, 박리시킬 층만 약간 벗겨낸 후 PET 필름을 테이프로 연결하고 상부 그립(grip)에 고정하였다. 유리판의 하부는 하부 그립(grip)에 고정된 채로 상부 그립(grip)이 위로 이동하면서 180° peel이 진행되어 peel strength를 측정하였다. 그 결과는 하기 표 3에 나타내었다.
표 3
Figure PCTKR2010000633-appb-T000003
상기 표 3에서 보는 바와 같이 코팅 및 합지에 의해서 백시트 샘플을 제조하고 peel strength를 측정한 결과 상용제품인 Tedlar/PET의 peel strength 보다 높게 나왔다.
2. 절연파괴전압(Breakdown voltage) 측정
태양전지의 백시트의 주요 기능 중의 하나가 EVA로 봉지된 전지를 외부로부터 절연시키는 것이다. 절연성능의 척도로는 필름에 전압을 인가하여 주었을 때 절연이 파괴되는 전압인 절연파괴전압(breakdown voltage)을 사용한다.
측정방법은 ASTM D149, KSC 2127을 참조하였고, 내전압 측정 장치는 chroma(9056-20k, 0 ~ 20kV DC)을 사용하였다. 그 결과는 하기 표 4에 나타내었다.
표 4
Figure PCTKR2010000633-appb-T000004

Claims (18)

1) 기재층, 및
2) 상기 기재층의 적어도 한 면에 형성되고, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지층
을 포함하는 태양전지 백시트.
청구항 1에 있어서, 상기 1) 기재층은 금속 기재 또는 폴리에스테르계 수지층인 것을 특징으로 하는 태양전지 백시트.
청구항 2에 있어서, 상기 폴리에스테르계 수지층은 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 나프탈레이트(PEN) 및 폴리부틸렌 테레프탈레이트(PBT)로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2)의 불소계 수지는 폴리비닐리덴플루오라이드 수지(PVDF)인 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2)의 (메타)아크릴계 단량체는 메틸 메타크릴레이트, 메틸 아크릴레이트, 에틸 아크릴레이트, 부틸 아크릴레이트, 2-에틸헥실 메타크릴레이트, 라우릴 메타크릴레이트 및 벤질 메타크릴레이트로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2)의 말레이미드계 단량체는 N-시클로헥실말레이미드, N-페닐말레이미드, N-메틸말레이미드, N-부틸말레이미드, N-벤질말레이미드 및 N-파이레닐말레이미드로 이루어진 군으로부터 선택되는 1종 이상을 포함하는 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2)의 (메타)아크릴계 공중합체 내 (메타)아크릴계 단량체의 함량은 50 ~ 99 중량%이고, 말레이미드계 단량체의 함량은 1 ~ 50 중량%인 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2) 블렌드 수지층 내 불소계 수지의 함량은 50 ~ 99 중량%이고, (메타)아크릴계 공중합체 수지의 함량은 1 ~ 50 중량%인 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2) 블렌드 수지층의 두께는 10 ~ 250마이크로미터인 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2) 블렌드 수지층은 상기 1) 기재층의 양면에 형성되는 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 태양전지 백시트는 상기 1) 기재층과 2) 블렌드 수지층 사이에 접착층을 추가로 포함하는 것을 특징으로 하는 태양전지 백시트.
청구항 11에 있어서, 상기 접착층은 폴리우레탄 접착제를 포함하는 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 1) 기재층 또는 2) 블렌드 수지층은 백색 안료를 추가로 포함하는 것을 특징으로 하는 태양전지 백시트.
청구항 1에 있어서, 상기 2) 블렌드 수지층은 광 안정제 또는 배리어 입자를 추가로 포함하는 것을 특징으로 하는 태양전지 백시트.
1) 기재층을 준비하는 단계, 및
2) 상기 기재층의 적어도 한 면에, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지 조성물을 코팅하는 단계
를 포함하는 태양전지 백시트의 제조방법.
1) 기재층을 준비하는 단계, 및
2) 상기 기재층의 적어도 한 면에, 불소계 수지 및 (메타)아크릴계 단량체와 말레이미드계 단량체를 포함하는 (메타)아크릴계 공중합체 수지의 블렌드 수지층을 적층하는 단계
를 포함하는 태양전지 백시트의 제조방법.
청구항 16에 있어서, 상기 2) 단계에서 블렌드 수지층과 기재층의 적층시 블렌드 수지층과 기재층 사이에 추가의 접착층을 배치하는 것을 특징으로 하는 백시트의 제조방법.
청구항 1 내지 청구항 14 중 어느 하나의 항의 태양전지 백시트를 포함하는 태양전지.
PCT/KR2010/000633 2009-02-02 2010-02-02 태양전지 백시트 및 이의 제조방법 WO2010087684A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/147,166 US10038110B2 (en) 2009-02-02 2010-02-02 Solar cell backsheet and method for preparing same
EP10736075.2A EP2393124B1 (en) 2009-02-02 2010-02-02 Solar cell back sheet and method for preparing same
CN201080006255.9A CN102301492B (zh) 2009-02-02 2010-02-02 太阳能电池背板、其制备方法和包括其的太阳能电池
JP2011547812A JP2012516565A (ja) 2009-02-02 2010-02-02 太陽電池バックシート及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0008103 2009-02-02
KR20090008103 2009-02-02

Publications (2)

Publication Number Publication Date
WO2010087684A2 true WO2010087684A2 (ko) 2010-08-05
WO2010087684A3 WO2010087684A3 (ko) 2010-10-21

Family

ID=42396233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/000633 WO2010087684A2 (ko) 2009-02-02 2010-02-02 태양전지 백시트 및 이의 제조방법

Country Status (6)

Country Link
US (1) US10038110B2 (ko)
EP (1) EP2393124B1 (ko)
JP (1) JP2012516565A (ko)
KR (1) KR101082449B1 (ko)
CN (1) CN102301492B (ko)
WO (1) WO2010087684A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284075A1 (en) * 2010-05-19 2011-11-24 Fujifilm Corporation Polymer sheet for solar cell back sheet, method for producing the same, and solar cell module
US20130240036A1 (en) * 2010-11-12 2013-09-19 Fujifilm Corporation Back sheet for solar cell and process for production thereof, and solar cell module
US20140290744A1 (en) * 2011-11-18 2014-10-02 Giga Solar Fpc Novel solar modules, supporting layer stacks and methods of fabricating thereof

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101156891B1 (ko) * 2010-10-21 2012-06-21 도레이첨단소재 주식회사 수분 차단성이 향상된 태양전지용 백시트 및 그 제조방법
KR101125407B1 (ko) * 2011-01-24 2012-03-27 엘지이노텍 주식회사 태양전지 및 그의 제조방법
KR101371856B1 (ko) * 2011-03-17 2014-03-10 주식회사 엘지화학 친환경 태양전지용 백시트 및 이의 제조방법
CN103619584A (zh) 2011-05-16 2014-03-05 Lg化学株式会社 用于太阳能电池的保护膜及包含该保护膜的太阳能电池
JP6075802B2 (ja) * 2011-11-17 2017-02-08 エルジー・ケム・リミテッド 水分散組成物、親環境光電池モジュール用バックシート及びその製造方法
CN103958196B (zh) * 2011-12-15 2016-04-20 大金工业株式会社 太阳能电池背板、太阳能电池组件以及太阳能电池面板
KR101457264B1 (ko) * 2012-02-24 2014-11-03 율촌화학 주식회사 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
KR101350557B1 (ko) * 2012-02-24 2014-01-14 율촌화학 주식회사 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
KR101448343B1 (ko) * 2012-04-09 2014-10-08 (주)엘지하우시스 태양전지 밀봉재용 eva시트 및 그의 제조방법
JP2016506544A (ja) 2012-12-20 2016-03-03 スリーエム イノベイティブ プロパティズ カンパニー 層ごとに自己集合された層を含む多層光学フィルム及び物品の製造方法
EP2980859B1 (en) * 2013-03-26 2020-01-08 Panasonic Intellectual Property Management Co., Ltd. Solar cell module
EP3004261A1 (en) * 2013-05-31 2016-04-13 3M Innovative Properties Company Methods of layer by layer self-assembly of a polyelectrolyte comprising light absorbing or stabilizing compound and articles
KR101487257B1 (ko) 2013-07-11 2015-01-28 엘에스산전 주식회사 태양전지 모듈
JP6251526B2 (ja) * 2013-09-19 2017-12-20 株式会社日本触媒 太陽電池モジュール用バックシート
KR101658184B1 (ko) * 2015-04-23 2016-09-30 에스케이씨 주식회사 폴리머 필름, 태양 전지 패널 보호 필름 및 이를 포함하는 태양광 발전 장치
KR101696759B1 (ko) 2015-12-08 2017-01-16 주식회사 에스케이씨에스 수분방지 특성이 우수한 백시트 및 그의 제조방법
JPWO2018034117A1 (ja) * 2016-08-18 2019-06-13 東レ株式会社 積層体、およびそれを用いた太陽電池裏面保護用シート、太陽電池モジュール
CN108461565A (zh) * 2017-05-19 2018-08-28 浙江帝恒实业有限公司 一种耐候性太阳能电池背板及其制备方法
CN110854225A (zh) * 2018-07-25 2020-02-28 比亚迪股份有限公司 一种双玻光伏组件

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008103A (ko) 2007-07-06 2009-01-21 배재한 오토바이용 방수장갑

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410824A (en) * 1982-08-03 1983-10-18 The Bendix Corporation Means for preventing cracks in the gap region of a surface acoustic wave device
JPS61141715A (ja) 1984-12-13 1986-06-28 Mitsubishi Rayon Co Ltd 耐熱性共重合体樹脂、その製造法およびそれからなる光学用素子
JPS62109811A (ja) 1985-11-07 1987-05-21 Nippon Oil & Fats Co Ltd 高耐熱性メタクリル酸メチル系樹脂の製造方法
US5185403A (en) * 1991-07-31 1993-02-09 Morton Coatings, Inc. Thermosetting acrylic polymers and coating compositions containing said acrylic polymers and fluorocarbon resins
JP3170105B2 (ja) * 1993-07-01 2001-05-28 キヤノン株式会社 太陽電池モジュール
US5959022A (en) * 1998-04-01 1999-09-28 Ausimont Usa, Inc. Compatible polyvinylidene fluoride blends with polymers containing imide moieties
DE19859393A1 (de) * 1998-12-22 2000-06-29 Roehm Gmbh Verfahren zur Herstellung von Folien
JP2002100788A (ja) * 2000-09-20 2002-04-05 Mitsubishi Alum Co Ltd 太陽電池カバー材用バックシート及びそれを用いた太陽電池モジュール
JP2002265537A (ja) * 2001-03-08 2002-09-18 Nippon Shokubai Co Ltd フッ素含有マレイミド系共重合体
JP4157459B2 (ja) * 2003-10-30 2008-10-01 シャープ株式会社 軽量太陽電池モジュールとその製造方法
US7553540B2 (en) * 2005-12-30 2009-06-30 E. I. Du Pont De Nemours And Company Fluoropolymer coated films useful for photovoltaic modules
US20090029176A1 (en) 2006-02-02 2009-01-29 Mitsubishi Plastics, Inc Heat shield sheet
US7956144B2 (en) * 2006-02-03 2011-06-07 Ppg Industries Ohio, Inc. Acrylic resin for use in fluorocarbon coating compositions and method of forming the same
JP2007266382A (ja) 2006-03-29 2007-10-11 Toppan Printing Co Ltd 太陽電池モジュール用のバックシート及び該バックシートを用いた太陽電池モジュール。
EP2009052B1 (en) * 2006-04-13 2013-08-14 Mitsui Chemicals, Inc. Thermoplastic resin composition, sheet for sealing solar cell, and solar cell
JP2008004691A (ja) 2006-06-21 2008-01-10 Toppan Printing Co Ltd 太陽電池裏面封止用シート
DE102006029613A1 (de) * 2006-06-26 2007-12-27 Röhm Gmbh Transparenter Kunststoff-Verbund
JP5166440B2 (ja) 2006-12-21 2013-03-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 架橋可能なフッ化ビニルコポリマー
KR101056688B1 (ko) 2007-01-10 2011-08-12 주식회사 엘지화학 접착제 조성물, 이를 이용한 접착 필름 및 다이싱 다이본딩 필름
JP5237569B2 (ja) 2007-02-27 2013-07-17 東洋アルミニウム株式会社 太陽電池用裏面保護シートとそれを備えた太陽電池モジュール
US8168297B2 (en) * 2007-04-23 2012-05-01 E. I. Du Pont De Nemours And Company Fluoropolymer coated film, process for forming the same, and fluoropolymer liquid composition
KR101690974B1 (ko) * 2007-06-15 2016-12-29 알케마 인코포레이티드 폴리비닐리덴 플루오라이드 배면시트를 구비한 태양광 모듈
WO2009017118A1 (ja) * 2007-07-31 2009-02-05 Techno Polymer Co., Ltd. 積層体
JP2009267020A (ja) * 2008-04-24 2009-11-12 Nitto Denko Corp 太陽電池パネル用粘着シート、該粘着シートを用いてなる太陽電池パネルおよび該粘着シートを用いた太陽電池パネルの製造方法
US10043930B2 (en) * 2008-11-26 2018-08-07 Arkema France High temperature acrylic sheet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090008103A (ko) 2007-07-06 2009-01-21 배재한 오토바이용 방수장갑

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2393124A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110284075A1 (en) * 2010-05-19 2011-11-24 Fujifilm Corporation Polymer sheet for solar cell back sheet, method for producing the same, and solar cell module
US20130240036A1 (en) * 2010-11-12 2013-09-19 Fujifilm Corporation Back sheet for solar cell and process for production thereof, and solar cell module
US9202956B2 (en) * 2010-11-12 2015-12-01 Fujifilm Corporation Back sheet for solar cell and process for production thereof, and solar cell module
US20140290744A1 (en) * 2011-11-18 2014-10-02 Giga Solar Fpc Novel solar modules, supporting layer stacks and methods of fabricating thereof
JP2015502659A (ja) * 2011-11-18 2015-01-22 ギガ ソーラー エフピーシー 新規の太陽光モジュール、支持層スタック、およびその製造方法
US9590123B2 (en) * 2011-11-18 2017-03-07 Giga Solar Fpc Solar modules, supporting layer stacks and methods of fabricating thereof

Also Published As

Publication number Publication date
JP2012516565A (ja) 2012-07-19
KR101082449B1 (ko) 2011-11-11
CN102301492B (zh) 2015-05-13
EP2393124A4 (en) 2013-07-31
US10038110B2 (en) 2018-07-31
US20110297221A1 (en) 2011-12-08
CN102301492A (zh) 2011-12-28
WO2010087684A3 (ko) 2010-10-21
KR20100089038A (ko) 2010-08-11
EP2393124A2 (en) 2011-12-07
EP2393124B1 (en) 2017-10-25

Similar Documents

Publication Publication Date Title
WO2010087684A2 (ko) 태양전지 백시트 및 이의 제조방법
WO2012148176A2 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
US8962971B2 (en) Laminated polymer film and solar module made thereof
WO2010107282A2 (ko) 불소계 공중합체를 포함하는 태양전지 백시트 및 그 제조방법
US8632876B2 (en) Laminated polyester film for solar cell backsheets
Oreski et al. Delamination behaviour of multi-layer films for PV encapsulation
CN102166851B (zh) 一种太阳能电池背板及使用该背板的太阳能电池模块
WO2012091309A2 (ko) 다층 필름 및 이를 포함하는 광전지 모듈
CN207303123U (zh) 一种高阻隔太阳能电池背板
WO2013125874A1 (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
CN103687907A (zh) 偏氟乙烯系树脂组合物、树脂薄膜、太阳能电池用背板以及太阳能电池组件
WO2012133973A1 (ko) 태양전지 모듈 및 이의 제조방법
CN105140328A (zh) 一种太阳能电池复合背膜及其制备方法
US20110226313A1 (en) High temperature acrylic sheet
JP5243135B2 (ja) 太陽電池裏面保護膜用ポリエステルフィルムおよび太陽電池裏面保護膜
JP2011032451A (ja) 複合粘着テープ及びそれを用いた太陽電池モジュール
US20190097070A1 (en) Sheet for solar battery module, and solar battery module
JP5715221B2 (ja) モジュール構造
JP2016105472A (ja) 太陽電池モジュール用シート及び太陽電池モジュール
KR20130017690A (ko) 태양전지 모듈
JP2013203852A (ja) ポリマーシート、太陽電池用裏面保護シートおよび太陽電池モジュール
WO2011108805A2 (ko) 태양전지모듈용 이면 보호시트의 제조방법
WO2012050316A1 (ko) 태양광발전용 솔라셀 모듈의 백시트
WO2010041854A2 (en) Multilayered weatherable film for solar cell
JP2010272834A (ja) 太陽電池用バックシートおよびそれを用いた太陽電池モジュール

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006255.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10736075

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2011547812

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13147166

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2010736075

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010736075

Country of ref document: EP